Troubleshooting and Maintaining Cisco IP Networks (TSHOOT)
Foundation Learning Guide

Amir Ranjbar

ciscopress.com

FREE SAMPLE CHAPTER
SHARE WITH OTHERS
Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Publisher: Paul Boger
Business Operation Manager, Cisco Press: Jan Cornelsen
Managing Editor: Sandra Schroeder
Senior Project Editor: Tonya Simpson
Technical Editor: Ted Kim
Cover Designer: Mark Shirar
Indexer: Lisa Stumpf
Associate Publisher: Dave Dusthimer
Acquisitions Editor: Mary Beth Ray
Development Editor: Ellie Bru
Copy Editor: Keith Cline
Team Coordinator: Vanessa Evans
Composition: Trina Wurst
Proofreader: Debbie Williams
About the Author

Amir Ranjbar, CCIE No. 8669, is a Certified Cisco Systems Instructor and a senior network consultant. Operating under his own corporation, AMIRACAN Inc., Amir offers his training services to Global Knowledge Network, his consulting expertise to a variety of clients (mainly Internet service providers), and his technical writing skills to Cisco Press (Pearson Education, Inc.). Born in Tehran, Iran, Amir immigrated to Canada in 1983 at the age of 16 and completed his Master's degree in knowledge-based systems (a branch in artificial intelligence [AI]) in 1991. He has been involved in training, consulting, and technical writing for the greater part of his career. Amir Ranjbar can be contacted through his email address aranjbar@amiracan.com.

About the Technical Reviewer

Ted Kim, CCIE No. 22769 (Routing and Switching and Service Provider), has 10 years of experience in the IT industry, with a focus on data center technologies during the past several years. He has experience with designing, implementing, and troubleshooting large enterprise environments. Ted's networking career began at Johns Hopkins as a network engineer, and he has been with Cisco since 2013 as a network consulting engineer.
Dedication

I dedicate this book to my father, Mr. Kavos Ranjbar, whom I lost on January 2, 2013. I wish we could all be so loving, helpful, and generous, yet humble, peaceful, and gentle, just like my dad.

Acknowledgments

This book is the result of work done by many individuals. I would like to offer my sincere gratitude to all of them, whether we worked together directly or otherwise. Mary Beth Ray, Ellie Bru, Tonya Simpson, Keith Cline, Vanessa Evans, Mark Shirar, Trina Wurst, and Lisa Stumpf, please accept my most sincere gratitude for the time and effort you put into this project. I wish I could attend the next Pearson Education social gathering and thank you all in person! Ted Kim, thank you for your technical review and feedback; I hope to meet you someday and thank you in person, too.
Contents at a Glance

Introduction xxi
Chapter 1: Troubleshooting Methods 1
Chapter 2: Structured Troubleshooting 15
Chapter 3: Network Maintenance Tasks and Best Practices 29
Chapter 4: Basic Switching and Routing Process and Effective IOS Troubleshooting Commands 61
Chapter 5: Using Specialized Maintenance and Troubleshooting Tools 99
Chapter 6: Troubleshooting Case Study: SECHNIK Networking 117
Chapter 7: Troubleshooting Case Study: TINC Garbage Disposal 173
Chapter 8: Troubleshooting Case Study: PILE Forensic Accounting 257
Chapter 9: Troubleshooting Case Study: Bank of POLONA 333
Chapter 10: Troubleshooting Case Study: RADULKO Transport 397
Appendix A: Answers to Review Questions 451
Index 453
Contents

Introduction xxii

Chapter 1 Troubleshooting Methods 1

- Troubleshooting Principles 1
- Structured Troubleshooting Approaches 4
 - The Top-Down Troubleshooting Approach 6
 - The Bottom-Up Troubleshooting Approach 7
 - The Divide-and-Conquer Troubleshooting Approach 8
 - The Follow-the-Path Troubleshooting Approach 9
 - The Compare-Configurations Troubleshooting Approach 10
 - The Swap-Components Troubleshooting Approach 11
- Troubleshooting Example Using Six Different Approaches 12
- Summary 13
- Review Questions 14

Chapter 2 Structured Troubleshooting 15

- Troubleshooting Method and Procedure 16
 - Defining the Problem 17
 - Gathering Information 18
 - Analyzing the Information 20
 - Eliminating Potential Causes 21
 - Proposing a Hypothesis (Likely Cause of the Problem) 21
 - Testing and Verifying Validity of the Proposed Hypothesis 23
 - Solving the Problem and Documenting the Work 24
- Troubleshooting Example Based on the Structured Method and Procedures 25
- Summary 26
- Review Questions 27

Chapter 3 Network Maintenance Tasks and Best Practices 29

- Structured Network Maintenance 29
- Network Maintenance Processes and Procedures 31
 - Common Maintenance Tasks 32
 - Network Maintenance Planning 33
 - Scheduling Maintenance 33
 - Formalizing Change-Control Procedures 34
 - Establishing Network Documentation Procedures 34
 - Establishing Effective Communication 35
 - Defining Templates/Procedures/Conventions (Standardization) 36
 - Planning for Disaster Recovery 36
Network Maintenance Services and Tools 37
 Network Time Services 39
 Logging Services 40
 Performing Backup and Restore 42
Integrating Troubleshooting into the Network Maintenance Process 47
 Network Documentation and Baseline 48
 Communication 50
 Change Control 53
Summary 54
Review Questions 57

Chapter 4 Basic Switching and Routing Process and Effective IOS Troubleshooting Commands 61
Basic Layer 2 Switching Process 61
 Ethernet Frame Forwarding (Layer 2 Data Plane) 62
 Layer 2 Switching Verification 67
Basic Layer 3 Routing Process 69
 IP Packet Forwarding (Layer 3 Data Plane) 70
 Using IOS Commands to Verify IP Packet Forwarding 73
Selective Information Gathering Using IOS show Commands, debug Commands, Ping, and Telnet 76
 Filtering and Redirecting show Command’s Output 76
 Testing Network Connectivity Using Ping and Telnet 81
 Collecting Real-Time Information Using Cisco IOS debug Commands 85
 Diagnosing Hardware Issues Using Cisco IOS Commands 86
 Checking CPU Utilization 87
 Checking Memory Utilization 88
 Checking Interfaces 89
Summary 92
Review Questions 94

Chapter 5 Using Specialized Maintenance and Troubleshooting Tools 99
Categories of Troubleshooting Tools 100
Traffic-Capturing Features and Tools 101
 SPAN 102
 RSPAN 103
Information Gathering with SNMP 105
Information Gathering with NetFlow 107
Network Event Notification 109
Chapter 6 Troubleshooting Case Study: SECHNIK Networking 117

SECHNIK Networking Trouble Ticket 1 118

Troubleshooting PCI1's Connectivity Problem 118
Gathering Information 119
Analyzing Information, Eliminating Causes, and Gathering Further Information 119
Proposing Hypotheses 121
Testing the Hypotheses and Solving the Problem 121
Troubleshooting Ethernet Trunks 122
Troubleshooting PC2's Connectivity Problem 123
Gathering Information 124
Proposing a Hypothesis, Testing the Hypothesis, and Solving the Problem 126
Troubleshooting NAT 127
Troubleshooting PC3's Connectivity Problem 128
Gathering Information 129
Eliminating Possibilities, Proposing a Hypothesis, and Testing the Hypothesis 129
Troubleshooting Network Device Interfaces 130
Troubleshooting PC4's IPv6 Connectivity Problem 131
Gathering Information 131
Eliminating Possibilities, Proposing a Hypothesis, and Testing the Hypothesis 132
Troubleshooting IPv6 Address Assignment on Clients 133

SECHNIK Networking Trouble Ticket 2 134

Troubleshooting PCI1's Internet Connectivity Problem 134
Gathering Information 135
Proposing a Hypothesis, Testing the Hypothesis, and Solving the Problem 137
Troubleshooting Network Layer Connectivity 138
Troubleshooting PC2's SSH Connectivity Problem 141
Verifying and Defining the Problem 141
Gathering Information 142
Proposing a Hypothesis and Testing the Hypothesis 143
TCP Three-Way Handshake 145
Troubleshooting PC4’s DHCP Address Problem 146
Verifying and Defining the Problem 146
Gathering Information 147
Proposing a Hypothesis, Testing a Hypothesis, and Solving the Problem 148
Troubleshooting Error-Disabled Ports 151
SECHNIK Networking Trouble Ticket 3 152
Troubleshooting PC1 and PC2’s Internet Connectivity Issues 153
Verifying and Defining the Problem 153
Gathering Information 153
Proposing a Hypothesis and Testing the Hypothesis 157
Solving the Problem 159
Troubleshooting DHCP 160
The passive-interface Command 161
Troubleshooting PC3’s Internet Connectivity Issues 162
Verifying and Defining the Problem 162
Gathering Information 162
Proposing a Hypothesis and Testing the Hypothesis 164
Solving the Problem 165
IPv6 Review 166
Summary 166
Review Questions 169

