CCNA Voice
Official Exam Certification Guide

- Master IIOC 640-460 exam topics with the official study guide
- Assess your knowledge with chapter-opening quizzes
- Review key concepts with Exam Preparation Tasks
- Practice with realistic exam questions on the CD-ROM

Jeremy Cioara, CCIE No. 11727
Michael J. Cavanaugh, CCIE No. 4516
Kris A. Krame, CCIE No. 10229
CCNA Voice Official Exam Certification Guide

Jeremy Cioara, CCIE No. 11727; Michael J. Cavanaugh, CCIE No. 4516; Kris A. Krake, CCIE No. 10229

Copyright © 2009 Cisco Systems, Inc.

Cisco Press logo is a trademark of Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America

First Printing October 2008

Library of Congress Cataloging-in-Publication Data:

Cioara, Jeremy.
 CCNA Voice official exam certification guide / Jeremy Cioara, Michael J. Cavanaugh, Kris A. Krake.
 p. cm.
 TK5105.8865.C56 2008
 004.69'5076—dc22
 2008040351

Warning and Disclaimer

This book is designed to provide information about the 640-460 Implementing Cisco IOS Unified Communications (IIUC) certification exam. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc., shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the authors and are not necessarily those of Cisco Systems, Inc.
Foreword

CCNA Voice Official Exam Certification Guide is an excellent self-study resource for the Cisco IIUC (640-460) exam. Passing the IIUC exam validates the knowledge and skills required to successfully deploy Cisco VoIP technologies. Gaining certification in Cisco technology is key to the continuing educational development of today’s networking professional. Through certification programs, Cisco validates the skills and expertise required to effectively manage the modern enterprise network.

Cisco Press exam certification guides and preparation materials offer exceptional—and flexible—access to the knowledge and information required to stay current in your field of expertise or to gain new skills. Whether used as a supplement to more traditional training or as a primary source of learning, these materials offer users the information and knowledge validation required to gain new understanding and proficiencies. Developed in conjunction with the Cisco certifications and training team, Cisco Press books are the only self-study books authorized by Cisco, and they offer students a series of exam practice tools and resource materials to help ensure that learners fully grasp the concepts and information presented.

Additional authorized Cisco instructor-led courses, e-learning, labs, and simulations are available exclusively from Cisco Learning Solutions Partners worldwide. To learn more, visit http://www.cisco.com/go/training.

I hope that you find these materials to be an enriching and useful part of your exam preparation.

Erik Ullanderson
Manager, Global Certifications
Learning@Cisco
May 2008
Introduction

Welcome to the world of CCNA Voice! As technology continues to evolve, the realm of voice, which was traditionally kept completely separate from data, has now begun to merge with the data network. This brings together two different worlds of people: data technicians—historically accustomed to working with routers, switches, servers, and the like—and voice technicians, historically accustomed to working with PBX systems, digital handsets, and trunk lines. Regardless of your background, one of the primary goals of the new CCNA Voice certification is to bridge these two worlds together.

In June 2008, Cisco announced new CCNA specialties, including CCNA Security, CCNA Wireless, and CCNA Voice. These certifications, released 10 years after the initial CCNA, represent Cisco’s growth into new and emerging industries. Certification candidates can now specialize in specific areas of study. Figure I.1 shows the basic organization of the certifications and exams used to achieve your CCNA Voice certification.

As you can see from Figure I.1, a traditional CCNA certification is a prerequisite before you venture into the CCNA Voice certification. As of June 2009, the CCNA Voice certification will become a prerequisite before you are able to pursue the Cisco Certified Voice Professional (CCVP) certification.
Goals and Methods

The most important and somewhat obvious goal of this book is to help you pass the Implementing Cisco IOS Unified Communications (IIUC) exam (640-460). In fact, if the primary objective of this book were different, then the book’s title would be misleading. The methods used in this book to help you pass the IIUC exam are designed to also make you much more knowledgeable about how to do your job.

This book uses several key methodologies to help you discover the exam topics that you need to review in more depth, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. So, this book does not try to help you pass by memorization, but helps you truly learn and understand the topics. The CCNA Voice exam is the foundation for many of the Cisco professional certifications, and it would be a disservice to you if this book did not help you truly learn the material. Therefore, this book will help you pass the CCNA Voice exam by using the following methods:

- Helping you discover which test topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises and scenarios that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the CD-ROM.

In addition, this book uses quite a different style from typical certification-preparation books. The newer Cisco certification exams have adopted a style of testing that essentially says, “If you don't know how to do it, you won't pass this exam.” This means that most of the questions on the certification exam will require you to deduce the answer through reasoning or configuration rather than just memorizing facts, figures, or syntax from a book. To accommodate this newer testing style, the authors have written this book as a “real world” explanation of Cisco VoIP topics. Most concepts are explained using real-world examples rather than showing tables full of syntax options and explanations, which are freely available on Cisco.com. As you read through this book, you will definitely get a feeling of, “This is how I can do this,” which is exactly what you need for the newer Cisco exams.

Who Should Read This Book?

The purpose of this book is twofold. The primary purpose is to tremendously increase your chances of passing the CCNA Voice certification exam. The secondary purpose is to provide the information necessary to deploy a VoIP solution using Cisco Unified Communication Manager Express (CME) or the Smart Business Communications System (SBCS). Cisco's new exam approach provides an avenue to write the book with both a real-world and certification-study approach at the same time. As you read through this book and study the configuration examples and exam tips, you will have a true sense of understanding how you could deploy a VoIP system, while at the same time feeling equipped to pass the CCNA Voice certification exam.
Strategies for Exam Preparation

Strategies for exam preparation will vary depending on your existing skills, knowledge, and equipment available. Of course, the ideal exam preparation would consist of building a small voice lab with a Cisco Unified Communications Manager Express 2801 Integrated Services Router and Cisco Unity Express capabilities, a switch, and a few IP phones, which you could then use to work through the configurations as you read through this book. However, not everyone has access to this equipment, so the next best step you can take is to read through the chapters in this book, jotting notes down with key concepts or configurations on a separate notepad. Each chapter begins with a “Do I Know This Already?” quiz designed to give you a good idea of the chapter’s content and your current understanding of it. In some cases, you might already know most of or all the information covered in a given chapter.

After you have read through the book, have a look at the current exam objectives for the CCNA Voice exam listed on Cisco.com (http://www.cisco.com/certification). If there are any areas shown in the certification exam outline that you would still like to study, find those sections in the book and review them.

When you feel confident in your skills, attempt the practice exam included on the CD with this book. As you work through the practice exam, note the areas where you lack confidence and review those concepts or configurations in the book. After you have reviewed the areas, work through the practice exam a second time and rate your skills. Keep in mind that the more you work through the practice exam, the more familiar the questions will become, so the practice exam will become a less accurate judge of your skills.

After you have worked through the practice exam a second time and feel confident with your skills, schedule the real IIUC (640-460) exam through Vue (http://www.vue.com). You should typically take the exam within a week from when you consider yourself ready to take the exam, so that the information is fresh in your mind.

Keep in mind that Cisco exams are very difficult. Even if you have a solid grasp of the information, there are many other factors that play into the testing environment (stress, time constraints, and so on). If you pass the exam on the first attempt, fantastic! If not, know that this happens commonly. The next time you attempt the exam, you will have a major advantage: you have experienced the exam first-hand. Although future exams may have different questions, the topics and general “feel” of the exam will remain the same. Take some time to study areas from the book where you felt weak on the exam. Retaking the exam the same or following day from your first attempt is a little aggressive; instead, schedule to retake it within a week, while you are still familiar with the content.
640-460 IIUC Exam Topics

Table I.1 lists the exam topics for the 640-460 IIUC exam. This table also lists the book parts in which each exam topic is covered.

Table I.1 640-460 IIUC Exam Topics

<table>
<thead>
<tr>
<th>Chapter Where Topic Is Covered</th>
<th>Exam Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe the components of the Cisco Unified Communications Architecture</td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Describe the function of the infrastructure in a UC environment</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Describe the function of endpoints in a UC environment</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Describe the function of the call processing agent in a UC environment</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Describe the function of messaging in a UC environment</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Describe the function of auto attendants and IVRs in a UC environment</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Describe the function of contact center in a UC environment</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Describe the applications available in the UC environment, including Mobility, Presence, and Telepresence</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Describe how the Unified Communications components work together to create the Cisco Unified Communications Architecture</td>
</tr>
</tbody>
</table>

Describe PSTN components and technologies

Chapter 1	Describe the services provided by the PSTN
Chapter 1	Describe time division and statistical multiplexing
Chapter 1	Describe supervisory, informational, and address signaling
Chapter 1	Describe numbering plans
Chapter 1	Describe analog circuits
Chapter 1	Describe digital voice circuits
Chapter 1	Describe PBX, trunk lines, key-systems, and tie lines

Describe VoIP components and technologies

Chapter 7	Describe the process of voice packetization
Chapter 7	Describe RTP and RTCP
Chapter 7	Describe the function of and differences between codecs
Chapter 7	Describe H.323, MGCP, SIP, and SCCP signaling protocols

continues
<table>
<thead>
<tr>
<th>Chapter Where Topic Is Covered</th>
<th>Exam Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe and configure gateways, voice ports, and dial peers to connect to the PSTN and service provider networks</td>
<td></td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Describe the function and application of a dial plan</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Describe the function and application of voice Gateways</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Describe the function and application of voice ports in a Gateway</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Describe the function and operation of call-legs</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Describe and configure voice dial peers</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Describe the differences between PSTN and Internet Telephony Service Provider circuits</td>
</tr>
<tr>
<td>Describe and configure a Cisco network to support VoIP</td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Describe the purpose of VLANs in a VoIP environment</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Describe the environmental considerations to support VoIP</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Configure switched infrastructure to support voice and data VLANs</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Describe the purpose and operation of PoE</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Identify the factors that impact voice quality</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Describe how QoS addresses voice quality issues</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Identify where QoS is deployed in the UC infrastructure</td>
</tr>
<tr>
<td>Implement UC500 using Cisco Configuration Assistant</td>
<td></td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Describe the function and operation of Cisco Configuration Assistant</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Configure UC500 device parameters</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Configure UC500 network parameters</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Configure UC500 dial plan and voicemail parameters</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Configure UC500 SIP trunk parameters</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Configure UC500 voice system features</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Configure UC500 user parameters</td>
</tr>
<tr>
<td>Chapter Where Topic Is Covered</td>
<td>Exam Topic</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Implement Cisco Unified Communications Manager Express to support endpoints using CLI</td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Describe the appropriate software components needed to support endpoints</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Describe the requirements and correct settings for DHCP, NTP, and TFTP</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Configure DHCP, NTP, and TFTP</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Describe the differences between key system and PBX mode</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Describe the differences between the different types of ephones and ephone-dns</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Configure Cisco Unified Communications Manager Express endpoints</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Configure call-transfer per design specifications</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Configure voice productivity features, including hunt groups, call park, call pickup, paging groups, and paging/intercom</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Configure Music on Hold</td>
</tr>
<tr>
<td>Implement voicemail features using Cisco Unity Express</td>
<td></td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Describe the Cisco Unity Express hardware platforms</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Configure the foundational elements required for Cisco Unified Communications Manager Express to support Cisco Unity Express</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Describe the features available in Cisco Unity Express</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Configure AutoAttendant services using Cisco Unity Express</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Configure basic voicemail features using Cisco Unity Express</td>
</tr>
</tbody>
</table>
How This Book Is Organized

Although this book could be read cover-to-cover, it is designed to be flexible and allow you to easily move between chapters and sections of chapters to cover just the material that you need more work with. If you do intend to read all the chapters, the order in the book is an excellent sequence to use.

The core chapters, Chapters 1 through 12, cover the following topics:

- **Chapter 1, “Perspectives on Voice Before Convergence”:** This chapter discusses what would be known as the traditional telephony world. It begins where the telephone system originally started: analog connectivity. It then moves into the realm of digital connections and considerations and concludes with the primary pieces that you need to know from the public switched telephone network (PSTN).

- **Chapter 2, “Perspectives on Voice After Convergence”:** This chapter focuses primarily on the components of a Cisco VoIP network. By breaking down the voice infrastructure into four distinct areas, each component can be categorized and described. These components include endpoints, call processing agents, applications, and network infrastructure devices.

- **Chapter 3, “Connecting IP Phones to the LAN Infrastructure”:** This chapter discusses the preparation and base configuration of the LAN infrastructure to support VoIP devices. This preparation includes support for Power over Ethernet (PoE), voice VLANs, a properly configured DHCP scope for VoIP devices, and the Network Time Protocol (NTP).

- **Chapter 4, “Installing Cisco Unified Communications Manager Express”:** This chapter covers everything you need to know to get Cisco Unified Communication Manager Express (CME) ready to support IP phones. It initially walks through the Cisco Unified CME overview and licensing information, then unpacks the installation and base configuration process.

- **Chapter 5, “Basic Cisco Unified CME IP Phone Configuration”:** This chapter focuses on the process to create and assign directory numbers to Cisco IP phones. In addition, the chapter walks through the configuration of IP phone auto-registration, which makes your initial network setup much easier, and the configuration of additional phone parameters such as phone locale and system messages.

- **Chapter 6, “Configuring Cisco Unified CME Voice Productivity Features”:** This chapter examines feature after feature supported by the CME router. By the time you're done with this chapter, you'll understand how to configure features such as intercom, paging, call park and pickup, and many others.

- **Chapter 7, “Gateway and Trunk Concepts”:** Now that the internal VoIP network is operational through the CME configuration, this chapter examines connections to the outside world through the PSTN or over an IP network. Concepts covered in this chapter include the process of converting voice to packetized format, codec considerations, and trunking methods.
Chapter 8, “Configuring and Verifying Gateways and Trunks”: This chapter takes the concepts from Chapter 7 and puts them into configuration action. Topics from this chapter include the configuration of physical voice ports, dial-peer and digit manipulation configuration, and quality of service (QoS).

