In addition to the wealth of updated content, this new edition includes a series of free hands-on exercises to help you master several real-world configuration and troubleshooting activities. These exercises can be performed on the CCNA ICND2 200-101 Network Simulator Lite software included for free on the DVD that accompanies this book. This software, which simulates the experience of working on actual Cisco routers and switches, contains the following 13 free lab exercises:

1. EIGRP Serial Configuration I Skill Builder Lab
2. EIGRP Serial Configuration II Skill Builder Lab
3. EIGRP Serial Configuration III Skill Builder Lab
4. EIGRP Frame Relay Configuration I Skill Builder Lab
5. EIGRP Frame Relay Configuration II Skill Builder Lab
6. EIGRP Route Tuning I Skill Builder Lab
7. EIGRP Route Tuning II Skill Builder Lab
8. EIGRP Neighbors II Skill Builder Lab
9. EIGRP Neighbors III Skill Builder Lab
10. EIGRP Configuration I Configuration Scenario
11. EIGRP Configuration II Configuration Scenario
12. EIGRP Metric Manipulation Configuration Scenario
13. Path Troubleshooting IV Troubleshooting Scenario

If you are interested in exploring more hands-on labs and practicing configuration and troubleshooting with more router and switch commands, check out our full simulator product offerings at http://www.pearsonitcertification.com/networksimulator.

CCNA ICND2 200-101 Network Simulator Lite minimum system requirements:

- Microsoft Windows XP (SP3), Windows Vista (32-bit/64-bit) with SP1, Windows 7 (32-bit/64-bit) or Windows 8 (32-bit/64-bit, x86 processors), Mac OS X 10.6, 10.7, or 10.8
- Intel Pentium III 1GHz or faster processor
- 512 MB RAM (1GB recommended)
- 1 GB hard disk space
- 32-bit color depth at 1024x768 resolution
- Adobe Acrobat Reader version 8 and above

Other applications installed during installation:

- Adobe AIR 3.6.0
- Captive JRE 6

Cisco CCNA Routing and Switching ICND2 200-101 Official Cert Guide, Academic Edition is part of a recommended learning path from Cisco that includes simulation and hands-on training from authorized Cisco Learning Partners and self-study products from Cisco Press. To find out more about instructor-led training, e-learning, and hands-on instruction offered by authorized Cisco Learning Partners worldwide, please visit www.cisco.com/go/authorizedtraining.

WENDELL ODOM, CCIE No. 1624
Corporate and Government Sales

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests.

For more information, please contact:
U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
International Sales
international@pearsoned.com

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Publisher: Paul Boger
Associate Publisher: Dave Dusthimer
Business Operation Manager, Cisco Press: Jan Cornelssen
Executive Editor: Brett Bartow
Managing Editor: Sandra Schroeder
Development Editor: Andrew Cupp
Senior Project Editor: Tonya Simpson

Copy Editor: Keith Cline
Technical Editor: Elan Beer
Editorial Assistant: Vanessa Evans
Cover Designer: Mark Shirar
Illustrator: Michael Tanamachi
Composition: Bronkella Publishing
Indexer: Erika Millen
Proofreader: Sarah Kearns

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

All other trademarks mentioned in this document are property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company.
About the Author

Wendell Odom, CCIE No. 1624, has been in the networking industry since 1981. He has worked as a network engineer, consultant, systems engineer, instructor, and course developer; he currently works writing and creating certification tools. He is the author of all the previous books in the Cisco Press CCNA Official Certification Guide series, as well as author of the CCNP ROUTE 642-902 Official Certification Guide, the QoS 642-642 Exam Certification Guide, and co-author of the CCIE Routing and Switch Official Certification Guide and several other titles. He is also a consultant for the CCNA 640-802 Network Simulator from Pearson and for a forthcoming replacement version of that product. He maintains study tools, links to his blogs, and other resources at http://www.certskills.com.

About the Contributing Author

Anthony Sequeira, CCIE No. 15626, is a Cisco Certified Systems Instructor (CCSI) and author regarding all levels and tracks of Cisco certification. Anthony formally began his career in the information technology industry in 1994 with IBM in Tampa, Florida. He quickly formed his own computer consultancy, Computer Solutions, and then discovered his true passion: teaching and writing about Microsoft and Cisco technologies. Anthony joined Mastering Computers in 1996 and lectured to massive audiences around the world about the latest in computer technologies. Mastering Computers became the revolutionary online training company KnowledgeNet, and Anthony trained there for many years. Anthony is currently pursuing his second CCIE in the area of Security and is a full-time instructor for the next generation of KnowledgeNet, StormWind Live. Anthony is also a VMware Certified Professional.
About the Technical Reviewer

Elan Beer, CCIE No. 1837, is a senior consultant and Cisco instructor specializing in data center architecture and multiprotocol network design. For the past 25 years, Elan has designed networks and trained thousands of industry experts in data center architecture, routing, and switching. Elan has been instrumental in large-scale professional service efforts designing and troubleshooting internetworks, performing data center and network audits, and assisting clients with their short- and long-term design objectives. Elan has a global perspective of network architectures via his international clientele. Elan has used his expertise to design and troubleshoot data centers and internetworks in Malaysia, North America, Europe, Australia, Africa, China, and the Middle East. Most recently, Elan has been focused on data center design, configuration, and troubleshooting as well as service provider technologies. In 1993, Elan was among the first to obtain Cisco's Certified System Instructor (CCSI) certification, and in 1996, he was among the first to attain Cisco System's highest technical certification, the Cisco Certified Internetworking Expert. Since then, Elan has been involved in numerous large-scale data center and telecommunications networking projects worldwide.
Dedication

In memory of Carcel Lanier (C.L.) Odom: Dad's Pop, Poppa, wearing khakis, quiet, tearing down the old house (one board at a time), tagging along at the cow sales barn, walking the property, and napping during the Sunday morning sermon.
Acknowledgments

Although published as a first edition for various reasons, this book (and the companion Cisco CCENT/CCNA ICND1 100-101 Exam Cert Guide, Academic Edition) represents the seventh book in a long line of Cisco Press books focused on helping people pass the CCENT and CCNA R/S certifications. Given the long history, many people have worked on these books from their inception back in 1998. To those many people who have touched these books over these past 15 years—technical edits, development, copy edits, project editing, proofing, indexing, managing the production process, interior design, cover design, marketing, and all the other details that happen to get these books out the door—thanks so much for playing a role in this CCENT/CCNA franchise.

Many of the contributors to the previous editions returned to work on creating these new editions, including Development Editor Drew Cupp. Drew kept all the details straight, with my frequent changes to the outlines and titles, keeping the sequencing on track, while still doing his primary job: keeping the text and features clear and consistent throughout the book. Thanks, Drew, for walking me through the development.