Chapter 7 Troubleshooting Case Study: TINC Garbage Disposal 173
TINC Garbage Disposal Trouble Ticket 1 174
Troubleshooting Lack of Backup Internet Connectivity Through GW2 174
Information Gathering 176
Analyzing Information, Eliminating Possibilities, and Proposing a Hypothesis 178
Proposing a Hypothesis, Testing the Hypothesis, and Solving the Problem 178
Troubleshooting BGP Neighbor Relationships 181
Troubleshooting PC1’s Connectivity Problem 182
Gathering Information 182
Analyzing Information and Gathering Further Information 183
Proposing a Hypothesis, Testing the Hypothesis, and Solving the Problem 184
Troubleshooting Port Security 186
Troubleshooting PC2's Connectivity Problem 187
Gathering Information 188
Eliminating Possibilities, Proposing a Hypothesis, and Testing the Hypothesis 190
Solving the Problem 191
Troubleshooting VLANs 192
TINC Garbage Disposal Trouble Ticket 2 193
Troubleshooting GW1's OSPF Neighbor Relation Problem with Router R1 194
Verifying the Problem 194
Gathering Information 194
Analyzing Information, Eliminating Possibilities, and Proposing a Hypothesis 199
Testing the Hypothesis and Solving the Problem 199
Troubleshooting OSPF Adjacency 201
Troubleshooting Secure Shell Version 2 Access to Router R2 from PC4 202
Verifying the Problem 202
Gathering Information 203
Proposing a Hypothesis and Testing the Hypothesis 204
Solving the Problem 205
Troubleshooting SSH and Telnet 206
Troubleshooting Duplicate Address Problem Discovered Through R1 and R2's Log Messages 207
Verifying the Problem 207
Gathering Information 207
Analyzing the Information and Proposing a Hypothesis 210
Testing the Hypothesis and Solving the Problem 210
Troubleshooting HSRP 211
TINC Garbage Disposal Trouble Ticket 3 212
Troubleshooting Sporadic Internet Connectivity Problem Experienced by Users of PC1 and PC2 212
Verifying and Defining the Problem 213
Gathering Information 213
Analyzing Information and Proposing a Hypothesis 215
Testing the Hypothesis and Solving the Problem 217
Troubleshooting Erroneous Routing Information 218
Troubleshooting Multiple Masters within a VRRP 220
Verifying and Defining the Problem 220
Gathering Information 221
| Chapter 8 | Troubleshooting Case Study: PILE Forensic Accounting | 257 |

| Troubleshooting PILE's Branch Connectivity to HQ and the Internet | 258 |

| Verifying and Defining the Problem | 258 |

| Gathering Information | 260 |
Analyzing Information 264
Proposing a Hypothesis and Testing the Hypothesis 264
Solving the Problem 265
Troubleshooting EIGRP Adjacency 266
Troubleshooting PILE's Secondary Internet Connection Through ISP2 267
Verifying and Defining the Problem 267
Gathering Information 268
Analyzing Information and Proposing a Hypothesis 270
Testing the Hypothesis 271
Solving the Problem 273
PILE Forensic Accounting Trouble Ticket 2 274
Troubleshooting Telnet Problem: From PC3 to BR 274
Gathering Information 275
Troubleshooting PILE Network's Internet Access Problem 275
Verifying and Defining the Problem 276
Gathering Information 276
Analyzing Information, Eliminating Causes, and Gathering Further Information 278
Proposing and Testing a Hypothesis 280
Solving the Problem 281
Troubleshooting BGP 281
Troubleshooting PILE Network’s NTP Problem 282
Verifying the Problem 283
Gathering Information 283
Analyzing the Gathered Information and Gathering Further Information 284
Proposing a Hypothesis and Testing the Hypothesis 285
Solving the Problem 286
Troubleshooting NTP 286
PILE Forensic Accounting Trouble Ticket 3 287
Troubleshooting PC3’s Lack of Internet Connectivity After the Disaster Recovery 287
Verifying the Problem 288
Gathering Information (First Run) 288
Analyzing Information, Proposing, and Testing the First Hypothesis 289
Proposing and Testing the Second Hypothesis 290
Gathering Further Information (Second Run) 292
Proposing and Testing the Third Hypothesis 293
Solving the Problem 294
Disaster Recovery Best Practices 294
Troubleshooting Inter-VLAN Routing 296
Troubleshooting PC4's Problem Accessing Cisco.com 297
Verify the Problem and Select an Approach 297
Gather Information and Analyze the Information 298
Proposing and Testing a Hypothesis 299
Solve the Problem 299
Troubleshooting DNS 300
Remote Device Management Notes 301
PILE Forensic Accounting Trouble Ticket 4 302
Troubleshooting Branch Site Internet Connectivity Problem After EIGRP Reconfiguration 302
Verifying the Problem 302
Gathering Information 303
Gathering Further Information and Analyzing Information 303
Proposing a Hypothesis and Testing the Hypothesis 305
Solving the Problem 307
The EIGRP Stub Configuration 308
The New EIGRP Named Configuration 309
Troubleshooting Management Access to ASW2 310
Verifying the Problem 310
Gathering Information 310
Proposing a Hypothesis and Testing the Hypothesis 311
Solving the Problem 312
Providing a Default Route on Layer 2 And Multilayer Devices 313
PILE Forensic Accounting Trouble Ticket 5 313
Troubleshooting the Redundant Internet Access Path Through the New HQ0 Edge Router 314
Verifying and Defining the Problem 314
Gathering Information 315
Proposing a Hypothesis and Testing the Hypothesis 318
Solving the Problem 319
Troubleshooting BGP Route Selection 321
Troubleshooting Unauthorized Telnet Access 322
Verifying the Problem 322
Gathering Information 322
Gathering Further Information and Analysis Information 323
Proposing a Hypothesis and Testing the Hypothesis 324
Solving the Problem 325
Securing the Management Plane 325
Chapter 9 Troubleshooting Case Study: Bank of POLONA 333

Bank of POLONA Trouble Ticket 1 334
 Troubleshooting PC3’s Lack of Connectivity to SRV2 335
 Verifying the Problem 335
 Gathering Information 336
 Analyzing Information and Proposing a Hypothesis, and Testing the Hypothesis 338
 Solving the Problem 339
 Troubleshooting Redistribution 339
 Troubleshooting VRRP with Interface Tracking 340
 Verifying the Problem 340
 Gathering Information 341
 Analyzing the Information 342
 Proposing and Testing a Hypothesis 342
 Solving the Problem 343
 FHRP Tracking Options 344
 Troubleshooting IP SLA Test Not Starting 345
 Verifying the Problem 345
 Gathering Information 346
 Proposing and Testing a Hypothesis 347
 Solving the Problem 348

Bank of POLONA Trouble Ticket 2 349
 Troubleshooting Summarization Problem on BR3 350
 Verifying the Problem 350
 Gathering Information 350
 Analyzing Information 351
 Proposing and Testing a Hypothesis 351
 Solving the Problem 352
 Troubleshooting EIGRP Summarization 353
 Troubleshooting PC0’s IPv6 Internet Connectivity 353
 Verifying the Problem 353
 Gathering Information 354
 Analyzing Information 356
 Proposing and Testing a Hypothesis 356
 Solving the Problem 357
 Troubleshooting RIPng 357
Troubleshooting Branch 3’s IPv6 Internet Connectivity 358
Verifying the Problem 358
Gathering Information 359
Analyzing Information 361
Proposing and Testing a Hypothesis 361
Solving the Problem 362
Troubleshooting Access Control Lists 362
Bank of POLONA Trouble Ticket 3 364
Troubleshooting Branch 1’s IP Connectivity to the Headquarters 364
Verifying the Problem 364
Gathering Information 365
Proposing and Testing a Hypothesis 366
Gathering Further Information 367
Proposing and Testing Another Hypothesis 367
Solving the Problem 368
Troubleshooting GRE Tunnels 368
Troubleshooting Branch 3’s Route Summarization 369
Verifying the Problem and Choosing an Approach 369
Gathering Information 370
Analyzing the Information and Proposing a Hypothesis 373
Testing the Hypothesis and Solving the Problem 373
OSPF Summarization Tips and Commands 374
Troubleshooting AAA Authentication on the Branch 1 Router 375
Verifying the Problem and Choosing an Approach 375
Gathering Information 375
Proposing a Hypothesis 376
Testing the Hypothesis and Solving the Problem 376
Troubleshooting AAA 377
Bank of POLONA Trouble Ticket 4 378
Troubleshooting PC0’s Connectivity to IPv6 Internet 378
Verifying the Problem and Choosing an Approach 378
Gathering Information 379
Analyzing the Information and Proposing and Testing a Hypothesis 381
Gathering Further Information 382
Analyzing Information and Proposing and Testing Another Hypothesis 383
Solving the Problem 384
Troubleshooting OSPF for IPv6 385
Icons Used in This Book

- Router
- Laptop
- File/Application Server
- Workgroup Switch
- Terminal
- Secure Server
- Network Cloud
- User
- PIX Firewall
- Multilayer Switch
- Access Point
- WLAN Controller

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).

- **Italic** indicates arguments for which you supply actual values.

- Vertical bars (|) separate alternative, mutually exclusive elements.

- Square brackets ([]) indicate an optional element.

- Braces ({ }) indicate a required choice.

- Braces within brackets (|[]) indicate a required choice within an optional element.
Introduction

This book is based on the Cisco Systems TSHOOT course, which was recently introduced as part of the CCNP curriculum. It provides troubleshooting and maintenance information and examples that relate to Cisco routing and switching. It is assumed that readers know and understand as much Cisco routing and switching background as covered in the Cisco ROUTE and SWITCH courses. The book is enough to prepare you for the TSHOOT exam, too.

Teaching troubleshooting is not an easy task. This book introduces you to many troubleshooting methodologies and identifies the benefits of different techniques. Technical routing and switching topics are briefly reviewed, but the emphasis is on troubleshooting commands, and most important, this book presents many troubleshooting examples. Chapter review questions will help you evaluate how well you absorbed material within each chapter. The questions are also an excellent supplement for exam preparation.

Who Should Read This Book?

Those individuals who want to learn about modern troubleshooting methodologies and techniques and want to see several relevant examples will find this book very useful. This book is most suitable for those who have some prior routing and switching knowledge but would like to learn more or otherwise enhance their troubleshooting skill set. Readers who want to pass the Cisco TSHOOT exam can find all the content they need to successfully do so in this book. The Cisco Networking Academy CCNP TSHOOT course students will use this book as their official textbook.

Cisco Certifications and Exams

Cisco offers four levels of routing and switching certification, each with an increasing level of proficiency: Entry, Associate, Professional, and Expert. These are commonly known by their acronyms CCENT (Cisco Certified Entry Networking Technician), CCNA (Cisco Certified Network Associate), CCNP (Cisco Certified Network Professional), and CCIE (Cisco Certified Internetworking Expert). There are others, too, but this book focuses on the certifications for enterprise networks.

For the CCNP certification, you must pass exams on a series of CCNP topics, including the SWITCH, ROUTE, and TSHOOT exams. For most exams, Cisco does not publish the scores needed for passing. You need to take the exam to find that out for yourself.

To see the most current requirements for the CCNP certification, go to Cisco.com and click Training and Events. There you can find out other exam details such as exam topics and how to register for an exam.
The strategy you use to prepare for the TSHOOT exam might differ slightly from strategies used by other readers, mainly based on the skills, knowledge, and experience you have already obtained. For instance, if you have attended the TSHOOT course, you might take a different approach than someone who learned troubleshooting through on-the-job training. Regardless of the strategy you use or the background you have, this book is designed to help you get to the point where you can pass the exam with the least amount of time required.