Chapter 9, “Cisco Unity Express Concepts”: This chapter introduces the Cisco Unity Express (CUE), describing the differences between hardware platforms, the software components, and licensing options. The features, functions, and management of the voicemail and auto-attendant applications provided by CUE are explored.

Chapter 10, “Cisco Unity Express Configuration”: This chapter discusses the configuration of the Cisco Unity Express platform. It begins with the Cisco Unity Express installation process and walks through configuring Cisco Unity Express global options, mailbox settings, and auto-attendant scripts. The chapter concludes with Cisco Unity Express troubleshooting methods.

Chapter 11, “Introducing the Smart Business Communications System”: This chapter introduces the concept of Unified Communications (UC) and explains how the Smart Business Communications System (SBCS) is positioned to deliver UC to the small-medium business (SMB) market. Individual components of the SBCS suite and the most common ways they are deployed are discussed to lay a foundation for implementing the UC500 Series for Small Business.

Chapter 12, “Configuring and Maintaining the UC500 Series for Voice”: This chapter discusses the process of provisioning the UC500 Series for Small Business. The chapter begins with a discussion of the UC500's function in the SBCS family, moves into a discussion about the Cisco Configuration Assistant (CCA), and then concludes with step-by-step instructions for deploying and maintaining telephony and voice-mail services on the UC500.

In addition to the 12 main chapters, this book includes tools to help you verify that you are prepared to take the exam. Chapter 13, “Final Preparation,” includes guidelines that you can follow in the final days before the exam. Also, the CD-ROM includes quiz questions and memory tables that you can work through to verify your knowledge of the subject matter.
Cisco Unified Communications Manager Express Overview: This section gives an overview of the Cisco Unified Communications Manager Express (CME) system, the Cisco hardware it can run on, and features it supports.

Licensing and Models for Cisco Unified CME: As you design your IP telephony network, you can choose a key system, PBX, or hybrid model. This section discusses these models and the licenses required by Cisco to operate a Cisco Unified CME environment.

Installing Unified CME on a Cisco Router: Many routers ship with Cisco Unified CME software preinstalled; on others, it must be installed manually. This section discusses the installation and upgrade process for Cisco Unified CME.

Configuring the Cisco Unified CME Router as a TFTP Server: The Cisco Unified CME router is responsible for serving the correct files to the IP phones during the boot process. This section discusses the configuration of the CME router as a TFTP server.

Configuring the Cisco Unified CME System-Level Functions: In this section, you will see four steps you must take to prepare the Cisco Unified CME router to handle Cisco IP phones.
At this point, you now understand the difference between TDM and IP-based voice systems. You have seen the foundation network requirements for Power over Ethernet (PoE), Dynamic Host Configuration Protocol (DHCP), virtual LANs (VLANs), and Network Translation Protocol (NTP) and understand the configuration required to build the infrastructure. Now it is time to turn the attention to the Cisco Unified Communications Manager Express (CME) installation process.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read this entire chapter or simply jump to the “Exam Preparation Tasks” section for review. If you are in doubt, read the entire chapter. Table 4.1 outlines the major headings in this chapter and the corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”
Table 4.1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions Covered in This Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Unified Communications Manager Express Overview</td>
<td>1</td>
</tr>
<tr>
<td>Licensing and Models for Cisco Unified CME</td>
<td>2–3</td>
</tr>
<tr>
<td>Installing Unified CME on a Cisco Router</td>
<td>4</td>
</tr>
<tr>
<td>Configuring the Cisco Unified CME Router as a TFTP Server</td>
<td>5–7</td>
</tr>
<tr>
<td>Configuring the Cisco Unified CME System-Level Functions</td>
<td>8–10</td>
</tr>
</tbody>
</table>

1. How many Cisco IP phones can a Cisco 2801 CME Router support?
 a. 8
 b. 24
 c. 50
 d. 144

2. Which of the following are required licenses to operate a Cisco Unified CME router? (Choose three.)
 a. IOS license
 b. User license
 c. Phone license
 d. Phone user license
 e. Feature license

3. Which design model would you use if you wanted the number of lines on each IP phone to match the number of phone lines coming in from the PSTN?
 a. Shared line model
 b. Limited model
 c. Keyswitch model
 d. Hybrid model
 e. PBX model
4. What command can you use to extract a bundle of CME files into the flash of the router?
 a. copy
 b. extract
 c. xtract
 d. archive

5. Which files does the Cisco IP phone download from the TFTP server during the boot process? (Choose two.)
 a. Firmware
 b. Music on Hold
 c. XML templates
 d. Configuration files

6. What is the primary function of the alias syntax in the tftp-server command?
 a. To make files in subdirectories accessible without entering the full path
 b. To rename files
 c. To hide the original filename to increase network security
 d. To allow multiple files to be accessed through one filename

7. Once phone firmware files are downloaded and copied to the flash memory of a router, how are they made accessible to the IP phones?
 a. The CME telephony service automatically recognizes these files and makes them available via TFTP.
 b. The firmware files must be manually made available by using the tftp-server command.
 c. The firmware files are made available through TFTP when entered in the telephony service using the load command.
 d. The firmware files are copied to an external TFTP server by the router and downloaded directly to the IP phones.

8. Which three commands must be entered to allow the CME router to begin accepting IP phone registrations?
 a. max-ephones
 b. max-dn
 c. no shutdown
 d. ip source-address
 e. telephony-service enable
 f. no telephony-service disable
9. How does the Cisco Unified CME router create configuration files for the Cisco IP phones? (Choose two.)
 a. Configuration files are automatically created as configuration information is entered.
 b. Configuration files must be downloaded from Cisco and copied to the flash of the router.
 c. Configuration files can be generated by entering the `create cnf-file` syntax.
 d. Configuration files are generated by the IP phones and uploaded to the router's flash during the boot process.

10. The Cisco Unified CME router generates a generic configuration file for IP phones that do not have any configuration information. What is the name of this file?
 a. Config.default
 b. Default.xml
 c. Default.cnf
 d. XMLDefault.cnf.xml
 e. Holiday prompt
 f. Emergency prompt
Foundation Topics

Cisco Unified Communications Manager Express Overview

When Cisco first entered the IP telephony space, it did so with its flagship CallManager product line. CallManager was a dedicated server or servers that was a custom fit for medium to large businesses deploying thousands of phones at a single site or multiple locations. Although CallManager (now known as Cisco Unified Communications Manager) provided a cost-effective solution for these larger businesses, the startup price was far beyond the range that was affordable by small businesses.

As the CallManager product line developed, Cisco released a product known as Survivable Remote Site Telephony (SRST), which allowed a router to act as a failover device for Cisco IP phones if their CallManager server was unreachable. SRST was so fantastic, Cisco eventually turned it into a standalone solution (rather than just a failover solution) that could support a small office environment. The product was initially named IOS Telephony Service (ITS), which then became CallManager Express, which then became the Unified Communications Manager Express (CME) product used today.

Depending on the platform used, Cisco Unified CME can scale to support an environment of up to 240 IP phones. Table 4.2 gives the Cisco Unified CME IOS platforms available and the current maximum number of IP phones supported.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Maximum Number of Phones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 1861 Integrated Services Router</td>
<td>8</td>
</tr>
<tr>
<td>Cisco IAD2430 Integrated Access Device</td>
<td>24</td>
</tr>
<tr>
<td>Cisco 2801 Integrated Services Router</td>
<td>24</td>
</tr>
<tr>
<td>Cisco 3250 Ruggedize Services Router</td>
<td>10</td>
</tr>
<tr>
<td>Cisco 3270 Ruggedize Services Router</td>
<td>50</td>
</tr>
<tr>
<td>Cisco 2811 Integrated Services Router</td>
<td>35</td>
</tr>
<tr>
<td>Cisco 2821 Integrated Services Router</td>
<td>50</td>
</tr>
<tr>
<td>Cisco 2851 Integrated Services Router</td>
<td>100</td>
</tr>
<tr>
<td>Cisco 3725 Multiservice Access Router</td>
<td>144</td>
</tr>
<tr>
<td>Cisco 3745 Multiservice Access Router</td>
<td>192</td>
</tr>
<tr>
<td>Cisco 3825 Integrated Services Router</td>
<td>175</td>
</tr>
<tr>
<td>Cisco 3845 Integrated Services Router</td>
<td>250</td>
</tr>
</tbody>
</table>
The Cisco Unified CME system supports features you would come to expect from a
time-division multiplexing (TDM) PBX or key system. These features can be divided into
four categories: system, phone, trunk, and voice mail features. The major features in each
category are included in the following list (current as of CME Version 4.3):

■ System Features
 ■ Account codes and Call Detail Record (CDR) field entry
 ■ Callback busy subscriber and camp-on
 ■ Per-phone call coverage rules
 ■ Call hold and retrieve
 ■ Call park: personal and directed
 ■ Call transfer and park recall
 ■ Call park assign to extension
 ■ Call pickup directed
 ■ Call pickup local group
 ■ Call pickup explicit group
 ■ Call transfer: consultative and blind
 ■ Call waiting
 ■ Computer telephony integration (CTI) with Microsoft CRM and Outlook using
 Cisco IOS Software Telephony Services Provider (TSP)
 ■ E911 with two emergency location numbers per zone, unlimited zones per site
 ■ Eight-party impromptu conferencing
 ■ Directory services using XML
 ■ Hunt groups: sequential, circular, parallel (blast), and longest idle
 ■ Hunt-group dynamic login and logout
 ■ Hunt-groups statistics: daily and hourly
 ■ Intercom
 ■ Meet-me conferencing (32 party)
 ■ Music on Hold (MOH): internal or external source
 ■ Night service bell or call forwarding
 ■ Overlay extensions for enhanced call coverage
 ■ Called-name display for overlay extensions
 ■ Paging: internal through IP phones or to external system
- Per-call caller ID blocking
- Secondary dial tone
- Standards-based network call transfer and call forwarding using H.450
- Additional system speed-dial option through XML service
- Time-of-day and day-of-week call blocking
- Customizable called-name display
- Support of SRST fallback service phone auto-registration
- Basic automatic call distributor (B-ACD) (three queues) with auto-attendant and call statistics
- Display of number of calls in queue on IP phone
- Agent login and logout of B-ACD hunt group
- Integration with Cisco Unified Contact Center Express 5.0 for advanced call center features with support for up to 50 agents, agent supervisors, call recording, silent monitoring, and reporting features
- Secure Real-Time Protocol (SRTP), providing media encryption for calls on the IP network
- Secure voice IP phone certificate authentication and provisioning plus secure device signaling using Transport Layer Security (TLS)

Phone Features
- Maximum 250 phones per system
- Up to 34 line appearances per phone
- Attendant console functions using Cisco Unified IP Phone Expansion Module 7914
- Fast transfer: blind or consult
- Busy lamp
- Silent ringing options
- Automatic line selection for outbound calls
- Call forward on busy, no answer, and all (internal or external)
- Call-forward-all restriction control
- Do not disturb (DND)
- Feature ring with DND set
- IP phone display of DND state
- Dial-plan pattern load on SIP phones
- Diversion of calls directly to voice mail
- Customization of softkeys
- Enable and disable call-waiting notification per line
- Call waiting with overlay directory number
- Call-waiting ring
- Dual or 8 call line appearances per button
- After-hours toll-bar override
- Auto-answer with headset
- European date formats
- Hook flash passthrough across analog PSTN trunks
- Idle URL: periodically push messages or graphics on IP phones
- Last-number redial
- Live record to Cisco Unity Express mailbox
- Local name directory lookup
- On-hook dialing
- Station speed dial with configuration changes from IP phone
- System speed dial for 10,000 numbers
- Silent and feature ring options
- SIP-based line-side subscribe, providing basic presence of phone status
- Transfer to voice mail softkey
- Call barge with privacy on shared lines
- Access features using softkeys or feature access codes
- Remote teleworker IP phone support
- Dynamic hunt-group join or leave
- Support for analog phones using Cisco ATA 186 Analog Telephone Adapter or Cisco VG224 Analog Phone Gateway in SCCP mode
- Support for fax machines on Foreign Exchange Station (FXS) ports or ATA using H.323, SCCP, or SIP
- XML application services on Cisco Unified IP display phones
- Station-to-station video with voice using Cisco Unified Video Advantage or Cisco Unified IP Phone 7985G endpoints
- Extension mobility within the single site
- Wideband audio (G.722) and iLBC codec
Trunk Features

- Analog Foreign Exchange Office (FXO) loop and ground start
- Ear and mouth (E&M)
- Basic Rate Interface (BRI) and Primary Rate Interface (PRI) support (NI2, 4ESS, 5ESS, EuroISDN, DMS100, and DMS250) and several other switch types currently supported in Cisco IOS Software
- Caller ID name and number
- Automatic number identification (ANI)
- Digital trunk support (T1/E1)
- Direct inward dialing (DID)
- Direct outward dialing
- E1 R2 support
- Dedicated trunk mapping to phone button
- H.323 trunks with H.450 support
- H450.12 automatic detection of H.450 support for remote H.323 endpoints
- SIP trunks and RFC 2833 support
- Transcoding with G.711, G.729a, and iLBC
- ISDN Q.SIG supplementary services of basic calls, including call forwarding busy, no answer, all; calling name and line identification (CLIP and CNIP); connected line and name identification (COLP and CONP); message waiting indicator (MWI) and message center support; MWI passthrough QSIG-to-TDM voice mail

Voice Mail Features

- Integrated voice mail and auto-attendant solution with Cisco Unity Express
- Integration with Cisco Unity Voice Mail and Cisco Unity Unified Messaging, or third-party voice mail integration (H.323, SIP, or dual-tone multifrequency [DTMF])

This and other upcoming chapters will discuss many of these features in depth.

