Figure Attributions

Figure 4-15: “airplane cockpit” [92430886] © Sergey Bogdanov

Figure 8-1: “Stack of DDR RAM sticks on isolated background” [57415022] © finallast, “Computer hard drives stack” [73144222] © destina, “data center” [54917331] © kubais

Figure 8-11: “disco duro” [38666746] © estionx, “Connectors cable ATA and IDE interface for computer” [53636918] © dmitrydesigner

Figure 8-12: “Harddisk drive, close up image of device” [68745710] © charcomphoto, “SATA cable” [8713125] © Vladimir Agapov

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.
About the Author

Gustavo A. A. Santana, CCIE No. 8806, is the author of *Data Center Virtualization Fundamentals* (CiscoPress, 2013) and a Cisco Technical Solutions Architect working in enterprise and service provider data center projects that require a greater integration among multiple technology areas such as networking, application optimization, storage, and servers.

With more than 18 years of experience in the data center industry, Gustavo has led and coordinated a team of specialized Cisco engineers in Brazil. A true believer of education as a technology catalyst, he has also dedicated himself to the technical development of many IT professionals from customer, partner, and strategic alliance organizations. In addition to holding three CCIE certifications (Data Center, Storage Networking, and Routing & Switching), Gustavo is an SNIA Certified Storage Networking Expert (SCSN-E). A frequent speaker at Cisco Live and data center industry events, he holds a degree in computer engineering from Instituto Tecnológico de Aeronáutica (ITA-Brazil) and an MBA in strategic IT management from Fundação Getúlio Vargas (FGV-Brazil). Gustavo maintains a personal blog in which he discusses topics related to data center virtualization technologies at http://gustavoaasantana.net.

About the Technical Reviewers

Fernando de Almeida, CCIE No. 8831 (R&S and SP), has more than 18 years of experience in telecommunications and networking. Fernando joined Cisco in 2000 as a TAC engineer and moved on to other functions in Advanced Services, focusing on service providers and enterprise customers. He has had active participation in design and implementation of the biggest service providers in Latin America, in technologies such as MPLS, TE, VPLS, QoS, and BGP, and has worked as a Solutions Architect for the biggest banks in Brazil, integrating key environments, such as core wide-area networks, data center networks, network security, and wireless networks. He has been a speaker at various network conferences (including Cisco Live), and he is currently involved in Internet of Things projects, mainly in Smart Grid. Before joining Cisco, Fernando worked as a pre-sales engineer and instructor at Nortel. He graduated with an electrical engineering degree and an MBA in IT management from Universidade de São Paulo.

Adilson Silva, CCIE No. 30110, is a Cisco Technical Solutions Architect at Cisco Systems involved in public and hybrid cloud Cisco architectures as well as cloud managed services solutions through Cisco partners. Adilson’s expertise includes data center virtualization, routing and switching, hypervisor solutions, and hybrid cloud using Cisco Intercloud Fabric solutions for business as well as for providers including Cisco Powered partners, Cisco Cloud Architecture for Microsoft, and OpenStack, which includes Cisco Metapod solutions for private customer clouds.

During his more than 14 years of experience in the networking industry, Adilson spent his last 7 years at Cisco Systems. In the last 3 years he has covered Cloud & Managed Services for the whole of the Latin America region.

In addition to holding his CCIE certification (Routing & Switching), Adilson holds a degree in science computing from Estácio University (Brazil) and an MBA in communication services from Universidade Federal Fluminense (UFF-Brazil).
Dedications

This book is dedicated to my wife and true love, Carlene. Besides being my unconditional supporter, she is also my co-author on two wonderful long-term projects: our daughters Carolina and Cecília. I wholeheartedly dedicate this writing to both of them, too.

I also dedicate this publication to my parents, Honorio and Cleia, who have taught me that one can only learn by being fearless and humble.

Finally, this book is dedicated to every person who is (or once was) a CCNA candidate. Your passion, commitment, and integrity are the strong threads that wove our connected world together.
Acknowledgments

Although the cover of this book exhibits a single author, the many months of writing would be fruitless without the support of an entire network of relatives, friends, and professionals who are acknowledged here.

First, I would like to thank my sister Raquel and brother André for the family support during this book writing.

I would also like to express my gratitude to my friend and trusted advisor Alexandre M. S. P. Moraes, who has always shared with me his invaluable insights and experiences as a technical author.

Many thanks to Andrey Lee for the wonderful illustrations in Chapters 1 and 14.

Sincere thanks to my manager, Renier Souza, for actively helping me coordinate my professional life and this writing.

My thanks to the technical reviewers Adilson Silva and Fernando Almeida for their outstanding contributions and focus to make this work more effective for its targeted readership.

A personal thanks to the data center tiger team at Cisco Brazil, which has always served as my treasured “brain trust” for best practices and innovative ideas.

I am also very grateful to Simon Richards, Gordon Hirst, and all professionals behind Cisco Demo Cloud (dCloud), which was an inestimable tool for this book development.

Thanks to all the Pearson production team, especially Ellie Bru, Mandie Frank, and Bill McManus who helped me to create the final version of this book.

I will always be grateful to Mary Beth Ray and Anand Sundaram for giving me the unique opportunity of becoming a Cisco Press author back in 2012.

A very special thank you goes to Denise Lincoln, for trusting me with the honor of writing this book and for the amazing support during its development.
Contents at a Glance

<table>
<thead>
<tr>
<th>Introduction</th>
<th>xxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I</td>
<td>Cloud Concepts</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>What Is Cloud Computing? 3</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Cloud Shapes: Service Models 29</td>
</tr>
<tr>
<td>Part II</td>
<td>Cloud Deployments</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Cloud Heights: Deployment Models 57</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Behind the Curtain 87</td>
</tr>
<tr>
<td>Part III</td>
<td>Server Virtualization for Cloud</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Server Virtualization 119</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Infrastructure Virtualization 149</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Virtual Networking Services and Application Containers 187</td>
</tr>
<tr>
<td>Part IV</td>
<td>Cloud Storage</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Block Storage Technologies 221</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>File Storage Technologies 265</td>
</tr>
<tr>
<td>Part V</td>
<td>Architectures for Cloud</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Network Architectures for the Data Center: Unified Fabric 301</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Network Architectures for the Data Center: SDN and ACI 363</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Unified Computing 407</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Cisco Cloud Infrastructure Portfolio 457</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>Integrated Infrastructures 493</td>
</tr>
<tr>
<td>Chapter 15</td>
<td>Final Preparation 517</td>
</tr>
<tr>
<td>Glossary</td>
<td>523</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Answers to Pre-Assessments and Quizzes 541</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Memory Tables 545</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Answers to Memory Tables 563</td>
</tr>
<tr>
<td>Index</td>
<td>563</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Study Planner CD</td>
</tr>
</tbody>
</table>
Contents

Introduction xxi

Part I Cloud Concepts

Chapter 1 What Is Cloud Computing? 3

“Do I Know This Already?” Quiz 3

Foundation Topics 7

Welcome to the Cloud Hype 7

Historical Steps Toward Cloud Computing 9

The Many Definitions of Cloud Computing 11

The Data Center 12

Common Cloud Characteristics 14

On-Demand Self-Service 14

Rapid Elasticity 16

Resource Pooling 17

Measured Service 19

Broad Network Access 20

Multi-tenant 21

Classifying Clouds 22

Around the Corner: Agile, Cloud-Scale Applications, and DevOps 24

Further Reading 26

Exam Preparation Tasks 27

Review All the Key Topics 27

Complete the Tables and Lists from Memory 27

Define Key Terms 27

Chapter 2 Cloud Shapes: Service Models 29

“Do I Know This Already?” Quiz 29

Foundation Topics 32

Service Providers and Information Technology 32

Service-Level Agreement 34

Cloud Providers 34

Infrastructure as a Service 36

Regions and Availability Zones 38

IaaS Example: Amazon Web Services 39

Platform as a Service 43

PaaS Example: Microsoft Azure 45

Software as a Service 49

SaaS Examples 50

Around the Corner: Anything as a Service 52

Further Reading 53
Part II Cloud Deployments

Chapter 3 Cloud Heights: Deployment Models 57

“Do I Know This Already?” Quiz 57
Foundation Topics 61
Public Clouds 61
Risks and Challenges 62
 Security 62
 Control 63
 Cost 64
Private Clouds 65
Community Clouds 67
Hybrid Clouds 69
Cisco Intercloud 70
Cisco Intercloud Fabric 73
 Intercloud Fabric Architecture 74
 Intercloud Fabric Services 76
 Intercloud Fabric Use Cases 83
Around the Corner: Private Cloud as a Service 83
 Further Reading 83
Exam Preparation Tasks 84
Review All the Key Topics 84
Complete the Tables and Lists from Memory 84
Define Key Terms 84

Chapter 4 Behind the Curtain 87

“Do I Know This Already?” Quiz 87
Foundation Topics 89
Cloud Computing Architecture 89
 Cloud Portal 90
 Cloud Orchestrator 94
 Cloud Meter 97
Cloud Infrastructure: Journey to the Cloud 99
 Consolidation 100
 Virtualization 102
 Standardization 103
Virtual Services Data Path 192
Cisco Virtual Security Gateway 193
Cisco Adaptive Security Virtual Appliance 197
Cisco Cloud Services Router 1000V 199
Citrix NetScaler 1000V 201
Cisco Virtual Wide Area Application Services 205
vPath Service Chains 208
Virtual Application Containers 210
Around the Corner: Service Insertion Innovations 217
Further Reading 218
Exam Preparation Tasks 219
Review All the Key Topics 219
Complete the Tables and Lists from Memory 219
Define Key Terms 219

Part IV Cloud Storage

Chapter 8 Block Storage Technologies 221
“Do I Know This Already?” Quiz 221
Foundation Topics 224
What Is Data Storage? 224
Hard Disk Drives 225
RAID Levels 226
Disk Controllers and Disk Arrays 228
Volumes 231
Accessing Blocks 233
Advanced Technology Attachment 234
Small Computer Systems Interface 235
Fibre Channel Basics 237
Fibre Channel Topologies 238
Fibre Channel Addresses 239
Fibre Channel Flow Control 241
Fibre Channel Processes 241
Fabric Shortest Path First 243
Fibre Channel Logins 245
Zoning 246
SAN Designs 247
Virtual SANs 250
VSAN Definitions 251
VSAN Trunking 253
Chapter 9 File Storage Technologies 265

“Do I Know This Already?” Quiz 265

Foundation Topics 268

What Is a File? 268

File Locations 269

Main Differences Between Block and File Technologies 270

Building a File System 271

File Namespace 272

Linux File Naming Rules 272

Windows File Naming Rules 273

Volume Formatting 274

Extended Filesystems 274

FAT and NTFS 278

Permissions 281

Linux Permissions 281

NTFS Permissions 282

Accessing Remote Files 285

Network File System 286

Common NFS Client Operations 287

Common NFS NAS Operations 289

Server Message Block 289

Common SMB Client Operations 292

Common SMB NAS Operations 292

Other File Access Protocols 293

Cloud Computing and File Storage 294

File Storage for Cloud Infrastructure 294
File Hosting 294
OpenStack Manila 295
Around the Corner: Object Storage 297
Further Reading 298
Exam Preparation Tasks 299
Review All the Key Topics 299
Complete the Tables and Lists from Memory 299
Define Key Terms 299

Part V Architectures for Cloud
Chapter 10 Network Architectures for the Data Center: Unified Fabric 301

“Do I Know This Already?” Quiz 301
Foundation Topics 304
Attributes of Data Center Networks 304
The Three-Tier Design 305
Device Virtualization 307
Why Use VDCs? 309
Creating VDCs 310
Allocating Resources to VDCs 312
Virtual PortChannels 313
Link Aggregation 315
Creating vPCs 317
Adding vPCs to the Three-Tier Design 319
Fabric Extenders 320
Top-of-Rack Designs 320
End-of-Row and Middle-of-Row Designs 321
Enter the Nexus 2000 322
High-available Fabric Extender Topologies 325
Overlay Transport Virtualization 326
Layer 2 Extension Challenges 327
I Want My OTV! 329
Configuring OTV 332
OTV Site Designs 335
I/O Consolidation 336
Data Center Bridging 338
Priority-based Flow Control 338
Enhanced Transmission Selection 339
Data Center Bridging Exchange 340
Fibre Channel over Ethernet 341
FCoE Definitions 341
Chapter 12 Unified Computing 407

Around the Corner: OpenStack Neutron 399
Further Reading 403
Exam Preparation Tasks 404
Review All the Key Topics 404
Complete the Tables and Lists from Memory 404
Define Key Terms 404

Chapter 13 Cisco Cloud Infrastructure Portfolio 457
Cisco MDS 9000 Series Multilayer Directors and Fabric Switches 460
Cisco Nexus Data Center Switches 462
 Cisco Nexus 1000V Series Switches 462
 Cisco Nexus 1100 Cloud Services Platforms 463
 Cisco Nexus 2000 Series Fabric Extenders 464
 Cisco Nexus 3000 Series Switches 466
 Cisco Nexus 5000 Series Switches 469
 Cisco Nexus 7000 Series Switches 471
 Cisco Nexus 9000 Series Switches 475
Cisco Prime Data Center Network Manager 478
Cisco Unified Computing System 479
 Cisco UCS 6200 and 6300 Series Fabric Interconnects 480
 Cisco UCS 5100 Series Blade Server Chassis 481
 Cisco UCS 2200 Series Fabric Extenders 481
 Cisco UCS B-Series Blade Servers 482
 Cisco UCS C-Series Rack Servers 482
 Cisco UCS Invicta 483
 Cisco UCS M-Series Modular Servers 484
Cisco Virtual Networking Services 486
 Cisco Adaptive Security Virtual Appliance 486
 Cisco Cloud Services Router 1000V 487
 Citrix NetScaler 1000V 488
 Cisco Virtual Wide-Area Application Services 489
 Virtual Security Gateway 490
Exam Preparation Tasks 491
Review All the Key Topics 491
Complete the Tables and Lists from Memory 491
Define Key Terms 491

Chapter 14 Integrated Infrastructures 493
 “Do I Know This Already?” Quiz 493
Foundation Topics 497
 Modular Data Centers 497
 Pool of Devices 497
 Custom PODs vs. Integrated Infrastructures 501
FlexPod 503
Vblock 506
VSPEX 508
UCS Integrated Infrastructure for Red Hat OpenStack 510
Around the Corner: Hyperconvergence 510
Further Reading 512
Before We Go 512
Exam Preparation Tasks 514
Review All the Key Topics 514
Define Key Terms 514

Chapter 15 Final Preparation 517
Tools for Final Preparation 517
Pearson Cert Practice Test Engine and Questions 517
Companion Website 517
Pearson IT Certification Practice Test Engine and Questions 518
Install the Software 518
Activate and Download the Practice Exam 519
Activating Other Exams 520
Assessing Exam Readiness 520
Premium Edition eBook and Practice Tests 520
Premium Edition 520
The Cisco Learning Network 520
Memory Tables 521
Chapter-Ending Review Tools 521
Suggested Plan for Final Review/Study 521
Using the Exam Engine 522
Summary 522

Glossary 523

Appendix A Answers to Pre-Assessments and Quizzes 541
Appendix B Memory Tables 545
Appendix C Answers to Memory Tables 563
Index 563

Appendix D Study Planner CD
Icons Used in This Book

- Branch Office
- Employee/Accounting and Sales
- End User
- Running Person
- Network Clouds
- PC
- Web Server
- Laptop
- CiscoWorks Workstation
- Newton
- File Application Server
- 10GE/FCoE
- Mainframe
- Database
- UCS 5108 Blade Chassis
- MUX
- Nexus 7000
- UCS C-Series
- Workgroup Switch
- Nexus 5000
- Nexus 2000 10GE
- Nexus 2000 Fabric Extender
- Router
- Nexus 1KV VSM
- Cisco ASA 5500
- System Controller
- Multilayer Switch
- Bridge
- Firewall
- FC Storage
- Server Load Balancer
- Wide Area Application Engine
- Nexus 1000
- Cisco MDS Multilayer Director
- Cisco MDS Multilayer Fabric Switch
- UCS 6200 Series Fabric Interconnect
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ({{ }}) indicate a required choice within an optional element.
Introduction

Working as an information technology professional for many years, I have pursued a considerable number of certifications. However, I have always reserved a special place in my heart for my first one: Cisco Certified Network Associate (CCNA).

Back in 1999, I was thrilled to discover that having obtained this certification was going to radically change my career for the better. Undoubtedly, I was being recognized by the market as a tested network professional, and better job opportunities immediately started to appear.

What surprised me the most was that the CCNA certification did not dwell too much on products. Instead, it focused on foundational networking concepts, which I still use today on a daily basis. Smartly, Cisco had already realized that technologies may quickly change, but concepts remain consistent throughout the years, like genes that are passed through uncountable generations of life forms.

Fast forwarding 17 years, the world has turned its attention to cloud computing and all the promises it holds to make IT easy and flexible. But contrarily to the late 1990s, the explosion of information and opinions that currently floods on the Internet causes more confusion than enlightenment in professionals interested in understanding any IT related topic with reasonable depth.

Bringing method and objectivity to such potential chaos, Cisco has launched a brand-new, associate-level certification: CCNA Cloud. And fortunately, the invitation to write this book has given me not only the opportunity to systematically explore cloud computing, but also the personal satisfaction of positively contributing to my favorite certification.

Goals and Methods

Obviously, the primary objective of this book is to help you pass the CCNA Cloud CLDFND 210-451 Exam. However, as previously mentioned, it is also designed to facilitate your learning of foundational concepts underlying cloud computing that will carry over into your professional job experience; this book is not intended to be an exercise in rote memorization of terms and technologies.

With the intention of giving you a holistic view of cloud computing and a more rewarding learning experience, the order in which I present the material is designed to provide a logical progression of explanations from basic concepts to complex architectures. Notwithstanding, if you are interested in covering specific gaps in your preparation for the exam, you can also read the chapters out of the proposed sequence.

Each chapter roughly follows this structure:

- A description of the business and technological context of the explained technology, approach, or architecture.
- An explanation of the challenges addressed by such technology, approach, or architecture.
- A detailed analysis that immerses the reader in the main topic of the chapter, including its characteristics, possibilities, results, and consequences.
A thorough explanation of how this technology, approach, or architecture is applicable to real-world cloud computing environments.

- A section called “Around the Corner” that points out related topics, trends, and technologies that you are not specifically required to know for the CCNA Cloud CLDFND 210-451 exam, but are very important for your knowledge as a cloud computing professional.

Who Should Read This Book?

CCNA Cloud certification candidates are the target audience for this book. However, it is also designed to offer a proper introduction to fundamental concepts and technologies for engineers, architects, developers, analysts, and students that are interested in cloud computing.

Strategies for Exam Preparation

Whether you want to read the book in sequence or pick specific chapters to cover knowledge gaps, I recommend that you include the following guidelines in your study for the CCNA Cloud CLDFND 210-451 exam each time you start a chapter:

- Answer the “Do I Know This Already?” quiz questions to assess your expertise in the chapter topic.
- Check the results in Appendix A, “Answers to the Pre-Assessments and Quizzes.”
- Based on your results, read the Foundation Topics sections, giving special attention to the sections corresponding to the questions you have not answered correctly.
- After the first reading, try to complete the memory tables and define the key terms from the chapter, and verify the results in the appendices. If you make a mistake in a table entry or the definition of a key term, review the related section.

Remember: discovering gaps in your preparation for the exam is as important as addressing them.

Additionally, you can use Appendix D, “Study Planner,” to control the pace of your study during the first reading of this certification guide as whole. In this appendix, you can establish goal dates to read the contents of each chapter and reserve time to test what you have learned through practice tests generated from the Pearson Cert Practice Test engine.

How This Book Is Organized

In times where blog posts and tweets provide disconnected pieces of information, this book intends to serve a complete learning experience, where order and consistency between chapters do matter.

For such purpose, Chapters 1 through 15 cover the following topics:

- Chapter 1, “What Is Cloud Computing?”—Unfortunately, massive hype surrounding cloud computing in the past several years has resulted in more distraction than certainty for the majority of IT professionals. With lots of different vendors claiming that cloud environments can only exist via their products, many fundamental aspects of cloud computing have been simply glossed over or, even worse, undiscovered.
Peeling away these marketing layers, this chapter focuses on the history of cloud computing, from its humble beginnings to its widespread adoption during this decade. As a theoretical foundation, it explores NIST’s definition of cloud computing and the essential common characteristics of cloud computing environments.