How This Book Is Organized

Although this book can be read cover to cover, it is designed to be flexible and allow you to easily move between chapters to cover only the material for which you might need additional remediation. The chapters can be covered in any order, although some chapters are related to and build upon each other. If you do intend to read them all, the order in the book is an excellent sequence to follow.

Each core chapter covers a subset of the topics on the CCNP TSHOOT exam. The chapters cover the following topics:

- Chapter 1 introduces the troubleshooting principles and discusses the most common troubleshooting approaches.
- Chapter 2 defines structured troubleshooting and analyzes all the subprocesses of structured troubleshooting.
- Chapter 3 introduces structured network maintenance and discusses network maintenance processes and procedures. Network maintenance services and tools, along with how you can integrate troubleshooting into the network maintenance process, are also presented in this chapter.
- Chapter 4 reviews the Layer 2 switching and Layer 3 routing processes and shows how to do selective information gathering using the IOS show command, debug command, ping, and Telnet.
- Chapter 5 discusses troubleshooting tools: traffic-capturing features and tools, information gathering with SNMP, information gathering with NetFlow, and network event notification with EEM.
- Chapters 6 through 10 are all troubleshooting cases. Each chapter is about a different network with many different problems. Each problem is dealt with in the form of a real-life trouble ticket, and it is fixed following the structured troubleshooting methodology using the appropriate approach. All stages of troubleshooting, including fact gathering, are presented with output from Cisco IOS routers and switches. The network diagrams for Chapters 6 through 10 appear at the beginning and end of each chapter. For easier reference, a PDF of these network diagrams is available to download and print out or read on your e-device. Go to ciscopress.com/title/9781587204555 and click on the Downloads tab.

There is also an appendix that has answers to the review questions found at the end of each chapter.
This chapter covers the following topics:

- Troubleshooting principles
- Common troubleshooting approaches
- Troubleshooting example using six different approaches

Most modern enterprises depend heavily on the smooth operation of their network infrastructure. Network downtime usually translates to loss of productivity, revenue, and reputation. Network troubleshooting is therefore one of the essential responsibilities of the network support group. The more efficiently and effectively the network support personnel diagnose and resolve problems, the lower impact and damages will be to business. In complex environments, troubleshooting can be a daunting task, and the recommended way to diagnose and resolve problems quickly and effectively is by following a structured approach. Structured network troubleshooting requires well-defined and documented troubleshooting procedures.

This chapter defines troubleshooting and troubleshooting principles. Next, six different troubleshooting approaches are described. The third section of this chapter presents a troubleshooting example based on each of the six troubleshooting approaches.

Troubleshooting Principles

Troubleshooting is the process that leads to the diagnosis and, if possible, resolution of a problem. Troubleshooting is usually triggered when a person reports a problem. In modern and sophisticated environments that deploy proactive network monitoring tools and techniques, a failure/problem may be discovered and even fixed/resolved before end users notice or business applications get affected by it.

Some people say that a problem does not exist until it is noticed, perceived as a problem, and reported as a problem. This implies that you need to differentiate between a problem,
as experienced by the user, and the actual cause of that problem. The time a problem is reported is not necessarily the same time at which the event causing the problem happened. Also, the reporting user generally equates the problem to the symptoms, whereas the troubleshooter often equates the problem to the root cause. For example, if the Internet connection fails on Saturday in a small company, it is usually not a problem, but you can be sure that it will turn into a problem on Monday morning if it is not fixed before then. Although this distinction between symptoms and cause of a problem might seem philosophical, you need to be aware of the potential communication issues that might arise from it.

Generally, reporting of a problem triggers the troubleshooting process. Troubleshooting starts by defining the problem. The second step is diagnosing the problem, during which information is gathered, the problem definition is refined, and possible causes for the problem are proposed. Eventually, this process should lead to a hypothesis for the root cause of the problem. At this time, possible solutions need to be proposed and evaluated. Next, the best solution is selected and implemented. Figure 1-1 illustrates the main elements of a structured troubleshooting approach and the transition possibilities from one step to the next.

![Flow Chart of a Structured Troubleshooting Approach](image)

Note It is noteworthy, however, that the solution to a network problem cannot always be readily implemented and an interim workaround might have to be proposed. The difference between a solution and a workaround is that a solution resolves the root cause of the problem, whereas a workaround only alleviates the symptoms of the problem.

Although problem reporting and resolution are definitely essential elements of the troubleshooting process, most of the time is spent in the diagnostic phase. One might even believe that diagnosis is all troubleshooting is about. Nevertheless, within the context of network maintenance, problem reporting and resolution are indeed essential parts of troubleshooting. Diagnosis is the process of identifying the nature and cause of a problem. The main elements of this process are as follows:

- **Gathering information:** Gathering information happens after the problem has been reported by the user (or anyone). This might include interviewing all parties (user) involved, plus any other means to gather relevant information. Usually, the problem report does not contain enough information to formulate a good hypothesis without first gathering more information. Information and symptoms can be gathered directly, by observing processes, or indirectly, by executing tests.
Troubleshooting Principles

- **Analyzing information:** After the gathered information has been analyzed, the troubleshooter compares the symptoms against his knowledge of the system, processes, and baselines to separate normal behavior from abnormal behavior.

- **Eliminating possible causes:** By comparing the observed behavior against expected behavior, some of the possible problem causes are eliminated.

- **Formulating/proposing a hypothesis:** After gathering and analyzing information and eliminating the possible causes, one or more potential problem causes remain. The probability of each of these causes will have to be assessed and the most likely cause proposed as the hypothetical cause of the problem.

- **Testing the hypothesis:** The hypothesis must be tested to confirm or deny that it is the actual cause of the problem. The simplest way to do this is by proposing a solution based on this hypothesis, implementing that solution, and verifying whether this solved the problem. If this method is impossible or disruptive, the hypothesis can be strengthened or invalidated by gathering and analyzing more information.

All troubleshooting methods include the elements of gathering and analyzing information, eliminating possible causes, and formulating and testing hypotheses. Each of these steps has its merits and requires some time and effort; how and when one moves from one step to the next is a key factor in the success level of a troubleshooting exercise. In a scenario where you are troubleshooting a complex problem, you might go back and forth between different stages of troubleshooting: Gather some information, analyze the information, eliminate some of the possibilities, gather more information, analyze again, formulate a hypothesis, test it, reject it, eliminate some more possibilities, gather more information, and so on.

If you do not take a structured approach to troubleshooting and do troubleshooting in an ad hoc fashion, you might eventually find the solution; however, the process in general will be very inefficient. Another drawback of ad hoc troubleshooting is that handing the job over to someone else is very hard to do; the progress results are mainly lost. This can happen even if the troubleshooter wants to resume his own task after he has stopped for a while, perhaps to take care of another matter. A structured approach to troubleshooting, regardless of the exact method adopted, yields more predictable results in the long run. It also makes it easier to pick up where you left off or hand the job over to someone else without losing any effort or results.

A troubleshooting approach that is commonly deployed both by inexperienced and experienced troubleshooters is called shoot-from-the-hip. After a very short period of gathering information, taking this approach, the troubleshooter quickly makes a change to see if it solves the problem. Even though it may seem like random troubleshooting on the surface, it is not. The reason is that the guiding principle for this method is prior and usually vast knowledge of common symptoms and their corresponding causes, or simply extensive relevant experience in a particular environment or application. This technique might be quite effective for the experienced troubleshooter most times, but it usually does not yield the same results for the inexperienced troubleshooter. Figure 1-2 shows how the “shoot-from-the-hip” approach goes about solving a problem, spending almost no effort in analyzing the gathered information and eliminating possibilities.
Assume that a user reports a LAN performance problem and in 90 percent of the past cases with similar symptoms, the problem has been caused by duplex mismatch between users' workstations (PC or laptop) and the corresponding access switch port. The solution has been to configure the switch port for 100-Mbps full duplex. Therefore, it sounds reasonable to quickly verify the duplex setting of the switch port to which the user connects and change it to 100-Mbps full duplex to see whether that fixes the problem. When it works, this method can be very effective because it takes very little time. Unfortunately, the downside of this method is that if it does not work, you have not come any closer to a possible solution, you have wasted some time (both yours and users'), and you might possibly have caused a bit of frustration. Experienced troubleshooters use this method to great effect. The key factor in using this method effectively is knowing when to stop and switch to a more methodical (structured) approach.

Structured Troubleshooting Approaches

Troubleshooting is not an exact science, and a particular problem can be diagnosed and sometimes even solved in many different ways. However, when you perform structured troubleshooting, you make continuous progress, and usually solve the problem faster than it would take using an ad hoc approach. There are many different structured troubleshooting approaches. For some problems, one method might work better, whereas for others, another method might be more suitable. Therefore, it is beneficial for the troubleshooter to be familiar with a variety of structured approaches and select the best method or combination of methods to solve a particular problem.

A structured troubleshooting method is used as a guideline through a troubleshooting process. The key to all structured troubleshooting methods is systematic elimination of hypothetical causes and narrowing down on the possible causes. By systematically eliminating possible problem causes, you can reduce the scope of the problem until you manage to isolate and solve the problem. If at some point you decide to seek help or hand the task over to someone else, your findings can be of help to that person and your efforts are not wasted. Commonly used troubleshooting approaches include the following:

- **The top-down approach**: Using this approach, you work from the Open Systems Interconnection (OSI) model's application layer down to the physical layer. The OSI seven-layer networking model and TCP/IP four-layer model are shown side by side in Figure 1-3 for your reference.
The sections that follow describe each of these methods in more detail.
The Top-Down Troubleshooting Approach

The top-down troubleshooting method uses the OSI model as a guiding principle. One of the most important characteristics of the OSI model is that each layer depends on the underlying layers for its operation. This implies that if you find a layer to be operational, you can safely assume that all underlying layers are fully operational as well.

Let’s assume that you are researching a problem of a user that cannot browse a particular website and you find that you can establish a TCP connection on port 80 from this host to the server and get a response from the server (see Figure 1-4). In this situation, it is reasonable to conclude that the transport layer and all layers below must be fully functional between the client and the server and that this is most likely a client or server problem (most likely at application, presentation, or session layer) and not a network problem. Be aware that in this example it is reasonable to conclude that Layers 1 through 4 must be fully operational, but it does not definitively prove this. For instance, nonfragmented packets might be routed correctly, whereas fragmented packets are dropped. The TCP connection to port 80 might not uncover such a problem.