Contributing author Anthony Sequeira did a nice job stepping in on the network management part of the book. Anthony was a perfect fit, given his interest in management protocols and tools, and his writing experience and his great teaching skills (with enthusiasm!). Thanks for helping make this book complete and doing such a great job.

As for technical editors, Elan Beer did his normal job. That is, he did his usual amazing job of doing every part of the technical edit job well, from finding the tiny little cross-reference errors that lie pages apart, to anticipating how readers might misunderstand certain phrasing, to being all over the details of every technical feature. Fantastic job as usual; thanks, Elan.

Brett Bartow again served as executive editor of the book, as he has almost since the beginning of these titles. When my family has asked me over the years about Brett’s role with these books, the best single word definition is teammate. Brett may be employed at Pearson Education, but he is always working with me and for me, watching out for the business end of the books and finding ways to make the publisher/author relationship work seamlessly. Thanks for another great ride through these books, Brett!

Word docs go in, and out come these beautiful finished products. Thanks to Sandra Schroeder, Tonya Simpson, and all the production team for working through the magic that takes those Word docs and makes the beautiful finished product. From fixing all my grammar, crummy word choices, passive-voice sentences, and then pulling the design and layout together, they do it all. Thanks for putting it all together and making it look easy. And Tonya, managing the details through several process steps for roughly 100 elements between the pair of CCNA books in a short timeframe: Wow, thanks for the amazing juggling act! And thanks especially for the attention to detail.

The figures for these books go through a little different process than they do for other books. Together we invested a large amount of labor in updating the figures for these books, both for the design, the number of figures, and for the color versions of the figures for the electronic versions of the books. A special thanks goes out to Laura Robbins for working with me on the color and design standards early in the process. Also, thanks to Mike Tanamachi for drawing all the figures so well (and then redrawing them every time I changed my mind about something).

Thanks to Chris Burns of CertSkills for all the work on the mind maps, both those used in the final product and those used to build the book, as well as for being a bit of a test case for some of the chapters.
A special thank you to you readers who write in with suggestions, possible errors, and especially those of you who post online at the Cisco Learning Network. Without question, the comments I receive directly and overhear by participating at CLN made this edition a better book.

Thanks to my wife, Kris. Book schedules have a bigger impact than I would like, but you always make it work. Thanks to my daughter, Hannah, for all the great study/work breaks on some of these busy schooldays. And thanks to Jesus Christ, for this opportunity to write.
Contents at a Glance

Introduction xxvi
Getting Started 3

Part I: LAN Switching 9
Chapter 1: Spanning Tree Protocol Concepts 10
Chapter 2: Spanning Tree Protocol Implementation 36
Chapter 3: Troubleshooting LAN Switching 64
Part I Review 104

Part II: IP Version 4 Routing 109
Chapter 4: Troubleshooting IPv4 Routing Part I 110
Chapter 5: Troubleshooting IPv4 Routing Part II 132
Chapter 6: Creating Redundant First-Hop Routers 156
Chapter 7: Virtual Private Networks 176
Part II Review 194

Part III: IP Version 4 Routing Protocols 199
Chapter 8: Implementing OSPF for IPv4 200
Chapter 9: Understanding EIGRP Concepts 230
Chapter 10: Implementing EIGRP for IPv4 252
Chapter 11: Troubleshooting IPv4 Routing Protocols 278
Part III Review 304

Part IV: Wide Area Networks 309
Chapter 12: Implementing Point-to-Point WANs 310
Chapter 13: Understanding Frame Relay Concepts 336
Chapter 14: Implementing Frame Relay 352
Chapter 15: Identifying Other Types of WANs 386
Part IV Review 404

Part V: IP Version 6 409
Chapter 16: Troubleshooting IPv6 Routing 410
Chapter 17: Implementing OSPF for IPv6 434
Chapter 18: Implementing EIGRP for IPv6 460
Part V Review 480
Contents

Introduction xxvi
Getting Started 3

Part I: LAN Switching 9

Chapter 1 Spanning Tree Protocol Concepts 10
Foundation Topics 11
LAN Switching Review 11
 LAN Switch Forwarding Logic 11
 Switch Verification 12
 Viewing the MAC Address Table 12
 Determining the VLAN of a Frame 13
 Verifying Trunks 15
Spanning Tree Protocol (IEEE 802.1D) 15
 The Need for Spanning Tree 16
 What IEEE 802.1D Spanning Tree Does 18
 How Spanning Tree Works 19
 The STP Bridge ID and Hello BPDU 20
 Electing the Root Switch 21
 Choosing Each Switch’s Root Port 23
 Choosing the Designated Port on Each LAN Segment 24
Influencing and Changing the STP Topology 25
 Making Configuration Changes to Influence the STP Topology 25
 Reacting to State Changes That Affect the STP Topology 26
 How Switches React to Changes with STP 26
 Changing Interface States with STP 28
Optional STP Features 29
 EtherChannel 29
 PortFast 30
 BPDU Guard 30
 Rapid STP (IEEE 802.1w) 31
Review Activities 32

Chapter 2 Spanning Tree Protocol Implementation 36
Foundation Topics 37
STP Configuration and Verification 37
 Setting the STP Mode 37
 Connecting STP Concepts to STP Configuration Options 38
Per-VLAN Configuration Settings 38
 The Bridge ID and System ID Extension 39
Per-VLAN Port Costs 40
STP Configuration Option Summary 40
Verifying STP Operation 40
Configuring STP Port Costs 43
Configuring Priority to Influence the Root Election 45
Configuring PortFast and BPDU Guard 46
Configuring EtherChannel 47
Configuring a Manual EtherChannel 48
Configuring Dynamic EtherChannels 50
STP Troubleshooting 50
Determining the Root Switch 51
Determining the Root Port on Nonroot Switches 52
STP Tiebreakers When Choosing the Root Port 53
Suggestions for Attacking Root Port Problems on the Exam 54
Determining the Designated Port on Each LAN Segment 54
Suggestions for Attacking Designated Port Problems on the Exam 55
STP Convergence 56
Troubleshooting EtherChannel 56
Incorrect Options on the channel-group Command 57
Configuration Checks Before Adding Interfaces to EtherChannels 58
Review Activities 60