Figure 4.1 displays the network diagram built in the previous chapter.

The Cisco Unified CME router in the upper right of Figure 4.1 provides connectivity to the PSTN (allowing for incoming and outgoing PSTN calls) and to the Internet. Cisco designed CME with capabilities to be an all-in-one device. With this one router, you could operate both your data and voice networks.
The network diagram pictured in Figure 4.1 shows a separate router connecting to the corporate branch offices. From a design standpoint, this functionality could be integrated into the Cisco Unified CME router as well. CME is able to integrate into other VoIP or TDM network environments. Figure 4.2 illustrates potential integration scenarios.

Figure 4.2 CME Integration Scenarios

A network using the design shown in Figure 4.2 would be able to place calls between any of the network systems shown using the IP WAN as a transport. The PSTN would still exist at each of these locations but would be used as a backup connection should a WAN failure at any or all of the locations occur.

Note Chapter 7, “Gateway and Trunk Concepts,” and Chapter 8, “Configuring and Verifying Gateways and Trunks,” discuss the specifics of integrating the Cisco Unified CME system with other VoIP and TDM systems.
Licensing and Models for Cisco Unified CME

Alas, all is not free in the world of IP telephony. To legally operate a Cisco Unified CME system, you must purchase three types of licenses:

- **IOS license:** The CME router must be licensed to run a version of Cisco IOS that is capable of supporting the CME software.
- **Feature license:** The feature license (also known as seat license) grants the CME router the ability to support a specific number of IP phones. These licenses are sold in incremental blocks.
- **Phone user licenses:** You must purchase one phone user license for each Cisco IP phone supported by the CME system.

Often, vendors bundle the licenses with the Cisco Unified CME products being sold. For example, when you purchase a Cisco IP phone, it will come with a phone user license, allowing it to connect to a Cisco Unified CME or Cisco Unified Communications Manager system. The vendor may also bundle the CME router with the IOS license and a 24-seat feature license. Table 4.3 shows the current feature licenses available for the CME system.

<table>
<thead>
<tr>
<th>Number of Phones</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>FL-CCME-SMALL</td>
</tr>
<tr>
<td>36</td>
<td>FL-CCME-36</td>
</tr>
<tr>
<td>48</td>
<td>FL-CCME-MEDIUM</td>
</tr>
<tr>
<td>96</td>
<td>FL-CCME-96</td>
</tr>
<tr>
<td>144</td>
<td>FL-CCME-144</td>
</tr>
<tr>
<td>168</td>
<td>FL-CCME-168</td>
</tr>
<tr>
<td>250</td>
<td>FL-CCME-250</td>
</tr>
</tbody>
</table>

You can add feature licenses incrementally to your system. For example, you might start with a network of 80 IP phones and purchase an FL-CCME-96 license, allowing the network to grow up to 96 IP phones. Once you grow beyond that, you could add on a FL-CCME-SMALL license incrementally to add an additional 24 phones per license purchase.

Once all your licensing is in place, you can begin to plan the model you would like to use for Cisco Unified CME. CME supports three different models of configuration:

- PBX
- Keyswitch
- Hybrid
Choosing a model does not “lock you in” to one configuration or another; rather, the model represents more of a design that you can use for your company. This section describes each of the three models.

PBX Model

Using a PBX model of configuration gives most of the IP phones in your system a unique extension number, as shown in Figure 4.3.

![Cisco Unified CME PBX Model](image)

Figure 4.3 *Cisco Unified CME PBX Model*

In this model, users can dial each other using their own, unique extension numbers. To get an outside line to the PSTN, the user would first dial a 9 (or some other access code) and receive a second dial tone. A local receptionist or auto-attendant system running on the Cisco Unified CME router is responsible for distributing incoming calls from the PSTN to the users. If the company is large enough to warrant a Direct Inward Dial (DID) block of phone numbers, the CME can route incoming PSTN calls directly to the users.

Keyswitch Model

Using a keyswitch model of configuration mirrors the TDM keyswitch environment, which provided shared numbers to the phones supported by the system. Figure 4.4 illustrates a keyswitch model design.
The receptionist is not included in the design in Figure 4.4 because keyswitch environments typically provide a 1:1 ratio between directory numbers on phones and PSTN circuits. For example, if an office has three incoming PSTN lines, the three lines on each phone map directly to one of these lines. When the Cisco Unified CME router receives an incoming call on the first PSTN line, it rings the first line of all the IP phones connected to the system. A receptionist may be present in the office; however, the office would be small enough that any employee could answer any line.

In a keyswitch environment, intra-office calls are rare because the office environment is small enough for a user to walk to another cubical or yell, “Hey Beth, pick up line 1!” over a cubical wall.

Hybrid Model

The hybrid model is useful for environments that want a keyswitch feel, where each line maps directly to a PSTN line, but also want to allow simple intra-office calling. In a pure keyswitch environment with three lines on each phone, an intra-office call between two employees would use up two of the lines, leaving only one line remaining for incoming or outgoing PSTN calls. In the hybrid model, each user would receive a unique extension in addition to the shared “keyswitch” lines, as shown in Figure 4.5.

Depending on your configuration, the extension unique to each user may or may not be able to reach the PSTN. If you have a limited number of PSTN lines available at the office, you may want to restrict PSTN access from the unique extension on each phone. You can also have this unique extension be the default active line when the user picks up the phone so that a user does not temporarily tie up one of the shared, PSTN lines each time the receiver is lifted.
Installing Unified CME on a Cisco Router

One advantage of Cisco IOS is the ease of installation and upgradability. To perform an IOS installation or upgrade, you can set up a TFTP server on your PC, download IOS from Cisco.com, and then enter a command similar to the following:

```
Router# copy tftp://172.16.2.5/c2801-adventerprisek9-mz.124-19.bin flash:
```

Assuming your TFTP server is working correctly and assigned the IP address 172.16.2.5, the single BIN IOS file would copy over. Once you reboot the router, you would be running the new IOS version.

Installing Cisco Unified CME is not quite as simple. Rather than being an all-in-one BIN file, the CME software is a series of files, which breaks down into the following categories:

- **Basic files**: The core files needed to run CME. This file set includes the firmware files that the Cisco IP phones need to operate.
- **GUI files**: The files required to power the CME web-based management utility.
- **XML template file**: The file that dictates the structure of the CME web-based management utility. Editing this file allows you to create different levels of administrators (such as a CME administrator who can only modify IP phone configurations through the web-based utility).
- **MOH files**: Audio files used for Music on Hold (MOH).
- **Script files**: Various Tool Command Language (Tcl) script files to provide more advanced functionality to CME (such as auto-attendant and automatic call distributor [ACD] functions).
- **Miscellaneous files**: Additional files that allow you to have custom ringtones or different backgrounds on select models of Cisco IP phones.
Performing a full installation of the Cisco Unified CME software adds around 150 files to the flash memory of your router. If you were to download each of these files manually and copy them one by one, it could be an all-day process just to get the CME files in place. To save you some pain, Cisco has introduced the archive command in the IOS syntax, which allows you to extract a group of files to flash all at once.

Note Many routers ship with the Cisco Unified CME software conveniently preinstalled. However, with the speed of change in the VoIP world, it won’t be long before you find yourself upgrading the CME version or firmware files for your Cisco IP phones. You can use the following processes for clean installs or upgrades of the CME software.

To perform an installation of the CME files on your router, you must first download the appropriate files from the Cisco website. Figure 4.6 gives you an idea of what the CME file download area looks like.

![Figure 4.6 CME Software Download Page](image)

As you can see, Cisco offers many different “packs” of files, such as the basic files, GUI files, or MOH files. In addition, there is also a full CME pack of files, which includes all the files in the previous bulleted list in a single TAR archive.

Note TAR archives (files with a .tar extension) are the only files that you can extract into the router flash memory by using the archive command.

Cisco offers these different file packs as options for you to download and install. These CME file packs give you flexibility to install only the files you want. For example, you may only have enough flash memory on your router for the CME basic and GUI files. In this case, you can install just those components. Likewise, some may prefer to manage
the CME system solely from the command line. In this case, there is no reason to use up valuable router flash space with the CME GUI files.

To install the full CME software package onto a router, obtain the full TAR file from Cisco and place the file on your TFTP server (which should be accessible from your Cisco router). Then issue the command shown in Example 4.1.

Example 4.1 Installing CME Files into Flash Memory

```
CME_Voice# archive tar /xtract tftp://172.16.2.5/cme-full-4.3.0.0.tar flash:
Loading cme-full-4.3.0.0.tar from 172.16.2.5 (via FastEthernet0/0): !
  bacdprompts/ (directory) 0 (bytes)
extracting bacdprompts/app-b-acd-2.1.2.2-ReadMe.txt (18836 bytes)
extracting bacdprompts/app-b-acd-2.1.2.2.tcl (24985 bytes)
extracting bacdprompts/app-b-acd-aa-2.1.2.2.tcl (35485 bytes)
extracting bacdprompts/en_bacd_allagentsbusy.au (75650 bytes)
extracting bacdprompts/en_bacd_disconnect.au (83291 bytes)
extracting bacdprompts/en_bacd_enter_dest.au (63055 bytes)
extracting bacdprompts/en_bacd_invalidoption.au (37952 bytes)
extracting bacdprompts/en_bacd_music_on_hold.au (496521 bytes)!!
extracting bacdprompts/en_bacd_options_menu.au (123446 bytes)
extracting bacdprompts/en_bacd_welcome.au (42978 bytes)
extracting bacdprompts/en_bacd_xferto_operator.au (34794 bytes)!
extracting CME43-full-readme-v.2.0.txt (22224 bytes)
Desktops/ (directory)
  Desktops/320x212x12/ (directory)
  extracting Desktops/320x212x12/CampusNight.png (131470 bytes)
  extracting Desktops/320x212x12/CiscoFountain.png (80565 bytes)!
  extracting Desktops/320x212x12/List.xml (628 bytes)
  extracting Desktops/320x212x12/MorroRock.png (100976 bytes)
  extracting Desktops/320x212x12/NantucketFlowers.png (10807 bytes)
  extracting Desktops/320x212x12/TN-CampusNight.png (10820 bytes)
  extracting Desktops/320x212x12/TN-CiscoFountain.png (9657 bytes)
  extracting Desktops/320x212x12/TN-Fountain.png (7953 bytes)
  extracting Desktops/320x212x12/TN-MorroRock.png (7274 bytes)!
  extracting Desktops/320x212x12/TN-NantucketFlowers.png (9933 bytes)
  extracting Desktops/320x212x12/Fountain.png (138278 bytes)
gui/ (directory)
  extracting gui/Delete.gif (953 bytes)
  extracting gui/admin_user.html (3845 bytes)
extracting gui/admin_user.js (647358 bytes)!!!
```

As you can see, the cme-full-4.3.0.0.tar file is expanded into the flash of the router. The output shown in Example 4.1 is only one page out of five pages of files that would copy into the router’s flash. Now imagine copying each one of those files one by one using the `copy` command. No thanks!
Example 4.1 demonstrates how to install the full CME package onto a router. You can follow a similar process if you only want to install individual components.

Configuring the Cisco Unified CME Router as a TFTP Server

Now that you have the Cisco Unified CME files installed into the router flash, you can configure the CME router as a TFTP server. Before diving right into the syntax, let's review why we are making the CME router a TFTP server. The following is the boot process of a Cisco IP phone:

1. The Cisco IP phone connects to an Ethernet switchport. If the IP phone and switch support PoE, the IP phone receives power through either Cisco Proprietary PoE or 802.3af PoE.

2. As the Cisco IP phone powers on, the Cisco switch delivers voice VLAN information to the IP phone using CDP as a delivery mechanism. The Cisco IP phone now knows what VLAN it should use.

3. The Cisco IP phone sends a DHCP request asking for an IP address on its voice VLAN. The router connecting to the voice VLAN receives this DHCP request and, through the `ip helper-address` command, forwards the request directly to the DHCP server.

4. The DHCP server responds with an IP address offer. When the Cisco IP phone accepts the offer, it receives all the DHCP options that go along with the DHCP request. DHCP options include items such as default gateway, DNS server information, domain name information, and so on. In the case of Cisco IP phones, a unique DHCP option is included known as Option 150. This option directs the IP phone to a TFTP server.

5. When the Cisco IP phone has the IP address of the TFTP server, it contacts the TFTP server and downloads its firmware and configuration files. Included in the configuration file is a list of valid call processing agents (such as Cisco Unified Communications Manager or CME agents).

6. The Cisco IP phone attempts to contact the first call processing server (the primary server) listed in its configuration file to register. If this fails, the IP phone moves to the next server in the configuration file. This process continues until the IP phone registers successfully or the list of call processing agents is exhausted.

Chapter 3 completed up through Step 4 of the boot process. The Cisco IP phone received its IP address information from the DHCP server and now has the IP address of the TFTP server (from DHCP Option 150), which is going to be the Cisco Unified CME router. But, as of yet, the CME router is not acting as a TFTP server. The CME router needs to hand out both the phone firmware (for whichever applicable Cisco IP phone models you are using) and the necessary phone configuration files. Otherwise, the Cisco IP phones will reach Step 5 of the boot process and stop.
Cisco routers will allow you to turn them into TFTP servers to serve files from the router’s flash memory. Now, you do not want to serve up the entire flash memory of your router to the TFTP service. Otherwise, unauthorized users could download copies of your router’s IOS or other sensitive files stored in flash. Instead, you must specify exactly what files are served from the flash memory.

In the “old days” of the CME software, this used to be a major challenge, because CME would dump all its software files into a flat directory in your router flash. That’s right; you would enter dir flash: and see 100+ CME files without any subdirectories to organize them. You would then have to weed through the files and use extensive documentation to figure out which firmware files belonged to each phone (the firmware files have names such as P00308000500.bin, so it was not obvious just based on the filename). Thankfully, in the newer versions of CME software, that has all changed. The phone firmware files are all organized in subdirectories that make it clear which files belong to each. Example 4.2 shows the directory listings of the router’s flash after installing the CME full TAR package.