■ Chapter 2, “Cloud Shapes: Service Models”— Besides using services from established cloud providers such as Amazon Web Services (AWS) and Microsoft Azure, IT departments are becoming true cloud service providers within their own organizations. This chapter examines the implications of this responsibility, analyzing the well-known cloud service models (Infrastructure as a Service [IaaS], Platform as a Service [PaaS], and Software as a Service [SaaS]). To put such concepts into practice, all service models are explained through illustrative real-world examples.

■ Chapter 3, “Cloud Heights: Deployment Models”—An organization may choose to build a cloud environment for its own exclusive use or choose to share another cloud environment with one or many other companies. This chapter describes the main characteristics of private, community, public, and hybrid clouds while also discussing the reasons for choosing each of these deployment models. Additionally, it dedicates special focus to the benefits of the Cisco Intercloud strategy, and presents the main characteristics of the Cisco Intercloud Fabric solution.

■ Chapter 4, “Behind the Curtain”—Building on the conceptual basis provided in the previous three chapters, this chapter introduces you to the most important implementation and operation challenges of a cloud computing environment. The chapter presents the main software and hardware components of a cloud project, the data center journey into a cloud-based architecture, and essential requirements such as application programming interfaces (APIs).

After reading this chapter, you will be fully prepared to clearly understand how each of the technologies explained in the subsequent chapters fit into cloud computing deployments.

■ Chapter 5, “Server Virtualization”—The exploration of cloud computing infrastructure begins in earnest with this chapter, which analyzes server virtualization as a major enabling technology of cloud computing environments. After quickly addressing the origins and main features of server virtualization, the chapter explains how it differs from cloud computing and, most importantly, what must be done to adapt server virtualization environments to the automation required by cloud computing environments.

■ Chapter 6, “Infrastructure Virtualization”—Data exchange is essential to any application, regardless of whether it belongs to a server virtualization environment. Nevertheless, connectivity presents particular challenges when virtual machines must communicate with each other and with the outside world. On the other hand, cloud networking faces additional constraints because standardization and automation have become required design factors in such projects. This chapter presents the main principles of and new technologies for virtual and cloud networking through practical examples and clear explanations.

■ Chapter 7, “Virtual Networking Services and Application Containers”—As virtual and cloud networking have evolved, networking services that used to be deployed only as physical appliances can now be ported into virtual machines. These virtual networking services leverage the advantages of server virtualization environments to offer benefits that
were unimaginable with their physical counterparts. Besides exploring these services using real-world examples, this chapter also addresses the concept of application containers, which can be used to secure tenants within a cloud computing environment.

Chapter 8, “Block Storage Technologies”—Data processing, transmission, and storage technologies have always been intertwined in computer science: any change to one technology will always produce effects on the other two. Consequently, storage technologies have evolved to keep pace with the liberal use of virtual servers and virtual networks in cloud computing.

This chapter explores block storage provisioning concepts and the most widely used technologies within such context, such as SAN and disk arrays.

Chapter 9, “File Storage Technologies”—Files are arguably the most popular method of data storage due to their simplicity and scale. This chapter explores concepts and technologies that support file systems for cloud computing, such as NAS and file sharing protocols.

Chapter 10, “Network Architectures for the Data Center: Unified Fabric”—In the late 2000s, Cisco introduced numerous innovations to data center networking through its Unified Fabric architecture. This chapter focuses on the most impactful of these modernizations, including device virtualization (VDCs and their relationship to VLANs and VRF instances), virtual PortChannels, Fabric Extenders, Overlay Transport Virtualization (OTV), and Layer 2 Multipathing with FabricPath.

Chapter 11, “Network Architectures for the Data Center: SDN and ACI”—Cloud networking requires a robust physical infrastructure with intrinsic support for dynamic and scalable designs. This chapter explains two cutting-edge architectures for data center networks: Software-Defined Networking (SDN) and Cisco Application Centric Infrastructure (ACI).

Chapter 12: “Unified Computing”—Although many IT professionals may view servers as self-sufficient devices within a data center, Cisco Unified Computing System (UCS) encompasses technologies that closely interact with all architectures presented in the previous chapters. This chapter introduces the main components of Cisco UCS and explains why this solution was designed from the ground up to be the best server architecture for cloud computing environments.

Chapter 13, “Cisco Cloud Infrastructure Portfolio”—This chapter briefly describes the Cisco products that are used to build optimal cloud computing infrastructures. It is designed to provide a quick reference guide of the ever-evolving family of Cisco products and to materialize the theoretical concepts explained in the previous chapters.

Chapter 14: “Integrated Infrastructures”—Cloud computing environments require levels of speed and elasticity that have challenged how data centers are designed and expanded. Using the concept of pool of devices (POD), multiple companies have formed alliances to provide standardized integrated platforms that include server, networking, storage, and virtualization software as a predictable cloud module. This chapter explains the advantages of such an approach and explores the main similarities and differences between FlexPod (Cisco and NetApp), Vblock (VCE), VSPEX (EMC), and UCSO (Cisco and Red Hat).
Chapter 15: “Final Preparation” — Considering you have learned the content explained in the certification guide, this chapter includes guidelines and tips that are intended to support your study until you take your exam.

Certification Exam Topics and This Book

Although this certification guide covers all topics from the CCNA Cloud CLDFND 210-451 Exam, it does not follow the exact order of the exam blueprint published by Cisco. Instead, the chapter sequence is purposely designed to enhance your learning through a gradual progression of concepts.

Table I-1 lists each exam topic in the blueprint along with a reference to the book chapter that covers the topic.

<table>
<thead>
<tr>
<th>CLDFND 210-451 Exam Topic</th>
<th>Chapter(s) in Which Topic Is Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Cloud Characteristics and Models</td>
<td>1, 2</td>
</tr>
<tr>
<td>1.1 Describe common cloud characteristics</td>
<td>1</td>
</tr>
<tr>
<td>1.1.a On-demand self-service</td>
<td>1</td>
</tr>
<tr>
<td>1.1.b Elasticity</td>
<td>1</td>
</tr>
<tr>
<td>1.1.c Resource pooling</td>
<td>1</td>
</tr>
<tr>
<td>1.1.d Metered service</td>
<td>1</td>
</tr>
<tr>
<td>1.1.e Ubiquitous network access (smartphone, tablet, mobility)</td>
<td>1</td>
</tr>
<tr>
<td>1.1.f Multi-tenancy</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Describe Cloud Service Models</td>
<td>2</td>
</tr>
<tr>
<td>1.2.a Infrastructure as a Service (IaaS)</td>
<td>2</td>
</tr>
<tr>
<td>1.2.b Software as a Service (SaaS)</td>
<td>2</td>
</tr>
<tr>
<td>1.2.c Platform as a Service (PaaS)</td>
<td>2</td>
</tr>
<tr>
<td>2.0 Cloud Deployment</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Describe cloud deployment models</td>
<td>3</td>
</tr>
<tr>
<td>2.1.a Public</td>
<td>3</td>
</tr>
<tr>
<td>2.1.b Private</td>
<td>3</td>
</tr>
<tr>
<td>2.1.c Community</td>
<td>3</td>
</tr>
<tr>
<td>2.1.d Hybrid</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Describe the Components of the Cisco Intercloud Solution</td>
<td>3</td>
</tr>
<tr>
<td>2.2.a Describe the benefits of Cisco Intercloud</td>
<td>3</td>
</tr>
<tr>
<td>2.2.b Describe Cisco Intercloud Fabric Services</td>
<td>3</td>
</tr>
<tr>
<td>CLDFND 210-451 Exam Topic</td>
<td>Chapter(s) in Which Topic Is Covered</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>3.0 Basic Knowledge of Cloud Compute</td>
<td>5, 12, 13</td>
</tr>
<tr>
<td>3.1 Identify key features of Cisco UCS</td>
<td>12, 13</td>
</tr>
<tr>
<td>3.1.a Cisco UCS Manager</td>
<td>12</td>
</tr>
<tr>
<td>3.1.b Cisco UCS Central</td>
<td>12</td>
</tr>
<tr>
<td>3.1.c B-Series</td>
<td>12, 13</td>
</tr>
<tr>
<td>3.1.d C-Series</td>
<td>12, 13</td>
</tr>
<tr>
<td>3.1.e Server identity (profiles, templates, pools)</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Describe Server Virtualization</td>
<td>5</td>
</tr>
<tr>
<td>3.2.a Basic knowledge of different OS and hypervisors</td>
<td>5</td>
</tr>
<tr>
<td>4.0 Basic Knowledge of Cloud Networking</td>
<td>6, 7, 10, 11, 13</td>
</tr>
<tr>
<td>4.1 Describe network architectures for the data center</td>
<td>10, 11, 13</td>
</tr>
<tr>
<td>4.1.a Cisco Unified Fabric</td>
<td>10, 13</td>
</tr>
<tr>
<td>4.1.a.1 Describe the Cisco nexus product family</td>
<td>10, 13</td>
</tr>
<tr>
<td>4.1.a.2 Describe device virtualization</td>
<td>10</td>
</tr>
<tr>
<td>4.1.b SDN</td>
<td>11</td>
</tr>
<tr>
<td>4.1.b.1 Separation of control and data</td>
<td>11</td>
</tr>
<tr>
<td>4.1.b.2 Programmability</td>
<td>11</td>
</tr>
<tr>
<td>4.1.b.3 Basic understanding of Open Daylight</td>
<td>11</td>
</tr>
<tr>
<td>4.1.c ACI</td>
<td>11</td>
</tr>
<tr>
<td>4.1.c.1 Describe how ACI solves the problem not addressed by SDN</td>
<td>11</td>
</tr>
<tr>
<td>4.1.c.2 Describe benefits of leaf/spine architecture</td>
<td>10</td>
</tr>
<tr>
<td>4.1.c.3 Describe the role of APIC Controller</td>
<td>11</td>
</tr>
<tr>
<td>4.2 Describe Infrastructure Virtualization</td>
<td>6, 7, 13</td>
</tr>
<tr>
<td>4.2.a Difference between vSwitch and DVS</td>
<td>6</td>
</tr>
<tr>
<td>4.2.b Cisco Nexus 1000V components</td>
<td>6, 13</td>
</tr>
<tr>
<td>4.2.b.1 VSM</td>
<td>6, 13</td>
</tr>
<tr>
<td>4.2.b.2 VEM</td>
<td>6, 13</td>
</tr>
<tr>
<td>4.2.b.3 VSM appliance</td>
<td>6, 13</td>
</tr>
<tr>
<td>4.2.c Difference between VLAN and VXLAN</td>
<td>6</td>
</tr>
<tr>
<td>4.2.d Virtual networking services</td>
<td>7</td>
</tr>
<tr>
<td>4.2.e Define Virtual Application Containers</td>
<td>7</td>
</tr>
<tr>
<td>CLDFND 210-451 Exam Topic</td>
<td>Chapter(s) in Which Topic Is Covered</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>4.2.e.1 Three-tier application container</td>
<td>7</td>
</tr>
<tr>
<td>4.2.e.2 Custom container</td>
<td>7</td>
</tr>
<tr>
<td>5.0 Basic Knowledge of Cloud Storage</td>
<td>8, 9, 10, 13, 14</td>
</tr>
<tr>
<td>5.1 Describe storage provisioning concepts</td>
<td>8</td>
</tr>
<tr>
<td>5.1.a Thick</td>
<td>8</td>
</tr>
<tr>
<td>5.1.b Thin</td>
<td>8</td>
</tr>
<tr>
<td>5.1.c RAID</td>
<td>8</td>
</tr>
<tr>
<td>5.1.d Disk pools</td>
<td>8</td>
</tr>
<tr>
<td>5.2 Describe the difference between all the storage access technologies</td>
<td>8, 9</td>
</tr>
<tr>
<td>5.2.a Difference between SAN and NAS; block and file</td>
<td>9</td>
</tr>
<tr>
<td>5.2.b Block technologies</td>
<td>8</td>
</tr>
<tr>
<td>5.2.c File technologies</td>
<td>9</td>
</tr>
<tr>
<td>5.3 Describe basic SAN storage concepts</td>
<td>8</td>
</tr>
<tr>
<td>5.3.a Initiator, target, zoning</td>
<td>8</td>
</tr>
<tr>
<td>5.3.b VSAN</td>
<td>8</td>
</tr>
<tr>
<td>5.3.c LUN</td>
<td>8</td>
</tr>
<tr>
<td>5.4 Describe basic NAS storage concepts</td>
<td>9</td>
</tr>
<tr>
<td>5.4.a Shares / mount points</td>
<td>9</td>
</tr>
<tr>
<td>5.4.b Permissions</td>
<td>9</td>
</tr>
<tr>
<td>5.5 Describe the various Cisco storage network devices</td>
<td>8, 10, 13</td>
</tr>
<tr>
<td>5.5.a Cisco MDS family</td>
<td>8, 13</td>
</tr>
<tr>
<td>5.5.b Cisco Nexus family</td>
<td>10, 13</td>
</tr>
<tr>
<td>5.5.c UCS Invicta (Whiptail)</td>
<td>8, 13</td>
</tr>
<tr>
<td>5.6 Describe various integrated infrastructures</td>
<td>14</td>
</tr>
<tr>
<td>5.6.a FlexPod (NetApp)</td>
<td>14</td>
</tr>
<tr>
<td>5.6.b Vblock (VCE)</td>
<td>14</td>
</tr>
<tr>
<td>5.6.c VSPEX (EMC)</td>
<td>14</td>
</tr>
<tr>
<td>5.6.d OpenBlock (Red Hat)</td>
<td>14</td>
</tr>
</tbody>
</table>

The CCNA Cloud CLDFND 210-451 exam can have topics that emphasize different functions or features, and some topics can be rather broad and generalized. The goal
of this book is to provide the most comprehensive coverage to ensure that you are well prepared for the exam. Although some chapters might not address specific exam topics, they provide a foundation that is necessary for a clear understanding of important topics. Your short-term goal might be to pass this exam, but your long-term goal should be to become a qualified cloud professional.

It is also important to understand that this book is a “static” reference, whereas the exam topics are dynamic. Cisco can and does change the topics covered on certification exams often.

This exam guide should not be your only reference when preparing for the certification exam. You can find a wealth of information available at Cisco.com that covers each topic in great detail. If you think that you need more detailed information on a specific topic, read the Cisco documentation that focuses on that topic.

Taking the CCNA CLDFND 210-451 Exam

As with any Cisco certification exam, you should strive to be thoroughly prepared before taking the exam. There is no way to determine exactly what questions are on the exam, so the best way to prepare is to have a good working knowledge of all subjects covered on the exam. Schedule yourself for the exam and be sure to be rested and ready to focus when taking the exam.

The best place to find out about the latest available Cisco training and certifications is under the Training & Events section at Cisco.com.

Tracking Your Status

You can track your certification progress by checking http://www.cisco.com/go/certifications/login. You must create an account the first time you log in to the site.

Cisco Certifications in the Real World

Cisco is one of the most widely recognized names in the IT industry. Cisco Certified cloud specialists bring quite a bit of knowledge to the table because of their deep understanding of cloud technologies, standards, and designs. This is why the Cisco certification carries such high respect in the marketplace. Cisco certifications demonstrate to potential employers and contract holders a certain professionalism, expertise, and dedication required to complete a difficult goal. If Cisco certifications were easy to obtain, everyone would have them.

Exam Registration

The CCNA Cloud CLDFND 210-451 exam is a computer-based exam, with around 55 to 65 multiple-choice, fill-in-the-blank, list-in-order, and simulation-based questions. You can take the exam at any Pearson VUE (http://www.pearsonvue.com) testing center.
According to Cisco, the exam should last about 90 minutes. Be aware that when you register for the exam, you might be instructed to allocate an amount of time to take the exam that is longer than the testing time indicated by the testing software when you begin. The additional time is for you to get settled in and to take the tutorial about the test engine.

Companion Website

Register this book to get access to the Pearson IT Certification test engine and other study materials plus additional bonus content. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam. Be sure to check the box that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow the steps below:

1. **Step 1** Go to www.pearsonITcertification.com/register and log in or create a new account.
2. **Step 2** Enter the ISBN: 9781587147005
3. **Step 3** Answer the challenge question as proof of purchase.
4. **Step 4** Click on the “Access Bonus Content” link in the Registered Products section of your account page, to be taken to the page where your downloadable content is available.

Please note that many of our companion content files can be very large, especially image and video files.

If you are unable to locate the files for this title by following the steps at left, please visit www.pearsonITcertification.com/contact and select the “Site Problems/Comments” option. Our customer service representatives will assist you.

Pearson IT Certification Practice Test Engine and Questions

The companion website includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice questions. Using the Pearson IT Certification Practice Test engine, you can either study by going through the questions in Study Mode, or take a simulated exam that mimics real exam conditions. You can also serve up questions in a Flash Card Mode, which will display just the question and no answers, challenging you to state the answer in your own words before checking the actual answers to verify your work.

The installation process requires two major steps: installing the software and then activating the exam. The website has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam (the database of exam questions) is not on this site.
NOTE: The cardboard case in the back of this book includes a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time-use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Install the Software

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows virtual machine, but it was built specifically for the PC platform. The minimum system requirements are as follows:

- Windows 10, Windows 8.1, or Windows 7
- Microsoft .NET Framework 4.0 Client
- Pentium-class 1GHz processor (or equivalent)
- 512MB RAM
- 650MB disk space plus 50MB for each downloaded practice exam
- Access to the Internet to register and download exam databases

The software installation process is routine as compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the access code card sleeve in the back of the book.

The following steps outline the installation process:

Step 1 Download the exam practice test engine from the companion site.

Step 2 Respond to windows prompts as with any typical software installation process.

The installation process will give you the option to activate your exam with the activation code supplied on the paper in the cardboard sleeve. This process requires that you establish a Pearson website login. You need this login to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

Once the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process) as follows:

Step 1 Start the Pearson IT Certification Practice Test software from the Windows Start menu or from your desktop shortcut icon.

Step 2 To activate and download the exam associated with this book, from the My Products or Tools tab, click the Activate Exam button.
Step 3 At the next screen, enter the activation key from paper inside the cardboard sleeve in the back of the book. Once entered, click the Activate button.

Step 4 The activation process will download the practice exam. Click Next, and then click Finish.

When the activation process completes, the My Products tab should list your new exam. If you do not see the exam, make sure that you have selected the My Products tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the Open Exam button.

To update a particular exam you have already activated and downloaded, display the Tools tab and click the Update Products button. Updating your exams will ensure that you have the latest changes and updates to the exam data.

If you want to check for updates to the Pearson Cert Practice Test exam engine software, display the Tools tab and click the Update Application button. You can then ensure that you are running the latest version of the software engine.

Activating Other Exams

The exam software installation process, and the registration process, has to happen only once. Then, for each new exam, only a few steps are required. For instance, if you buy another Pearson IT Certification Cert Guide, extract the activation code from the cardboard sleeve in the back of that book; you do not even need the exam engine at this point. From there, all you have to do is start the exam engine (if not still up and running) and perform Steps 2 through 4 from the previous list.

Assessing Exam Readiness

Exam candidates never really know whether they are adequately prepared for the exam until they have completed about 30% of the questions. At that point, if you are not prepared, it is too late. The best way to determine your readiness is to work through the “Do I Know This Already?” quizzes at the beginning of each chapter and review the foundation and key topics presented in each chapter. It is best to work your way through the entire book unless you can complete each subject without having to do any research or look up any answers.

Premium Edition eBook and Practice Tests

This book also includes an exclusive offer for 70% off the Premium Edition eBook and Practice Tests edition of this title. Please see the coupon code included with the cardboard sleeve for information on how to purchase the Premium Edition.
This chapter covers the following topics:

- Cloud Computing and Traditional Data Center Networks
- The Opposite of Software-Defined Networking
- Network Programmability
- SDN Approaches
- Application Centric Infrastructure

This chapter covers the following exam objectives:

- 4.1 Describe network architectures for the data center
 - 4.1.b SDN
 - 4.1.b.1 Separation of control and data
 - 4.1.b.2 Programmability
 - 4.1.b.3 Basic understanding of OpenDaylight
 - 4.1.c ACI
 - 4.1.c.1 Describe how ACI solves the problem not addressed by SDN
 - 4.1.c.3 Describe the role of the APIC Controller
Network Architectures for the Data Center: SDN and ACI

In Chapter 10, “Network Architectures for the Data Center: Unified Fabric,” you learned about a series of technological innovations that Cisco amalgamated into a highly successful data center network architecture: Cisco Unified Fabric. Although such architecture has become a primary driver for the evolution of numerous data centers worldwide, it is essentially based on concepts and abstractions that were conceived during the 1970s and 1980s, as the Internet was being formed.