Chapter 3 Troubleshooting LAN Switching 64
Foundation Topics 65
Generalized Troubleshooting Methodologies 65
Analyzing and Predicting Normal Network Operation 65
Data Plane Analysis 66
Control Plane Analysis 67
Predicting Normal Operations: Summary of the Process 68
Problem Isolation 68
Root Cause Analysis 69
Real World Versus the Exams 70
Troubleshooting the LAN Switching Data Plane 70
An Overview of the Normal LAN Switch Forwarding Process 71
Step 1: Confirm the Network Diagrams Using CDP 72
Step 2: Isolate Interface Problems 73
Interface Status Codes and Reasons for Nonworking States 74
The notconnect State and Cabling Pinouts 75
Determining Switch Interface Speed and Duplex 76
Issues Related to Speed and Duplex 77
Step 3: Isolate Filtering and Port Security Problems 79
Step 4: Isolate VLAN and Trunking Problems 82

Ensuring That the Right Access Interfaces Are in the Right VLANs 83
Access VLANs Not Being Defined or Not Being Active 83
Identify Trunks and VLANs Forwarded on Those Trunks 84

Troubleshooting Examples and Exercises 86
Troubleshooting Example 1: Find Existing LAN Data Plane Problems 86
Step 1: Verify the Accuracy of the Diagram Using CDP 87
Step 2: Check for Interface Problems 88
Step 3: Check for Port Security Problems 90
Step 4: Check for VLAN and VLAN Trunk Problems 91
Troubleshooting Example 2: Predicting LAN Data Plane Behavior 94
PC1 ARP Request (Broadcast) 95
R1 ARP Reply (Unicast) 98

Review Activities 102

Part I Review 104

Part II: IP Version 4 Routing 109

Chapter 4 Troubleshooting IPv4 Routing Part I 110
Foundation Topics 111
Predicting Normal IPv4 Routing Behavior 111
Host IPv4 Routing Logic 111
Routing Logic Used by IPv4 Routers 112
IP Routing Logic on a Single Router 112
IP Routing from Host to Host 113
Building New Data Link Headers Using ARP Information 114

Problem Isolation Using the ping Command 115
Ping Command Basics 115
Strategies and Results When Testing with the ping Command 116
Testing Longer Routes from Near the Source of the Problem 117
Using Extended Ping to Test the Reverse Route 119
Testing LAN Neighbors with Standard Ping 121
Testing LAN Neighbors with Extended Ping 122
Testing WAN Neighbors with Standard Ping 122
Using Ping with Names and with IP Addresses 123

Problem Isolation Using the traceroute Command 124
traceroute Basics 124
How the traceroute Command Works 125
Standard and Extended traceroute 126
Using traceroute to Isolate the Problem to Two Routers 127

Review Activities 130
Chapter 5 Troubleshooting IPv4 Routing Part II 132

Foundation Topics 133

Problems Between the Host and the Default Router 133
 Root Causes Based on a Host's IPv4 Settings 133
 Ensure IPv4 Settings Correctly Match 133
 Mismatched Masks Impact Route to Reach Subnet 134
 Typical Root Causes of DNS Problems 136
 Wrong Default Router IP Address Setting 137
 Root Causes Based on the Default Router's Configuration 137
 Mismatched VLAN Trunking Configuration with Router on a Stick 138
 DHCP Relay Issues 140
 Router LAN Interface and LAN Issues 141

Problems with Routing Packets Between Routers 143
 IP Forwarding by Matching the Most Specific Route 143
 Using "show ip route" and Subnet Math to Find the Best Route 144
 Using "show ip route address" to Find the Best Route 145
 "show ip route" Reference 145
 Routing Problems Caused by Incorrect Addressing Plans 146
 Recognizing When VLSM Is Used or Not 147
 Overlaps When Not Using VLSM 147
 Overlaps When Using VLSM 148
 Configuring Overlapping VLSM Subnets 149
 Router WAN Interface Status 150
 Filtering Packets with Access Lists 151

Review Activities 153

Chapter 6 Creating Redundant First-Hop Routers 156

Foundation Topics 157

FHRP Concepts 157
 The Need for Redundancy in Networks 157
 The Need for a First Hop Redundancy Protocol 159
 The Three Solutions for First-Hop Redundancy 160
 HSRP Concepts 160
 HSRP Failover 161
 HSRP Load Balancing 162
 GLBP Concepts 163
 FHRP Configuration and Verification 164
 Configuring and Verifying HSRP 164
 Configuring and Verifying GLBP 167

Review Activities 170
<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Understanding EIGRP Concepts</th>
<th>230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Topics</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>EIGRP and Distance Vector Routing Protocols</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Introduction to EIGRP</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Basic Distance Vector Routing Protocol Features</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>The Concept of a Distance and a Vector</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Full Update Messages and Split Horizon</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Route Poisoning</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>EIGRP as an Advanced DV Protocol</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>EIGRP Sends Partial Update Messages, As Needed</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>EIGRP Maintains Neighbor Status Using Hello</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>Summary of Interior Routing Protocol Features</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>EIGRP Concepts and Operation</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>EIGRP Neighbors</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Exchanging EIGRP Topology Information</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Calculating the Best Routes for the Routing Table</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>The EIGRP Metric Calculation</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>An Example of Calculated EIGRP Metrics</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Caveats with Bandwidth on Serial Links</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>EIGRP Convergence</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Feasible Distance and Reported Distance</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>EIGRP Successors and Feasible Successors</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>The Query and Reply Process</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>Review Activities</td>
<td>248</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 10	Implementing EIGRP for IPv4	252
Foundation Topics	253	
Core EIGRP Configuration and Verification	253	
EIGRP Configuration	253	
Configuring EIGRP Using a Wildcard Mask	255	
Verifying EIGRP Core Features	255	
Finding the Interfaces on Which EIGRP Is Enabled	256	
Displaying EIGRP Neighbor Status	258	
Displaying the IPv4 Routing Table	259	
Chapter 11: Troubleshooting IPv4 Routing Protocols

Foundation Topics
- Perspectives on Troubleshooting Routing Protocol Problems

Interfaces Enabled with a Routing Protocol
- EIGRP Interface Troubleshooting
- Examining Working EIGRP Interfaces
- Examining the Problems with EIGRP Interfaces
- OSPF Interface Troubleshooting

Neighbor Relationships
- EIGRP Neighbor Verification Checks
- EIGRP Neighbor Troubleshooting Example
- OSPF Neighbor Troubleshooting
- Finding Area Mismatches
- Finding Duplicate OSPF Router IDs
- Finding OSPF Hello and Dead Timer Mismatches
- Other OSPF Issues
- Mismatched OSPF Network Types
- Mismatched MTU Settings

Review Activities

Part III Review

Part IV: Wide-Area Networks

Chapter 12: Implementing Point-to-Point WANs

Foundation Topics
- Leased Line WANs with HDLC
- Layer 1 Leased Lines
- The Physical Components of a Leased Line
- Leased Lines and the T-Carrier System
Part V: IP Version 6 409