![Diagram of the user establishing a TCP connection to a server](image)

Figure 1-4 Application Layer Failure

Essentially, the goal of the top-down approach is to find the highest OSI layer that is still working. All devices and processes that work on that layer or layers below are then eliminated from the scope of the troubleshooting. It might be clear that this approach is most effective if the problem is on one of the higher OSI layers. It is also one of the most straightforward troubleshooting approaches, because problems reported by users are typically defined as application layer problems, so starting the troubleshooting process at that layer is a natural thing to do. A drawback or impediment to this approach is
that you need to have access to the client’s application layer software to initiate the troubleshooting process, and if the software is only installed on a small number of machines, your troubleshooting options might be limited.

The Bottom-Up Troubleshooting Approach

The bottom-up troubleshooting approach also uses the OSI model as its guiding principle with the physical layer (bottom layer of the OSI seven-layer network model) as the starting point. In this approach, you work your way layer by layer up toward the application layer and verify that relevant network elements are operating correctly. You try to eliminate more and more potential problem causes so that you can narrow down the scope of the potential problems.

Let’s assume that you are researching a problem of a user that cannot browse a particular website and while you are verifying the problem, you find that the user’s workstation is not even able to obtain an IP address through the DHCP process (see Figure 1-5). In this situation it is reasonable to suspect lower layers of the OSI model and take a bottom-up troubleshooting approach.

![Figure 1-5 Failure at Lower OSI Layers](image)

A benefit of the bottom-up approach is that all the initial troubleshooting takes place on the network, so access to clients, servers, or applications is not necessary until a very late stage in the troubleshooting process. In certain environments, especially those where many old and outdated devices and technologies are still in use, many network problems
are hardware related. The bottom-up approach is very effective under those circumstanc-
es. A disadvantage of this method is that, in large networks, it can be a time-consuming
process because a lot of effort will be spent on gathering and analyzing data and you
always start from the bottom layer. The best bottom-up approach is to first reduce
the scope of the problem using a different strategy and then switch to the bottom-up
approach for clearly bounded parts of the network topology.

The Divide-and-Conquer Troubleshooting Approach

The divide-and-conquer troubleshooting approach strikes a balance between the top-
down and bottom-up troubleshooting approaches. If it is not clear which of the top-
down or bottom-up approaches will be more effective for a particular problem, an alter-
native is to start in the middle (usually from the network layer) and perform some tests
such as ping and trace. Ping is an excellent connectivity testing tool. If the test is success-
ful, you can assume that all lower layers are functional, and so you can start a bottom-up
troubleshooting starting from the network layer. However, if the test fails, you can start
a top-down troubleshooting starting from the network layer.

Let’s assume that you are researching a problem of a user who cannot browse a particular
website and that while you are verifying the problem you find that the user’s worksta-
tion can successfully ping the server’s IP address (see Figure 1-6). In this situation, it is
reasonable to assume that the physical, data link, and network layers of the OSI model
are in good working condition, and so you examine the upper layers, starting from the
transport layer in a bottom-up approach.

![Diagram](Image)

Figure 1-6 Successful Ping Shifts the Focus to Upper OSI Layers (Divide-and-Conquer
Approach)
Whether the result of the initial test is positive or negative, the divide-and-conquer approach usually results in a faster elimination of potential problems than what you would achieve by implementing a full top-down or bottom-up approach. Therefore, the divide-and-conquer method is considered highly effective and possibly the most popular troubleshooting approach.

The Follow-the-Path Troubleshooting Approach

The follow-the-path approach is one of the most basic troubleshooting techniques, and it usually complements one of the other troubleshooting methods such as the top-down or the bottom-up approach. The follow-the-path approach first discovers the actual traffic path all the way from source to destination. Next, the scope of troubleshooting is reduced to just the links and devices that are actually in the forwarding path. The principle of this approach is to eliminate the links and devices that are irrelevant to the troubleshooting task at hand.

Let’s assume that you are researching a problem of a user who cannot browse a particular website and that while you are verifying the problem you find that a trace (tracert) from the user’s PC command prompt to the server’s IP address succeeds only as far as the first hop, which is the L3 Switch v (Layer 3 or Multilayer Switch v) in Figure 1-7. Based on your understanding of the network link bandwidths and the routing protocol used on this network, you mark the links on the best path between the user workstation and the server on the diagram with numbers 1 through 7, as shown in Figure 1-7.

Figure 1-7 The Follow-the-Path Approach Shifts the Focus to Link 3 and Beyond Toward the Server
In this situation it is reasonable to shift your troubleshooting approach to the L3 Switch v and the segments beyond, toward the server along the best path. The follow-the-path approach can quickly lead you to the problem area. You can then try and pinpoint the problem to a device, and ultimately to a particular physical or logical component that is either broken, misconfigured, or has a bug.

The Compare-Configurations Troubleshooting Approach

Another common troubleshooting approach is called the compare-configurations approach, also referred to as the spotting-the-differences approach. By comparing configurations, software versions, hardware, or other device properties between working and nonworking situations and spotting significant differences between them, this approach attempts to resolve the problem by changing the nonoperational elements to be consistent with the working ones. The weakness of this method is that it might lead to a working situation, without clearly revealing the root cause of the problem. In some cases, you are not sure whether you have implemented a solution or a workaround.

Example 1-1 shows two routing tables; one belongs to Branch2’s edge router, experiencing problems, and the other belongs to Branch1’s edge router, with no problems. If you compare the content of these routing tables, as per the compare-configurations (spotting-the-differences) approach, a natural deduction is that the branch with problems is missing a static entry. The static entry can be added to see whether it solves the problem.

Example 1-1 Spot-the-Differences: One Malfunctioning and One Working Router

|----------------------- Branch1 is in good working order ----------------------- |
----------------------- Branch1# show ip route	<...output omitted...>
10.0.0.0/24 is subnetted, 1 subnets	C 10.132.125.0 is directly connected, FastEthernet4
C 192.168.36.0/24 is directly connected, BVI1	
S* 0.0.0.0/0 [254/0] via 10.132.125.1	----------------------- Branch2 has connectivity problems -----------------------
----------------------- Branch2# show ip route	<...output omitted...>
10.0.0.0/24 is subnetted, 1 subnets	C 10.132.126.0 is directly connected, FastEthernet4
C 192.168.37.0/24 is directly connected, BVI1	

The compare-configurations approach (spotting-the-differences) is not a complete approach; it is, however, a good technique to use undertaking other approaches. One benefit of this approach is that it can easily be used by less-experienced troubleshooting staff to at least shed more light on the case. When you have an up-to-date and accessible set of baseline configurations, diagrams, and so on, spotting the difference between the current configuration and the baseline might help you solve the problem faster than any other approach.
The Swap-Components Troubleshooting Approach

Also called move-the-problem, the swap-components approach is a very elementary troubleshooting technique that you can use for problem isolation: You physically swap components and observe whether the problem stays in place, moves with the component, or disappears entirely. Figure 1-8 shows two PCs and three laptops connected to a LAN switch, among which laptop B has connectivity problems. Assuming that hardware failure is suspected, you must discover whether the problem is on the switch, the cable, or the laptop. One approach is to start gathering data by checking the settings on the laptop with problems, examining the settings on the switch, comparing the settings of all the laptops, and the switch ports, and so on. However, you might not have the required administrative passwords for the PCs, laptops, and the switch. The only data that you can gather is the status of the link LEDs on the switch and the laptops and PCs. What you can do is obviously limited. A common way to at least isolate the problem (if it is not solved outright) is cable or port swapping. Swap the cable between a working device and laptop B (the one that is having problems). Move the laptop from one port to another using a cable that you know for sure is good. Based on these simple moves, you can isolate whether the problem is cable, switch, or laptop related.

Figure 1-8 Swap-the-Component: Laptop B Is Having Network Problems

Just by executing simple tests in a methodical way, the swap-components approach enables you to isolate the problem even if the information that you can gather is minimal. Even if you do not solve the problem, you have scoped it to a single element, and you can now focus further troubleshooting on that element. Note that in the previous example if you determine that the problem is cable related, it is unnecessary to obtain the administrative password for the switch, PCs, and laptops. The drawbacks of this method are that you are isolating the problem to only a limited set of physical elements and not gaining any real insight into what is happening, because you are gathering only very limited indirect information. This method assumes that the problem is with a single component. If the problem lies within multiple devices, you might not be able to isolate the problem correctly.
Chapter 1: Troubleshooting Methods

Troubleshooting Example Using Six Different Approaches

An external financial consultant has come in to help your company’s controller with an accounting problem. He needs access to the finance server. An account has been created for him on the server, and the client software has been installed on the consultant’s laptop. You happen to walk past the controller’s office and are called in and told that the consultant can’t connect to the finance server. You are a network support engineer and have access to all network devices, but not to the servers. Think about how you would handle this problem, what your troubleshooting plan would be, and which method or combination of methods you would use.

What possible approaches can you take for this troubleshooting task? This case lends itself to many different approaches, but some specific characteristics can help you decide an appropriate approach:

- You have access to the network devices, but not to the server. This implies that you will likely be able to handle Layer 1–4 problems by yourself; however, for Layer 5–7, you will probably have to escalate to a different person.
- You have access to the client device, so it is possible to start your troubleshooting from it.
- The controller has the same software and access rights on his machine, so it is possible to compare between the two devices.

What are the benefits and drawbacks of each possible troubleshooting approach for this case?

- **Top-down:** You have the opportunity to start testing at the application layer. It is good troubleshooting practice to confirm the reported problem, so starting from the application layer is an obvious choice. The only possible drawback is that you will not discover simple problems, such as the cable being plugged in to a wrong outlet, until later in the process.

- **Bottom-up:** A full bottom-up check of the whole network is not a very useful approach because it will take too much time and at this point, there is no reason to assume that the network beyond the first access switch would be causing the issue. You could consider starting with a bottom-up approach for the first stretch of the network, from the consultant’s laptop to the access switch, to uncover potential cabling problems.

- **Divide-and-conquer:** This is a viable approach. You can ping from the consultant’s laptop to the finance server. If that succeeds, the problem is most likely at upper layers. For example, a firewall or access control list could be the culprit. If the ping fails, assuming that ping is not blocked in the network, it is safe to assume that the problem is at network or lower layers and you are responsible for fixing it. The advantage of this method is that you can quickly decide on the scope of the problem and whether escalation is necessary.
Follow-the-path: Similar to the bottom-up approach, a full follow-the-path approach is not efficient under the circumstances, but tracing the cabling to the first switch can be a good start if it turns out that the link LED is off on the consultant's PC. This method might come into play after other techniques have been used to narrow the scope of the problem.