Example 4.2 Verifying Installed CME Files

```plaintext
CME_Voice# dir flash:
Directory of flash:/

1 -rw- 32999900 May 12 2008 21:28:00 -07:00 c2801-adventerprisek9-mz.124-19.bin
2 drw- 0 Jun 10 2008 14:57:20 -07:00 bacdprompts
14 -rw- 22224 Jun 10 2008 14:57:30 -07:00 CME43-full-readme-v.2.0.txt
15 drw- 0 Jun 10 2008 14:57:30 -07:00 Desktops
28 drw- 0 Jun 10 2008 14:57:36 -07:00 gui
46 -rw- 496521 May 12 2008 21:30:00 -07:00 music-on-hold.au
47 drw- 0 May 12 2008 21:30:00 -07:00 phone
128 drw- 0 May 12 2008 21:35:46 -07:00 ringtones
129996800 bytes total (28583936 bytes free)

CME_Voice# dir flash:/phone
Directory of flash:/phone/

48 drw- 0 May 12 2008 21:30:00 -07:00 7945-7965
57 drw- 0 May 12 2008 21:30:34 -07:00 7937
59 drw- 0 May 12 2008 21:31:12 -07:00 7914
61 drw- 0 May 12 2008 21:31:12 -07:00 7906-7911
70 drw- 0 May 12 2008 21:31:46 -07:00 7920
72 drw- 0 May 12 2008 21:31:52 -07:00 7931
80 drw- 0 May 12 2008 21:32:24 -07:00 7942-7962
89 drw- 0 May 12 2008 21:32:58 -07:00 7921
97 drw- 0 May 12 2008 21:33:54 -07:00 7940-7960
102 drw- 0 May 12 2008 21:34:02 -07:00 7970-7971
111 drw- 0 May 12 2008 21:34:36 -07:00 7975
119 drw- 0 May 12 2008 21:35:12 -07:00 7941-7961
```

continues
As you dig deeper in the router flash directory listing, you can find the actual firmware files that are used for the IP phones. Example 4.3 shows output for the Cisco 7940 and 7960 IP Phone models. Now that you know the names of the firmware files, you can make them available through TFTP.

Example 4.3 Configuring Router-Based TFTP Services for IP Phone Firmware Files

```bash
CME_Voice# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
CME_Voice(config)# tftp-server flash:/phone/7940-7960/P00308000500.bin alias P00308000500.bin
CME_Voice(config)# tftp-server flash:/phone/7940-7960/P00308000500.loads alias P00308000500.loads
CME_Voice(config)# tftp-server flash:/phone/7940-7960/P00308000500.sb2 alias P00308000500.sb2
CME_Voice(config)# tftp-server flash:/phone/7940-7960/P00308000500.sbn alias P00308000500.sbn
```

The alias syntax that follows the `tftp-server` command allows the firmware file to be requested simply by asking for the aliased filename. This is necessary in the newer CME versions, which organize the firmware files into subdirectories. The Cisco IP phones do not know the full path to the firmware file; they only ask for the firmware filename.

Note Be sure to make all the firmware files in each subdirectory available through TFTP. The Cisco IP phones will use most, if not all, of these files during the boot process.

The firmware files for the Cisco 7940 and 7960 IP Phones are now available via TFTP from the Cisco Unified CME router. You can repeat this process as many times as necessary to make the firmware files available for the additional models of IP phones you have on your network.
Chapter 4: Installing Cisco Unified Communications Manager Express

Note There may be models of Cisco IP phones that are supported by Cisco Unified CME whose firmware files are not contained in the CME full TAR package. The firmware files for these IP phone models can be individually downloaded from the Cisco website and placed into the router’s flash memory. This same principle also applies for IP phone firmware that has been upgraded since the CME software release you are using.

Configuring the Cisco Unified CME System-Level Functions

Now that the Cisco Unified CME router is serving up the correct firmware files, you can get into the configuration of the CME system itself. You can configure just about all of the CME settings from the telephony-service configuration mode, which you access simply by entering `telephony-service` from global configuration mode.

Four key system-level functions need to be specified in order for the CME router to begin supporting IP phones:

- Maximum phones and directory numbers
- Firmware load files
- Source IP address information
- Generated configuration files

The following sections describe each system-level function.

Maximum Phones and Directory Numbers

Before the Cisco Unified CME router can begin registering and supporting IP phones, it needs to know the number of phones and directory numbers it will be supporting. By default, both values are set to zero, so the router will not support any VoIP devices. To configure this value, you can use the syntax shown in Example 4.4.

Example 4.4 Provisioning CME Phone and Directory Number Support

```
CME_Voice(config)# telephony-service
CME_Voice(config-telephony)# max-ephones ?
<1-30> Maximum phones to support
CME_Voice(config-telephony)# max-ephones 24
CME_Voice(config-telephony)# max-dn ?
<1-150> Maximum directory numbers supported
<cr>
CME_Voice(config-telephony)# max-dn 48
```
The **max-ephones** parameter configures the maximum number of IP phones the router will support, whereas the **max-dn** parameter specifies the maximum number of directory numbers.

Note These parameters directly affect how much memory the router reserves to support the CME service. Setting the value much higher than you actually need may reserve excessive resources on your router and impact other network services.

In addition, the **max-ephones** parameter should not be any higher than the number of feature licenses you have purchased for your CME system.

Firmware Load Files

In the section “Configuring the Cisco Unified CME Router as a TFTP Server,” you saw how to configure the CME router to serve the phone firmware files via TFTP. You must now tell the telephony service which firmware files it should use for the various models of Cisco IP phones it will be supporting. This can be done under the telephony-service configuration mode by using the **load** command, as shown in Example 4.5.

Example 4.5 Specifying Firmware Loads for Cisco IP Phones

```bash
CME_Voice(config-telephony)# load ?
12SP       Select the firmware load file for 12SP+ and 30VIP phones
7902       Select the firmware load file for 7902
7905       Select the firmware load file for 7905
7910       Select the firmware load file for Telecaster 7910 phones
7912       Select the firmware load file for 7912
7914       Select the firmware load file for sidecar 7914
7920       Select the firmware load file for 7920
7935       Select the firmware load file for 7935 Conference Station
7936       Select the firmware load file for 7936
7960-7940  Select the firmware load file for Telecaster 7960 & 7940 phones
7970       Select the firmware load file for 7970
7971       Select the firmware load file for 7971
ATA        Select the firmware load file for ATA

CME_Voice(config-telephony)# load 7960 ?
WORD  firmware filename for Telecaster 7960 & 7940 [without .bin]

CME_Voice(config-telephony)# load 7960 P00308000500
Updating CNF files
CNF files updating complete
CME_Voice(config-telephony)#
```
Notice that after you enter the load ? command, the CME router displays all supported Cisco IP phone models. You need to enter a unique load command for each IP phone model you are using in your Cisco Unified CME system. Only enter the firmware file-name; do not enter the .bin extension.

Note Because the newer Cisco Unified CME software creates a directory structure in the flash memory, be sure you have aliased each of the firmware files using the `tftp-server` syntax discussed earlier in this chapter. The Cisco IP phones simply ask for a firmware file-name during the boot process; they do not specify subdirectory information.

To put all the pieces into place, the syntax in Example 4.6 walks through the complete TFTP server and load configuration for the Cisco 7970 and 7971 IP Phones.

Example 4.6 Configuring CME for 7970 and 7971 Firmware Loads

```
CME_Voice# dir flash:/phone
Directory of flash:/phone/
  48 drw-     0 May 12 2008 21:30:00 -07:00  7945-7965
  57 drw-     0 May 12 2008 21:30:34 -07:00  7937
  59 drw-     0 May 12 2008 21:31:12 -07:00  7914
  61 drw-     0 May 12 2008 21:31:12 -07:00  7906-7911
  70 drw-     0 May 12 2008 21:31:46 -07:00  7920
  72 drw-     0 May 12 2008 21:31:52 -07:00  7931
  80 drw-     0 May 12 2008 21:32:24 -07:00  7942-7962
  89 drw-     0 May 12 2008 21:32:58 -07:00  7921
  97 drw-     0 May 12 2008 21:33:54 -07:00  7940-7960
 102 drw-     0 May 12 2008 21:34:02 -07:00  7970-7971
 111 drw-     0 May 12 2008 21:34:36 -07:00  7975
 119 drw-     0 May 12 2008 21:35:12 -07:00  7941-7961
129996800 bytes total (28583936 bytes free)
CME_Voice# dir flash:/phone/7970-7971
Directory of flash:/phone/7970-7971/
  103 -rw-     2494499 May 12 2008 21:34:14 -07:00    apps70.8-3-2-27.sbn
  104 -rw-     547706 May 12 2008 21:34:16 -07:00    cnv70.8-3-2-27.sbn
  105 -rw-     2456051 May 12 2008 21:34:28 -07:00    cvm70sccp.8-3-2-27.sbn
  106 -rw-     530601 May 12 2008 21:34:32 -07:00    dsp70.8-3-2-27.sbn
  107 -rw-     538527 May 12 2008 21:34:34 -07:00    jar70sccp.8-3-2-27.sbn
  108 -rw-     638 May 12 2008 21:34:36 -07:00    SCCP70.8-3-3S.loads
  109 -rw-     642 May 12 2008 21:34:36 -07:00    term70.default.loads
  110 -rw-     642 May 12 2008 21:34:36 -07:00    term71.default.loads
129996800 bytes total (28583936 bytes free)
CME_Voice# configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
CME_Voice(config)# tftp-server flash:/phone/7970-7971/apps70.8-3-2-27.sbn alias apps70.8-3-2-27.sbn
```
Example 4.6 Configuring CME for 7970 and 7971 Firmware Loads continued

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>CME_Voice(config)# tftp-server flash:/phone/7970-7971/cnu70.8-3-2-27.sbn alias cnu70.8-3-2-27.sbn</code></td>
<td>TFTP server configuration for 7970-7971 firmware loads</td>
</tr>
<tr>
<td><code>CME_Voice(config)# tftp-server flash:/phone/7970-7971/cvm70sccp.8-3-2-27.sbn alias cvm70sccp.8-3-2-27.sbn</code></td>
<td>TFTP server configuration for 7970-7971 firmware loads</td>
</tr>
<tr>
<td><code>CME_Voice(config)# tftp-server flash:/phone/7970-7971/dsp70.8-3-2-27.sbn alias dsp70.8-3-2-27.sbn</code></td>
<td>TFTP server configuration for 7970-7971 firmware loads</td>
</tr>
<tr>
<td><code>CME_Voice(config)# tftp-server flash:/phone/7970-7971/jar70sccp.8-3-2-27.sbn alias jar70sccp.8-3-2-27.sbn</code></td>
<td>TFTP server configuration for 7970-7971 firmware loads</td>
</tr>
<tr>
<td><code>CME_Voice(config)# tftp-server flash:/phone/7970-7971/SCCP70.8-3-3S.loads alias SCCP70.8-3-3S.loads</code></td>
<td>TFTP server configuration for 7970-7971 firmware loads</td>
</tr>
<tr>
<td><code>CME_Voice(config)# tftp-server flash:/phone/7970-7971/term70.default.loads alias term70.default.loads</code></td>
<td>TFTP server configuration for 7970-7971 firmware loads</td>
</tr>
<tr>
<td><code>CME_Voice(config)# tftp-server flash:/phone/7970-7971/term71.default.loads alias term71.default.loads</code></td>
<td>TFTP server configuration for 7970-7971 firmware loads</td>
</tr>
<tr>
<td><code>CME_Voice(config)# telephony-service</code></td>
<td>Telephony service configuration</td>
</tr>
<tr>
<td><code>CME_Voice(config-telephony)# load ?</code></td>
<td>Load command options</td>
</tr>
<tr>
<td><code>12SP</code></td>
<td>Select the firmware load file for 12SP+ and 30VIP phones</td>
</tr>
<tr>
<td><code>7902</code></td>
<td>Select the firmware load file for 7902</td>
</tr>
<tr>
<td><code>7905</code></td>
<td>Select the firmware load file for 7905</td>
</tr>
<tr>
<td><code>7910</code></td>
<td>Select the firmware load file for Telecaster 7910 phones</td>
</tr>
<tr>
<td><code>7912</code></td>
<td>Select the firmware load file for 7912</td>
</tr>
<tr>
<td><code>7914</code></td>
<td>Select the firmware load file for sidecar 7914</td>
</tr>
<tr>
<td><code>7920</code></td>
<td>Select the firmware load file for 7920</td>
</tr>
<tr>
<td><code>7935</code></td>
<td>Select the firmware load file for 7935 Conference Station</td>
</tr>
<tr>
<td><code>7936</code></td>
<td>Select the firmware load file for 7936</td>
</tr>
<tr>
<td><code>7960-7940</code></td>
<td>Select the firmware load file for Telecaster 7960 & 7940 phones</td>
</tr>
<tr>
<td><code>7970</code></td>
<td>Select the firmware load file for 7970</td>
</tr>
<tr>
<td><code>7971</code></td>
<td>Select the firmware load file for 7971</td>
</tr>
<tr>
<td><code>ATA</code></td>
<td>Select the firmware load file for ATA</td>
</tr>
<tr>
<td><code>CME_Voice(config-telephony)# load 7970 SCCP70.8-3-3S.loads</code></td>
<td>Load command for 7970 firmware loads</td>
</tr>
<tr>
<td><code>Updating CNF files</code></td>
<td>Updating CNF files command</td>
</tr>
<tr>
<td><code>CNF files update complete</code></td>
<td>CNF files update complete message</td>
</tr>
<tr>
<td><code>CME_Voice(config-telephony)# load 7971 SCCP70.8-3-3S.loads</code></td>
<td>Load command for 7971 firmware loads</td>
</tr>
<tr>
<td><code>Updating CNF files</code></td>
<td>Updating CNF files command</td>
</tr>
<tr>
<td><code>CNF files update complete</code></td>
<td>CNF files update complete message</td>
</tr>
</tbody>
</table>

Note You might be wondering how to determine which of the firmware files should be specified in the `load` command. This information is available at Cisco.com by searching for Cisco Unified CME Supported Firmware, Platforms, Memory, and Voice Products. From the search results, pick the version of Cisco Unified CME you are using. The resulting page will show all the firmware files supported for each Cisco IP phone model. One of those files will have an asterisk next to it; this represents the file you should use with the `load` command.
Source IP Address Information

Before the Cisco Unified CME router can respond to the Cisco IP phones it is supporting, it must know what source IP address to use when communicating. This is specified using the command `ip source-address` from the telephony service configuration mode. Based on the network diagram shown earlier in Figure 4.1, the CME router should use the source IP address 172.16.1.1, which also acts as the default gateway for the Cisco IP phones in the network, as follows:

```
CME_Voice(config-telephony)# ip source-address 172.16.1.1
```

If the Cisco Unified CME router supports IP phones on multiple VLANs or has multiple interfaces the IP phones could use to reach the CME router, it is common to use a loopback interface as the source IP address. A loopback interface is a virtual interface on the router that is reachable as long as the router is online. The previous syntax set the CME source IP address to 172.16.1.1, which will work as long as the FastEthernet 0/0.10 interface is online. However, if that interface were to go offline, the CME router would not be able to provide service to IP phones through any other interface. Example 4.7 shows how to create a loopback interface on a Cisco router.