During the last half of the 2000s, inspired by the noticeable differences between networking and other computer systems, a group of researchers began to question whether established networking practices were actually appropriate for the future of IT. Through creativity and healthy naïveté, these researchers proposed many breakthrough new approaches to disrupt well-known network designs and best practices. These new approaches have been collectively given the umbrella term *Software-Defined Networking* (SDN).

As the world-leading networking manufacturer, Cisco has actively participated in developing the large majority of these cutting-edge approaches, while also creating many others. Combining innovation and intimate knowledge about customer demands, Cisco conceived a revolutionary data center network architecture called Cisco Application Centric Infrastructure (ACI). Specially designed for data centers involved in cloud computing and IT automation, ACI addresses many challenges that were overlooked by earlier SDN approaches.

As mentioned in Chapter 10, the CLDFND exam requires knowledge about two other Cisco data center networking architectures besides Cisco Unified Fabric: Software-Defined Networking and Cisco Application Centric Infrastructure. This chapter focuses on both, exploring the dramatic paradigm shifts they have caused in data center infrastructure and cloud computing projects.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read this entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 11-1 lists the major headings in this chapter and their corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to Pre-Assessments and Quizzes.”
Table 11-1 “Do I Know This Already?” Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Computing and Traditional Data Center Networks</td>
<td>1</td>
</tr>
<tr>
<td>The Opposite of Software-Defined Networking</td>
<td>2</td>
</tr>
<tr>
<td>Network Programmability</td>
<td>3</td>
</tr>
<tr>
<td>SDN Approaches</td>
<td>4–6</td>
</tr>
<tr>
<td>Application Centric Infrastructure</td>
<td>7–10</td>
</tr>
</tbody>
</table>

1. Which of the following is not a challenge data center networks bring to cloud computing?
 a. Scalability
 b. Provisioning model
 c. Resource decommission
 d. VLAN ID depletion for tenant isolation
 e. I/O consolidation

2. Which of the following options is not directly related to SDN?
 a. “Clean Slate” program
 b. OpenStack
 c. Network programmability
 d. Provisioning agility

3. Which of the following is not a generic network controller objective?
 a. Exclusively deploy the control plane of a network
 b. Network abstraction for simpler provisioning
 c. Aggregation of device information
 d. Single point of access for provisioning

4. Which of the following correctly define the network planes? (Choose all that apply.)
 a. The data plane corresponds to all processes related to the transport of data packets in a network device.
 b. The control plane makes the decisions that the data plane carries out.
 c. The data plane makes the decisions that the control plane carries out.
 d. The control plane takes care of all communications between network devices in traditional networks.
 e. The control plane is represented through software running on general-purpose CPUs, while the data plane is executed on specialized ASICs.
5. Which of the following is not a valid action for an OpenFlow network device?
 a. Send to SDN controller
 b. Send to egress interface
 c. Send to all ports except ingress
 d. Check TCP flags
 e. Send to input port

6. Which of the following is the main function of SAL in OpenDaylight?
 a. Provide abstraction for southbound protocols
 b. Directly configure OpenFlow compatible devices
 c. Handle REST API calls
 d. Clustering
 e. GUI

7. Which of the following is not an ACI component?
 a. Nexus 9000
 b. APIC
 c. AVS
 d. Nexus 1000V
 e. Partner ecosystem

8. Which of the following contains constructs that are not part of the ACI policy model?
 a. Context, tenant, subnet
 b. Broadcast domain, context, connectivity profile
 c. Contract, filter, subject
 d. Service chain, contract, EPG

9. Which of the following is not a function of APIC?
 a. Control plane
 b. Policy
 c. GUI
 d. Fabric management
 e. API

10. Which of the following are benefits from Cisco Application Centric Infrastructure? (Choose all that apply)
 a. Distributed default gateway
 b. VM provisioning
 c. Encapsulation normalization
 d. Multi-hypervisor integration
 e. Separation of control and data planes
Foundation Topics

Cloud Computing and Traditional Data Center Networks

Because cloud computing is an IT service delivery model, cloud implementations become more flexible as more infrastructure elements are orchestrated to support requests from a cloud end user. And as the main system responsible for transporting data to users and between cloud resources, the data center network should be included prominently in this integration.

However, some principles that supported the evolution of networking during the past 40 years are incompatible with the expectations surrounding cloud computing. In Chapter 10, you learned about techniques and designs created to satisfy the demands related to server virtualization escalation in data centers. For example, data center fabrics can definitely help cloud computing projects through the consolidation of Layer 2 silos that are still very common in classical three-tier topologies. And as a direct consequence, a fabric can more easily become a single pool of networking resources for a cloud software stack. Yet, the large majority of data center networks (and fabrics) are still provisioned through practically artisanal procedures. As an illustration, Figure 11-1 depicts a network configuration procedure that is probably happening somewhere as you read these words.

![Figure 11-1 Data Center Network Provisioning](image)

In the figure, a network engineer must provision the network to receive a new application consisting of virtual machines that can potentially be connected to any leaf port on this generic fabric. After some time translating the application requirements into networking terms, the professional performs the following operations:
Step 1. Creates three VLANs in every switch.

Step 2. Adds these VLANs to every leaf access port.

Step 3. Configures a default gateway for each VLAN at some point of this network (border leaves in the case of Figure 11-1).

Because most network engineers still use command-line interface (CLI) sessions or a device graphical user interface (GUI) to fulfill these steps, their resulting configurations are generally considered very error-prone and difficult to troubleshoot. And although some corporations maintain detailed documentation about past and current network configurations, this practice is hardly the norm for the majority of data center networks.

This simple example should already reveal to you the great chasm that exists between resource provisioning for networks and resource provisioning for other technologies such as server virtualization. To make matters worse, I'm personally aware of many companies in which VLANs can be added (or removed) only during monthly maintenance windows, invariably making the network team the biggest contributor to application deployment delays.

As you can easily deduce, such manual operations are highly unsuitable for cloud computing environments. For this reason alone, I completely understand why some cloud architects plan to pre-configure all 4094 available VLANs every port of a network, avoiding additional procedures during the provisioning of cloud resources. However, leveraging this design decision, these architects are disregarding important aspects such as

- Flooding and broadcast traffic may severely impact all ports, inadvertently affecting other cloud tenants.
- VLANs are not the only network consumable resource. Other configurations such as access-control lists (ACLs), firewall rules, and server load balancer services will still need provisioning as new tenants sign up for cloud services.

Whereas cloud computing environments may be prepared to welcome new tenants, they should also expect that any of them may discontinue cloud services at any time. And because the network resources for a tenant are essentially defined as a set of configuration lines spread over multiple devices, decommissioning is considered an almost insurmountable obstacle in traditional networks. Consequently, even after tenants or applications are discontinued, their corresponding VLANs, routes, ACL entries, and firewall rules continue to clutter troubleshooting procedures forever.

With the popularization of cloud computing projects, and the increasing demand for automation and standardization in data centers, networks began to be seriously reexamined within academic studies, service provider meetings, and boardrooms in light of the new SDN technologies.

The Opposite of Software-Defined Networking

The formal beginning of many SDN initiatives happened in 2006 with Stanford University’s Clean Slate Program, a collaborative research program intended to design the Internet as if it were being created anew while leveraging three decades of hindsight.
As clearly stated in its mission, Clean Slate did not outline a precise approach, a decision that enabled program participants to pursue extremely creative small projects and very interesting endeavors. And even after its deactivation in 2012, the project’s legacy is apparent today in the numerous network solutions being offered to support automation and cloud computing deployments in enterprise corporations and service providers.

Unsurprisingly, presenting a conclusive definition for SDN is quite difficult. This difficulty is compounded by the SDN marketing bandwagon. With huge interest in SDN turning into hype in the early 2010s, many vendors tried to associate SDN as closely as possible with their own approach. As an example, the following list paraphrases some definitions of SDN I have compiled after a quick web search:

- “SDN is an approach to computer networking where IT administrators can manage networks through the abstraction of lower-level functionalities.”
- “SDN is an emerging architecture that can be translated into speed, manageability, cost reduction, and flexibility.”
- “SDN enables network control to become directly programmable as the underlying infrastructure is abstracted for applications and network services.”
- “SDN is the virtualization of network services in order to create a pool of data transport capacity, which can be flexibly provisioned and reused according to demand.”

As you can see from this small sampling, such definitions of SDN wildly vary from precise descriptions of specific technologies to very vague statements. In my humble opinion, the effort to propose a definitive conceptualization of SDN is futile simply because these new approaches are intended to break current paradigms and, consequently, are only bounded by creativity.

Because this chapter will explore SDN approaches that will contradict the statements made previously, allow me to introduce a definition for SDN in a different manner.

According to John Cleese (genius from legendary comedy troupe Monty Python and neuropsychological studies enthusiast), nobody really knows how creativity actually happens, but it is pretty clear how it does not. Furthermore, as Cleese jokes in his famous lectures about creativity and the human mind, a sculptor explained his method of creating beautiful elephant statues: simply remove from the stone what is not an elephant.

In a similar vein, allow me to propose the following question: what is the opposite of SDN for you? Please give yourself some time for reflection before reading the next paragraph.

If you believe hardware-defined networking (HDN) is the correct answer, you are not alone. Respectfully, I do not agree with that answer, for what I think are some compelling reasons. Since the inception of the ARPANET in the late 1960s, networks have been based on devices composed of both hardware and software (network operating system), the latter of which is as carefully designed and developed as other complex applications such as enterprise resource planning (ERP). In its current model, neither hardware nor software defines how a network behaves, but rather a higher layer of control called Homo sapiens defines its behavior. Because this “layer” is directly involved in every single change on most networks, I believe human-defined networking genuinely represents what is not SDN. (But if you still prefer hardware-defined networking, at least we can agree on the same acronym.)
As a result, SDN can be defined as the set of technologies and architectures that allow network provisioning without any dependence on human-based operations. In truth, such conclusion may explain why the large majority of SDN approaches (including OpenFlow and Cisco ACI, which will be discussed in a later section) pursue the concept of the network as a programmable resource rather than a configurable one. And as many network professionals can attest, manual configurations can easily become an operational headache as more changes are required or the network scales.

The ways in which programming can help remove these repetitive menial tasks will be further explored in the next section.

Network Programmability

Figure 11-1 earlier in the chapter portrays all the characteristics of a configurable network. In this type of network, a design is essentially an abstraction shared by a set of human brains and, with some luck, expressed in some kind of documentation. As I have explained, network engineers employ CLI sessions (using Telnet or SSH protocols) or a device GUI to manually issue commands on each network device (including switches, routers, firewalls, and so forth).

Network Management Systems

Although some network professionals still insist on using text files containing multiple lines of commands pasted into a CLI (you are only allowed to laugh about this ingenious technique if you have never used it), many others employ a network management system (NMS) to speed up the network configuration process. As Figure 11-2 demonstrates, these systems scale the range of each single configuration change, extending it to a larger group of network devices, from a provisioning standpoint.
An NMS can be considered a variation of manual configurations because human interaction is still required on the majority of operations. After receiving an order from an operator, an NMS usually issues a batch of CLI commands or Simple Network Management Protocol (SNMP) requests to multiple devices in a network or fabric.

Generally speaking, an NMS still requires from its operators a deeper knowledge about managed devices and their role within the network topology. For this reason, these management systems are usually challenging to operate in multi-vendor networks.

TIP Cisco Data Center Network Manager (DCNM) is the most common choice of NMS for Nexus-based networks. You can find more details about this solution in Chapter 13, “Cisco Cloud Infrastructure Portfolio.”

Automated Networks

Notwithstanding, the evolution of NMSs carried the seeds for the next step in network provisioning. Through wizards and tools, these systems introduced automation to many network teams. In essence, this concept is defined as the ability of a network to deploy complex configurations through predefined tasks without the need of human intervention.

Automated networks commonly require the use of orchestration software (orchestrators) and the creation of workflows containing multiple standardized procedures that need to be executed in order. These orchestrators usually provide graphical tools and out-of-the-box tasks that enable network engineers to build custom workflows based on best practices and specific company requirements.

As an example, Figure 11-3 exhibits how an orchestrator can automate the creation of the same resources described in Figures 11-1 and 11-2.

In Figure 11-3, before any effective configuration, the network engineer builds (or imports) workflows on the orchestrator using the same three network operations depicted in Figure 11-2 (create VLANs, add VLAN to all access ports, and create default gateways). With this scenario, this workflow can be summoned through a single action (“Tenant Network” in this example). Additionally, to avoid cumulative errors and incomplete configurations, workflows have the capability to reverse all previously executed configurations in the case of an error in the execution of any task.

Much like NMSs, most network orchestrators usually require previous information such as IP address, hardware model, and software version before executing any workflow. But rather than executing each procedure manually, network engineers can focus on building efficient workflows and monitoring their execution in such networks. As mentioned in Chapter 4, “Behind the Curtain,” this arrangement typically is adopted in cloud computing environments via cloud orchestrators that can coordinate devices from multiple infrastructure areas, including server, storage, and (of course) networking.
Figure 11-3 Network Automation

TIP Although its name may not advertise its cloud credentials, Cisco Unified Computing System (UCS) Director is one of the most complete cloud orchestrators available at the time of this writing. In addition to containing numerous predefined tasks for Cisco data center solutions, UCS Director provides out-of-the-box support for third-party devices and a graphical tool for workflow composing.

Even with the gradually increasing adoption of network automation, the flexibility automated networks achieve still pales when compared with fully programmable resources, such as servers and microcomputers. To better explain this gap, let’s take a brief digression into the subject of software development.

Programmable Networks

A computer program (or application) can be defined as a sequence of instructions written to perform a specific task on a computer system. A software developer uses keywords and the syntax of a programming language to develop a source code. When executed, the code consumes computing resources to fulfill the original objective of the program.

Computer programmers increase the usefulness of their programs by making them compatible with a wide array of hardware platforms and operating systems. Suitably, programming languages are usually not concerned with the specific characteristics of a computer system. Instead, their functions are abstracted enough to allow a compiler or interpreter to translate them into machine language, which includes a CPU basic instruction set and memory management.
Hence, what would constitute a **programmable network**? In similar terms, this network should offer a collection of instructions that allows the development of programs executing specific tasks on a network.

Figure 11-4 explores a simple example of a network application.

Figure 11-4 Network Programmability

In this scenario, a network application was built to deploy a tenant network using the following pseudocode:

- **Step 1.** Span the topology to check which VLANs are already in use.
- **Step 2.** With such information, calculate which three VLANs in the available pool can be used for the next tenant.
- **Step 3.** Configure the VLANs in the network devices.
- **Step 4.** Add the VLANs to all server ports.
- **Step 5.** Locate which device has routing capabilities and configure the default gateway for these VLANs.

Through this simple example, you can already recognize the tremendous potential for network programmability. Because it provides tools for software development, customers can create custom solutions for their specific problems, rather than waiting for vendor roadmaps.

Furthermore, code sharing can greatly reduce the amount of development effort spent on network programming. For example, using resources such as GitHub or other open source communities, developers can leverage existing programs as if they were assembly parts on their projects, and even share the final result with the development community, in a rather virtuous circle of network modernization.

To support the interest in programmable networks, a set of sophisticated tools was added to network devices, including

- **Application programming interfaces (APIs):** As explained in Chapter 4, a well-designed API greatly facilitates the writing of source code for network applications. Roughly speaking, an
API offers an easy alternative for applications that would be forced to parse strings containing outputs from a CLI session to gather information required for an algorithm decision.

- **Embedded programming languages**: A network device can facilitate network application execution through a programming language interpreter running on its operating system. With such a feature, reactions can be performed as soon as a network event occurs. As an example, the Nexus 9000 switches possess a Python interpreter, Python being an extremely popular language among infrastructure developers due to its flexibility and easiness to learn.

- **Access to lower-level software**: Most network operating systems depend on application-specific integrated circuit (ASIC) firmware and operating systems such as Linux to coordinate their boot. Consequently, some developers are keenly interested in accessing these lower-level software pieces to achieve specific results, increase visibility over device information, and leverage open source code.

- **Application hosting**: Rather than demanding external computers to run network programs, network devices can offer computing resources for application hosting in the form of dedicated hardware modules or space in the their supervisor (running VMs or Linux containers). Moreover, these devices offer a highly strategic position for their hosted applications because they can gather data that may be impossible (or simply too expensive) for external computers to gather.

- **Configuration management software**: This category of software includes open source configuration management utilities with a declarative language that describes the target state for an IT resource (a server, storage device, and, as you can guess, a network device). Arguably, the best known examples of configuration management software are Puppet, Chef, and Ansible. Cisco NX-OS supports many of these intent-based automation methods through embedded client software such as Puppet agent and Chef client (Ansible is agentless), which allows provisioning, configuration, and management tasks from their server component (Puppet master, Chef server, or Ansible control nodes, respectively). Besides repetitive and error-prone configuration tasks involving VLANs, QoS, and ACLs, these tools are also used for network device PowerOn Auto Provisioning (POAP), the automated process of upgrading software images and installing configuration files on Cisco Nexus switches that are being deployed in the network for the first time.

- **Extensible Message and Presence Protocol (XMPP)**: XMPP is open technology that is commonly used for instant messaging and presence. Through an embedded XMPP client, network devices can be easily integrated into an efficient message bus and, therefore, be configured as a group.

Although these tools can help turn networks into a programmatically consumable resource, their highly variable types of network topology and potential large number of devices bring an immense complexity to network application development. Moreover, devices usually perform different roles inside these topologies (core, aggregation, access, spine, and leaf, for example) and include a broad spectrum of networking services such as firewalls, server load balancers, and network analyzers.

Network controllers were created to facilitate the interaction with distinct topologies and network implementations. Basically, these controllers are responsible for the complete configuration of managed network devices, offering a simpler view of the whole network for application developers.
Figure 11-5 portrays the concept of a network controller in more detail.

Figure 11-5 Using a Network Controller

Acting as a point of aggregation for all communication with network programs and other applications (which are northbound from the controller), a network controller hides the network complexity from these software pieces. Meanwhile, all “low level” operations are executed through a variety of communication procedures with the controlled network devices (southbound from the controller).

Network controllers are not exactly a brand new concept. Besides being very popular for indoor wireless implementations, these controllers have been used as a central point of arbitration of WAN optimization features that leverage IP service-level agreement (SLA) traffic probes. Also, in an interesting way, one can argue that the Nexus 1000V Virtual Supervisor Module (VSM) also acts as a controller for the Virtual Ethernet Modules (VEMs), as explained in Chapter 6, “Infrastructure Virtualization.”

NOTE It is important that you understand the software components I have discussed in this section (NMS, orchestrator, network programs, and controllers) more as functions than products per se. Such advice will be useful for you in the future, as you get to know orchestration solutions that have programmability features, network controllers with automation tools, and so forth.

SDN Approaches

Even through the great tornado of innovation in recent years, it is already possible to observe two SDN approaches that have generated more interest from companies looking for more dynamic data center networks:
Separation of the Control and Data Planes

There are many ways to categorize functions on a network device. One of the most popular methods uses network planes to characterize these processes. Table 11-2 describes the main differences between the data and control planes.

<table>
<thead>
<tr>
<th>Network Plane</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data plane</td>
<td>Comprehends all the elements that handle the transport of data packets between two or more ports on a network device. Also known as the forwarding plane, the data plane can be viewed as the “muscle” that offers forwarding capacity to a device.</td>
</tr>
<tr>
<td>Control plane</td>
<td>Encompasses all elements that process traffic directed to the networking device itself. Dynamic routing protocols are an example of control plane processes. Leveraging the human body metaphor from the row above, the control plane can be considered the “brain” of a network device because it uses information received from a network administrator or other devices to correctly control the data plane elements.</td>
</tr>
</tbody>
</table>

NOTE You may encounter several technical books and articles that define an additional plane. In these sources, the management plane reunites all device components that exclusively deal with management operations, such as the CLI, GUI, and SNMP. For the sake of simplicity, I will consider that these elements are part of the control plane in this writing.

One of projects spawned from the Clean Slate program is OpenFlow. Its enthusiasts state that whereas the data plane already possesses a great abstraction model (the famous Open Systems Interconnection [OSI] layers), the control plane does not share the same advantage on traditional network devices. Instead, for each new control plane problem (such as route exchange and topology discovery), an additional process is stacked into the network operating system, with low modularity and development efficiency.

Because these processes are part of a vendor network operating system design, there is very little standardization in how the control plane is built between solutions from different manufacturers. And as I have discussed in the section “Network Programmability,” such disparity greatly challenges the use of networks as programmable resources.

As a counterpart to these difficulties, OpenStack suggests a radically different approach, which is summarized in Figure 11-6.
As represented on the left side of Figure 11-6, traditional network devices incorporate both control and data planes. In an OpenFlow network, shown on the right, an SDN controller is deployed to consolidate all control plane processes. As a consequence, the distributed network devices only execute data plane functions according to received orders from the controller.