Chapter 16 Troubleshooting IPv6 Routing 410

Foundation Topics 411

Normal IPv6 Operation 411

Unicast IPv6 Addresses and IPv6 Subnetting 411
Assigning Addresses to Hosts 413

Stateful DHCPv6 413

Stateless Address Autoconfiguration 414

Router Address and Static Route Configuration 415

Configuring IPv6 Routing and Addresses on Routers 415
IPv6 Static Routes on Routers 416

Verifying IPv6 Connectivity 417

Verifying Connectivity from IPv6 Hosts 417

Verifying IPv6 from Routers 419

Troubleshooting IPv6 421

Pings from the Host Work Only in Some Cases 421
Pings Fail from a Host to Its Default Router 423
Problems Using Any Function That Requires DNS 424

Host Is Missing IPv6 Settings: Stateful DHCP Issues 424

Host Is Missing IPv6 Settings: SLAAC Issues 425

Traceroute Shows Some Hops, But Fails 427
Routing Looks Good, But Traceroute Still Fails 428

Review Activities 430

Chapter 17 Implementing OSPF for IPv6 434

Foundation Topics 435

OSPFv3 Configuration 435

OSPFv3 ICND1 Configuration Review 435
Example Multi-Area OSPFv3 Configuration 435

Single Area Configuration on the Three Internal Routers 436
Adding Multi-Area Configuration on the Area Border Router 438

Other OSPFv3 Configuration Settings 439
Setting OSPFv3 Interface Cost to Influence Route Selection 439

OSPF Load Balancing 440
Injecting Default Routes 440

OSPF Concepts, Verification, and Troubleshooting 441

OSPFv3 Interfaces 443

Verifying OSPFv3 Interfaces 443
Troubleshooting OSPFv3 Interfaces 443
OSPFv3 Neighbors 445

Verifying OSPFv3 Neighbors 445
Troubleshooting OSPFv3 Neighbors 446
Chapter 20 Managing IOS Files 504

Foundation Topics 505

Managing Cisco IOS Files 505

Upgrading a Cisco IOS Software Image into Flash Memory 505
The Cisco IOS Software Boot Sequence 507
The Three Router Operating Systems 508
The Configuration Register 509
How a Router Chooses Which OS to Load 509
Recovering If the IOS Does Not Load 511
Verifying the IOS Image Using the show version Command 512

Password Recovery 513

The General Ideas Behind Cisco Password Recovery/Reset 514
A Specific Password Reset Example 515

Managing Configuration Files 517

Configuration File Basics 517
Copying and Erasing Configuration Files 519
Initial Configuration (Setup Mode) 521

Review Activities 522

Chapter 21 Managing IOS Licensing 526

Foundation Topics 527

IOS Packaging 527

IOS Images per Model, Series, and per Software Version/Release 527
Original Packaging: One IOS Image per Feature Set Combination 528
New IOS Packaging: One Universal Image with All Feature Sets 528

IOS Software Activation with Universal Images 529
Managing Software Activation with Cisco License Manager 530
Manually Activating Software Using Licenses 531
Example of Manually Activating a License 533

Showing the Current License Status 533
Adding a Permanent Technology Package License 535
Right-to-Use Licenses 536

Review Activities 539

Part VI Review 542
Part VII: Final Review 545

Chapter 22 Final Review 546

Advice About the Exam Event 546
Learn the Question Types Using the Cisco Certification Exam Tutorial 546
Think About Your Time Budget Versus Numbers of Questions 547
A Suggested Time-Check Method 548
Miscellaneous Pre-Exam Suggestions 548
Exam-Day Advice 548

Exam Review 549
Practice Subnetting and Other Math-Related Skills 549
Take Practice Exams 551
Practicing Taking the ICND2 Exam 551
Practicing Taking the CCNA Exam 552
Advice on How to Answer Exam Questions 553
Find Knowledge Gaps Through Question Review 554
Practice Hands-On CLI Skills 556
Review Mind Maps from Part Review 557
Do Labs 557
Other Study Tasks 558
Final Thoughts 558

Part VIII: Appendixes 561

Appendix A Numeric Reference Tables 563
Appendix B ICND2 Exam Updates 571
Glossary 598
Index 618

DVD-Only Appendixes

Appendix C Answers to the Review Questions
Appendix D Memory Tables
Appendix E Memory Tables Answer Key
Appendix F Mind Map Solutions
Appendix G Study Planner
Icons Used in This Book

- Printer
- PC
- Laptop
- Server
- Phone
- IP Phone
- Router
- Switch
- Frame Relay Switch
- Cable Modem
- Access Point
- ASA
- DSLAM
- WAN Switch
- CSU/DSU
- Hub
- PIX Firewall
- Bridge
- Layer 3 Switch
- Network Cloud
- Ethernet Connection
- Serial Line
- Virtual Circuit
- Ethernet WAN
- Wireless
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([[]]) indicate a required choice within an optional element.
Introduction

About the Book and the Exams

This book serves first as a textbook in some college networking courses. At the same time, you might want a career in networking somewhere down the road, and this book helps you with a big step in that journey by helping you pass a Cisco certification exam.

If you want to succeed as a technical person in the networking industry at all, you need to know Cisco. Cisco has a ridiculously high market share in the router and switch marketplace, with more than 80 percent market share in some markets. In many geographies and markets around the world, networking equals Cisco. If you want to be taken seriously as a network engineer, Cisco certification makes perfect sense.

The Exams That Help You Achieve CCENT and CCNA

Cisco announced changes to the CCENT and CCNA Routing and Switching certifications, and the related 100-101 ICND1, 200-101 ICND2, and 200-120 CCNA exams, early in the year 2013. For those of you who understand how the old Cisco ICND1, ICND2, and CCNA exams worked, the structure remains the same. For those of you new to Cisco certifications, this introduction begins by introducing the basics.

Most everyone new to Cisco certifications begins with either CCENT or CCNA Routing and Switching. CCENT certification requires knowledge and skills on about half as much material as does CCNA Routing and Switching, so CCENT is the easier first step.

The CCENT certification requires a single step: pass the ICND1 exam. Simple enough.

The CCNA Routing and Switching certification gives you two options, as shown in Figure I-1: pass both the ICND1 and ICND2 exams, or just pass the CCNA exam. (Note that there is no separate certification for passing the ICND2 exam.)

As you can see, although you can obtain the CCENT certification by taking the ICND1 exam, you do not have to be CCENT certified before you get your CCNA Routing and Switching certification. You can choose to take the CCNA exam and bypass the CCENT certification.