Example 4.7 Configuring the CME Source IP Address

```
CME_Voice# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
CME_Voice(config)# interface loopback ?
    <0-2147483647>  Loopback interface number
CME_Voice(config)# interface loopback 0
CME_Voice(config-if)# ip address 172.16.254.254 255.255.255.255
CME_Voice(config-if)# exit
CME_Voice(config)# telephony-service
CME_Voice(config-telephony)# ip source-address 172.16.254.254
```

A few items to note about this configuration: first, notice the range of loopback interface numbers. Cisco enables you to create more than two billion loopback interfaces. Your router would most likely run out of memory if you tried this; however, this enables you to create as many loopback interfaces as you could practically use on the router.

Second, take a look at the subnet mask on the loopback interface IP address. This is known as a **host mask**. The router now knows that the loopback interface connects to only a single IP address instead of using up an entire subnet, as it would if you were to use a less-specific subnet mask. For example, if you used a Class C subnet mask (255.255.255.0 or /24) on the loopback interface, the router would now believe that the loopback interface connects to an entire Class C subnet of addresses. You would not be able to use the 172.16.254.0/24 addresses on any other interfaces of your router.

Finally, loopback interfaces come up automatically as long as the router is running. There is no need to enter the **no shutdown** command unless the loopback interface was manually shut down.
Once you create the loopback interface, you can then change the `ip source-address` command on the router to use the new loopback interface as a means of communicating with the IP phones.

Note In the VoIP network diagram shown in Figure 4.1 (and also Figure 3.1), there would be no real advantage to using a loopback interface because all the IP phones are located on VLAN 10 and can get to the router only through the single FastEthernet 0/0 interface. The loopback configuration would be advantageous when the IP phones have more than one path to reach the CME router.

Generated Configuration Files

The last area of configuration focuses on generating configuration files for the Cisco IP phones. Think back to the IP phone boot process: once the IP phone gets an IP address and TFTP server information from the DHCP server, it then attempts to contact the TFTP server to download its configuration file and firmware. Up to this point, there has been no discussion about that configuration file. So what is it?

The IP phone uses its configuration file to determine which IP address to use when contacting the CME router (specified via the `ip source-address` command in the previous section), the firmware file it should download, the IP phone’s extension number (if it has one), and many other configuration items. You may have noticed the following output when looking through the previous syntax examples:

```
Updating CNF files
CNF files update complete
```

That output represents the Cisco Unified CME router updating the configuration files that are sent to the IP phones. This process occurs any time a change is made to the CME router that would affect the IP phone boot process (such as specifying new firmware files or source-address information). If you ever want to manually instruct the router to create the configuration files, use the command shown in Example 4.8 from telephony service configuration mode.

Example 4.8 Generating IP Phone Configuration Files

```
CME_Voice(config-telephony)# create cnf-files
CNF file creation is already On
Updating CNF files
CNF files update complete
```
At this point, the CME router does not have any configured IP phones, so it generates only generic configuration files. These generic configuration files allow IP phones to reach the CME router and download the necessary firmware files, but not much else. Once you configure the router to support IP phones, the CME router generates a unique configuration file for each phone with the information specific to the IP phone. Let’s take a look at the generic configuration files generated so far, shown in Example 4.9.

Example 4.9 Verifying Files Served by the CME TFTP Service

```plaintext
CME_Voice# show telephony-service tftp-bindings
tftp-server system:/its/SEPDEFAULT.cnf
tftp-server system:/its/SEPDEFAULT.cnf alias SEPDefault.cnf
tftp-server system:/its/XMLDefault.cnf.xml alias XMLDefault.cnf.xml
tftp-server system:/its/ATA_DEFAULT.cnf.xml
tftp-server system:/its/united_states/7960-tones.xml alias United_States/7960-tones.xml
tftp-server system:/its/united_states/7960-font.xml alias English_United_States/7960-font.xml
tftp-server system:/its/united_states/7960-dictionary.xml alias English_United_States/7960-dictionary.xml
tftp-server system:/its/united_states/7960-kate.xml alias English_United_States/7960-kate.xml
```

The `show telephony-service tftp-bindings` command shows all the files the CME service itself is serving to the IP phones via TFTP. This is in addition to the files manually specified using the `tftp-server` command in global configuration mode. There is one file specifically that is of interest right now: XMLDefault.cnf.xml. This is the default configuration file handed out to any IP phone that does not have an existing configuration in the CME router (which is all IP phones at this point). Notice that all these files are located on the system: drive of your router. This drive represents the router’s RAM. Each time the router is rebooted, these configuration files are rebuilt by the CME process using the configuration you have saved in NVRAM and placed back into the router’s memory.

Using the `more` command, you can dig deeper into the contents of the XMLDefault.cnf.xml file, as shown in Example 4.10.

Example 4.10 Inspecting the IP Phone Generic Configuration File

```plaintext
CME_Voice# more system:/its/XMLDefault.cnf.xml
<Default>
<callManagerGroup>
<members>
<member  priority="0">
<callManager>
<ports>
```
As you can see, XML files are formatted into various tags (if you have had experience with HTML, this is very similar). Each configuration item will have an open and close tag. For example, consider the following line:

\[<\text{processNodeName}>172.16.1.1</\text{processNodeName}>\]

This line tells the Cisco IP phone the IP address of the Cisco Unified CME router. The \(<\text{processNodeName}>\) tag opens the line and the \(</\text{processNodeName}>\) tag closes the line. The IP address information of the CME router is in between the tags. Looking through this default configuration file, you can see that three pieces of information are provided to the IP phone:

- The correct Ethernet port to use (which is always 2000, by default)
- The CME router IP address
- Phone firmware information
The Cisco Unified CME router has been configured with the correct firmware information only for the Cisco 7940, 7960, 7970, and 7971 IP Phone models, so the XMLDefault.cnf.xml file displays only these firmware images.

If you were to connect a Cisco IP phone to the network at this point, it would boot, retrieve the correct VLAN information, get its IP address, contact the TFTP server, and download the generic configuration and firmware files. If you were to look at one of these devices, the display screen would look like the image shown in Figure 4.7.

Figure 4.7 Cisco IP Phone Using the CME Router Generic Configuration File

You can see that the phone has registered, is receiving the correct date and time information, and has active softkeys on the bottom of the display window. However, there is no line information shown next to the line buttons. When the handset of the phone is lifted, no dial tone is played. You learn more about this topic in Chapter 5, “Basic CME IP Phone Configuration,” where you will configure the IP phones in the CME router.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics in the chapter, noted with the key topics icon in the outer margin of the page. Table 4.4 lists and describes these key topics and identifies the page number on which each is found.

Table 4.4 Key Topics for Chapter 4

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.2</td>
<td>Lists hardware platforms supporting CME</td>
<td>105</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Shows possible CME integration scenarios</td>
<td>111</td>
</tr>
<tr>
<td>List</td>
<td>Discusses three types of CME licenses</td>
<td>112</td>
</tr>
<tr>
<td>Example 4.1</td>
<td>Configuration to install CME</td>
<td>117</td>
</tr>
<tr>
<td>List</td>
<td>Cisco IP phone boot process</td>
<td>118</td>
</tr>
<tr>
<td>Example 4.3</td>
<td>Configuration allowing CME router to act as TFTP server</td>
<td>120</td>
</tr>
<tr>
<td>Example 4.4</td>
<td>Key max-ephones and max-dn commands to enable CME services</td>
<td>121</td>
</tr>
<tr>
<td>Syntax</td>
<td>Key ip source-address command to enable CME services</td>
<td>125</td>
</tr>
<tr>
<td>Example 4.8</td>
<td>Command to generate IP phone configuration files</td>
<td>126</td>
</tr>
<tr>
<td>Example 4.10</td>
<td>Inside view of the XML Default.cnf.xml configuration file</td>
<td>127</td>
</tr>
</tbody>
</table>
Complete the Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the CD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix D, “Memory Tables Answer Key,” also on the CD, includes completed tables and lists to check your work.

Definitions of Key Terms

Define the following key terms from this chapter, and check your answers in the glossary.

- Survivable Remote Site Telephony (SRST)
- IOS license
- feature license
- phone user license
Index

Numbers

800 Series Routers, 444
802.3af PoE, 65-66

A

AAA (authentication, authorization, and accounting), 379
ABCD signaling bits, 20
AC (alternating current), 11
access
 Cisco 521 Wireless Express Access Point, 426
 PSTN, centralizing, 281-283
Access Code field, 455
accounting
 AAA, 379
 calls, 200-203
accounts, mailboxes, 321
Acct softkey, 203
ACD (automatic call distributor) service, 43
adding
 Cisco Unity Express licenses, 370-374
 overhead, 224
addresses
 IP source information, 125
 MAC, assigning, 144
 signaling, 12
administration, CCA, 442-451
Administration via Telephone (AVT), 339
administrator management, 341-346
affordability of SBCS, 418
after-hours call blocking, configuring, 196-199
AIM-CUE (Cisco Unity Express Advanced Integration Module), 310, 361
Aironet Autonomous APs, 444
alias syntax, 120
alternating current (AC), 11
analog connections, 8-9, 230
 address signaling, 12
 digital, converting to, 13-20
 informational signaling, 11
 supervisory signaling, 11
 telephones, 22
 voice ports, 249-253
 waveforms, 8
 wiring, 9, 11
analysis, digit processing, 263
ANI (automatic number identification), 109, 331
answer-address command, 274
answering
 calls, 415
 parked calls, 190
applications
 Cisco Unity Express, 313-316
 layer, 40-44
Architecture for Voice, Video, and Integrated Data (AVVID), 413
assigning
 ephone-dns to buttons, 144
 IP Phone auto-assignment, 162-165
 MAC addresses, 144
 translation rules, 286
 VLAN ports, 84-91
association
 ephones/ephone-dns, 144-156
 signaling, 20
attacks, VLAN-hopping, 79
audio
 codec bandwidth, 220
 frequencies, 218
 size of, determining, 222-223
authentication, authorization, and accounting (AAA), 379
authentication devices, 446
auto ? command, 298
auto assign command, 163
auto qos voip ? command, 295
auto qos voip cisco-phone command, 295
auto qos voip cisco-softphone command, 295
auto qos voip command, 295
auto qos voip trust command, 295
auto-assign command, 165
auto-attendant features, 43, 456
 Cisco Unity Express, 305-315
 management, 344
 software, 364
auto-reg-ephone command, 165
auto-registration, IP phones, 162-165
automatic call distributor (ACD) service, 43
automatic digit stripping, 265
automatic number identification (ANI), 109, 331
AutoQoS, 291-298
AVT (Administration via Telephone), 339
AVVID (Architecture for Voice, Video, and Integrated Data), 413
B-ACD (basic automatic call distributor), 107
backups
 CCA, 463
 options, 345
bandwidth
 audio, 220
 codecs, calculating requirements, 222-225
 command, 293
bandwidth

costs, 220-221, 225
lack of, 288
management, 234
saving, 15

B

barge-in argument, 193
basic automatic call distributor (B-ACD), 107
Basic Rate Interface (BRI), 109, 231
Bell Systems Corporation, 218
best-effort applications, 290
binary values, 219
bits, least significant, 18
blind transfers, 185
blocks
calls, 196-199
DID, 285
booting IP phones, 92, 137
DHCP services, 139-140
rebooting, 165-166
TFTP services, 140
voice VLANs, 138-139
boundaries, trust, 291
BRI (Basic Rate Interface), 109, 231
bricks, power, 67
broadcast storms, 139
buffered memory, logging to, 200
business benefits of VoIP, 34-35
business hour settings, 338
busy signals, 11
button command, 144-152