By definition, any network controller enjoys a privileged position in a network because it sends and receives information from all controlled devices through a southbound protocol. By concentrating all control plane decisions from a network, an SDN controller can recognize events and patterns detected on the devices and induce reactions that may be simply impossible to replicate in a network composed of distributed control planes.

The OpenFlow Protocol

The lack of control plane processes on the network devices demands a very detailed behavior description from the SDN controller. Such operation is carried out by the southbound protocol eponymously named OpenFlow, which essentially constitutes a low-level method that configures a network device through the manipulation of its internal flow table.

In a nutshell, the flow table represents how the network device hardware forwards an IP packet or an Ethernet frame. For the sake of simplicity, let's consider the MAC address table on a traditional Ethernet switch as an example of a flow table. Under this prism, the device uses the table to select a forwarding decision according to the destination MAC address on a frame. Figure 11-7 illustrates the most common actions on these devices.
Chapter 11: Network Architectures for the Data Center: SDN and ACI

Figure 11-7 Ethernet Traditional Forwarding

Figure 11-7 shows three situations involving the same Ethernet switch, whose single MAC address table entry signals that all frames with a destination MAC address A should be sent to interface 2. The first situation, on the left, represents unicast forwarding, where the switch sends the frame according to an existing MAC address table entry.

If the switch receives a frame with a MAC address that is not in the table, it forwards the frame to all ports except the one from which it received the frame, in a process called flooding, as shown in the center of Figure 11-7. A similar behavior happens when a broadcast frame arrives at a switch port with an explicit destination address ffff.ffff.ffff, as shown on the right. Under these circumstances, the switch MAC address table defines a single traffic class (frames with destination MAC address A) and performs either of two actions: forwards to an interface or forwards to all other interfaces.

Adversely, the flow table on an OpenFlow device demonstrates much more flexibility when compared with a MAC address table. Besides destination MAC address, OpenFlow allows the use of many other fields from Ethernet, IP, TCP, and UDP headers as conditions for a pre-established action.

In OpenFlow implementations, the SDN controller is solely responsible for flow table entry insertion and deletion for all controlled devices. An as an illustration, Figure 11-8 highlights an SDN controller sending a flow entry to a device via the OpenFlow protocol.

Figure 11-8 OpenFlow Protocol

In the figure, the SDN controller populates the flow table of an OpenFlow switch with an entry that defines that all incoming frames from interface 1 that are tagged with VLAN 400 must be forwarded to interface 4. While this entry defines source-based forwarding, OpenFlow allows multiple other combinations to create very specific traffic classes.
Also, the protocol offers a wide range of actions that can be applied to these classes, such as

- Forward to all other ports
- Encapsulate and forward to the SDN Controller for further analysis
- Drop

A famous philosopher named Stan Lee once said: “With great power there must also come—great responsibility.” Whereas flow programming allows almost endless possibilities of traffic forwarding, the SDN controller must consider all required behaviors from an OpenFlow device when it populates flow table entries. For example, if broadcast communications are desired to support ARP requests, the SDN controller must insert a flow entry specifying that frames with MAC address ffff.ffff.ffff must be forwarded to all other ports on all devices. In addition, the controller must introduce flow entries to avoid loops and allow the communication with non-OpenFlow devices. Taking these precautions into account, OpenFlow brings huge value for academic research and for networks that demand an extremely high level of customization.

Unlike other protocols, OpenFlow is standardized by the Open Network Forum (ONF), a nonprofit, user-driven organization dedicated to the adoption and improvement of SDN through open standards. Cisco, among many other networking vendors, is a member of ONF.

Since its formation in 2011, ONF has primarily focused on the development of the OpenFlow protocol, releasing new versions with enhancements such as

- Additional flow headers as VLAN Class of Service (CoS) and IP Type of Service (ToS)
- Additional OpenFlow device actions such as: redirecting the packet to the device local CPU or forwarding it back to input port.

More details about OpenFlow can be found at http://www.opennetworking.org.

OpenDaylight

Although the OpenFlow protocol can unlock great potential for innovation on networks that require granular forwarding policies, this southbound communication standard is only one part of an SDN implementation. As a fairly simple protocol, OpenFlow relinquishes more responsibilities to the SDN controller. Besides, to fulfill one of the original main objectives of the Clean Slate Program, a programmable network architecture must also address topics such as northbound API definitions, controller performance and availability, and the inclusion of other southbound protocols for legacy solutions.

Many networking vendors (including Cisco) and open development communities have effectively addressed these gaps via a joint effort called OpenDaylight (ODL). Founded in 2013 and led by the Linux Foundation, this collaborative project originally aspired to attain the following objectives:

- Provide a common architectural framework and a robust array of services to enable a wide breadth of applications and use cases for SDN and network function virtualization (NFV)
Chapter 11: Network Architectures for the Data Center: SDN and ACI

- Offer an open, highly available, modular, extensible, scalable, and multiprotocol controller infrastructure built for SDN deployments on modern multivendor networks
- Enable a service abstraction platform that allows the development of network applications that can be ported to a wide array of network devices and southbound protocols

Figure 11-9 introduces the original structure of the OpenDaylight architecture.

![OpenDaylight Architecture](image)

From top to bottom, the architecture delineates how users and applications can interact with the OpenDaylight controller. Besides supporting a modular RESTful API and a default GUI (OpenDaylight User Experience [DLUX]), the ODL controller also communicates to applications through northbound interfaces such as these:

- **Virtual Tenant Network (VTN) coordinator**: Application that builds virtual networks in ODL controllers
- **OpenStack Neutron**: OpenStack networking project (discussed later in more detail in the section “Around the Corner: OpenStack Neutron”)
- **SDN Interface (SDNi)**: OpenDaylight project that intends to enable inter-ODL controller communication

Inside the controller structure, a number of network and platform services process the northbound requests that were handed to the API layer. At the time of this writing, the ODL controller deploys a varied array of services, including topology manager, stats manager, switch manager, and host tracker.

The **Service Abstraction Layer (SAL)** exposes the network devices to the controller services just described, providing a uniform network abstraction to them. The SAL facilitates the implementation of many different southbound protocols, covering a wide range of network devices. Besides supporting OpenFlow, legacy network devices can also join an ODL implementation through open protocols such as Network Configuration Protocol (NETCONF).
and SNMP. And as Figure 11-9 shows, the SAL also supports the inclusion of vendor-specific southbound protocols, forming an extremely flexible SDN framework.

Development has been particularly intense during these first few years of ODL. The project has already offered a downloadable free controller at each of its first three releases: Hydrogen (February of 2014), Helium (September of 2014), and Lithium (June of 2015).

As commented, Cisco and other vendors, such as IBM, Citrix, Red Hat, and Intel, have participated intensively in the development of ODL. The Cisco Open SDN Controller represents the company’s supported distribution of ODL. Thoroughly prepared for production environments, the solution currently offers the following features:

- **Clustering**: Enables high availability and scalability for the controller
- **Open Virtual Appliance (OVA) packaging**: Enables easy installation as a virtual appliance running on VMware vSphere ESXi and Oracle VM VirtualBox
- **Java APIs**: Enable the creation of embedded functions for customized controller capabilities
- **Southbound protocols**: Support OpenFlow (version 1.0 and 1.3), NETCONF, BGP Link State (BGP-LS), and Path Computation Element Communication Protocol (PCEP)
- **Role-based access control (RBAC)**: Provides controlled administrative access to local and remote accounts defined on LDAP and RADIUS servers

Figure 11-10 displays a screenshot from the Cisco Open SDN Controller.

Figure 11-10 Cisco Open SDN Controller Sample Screenshot
Figure 11-10 highlights a basic topology view from the OpenFlow Manager application. In this screen, you can observe that the Cisco Open SDN Controller is managing the flows on seven OpenFlow devices (openflow:1 to openflow:7).

Software-based Virtual Overlays

In Chapter 6, you learned about Virtual eXtensible Local Area Network (VXLAN) and the benefits this technology brings to VM connectivity. Allow me to refresh your memory:

- VXLAN provides VM-to-VM communication without requiring additional provisioning on the physical network.
- VXLAN offers network isolation with more than 16 million segments (versus 4094 possible VLAN segments in a single physical network).
- VXLAN avoids MAC address table depletion in physical switches because the number of VMs may grow significantly.

Leveraging the concept of network planes, an **overlay** can be formally defined as a virtual data plane built on top of another network through logical connections (or tunnels) between network devices that can perform such encapsulation. VXLAN, along with other techniques such as Overlay Transport Virtualization (OTV), Ethernet-over-MPLS (EoMPLS), and Network Virtualization using Generic Routing Encapsulation (NVGRE), can create overlays through the encapsulation of Ethernet frames in IP packets.

NOTE NVGRE is a virtual overlay protocol created by Microsoft for its server virtualization platform (Hyper-V). Although it shares many similarities with VXLAN (such as number of segments), NVGRE endpoints encapsulate Ethernet frames in GRE packets instead of UDP datagrams.

SDN solutions based on **software-based virtual overlays** use an Ethernet-over-IP encapsulation technology in the following terms:

- Encapsulation is done inside of hypervisors (through kernel modules or specialized VMs).
- These solutions primarily extend Layer 2 domains across a fairly static physical network.
- These solutions usually include network controllers to manage virtual switches running on virtualized hosts. These controllers rarely have any interaction with the physical network, except for the supported hardware gateways.

Figure 11-11 portrays the generic architecture of a software-based virtual overlay SDN solution.
Within such architecture, the controller creates virtual broadcast domains to connect VMs according to a request to the controller. The network overlay controller must also configure a physical gateway to provide external communication with servers and networking services connected to the physical network. Alternatively, it may create VMs that act as gateways to provide external communication to existing VLANs.

Besides providing Layer 2 connectivity for VMs, some software-based virtual overlay solutions also aggregate virtual networking services providing routing, firewalls, and server load balancing.

TIP In my opinion, the Cisco Virtual Application Cloud Segmentation (VACS) deploying VXLAN segments is the Cisco product that most closely approximates to software-based virtual overlay solutions. VACS was briefly discussed in Chapter 7, “Virtual Networking Services and Application Containers.”

Application Centric Infrastructure

Besides supporting and leading many SDN initiatives, Cisco has used its considerable knowledge of customer challenges to create a revolutionary new SDN approach for agile data centers. But to fully express the impact Cisco Application Centric Infrastructure (ACI) can achieve in data center networking, I will first introduce some of the oversights and limitations from both SDN approaches discussed in the previous sections.

Problems Not Addressed by SDN

The first half of the 2010s has seen a wide variety of innovative approaches and sophisticated technologies added to the SDN spectrum. Among these, OpenFlow and software-based network overlays are arguably the most widely known SDN approaches for data center networks, so we will focus on some of the shortcomings they have encountered in real-world implementations.

The benefit of hindsight allows the observation of the following challenges encountered in OpenFlow implementations in data centers:
Operational complexity: When compared to WANs, data center networks have more bandwidth resources, which significantly lessens the advantages of forwarding traffic through anything different than destination IP or MAC addresses. Consequently, the complexity associated with managing flow tables may not be justified in these relatively simple environments.

Scalability: Whereas most data center switches (including Nexus series) possess enough memory to store MAC address and ARP entries, OpenFlow-enabled switches typically leverage a special type of memory space called Ternary Content-Addressable Memory (TCAM) to deploy their flow table. Depending on the switches’ hardware architecture, the TCAM space can become quite limiting for large-scale OpenFlow deployments.

Reliability: OpenFlow follows an imperative model, where a network controller must state exactly how each managed object should perform each configuration change and must remain fully aware of the state of each controlled device. As a result, SDN controllers may become seriously challenged as these networks scale, running into issues such as processing intensity and disruptive execution errors. And more importantly, the tight relationship between controller and network device can lead to calamitous events on an OpenFlow network, in the case of a complete failure on the controller.

Similarly, production implementations of software-based virtual overlays have faced some practical difficulties such as these:

Lack of visibility: These solutions commonly do not address the additional effort required to manage an underlying physical network infrastructure. And because management tools from the physical network cannot be applied to the encapsulated traffic, this SDN approach decreases mutual visibility between the physical and the virtual network teams, making troubleshooting even harder.

Limited applicability: Because they are intrinsically linked to the hypervisor architecture, software-based network overlay solutions usually cannot deploy network policies over bare-metal servers and VMs running on other hypervisors.

Scalability: The majority of these solutions recommend the use of software gateways running on a VM or server-based appliances, which are subject to bandwidth and packet processing limits. Additionally, packet replication used for broadcast and multicast traffic can be extremely taxing for servers deploying overlays.

Although these approaches deploy innovative methods to change provisioning processes, they are still deeply attached to network-centric entities such as flow table entries or broadcast domains. Hence, they did not fully grasp the opportunity to radically rethink data center networks by focusing on their main objective: rapid and reusable connectivity for application deployment. In the following sections, you will learn how Cisco ACI has embraced this opportunity.

ACI Architecture

Designed to become the most effective SDN approach for modern data centers, the Cisco Application Centric Infrastructure has three main components, which are described in Table 11-3.
Table 11-3 Cisco ACI Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexus 9000 switches</td>
<td>Their unique hybrid architecture that uses general-purpose and Cisco ASICs enables these specialized data center switches to deploy all ACI features without performance issues. Available in multiple models, these devices can become part of an ACI fabric through a variant of the NX-OS operating system called ACI Fabric OS.</td>
</tr>
<tr>
<td>Application Policy Infrastructure Controller (APIC)</td>
<td>This network controller is responsible for provisioning policies to physical and virtual devices that belong to an ACI fabric. Rather than using the imperative model for this endeavor, APIC issues declarative orders to ACI-enabled devices stating which changes are required but not how they should be implemented.</td>
</tr>
<tr>
<td>Ecosystem</td>
<td>APIC handles the interaction with other solutions besides Nexus 9000 switches, which include Cisco Adaptive Security Appliances (ASA) firewalls, Cisco Application Virtual Switch (AVS), VM managers such as VMware vCenter, Microsoft System Center Virtual Machine Manager (SCVMM), application delivery controllers from companies such as F5 and Citrix, and cloud orchestration systems such as OpenStack.</td>
</tr>
</tbody>
</table>

TIP Nexus 9000 switches are discussed in further detail in Appendix A.

Figure 11-12 clarifies how these elements are combined to form an ACI fabric.

![ACI Fabric Diagram](image)

Figure 11-12 ACI Fabric

The figure highlights that ACI employs a spine-leaf topology, whose main characteristics and benefits were already explained in Chapter 10 (scalability of ports through the addition of
leaves and bandwidth scaling through the deployment of more spines. In particular, an ACI fabric must minimally deploy 40-Gigabit Ethernet connections between Nexus 9000 switches running in ACI mode.

A cluster of APIC controllers manages all switches in an ACI fabric and interacts with ecosystem components such as firewalls, application delivery controllers, and VM managers. Through a powerful GUI and a highly interoperable REST API, APIC centralizes connectivity-related requests that may come from administrative users and a wide range of network applications.

How exactly these elements are configured is perhaps the secret sauce of ACI, which I will share with you in the next few sections.

ACI Policy Model

In a traditional network, application connectivity must be translated into multiple per-device and per-port configurations. Thus, these rather dispersed configurations chain together three characteristics that every endpoint has: identity (IP and MAC addresses), locale (port or VLAN), and traffic rules (IP subnet declared on an ACL, for example). And because these characteristics are so intertwined in traditional network abstractions, any change on one of them certainly requires modifications in at least another one.

As an illustration, imagine that a physical server is connected to an access port that belongs to VLAN 400 (locale). Due to this assignment, the server is probably included in a predefined IP subnet and is recognized through its IP and MAC addresses (identity) with its traffic being controlled by a security policy (such as ACL and firewall rules) referring to its IP address (traffic rule).

Now observe how the following hypothetical simple changes provoke subsequent adaptations in multiple points of the network:

- **What if you need to change the server IP address?** You will probably have to change its port configuration as well as its associated security policies.
- **How do you move a device without changing its IP address?** You will probably have to reconfigure the destination port to support this migration.
- **What if you need to move the server from a development to a production environment?** IP readdressing is possibly required as well as a connection to another port, and a reconfiguration of security rules for production traffic.
- **How do you apply the same security rules to devices located in different subnets?** Most environments are able to duplicate the number of firewall rules and ACL entries to address this problem.
- **If an application is decommissioned, how do you update security rules?** A thorough rule analysis is required to verify if an ACL entry or firewall rule deletion will disrupt other services that are sharing the same subnet with the components of the decommissioned application.

As an SDN approach, one of the ACI key differentiators is its connectivity *policy model*, which is cleverly designed to manage all aspects of a fabric through policies and objects. More specifically, APIC can faithfully represent an application network requirement through a simple text file, which can be easily replicated, decommissioned, and ported to another ACI fabric.
In a nutshell, the ACI policy model is defined through the logical constructs outlined in Table 11-4.

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenant</td>
<td>Policy repository that allows both administrative and traffic segregation from other tenants. A tenant may characterize different customers, business units, groups, or (rather conveniently) cloud tenants. Besides custom tenants created by APIC administrators or external orchestrators, ACI has predefined tenants such as common (contains policies that are accessible to all tenants), infrastructure (contains policies that govern infrastructure resources), and management (contains policies that control the operation of fabric management functions used for in-band and out-of-band configuration of fabric nodes).</td>
</tr>
<tr>
<td>Context</td>
<td>Private network on a tenant, which defines a separate IP space (Layer 3 domain) where all endpoints must have unique IP addresses. A context can be correlated to a Virtual Routing and Forwarding (VRF) instance on a traditional router, as you have learned in Chapter 10. A tenant may deploy multiple contexts.</td>
</tr>
<tr>
<td>Bridge domain</td>
<td>Represents a Layer 2 forwarding construct within the fabric and, for that reason, must belong to a context. It defines a unique MAC address space and flood domain (if flooding is enabled). A context may contain multiple bridge domains.</td>
</tr>
<tr>
<td>Subnet</td>
<td>Classical IP subnet that must be associated to a bridge domain. A bridge domain must have at least one subnet and may incorporate multiple others.</td>
</tr>
<tr>
<td>Endpoint</td>
<td>Physical or virtual device that is (directly or indirectly) connected to an ACI fabric. Each endpoint is characterized by IP and MAC addresses, location, and additional attributes (such as version and patch level).</td>
</tr>
<tr>
<td>Endpoint group (EPG)</td>
<td>Logical construct gathering a collection of endpoints that are associated dynamically (for example, through communication with a VM manager) or statically (using a port or a VLAN, for example). By definition, each EPG encompasses endpoints that share common policies. Observation: An EPG called vzAny is a convenient way to refer to all EPGs in a context and to reduce the number of policies for management or shared resources purposes (such as AAA and DNS servers).</td>
</tr>
<tr>
<td>Contract</td>
<td>Defines how EPGs can communicate with each other through traffic rules that include allowed protocols and Layer 4 ports. Without a contract, inter-EPG communication is disabled by default (whitelist behavior). Conversely, intra-EPG data transmission is always (implicitly) allowed. A contract can also control the communication between EPGs from different tenants.</td>
</tr>
<tr>
<td>Application profile</td>
<td>Models the connectivity requirements for all components of an application. It represents the logical container for EPGs and associated contracts.</td>
</tr>
<tr>
<td>External network</td>
<td>Controls connectivity to networks that are external to the ACI fabric. They can be Layer 3 or Layer 2, depending on how these networks connect to a tenant private network. A tenant can connect to multiple external networks.</td>
</tr>
</tbody>
</table>
Chapter 11: Network Architectures for the Data Center: SDN and ACI

NOTE In an ACI fabric, any leaf switch that provides connectivity to external devices such as edge routers and Data Center Interconnect (DCI) switches is commonly referred to as a *border leaf*. Depending on whether an external network is reachable through Layer 3 or Layer 2, the border leaf interface that is connected to such an external device is configured as a *routed interface* (with an optional routing protocol) or a *bridged interface*, respectively.

In Table 11-4, you may have noticed traces of a strict hierarchy between ACI logical constructs. As a visual aid for you, Figure 11-13 addresses the ACI Management Information Tree (MIT) structure through a custom tenant example.

![ACI Policy Model](image)

Figure 11-13 ACI Policy Model

In the figure, you can observe how an ACI fabric (henceforth referred to as *root*) is subdivided into many tenants, including the aforementioned common, infrastructure, and management predefined tenants. Only Tenant1 is shown in full for purposes of discussion.