As for the topics themselves, the ICND1 and ICND2 exams cover different topics (but with some overlap required). For example, ICND1 covers the basics of the Open Shortest Path First (OSPF) routing protocol. ICND2 covers more detail about OSPF, but to discuss those additional details,
ICND2 must rely on the parts of OSPF included in ICND1. Many topics in ICND2 build on topics in ICND1, causing some overlap.

The CCNA exam covers all the topics in both ICND1 and ICND2, no more, no less.

Types of Questions on the Exams

The ICND1, ICND2, and CCNA exams all follow the same general format. At the testing center, you sit in a quiet room with a PC. Before the exam timer begins, you have a chance to do a few other tasks on the PC; for instance, you can take a sample quiz just to get accustomed to the PC and the testing engine. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment.

Once the exam starts, the screen shows you question after question. The questions usually fall into one of the following categories:

- Multiple choice, single answer
- Multiple choice, multiple answer
- Testlet
- Drag-and-drop
- Simulated lab (sim)
- Simlet

The first three items in the list are all multiple choice questions. The multiple choice format simply requires that you point and click a circle beside the correct answer(s). Cisco traditionally tells you how many answers you need to choose, and the testing software prevents you from choosing too many answers. The testlet style gives you one larger scenario statement, with multiple different multiple choice questions about that one scenario.

Drag-and-drop questions require you to move some items around on the GUI. You left-click and hold, move a button or icon to another area, and release the clicker to place the object somewhere else—usually into a list. So, for some questions, to answer the question correctly, you might need to put a list of five things in the proper order.

The last two types both use a network simulator to ask questions. Interestingly, the two types actually allow Cisco to assess two very different skills. First, sim questions generally describe a problem, and your task is to configure one or more routers and switches to fix the problem. The exam then grades the question based on the configuration you changed or added.

The simlet questions may well be the most difficult style of question on the exams. Simlet questions also use a network simulator, but instead of you answering the question by changing the configuration, the question includes one or more multiple choice questions. The questions require that you use the simulator to examine the current behavior of a network, interpreting the output of any `show` commands that you can remember to answer the question. Whereas sim questions require you to troubleshoot problems related to a configuration, simlets require you to analyze both working and broken networks, correlating `show` command output with your knowledge of networking theory and configuration commands.

You can watch and even experiment with these command types using the Cisco Exam Tutorial. To find the Cisco Certification Exam Tutorial, go to http://www.cisco.com and search for “exam tutorial.”

What’s on the CCNA Exams?

Ever since I was in grade school, whenever the teacher announced that we were having a test soon, someone would always ask, “What’s on the test?” Even in college, people would try to get
more information about what would be on the exams. At heart, the goal is to know what to study hard, what to study a little, and what to not study at all.

Cisco tells the world the topics on each of their exams. Cisco wants the public to know both the variety of topics, and an idea about the kinds of knowledge and skills required for each topic, for every Cisco certification exam. To that end, Cisco publishes a set of exam topics for each exam.

Many Cisco exam topics list both a networking topic plus an important verb. The verb tells us to what degree the topic must be understood and what skills are required. The topic also implies the kinds of skills required for that topic. For example, one topic might start with “Describe...,” another with “Configure...,” another with “Verify...,” and another might begin with “Troubleshoot...”. That last topic has the highest required skill level, because to troubleshoot you must understand the topic, be able to configure it (to see what's wrong with the configuration), and verify it (to find the root cause of the problem). By listing the topics and skill level, Cisco helps us all prepare for its exams. Although the exam topics are helpful, keep in mind that Cisco adds a disclaimer that the posted exam topics for all of its certification exams are guidelines. Cisco makes the effort to keep the exam questions within the confines of the stated exam topics, and I know from talking to those involved that every question is analyzed for whether it fits within the stated exam topics.

ICND1 Exam Topics

Tables I-1 through I-7 list the exam topics for the ICND1 exam. Following those tables, Tables I-8 through I-12 list the exam topics for ICND2. These tables note the book chapters in which each exam topic is covered.

Note that the tables follow Cisco's organization of topics, by both grouping similar topics and listing sub-topics. The subtopics simply give more specific terms and concepts to provide more detail about some exam topics. The tables show the main topics in bold and the subtopics as indented text inside the tables.

Table I-1 ICND1 Exam Topics: Operation of IP Data Networks

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Operation of IP Data Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–4, 6, 15</td>
<td>Recognize the purpose and functions of various network devices such as Routers, Switches, Bridges and Hubs.</td>
</tr>
<tr>
<td>1–4, 6, 15</td>
<td>Select the components required to meet a given network specification.</td>
</tr>
<tr>
<td>5</td>
<td>Identify common applications and their impact on the network</td>
</tr>
<tr>
<td>1</td>
<td>Describe the purpose and basic operation of the protocols in the OSI and TCP/IP models.</td>
</tr>
<tr>
<td>2–5, 6, 9, 16, 24, 25</td>
<td>Predict the data flow between two hosts across a network.</td>
</tr>
<tr>
<td>2, 6, 15</td>
<td>Identify the appropriate media, cables, ports, and connectors to connect Cisco network devices to other network devices and hosts in a LAN</td>
</tr>
</tbody>
</table>

Table I-2 ICND1 Exam Topics: LAN Switching Technologies

<table>
<thead>
<tr>
<th>Chapter</th>
<th>LAN Switching Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 6</td>
<td>Determine the technology and media access control method for Ethernet networks</td>
</tr>
<tr>
<td>6, 8, 9</td>
<td>Identify basic switching concepts and the operation of Cisco switches.</td>
</tr>
<tr>
<td>6, 8</td>
<td>Collision Domains</td>
</tr>
</tbody>
</table>
Table I-3 ICND1 Exam Topics: IP Addressing (IPv4/IPv6)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>IP Addressing (IPv4/IPv6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Describe the operation and necessity of using private and public IP addresses for IPv4 addressing</td>
</tr>
<tr>
<td>25, 26</td>
<td>Identify the appropriate IPv6 addressing scheme to satisfy addressing requirements in a LAN/WAN environment.</td>
</tr>
<tr>
<td>11, 19, 20, 21</td>
<td>Identify the appropriate IPv4 addressing scheme using VLSM and summarization to satisfy addressing requirements in a LAN/WAN environment.</td>
</tr>
<tr>
<td>27, 28, 29</td>
<td>Describe the technological requirements for running IPv6 in conjunction with IPv4 such as dual stack</td>
</tr>
<tr>
<td>25–28</td>
<td>Describe IPv6 addresses</td>
</tr>
<tr>
<td>25, 26</td>
<td>Global unicast</td>
</tr>
<tr>
<td>27</td>
<td>Multicast</td>
</tr>
<tr>
<td>27</td>
<td>Link local</td>
</tr>
<tr>
<td>26</td>
<td>Unique local</td>
</tr>
<tr>
<td>27</td>
<td>eui 64</td>
</tr>
<tr>
<td>28</td>
<td>autoconfiguration</td>
</tr>
</tbody>
</table>
Table I-4 ICND1 Exam Topics: IP Routing Technologies