c

c separators, 152
cables
cost of, 34
IP Phone connections
802.3af PoE, 65-66
PoE, 61-67
CAC (call admission control), 234
calculating codec bandwidth requirements, 222-225
call accounting, 200-203
call admission control (CAC), 234
call blocking, 196-199
Call Detail Records (CDRs), 95, 200-203
call forward busy (CFB), 386
call forward no answer (CFNA), 386
call-forward command, 183
call-forward pattern command, 182-184
caller ID, configuring, 179
callers, mailboxes, 333
calls
forwarding, 182-184
legs, 260-261
park, 187-190
pickup, 190-192
processing, 272-276
progress tones, modifying, 251
routing, 395-397
transfer, 185-186
CAS (channel associated signaling), 17, 231
Catalyst Express Switches, 444
CCA (Cisco Configuration Assistant), 417, 440-451
troubleshooting, 463-465
Voice dialog box, 452
CCS (common channel signaling), 17, 231
CDP (Cisco Discovery Protocol), 64, 445
CDRs (Call Detail Records), 95, 200-201, 203
CDs, final preparation tools, 469-471
central office (CO), 10
 switches, 22
centralization
 phonebooks, 234
 of PSTN access, 281, 283
CFB (call forward busy), 386
CFNA (call forward no answer), 386
channel associated signaling (CAS), 17, 231
channels
 frequencies, 218
 huntstop, 151
 T1 digital connections, 20
 TDM, 16
Cisco 521 Wireless Express Access Point, 426
Cisco 526 Wireless Express Mobility Controller, 426
Cisco 7906G, 45
Cisco 7911G, 45
Cisco 791X, 51
Cisco 7921G, 49
Cisco 7931G, 45-47
Cisco 7937G, 50
Cisco 7940G, 47
Cisco 7941G, 47-48
Cisco 7941G-GE, 47-48
Cisco 7942G, 47-48
Cisco 7945G, 47-48
Cisco 7970G, 49
Cisco 7971G-GE, 49
Cisco 7975G, 49
Cisco 7985G, 49
Cisco ATA, 50
Cisco AutoQoS, 291-298
Cisco Catalyst Express 520 (CE520) Series Switches, 424
Cisco Configuration Assistant (CCA), 417, 440-451
 troubleshooting, 463-465
 Voice dialog box, 452
Cisco Discovery Protocol (CDP), 64, 445
Cisco Emergency Responder, 44
Cisco IP Communicator, 295
Cisco Learning Network, 471
Cisco Media Convergence Server 7835, 39
Cisco Smart Business Communications System. See SBCS
Cisco Unified CME. See Unified CME
Cisco Unified Communications 500 Series, 36, 38
Cisco Unified Communications Manager Business Edition, 39-40
Cisco Unified Contact Center Express 5.0, 107
Cisco Unified MeetingPlace, 44
Cisco Unified Mobility, 44
Cisco Unified Presence, 44
Cisco Unified SIP Phone 3911, 45
Cisco Unity Express, 305
 auto-attendant, 335-341
 configuring, 357, 374384, 386-393
 installing, 361-365, 367-374
 management, 341-351
 overview of, 309-321
 troubleshooting, 393-403
 voice mail, 321-335
Cisco Unity Express Advanced Integration Module (AIM-CUE), 310
Cisco Unity Express Editor software, 340
Cisco Unity Express Enhanced Network Module (NME-CUE), 310-311
Cisco Unity Express Initialization Wizard, 385-391
Cisco Unity Express Network Module (NM-CUE), 310
Cisco Unity Express Network Module with Enhanced Capability (NM-CUE-EC), 310-311
Cisco Unity products, 41
Cisco Voice over IP (CVOICE), 198
Cisco VoIP structure, 35
applications layer, 40-44
call processing layer, 36-40
date/time formats, 170
endpoints layer, 44-51
ephones/ephone-dns, 141-151, 153-156
messages, 170
parameters, 165-170
troubleshooting, 156-161
CME routers, configuring, 90
CO (central office), 10
switches, 22
code, UPC, 143
codes, 227
code command, 266
codec g711ulaw command, 381
iLBC, 229
voice, selecting, 221-229
collaboration, 415
combining overlay and dual-line functions, 153
command-line interface (CLI), 341. See also interfaces
connecting, 364
commands
answer-address, 274
auto ?, 298
auto assign, 165
auto qos voip, 295
auto qos voip ?, 295
auto qos voip cisco-phone, 295
auto qos voip cisco-softphone, 295
auto qos voip trust, 295
auto-reg-ephone, 165
bandwidth, 293
button, 144-152
call-forward, 183
call-forward pattern, 182-184
clock source internal, 255
clock source line, 255
codec, 266
codec g711ulaw, 381
connection plan 1500, 271

clocks
clock source internal command, 255
clock source line command, 255
IP phones, 94, 97
CME IP Phone configuration, 133
auto-registration/auto-assignment, 162-165
booting, 137-140
date/time formats, 170
ephones/ephone-dns, 141-151, 153-156
copy log atrace.log url ftp, 403
debug, 263, 398
debug ccsip call, 396
debug ephone, 160
debug ephone mwi, 397-398
debug ephone register, 160
debug tftp events, 157, 160
destination-pattern, 9, 110, 262, 265, 267, 274, 380
dial-peer voice, 261
dial-type, 252
directory, 181
directory entry, 181
dn-webedit, 207, 383
ds0-group, 256
dtmf-relay sip-notify, 381
ephone, 143
ephone-dns, 383
ephone-template, 168
forward-digits, 3, 270, 283, 284
framing, 255
huntstop, 150-151
huntstop channel, 151, 155
incoming called-number, 275
incoming called-number dial-peer, 274
intercom, 193
ip address, 362
ip helper-address, 92, 118, 157
ip http, 379
ip http authentication, 379
ip http path, 379
ip http path flash/gui, 206
ip source-address, 125-126
ip unnumbered, 362-363
linecode, 255
load, 123
login, 199
max-dn, 142
mwi on, 389
network-locale, 168
no auto-reg-ephone, 162
no digit-strip, 264, 280, 283
no huntstop, 151
no service directed-pickup, 192
no shutdown, 125
ntp server, 95
num-exp, 281, 284
paging, 195
park slot, 188
port, 262, 266
preference, 150-151, 278, 283
prefix, 270, 278, 280, 284
prefix 1512555, 280
pri-group, 258, 264
tp, 274
reset, 166, 189
restart, 166, 189
restart all, 165
restore factory default, 403
ring number, 253
rule 1, 285
service-module ip address, 363
service-module ip default-gateway, 363
service-module service-engine, 364
service-module service-engine 1/0
reload, 394
service-module service-engine 1/0 reset, 394
session protocol sipv2, 381
session target, 266
show controllers t1, 255
show dial-peer voice, 262
show ephone, 144-145
show ephone attempted-registrations, 163
show interface interface name/number
switchport, 82
show interface service-engine, 394
show ip interface brief, 255
show ip route, 395
show log name messages.log, 401
show logging, 200
show logs, 402
show ntp associations, 97
show run, 159, 295, 361-362, 382
show software, 372
show software license, 372
show telephony-service tftp-bindings, 127, 158
show trace buffer long, 401
show trace buffer tail, 400
show version, 393
show vlan, 85
show voice dial-peer, 395
show voice port summary, 249, 256, 258
show vtp status, 75
software download, 365
software download status, 367
software install, 367
spanning-tree portfast, 139
switchport mode access, 79-80
switchport mode dynamic auto, 80
switchport mode dynamic desirable, 80
switchport mode trunk, 79-80
switchport nonegotiate, 80
test voice translation-rule, 285
tftp-server, 120, 159
time-webedit, 207, 383
trace, 398
transfer-command, 186
transfer-pattern, 186
user-locale, 168
web admin system, 382, 386
common channel signaling (CCS), 17, 231
communities, CCA, 442-446
comparing Cisco Unity Express modules, 312
compatibility, 35
troubleshooting, 393
components, PSTN, 22
compressed RTP, 225
computer telephony integration (CTI), 43, 106
configuration
AutoQoS, 293
caller ID, 179
Cisco Unity Express, 357
installing, 361-371
troubleshooting, 393-403
clocks, 94-97
CME, 90, 346
dates, 197
dial peers, 258-271
DST, 95
files, generating, 126-129
integrated messaging, 334-335
inter-VLAN routing, 91
IP phones, 133
callers, 333
mailboxes, 321-323, 347-349
subscribers, 323-332
languages, 167-170
MWI, 383
overlay extensions, 459
router-based DHCP servers, 92-93
SBCS hardware and licensing, 416
service modules, viewing, 362
SIP, trunking on UC520 systems, 461-463
source IP addresses, 125
telephony service, 382-383
UC500 Series, 435
CCA, 440-451
preconfigured templates, 439-440
UC520 for Voice, 451
Smart Assist features, 451-463
video, 175
after-hours call blocking, 196-199
call forwarding, 182-184
call park, 187-190
call pickup, 190-192
call transfer, 185-186
CDRs, 200-203
CME GUIs, 204-208
intercoms, 192-194
MoH, 203-204
paging, 194-196
voice network directories, 179-182
VLANs, 75-82
assigning ports, 84-91
creating, 83-84
routing, 86
voice ports, 249-258
VoiceView Express, 334
VTP, 75-82
confirmation signal, 11
congestion signals, 11
Connect window, 449
connection plar 1500 command, 271
connections
analog, 8-9, 230
address signaling, 12
informational signaling, 11
supervisory signaling, 11
wiring, 9, 11
CLI, 364
digital, 12, 231
converting analog to, 13-20
FXO ports, 252-253
FXS ports, 249-252
IP phones, 57, 61
802.3af PoE, 65-66
booting, 92
clocks, 94, 97
couplers/power patch panels, 67
PoE, 61-67
power bricks, 67
router-based DHCP servers, 92-93
troubleshooting, 394-395
VLANs, 68-78
PSTN, 23-24
switches, 139
voice call legs, 260
consult transfers, 185
tcontrol complexes, 23
corvergence, voice before, 5
conversion
analog to digital signals, 13-20
voice to packets, 218-221
copy log atrace.log url ftp command, 403
COR (Class of Restriction), 198
core data infrastructure, UC520 chassis, 439
costs
of cables, 34
of communicating, 34
couplers, IP phones, 67
create cnf-file syntax, 104
CTI (computer telephony integration), 43, 106
customization	park slot command, 188
scripting, 316
CVOICE (Cisco Voice over IP), 198

data traffic requirements, 289-291
dates
configuring, 197
IP phones, 170
daylight saving time (DST), 95
debug ccsip call command, 396
debug commands, 263, 398
debug ephone command, 160
debug ephone mwi command, 397-398
debug ephone register command, 160
debug tftp events command, 157, 160
default auto attendant scripts, 336
degradation of signals, 17
delay, 288-289
to-end, 290
demultiplexing devices, 256
deploying SBCS, 427-431
design. See also configuration
call pickup groups, 191
connections, couplers/power patch panels, 67
SBCS, 427-428, 430-431
destination-pattern 110 command, 267
destination-pattern 9 command, 265
destination-pattern command, 262, 274, 380
devices
authentication, 446
seed, 445
DHCP (Dynamic Host Configuration Protocol)
router-based servers, 92-93
services, 139-140
dial peers
configuring, 258-271
matching, 273-276=options, 380
dial tone signals, 11
dial-peer voice command, 261
dial-type command, 252
dialog boxes
CCA Voice, 452
Event Notification, 464
Health, 464
More Options, 458, 460
Voice, 451
DID (Direct Inward Dial), 109, 113, 272, 456
blocks, 285
numbers, 142
Digest Authentication fields, 462
digits
manipulation, 272-281, 283-287
processing, analyzing, 263
Digit Stripping Rule, 265
digital connections, 12, 231
analog, converting to, 13-20
Digital Signal Processors (DSPs), 218, 226-227, 416
digital telephones, 22
digital voice ports, configuring, 253-258
Direct Inward Dial. See DID
directing operator calls, 280-281
directories
 command, 181
 entry command, 181
 network voice, configuring, 179-182
 numbers, 121-122
directed call pickups, 192
disabling STP, 139
distribution lists, 331-332
dn-webedit command, 207, 383
DND (do not disturb), 107
DNS (Domain Name System) servers, 374
do not disturb (DND), 107
Domain Name System (DNS) servers, 374
downloading CCA, 441
ds0-group command, 256
DSPs (Digital Signal Processors), 218, 226-227, 416
DST (daylight saving time), 95
DTMF (dual-tone multifrequency), 12, 381
dtmf-relay sip-notify command, 381
DTP (Dynamic Trunking Protocol), 80
dual-line ephone-dns, 141
dual-line syntax, 153
dual-tone multifrequency (DTMF), 12, 381
Dynamic Trunking Protocol (DTP), 80