Tenant1 has an external network (ExtNetwork1) and a private network (Context1), the latter of which contains two bridge domains (BridgeDomain1 and BridgeDomain2). Much like VLANs on traditional networks, each bridge domain defines a broadcast domain that may contain more than one subnet. As a consequence, a subnet aggregates endpoints that can directly exchange Ethernet frames, whereas inter-subnet communication requires routing from the fabric as well as default gateways for each subnet. In Figure 11-13, BridgeDomain1 and BridgeDomain2 contain a single subnet each (Subnet1 and Subnet2, respectively).

Further down the tree, Subnet1 accommodates a single endpoint group (EPG1) representing a collection of endpoints that should be handled in the same way by the fabric. Subnet2 contains two EPGs (EPG2 and EPG3).

Finally, Figure 11-13 depicts an application profile (AppProfile1) encompassing all three EPGs and a fourth, special EPG (ExtEPG1), generated from ExtNetwork1 and representing a set of endpoints that is reachable through an external device. As an example, this EPG can speak for a specific IP subnet in a corporation WAN, or even the whole Internet.
In summary, the application profile fully delineates the connectivity the ACI fabric must provide to an application. For this purpose, it leverages contracts (Contract1, Contract2, and Contract3) to enforce specific traffic classes between each pair of EPGs.

The application profile can be considered the grand finale for the highly flexible ACI policy model simply because it embodies the reasoning behind “application centricity.” Undoubtedly, the policy model provides a much easier language for application designers to describe and consume connectivity from a data center network, making ACI one of the most appropriate solutions for automated data centers.

In ACI, the APIC cluster uploads these logical constructs into the members of the fabric, where they are rendered into concrete device configurations. Figure 11-14 exhibits some of the elements from Tenant1 in an ACI fabric.

![Figure 11-14 ACI Fabric and Application Profile](image)

As you can see, all non-external EPGs are represented in the drawing as rounded rectangles grouping VMs or physical servers, while the external EPG is referring to a WAN subnet reachable through a router. From the moment an application profile is provisioned in APIC, the fabric becomes responsible to adhere to all of the profile-related policies, classifying endpoints into EPGs and strictly allowing inter-EPG traffic according to the explicit contracts and denying everything else.

Concerning EPGs

The enormous potential of EPGs in a fabric is usually not readily discernible for ACI newcomers. However, by not drawing the connections between endpoints and leaves in Figures 11-12 and 11-14, I have already hinted at some of its flexibility. As you have already learned in the section “ACI Policy Model,” traditional network provisioning ends up locking identity, local, and traffic rules for one simple reason: IP addresses are generally used as raw material for all three characteristics. Conversely, EPGs break the dependency between these characteristics.
By definition, an ACI fabric can identify physical and virtual endpoints regardless of their location in the fabric, therefore providing complete mobility for these devices. An EPG can accommodate endpoints through a multitude of methods, including:

- A VLAN identifier
- A VXLAN identifier
- A VMware DVS port group
- A specific IP address or subnet
- A specific DNS name or range
- And most importantly, a combination of the listed parameters

Consequently, it is perfectly possible to separate endpoints that are sharing the same IP subnet in different EPGs. At the same time, the same EPG can group endpoints from different IP subnets. And as you will learn in the next section, because traffic policies are defined through contracts, they are no longer chained to endpoint identity or location.

Concerning Contracts

Although you have already learned the main objectives of a contract in an ACI fabric, I have not delved into its specifics yet. To begin with, an EPG can assume one of the following roles from a contract perspective:

- **Provider**: The EPG offers the service described in the contract and, therefore, characterizes the destination endpoints for the traffic defined in the contract.
- **Consumer**: The EPG represents the source endpoints for the traffic defined in the contract.
- **Both**: Endpoints from both EPGs can communicate according to the traffic rules defined in the contract.

A contract is composed of multiple objects called *subjects*, which can be reused within the same tenant or among the whole fabric, if it belongs to the common tenant. A subject combines one or more rules, which are built with the following parameters:

- **Labels**: Assign a name to the rule
- **Filter**: Defines Layer 2, 3, and 4 fields, including Ethertype, IP protocol, and TCP port range

Figure 11-15 portrays a contract defined between two EPGs as well as the objects that comprise it.
Exploring how flexibly contracts can be built in ACI, Figure 11-15 exhibits a contract (MyContract) between a consumer EPG and a provider EPG consisting of two subjects (SubjectWeb and SubjectEcho). These elements are made of filters (FilterWeb and FilterEcho, respectively), which may have several entries. In the figure, FilterWeb has two entries (Http and Https) and FilterEcho has one (Ping) that is filtering all ICMP traffic. As a way to optimize network provisioning, all elements were originally designed to be reused on other contracts as updating policies (meaning that changes on a subject, filter, or filter entry will affect all contracts using such an object).

NOTE Although standard contracts display a whitelist behavior, you can use taboo contracts, which essentially deploy the well-known blacklist behavior from traditional networks (all traffic is enabled except what is declared in filters and subjects) between two EPGs.

While a contract can permit only certain traffic classes between two EPGs, such a security measure may not be enough for some application components that require Layer 4 to 7 parameter analysis on every connection. For this reason, ACI also supports the implementation of networking services such as firewalls, intrusion prevention systems, and application delivery controllers. Besides filters and subjects, a contract can also leverage an ACI construct called a service graph, which allows the fabric to steer traffic between two EPGs through a predefined sequence of networking services.

Figure 11-16 illustrates how a service graph can be associated to a contract defined between two EPGs.

Notice in Figure 11-16 that the graph has two networking services: a firewall and a server load balancer (SLB). Regardless of whether they are physical or virtual, the ACI fabric is prepared to steer all traffic from EPG1 to EPG2 through the firewall and then through the SLB, while the return traffic will follow the inverse order.

In addition, APIC can also configure these devices through the use of device packages. This software piece allows APIC to expose configuration-specific parameters a service needs to work properly, such as firewall rules and load-balancing algorithms.
Chapter 11: Network Architectures for the Data Center: SDN and ACI

Figure 11-16 Service Graph

Cisco APIC

As a network controller, APIC was designed to provide a single point of control for an ACI fabric, maintaining the perception of the fabric as a system rather than a collection of switches. But contrarily to other SDN controllers, APIC does not participate on either the control plane or data plane of the fabric. For that reason, a complete APIC failure (or disconnection) does not interfere with the operations of applications that are already using the fabric. Running in ACI mode, the Nexus 9000 switches still maintain a high level of intelligence and performance, while APIC remains responsible for maintaining a complete representation of the fabric policies and managed objects.

To improve scalability and robustness, APIC is deployed as a cluster with 3 to 31 appliances. Because the APIC cluster is a central repository for the fabric, it deploys a special method named sharding to distribute ACI-related data across active APIC appliances, enhancing performance (less search processing) and replication requirements (smaller tables are exchanged between appliances).

The APIC architecture supports a massive scale for the ACI fabric, with future support of up to 1 million endpoints, 200,000 ports, and 64,000 tenants.

NOTE These numbers represent the maximum future capacity of the ACI fabric according to its design at the time of this writing. Please refer to the ACI documentation on Cisco.com for the verified scalability information that is supported in the software and hardware versions you are using.
Fabric Management

The APIC cluster is also responsible for the management of an ACI fabric. Through its zero-touch discovery capabilities, Nexus 9000 switches and other APIC appliances are automatically included in the fabric through the use of Link Layer Discovery Protocol (LLDP).

NOTE By default, each switch must be registered before it is added to the fabric. However, if the serial numbers of the switches are previously added to APIC, the discovery process can be greatly accelerated.

After the discovery, APIC handles all switch configurations, including IP addresses and boot image version.

Accordingly, the APIC cluster offers several access methods to manage an ACI fabric:

- **GUI:** Based on HTML5, the APIC GUI provides access to all ACI objects and policies. The interface also offers powerful tools such as the API inspector (which uncovers the API calls from GUI operations) and an object store browser to facilitate the integration of northbound applications. Figure 11-17 exhibits a fabric topology in the APIC GUI.

- **API:** The APIC RESTful API is an extremely powerful interface that can fully leverage the ACI policy model. It has the option to expose and receive data in two formats (Extensible Markup Language [XML] and JavaScript Object Notation [JSON]). Figure 11-18 depicts an API navigator (Google’s POSTMAN) creating a tenant through the APIC API and using an XML-based request.
XML file with tenant name

API URL that will receive a creation request (POST)

![Creating a Tenant via APIC API](image)

- **CLI**: APIC also offers a CLI with NX-OS-like commands and that also permits read-only access switches in the ACI fabric. As an add-on, the APIC CLI provides a Python-based scripting language for customized commands and operations. Example 11-1 exhibits a sample CLI session for your delight.

Example 11-1 APIC CLI Session

```bash
! Starting a SSH session to APIC
login as: admin
Application Policy Infrastructure Controller
admin@198.18.133.200’s password:

! Verifying the ACI components software version
admin@APIC1:~> show version

<table>
<thead>
<tr>
<th>node type</th>
<th>node id</th>
<th>node name</th>
<th>version</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller</td>
<td>1</td>
<td>APIC1</td>
<td>1.1(1r)</td>
</tr>
<tr>
<td>controller</td>
<td>2</td>
<td>APIC1</td>
<td>1.1(1r)</td>
</tr>
<tr>
<td>controller</td>
<td>3</td>
<td>APIC1</td>
<td>1.1(1r)</td>
</tr>
<tr>
<td>leaf</td>
<td>101</td>
<td>Leaf1</td>
<td>n9000-11.1(1r)</td>
</tr>
<tr>
<td>leaf</td>
<td>102</td>
<td>Leaf2</td>
<td>n9000-11.1(1r)</td>
</tr>
<tr>
<td>spine</td>
<td>103</td>
<td>Spine1</td>
<td>n9000-11.1(1r)</td>
</tr>
<tr>
<td>spine</td>
<td>104</td>
<td>Spine2</td>
<td>n9000-11.1(1r)</td>
</tr>
</tbody>
</table>
```
All APIC access methods are subordinated to an RBAC feature that can assign read or write access to different managed objects (such as tenants, application profiles, and so on) through local or remote accounts in TACACS+, RADIUS, or LDAP servers.

Integration

Natively, APIC disposes of multiple integration methods to other elements in an ACI fabric. One of the most important is OpFlex, an open and extensible protocol designed to transfer object-based connectivity policies (in XML or JSON) between a network policy controller (APIC, for example) and other devices such as

- Physical switches (leaves in an ACI fabric)
- Virtual switches (virtual leaves in an ACI fabric)
- Physical and virtual networking services (L4–L7 services in an ACI fabric)
OpFlex uses remote procedure calls as well as secure communication channels such as SSL and TLS. With the launch of ACI, Cisco has submitted OpFlex as an IETF draft and also as a supported OpenDaylight southbound interface. Using OpFlex, third-party vendors can also develop device packages, as previously mentioned in the section “Concerning Contracts.”

APIC also integrates with VM managers such as VMware vCenter, Microsoft System Center VMM, and OpenStack Nova. These special connections allow APIC to access information about hypervisors and VMs, become aware of VM live migrations, and push connectivity policies to VMs.

Finally, the APIC open API and policy model allows an ACI fabric to be controlled and consumed by automation tools such as Puppet, cloud management platforms such as Windows Azure Pack and OpenStack, and many other orchestration tools.

Visibility

Almost as a collateral effect of being a central point of management of an ACI fabric, APIC offers great visibility to administration users and northbound applications. Through its observer process, APIC is capable of monitoring hardware and software states from all managed switches, as well as the operational state of protocols, performance data, events, faults, and statistical collections. In addition, APIC maintains an endpoint registry that allows the monitoring of endpoints (directly connected, connected to an FEX, intermediate switches, or virtual switches).

The controller also provides health scores, a terrific tool for troubleshooting. In effect, these scores consist of dashboards built through ACI information collected by APIC to represent status elements such as

- ACI fabric
- Managed devices
- Tenants
- Application profiles

A health score aggregates data from state, drops, health score of dependent objects, latency, and remaining capacity through their faults and alerts. As an example of this monitoring tool, Figure 11-19 depicts the health score of a leaf switch.
A Peek into ACI’s Data Plane

From a data plane perspective, ACI is a VXLAN fabric with several enhancements and special characteristics to optimize its operations. In an ACI fabric, every switch is a VXLAN tunnel endpoint (VTEP), including both leaves and spines.

All connections between leaf and spine are routed (Layer 3), with APIC controlling the assignment of interface and VTEP addresses. A slightly modified version of IS-IS is responsible for advertising all VTEP addresses to all other switches in the fabric, leading to the creation of VXLAN tunnels between all VTEPs of the fabric.

TIP The elements described (Layer 3 connections and VTEPs) belong to the infrastructure context.

Endpoints are assigned to EPGs depending on parameters that define the latter, which can include static values (VLAN, IP address, and port), as well as information from a VM manager, DHCP requests, ARP requests, and real traffic. After associating an endpoint to an EPG, the discovering leaf sends its information to the spines, which perform the role of “endpoint directory” (spine proxy) in the ACI fabric.

Within the fabric, the location of an endpoint corresponds to the VTEP to which it is connected. By definition, the communication between two endpoints is encapsulated...
into VXLAN packets exchanged by their respective VTEPs. Nonetheless, these internal VXLAN (iVXLAN) packets have special attributes that uniquely identify their source EPG. Additionally, the APIC-assigned VXLAN ID for each packet is correlated to a context (if the packet is routed) or to a bridge domain (if the packet is bridged).

To perform routing between two endpoints, ACI creates a distributed default gateway in each leaf with an administrator-configured IP address and an automatically assigned MAC address. Within such an arrangement, the ACI fabric always routes traffic destined to the default gateway MAC address and bridges traffic that is not destined for it.

By default, a unicast packet is normally forwarded between leaves through the APIC-assigned iVXLAN packets. As a result, ACI does not need to flood unknown unicast frames. If a leaf does not know the destination address on a packet, it will simply forward the packet to any proxy spine. Because the spines are aware of all endpoints, they can send the packet to the correct destination leaf, which in turn will locally cache the location (leaf VTEP) for the source endpoint.

TIP
Flooding can be enabled on a bridge domain if such behavior is desired for any reason.

Multicast and broadcast frames are forwarded to all VTEPs that are locally connected to the multicast group or source endpoint bridge domain, respectively. However, ARP frames are handled a bit differently: the leaf uses the destination IP in the ARP header to locate the destination leaf and directs the packet solely to it, avoiding unnecessary traffic to other leaves.

Because internal forwarding uses iVXLAN packets, which already identify source and destination endpoints, the original encapsulation (IEEE 802.1Q VLAN ID, VXLAN ID, or NVGRE ID) can be discarded for ingress packets and added to outgoing packets, as Figure 11-20 demonstrates.

![Figure 11-20 Encapsulation Normalization](image)

Through this unique normalization feature, the ACI fabric provides seamless communication between different hypervisors and physical servers. And much like the first Cisco routers provided communication between different types of network protocols, an ACI fabric can become the ultimate gateway for environments that have heterogeneous Layer 2 encapsulations.
Integration with Virtual Machine Managers

As previously mentioned, APIC has a special management connection with VM managers to provide the dynamic discovery of virtual endpoints. At the time of this writing, APIC supports integration with VMware vCenter, Microsoft SCVMM, and OpenStack Nova.

In the case of VMware vCenter, ACI offer two options for EPG assignment for virtual machines:

- **VMware vNetwork Distributed Switch (vDS):** APIC creates a distributed virtual switch in the vCenter cluster where each provisioned EPG automatically generates a distributed port group in the virtual switch. As ACI-generated port groups are assigned to VM network adapters, they are automatically assigned to their corresponding EPGs.

- **Cisco Application Virtual Switch (AVS):** A Cisco distributed virtual switch controlled by APIC. AVS works as an ACI virtual leaf, performing local forwarding for intra-EPG traffic and iVXLAN encapsulation to physical ACI leaves for inter-EPG traffic.

In the case of VMware vDS, ACI supports ESXi hosts that are directly connected to the ACI leaf, connected through a leaf-managed FEX, or connected through a single Layer 2 switch between host and leaf. Regardless of the connection method, ACI supports ESXi hosts with AVS as long as there is Layer 2 connectivity between AVS and an ACI leaf. For this reason, AVS is considered a fundamental piece in the integration process of an ACI fabric to an existing data center network infrastructure.

Figure 11-21 represents such an integration as well as some connection options for ESXi hosts.
As a bonus, Figure 11-21 also demonstrates that ACI leaves can deploy virtual PortChannels (vPCs) to external devices.

Around the Corner: OpenStack Neutron

Neutron is the OpenStack core project responsible for providing Network as a Service (NaaS) in these environments. Formerly known as Quantum, Neutron offers an API that enables cloud tenants to build fairly sophisticated networking topologies for multitier applications.

Innovation in Neutron is encouraged through API extensions and available plug-ins. These software elements allow open source development as well as integration of networking vendors to generate advanced policies (security, quality of service, monitoring, troubleshooting) and cloud networking services such as server load balancing (SLBaaS), firewalling (FWaaS), virtual private networking (VPNaaS), and data center interconnection (DCIaaS).

To build network topologies, OpenStack Neutron uses the following logical constructs:

- **Tenant network**: Within an OpenStack project, this element offers Layer 2 connectivity that is isolated to other projects. It may use a varied range of isolation technologies, including flat (all instances reside in the same network, which can be shared with the hosts), VLAN (use 802.1Q VLAN IDs), or overlay protocols such as VXLAN and GRE. OpenStack Neutron supports multiple projects and tenants having multiple private networks and enables them to choose their own IP addressing scheme, even if they overlap with other projects or tenants.

- **Provider network**: Created by the OpenStack administrator, this special network allows the communication of tenants to existing physical networks. It may use flat communication (untagged) or VLAN (802.1Q tag).

- **Subnet**: Range of IP addresses which is also known as IP Address Management (IPAM). Neutron provides subnets for both tenant and provider networks.

- **Port**: Virtual network connection point for a single device, such as the virtual NIC of a Nova instance. It exposes configuration and monitoring state for Neutron as well as other OpenStack components.

- **Router**: Optional component that forwards IP packets between distinct networks. It can also offer Layer 3 services such as Network Address Translation (NAT) and access to external networks such as the Internet.

- **Security group**: Controls inbound and outbound traffic at the port level. It can be compared to access control lists in traditional network devices because it can specify type of traffic and direction. The default security group drops all ingress traffic and allows all egress traffic.

These Neutron constructs are usually exposed to cloud tenants as an API or options on the Horizon GUI. At heart, they represent abstractions for the tenants that hide how networks are actually implemented. For example, a tenant will probably not know if a requested network is isolated from other tenants through VLAN or VXLAN because this choice is part of the Neutron administrator duties. As a direct consequence, there are many ways to
provision networking resources for cloud tenants. One fairly typical deployment model is exposed in Figure 11-22.

![Figure 11-22](Typical Neutron Deployment)

Figure 11-22 identifies some of the most common nodes (which in effect are servers running OpenStack services):

- **Network node**: Deploys Layer 3 services (routers), a DHCP server for address assignment, and metadata containing all information about provisioned networks, tenants, projects, and IP addresses.
- **Compute node**: Hosts Nova instances that use Neutron-provisioned networking resources.
- **Controller node**: Runs core OpenStack services such as Nova and, of course, Neutron.

In the implementation depicted in Figure 11-22, while all core services receive API calls from the API network, they use the management network to control their corresponding agents in the compute and network nodes. Nova instances use the data network to exchange local traffic and access Layer 3 services in the controller node. Finally, the external network is used to allow these instances to access an outside network such as the Internet.

Whereas these networks commonly use statically provisioned VLANs in the physical network infrastructure, the data network usually carries VXLAN or GRE packets to segment traffic among Nova instances from different projects or tenants.

One of the main drawbacks from this model resides in the network node, whose performance can be seriously challenged with routing and frame encapsulation processes. This obstacle can be surmounted by installing on a Neutron agent plug-ins and drivers that allow API requests to be converted into configurations that are deployed on hardware-based network devices. While a plug-in represents a group of general functionalities, a driver contains the necessary code to allow plug-in functions in a specific technology or device.

Originally, Neutron had native plug-ins for Open vSwitch and Linux Bridge, because they are very common in OpenStack environments. However, these plug-ins were eventually replaced by the Modular Layer 2 (ML2) plug-in, which essentially creates broadcast domains for Nova instances in generic Layer 2 devices.
Cisco has developed an ML2 driver for most Nexus switches in order to provision VLANs on networks based on these platforms. Additionally, Cisco has created an APIC ML2 driver that leverages the ACI policy model to bring several advantages to OpenStack implementations. With this driver, API requests received on Neutron automatically provision ACI logical constructs, as Table 11-5 describes.