Compare-configurations: You have access to both the controller's PC and the consultant's laptop; therefore, compare-configurations is a possible strategy. However, because these machines are not under the control of a single IT department, you might find many differences, and it might therefore be hard to spot the significant and relevant differences. The compare-configurations approach might prove useful later, after it has been determined that the problem is likely to be on the client.

Swap-components: Using this approach alone is not likely to be enough to solve the problem, but if following any of the other methods indicates a potential hardware issue between the consultant's PC and the access switch, this method might come into play. However, merely as a first step, you could consider swapping the cable and the jack connected to the consultant's laptop and the controller's PC, in turn, to see whether the problem is cable, PC, or switch related.

Many combinations of these different methods could be considered here. The most promising methods are top-down or divide-and-conquer. You will possibly switch to follow-the-path or compare-configurations approach after the scope of the problem has been properly reduced. As an initial step in any approach, the swap-components method could be used to quickly separate client-related issues from network-related issues. The bottom-up approach could be used as the first step to verify the first stretch of cabling.

Summary

The fundamental elements of a troubleshooting process are as follows:

- Defining the problem
- Gathering information
- Analyzing information
- Eliminating possible causes
- Formulating a hypothesis
- Testing the hypothesis
- Solving the problem

Some commonly used troubleshooting approaches are as follows:

- Top-down
- Bottom-up
- Divide-and-conquer
- Follow-the-path
- Compare-configurations
- Swap-components

Review Questions

1. Which *three* of the following processes are subprocesses or phases of a troubleshooting process?
 - a. Solve the problem
 - b. Eliminate
 - c. Compile
 - d. Report the problem
 - e. Define the problem

2. Which *three* of the following approaches are valid troubleshooting methods?
 - a. Swap-components
 - b. Ad Hoc
 - c. Compare-configurations
 - d. Follow-the-path
 - e. Hierarchical

3. Which *three* of the following troubleshooting approaches use the OSI reference model as a guiding principle?
 - a. Top-down
 - b. Bottom-up
 - c. Divide-and-conquer
 - d. Compare-configurations
 - e. Swap-components

4. Which of the following troubleshooting methods would be most effective when the problem is with the Ethernet cable connecting a workstation to the wall RJ-45 jack?
 - a. Top-down
 - b. Divide-and-conquer
 - c. Compare-configurations
 - d. Swap-components
 - e. Follow-the-path
Symbols

! (exclamation point), 84
& (packet lifetime exceeded), 84
. (period), 84
| (pipe), 78
? (unknown packet type), 84

A

AAA, troubleshooting, 377-378
AAA authentication, 375-378
ABR (OSPF Area Border Router), 372
access ports, 400
access switches, 290
ACL (access control lists), 361
troubleshooting, 362-364
addressing schemes, documentation, 48
analyzing information, 3, 20-21
append, 79-80
approaches to troubleshooting, 4-5
bottom-up approach, 5, 7-8, 12
compare-configurations approach, 10, 13
divide-and-conquer approach, 5, 8-9, 12
follow-the-path approach, 5, 9-10, 13
move-the-problem approach, 5
spot-the-differences approach, 5
swap-components approach, 11, 13
top-down approach, 4, 6-7, 12
ASW2, management access to ASW2, 310-313
authentication
AAA authentication, 375-378
OSPFv3 authentication, RADULKO Transport, 430-433

B

BA (Bridge Assurance), 403
backup servers, 39
backups, 32
performing, 42-47
Bank of POLONA, 333-334
trouble ticket 1, 334
IP SLA test not starting, 345-349
lack of connectivity to SRV2, 335-340
VRRP with interface tracking, 340-345
trouble ticket 2, 349-350
IP connectivity to headquarters, 364-369
IPv6 connectivity problems, 353-364
summarization problems, 350-353
trouble ticket 3, 364
AAA authentication, 375-378
route summarization, 369-374
trouble ticket 4, 378
dysfunctional stubby branch areas, 386-391
troubleshooting PC0's connectivity to IPv6 Internet, 378-386
baselines, network maintenance processes, 48-50
begin keyword, 78
best practices, disaster recovery, 294-296
BGP
 redistribution, 340
troubleshooting, 281-282
BGP neighbor relationships, 272-273, 278
troubleshooting, 181-182
BGP neighbor status, 269
BGP route selection, troubleshooting, 321-322
bottom-up approach, 5, 7-8, 12
BPDU Guard, 152
BPDUFilter, 402-403
BR (branch router), 274
branch connectivity to HQ and the Internet, PILE Forensic Accounting, 258-267
branch router's IPv6 problems, RADULKO Transport, 416-420
branch site Internet connectivity problems after EIGRP reconfiguration, 302-309
Bridge Assurance (BA), 403
brief, 345

cables, labeling, 48
capacity planning, 33
caret (^) character, 79
case studies
 Bank of POLONA. See Bank of POLONA
 PILE Forensic Accounting. See PILE Forensic Accounting
 RADULKO Transport. See RADULKO Transport
 SECHNIK Networking. See SECHNIK Networking
 TINC Garbage Disposal. See TINC Garbage Disposal
categories of troubleshooting tools, 100-101
CDP (Cisco Discovery Protocol), 410-411
CEF (Cisco Express Forwarding), 73, 75, 139
 switching methods, 141
CEF FIB table, displaying content, 140
change control, network maintenance processes, 53
change-control procedures, formalizing, 34
Cisco Discovery Protocol (CDP), 410-411
Cisco Express Forwarding (CEF), 73, 75
Cisco IOS DHCP snooping feature, 248
Cisco Technical Assistance Center, 248-249
Cisco.com, problems accessing, 297-302
clear bgp ipv6 unicast *, 423
CLI (command-line interface), 301
collecting real-time information, debug commands, 85-86
collectors, exporting NetFlow information to, 107-108
command-line device management, 38
commands
clear bgp ipv6 unicast *, 423
configure replace, 46
configure replace url time seconds, 301
degug bgp ipv6 unicast updates, 423
degug cdp, 411
degug eigrp packets hello, 85
degug glbp [packets | events | terse | error | all], 241
degug interface interface-slot/number, 85
degug ip bgp, 182
degug ip bgp events, 85
degug ip bgp updates, 85, 282
degug ip eigrp packets, 267
degug ip icmp, 85
degug ip ospf adjacency, 85
degug ip ospf events, 85
degug ip packet, 85-86
degug ipv6 eigrp, 420
degug ipv6 rip, 358
degug lldp, 411
degug ospfv3 events, 430
degug spanning-tree bpdu receive, 85
degug tunnel, 369
degug vrrp all, 224
degug vrrp authentication, 224
degug vrrp error, 224
degug vrrp events, 224
degug vrrp packets, 224
degug vrrp state, 224
degug ospfv3 events, 430
degug spanning-tree bpdu receive, 85
degug tunnel, 369
degug vrrp authentication, 224
degug vrrp error, 224
degug vrrp events, 224
degug vrrp packets, 224
degug vrrp state, 224
degug ip config/all, 296
degug ip default-gateway ip-address, 313
degug ip default-network network-number, 313
degug ip helper-address, 159
degug ip route 0.0.0.0.0.0.0.0.0 [ip-address | interface-type interface-number [ip-address]], 313
passive-interface, 161-162
passive-interface default, 161
passive-interface interface command, 161
reload in [hh:mm [text]], 301
route-map route-map-name, 282
running-config, 305
show, filtering/redirecting output, 76-80
show access-list, 363
show archive, 45
show bgp ipv6 unicast, 423
show bgp ipv6 unicast summary, 423
show cdp, 410
show cdp entry, 410
show cdp interface, 411
show cdp neighbors, 411
show cdp neighbors detail, 411
show cdp traffic, 411
show controllers, 91
show diag, 92
show eigrp address-family {ipv4 | ipv6} [autonomous-system-number] [multicast] accounting, 309
show eigrp address-family interfaces detail [interface-type interface-number], 309
show eigrp address-family topology route-type summary, 309
show eigrp plugins, 309
show etherchannel group_number detail, 230
show etherchannel summary, 230
show frame-relay map, 141
show glbp brief, 241
show glbp interface type number [brief], 241
show interfaces, 91
show interfaces switchport, 69
show interfaces trunk, 69, 296
show inventory, 92
show ip access-list, 363
show ip arp, 140
show ip bgp, 282
show ip bgp neighbors neighbor-ip-address [routes | advertised-routes], 282
show ip bgp summary, 182, 282
show ip cache flow, 109
show ip cef exact-route source destination, 75, 140
show ip cef ip-address, 74, 140
show ip cef network mask, 75, 140
show ip eigrp interfaces, 267
show ip eigrp neighbors, 267
show ip eigrp topology, 309
show ip interface brief, 296
show ip interface interface-type interface-number, 363
show ip nat translations, 128
show ip ospf neighbor, 215, 366
show ip protocols, 264
show ip route, 77, 311
show ip route ip-address, 74, 139
show ip route longer-prefixes, 77
show ip route network mask, 74, 139
show ip route network mask longer-prefixes, 74, 140
show ip route ospfv3, 430
show ip sla application, 345
show ip ssh, 204
show ipv6 access-list, 363
show ipv6 eigrp interfaces, 420
show ipv6 eigrp neighbors, 419
show ipv6 eigrp topology, 420
show ipv6 interface interface-type interface-number, 364
show ipv6 ospf process-id, 386
show ipv6 protocols, 419
show ipv6 protocols | section rip, 358
show ipv6 rip [name] [database], 358
show ipv6 route [rip], 358
show ipv6 route ospf, 430
show lldp, 410
show lldp entry, 410
show lldp interface, 411
show lldp neighbors, 411
show lldp neighbors detail, 411
show lldp traffic, 411
show mac-address-table, 68-69, 187
show memory, 89
show ospfv3, 430
show ospfv3 interface, 430
show ospfv3 neighbor, 430
show platform, 91
show platform forward
 interface-id, 69
show processes cpu, 76, 87
show running-config, 304
show running-config | include [ACL-
 number|ACL-name], 364
show running-config | include
 interfacelaccess-group, 363
show running-config | include
 interfacetraffic-filter, 363
show running-config | include
 linelaccess-class, 363
show running-config | section inter-
 face, 430
show running-config | section router
 ospfv3, 430
show spanning-tree, 402
show spanning-tree mst configuration, 402
show spanning-tree summary, 402
show vlan, 69
show vlan [brief], 296
show vlan vlan-id, 296
show vrrp brief, 224
show vrrp interface, 224
summary, 352
traceroute mac, 69
common maintenance tasks, 32-33
communication
 establishing network maintenance, 35
 network maintenance processes,
 50-53
compare-configurations approach,
 10, 13
configuration archives, setting up, 45
configuration errors, 86
configure replace, 46
configure replace url time seconds, 301
configuring, SSH, 44
connection documentation, 35
connectivity problems
 branch site Internet connectivity
 problems after EIGRP reconfigu-
 ration, 302-309
information gathering, SECHNIK
 Networking, 124-126
Internet connectivity problems,
 SECHNIK Networking, 153-162
IP connectivity to headquarters,
 364-369
IP SLA test not starting, 345-349
IPv6 connectivity problems, Bank of
 POLONA, 353-364
lack of backup Internet connectivity
 through GW2, 174-182
lack of connectivity to SRV2,
 335-340
OSPF neighbor relation problems
 with router R1, 194-202
PC0's connectivity to IPv6 Internet,
 378-386
PILE Forensic Accounting, branch connectivity to HQ and the Internet, 258-267
RADULKO Transport
 branch router's IPv6 problems, 416-420
 IPv6 Internet access, 440-444
 VLANs and PCs, 411-416
redundant Internet connectivity test, 314-322
SECHNIK Networking, 118-119, 123-128
 analyzing information, eliminating causes, 119-120
 information gathering, 119
Internet connectivity problems, 134-141
IPv6 connectivity problems, 131-134
PC2's connectivity problems, 123-128
PC3's connectivity problem, 128-130
proposing hypotheses, 121
proposing/testing hypothesis, 126-127
SSH (Secure Shell), 128-130
testing hypothesis, 121
troubleshooting Ethernet trunks, 122-123
troubleshooting NAT, 127-128
troubleshooting network device interfaces, 130
sporadic Internet connectivity, 212-220, 231-241
SSH (Secure Shell), 141-146
TINC Garbage Disposal
 PC1's connectivity problems, 182-187
PC2's connectivity problems, 187-193
sporadic Internet connectivity, 242-249
SSH (Secure Shell), 249-252
unauthorized Telnet access, 322-326
conventions, standardizing, 36
cost-effectiveness, 31
CPU utilization, checking, 87-88