E

E&M (Ear and Mouth) interface, 109, 230
e-mail, unified, 34
Edison, Thomas, 8
eight user SBCS deployment models, 428
emergency calls, 281-283
 enabling
 AutoQoS, 294
 CME GUIs, 204-208
 encapsulating trunking, 82
 encoding voice into binary values, 219
 end stations, 249
 end-to-end delay, 290
 endpoints layer, 44-51
ephones/ephone-dns, 141-144
 associating, 144-145, 147
 call park, configuring, 187
 commands, 143, 383
 shared-line/overlay options, 148-156
 template command, 158
 voice network directories, configuring, 179
Erase Configuration line item, 157
error checking, 19
ESF (Extended Super Frame), 19
Ethernets
 IP Phone connections, 61
 PoE, 61, 64
 802.3af, 65-66
 support, 66-67
Event Notification, 449, 464
exam engine, 469-473
exemptions, configuring after-hours, 199
Expert mode, 451
Extended Super Frame (ESF), 19
extensions, 452
 call park, 187
 overlay, configuring, 459
factory defaults, restoring Cisco Unity Express, 403
failover, PSTN, 278-280
Fast Link Pulse (FLP), 64
faxes, unified, 34
features
bars, CCA, 450
Cisco Unity Express
 auto-attendant, 335-341
 voice mail, 321-335
communications, 34
licenses, 112
fields
 Access Code, 455
 Digest Authentication, 462
 Number of Digits Per Extension, 455
File Transfer Protocol (FTP), 365
files
 configuration, generating, 126-129
 languages, selecting, 368
 load, firmware, 122-124
 script, 115
 TFTP, verifying, 159
 trace, Cisco Unity Express, 398-403
final preparation
 study plans, 472-473
 tools, 469-471
firmware, load files, 122-124
fixed delay, 288
FL-CCME-96 licenses, 112
flash memory, 119
FLP (Fast Link Pulse), 64
Foreign Exchange Office (FXO), 19, 109
 ports, 252-253
Foreign Exchange Station (FXS), 108,
 230
 ports, 249-252
formatting. See also configuration
dates/time, IP phones, 170
PIN numbers, 199
forty-eight user SBCS deployment models, 429
forward-digit command, 284
forward-digits 3 command, 283
forward-digits command, 270
forwarding calls, 182-184
FQDN (fully qualified domain name), 378
framing command, 255
frequencies, audio, 218
Front Panel view, 449
FTP (File Transfer Protocol), 365
fully qualified domain name (FQDN), 378
functions. See also commands
Cisco Unity Express
 auto-attendant, 335-341
 voice mail, 321-335
spell-by-name, 339
FXO (Foreign Exchange Office), 19, 109
 ports, 252-253
FXS (Foreign Exchange Station), 108,
 230
 ports, 249-252
G.729, 221

gatekeepers, H.323, 234
gateways, 215
GDM (general delivery mailboxes), 322-323, 370
generating configuration files, 126-129
installation 533

glare, 10
GPickUp button, 192
graphical user interfaces (GUIs), 324
 Cisco Unity Express, 384	enabling, 204-208
greetings
 auto attendant scripts, 336-337
 Cisco Unity Express, 325
 configuring, 349
ground start signaling, 9-11, 250
groups
 call pickup, 191
 Cisco Unity Express, 321-322
 management, 343
 paging, 195
GUIs (graphical user interfaces), 324
 Cisco Unity Express, 384	enabling, 204-208
Guide mode, 451

H

H.323, 232-234
H.450.3 support, call-forward pattern command, 183-184
hairpinning calls, 184-186
hardware
 Cisco Unity Express, 305
 auto-attendant, 335-341
 management, 341-351
 overview of, 309-321
 voice mail, 321-335
 SBCS, configuring, 416
headers, RTP compression, 225
Health dialog box, 464
Health window, 449
Help, 449
high-complexity codecs, 227
historical reporting, 316
hold
 call park, 187-190
 MoH, configuring, 203-204
Holiday prompt, 337
host masks, 125
HTTP server options, 379-381
hunt groups, 106
huntstop channel command, 151, 155
huntstop command, 150-151
HWIC Access Points, 444
hybrid models, 114

I

IETF (Internet Engineering Task Force), 232
iLBC (Internet Low Bitrate Codec), 229
inbound dial peers, matching, 273-276
Incoming Call Handling section, 456
incoming called-number command, 275
incoming called-number dial-peer command, 274
informational signaling, 11
infrastructure
 LANs, IP Phone connections, 57-67
 layers, 36-40
inline couplers, 67
inline power, 61, 64
installation
 back-of-the book CDs, 470
 CCA, 441
 Unified CME, 101
 configuring system-level functions, 121-129
 licensing and models, 112-114
 on routers, 115-117
installation

overview of, 105-111
TFTP servers, 118-120
integrated messaging, 334-335
Integrated Services Router (ISR), 310
integration services
 IP PBX, Cisco Unity Express to, 320-321
 Unified CME, 109
Inter-Switch Link (ISL), 79
inter-VLAN routing, 87
 configuring, 91
interactive voice response (IVR), 43
intercoms
 command, 193
 configuring, 192-194
interfaces
 BRI, 231
 CCA, 447-451
 Cisco Unity Express, 384
 CLI. See CLI
 connecting, 364
 E&M, 230
 GUIs. See GUIs
 PRI, 231
 service-engines, 361
 SVIs, 89
internal caller ID information, configuring, 179
International Telecommunication Union (ITU), 25
International Telecommunication Union, Telecommunication Standardization Sector (ITU-T), 232
Internet Engineering Task Force (IETF), 232
Internet Low Bitrate Codec (iLBC), 229
Internet telephony service providers (ITSPs), 237
IOS (Internetwork Operating System) licenses, 112
 requirements, 312
IOS Telephony Service (ITS), 105
IP (Internet Protocol)
 address source information, 125
 connections, troubleshooting, 394-395
 PBX integration, 320-321
 phones. See IP phones
ip address command, 362
ip helper-address command, 92, 118, 157
ip http authentication command, 379
ip http command, 379
ip http path command, 379
ip http path flash/gui command, 206
IP PBX integration, Cisco Unity Express, 320-321
IP phones, 45-51
 booting, 92
 call forwarding, 182
 clocks, 94, 97
 configuration, 133
 auto-registration/auto-assignment, 162-165
 booting, 137-140
 date/time formats, 170
 ephones/ephone-dns, 141-156
 messages, 170
 parameters, 165-170
 troubleshooting, 156-161
 connections, 57, 61
 802.3af PoE, 65-66
 couplers/power patch panels, 67
 PoE, 61-67
 power bricks, 67
 VLANs, 68-78
 languages, 167-170
parking calls, 190
rebooting, 165-166
router-based DHCP servers, 92-93
IP SoftPhones, 34
ip source-address command, 125-126
ip unnumbered command, 362-363
ISDN Q.SIG supplementary services, 109
ISL (Inter-Switch Link), 79
ISR (Integrated Services Router), 310
ITS (IOS Telephony Service), 105
ITSPs (Internet telephony service providers), 237
ITU (International Telecommunication Union), 25
ITU-T (International Telecommunication Union, Telecommunication Standardization Sector), 232
IVR (interactive voice response), 43

J – K

jitter, 289-290
joining CCA communities, 444

key systems, 23
keyswitch models, 113
keyword summary, 262
Kiwi Syslog Daemon, 201

L

lack of bandwidth, 288
languages
 configuring, 350
 files, selecting, 368
 IP phones, 167-170
 Support, 314

LANs (local-area network), 57, 61, 444
 802.3af PoE, 65-66
 booting, 92
clocks, 94, 97
couplers/power patch panels, 67
PoE, 61-67
power bricks, 67
router-based DHCP servers, 92-93
VLANs, 68-78
Layer 3 switching, 89
layers, 35
 applications, 40-44
call processing, 36-40
 endpoints, 44-51
 infrastructure, 36
least significant bits, 18
legs, call, 260-261
licensing
 adding, 370-374
 Cisco Unity Express, 317-319
 SBCS, 416
Unified CME, 112-113
 hybrid models, 114
 keyswitch models, 113
 PBX models, 113
line cards, 23
linecode command, 255
linecoding, 255
lists, distribution, 331-332
live record feature, 331
live reply feature, 331
load command, 123
load files, firmware, 122-124
local directories, configuring, 179
local group pickups, 192
local loops, 22
local-area network (LAN), 444
logging to buffered memory, 200
login
 Cisco Unity Express, 384
 command, 199
 mailboxes, 323-324, 334
loop starts, 9-11, 250
loss, packets, 289-290

M

MAC addresses, assigning, 144
macros, 451
mailboxes
 callers, 333
 configuring, 321-323, 347-349
 login, 334
 storage, 332
 subscribers, 323-332
maintenance, CCA, 463, 465
management
 administrator, 341-346
 auto-attendant, 344
 bandwidth, 234
 CCA, 442-451
 Cisco Unity Express, 341-351
 groups, 343
 messages, 326-328
 SBCS, 418-419
 subscribers, 346-352
 users, 343
 VLANs, 68
 voice mail, 344
manual local directory entries, configuring, 181
masks, host, 125
matching dial peers, 273-276
max-dn command, 142
max-dn parameter, 122
max-ephones parameter, 122
maximum phones, 121-122
Mean Opinion Score (MOS), 220
Media Gateway Control Protocol (MGCP), 233
medium codecs, 227
meet-me conferencing (32 party), 106
memory
 buffered, 200
 flash, 119
message waiting indicator (MWI), 109, 328, 383
messages
 configuring, 349
 integration, 334-335
 IP phones, 170
 management, 326-328
 notification, 328-331
 playback options, 351
 record options, 333
 unified, 34
MGCOP (Media Gateway Control Protocol), 233
mission-critical applications, 290
mobility, 34
models, Unified CME, 112-113
 hybrid models, 114
 keyswitch models, 113
 PBX models, 113
modifying call progress tones, 251
modules
 AIM-CUE, 361
 services, viewing, 362
MoH (Music on Hold), 106, 115, 422
 configuring, 203-204
 UC520 systems, 457
More Options dialog box, 458, 460
MOS (Mean Opinion Score), 220
multicast paging, 195
multilayer switching, 89
multiple ephone/ephone-dns configurations, 147
multiple-group paging, 195
Music on Hold (MoH), 106, 115, 422
configuring, 203-204
UC520 systems, 457
MWI (message waiting indicator), 109, 328, 383
mwi on command, 389

N
NANP (North American Numbering Plan), 25
navigating phone directories, 180
Network Time Protocol. See NTP
network-locale command, 168
networks
 SBCS, 427-431
 voice directories, configuring, 179, 182
NinjaAdmin, 207
NM-CUE (Cisco Unity Express Network Module), 310
NM-CUE-EC (Cisco Unity Express Network Module with Enhanced Capability), 310-311
NME-CUE (Cisco Unity Express Enhanced Network Module), 310-311
no auto-reg-ephone command, 162
no digit-strip command, 264, 280, 283
no huntstop command, 151
no service directed-pickup command, 192
no shutdown command, 125
no such number signal, 11
no-auto-answer argument, 193
no-mute argument, 194
North American Numbering Plan (NANP), 25
notification messages, 328, 330-331
NTP (Network Time Protocol) servers, 374
clocks, configuring, 94, 97
ntp server command, 95
num-exp command, 281, 284
Number of Digits Per Extension field, 455
numbers
 DID, 142
directory, 121-122
PIN, formatting, 199
PSTN, 25
Nyquist, Harry, 14, 218