Table 11-5 APIC ML2 Driver Correspondence

<table>
<thead>
<tr>
<th>Neutron Object</th>
<th>APIC Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>Tenant</td>
</tr>
<tr>
<td>Network</td>
<td>EPG and bridge domain</td>
</tr>
<tr>
<td>Subnet</td>
<td>Subnet</td>
</tr>
<tr>
<td>Security group</td>
<td>None¹</td>
</tr>
<tr>
<td>External network</td>
<td>Layer 3 out context and external EPG</td>
</tr>
<tr>
<td>Router</td>
<td>Contract to external EPG</td>
</tr>
</tbody>
</table>

¹ Deployed as rules on a Linux internal traffic filtering application called iptables.

Figure 11-23 depicts such integration in action.

![Figure 11-23 ACI Integration with OpenStack Neutron Using the ML2 Plug-in](image)

Using this driver, ACI introduces significant advantages such as routing capabilities (avoiding the use of the network node for this objective), topology independency (through APIC), multi-tenancy (with address overlap), and instance mobility.

In a joint effort with other network vendors, Cisco has accelerated innovation on Neutron, introducing the Group-Based Policy (GBP) concept to OpenStack. This initiative intends to counterpoint one main disadvantage from the traditional Neutron approach: the networking properties of a VM are defined through dispersed objects (network for Layer 2, router for Layer 3, and security groups for security). As a result, this traditional OpenStack model increases complexity for automation processes because inconsistencies may happen as networking characteristics are updated.

GBP addresses this problem through a network abstraction model based on the following objects:
- **Group**: Represents a set of network endpoints that share the same network properties and must be handled the same way by the network.
- **Policy rule set**: Reusable set of network rules that describe allowed traffic between two groups. It is basically composed of policy classifiers converted into policy rules.
- **Layer 2 policy**: Defines a broadcast domain.
- **Layer 3 policy**: Defines the forwarding between two different IP subnets.

Table 11-6 represents the intentional correspondence between GBP and ACI managed objects.

<table>
<thead>
<tr>
<th>Neutron GBP Object</th>
<th>APIC Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy group</td>
<td>EPG</td>
</tr>
<tr>
<td>Policy classifier</td>
<td>Filter</td>
</tr>
<tr>
<td>Policy rule</td>
<td>Subject</td>
</tr>
<tr>
<td>Policy rule set</td>
<td>Contract</td>
</tr>
<tr>
<td>Layer 2 policy</td>
<td>Bridge domain</td>
</tr>
<tr>
<td>Layer 3 policy</td>
<td>Context</td>
</tr>
</tbody>
</table>

NOTE At the time of this writing, Cisco is also developing an OpFlex agent for Open vSwitch, allowing this device to act as an ACI virtual leaf inside of a compute node. In addition to APIC’s role as enforcer of all ACI policies locally on these nodes, the OpFlex plugin also allows APIC to become the consolidated point of integration for the OpenStack Neutron server.
Figure 11-24 represents this integration scenario.

Further Reading

Exam Preparation Tasks

Review All the Key Topics

Review the most important topics in this chapter, denoted with a Key Topic icon in the outer margin of the page. Table 11-7 lists a reference of these key topics and the page number on which each is found.

Table 11-7 Key Topics for Chapter 11

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Network programmability tools</td>
<td>372</td>
</tr>
<tr>
<td>Table 11-2</td>
<td>Network planes</td>
<td>375</td>
</tr>
<tr>
<td>List</td>
<td>OpenDaylight objectives</td>
<td>378</td>
</tr>
<tr>
<td>Lists</td>
<td>Problems not addressed by SDN</td>
<td>383</td>
</tr>
<tr>
<td>Table 11-3</td>
<td>ACI components</td>
<td>384</td>
</tr>
<tr>
<td>Table 11-4</td>
<td>ACI logical constructs</td>
<td>386</td>
</tr>
<tr>
<td>List</td>
<td>APIC access methods</td>
<td>392</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory

Print a copy of Appendix B, “Memory Tables” (found on the CD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix C, “Answers to Memory Tables,” also on the CD, includes completed tables and lists so that you can check your work.

Define Key Terms

Define the following key terms from this chapter, and check your answers in the glossary:

Software-Defined Networking (SDN), network programmability, network automation, network controller, control plane, data plane, southbound protocol, northbound protocol, OpenFlow, OpenDaylight, overlay, Application Centric Infrastructure (ACI), Application Policy Infrastructure Controller (APIC), tenant, context, bridge domain, subnet, endpoint, endpoint group (EPG), contract, application profile, service graph, sharding, OpFlex, Application Virtual Switch (AVS), Neutron, Modular Layer 2 (ML2), Group-Based Policy (GBP)
Symbols

8.3 filenames, 273
32-bit architecture, 128
64-bit architecture, 128

A

AAA (Authentication, Authorization, and Accounting), 199
abstraction
definition of, 304
technologies, 37
as virtualization technique, 102
access model (cloud computing as), 12
access tier (three-tier design), 306
accessing
block storage, 233
ATA, 234-235
SCSI, 235-237
files, 269-270
remote files. See distributed file systems
ACI (Application Centric Infrastructure), 382
APIC in, 391
fabric management, 392-394
integration methods, 394-395
visibility, 395-396
architecture, 383-385
benefits of EPGs, 388-389
Cisco Nexus 9000 series switches, 475
contracts, 389-391
data plane, 396-397
integration with VM managers, 398
licensing, 478
policy model, 385-388
UCS versus, 451
ACI mode, 475
activating practice exam, 518
Active Directory, 284
Adapter FEX (Adapter Fabric Extender), 434
adapter policy (UCS), 442
Adaptive Security Virtual Appliance (ASAv), 181, 197-199, 486-487
ADC contexts, 211
ADCs (application delivery controllers), 203-204
address learning (FabricPath), 351-352
addresses (Fibre Channel), 239-241
adjacency servers, 333
admin VDCs, 313
Advanced Management Pod (AMP), 508
Advanced Technology Attachment (ATA), 234-235
AFP (Apple Filing Protocol), 293
aggregation blocks, 306
aggregation groups, 232
aggregation tier (three-tier design), 306
Agile model (software development), 25
allocating resources (VDCs), 312-313
Amazon
Simple Storage Service (S3), 298
availability zones (IaaS) 579

Web Services (AWS)
 example (IaaS), 39-42
 history of cloud computing, 11
AMP (Advanced Management Pod), 508
Android, 124
anycast gateways, 359
Anything as a Service (XaaS), 52-53
AO (application optimization), 207
APIC in ACI fabric, 391
 fabric management, 392-394
 integration methods, 394-395
 visibility, 395-396
APIs (application programming interfaces)
 benefits of, 105
 CLI (command-line interface) versus, 106-111
 definition of, 105
 RESTful APIs, 111-115
Apple
 Filing Protocol (AFP), 293
 iOS, 124
 Mac OS, 124
 AppleTalk, 293
 appliances, 511
Application Centric Infrastructure. See ACI
application-specific integrated circuit (ASIC) firmware, 373
Application Virtual Switch (AVS), 398
applications
 containers as isolation design, 45
 delivery controllers (ADCs), 203-204
 hosting, 373
 inspection, 199
 isolation, 210
 legacy support, 126
 optimization (AO), 207
 profiles (ACI), 386
 programming interfaces. See APIs
 service providers (ASPs), 32
 arbitrated loop topology, 239
architecture
 ACI, 383-385
 cloud computing architecture
 cloud meter, 97-99
 cloud orchestrator, 94-97
 cloud portal, 90-94
 components of, 89-90
 ICF (Cisco Intercloud Fabric), 74-76
 UCS, 418-419
 x86 microarchitecture, 411-414
ARPANET, 10, 20
ASAv (Adaptive Security Virtual Appliance), 181, 197-199, 486-487
ASDM (Adaptive Security Device Manager), 199
ASIC (application-specific integrated circuit) firmware, 373
ASPs (application service providers), 32
ASR 1000 routers as VXLAN gateways, 181
ASR 9000 routers as VXLAN gateways, 181
ATA (Advanced Technology Attachment), 234-235
ATAPI (ATA Packet Interface), 237
atomic inheritance, 164
authentication, 293
Authentication, Authorization, and Accounting (AAA), 199
automated networks, 370-371
automation phase (cloud implementation), 103-104
auxiliary memory, 224
availability, 304
availability zones (IaaS), 38-39
AVS (Application Virtual Switch), 398
AWS (Amazon Web Services)
 example (IaaS), 39-42
 history of cloud computing, 11

B

B-Series blade servers, 482
B-Series servers (UCS), 426-429
BaaS (Backup as a Service), 53
back-end disk array connections, 230
backbone cabling, 320
backup interfaces, 336
bandwidth starvation, 206
Barbican, 116
bare-metal hypervisors, 130
basic ATA command set, 234
BB_Credits (Buffer-to-Buffer Credits), 241
big data, 71
BIOS (basic input/output system), 413
BIOS policy (UCS), 442
blade chassis, 414
Blade Server Chassis (UCS 5100 series), 481
blade servers
 Cisco UCS B-Series, 482
 definition of, 414
 provisioning, 416
 UCS B-Series servers, 426-429
block storage. See also storage
 accessing, 233
 ATA, 234-235
 SCSI, 235-237
 cloud computing, 258
 Block Storage as a Service, 259-260
 infrastructure, 258-259
 file storage versus, 270-271
 HDDs (hard disk drives), 225
types of, 224
Block Storage as a Service, 259-260
blocks
 definition of, 226
 in ext2-formatted volumes, 274
groups
 definition of, 274
types of, 275
boot partitions, 278
boot policy (UCS), 442
border leaves (ACI), 387
bridge domains, 308, 386
bridged interfaces (ACI), 387
bring your own device (BYOD), 71
broad network access, 20-21
Broadcast Alias service, 242
brownfield, 501
Buffer-to-Buffer Credits (BB_Credits), 241
bus (SCSI), 235
buses, 412
BYOD (bring your own device), 71

C

C-Series rack servers, 482-483
C-Series servers (UCS), 430-432
cabling structure, 320
 EoR (end-of-row) designs, 321-322
 Fabric Extenders, 322-326
 horizontal cabling, 320
 MoR (middle-of-row) designs, 321-322
 ToR (top-of-rack) designs, 320-321
capacity
definition of, 225
do of RAID groups, 231

CDPs (command descriptor blocks), 236

CDP (Cisco Discovery Protocol), 167

CEE (Converged Enhanced Ethernet), 338

central processing unit (CPU), 122, 411

Ceph, 298

chapter review tools, 520

chargeback, 97

chassis switches, 162

chattiness, 291

chipsets, 412

ChromeOS, 124

CIFS (Common Internet File System), 289

CIMC (Cisco Integrated Management Controller), 431-432

Cinder, 115, 259

Cisco

ACI. See ACI (Application Centric Infrastructure)

Adaptive Security Device Manager (ASDM), 199

Adaptive Security Virtual Appliance (ASAv), 181, 197-199, 486-487

Algo Boost, 468

Cloud Services Router (CSR) 1000V, 181, 199-201, 487-488

Discovery Protocol (CDP), 167

Integrated Management Controller (CIMC), 431-432

Intercloud, 70-73

Intercloud Fabric (ICF), 73-74

architecture, 74-76

services, 76-82

use cases, 83

IOS, 124

Learning Network, 519

MDS 9000 series, 460-462

MDS 9148S, 460

MDS 9222i, 460

MDS 9250i, 460

MDS 9336S, 460

MDS 9700 series, 461

Metapod, 83

Nexus 1000V series switches, 161, 462-463

advanced features, 166-168

chassis switches versus, 162

components of, 161

as multi-hypervisor platform, 168-171

operational procedures, 163-164

port profiles, 164-166

standard VXLAN deployment, 177-179

Virtual Services Data Path (vPath), 192-193

as VXLAN gateways, 181

Nexus 1100 Cloud Services Platforms (CSPs), 463-464

Nexus 2000 series Fabric Extenders, 464-466

Nexus 3000 series switches, 466-469

Nexus 5000 series switches, 469-471

Nexus 7000 series switches, 471-474

Nexus 7700 Platform Switches, 472

Nexus 9000 series switches, 475-478

Nexus 9300 Platform Switches, 475

Nexus 9500 Platform Switches, 476-477

Nexus Data Center Switches, 462

Cisco Nexus 1000V series, 462-463
Cisco Nexus 1100 Cloud Services Platforms, 463-464
Cisco Nexus 2000 series Fabric Extenders, 464-466
Cisco Nexus 3000 series, 466-469
Cisco Nexus 5000 series, 469-471
Cisco Nexus 7000 series, 471-474
Cisco Nexus 9000 series, 475-478
Open SDN Controller, 380-381
Prime Data Center Network Manager (DCNM), 478-479
Prime Network Services Controller (PNSC), 193
Remote Integrated Services Engine (RISE), 217-218
Security Manager (CSM), 199
UCS
 2200 series Fabric Extenders, 481
 5100 series Blade Server Chassis, 481
 6200 and 6300 series Fabric Interconnects, 480-481
 B-Series blade servers, 482
 C-Series rack servers, 482-483
 Invicta, 483-484
 M-Series modular servers, 484-485
Unified Computing System (UCS), 479-480
 Blade Server Chassis, 481
 B-Series blade servers, 482
 C-Series rack servers, 482-483
 Fabric Extenders, 481
 Fabric Interconnects, 480-481
Invicta, 483-484
M-Series modular servers, 484-485
Validated Designs (CVDs), 503
Virtual Application Cloud Segmentation (VACS), 212-216
Virtual Security Gateway (VSG), 75, 193-197, 490
Virtual Supervisor Module (VSM), 193
Virtual Wide Area Application Services (vWAAS), 207-208, 489-490
WebEx example (SaaS), 51-52
Wide Area Application Services (WAAS), 206-207

Citrix
 NetScaler 1000V, 204-205, 488-489
 XenServer, 129
classification of clouds, 22-24. See also deployment models; services, models
Clean Slate Program, 367
Cleese, John, 368
CLI (command-line interface)
 API (application programming interface) versus, 106-111
 definition of, 105
clocking, 412
cloning
 service profiles (UCS), 443
 virtual machines, 141
cloud computing
 architecture
 cloud meter, 97-99
 cloud orchestrator, 94-97
 cloud portal, 90-94
 components of, 89-90
block storage in, 258

Block Storage as a Service, 259-260
infrastructure, 258-259

brokers, 35, 52

bursting, 70

characteristics
broad network access, 20-21
elasticity, 16-17
list of, 3, 12
measured service, 19-20
multi-tenancy, 21-22
on-demand self-service, 14-16
resource pooling, 17-19
classification of clouds, 22-24
communication
CLI versus API, 106-111
list of, 105
RESTful APIs, 111-115
data center
network challenges, 366-367
role in, 12-14
definition of, 11-12
deployment models. See deployment models
file storage in
file hosting services, 294-295
infrastructure, 294
OpenStack Manila, 295-297
history of, 9-11
hype surrounding, 7-9
implementation (phases in), 99-100
automation, 103-104
consolidation, 100-101
orchestration, 104-105
standardization, 103
virtualization, 102

infrastructure, 90
meter, 97-99
orchestrator, 94-97
portal, 90-94
service models. See services, models
Service Router (CSR), 75
Service Router (CSR) 1000V, 181, 199-201, 487-488
services providers, 34-36
server virtualization and, 142
elasticity, 144
resource pooling, 143-144
self-service on demand, 142
software stack
cloud meter, 97-99
cloud orchestrator, 94-97
cloud portal, 90-94
definition of, 90
UCS and, 451-452

cloud-scale apps, 25
cluster software, 136
clusters, 133, 278
CMS (Conversational Monitor System), 126
collapsed-core topology, 249
colocation, 33
command descriptor blocks (CDBs), 236
command-line interface (CLI)
application programming interface (API) versus, 106-111
definition of, 105
Common Internet File System (CIFS), 289
communication methods
CLI versus API, 106-111
list of, 105
RESTful APIs, 111-115
community clouds, 67-69
compliance standards, 68
computation as a public utility, 10
compute firewalls, 193
computer service providers (CSPs), 33
configurable networks, 369-370
configuration files (VMs), 131
configuration management software, 373
configuring
FabricPath, 352-354
OTV, 332-334
Congress, 116
connectivity policy (virtual switches), 155-156
consolidation (data centers), 100-101
constraints (RESTful APIs), 111
containers, 144
contexts (ACI), 386
contracts (ACI), 386, 389-391
control planes
definition of, 375
separation from data planes, 375-381
Control Program (CP), 126
control risks (public clouds), 63-64
converged access model (I/O consolidation), 347-348
converged aggregation model (I/O consolidation), 348-349
Converged Enhanced Ethernet (CEE), 338
converged infrastructures. See integrated infrastructures
converged networks, 336. See also I/O consolidation
convergence, 315
conversational MAC learning, 351
Conversational Monitor System (CMS), 126
core-aggregation-access topology, 306
core-edge topology, 249
core tier (three-tier design), 306
cores, 411
cost model (service measurement), 97-99
cost risks (public clouds), 64-65
CP (Control Program), 126
CPU (central processing unit), 122, 411
credit-based flow control, 241
cross-switch PortChannels, 316
CSM (Cisco Security Manager), 199
CSPs (computer service providers), 33
CSR (Cisco Cloud Services Router) 1000V, 75, 181, 199-201, 487-488
custom virtual application container templates, 215
customer data handling, 34
CVDs (Cisco Validated Designs), 503
cylinders, 225

D

D-Pieces, 231
D-Stripes, 231
DaaS (Desktop as a Service), 53
DAS (direct-attached storage), 235
data center bridging (DCB), 338-341
Data Center Bridging Exchange Protocol (DCBX), 340
Data Center Ethernet (DCE), 338
data center interconnections (DCIs)
Layer 2 extension challenges, 327-328
technologies for, 328-329
data center networks
ACI, 382
APIC in, 391
architecture, 383-385
benefits of EPGs, 388-389
contracts, 389-391
Data Redundancy Elimination (DRE), 585

- data plane, 396-397
- fabric management, 392-394
- integration methods, 394-395
- integration with VM managers, 398
- policy model, 385-388
- visibility, 395-396

attributes of, 304

cabling structure, 320

- EoR (end-of-row) designs, 321-322
- Fabric Extenders, 322-326
- horizontal cabling, 320
- MoR (middle-of-row) designs, 321-322
- ToR (top-of-rack) designs, 320-321

cloud computing challenges, 366-367

consolidation, 100-101

DCNM, 478-479

definition of, 12

FabricPath, 349-351

- configuring, 352-354
- MAC address learning, 351-352
- STP and, 354-356

I/O consolidation, 336-337

- data center bridging, 338-341
- deploying, 343-346
- designs, 346-349
- Fibre Channel over Ethernet, 341-343

Layer 2 extensions

- challenges, 327-328
- DCI technologies for, 328-329
- OTV, 329-335
- scenarios for, 326-327

modular data centers, 497

- custom PODs versus integrated infrastructures, 501-503
- pool of devices (POD), 497-501

OpenStack Neutron, 399-403

physical components, 13

role in cloud computing, 12-14

SDN

- challenges of, 382-383
- definition of, 367-369
- separation of control and data planes, 375-381
- software-based virtual overlays, 381-382

spine-leaf topologies, 356-358

switches (Cisco Nexus switches), 462

- Cisco Nexus 1000V series, 462-463
- Cisco Nexus 1100 Cloud Services Platforms, 463-464
- Cisco Nexus 2000 series Fabric Extenders, 464-466
- Cisco Nexus 3000 series, 466-469
- Cisco Nexus 5000 series, 469-471
- Cisco Nexus 7000 series, 471-474
- Cisco Nexus 9000 series, 475-478

three-tier design, 305-307, 319

Unified Fabric. See Unified Fabric

VDCs

- benefits, 309-310
- creating, 310-311
- definition of, 308-309
- resource allocation, 312-313