<table>
<thead>
<tr>
<th>Chapter</th>
<th>IP Routing Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Describe basic routing concepts</td>
</tr>
<tr>
<td>16</td>
<td>CEF</td>
</tr>
<tr>
<td>16</td>
<td>Packet forwarding</td>
</tr>
<tr>
<td>16</td>
<td>Router lookup process</td>
</tr>
<tr>
<td>15–18, 27</td>
<td>Configure and verify utilizing the CLI to set basic Router configuration</td>
</tr>
<tr>
<td>16–18, 27</td>
<td>Cisco IOS commands to perform basic router setup</td>
</tr>
<tr>
<td>16, 27</td>
<td>Configure and verify operation status of an ethernet interface</td>
</tr>
<tr>
<td>16–18, 27–29</td>
<td>Verify router configuration and network connectivity</td>
</tr>
<tr>
<td>16–18, 27, 29</td>
<td>Cisco IOS commands to review basic router information and network connectivity</td>
</tr>
<tr>
<td>16, 29</td>
<td>Configure and verify routing configuration for a static or default route given specific routing requirements</td>
</tr>
<tr>
<td>4, 16, 17, 25, 29</td>
<td>Differentiate methods of routing and routing protocols</td>
</tr>
<tr>
<td>4, 17, 29</td>
<td>Static vs. Dynamic</td>
</tr>
<tr>
<td>17</td>
<td>Link state vs. Distance Vector</td>
</tr>
<tr>
<td>16, 25</td>
<td>next hop</td>
</tr>
<tr>
<td>16, 25</td>
<td>ip routing table</td>
</tr>
<tr>
<td>17, 29</td>
<td>Passive interfaces</td>
</tr>
<tr>
<td>17, 29</td>
<td>Configure and verify OSPF (single area)</td>
</tr>
<tr>
<td>17, 29</td>
<td>Benefit of single area</td>
</tr>
<tr>
<td>17</td>
<td>Configure OSPF v2</td>
</tr>
<tr>
<td>29</td>
<td>Configure OSPF v3</td>
</tr>
<tr>
<td>17, 29</td>
<td>Router ID</td>
</tr>
<tr>
<td>17, 29</td>
<td>Passive interface</td>
</tr>
<tr>
<td>16</td>
<td>Configure and verify interVLAN routing (Router on a stick)</td>
</tr>
<tr>
<td>16</td>
<td>sub interfaces</td>
</tr>
<tr>
<td>16</td>
<td>upstream routing</td>
</tr>
<tr>
<td>16</td>
<td>encapsulation</td>
</tr>
<tr>
<td>8, 16</td>
<td>Configure SVI interfaces</td>
</tr>
</tbody>
</table>

Table I-5 ICND1 Exam Topics: IP Services

<table>
<thead>
<tr>
<th>Chapter</th>
<th>IP Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>18, 28</td>
<td>Configure and verify DHCP (IOS Router)</td>
</tr>
<tr>
<td>18, 28</td>
<td>configuring router interfaces to use DHCP</td>
</tr>
<tr>
<td>18</td>
<td>DHCP options</td>
</tr>
<tr>
<td>18</td>
<td>excluded addresses</td>
</tr>
<tr>
<td>Chapter</td>
<td>IP Services</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>18</td>
<td>lease time</td>
</tr>
<tr>
<td>22, 23</td>
<td>Describe the types, features, and applications of ACLs</td>
</tr>
<tr>
<td>22</td>
<td>Standard</td>
</tr>
<tr>
<td>23</td>
<td>Sequence numbers</td>
</tr>
<tr>
<td>23</td>
<td>Editing</td>
</tr>
<tr>
<td>23</td>
<td>Extended</td>
</tr>
<tr>
<td>23</td>
<td>Named</td>
</tr>
<tr>
<td>22, 23</td>
<td>Numbered</td>
</tr>
<tr>
<td>22</td>
<td>Log option</td>
</tr>
<tr>
<td>22, 23</td>
<td>Configure and verify ACLs in a network environment</td>
</tr>
<tr>
<td>23</td>
<td>Named</td>
</tr>
<tr>
<td>22, 23</td>
<td>Numbered</td>
</tr>
<tr>
<td>22</td>
<td>Log option</td>
</tr>
<tr>
<td>24</td>
<td>Identify the basic operation of NAT</td>
</tr>
<tr>
<td>24</td>
<td>Purpose</td>
</tr>
<tr>
<td>24</td>
<td>Pool</td>
</tr>
<tr>
<td>24</td>
<td>Static</td>
</tr>
<tr>
<td>24</td>
<td>1 to 1</td>
</tr>
<tr>
<td>24</td>
<td>Overloading</td>
</tr>
<tr>
<td>24</td>
<td>Source addressing</td>
</tr>
<tr>
<td>24</td>
<td>One way NAT</td>
</tr>
<tr>
<td>24</td>
<td>Configure and verify NAT for given network requirements</td>
</tr>
<tr>
<td>23</td>
<td>Configure and verify NTP as a client</td>
</tr>
</tbody>
</table>

Table I-6 ICND1 Exam Topics: Network Device Security

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Network Device Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 15</td>
<td>Configure and verify network device security features such as</td>
</tr>
<tr>
<td>8, 15</td>
<td>Device password security</td>
</tr>
<tr>
<td>8, 15</td>
<td>Enable secret vs enable</td>
</tr>
<tr>
<td>23</td>
<td>Transport</td>
</tr>
<tr>
<td>23</td>
<td>Disable telnet</td>
</tr>
<tr>
<td>8</td>
<td>SSH</td>
</tr>
<tr>
<td>8</td>
<td>VTYs</td>
</tr>
<tr>
<td>23</td>
<td>Physical security</td>
</tr>
<tr>
<td>8</td>
<td>Service password</td>
</tr>
<tr>
<td>8</td>
<td>Describe external authentication methods</td>
</tr>
</tbody>
</table>
Chapter 8: Network Device Security