D

debug bgp ipv6 unicast updates, 423
debug cdp, 411
debug commands, 85-86
 information gathering, 142-143
debug eigrp packets hello, 85
debug glbp [packets | events | terse | error | all], 241
debug interface interface-slot/number, 85
debug ip bgp, 182
debug ip bgp events, 85
debug ip bgp updates, 85, 282
debug ip eigrp packets, 267
debug ip icmp, 85
debug ip ospf adjacency, 85
debug ip ospf events, 85
debug ip packet, 85-86
debug ipv6 eigrp, 420
debug ipv6 rip, 358
debug lldp, 411
debug ospfv3 events, 430
debug spanning-tree bpdu receive, 85
debug tunnel, 369
debug vrrp all, 224
debug vrrp authentication, 224
debug vrrp error, 224
d debug vrrp events, 224
d debug vrrp packets, 224
d debug vrrp state, 224
default routes
 Layer 2 and multilayer devices, 313
 redundant default routes, 179-180
defining problems, 17-18
design documentation, 35, 48
device configurations,
documentation, 48
devices
 failed devices, 32
 replacing, 32
 installing, 32
df-bit, ping, 82
DHCP (Dynamic Host Configuration Protocol), 288
 information gathering, 154-155
 troubleshooting, 160
DHCP address problems, SECHNIK Networking, 146-152
DHCP server configuration, 299
DHCP snooping, 152, 248
diagnosing hardware issues, 86-87
 checking CPU utilization, 87-88
 checking interfaces, 89-92
 checking memory utilization, 88-89
diagnosis, 2
diagrams, network documentation, 48
disaster recovery
 best practices, 294-296
 lack of Internet connectivity after disaster recovery, 287-297
 planning for, 36-37
displaying
 CEF FIB table content, 140
 IP routing tables, content, 139-140
distribute-list access-list, 281
distribute-list prefix-list, 282
divide-and-conquer approach, 5, 8-9, 12
DNS (Domain Name System), troubleshooting, 300
documentation
 network documentation, 48-50
 network documentation procedures, establishing, 34-35
 updating, 49
documenting work, 24
 network maintenance, 33
Domain Name System (DNS), troubleshooting, 300
duplicate address problems discovered through log messages, TINC Garbage Disposal, 207-212
dysfunctional stubby branch areas, Bank of POLONA, 386-391

E

EEM (Embedded Event Manager), 110-112
egress interface, 75
EIGRP
 branch site Internet connectivity problems after EIGRP reconfiguration, 302-309
 for IPv6, troubleshooting, 419-420
 redistribution, 340
 summarization, 353
EIGRP adjacency, troubleshooting, 266-267
EIGRP autonomous system configuration, 309
EIGRP Debug, 263
EIGRP named configuration, 309
eigrp stub, 306
EIGRP stub configuration, 308
eigrp stub connected, 308
eigrp stub receive-only, 308
eigrp stub redistribute, 308
eigrp stub static, 308
eigrp stub summary, 308
eliminating possible causes, 3, 21
Embedded Event Manager (EEM), 110
equipment lists, 35
erroneous routing information, troubleshooting, 218-220
Eth0/2 configuration, 184
EtherChannel misconfigurations, 152
TINC Garbage Disposal, 224-231
troubleshooting, 229-231
Ethernet frame forwarding (Layer 2 data plane), 62-67
Ethernet interface status, checking, 276
Ethernet trunks, troubleshooting, 122-123
examples, troubleshooting processes, 25-26
exclude, 78
exporting, NetFlow information, to collectors, 107-108
external route summarization, 374
external routing status, 268-269

failed devices, 32
replacing, 32
fault notification, 109

FHRP (first-hop routing protocol), 344
tracking options, 344-345
troubleshooting, 241
FIB, 139
filter-list as-path-ACL-number, 282
filtering, show command output, 76-80
follow-the-path approach, 5, 9-10, 13
formalizing change-control procedures, 34
formulating hypothesis, 3
forwarding packets, 138
frame header address fields, Layer 3 routing processes, 72
FTP, performing backup with FTP, 43

gathering information, 2, 18-20
GOLD (Generic Online Diagnostics), 92
graphical user interface-based device management, 39
GRE tunnels, troubleshooting, 368-369

hardware failures, 86
HSRP, troubleshooting, 211-212
HSRP interface tracking, 344-345
hub-and-spoke topology, 308
hypothesis
formulating/proposing, 3
proposing, 21-22
SECHNIK Networking, 121, 126-127
testing, 3, 23-24

SECHNIK Networking, 121, 126-127

IGP (interior routing protocols), 161
incident-driven work, reducing, 30
include, 78
information
 analyzing, 3, 20-21
gathering, 2, 18-20
information gathering, 76, 99
 collecting real-time information,
 debug commands, 85-86
connectivity problems, SECHNIK Networking, 124-126
DHCP, 154-155
diagnosing hardware issues, 86-87
 checking CPU utilization, 87-88
 checking interfaces, 89-92
 checking memory utilization, 88-89
IP traceroute, 135
NetFlow, 107-109
SECHNIK Networking, 119-120
 connectivity problems, 119
show command, filtering/redirecting output, 76-80
SNMP (Simple Network Management Protocol), 105-107
source-specific ping, 155-156
testing network connectivity
 ping, 81-84
 Telnet, 84
installing devices, 32
interarea route summarization, 374
interface, 345
interface tracking, VRRP, 340-345
interfaces
 checking, 89-92
 labeling, 48
interior routing protocols (IGP), 161
Internet access problems, PILE Forensic Accounting, 275-282
Internet connectivity problems,
 SECHNIK Networking, 134-141, 153-162
 IPv6 connectivity problems, 162-166
Internet reachability, checking, 277-278
inter-VLAN routing, troubleshooting, 296-297
IOS commands, IP packet forwarding (Layer 3 data plane), verifying, 73-75
IP address administration, 35
ip config/all, 296
IP connectivity to headquarters, 364-369
ip default-gateway ip-address, 313
ip default-network network-number, 313
ip flow ingress interface, 107
ip helper-address, 159
IP Input, show processes cpu, 78
IP packet forwarding (Layer 3 data plane), 70-73
 verifying, 73-75
ip route, 345
ip route 0.0.0.0.0.0.0.0 (ip-address | interface-type interface-number [ip-address]), 313
IP routing tables, displaying content, 139-140
IP security option (IPSO), 85
IP SLA, troubleshooting, 349
IP SLA test not starting, 345-349
IP traceroute, 135
IPSO (IP security option), 85
IPv6
 OSPF, troubleshooting, 385-386
 overview, 166
IPv6 connectivity problems
 Bank of POLONA, 353-364, 378-386
 EIGRP, 419-420
 RADULKO Transport, branch routers, 416-420
 SECHNIK Networking, 162-166
 troubleshooting, 131-134
 address assignments on clients, 133-134
IPv6 Internet access, RADULKO Transport, 440-444

K

keywords
 append, 79-80
 begin, 78
 exclude, 78
 include, 78
 longer-prefixes, 77
 redirect, 79-80
 tee, 79-80

L

labeling
 cables, 48
 interfaces, 48
 lack of backup Internet connectivity through GW2, 174-182
 lack of connectivity to SRV2, 335-340
 lack of Internet connectivity after disaster recovery, 287-297
 Layer 2, default routes, 313
 Layer 2 data plane (Ethernet frame forwarding), 62-67
 Layer 2 switching process, 61-62
 Ethernet frame forwarding (Layer 2 data plane), 62-67
 verification, 67-69
 Layer 3 data plane (IP packet forwarding), 70-73
 Layer 3 routing processes, 69-70
 IP packet forwarding (Layer 3 data plane), 70-73
 verifying, 73-75
 Link Layer Discovery Protocol (LLDP), 410-411
 link-local address, 385
 LLDP (Link Layer Discovery Protocol), 410-411
 local prefix advertisement, 279
 log messages, duplicate addresses, 207-212
 log servers, 39
 logging services, 40-41
 logging severity levels, 56
 longer-prefixes, 77
 Loop Guard, 403