VXLAN fabrics, 358-360

data center service providers (DCSPs), 33

data planes, 396-397

definition of, 375

separation from control planes, 375-381

Data Redundancy Elimination (DRE), 206
data storage, 224-225. See also block storage; file storage
databases, 271
Datagram Transport Layer Security (DTLS), 75
DCB (data center bridging), 338-341
DCBX (Data Center Bridging Exchange Protocol), 340
DCE (Data Center Ethernet), 338
DCIs (data center interconnections)
 Layer 2 extension challenges, 327-328
 technologies for, 328-329
DCNM (Cisco Prime Data Center Network Manager), 478-479
DCSPs (data center service providers), 33
DDR (Double Data Rate) RAM chips, 412
decommissioning, 367
dedicated process isolation design, 44
default VDCs, 310
DELETE actions, 113
demilitarized zones (DMZs), 310
deployment models
cloud services (phases in), 99-100
 automation, 103-104
 consolidation, 100-101
 orchestration, 104-105
 standardization, 103
 virtualization, 102
community clouds, 67-69
definition of, 23, 57, 89
hybrid clouds, 69-70
 Cisco Intercloud, 70-73
 Cisco Intercloud Fabric. See ICF
I/O consolidation, 343-346
private clouds, 65-67, 83
public clouds
 challenges of, 62
 control risks, 63-64
cost risks, 64-65
definition of, 61
private clouds versus, 69
security risks, 62-63
Designate, 116
Desktop as a Service (DaaS), 53
devices
 consolidation, 309
 partitioning, 210
DevOps, 26
DHCP Snooping, 167
dialects (SMB), 289
direct-attached storage (DAS), 235
directories, 272
directors, 460-462
disaster avoidance, 139
Disaster Recovery as a Service (DRaaS), 53
disk arrays
 components of, 229-230
 connection types, 230
 definition of, 229
 dynamic disk pools, 230-231
disk controllers, 228-229
distributed file systems
 definition of, 285
 NFS, 286-289
 open protocols, 293
 SMB, 289-293
distributed Port Groups, 157
distributed virtual switches (DVSs), 157-158
DMZs (demilitarized zones), 310
Docker, 145
dockerfiles, 145
domains
 groups, 450
 UCS, 418-419
 vPCs, 317
Double Data Rate (DDR) RAM chips, 412
double-indirect blocks, 276
downloading practice exam, 518
DRaaS (Disaster Recovery as a Service), 53
DRAM (dynamic RAM), 225
drivers, 116
DTLS (Datagram Transport Layer Security), 75
dual-homed topologies, 325-326
DvNICs (dynamic vNICs), 434
DVSs (distributed virtual switches), 157-158
Dynamic ARP Inspection, 167
dynamic disk pools, 230-231
dynamic RAM (DRAM), 225
dynamic vNICs (DvNICs), 434

E

EC2 (Elastic Compute Cloud), 11
dynamic RAM (DRAM), 225
dynamic vNICs (DvNICs), 434

endpoint groups (EPGs)
benefits of, 388-389
definition of, 386
endpoints (ACI), 386
Enhanced Inter-Switch Link (EISL), 253
Enhanced Transmission Selection (ETS), 339-340
Enhanced VXLANs, 181-184
ENodes, 342
EoMPLS (Ethernet over Multi-protocol Label Switching), 328
EoR (end-of-row) designs, 321-322
EPFs (endpoint groups)
benefits of, 388-389
definition of, 386
ERSPAN (Encapsulated Remote SPAN), 167
ESXi, 129
EtherChannels, 315
EtherNetworks
Encapsulation (VXLANS), 173-177
end-host mode, 424
end-of-row (EoR) designs, 321-322
End-to-End Credits (EE_Credits), 241

exam preparation
chapter review tools, 520
Cisco Learning Network, 519
memory tables, 519-520
Pearson Cert Practice Test engine
activating practice exam, 518
installing, 518
study mode versus practice exam mode, 520-521
Premium Edition, purchasing, 519
suggested study plan, 520
exchange-based load balancing, 244
fan-out, 248
FAT (File Allocation Table), 278-280
fault isolation, 309
fault tolerance, 140-141
FC (Fibre Channel)
addresses, 239-241
definition of, 237
fabric services, 241-243
flow control, 241
FSPF protocol, 243-245
layers, 237-238
logins, 245-246
port types, 239
topologies, 238-239
zoning, 246-247
FCF (FCoE forwarder), 342
FCIDs (Fibre Channel Identifiers), 240
FCoE (Fibre Channel over Ethernet), 341-346
FCoE Initialization Protocol (FIP), 342
FCoE_LEP (FCoE link end-point), 342
FEXs (Fabric Extenders), 322-324
Cisco Nexus 2000 series, 464-466
Cisco UCS 2200 series, 481
topologies in, 325-326
Fibre Channel. See FC
Fibre Channel Identifiers (FCIDs), 240
Fibre Channel over Ethernet (FCoE), 341-346
Fielding, Roy Thomas, 111
File Allocation Table (FAT), 278-280
file storage
block storage versus, 270-271
in cloud computing
file hosting services, 294-295
infrastructure, 294
OpenStack Manila, 295-297
file systems
 definition of, 271
 distributed file systems, 285-293
 namespaces, 272-274
 permissions, 281-285
 volume formatting, 274-281
locations of files, 269-270
file systems
 definition of, 271
 distributed file systems
 definition of, 285
 NFS, 286-289
 open protocols, 293
 SMB, 289-293
namespaces
 definition of, 272
 Linux naming rules, 272-273
 Windows naming rules, 273-274
permissions
 definition of, 281
 Linux, 281-282
 NTFS, 282-285
volume formatting
 definition of, 274
 extended filesystems, 274-278
 FAT, 278-280
 NTFS, 280-281
File Transfer Protocol (FTP), 293
files
 definition of, 268
 hosting services, 294-295
 locations, 269-270
 locking, 288
 for virtual machines, 131-132
 servers, 269
 sharing, 269
FIP (FCoE Initialization Protocol), 342
firewall contexts, 211
flash drives, 260-261
flexibility, 304
FlexPod, 503-505
FlexPod Datacenter, 504-505
FlexPod Express, 505
FlexPod Select, 505
flooding, 173, 377
flow-based load balancing, 244
flow control
 Fibre Channel, 241
 PFC, 338-339
flow tables, 195, 376
folders, 273
Ford, Henry, 103
formatting file systems. See volume formatting
forwarding
 in FabricPath, 350-351
 packets, 376-377
 planes, 375
 policies, 193
fourth extended filesystem (ext4), 276
FPMA (Fabric-Provided MAC Address), 343
fragmentation, 279
frame forwarding, 350-351
FreeBSD, 124
front-end disk array connections, 230
FSPF (Fabric Shortest Path First) protocol, 243-245
FTP (File Transfer Protocol), 293
full IT outsourcing, 33
gateways, 180-181
GBP (Group-Based Policy), 401
GET actions, 113
Glance, 115
Google Docs example (SaaS), 50-51
greenfield, 501
guest operating systems, 129

H

hard disk drives. See HDDs
hard zoning, 246
hardware-defined networking (HDN), 368
hardware port groups, 311
hash functions, 244
HBA (host bus adapter), 235
HDDs (hard disk drives)
definition of, 225-226
disk arrays, 229-231
RAID levels, 226-228
storage controllers, 228-229
volumes, 231-233
HDN (hardware-defined networking), 368
HDN (human-defined networking), 368
Heat, 115
HFT (high-frequency trading) POD, 499-500
high availability (virtual machines), 136-137
history of cloud computing, 9-11
horizontal cabling
definition of, 320
EoR (end-of-row) designs, 321-322
Fabric Extenders, 322-326
MoR (middle-of-row) designs, 321-322
ToR (top-of-rack) designs, 320-321
host bus adapter (HBA), 235
hosted hypervisors, 130
hosting, 33
Howard, Luke, 22
HTTP (Hypertext Transfer Protocol), 111-112, 293
request parameters, 112
response parameters, 113
human-defined networking (HDN), 368
hybrid clouds, 69-70
Cisco Intercloud, 70-73
Cisco Intercloud Fabric (ICF), 73-74
architecture, 74-76
services, 76-82
use cases, 83
Hyper-V, 133-134
hyperconvergence, 510-512
Cisco Nexus 1000V for, 168-171
virtual networking, 158
hypervisors
architectures, 132
Linux KVM, 134-135
Microsoft Hyper-V, 133-134
multi-hypervisor environments, 135-136
VMware vSphere, 133
definition of, 129
non-VMware hypervisors, 168-171
types of, 129-130
virtual networking versus VMware solutions, 158-159

I

I/O consolidation, 336-337
data center bridging, 338-341
deploying, 343-346
designs, 346-349
Fibre Channel over Ethernet, 341-343
I/O modules
Cisco Nexus 7000 series switches, 473
Cisco Nexus 7700 series switches, 473
Cisco Nexus 9500 Platform
Switches, 477
comparison between Cisco Nexus 7000 and 7700 series switches, 474
IaaS (Infrastructure as a Service), 36-38
Amazon Web Services example, 39-42
challenges of, 37-38
regions and availability zones, 38-39
ICF (Cisco Intercloud Fabric), 73-74
architecture, 74-76
services, 76-82
use cases, 83
ICFD (Intercloud Fabric Director), 74
ICS (Intercloud Switch), 75
ICX (Intercloud Extender), 75
IDE (Integrated Drive Electronics), 234
IDEs (integrated development environments), 44
index nodes (inodes), 274
infrastructure
cloud infrastructure, 90
block storage and, 258-259
file storage and, 294
preparation, 415-417
virtualization. See virtual networking
Infrastructure as a Service (IaaS), 36-38
Amazon Web Services example, 39-42
challenges of, 37-38
regions and availability zones, 38-39
inline appliances, 191
inodes, 274
insourcing, 33
installing Pearson Cert Practice Test engine, 518
integrated development environments (IDEs), 44
Integrated Drive Electronics (IDE), 234
integrated infrastructures
custom PODs versus, 501-503
FlexPod, 503-505
hyperconvergence, 510-512
UCSO (OpenBlock), 510
Vblock, 506-508
VSPEX, 508-510
integration methods (ACI), 394-395
Inter-VSAN Routing (IVR), 256
Intercloud, 70-73
Intercloud Extender (ICX), 75
Intercloud Fabric. See ICF
Intercloud Fabric Director (ICFD), 74
Intercloud Fabric for Business, 74
Intercloud Fabric for Providers, 74
Intercloud Switch (ICS), 75
Intergalactic Computer Network, 10
internal interfaces (OTV), 332
internal storage, 123
Internet of Things (IoT), 71
Internet Protocol Security (IPsec), 10
Internet SCSI (iSCSI), 237, 256-258
Internet service providers (ISPs), 33
Internet Storage Name Service (iSNS), 258
intranet, 21
Invicta, 483-484
iOS, 124
IoT (Internet of Things), 71
IP multicast, 181-184
IP Source Guard, 167
IPS Stack, 29
IPsec (Internet Protocol Security), 10
IPTaaS (IP Telephony as a Service), 53
IQN (iSCSI Qualified Name), 257
Ironic, 115, 453
iSCSI (Internet SCSI), 237, 256-258
iSNS (Internet Storage Name Service), 258
isolation designs (PaaS), 45
ISPs (Internet service providers), 33
IT departments
 challenges, 8
 cloud computing hype in, 7-9
IVR (Inter-VSAN Routing), 256

Layer 2 multipathing
 with FabricPath, 349-351
 configuring, 352-354
 MAC address learning, 351-352
 STP and, 354-356
 spine-leaf topologies, 356-358
 VXLAN fabrics, 358-360
Layer 2 VXLAN gateways, 180
Layer 3 VXLAN gateways, 180
Lee, Stan, 378
licensing
 Cisco MDS 9000 series, 461
 Cisco Nexus 5000 series switches, 471
 Cisco Nexus 7000 and 7700 series switches, 474
 Cisco Nexus 9000 series switches, 478
 Smart Software Licensing, 487
 vWAAS, 490
Licklider, J. C. R., 10
link aggregation, 315-316
Link Aggregation Control Protocol (LACP), 316
Linux
 Containers (LXC), 45, 144-145
 definition of, 124
 file naming rules, 272-273
 KVM, 129, 134-135
 Cisco Nexus 1000V for, 168-171
 virtual networking, 159

Layer 2 extensions
 challenges, 327-328
 DCI technologies for, 328-329
 OTV, 329-332
 configuring, 332-334
 site designs, 335
 scenarios for, 326-327
LACP (Link Aggregation Control Protocol), 316
lanes, 412
last mile links, 33
latency, 206, 225
K
kernel, 124-125
Keystone, 115
KVM (Kernel-based Virtual Machine), 129, 134-135
 Cisco Nexus 1000V for, 168-171
 virtual networking, 159

L
live migration, 137-139
live templates, 166
load balancing, 140
local disk configuration policy (UCS), 442
local files, 269
localization services (IaaS), 38-39
log files, 131
logical constructs (ACI), 386-387
logical demilitarized zones (DMZs), 310
logical scaling model, 500
Login Server service, 242
loops (Ethernet networks), 313-315
LPC (low pin count) buses, 413
LUNs (logical unit numbers), 235, 254
LUs (logical units), 235
LXC (Linux Containers), 144-145

MAC addresses
FabricPath, 351-352
FCoE communication, 343
learning process example, 174-176, 181-184
table depletions
addressing with VXLANs, 177
definition of, 172
Mac OS, 124
Magnum, 116
main memory, 122, 224
mainframe virtualization, 126-127
maintenance mode (virtual machines), 141
manageability, 304
managed service providers (MSPs), 33
management
consolidation, 418
interfaces, 336
planes, 375
Management Server service, 243
Manila, 116, 295-297
McCarthy, John, 10
mean time between failures (MTBF), 226
mean time to recover (MTTR), 34
measured service, 19-20
mechanical actuators, 226
member ports, 317
memory, 122
buses, 412
controllers, 412
modules, 225
tables (exam preparation), 519-520
metadata, 268
mezzanine, 414
microarchitecture, 411-414
microkernel operating systems, 125
micro-segmentation, 197
Microsoft
Azure example (PaaS), 45-49
Hyper-V, 129, 133-134
Cisco Nexus 1000V for, 168-171
virtual networking, 158
Windows, 124
Windows Virtual PC, 129
middle-of-row (MoR) designs, 321-322
mid-plane, 476
mirroring, 227
Mistral, 116
Modifications of Clouds (Howard), 22
modular data centers, 497-503
modular servers, 484-485
monolithic operating systems, 125
Moore’s law, 126
MoR (middle-of-row) designs, 321-322
motherboards, 123, 413
mounting NFS servers, 287-288
MPLSoGRE (MPLS over Generic Routing Encapsulation), 328
M-Series modular servers, 484-485
MSPs (managed service providers), 33
MTBF (mean time between failures), 226
MTTR (mean time to recover), 34
multi-hypervisor environments, 135-136
multi-instance, 22
multi-tenancy, 21-22
multi-user, 21
multicast OTV configuration, 333
multidestination trees, 351
multilayer directors, 460-462
multipathing, 258
multiprocessing, 411

N

NaaS (Network as a Service), 399-403
Name Server service, 242
namespaces
definition of, 272
Linux naming rules, 272-273
Windows naming rules, 273-274
NAS (network-attached storage) devices
definition of, 269
NFS and, 289
SMB and, 292-293
National Institute of Standards and Technology (NIST), 12
native hypervisors, 130
NAT (Network Address Translation), 199
nested RAID levels, 228
NetScaler 1000V, 204-205
Network as a Service (NaaS), 399-403
network-attached storage (NAS) devices. See NAS devices
Network File System (NFS), 286-289
network interface card (NIC), 123
Network Lock Manager (NLM), 288
network management systems (NMSs), 369-370
network service providers (NSPs), 33
Network Services Header (NSH), 218
Network Virtualization using
Generic Routing Encapsulation (NVGRE), 381
networking
adapters, 123
automated networks, 370-371
cloud computing access, 20-21
configurable networks, 369
containers, 210
controllers, 373-374
converged networks, 336
data center networks. See data center networks
Ethernet networks
 * link aggregation, 315-316
 * loops, 313-315
management (DCNM), 478-479
NMSs, 369-370
planes, 375-381
profiles, 169
programmable networks
definition of, 371-372
network controllers, 373-374
tools for, 372-373
types of, 21
virtual networking
c*challenges in server virtualization environments, 159-160
c*challenges of, 152-154, 308
Cisco Nexus 1000V. See Cisco Nexus, 1000V
definition of, 149
distributed virtual switches, 157-158
on non-VMware hypervisors, 158-159
virtual switches, 154-157
VLANs. See VLANs
VXLANs. See VXLANs

networking services
Cisco Wide Area Application Services (WAAS), 206-207
definition of, 187, 190
insertion innovations, 217-218
insertion in physical networks, 190-192

virtual networking services
application delivery controllers (ADCs), 203-204
Cisco Adaptive Security Virtual Appliance (ASAv), 197-199, 486-487
Cisco Cloud Services Router (CSR) 1000V, 199-201, 487-488
Cisco Virtual Security Gateway (VSG), 75, 193-197, 490
Cisco Virtual Wide Area Application Services (vWAAS), 207-208, 489-490
Citrix NetScaler 1000V, 204-205, 488-489
definition of, 190
server load balancers (SLBs), 201-203
virtual application containers, 210-217
Virtual Services Data Path (vPath), 192-193
vPath service chains, 208-210

Neutron, 115, 399-403
New Technology File System (NTFS), 280-285
Nexus 1000V. See Cisco, Nexus 1000V
Nexus 5600 switches, 181
Nexus 6000 switches, 181
Nexus 9300 switches, 181
Nexus Series switches, 306. See also Unified Fabric
NFS (Network File System), 286-289
NIC (network interface card), 123
NIST (National Institute of Standards and Technology), 12
NLM (Network Lock Manager), 288
NMSs (network management systems), 369-370
NvGRE (Network Virtualization using Generic Routing Encapsulation), 381
.nvram file extension, 131
NX-OS mode, 475

object storage, 297-298
ODL (OpenDaylight), 378-381
OmniStack Integrated Solution with UCS, 511
ONC RPC (Open Network Computing Remote Procedure Call), 286
on-demand, 14
on-demand self-service, 14-16
ONF (Open Network Forum), 378
Open Network Forum (ONF), 378
Open vSwitch (OVS), 159
OpenBlock, 510
OpenDaylight (ODL), 378-381
OpenFlow, 375-378, 382-383
Open Network Computing Remote Procedure Call (ONC RPC), 286

OpenStack
 Cinder, 115, 295
definition of, 115
Ironic, 453
Manila, 295-297
Neutron, 379-403
Nova, 135
services, list of, 115-116
Swift, 298
version naming conventions, 116
operating system–level virtualization, 144-145
operating systems. See OSs
OPEX (operational expenditure) model, 20
OpFlex, 394
Oracle VM, 129
Oracle VM Virtual Box, 129
orchestration phase (cloud implementation), 104-105
orchestrators, 370-371
Originator Exchange Identifier (OX_ID), 244
OSs (operating systems)
definition of, 124-125
pre-OS installation settings, 417
types of, 124
OS X, 124
OTV (Overlay Transport Virtualization), 329-332
configuring, 332-334
site designs, 335
overlays
 interfaces, 332
OTV, 333
software-based virtual overlays, 381-382
oversubscription, 248
OVS (Open vSwitch), 159
OX_ID (Originator Exchange Identifier), 244