O
off-hook signals, 11
on-hook signals, 11
open standards, 35
operators
 assistance, 333
 auto-attendant, 339
calls, directing, 280-281
options
 dial peers, 380
 HTTP servers, 379-381
 overlay, 148-156
 park slot command, 188
 password, 382
 secret, 382
 voicemail, 382
o separators, 152
outbound dial peers, matching, 273-276
overhead
 adding, 224
determining, 223
overlay
 extensions, configuring, 459
 options, 148-156
packet voice DSP modules (PVDMs), 227
packets
 loss, 289-290
 voice, converting, 218-221
paging
 command, 195
configuring, 194-196
overlay
PAM (pulse-amplitude modulation), 13
parameters, IP phones, 165-170
park slot command, 188
parking calls, 187-188, 190
passing scores for Cisco CCNA Voice exams, 473
passwords
 mailboxes, 323-324
 options, 382
PBX (private branch exchange) systems, 5, 23
 IP integration, 320-321
 models, 113
PCM (pulse-code modulation), 15
performance, VLANs, 68
permissions, Cisco Unity Express, 321-322
personal settings, configuring, 349
PFO (power failover) feature, 440
phones
 maximum, 121-122
 user licenses, 112
phonographs, invention of, 8
physical voice characteristics, configuring, 249-258
pickup, call, 190-192
pinging service engines, 394
playback
 messages, 326-328
 options, 351
points, AutoQos, 293
ports
 command, 262, 266, 274
 FXO, 252-253
 FXS, 249-252
 switch trunk, configuring, 79
 VLANs, assigning, 84-91
 voice, configuring, 249-258
post-installation configuration tools, Cisco Unity Express, 374-378
POTS (plain old telephone systems)
 dial peers, configuring, 261-265
 lines for emergency calls, 281, 283
power failover (PFO) feature, 440
Power over Ethernet (PoE), 61, 64
802.3af, 65-66
support, 66-67
powering IP phones, 61, 67
802.3af PoE, 65-66
couplers/power patch panels, 67
PoE, 61-67
power bricks, 67
practice exams, 470
preconfiguration. See also configuration
phone switches, 440
SBCS, 417
templates, UC520 chassis, 439-440
preference command, 150-151, 278, 283
Preferences window, 449
prefix 1512555 command, 280
prefix command, 270, 278-284
Presence, 415
prestandard PoE, 65. See also PoE
PRI (Primary Rate Interface), 109, 231
pri-group command, 258, 264
Primary Rate Interface (PRI), 109, 231
private branch exchange. See PBX systems
private distribution lists, 332
Private Line Automatic Ringdown (PLAR), 270-271
private switches, 22
productivity, increasing, 34
profiles, translation, 284-287
prompts, auto-attendant, 336-337
protocols
CDP, 64, 445
DHCP
router-based servers, 92-93
services, 139-140
DTP, 80
FTP, 365
HTTP server options, 379-381
MGCP, 233
NTP, configuring clocks, 94, 97
RTCP, 227-229
RTP, 223-229
SCCP, 160
SCP, 233
SIP, 232, 381
trunking on UC520 systems, 461-463
SRTP, 107
STP, disabling, 139
TFTP services, 140
VTP, 72-73
configuring, 75-82
PSTN (public switched telephone network), 5, 21-26
access, centralizing, 281-283
CME, trunking, 230-231
destination patterns, 268
DID numbers, 142
failover, 278-280
Unified CME, overview of, 111
pulse signaling, 12
pulse-amplitude modulation (PAM), 13
pulse-code modulation (PCM), 15
PVDMs (packet voice DSP modules), 227
Q
QoS (quality of service), 222, 288-298
AutoQoS, 291-298
infrastructure layer, 36
quantization, 14, 219
questions, final preparation tools, 469-471
RAM (random access memory), 200
ranges, configuring, 197
RBS (robbed bit signaling), 17
Real-time Transport Control Protocol (RTCP), 227-229
Real-time Transport Protocol (RTP), 223, 227-229
rebooting IP phones, 165-166
receiver off-hook signal, 11
record message options, 333
redirecting operator calls, 280-281
redundancy
 infrastructure layer, 36
 switch connections, 139
Refresh window, 449
registration
 ephones, verifying, 144
 IP phones
 auto-registration, 162-165
 troubleshooting, 156-161
reorder signal, 11
repeaters, analog signal, 12
reports
 Cisco Unity Express, 345-346
 historical reports, 316
requirements
 bandwidth, calculating codecs, 222-225
 voice, video, and data traffic, 289-291
reset command, 166, 189
restart all command, 165
restart command, 166, 189
restore factory default command, 403
restore options, 345
resynthesizing voice, 17
ring number command, 253
ringback signals, 11
rings, 9-11
robbed bit signaling (RBS), 17
router-based DHCP servers, IP phones, 92-93
router-on-a-stick, 87
routers
 call processing, 272-276
 CME, configuring, 90
 DHCP, configuring, 139-140
digit manipulation, 277-287
huntstop command, 151
ISR, 310
Requirements, Cisco Unity Express, 312
TFTP, configuring, 140
Unified CME, 109
 configuring as TFTP servers, 118-120
 configuring system-level functions, 121-129
 installing on, 115-117
routing
 calls, 395-397
 inter-VLAN, 87, 91
 VLANs, 86
RTCP (Real-time Transport Control Protocol), 227-229
RTP (Real-time Transport Protocol), 223-229
rules
 rule 1 command, 285
translation, 285
sampling, 218
 analog voice, 13
Save Configuration window, 449
saving
bandwidth, 15
Cisco Unity Express configurations, 391-393
information, 346
SBCS (Cisco Smart Business Communications System), 409
components, 419
Cisco 521 Wireless Express Access Point, 426
Cisco Catalyst Express 520 (CE520) Series Switches, 424
UC500 Series for Small Business (UC520), 420-424
deployment, 427-431
Unified Communications, 413-419
scalability, 39
scavenger applications, 290
SCCP (Skinny Client Control Protocol), 160, 233
scope
CCA communities, 444
DHCP, configuring routers, 139-140
scores, passing scores for Cisco CCNA Voice exams, 473
scripts
Cisco Unity Express Editor software, 340
custom, 316
default auto attendant, 336
files, 115
greetings, 336-337
SDRAM (synchronous dynamic random-access memory), 310
seamless voice networks, 34
secret option, 382
Secure Real-Time Protocol (SRTP), 107
security
templates, UC520 chassis, 439-440
VLANs, 68
Security Certificate Alert, 446
seed devices, 445
selection
of language files, 368
of voice codecs, 221-229
separate ports per VLAN strategies, 86
separators, button command, 146
servers
HTTP options, 379-381
router-based DHCP, 92-93
TFTP, configuring Unified CME routers as, 118-120
VTP, 73
service-level goal (SLG), 414
service-module ip address command, 363
service-module ip default-gateway command, 363
service-module service-engine 1/0 reload command, 394
service-module service-engine 1/0 reset command, 394
service-module service-engine command, 364
services
DHCP, 139-140
modules, viewing, 362
telephony, configuring, 382-383
TFTP, 140
Session Initiation Protocol (SIP), 232, 381
UC520 systems, trunking, 461-462
session protocol sipv2 command, 381
session target command, 266
SF (Super Frame), 18
shared lines, configuring, 148-156
show controllers t1 command, 255
show dial-peer voice command, 262
show ephone attempted-registrations command, 163
show ephone command, 144-145
show interface interface name/number switchport command, 82
show interface service-engine command, 394
show ip interface brief command, 255
show ip route command, 395
show log name messages.log command, 401
show logging command, 200
show logs command, 402
show ntp associations command, 97
show run command, 159, 295, 361-362, 382
show software command, 372
show software license command, 372
show telephony-service tftp-bindings command, 127, 158
show trace buffer long command, 401
show trace buffer tail command, 400
show version command, 393
show vlan command, 85
show voice dial-peer command, 395
show voice port summary command, 249, 256-258
show vtp status command, 75
Signaling System 7 (SS7), 24
signals
 address signaling, 12
 degradation, 17
 ground start signaling, 9-11
 informational signaling, 11
 quantization, 14
 RBS, 17
 supervisory signaling, 11

simplicity of SBCS, 416
Single Number Reach, 415
single-group paging, 195
single-line ephone-dns, 141
SIP (Session Initiation Protocol), 232, 381
 trunking on UC520 systems, 461-463
sixteen user SBCS deployment models, 428
Skinny Client Control Protocol (SCCP), 160, 233
SLG (service-level goal), 414
Smart Assist features, CCA telephony, 451-463
Smartports window, 449
softkeys, Acct, 203
software, Cisco Unity Express, 313-316
software download command, 365
software download status command, 367
software install command, 367
source IP address information, 125
Spanning Tree Protocol (STP), disabling, 139
spanning-tree portfast command, 139
specialty devices, 49
spell-by-name function, 339
SRST (Survivable Remote Site Telephony), 105, 420
SRTP (Secure Real-Time Protocol), 107
SS7 (Signaling System 7), 24
standards, 35
starting
 practice exams, 470
 trace files, 399
status, verifying ephone registration, 144
storage, mailboxes, 332
STP (Spanning Tree Protocol), disabling, 139
structure, 35
 applications layer, 40-44
 call processing layer, 36-40
 endpoints layer, 44-51
 infrastructure layer, 36
study plans, final preparation, 472-473
subscribers
 mailboxes, 323-332
 management, 346-352
summary keywords, 262
Super Frame (SF), 18
supervisory signaling, 11
support
 Cisco Unity Express, 312
 H.450.3, call-forward pattern command, 183-184
 PoE, 66-67
 Unified CME, 106
 verifying, 372
Survivable Remote Site Telephony (SRST), 105, 420
SVIs (switched virtual interfaces), 89
switches
 Cisco Catalyst Express 520 (CE520) Series Switches, 424
 CO, 22
 connections, 139
 IP phones, connecting, 61
 Layer 3, 89
 preconfigured phone, 440
 trunk ports, configuring, 79
 VLANs, trunking, 70, 72-73
switchport mode access command, 79-80
switchport mode dynamic desirable command, 80
switchport mode trunk command, 79-80
switchport nonegotiate command, 80
synchronization, 18
 information, 346
 NTP status, 96
synchronous dynamic random-access memory (SDRAM), 310
syntax, dual-line, 153
system level functions, configuring
 Unified CME, 121-124
system management, CCA, 442-451
system messages, IP phones, 170

T

T1
 CAS interfaces, 253
digital connections, 17. See also digital connections
tables, CDP, 445
TAC (Technical Assistance Center), 398
tags, VLANs, 71
Tcl (Tool Command Language) script files, 115
TDM (time-division multiplexing), 16, 106
Technical Assistance Center (TAC), 398
telephony
 service configuration, 382-383
 Smart Assist features, 451-463
Telephony Services Provider (TSP), 106
telephony user interface (TUI), 324
templates, UC520 chassis, 439-440
test voice translation-rule command, 285
testing, MOS, 220
TFTP (Trivial FTP)
 files, verifying, 159
 servers, configuring Unified CME
 routers as, 118-120
 services, 140
 tftp-server command, 120, 159
 tftp-server syntax, 123
 time
 IP phones, 170
 ranges, configuring, 197
 zones, 378
 time-division multiplexing (TDM), 16, 106
 time-webedit command, 207, 383
 timeout value, 199
 tips, 9
 TLS (Transport Layer Security), 107
 Tool Command Language (Tcl) script
 files, 115
 toolbars, CCA, 448
 tools
 CCA, 440-451
 for final preparation, 469-471
 topologies
 CCA views, 447
 Topology view, 449
 VLANs, 68
 touchscreen Cisco IP phones, 48
 trace command, 398
 trace files, Cisco Unity Express, 398-403
 traffic requirements, 289-291
 transactional applications, 290
 transfer-mode command, 186
 transfer-pattern command, 186
 transfers, call, 185-186
 translation
 profiles, 284-287
 rules, 285
 transparent mode, VTP, 73
 Transport Layer Security (TLS), 107
 troubleshooting
 CCA, 463, 465
 Cisco Unity Express, 393-403
 compatibility, 393
 IP connectivity, 394-395
 IP Phone registration, 156-161
 skills, 473
 trunking, 22, 215
 cards, 23
 CME to PSTN, 230-231
 ports, configuring, 79
 UC520 systems, 461-463
 verifying, 82
 VLANs, 70-73
 VoIP to PSTN, 231-240
 trust boundaries, 291
 TSP (Telephony Services Provider), 106
 TUI (telephony user interface), 324
 tutorials, Cisco Unity Express, 324-325

U

UC (Unified Communications) SBCS, 413-419
UC500 Series
 CCA, 440-451
 configuring, 435
 preconfigured templates, 439-440
 UC500 Series for Small Business
 (UC520), 420-424
 UC520 Series for Voice
 configuring, 451
 Smart Assist features, 451-463
 unicast paging, 195
Unified CME (Communications Manager Express)
CDRs, 200-203
Cisco Unity Express, 320
GUIs, 204-208
installing, 101
licensing and models, 112-113
 hybrid, 114
 keyswitch, 113
PBX, 113
MoH, 203-204
overview of, 105-111
PSTN, trunking to, 230-231
routers, installing on, 115-117
system-level functions, configuring, 121-129
TFTP servers, configuring as, 118-120
video
 after-hours call blocking, 196-199
 call forwarding, 182-184
 call park, 187-190
 call pickup, 190-192
 call transfer, 185-186
 configuring, 175
 intercoms, 192-194
 paging, 194-196
 voice network directories, 179-182
VoIP, trunking to, 231-240
Unified Communications Manager Express, 38-39
Unified Communications (UC), 413-419
Unified Contact Center Express 5.0, 107
Unified Contact Center product line, 43
unified messaging, 34, 415
uninterruptible power supply (UPS), 63
Unity Connection, 41
Unity Express, 41, 305
 auto-attendant, 335-341
 configuring, 357-367
 installing, 361-374
 management, 341-351
 overview of, 309-321
 troubleshooting, 393-403
 voice mail, 321-335
Universal Time Coordinated (UTC), 95
UPC codes, 143
updates, VTP, 73
upgrading Cisco Unity Express, 361-374
UPS (uninterruptible power supply), 63
user-locale command, 168
users
 Cisco Unity Express, 321-322
 eight user SBCS deployment models, 428
 forty-eight user SBCS deployment models, 429
 management, 343
 sixteen user SBCS deployment models, 428
 tabs, voice 458
UTC (Universal Time Coordinated), 95
VAD (Voice Activity Detection), 221, 225
values
 clear, 199
 MOS, 220
 timeout, 199
variable delay, 289
verification
 auto-registration, 162
 button assignments, 145
dial peers, 262
ephone registration, 144
installed CME files, 119
multiple NTP associations, 97
NTP synchronization status, 96
support, 372
TFTP files, 159
trunks, 82
VLAN assignments, 85
VTP, 75-82

V

VICs (voice interface cards), 226

video
 after-hours call blocking, 196-199
call forwarding, 182-184
call park, 187-190
call pickup, 190-192
call transfer, 185-186
CDRs, 200-203
CME GUIs, 204-208
configuring, 175
intercoms, 192-194
MoH, 203-204
paging, 194-196
requirements, 289-291
voice network directories, 179-182

viewing
 CDRs, 200
 service module configurations, 362
 trace files, 400

views
 CCA topologies, 447
 summary, 262

virtual LANs. See VLANs

VLAN-hopping attacks, 79

VLANs (virtual LANs), 68
IP Phone connections, 68
 assigning ports, 84-91
 booting, 92
 clocks, 94, 97
 configuring, 75-82
 creating, 83-84
 router-based DHCP servers, 92-93
 trunking, 70-73
 voice, 73

voice
 analog, sampling, 13
 before convergence, 5
 binary values, encoding, 219
call legs, 260-261
codecs, selecting, 221-229
dial peers, configuring, 258-271
network directories, configuring, 179-182
packets, converting, 218-221
ports, configuring, 249-258
requirements, 289-291
TDM, 16

UC500 Series
 CCA, 440-451
 configuring, 435
 preconfigured templates, 439-440

UC520 for Voice
 configuring, 451
 Smart Assist features, 451-463

VLANs, 73, 138-139

Voice Activity Detection (VAD), 221, 225

Voice dialog box, 451

voice interface cards (VICs), 226
voice mail
 Cisco Unity Express, 305
 features and functions, 321-335
 overview of, 309-321
 management, 344
 options, 382
 unified, 34
 Unified CME, 109
 upgrading, 364

Voice Over Misconfigured Internet Telephones (VOMIT), 73
Voice Profile for Internet Mail (VPIM), 335
VoiceView Express, 334
VoIP (Voice over IP)
 business benefit of, 34-35
 Cisco structure, 35
 applications layer, 40-44
 call processing layer, 36-40
 endpoints layer, 44-51
 infrastructure layer, 36
 CME, trunking, 231-240
 dial peers, configuring, 265-267
 Unified CME, 109

VOMIT (Voice Over Misconfigured Internet Telephones), 73
VPIM (Voice Profile for Internet Mail), 335
VPNs (virtual private networks), 415
templates, UC520 chassis, 439-440
VTP (VLAN Trunking Protocol), 72-73
configuring, 75-82

W – Z

WAN branch office SBCS deployment, 430-431
waveforms, analog, 8
web admin system command, 382, 386
Welcome prompt, 337
wildcards, dial peers, 267-270
wiring analog connections, 9-11
wizards, Cisco Unity Express
 Initialization, 385-391
WLAN controllers, 444

x separators, 152-154