M

M (could not fragment), 84
Mac address, Layer 2 switching, 68
MAC addresses, port security, 186-187
network device interfaces, troubleshooting, 130
network diagrams, 48
network documentation, 48-50
network documentation procedures, establishing, 34-35
network drawings, 35
network event notification, 109-112
network maintenance, 29-31
incident-driven work, reducing, 30
processes and procedures, 31-32
common maintenance tasks, 32-33
planning. See planning network maintenance

network maintenance processes, 47-48
baselines, 48-50
change control, 53
communication, 50-53
network documentation, 48-50

network maintenance toolkit, 37-39
backup servers, 39
command-line device management, 38
graphical user interface-based device management, 39
log servers, 39
logging services, 40-41
network time services, 39-40
performing backup and restore, 42-47
timer servers, 39

network time services, 39-40
network traffic, accounting of, 50
network troubleshooting process, 16
networking monitoring, 32
NMS (SNMP network management station), 106

NAT (Network Address Translation), 125
troubleshooting, 127-128
NAT Virtual Interface (NVI), 127
neighbor reachability, 269
neighbor relationships, 278
RADULKO Transport, 407-411
NetFlow, 107-109
notifications, network event notification, 109-112
NTP (Network Time Protocol), 39-40
troubleshooting, 286-287
NTP (Network Time Protocol) problems, PILE Forensic Accounting, 282-287
NTP packet debugging, 284
NVI (NAT Virtual Interface), 127

O

OSPF
 redistribution, 340
 summarization, 374
OSPF adjacency, troubleshooting, 201-202
OSPF Area Border Router (ABR), 372
OSPF for IPv6, troubleshooting, 385-386
OSPF neighbor list, 365
OSPF neighbor relation problems with router R1, TINC Garbage Disposal, 194-202
OSPF stub areas, 391
OSPFV3 address families feature, 429-430
OSPFV3 authentication, RADULKO Transport, 430-433

P

packet header address fields, Layer 3 routing processes, 72
packet sniffers, 101
packets, forwarding, 138
passive-interface, 161-162
passive-interface default, 161
passive-interface interface command, 161
passwords, 325
patching, software, 32
PBR (policy-based routing), troubleshooting, 407
PCs, connectivity problems, RADULKO Transport, 411-416
PC1's connectivity problems, TINC Garbage Disposal, 182-187
PC1's problem accessing SRV server at the distribution center, RADULKO Transport, 424-430
PC2's connectivity problems, TINC Garbage Disposal, 187-193
performance measurement, 33
performing backup and restore, 42-47
PILE Forensic Accounting, 257-258
trouble ticket 1, 258
 branch connectivity to HQ and the Internet, 258-267
troubleshooting secondary Internet connection through ISP2, 267-274
trouble ticket 2, 274
 Internet access problems, 275-282
 NTP problems, 282-287
 Telnet problems, 274-275
trouble ticket 3, 287
 lack of Internet connectivity after disaster recovery, 287-297
 problems accessing Cisco.com, 297-302
trouble ticket 4, 302
 branch site Internet connectivity problems after EIGRP reconfiguration, 302-309
management access to ASW2, 310-313
trouble ticket 5, 313-314
redundant Internet access path through the new HQ0 edge router, 314-322
unauthorized Telnet access, 322-326

ping
 symbols, 84
 testing network connectivity, 81-84
pipe (|), 78
planning for disaster recovery, 36-37
planning network maintenance, 33
 communication, establishing, 35
 defining templates/procedures/conventions, 36
disaster recovery, 36-37
establishing network documentation procedures, 34-35
formalizing change-control procedures, 34
scheduling maintenance, 33-34
point-to-point egress interfaces, 138
policy-based routing
 RADULKO Transport, 403-407
troubleshooting, 407
port security, 151-152
 troubleshooting, 186-187
 verifying, 150-151
port-to-VLAN, 69
PortFast, 402
PortFast BPDU Guard, 402
preferred NTP servers, 285-286
prefixes local prefix advertisement, 279
principles of troubleshooting, 1-4
problem reports, 17

problems
 defining, 17-18
 solving, 24
problems accessing Cisco.com, 297-302
procedures, standardizing, 36
processes
 Layer 2 switching process. See Layer 2 switching process
 Layer 3 routing processes. See Layer 3 routing processes
network maintenance, 31-32
 common maintenance tasks, 32-33
 planning. See planning network maintenance
processes of troubleshooting, 2-3, 16-17
 analyzing information, 20-21
 defining problems, 17-18
 eliminating possible causes, 21
 examples, 25-26
 gathering information, 18-20
 network maintenance processes. See network maintenance processes
 proposing, hypothesis, 21-22
 solving problems and documenting work, 24
 testing hypothesis, 23-24
proposing hypothesis, 3, 21-22
SERCHIK Networking, 121, 126-127
protocols
 CDP (Cisco Discovery Protocol), 410-411
 FHRP (first-hop routing protocol), 344
 LLDP (Link Layer Discovery Protocol), 410-411
NTP (Network Time Protocol), 39-40
SNMP (Simple Network Management Protocol), 105-107, 110
syslog, 110
VLAN Trunking Protocol (VTP), 415-416
PVRST+, 401
PVST+, 401

Q
Q (source quench), 84

R
RADULKO Transport, 397
trouble ticket 1, 398
mitigating unauthorized switches added by employees, 398-403
neighbor discovery, 407-411
policy-based routing, 403-407
trouble ticket 2, 411
branch router’s IPv6 problems, 416-420
MP-BGP sessions, 420-423
VLANs and PCs connectivity problems, 411-416
trouble ticket 3, 424
OSPFv3 authentication, 430-433
PC1's problem accessing SRV server at the distribution center, 424-430
trouble ticket 4, 433
IPv6 Internet access, 440-444
undesired external OSPF routes in DST’s routing table, 434-439
Rapid PVST+, 401
redirect, 79-80
redirect option, 80
redirecting, show command output, 76-80
redistribution, troubleshooting, 339-340
reducing, incident-driven work, 30
redundant default routes, 179-180
redundant Internet connectivity test, 273-274, 314-322
reload in [hh:mm [text]], 301
remote device management, 301-302
Remote Monitoring (RMON), 50
repeat repeat-count, 81
replacing, failed devices, 32
resolution, 345
restore, performing, 42-47
RIB (Routing Information Base), 139
RIPng, troubleshooting, 357-358
RIPv2, 161
RMON (Remote Monitoring), 50
Root Guard, 403
route summarization, 369-374
route-map route-map-name, 282
routing, erroneous routing information, 218-220
Routing Information Base (RIB), 139
routing tables, 138
RSPAN (Remote Switched Port Analyzer), 103-105
VLANs, 103-105
running-config, 301, 305
show interfaces Tunnel tunnel-id

S

scheduling maintenance, 33-34
SECHNIK Networking, 117-118
 trouble ticket 1, 118
 PC1’s connectivity problems, 118-123
 PC2’s connectivity problems, 122-123
 PC3’s connectivity problem, 128-130
 PC4’s IPv6 connectivity problems, 131-134
 trouble ticket 2, 134-152
 DHCP address problems, 146-152
 Internet connectivity problems, 134-141
 SSH connectivity problems, 141-146
 trouble ticket 3, 152-166
 Internet connectivity problems, 162-166
secondary Internet connections through ISP2, troubleshooting, 267-274
section option, 79
securing, management planes, 325-326
security, port security, 151-152
 verifying, 150-151
servers
 backup servers, 39
 log servers, 39
 timer servers, 39
services
 logging services, 40-41
 network time services, 39-40
shoot-from-the-hip, 3
show access-list, 363
show archive, 45
show bgp ipv6 unicast, 423
show bgp ipv6 unicast summary, 423
show cdp, 410
show cdp entry, 410
show cdp interface, 411
show cdp neighbors, 411
show cdp neighbors detail, 411
show cdp traffic, 411
show command, filtering/redirecting output, 76-80
show commands, information gathering, 143
show controllers, 91
show diag, 92
show eigrp address-family {ipv4 | ipv6}
 [autonomous-system-number] [multicast]
 accounting, 309
show eigrp address-family interfaces detail [interface-type interface-number], 309
show eigrp address-family topology route-type summary, 309
show eigrp plugins, 309
show etherchannel group_number detail, 230
show etherchannel summary, 230
show frame-relay map, 141
show glbp brief, 241
show glbp interface type number [brief], 241
show interfaces, 91
show interfaces switchport, 69
show interfaces trunk, 69, 296
show interfaces Tunnel tunnel-id, 369
show inventory, 92
show ip access-list, 363
show ip arp, 140
show ip bgp, 282
show ip bgp neighbors neighbor-ip-address [routes | advertised-routes], 282
show ip bgp summary, 182, 282
show ip cache flow, 109
show ip cef exact-route source destination, 75, 140
show ip cef ip-address, 74, 140
show ip cef network mask, 75, 140
show ip eigrp interfaces, 267
show ip eigrp neighbors, 267
show ip eigrp topology, 309
show ip interface brief, 296
show ip interface interface-type interface-number, 363
show ip interface Tunnel tunnel-id, 369
show ip nat translations, 128
show ip ospf neighbor, 215, 366
show ip protocols, 264
show ip route, 77, 311
show ip route ip-address, 74, 139
show ip route longer-prefixes, 77
show ip route network mask, 74, 139
show ip route network mask longer-prefixes, 74, 140
show ip route ospfv3, 430
show ip sla application, 345
show ip ssh, 204
show ipv6 access-list, 363
show ipv6 eigrp interfaces, 420
show ipv6 eigrp neighbors, 419
show ipv6 eigrp topology, 420