P

PaaS (Platform as a Service), 43-49
packet forwarding, 376-377
Parallels Desktop for Mac, 129
parent partitions, 133
partitioning
definition of, 304
technologies, 37
as virtualization technique, 102
partitions, 274
PATA (Parallel Advanced Technology Attachment), 234
pathnames, 272
PBR (policy-based routing), 191
PCaaS (Private Cloud as a Service), 83
PCle (PCI Express), 412
PCs (personal computers), 10
Pearson Certification Practice Test engine
 activating practice exam, 518
 installing, 518
 study mode versus practice exam mode, 520-521
peer keepalive links, 318
peer links, 318
peers, 317
performance (SLAs), 34
peripherals, 123
permissions
 definition of, 281
 Linux, 281-282
 NTFS, 282-285
Persistent Lempel-Ziv (PLZ), 206
personal computers (PCs), 10
PFC (Priority-based Flow Control), 338-339
phases in cloud implementation, 99-100
 automation, 103-104
 consolidation, 100-101
 orchestration, 104-105
 standardization, 103
 virtualization, 102
physical networks, 190-192
physical scaling model, 501
physical servers
 infrastructure preparation, 415-417
 OpenStack Ironic, 453
 pre-OS installation settings, 417
 UCS. See UCS
 virtualization rate, 410-411
 x86 microarchitecture, 411-414
Platform as a Service (PaaS), 43-49
plug-ins, 116
PLZ (Persistent Lempel-Ziv), 206
PNSC (Cisco Prime Network Services Controller), 193
POAP (PowerOn Auto Provisioning), 373
POD (pool of devices), 497-501
 components, 497
 definition of, 497
 FlexPod, 503-505
 HFT (high-frequency trading) POD, 499-500
 integrated infrastructures versus, 501-503
 logical scaling model, 500
 physical scaling model, 501
 versioning, 501
 virtualization POD, 498-499
point-to-point topologies, 238, 346
policies (UCS), 442-443
policy-based routing (PBR), 191
policy models (ACI), 385-388
pool of devices. See POD
pooling
 definition of, 304
 resources, 17-19
 service profiles (UCS), 444-445
 technologies, 37
 as virtualization technique, 102
PortChannels, 244-245
 definition of, 170, 316
 in Cisco Nexus 1000V, 170
Port Group connectivity policy, 155-156
ports
 classifications, 169
 groups, 311
 port profiles, 462
 definition of, 164
 in Cisco Nexus 1000V, 164-166
 types, 239
POST actions, 113
power control policy (UCS), 442
power management, 141
PowerOn Auto Provisioning (POAP), 373
practice exam
 activating, 518
 study mode versus, 520-521
Premium Edition, 519
pre-OS installation settings, 417
primary storage, 224
principal switches, 243
Priority-based Flow Control (PFC), 338-339
Private Cloud as a Service (PCaaS), 83
private clouds, 65-67
definition of, 35
PCaaS (Private Cloud as a Service), 83
public clouds versus, 69
private interfaces, 336
private VLANs, 167
processors, 122
programmable networks
definition of, 371-372
network controllers, 373-374
tools for, 372-373
provisioning servers
infrastructure preparation, 415-417
OpenStack Ironic, 453
pre-OS installation settings, 417
UCS, 418-419
architecture, 418-419
B-Series servers, 426-429
cloning service profiles, 443
in cloud computing, 451-452
C-Series servers, 430-432
Fabric Interconnects, 419-424
policies, 442-443
pools, 444-445
service profiles, 436-442
templates, 445-449
UCS Central, 449-451
UCS Manager, 424-426
VIC adapters, 432-436
virtualization rate, 410-411
x86 microarchitecture, 411-414
provisioning storage capacity, 232
public clouds
challenges of, 62
control risks, 63-64
cost risks, 64-65
definition of, 61
private clouds versus, 69
security risks, 62-63
public interfaces, 336
PUT actions, 113
Q
QCN (Quantized Congestion Notification), 341
QoS (Quality of Service), 167
Quantum, 115, 399-403
R
rack-mountable servers
definition of, 413
provisioning, 415
UCS C-Series servers, 430-432
rack servers, 482-483
RAID (redundant array of independent disks), 226
challenges of, 230
groups
capacity of, 231
definition of, 226
levels, 227
nested levels, 228
RAID 0, 227
RAID 1, 227-228
RAID 5, 227
RAID 6, 228
RAID 10, 228
RAM (random-access memory), 123, 225
rapid elasticity, 17
Rapid Spanning Tree Protocol (RSTP), 315
RAS (reliability, availability, serviceability) features, 413
rationalization, 100
Red Hat Enterprise Virtualization (RHEV), 129
regions (IaaS), 38-39
regulatory compliance standards, 68
remote files, accessing. See distributed file systems
remote VPNs (virtual private networks), 198
Representational State Transfer (REST), 111
request parameters (HTTP), 112
reserved characters, 272-274
resources
allocation, 312-313
load balancing, 140
pooling, 17-19, 143-144
templates, 313
response parameters (HTTP), 113
REST (Representational State Transfer), 111
RESTful APIs, 111-115
reverse-proxy, 191
review tools (exam preparation), 520
RHEV (Red Hat Enterprise Virtualization), 129
RISE (Cisco Remote Integrated Services Engine), 217-218
root bridges, 315
root switches, 351
routed interfaces (ACI), 387
routers, 487-488
RSTP (Rapid Spanning Tree Protocol), 315
S
S3 (Amazon Simple Storage Service), 11, 298
SaaS (Software as a Service), 49-52
Sahara, 116
Salesforce.com, 11
SAL (Service Abstraction Layer), 379
SAM (SCSI Architecture Model), 236
SANs (storage-area networks)
cloud computing, 258-259
iSCSI, 256-258
islands, 250-251
topologies, 247-250
VSANs, 251
terminology, 251-252
trunking, 253
use cases, 255-256
zoning, 254-255
SAS (Serial Attached SCSI), 236
SATA (Serial Advanced Technology Attachment), 234
SATA Tunneling Protocol (STP), 237
scalability
Cisco Nexus 1000V series switches, 463
definition of, 304
scaling system nodes (SSNs), 483
scaling system routers (SSRs), 483
SCP (Secure Copy Protocol), 293
scrub policy (UCS), 442
SCSI (Small Computer Systems Interface), 235-237
bus, 235
initiators, 235
iSCSI, 256-258
targets, 235
SCSI Architecture Model (SAM), 236
SCSI identifier (SCSI ID), 235
SCSI Parallel Interface (SPI), 236
SDK (software development kit), 105
SDN (software-defined networking)
 challenges of, 382-383
 controllers, 376
 definition of, 367-369
 separation of control and data planes, 375-381
 software-based virtual overlays, 381-382
SDNi (SDN Interface), 379
SDR (Single Data Rate) RAM chips, 412
second extended filesystem (ext2), 274-278
secondary storage, 224
sector clusters, 226
sectors, 225
Secure Copy Protocol (SCP), 293
Secure Sockets Layer (SSL), 10
security
 authentication, 293
 risks, 62-63
self-service, 14
self-service on demand, 142
Serial Advanced Technology Attachment (SATA), 234
Serial Attached SCSI (SAS), 236
serial over LAN policy (UCS), 443
Server Message Block (SMB), 289-293
Server-Provided MAC Address (SPMA), 343
servers
 cluster software, 203
 components of, 122-123
 definition of, 122
 load balancers (SLBs), 201-203
 operating systems, 125
physical servers
 infrastructure preparation, 415-417
 OpenStack Ironic, 453
 pre-OS installation settings, 417
 UCS. See UCS (Unified Computing System), 418
 virtualization rate, 410-411
 x86 microarchitecture, 411-414
pools, 444
virtualization
 Cisco Nexus 1000V series switches, 462-463
 cloud computing and, 142-144
 definition of, 102
 features, 136, 141-142
 hypervisors. See hypervisors
 mainframe virtualization, 126-127
 networking challenges in, 159-160
 resource load balancing, 140
 virtualization rate, 410-411
 virtual machine fault tolerance, 140-141
 virtual machine high availability, 136-137
 virtual machine live migration, 137-139
 virtual machine managers, 132
 virtual machines, 130-132
 on x86 machines, 127-128
Service Abstraction Layer (SAL), 379
service-level agreements (SLAs), 34
services
 chains, 208-210
 graphs, 390
ICF (Cisco Intercloud Fabric), 76-82
insertion
innovations in, 217-218
in physical networks, 190-192
with vPath, 192-193
models
definition of, 23, 89
IaaS, 36-42
PaaS, 43-49
PCaaS, 83
SaaS, 49-52
XaaS, 52-53
networking services. See networking services
OpenStack services, list of, 115-116
profiles (UCS), 436-437
building, 437-442
cloning, 443
policies in, 442-443
pools, 444-445
templates, 445-449
providers (SPs)
cloud services providers, 34-36
definition of, 32
types of, 32-33
shadow IT, 35
share-level authentication, 293
Shared Nothing Live migration, 139
shared process isolation design, 44
shares, 292
sharing files, 269, 391
showback, 97
Simple Storage Service (S3), 11
Single Data Rate (SDR) RAM chips, 412
single-layer topology, 249
site designs (OTV), 335
site-to-site VPNs (virtual private networks), 198
site VLANs (OTV), 333
sites (OTV), 333
SLAs (service-level agreements), 34
SLBs (server load balancers), 201-203
Small Computer Systems Interface. See SCSI
Smart Software Licensing, 487
SMB (Server Message Block), 289-293
snapshots (virtual machines), 141
sockets, 412
Software as a Service (SaaS), 49-52
software-defined virtual overlays, 381-383
software-defined networking. See SDN
software development kit (SDK), 105
software development models
Agile model, 25
DevOps, 26
waterfall model, 24-25
soft zoning, 246
solid-state drives (SSDs), 260-261
spanning tree, 314
Spanning Tree Protocol. See STP
SPAN (Switched Port Analyzer), 167
special characters (file naming rules)
Linux, 272
Windows, 274
spine-leaf topologies, 356-358
SPI (SCSI Parallel Interface), 236
SPMA (Server-Provided MAC Address), 343
SPs (service providers)
cloud services providers, 34-36
definition of, 32
types of, 32-33
SSDs (solid-state drives), 260-261
SSL (Secure Sockets Layer), 10
SSNs (scaling system nodes), 483
SSPs (storage service providers), 33
SSRs (scaling system routers), 483
standalone mode (CIMC), 431-432
standardization phase (cloud implementation), 103
state, 287
stateless, 259, 287
storage
access interfaces, 336
block storage. See block storage controllers, 123, 228-229
file storage. See file storage object storage, 297-298
service providers (SSPs), 33
virtualizers, 233
volume, 102
storage-area networks. See SANs
STP (SATA Tunneling Protocol), 237
STP (Spanning Tree Protocol)
DCI challenges, 327-328
definition of, 314-315
diameter, 327
FabricPath and, 354-356
link aggregation, 315-316
straight-through topologies, 325
striping, 227
study mode (practice exam), 520-521
study plan (exam preparation), 520
subnets (ACI), 386
supervisor modules
Cisco MDS 9000 series, 461
Cisco Nexus 7000 and 7700 series switches, 472
Cisco Nexus 9500 series switches, 476
definition of, 461
swap memory files (VMs), 131
Swift, 115, 298
Switch ID field, 350
switch mode (Fabric Interconnect), 423-424
switched fabric topologies, 239
Switched Port Analyzer (SPAN), 167
switches
data center switches, 462
Cisco Nexus 1000V series, 462-463
Cisco Nexus 1100 Cloud Services Platforms, 463-464
Cisco Nexus 2000 series Fabric Extenders, 464-466
Cisco Nexus 3000 series, 466-469
Cisco Nexus 5000 series, 469-471
Cisco Nexus 7000 series, 471-474
Cisco Nexus 9000 series, 475-478
distributed virtual switches (DVSs), 157-158
fabric switches, 460-462
Nexus Series switches, 306. See also Unified Fabric virtual switches, 154-157
Cisco Nexus 1000V. See Cisco, Nexus 1000V distributed virtual switches versus, 157
synchronicity, 287
system buses, 412
tape libraries, 225
TCP Flow Optimization (TFO), 206
TE_Port (Trunk Expansion Port), 253
telecommunications service providers (TSPs), 33
templates
for service profiles (UCS), 445-449
of virtual machines, 141
unicast-based VXLANs

TSPs (telecommunications service providers), 33
TTL (Time-to-Live), 314
Twinax cables, 321
Type-1 hypervisors, 130
Type-2 hypervisors, 130

UCS (Unified Computing System), 407, 418-419, 479-480
architecture, 418-419
B-Series blade servers, 482
B-Series servers, 426-429
Blade Server Chassis, 481
C-Series rack servers, 482-483
C-Series servers, 430-432
Central, 449-451
in cloud computing, 451-452
Director, 371
Fabric Extenders, 481
Fabric Interconnects, 419-424, 480-481
integration with OpenStack Ironic, 453
Invicta, 260-261, 483-484
M-Series modular servers, 484-485
Manager, 424-426
Mini, 480
policies, 442-443
service profiles, 436-437
 building, 437-442
 cloning, 443
 pools, 444-445
 templates, 445-449
VIC adapters, 432-436
UCSO (UCS Integrated Infrastructure for Red Hat OpenStack), 510
UCS Utility OS (UUOS), 441
unicast-based VXLANs, 181-184
unicast
forwarding, 377
OTV configuration, 333-334
Unified Computing System. See UCS
Unified Fabric
Fabric Extenders, 322-326
FabricPath, 349-351
configuring, 352-354
MAC address learning, 351-352
STP and, 354-356
features of, 306
I/O consolidation, 336-337
data center bridging, 338-341
deploying, 343-346
designs, 346-349
Fibre Channel over Ethernet, 341-343
OTV, 329-332
configuring, 332-334
site designs, 335
spine-leaf topologies, 356-358
VDCs
benefits, 309-310
creating, 310-311
definition of, 308-309
resource allocation, 312-313
vPCs, 316
creating, 317-319
definition of, 317
in three-tier design, 319
VXLAN fabrics, 358-360
Unified Ports, 423, 469
uplinks, 154, 315
uptime, 34
use cases
ICF (Cisco Intercloud Fabric), 83
VSANs, 255-256
user-level authentication, 293
users
isolation, 126
space, 125
UUOS (UCS Utility OS), 441

V

VACS (Cisco Virtual Application Cloud Segmentation), 212-216
Vblock, 506-508
VCE (Virtual Computing Environment), 506-508
VCE Vision Intelligent Operations, 508
vDCs (virtual data centers), 102
VDCs (virtual device contexts)
benefits, 309-310
creating, 310-311
definition of, 308-309
resource allocation, 312-313
vDS (vNetwork Distributed Switch), 398
VEM (Virtual Ethernet Module), 462
VF_Port (Virtual F_Port), 342
VIC (Virtual Interface Card) adapters, 432-436
virtual appliances, 168
virtual application containers, 92, 210-217
virtual application container templates, 212
Virtual Computing Environment (VCE), 506-508
virtual data centers (vDCs), 102
virtual device contexts. See VDCs
virtual disk files (VMs), 131
Virtual Ethernet Module (VEM), 462
Virtual eXtensible LANs. See VXLANs
Virtual Interface Card (VIC) adapters, 432-436
virtual local-area networks. See VLANs
Virtual Machine Communication Interface (VMCI), 131
Virtual Machine Control Program (VM-CP), 126
Virtual Machine Fabric Extender (VM-FEX), 434-436
virtual machines. See VMs
virtual networking
challenges in server virtualization environments, 159-160
challenges of, 152-154, 308
Cisco Nexus 1000V, 161
advanced features, 166-168
chassis switches versus, 162
components of, 161
as multi-hypervisor platform, 168-171
operational procedures, 163-164
port profiles, 164-166
standard VXLAN deployment, 177-179
Virtual Services Data Path (vPath), 192-193
as VXLAN gateways, 181
data center networks. See data center networks
definition of, 149
distributed virtual switches, 157-158
on non-VMware hypervisors, 158-159
services
application delivery controllers (ADCs), 203-204
Cisco Adaptive Security Virtual Appliance (ASAv), 197-199, 486-487
Cisco Cloud Services Router (CSR) 1000V, 199-201, 487-488
Virtual Routing and Forwarding (VRF), 210, 307
Virtual Security Gateway (VSG), 75, 193-197, 490
virtual service blades (VSBs), 162, 463-464
Virtual Services Appliances (VSAs), 162
Virtual Services Data Path (vPath), 192-193
virtual storage-area networks. See VSANs
virtual STP bridges, 355
Virtual Supervisor Module (VSM), 193, 462
virtual switches, 154-157
Cisco Nexus 1000V, 161
 advanced features, 166-168
 chassis switches versus, 162
 components of, 161
 as multi-hypervisor platform, 168-171
 operational procedures, 163-164
 port profiles, 164-166
 standard VXLAN deployment, 177-179
Virtual Services Data Path (vPath), 192-193
as VXLAN gateways, 181
distributed virtual switches versus, 157
Virtual Switch Update Manager (VSUM), 168
Virtual Tenant Network (VTN) coordinator, 379
virtual zones (vZones), 197
virtualization
 classes of, 304
 clusters, 132
 data center network attribute, 304
definition of, 36, 125
hosts, 130
infrastructure virtualization. See virtual networking
operating system–level virtualization, 144-145
POD, 498-499
servers
Cisco Nexus 1000V series switches, 462-463
cloud computing and, 142-144
features, 136, 141-142
hypervisors. See hypervisors
mainframe virtualization, 126-127
networking challenges in, 159-160
resource load balancing, 140
virtualization on x86 machines, 127-128
virtualization rate, 410-411
virtual machine fault tolerance, 140-141
virtual machine high availability, 136-137
virtual machine live migration, 137-139
virtual machine managers, 132
virtual machines, 130-132
types of, 37
workstations, 127
virtualization phase (cloud implementation), 102
virtualized isolation design, 45
virtualized modular chassis, 323
Virtualized Multiservice Data Center (VMDC) reference architecture, 211
visibility (APIC), 395-396
VLANs (virtual local-area networks)
 challenges of, 171-173, 177
definition of, 102, 153, 307
ID starvation

addressing with VXLANs, 177
definition of, 172
manipulation, 191
private VLANs, 167
provisioning

addressing with VXLANs, 177
definition of, 172
tagging, 154, 307
VXLAN gateways, 180-181
VM-CP (Virtual Machine Control Program), 126
VM-FEX (Virtual Machine Fabric Extender), 434-436
VM Manager (VMM), 193
ACI integration with, 398
definition of, 132
VMs (virtual machines)
cloning, 141
components of, 130-131
definition of, 130
fault tolerance, 140-141
files for, 131-132
high availability, 136-137
history of, 10, 126
live migration, 137-139
maintenance mode, 141
managers, 132
networking. See virtual networking
power management, 141
snapshots, 141
storage live migration, 259
templates, 141
VMCI (Virtual Machine Communication Interface), 131
VMDC (Virtualized Multiservice Data Center) reference architecture, 211
.vmdk file extension, 131
vmknic (virtual machine kernel network interface card), 158
vmnic (virtual machine network interface card), 157
VMware
ESXi, 129
Fusion, 129
Player, 129
virtualization on x86 machines, 127
virtual networking versus non-VMware hypervisors, 158-159
vNetwork Standard Switch (vSS), 154
vSphere, 129, 133, 157
Workstation, 129
.vmx file extension, 131
vNetwork Distributed Switch (vDS), 398
vnic (virtual network interface card), 158
VN_Port (Virtual N_Port), 342
VNTag (Virtual Network Tag), 324
volume formatting
definition of, 274
extended filesystems, 274-278
FAT, 278-280
NTFS, 280-281
volumes, 231-233
vPath (Virtual Services Data Path), 192-193, 208-210
vPCs (virtual PortChannels), 316
creating, 317-319
DCIs, 328
definition of, 317
in three-tier design, 319
VPCs (Virtual Private Clouds), 66
vPC+ (virtual PortChannel Plus), 355-356
VPLS (Virtual Private LAN Services), 328
VPNaas (VPN as a Service), 53
VPNs (virtual private networks)
 ASAv capabilities, 198
 history of cloud computing, 10
VRF (Virtual Routing and Forwarding), 210, 307
VRRP (Virtual Router Redundancy Protocol), 258
VSANs (virtual storage-area networks), 251
 Manager, 251
 terminology, 251-252
 trunking, 253
 use cases, 255-256
 zoning, 254-255
VSAs (Virtual Services Appliances), 162
VSBs (virtual service blades), 162, 463-464
VSG (Cisco Virtual Security Gateway), 75, 193-197, 490
VSM (Cisco Virtual Supervisor Module), 193, 462
VSPEX, 508-510
vSphere, 129, 133, 157
vSS (VMware vNetwork Standard Switch), 154
VSUM (Virtual Switch Update Manager), 168
vSwitches, 154-157
.vswp file extension, 131
VTEP (VXLAN tunnel endpoint), 174
VTN (Virtual Tenant Network) coordinator, 379
vTracker feature, 167-168
vWAAS (Cisco Virtual Wide Area Application Services), 207-208, 489-490
VXLANs (Virtual eXtensible LANs), 171

downloading VLAN challenges, 177
benefits, 381
encapsulation, 173-177
as fabrics, 358-360
flooding, 177
gateways, 180-181
OTV versus, 331
standard deployment in Cisco Nexus 1000V, 177-179
tunnel endpoint (VTEP), 174
unicast-based VXLANs, 181-184
vZones (virtual zones), 197

WAAS (Cisco Wide Area Application Services), 206-207
WANs (wide-area networks)
 acceleration, 206
 Cisco Virtual Wide Area Application Services (vWAAS), 207-208
 Cisco Wide Area Application Services (WAAS), 206-207
 performance issues, 205-206
 vWAAS, 489-490
waterfall model (software development), 24-25
WCCP (Web Cache Control Protocol), 191-192
web services, 105
well-known addresses, 242
Windows
 definition of, 124
 file naming rules, 273-274
 permissions, 282-285
 Virtual PC, 129
workflows
 in cloud orchestrator, 95-97
 definition of, 95
workstation virtualization, 127
WWNs (World Wide Names), 239-240

X-Y

x86 machines, 127-128
x86 microarchitecture, 411-414
XaaS (Anything as a Service), 52-53
XDR (External Data Representation), 286
Xen, 159
XenServer, 129
XML (Extensible Markup Language), 109
XMPP (Extensible Message and Presence Protocol), 373

Z

Zaqar, 116
Zone Server service, 247
zone sets, 246
zoning
 Fibre Channel, 246-247
 VSANs, 254-255