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Network Device Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 10</td>
<td>Configure and verify Switch Port Security features such as</td>
</tr>
<tr>
<td>8</td>
<td>Sticky MAC</td>
</tr>
<tr>
<td>8</td>
<td>MAC address limitation</td>
</tr>
<tr>
<td>8, 10</td>
<td>Static / dynamic</td>
</tr>
<tr>
<td>8, 10</td>
<td>Violation modes</td>
</tr>
<tr>
<td>8, 10</td>
<td>Err disable</td>
</tr>
<tr>
<td>8, 10</td>
<td>Shutdown</td>
</tr>
<tr>
<td>8, 10</td>
<td>Protect restrict</td>
</tr>
<tr>
<td>8</td>
<td>Shutdown unused ports</td>
</tr>
<tr>
<td>8</td>
<td>Err disable recovery</td>
</tr>
<tr>
<td>8</td>
<td>Assign unused ports to an unused VLAN</td>
</tr>
<tr>
<td>23</td>
<td>Setting native VLAN to other than VLAN 1</td>
</tr>
<tr>
<td>22, 23</td>
<td>Configure and verify ACLs to filter network traffic</td>
</tr>
<tr>
<td>23</td>
<td>Configure and verify an ACLs to limit telnet and SSH access to the router</td>
</tr>
</tbody>
</table>

Table I-7 ICND1 Exam Topics: Troubleshooting

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–15, 18–21, 25–28</td>
<td>Troubleshoot and correct common problems associated with IP addressing and host configurations.</td>
</tr>
<tr>
<td>9, 10</td>
<td>Troubleshoot and Resolve VLAN problems</td>
</tr>
<tr>
<td>9, 10</td>
<td>identify that VLANs are configured</td>
</tr>
<tr>
<td>9, 10</td>
<td>port membership correct</td>
</tr>
<tr>
<td>9, 10</td>
<td>IP address configured</td>
</tr>
<tr>
<td>9, 10</td>
<td>Troubleshoot and Resolve trunking problems on Cisco switches</td>
</tr>
<tr>
<td>9, 10</td>
<td>correct trunk states</td>
</tr>
<tr>
<td>9, 10</td>
<td>correct encapsulation configured</td>
</tr>
<tr>
<td>9, 10</td>
<td>correct vlans allowed</td>
</tr>
<tr>
<td>22, 23</td>
<td>Troubleshoot and Resolve ACL issues</td>
</tr>
<tr>
<td>22, 23</td>
<td>Statistics</td>
</tr>
<tr>
<td>22, 23</td>
<td>Permitted networks</td>
</tr>
<tr>
<td>22, 23</td>
<td>Direction</td>
</tr>
<tr>
<td>22, 23</td>
<td>Interface</td>
</tr>
<tr>
<td>10</td>
<td>Troubleshoot and Resolve Layer 1 problems</td>
</tr>
<tr>
<td>10</td>
<td>Framing</td>
</tr>
<tr>
<td>10</td>
<td>CRC</td>
</tr>
<tr>
<td>10</td>
<td>Runts</td>
</tr>
<tr>
<td>Chapter</td>
<td>Troubleshooting</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>Giants</td>
</tr>
<tr>
<td>10</td>
<td>Dropped packets</td>
</tr>
<tr>
<td>10</td>
<td>Late collision</td>
</tr>
<tr>
<td>10</td>
<td>Input / Output errors</td>
</tr>
</tbody>
</table>

ICND2 Exam Topics

Tables I-8 through I-12 list the exam topics for ICND2. These tables note the book chapters in which each exam topic is covered. Note that each table covers a main exam topic. Cisco released further information about each topic to several sublevels of hierarchy. In this table, those sublevels are indented to indicate the topic above them they are related to.

Table I-8 ICND2 Exam Topics: LAN Switching Technologies

<table>
<thead>
<tr>
<th>Chapters</th>
<th>LAN Switching Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify enhanced switching technologies</td>
</tr>
<tr>
<td>1</td>
<td>RSTP</td>
</tr>
<tr>
<td>1</td>
<td>PVSTP</td>
</tr>
<tr>
<td>1</td>
<td>Etherchannels</td>
</tr>
<tr>
<td>1, 2</td>
<td>Configure and verify PVSTP operation</td>
</tr>
<tr>
<td>1, 2</td>
<td>describe root bridge election</td>
</tr>
<tr>
<td>2</td>
<td>spanning tree mode</td>
</tr>
</tbody>
</table>

Table I-9 ICND2 Exam Topics, IP Routing Technologies

<table>
<thead>
<tr>
<th>Chapters</th>
<th>IP Routing Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Describe the boot process of Cisco IOS routers</td>
</tr>
<tr>
<td>20</td>
<td>POST</td>
</tr>
<tr>
<td>20</td>
<td>Router bootup process</td>
</tr>
<tr>
<td>12</td>
<td>Configure and verify operation status of a Serial interface.</td>
</tr>
<tr>
<td>20, 21</td>
<td>Manage Cisco IOS Files</td>
</tr>
<tr>
<td>20</td>
<td>Boot preferences</td>
</tr>
<tr>
<td>20</td>
<td>Cisco IOS image(s)</td>
</tr>
<tr>
<td>21</td>
<td>Licensing</td>
</tr>
<tr>
<td>21</td>
<td>Show license</td>
</tr>
<tr>
<td>21</td>
<td>Change license</td>
</tr>
<tr>
<td>8–11, 16–18</td>
<td>Differentiate methods of routing and routing protocols</td>
</tr>
<tr>
<td>8</td>
<td>Administrative distance</td>
</tr>
<tr>
<td>9</td>
<td>split horizon</td>
</tr>
<tr>
<td>8, 9, 17, 18</td>
<td>metric</td>
</tr>
<tr>
<td>8, 9, 17, 18</td>
<td>next hop</td>
</tr>
</tbody>
</table>
Chapters IP Routing Technologies

<table>
<thead>
<tr>
<th>Chapters</th>
<th>IP Routing Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 17</td>
<td>Configure and verify OSPF (single area)</td>
</tr>
<tr>
<td>8, 11, 17</td>
<td>neighbor adjacencies</td>
</tr>
<tr>
<td>8, 11, 17</td>
<td>OSPF states</td>
</tr>
<tr>
<td>8, 17</td>
<td>Discuss Multi area</td>
</tr>
<tr>
<td>8</td>
<td>Configure OSPF v2</td>
</tr>
<tr>
<td>17</td>
<td>Configure OSPF v3</td>
</tr>
<tr>
<td>8, 17</td>
<td>Router ID</td>
</tr>
<tr>
<td>8, 17</td>
<td>LSA types</td>
</tr>
<tr>
<td>9, 10, 18</td>
<td>Configure and verify EIGRP (single AS)</td>
</tr>
<tr>
<td>9, 10, 18</td>
<td>Feasible Distance / Feasible Successors / Administrative distance</td>
</tr>
<tr>
<td>9, 18</td>
<td>Feasibility condition</td>
</tr>
<tr>
<td>9, 18</td>
<td>Metric composition</td>
</tr>
<tr>
<td>9, 10, 18</td>
<td>Router ID</td>
</tr>
<tr>
<td>9, 10</td>
<td>Auto summary</td>
</tr>
<tr>
<td>9, 10, 18</td>
<td>Path selection</td>
</tr>
<tr>
<td>9, 10, 18</td>
<td>Load balancing</td>
</tr>
<tr>
<td>9, 10, 18</td>
<td>Equal</td>
</tr>
<tr>
<td>9, 10, 18</td>
<td>Unequal</td>
</tr>
<tr>
<td>9, 10, 18</td>
<td>Passive interface</td>
</tr>
</tbody>
</table>