show ipv6 interface interface-type
 interface-number, 364
show ipv6 ospf process-id, 386
show ipv6 protocols, 419
show ipv6 protocols | section rip, 358
show ipv6 rip [name] [database], 358
show ipv6 route [rip], 358
show ipv6 route ospf, 430
show lldp, 410
show lldp entry, 410
show lldp interface, 411
show lldp neighbors, 411
show lldp neighbors detail, 411
show lldp traffic, 411
show mac-address-table, 68-69, 187
show memory, 89
show ospfv3, 430
show ospfv3 interface, 430
show ospfv3 neighbor, 430
show platform, 91
show platform forward interface-id, 69
show processes cpu, 76, 87
 IP Input, 78
show running-config, 304
show running-config | include [ACL-number|ACL-name], 364
show running-config | include interface access-group, 363
show running-config | include interfacetransport-filter, 363
show running-config | include line access-class, 363
show running-config | section interface, 430
show running-config | section router, 79
show running-config | section router ospfv3, 430
show spanning-tree, 402
show spanning-tree mst configuration, 402
show spanning-tree summary, 402
show vlan, 69
show vlan [brief], 296
show vlan vlan-id, 296
show vrrp brief, 224
show vrrp interface, 224
size datagram-size, 81
SNMP (Simple Network Management Protocol), 105-107, 110
SNMP network management system (NMS), 106
SNMP traps, 110
software, upgrading, 32
software failures, 86
solving, problems, 24
source [address | interface], ping, 81
source-specific ping, information gathering, 155-156
SPAN (Switched Port Analyzer), 102-103
spanning tree, 399
Spanning Tree Protocol (STP), troubleshooting, 401-403
spanning-tree BPDU Guard, 152
spanning-tree mode, 400
sporadic Internet connectivity, 212-220
 TINC Garbage Disposal, 231-241, 242-249
spot-the-differences approach, 5
SSH (Secure Shell), 128-130
 configuring, 44
 troubleshooting, 206
 SSH (Secure Shell) version 2 access, troubleshooting, 202-206
 SSH connections, TINC Garbage Disposal, 249-252
 SSH connectivity problems, 141-146
 standardizing templates/procedures/conventions, 36
static routes, correcting, 319
storing FTP, HTTP usernames and passwords, 43
STP (Spanning Tree Protocol), troubleshooting, 401-403
structured network maintenance, 29-31
structured troubleshooting method, 4, 16
 bottom-up approach, 5, 7-8, 12
 compare-configurations approach, 10, 13
 divide-and-conquer approach, 5, 8-9, 12
 examples, 12-13, 25-26
 follow-the-path approach, 5, 9-10, 13
 move-the-problem approach, 5
 spot-the-differences approach, 5
 swap-components approach, 11, 13
top-down approach, 4, 6-7, 12
summarization, 350-353
 EIGRP, 353
 OSPF, 374
 route summarization, 369-374
summary, 352
swap-components approach, 13
sweep range of sizes, ping, 83
Switched Port Analyzer (SPAN), 102-103
switches, mitigating unauthorized switches added by employees, 398-403
switching methods, CEF (Cisco Express Forwarding), 141
symbols, ping, 84
syslog, 110

T

TAC (Technical Assistance Center), 248-249
TCP
 connection setup procedures, 145-146
 three-way handshake, 145-146, 270
TDR (Time Domain Reflectometer), 92
tee, 79-80
| tee option, 80
Telnet
 information gathering, 142
 PILE Forensic Accounting, 274-275
testing network connectivity, 84
troubleshooting, 206
templates, standardizing, 36
testing network connectivity
 ping, 81-84
 Telnet, 84
three-way handshake, TCP, 145-146, 270
Time Domain Reflectometer (TDR), 92
timer servers, 39
timers, 345
TINC Garbage Disposal, 173
trouble ticket 1, 174
 lack of backup Internet connectivity through GW2, 174-182
 PC1’s connectivity problems, 182-187
 PC2’s connectivity problems, 187-193
trouble ticket 2, 193-194
duplicate address problems discovered through log messages, 207-212
OSPF neighbor relation problems with router R1, 194-202
SSH version 2 access, 202-206
trouble ticket 3, 212
 EtherChannel, 224-231
 sporadic Internet connectivity, 212-220
trouble ticket 4, 231
 sporadic Internet connectivity, 231-249
 SSH connections, 249-252
TINC Garbage Disposal trouble ticket 3 multiple masters within VRRP, 220-224
tools
 traffic-capturing, 101-102
troubleshooting tools. See troubleshooting tools
top-down approach to troubleshooting, 4, 6-7, 12
totally stubby areas
 Bank of POLONA, 386-391
 OSPF, 391
traceroute mac, 69
tracking options, FHRP (first-hop routing protocol), 344-345
traffic-capturing, 101-102
 RSPAN (Remote Switched Port Analyzer), 103-105
 SPAN (Switched Port Analyzer), 102-103
trap receivers, 111
troubleshooting
 AAA, 377-378
 ACL (access control lists), 362-364
troubleshooting tools

BGP, 281-282
BGP neighbor relationships, 181-182
BGP route selection, 321-322
DHCP, 160
DNS (Domain Name System), 300
EIGRP adjacency, 266-267
EIGRP summarization, 353
erroneous routing information, 218-220
error-disabled ports, 151-152
EtherChannel, 229-231
Ethernet trunks, SECHNIK Networking, 122-123
FHRP (first-hop routing protocol), 241
GRE tunnels, 368-369
HSRP, 211-212
inter-VLAN routing, 296-297
IP SLA, 349
IPv6 address assignment on clients, 133-134
MP-BGP, 423
NAT (Network Address Translation), SECHNIK Networking, 127-128
network device interfaces, 130
network layer connectivity, 138-141
NTP (Network Time Protocol), 286-287
OSPF adjacency, 201-202
OSPF for IPv6, 385-386
OSPFv3 address families feature, 429-430
policy-based routing, 407
port security, 186-187
redistribution, 339-340
RIPng, 357-358
secondary Internet connections through ISP2, 267-274
SSH (Secure Shell), 206
SSH (Secure Shell) version 2 access, 202-206
STP (Spanning Tree Protocol), 401-403
Telnet, 206
VLANs, 192-193
VRRP, 224

troubleshooting approaches, 4-5
bottom-up approach, 5, 7-8, 12
compare-configurations approach, 10, 13
divide-and-conquer approach, 5, 8-9, 12
details, 12-13
follow-the-path approach, 5, 9-10, 13
move-the-problem approach, 5
spot-the-differences approach, 5
swap-components approach, 11, 13
top-down approach to troubleshooting, 4, 6-7, 12

troubleshooting principles, 1-4

troubleshooting processes, 2-3, 16-17
analyzing information, 20-21
communication, 51-52
defining problems, 17-18
eliminating possible causes, 21
details, 25-26
gathering information, 18-20
proposing, hypothesis, 21-22
solving problems and documenting work, 24
testing hypothesis, 23-24

troubleshooting tools

categories of, 100-101
network event notification, 109-112
traffic-capturing, 101-102
 RSPAN (Remote Switched Port Analyzer), 103-105
 SPAN (Switched Port Analyzer), 102-103

U

U, symbols in ping, 84
UDLD (unidirectional link detection), 152
unauthorized Telnet access, 322-326
undesired external OSPF routes in DST's routing table, RADULKO Transport, 434-439
unidirectional link detection (UDLD), 152
updating documentation, 49
upgrading software, 32

V-W-X-Y-Z

verifying
 IP packet forwarding (Layer 3 data plane), 73-75
 Layer 2 switching, 67-69
 port security, 150-151
VLAN Trunking Protocol (VTP), 415-416
VLANs
 connectivity problems, RADULKO Transport, 411-416
 RSPAN (Remote Switched Port Analyzer), 103-105
troubleshooting, 192-193
VRRP
 interface tracking, 340-345
 multiple masters within VRRP, 220-224
troubleshooting, 224
VTP (VLAN Trunking Protocol), 415-416
vty lines, 322
Visit pearsonITcertification.com today to find:

- IT CERTIFICATION EXAM information and guidance for

 - Cisco
 - CompTIA
 - Microsoft
 - VMware

 Pearson is the official publisher of Cisco Press, IBM Press, VMware Press and is a Platinum CompTIA Publishing Partner—CompTIA’s highest partnership accreditation

- EXAM TIPS AND TRICKS from Pearson IT Certification’s expert authors and industry experts, such as
 - Mark Edward Soper – CompTIA
 - David Prowse – CompTIA
 - Wendell Odom – Cisco
 - Kevin Wallace – Cisco and CompTIA
 - Shon Harris – Security
 - Thomas Erl – SOACP

- SPECIAL OFFERS – pearsonITcertification.com/promotions

- REGISTER your Pearson IT Certification products to access additional online material and receive a coupon to be used on your next purchase
NEW Complete Video Courses for CCNP Routing & Switching 300 Series Exams

These unique products include multiple types of video presentations, including:

- Live instructor whiteboarding
- Real-world demonstrations
- Animations of network activity
- Dynamic KeyNote presentations
- Doodle videos
- Hands-on command-line interface (CLI) demonstrations
- Review quizzes

CCNP Routing and Switching v2.0 — Complete Video Course Library
Specially priced library including ALL THREE Complete Video Courses: CCNP Routing and Switching ROUTE 300-101, CCNP Routing and Switching SWITCH 300-115, and CCNP Routing and Switching TSHOOT 300-135.

CCNP Routing and Switching ROUTE 300-101 — Complete Video Course
149 VIDEOS with 12+ HOURS of video instruction from best-selling author, expert instructor, and double CCIE Kevin Wallace walk you through the full range of topics on the CCNP Routing and Switching ROUTE 300-101 exam, including fundamental routing concepts; IGP routing protocols including RIPng, EIGRP, and OSPF; route distribution and selection; BGP; IPv6 Internet connectivity; router security; and routing protocol authentication.

CCNP Routing and Switching SWITCH 300-115 — Complete Video Course
10+ HOURS of unique video training walks you through the full range of topics on the CCNP SWITCH 300-115 exam. This complete video course takes you from the design and architecture of switched networks through the key technologies vital to implementing a robust campus network. You will learn, step-by-step, configuration commands for configuring Cisco switches to control and scale complex switched networks.

CCNP Routing and Switching TSHOOT 300-135 — Complete Video Course
10+ HOURS of unique video instruction from expert instructors and consultants Elan Beer and Chris Avants walks you through the full range of topics on the CCNP TSHOOT 300-135 exam. This complete video course teaches you the skills you need to plan and perform regular maintenance on complex enterprise routed and switched networks and how to use technology-based practices and a systematic ITIL-compliant approach to perform network troubleshooting commands for configuring Cisco switches to control and scale complex switched networks.

SAVE ON ALL NEW CCNP R&S 300 Series Products
www.CiscoPress.com/CCNP