Table I-10 ICND2 Exam Topics, IP Services

<table>
<thead>
<tr>
<th>Chapters</th>
<th>IP Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Recognize High availability (FHRP)</td>
</tr>
<tr>
<td>6</td>
<td>VRRP</td>
</tr>
<tr>
<td>6</td>
<td>HSRP</td>
</tr>
<tr>
<td>6</td>
<td>GLBP</td>
</tr>
<tr>
<td>19</td>
<td>Configure and verify Syslog</td>
</tr>
<tr>
<td>19</td>
<td>Utilize Syslog Output</td>
</tr>
<tr>
<td>19</td>
<td>Describe SNMP v2 & v3</td>
</tr>
</tbody>
</table>

Table I-11 ICND2 Exam Topics, Troubleshooting

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–5, 16</td>
<td>Identify and correct common network problems</td>
</tr>
<tr>
<td>19</td>
<td>Utilize netflow data</td>
</tr>
<tr>
<td>2</td>
<td>Troubleshoot and Resolve Spanning Tree operation issues</td>
</tr>
<tr>
<td>2</td>
<td>root switch</td>
</tr>
<tr>
<td>2</td>
<td>priority</td>
</tr>
<tr>
<td>Chapters</td>
<td>Troubleshooting</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>mode is correct</td>
</tr>
<tr>
<td>2</td>
<td>port states</td>
</tr>
<tr>
<td>4, 5, 16</td>
<td>Troubleshoot and Resolve routing issues</td>
</tr>
<tr>
<td>4, 5, 16</td>
<td>routing is enabled</td>
</tr>
<tr>
<td>4, 5, 16</td>
<td>routing table is correct</td>
</tr>
<tr>
<td>4, 5, 16</td>
<td>correct path selection</td>
</tr>
<tr>
<td>11, 17</td>
<td>Troubleshoot and Resolve OSPF problems</td>
</tr>
<tr>
<td>11, 17</td>
<td>neighbor adjacencies</td>
</tr>
<tr>
<td>11, 17</td>
<td>Hello and Dead timers</td>
</tr>
<tr>
<td>11, 17</td>
<td>OSPF area</td>
</tr>
<tr>
<td>11, 17</td>
<td>Interface MTU</td>
</tr>
<tr>
<td>11, 17</td>
<td>Network types</td>
</tr>
<tr>
<td>11, 17</td>
<td>Neighbor states</td>
</tr>
<tr>
<td>11, 17</td>
<td>OSPF topology database</td>
</tr>
<tr>
<td>11, 18</td>
<td>Troubleshoot and Resolve EIGRP problems</td>
</tr>
<tr>
<td>11, 18</td>
<td>neighbor adjacencies</td>
</tr>
<tr>
<td>11, 18</td>
<td>AS number</td>
</tr>
<tr>
<td>11, 18</td>
<td>Load balancing</td>
</tr>
<tr>
<td>11, 18</td>
<td>Split horizon</td>
</tr>
<tr>
<td>3, 5</td>
<td>Troubleshoot and Resolve interVLAN routing problems</td>
</tr>
<tr>
<td>5</td>
<td>Connectivity</td>
</tr>
<tr>
<td>5</td>
<td>Encapsulation</td>
</tr>
<tr>
<td>5</td>
<td>Subnet</td>
</tr>
<tr>
<td>3, 5</td>
<td>Native VLAN</td>
</tr>
<tr>
<td>3, 5</td>
<td>Port mode trunk status</td>
</tr>
<tr>
<td>12, 14</td>
<td>Troubleshoot and Resolve WAN implementation issues</td>
</tr>
<tr>
<td>12</td>
<td>Serial interfaces</td>
</tr>
<tr>
<td>12</td>
<td>PPP</td>
</tr>
<tr>
<td>14</td>
<td>Frame relay</td>
</tr>
<tr>
<td>19</td>
<td>Monitor NetFlow statistics</td>
</tr>
<tr>
<td>2</td>
<td>Troubleshoot etherchannel problems</td>
</tr>
</tbody>
</table>
CCNA Exam Topics

The 200-120 CCNA exam actually covers everything from both the ICND1 and ICND2 exams, at least based on the published exam topics. As of publication, the CCNA exam topics include all topics in Tables I-1 through I-12. In short, CCNA = ICND1 + ICND2.

NOTE
Because it is possible that the exam topics may change over time, it might be worth the time to double-check the exam topics as listed on the Cisco website (http://www.cisco.com/go/ccent and http://www.cisco.com/go/ccna). If Cisco does happen to add exam topics at a later date, note that Appendix B, “ICND2 Exam Updates,” describes how to go to http://www.ciscopress.com and download additional information about those newly added topics.

About the Book

This book discusses the content and skills needed to pass the 200-101 ICND2 exam. That content also serves as basically the second half of the CCNA content, with this book’s companion title, the *Cisco CCENT/CCNA ICND1 100-101 Official Cert Guide, Academic Edition*, discussing the first half of the content.

Each of these books uses the same kinds of book features, so if you are reading both this book and the ICND1 book, you do not need to read the Introduction to the other book. Also, for those of you using both books to prepare for the 200-120 CCNA exam (rather than taking the two-exam option), the end of this Introduction lists a suggested reading plan.
Book Features

The most important and somewhat obvious objective of this book is to help you pass the ICND2 exam or the CCNA exam. In fact, if the primary objective of this book were different, the book’s title would be misleading! However, the methods used in this book to help you pass the exams are also designed to make you much more knowledgeable about how to do your job.

This book uses several tools to help you discover your weak topic areas, to help you improve your knowledge and skills with those topics, and to prove that you have retained your knowledge of those topics. So, this book does not try to help you pass the exams only by memorization, but by truly learning and understanding the topics. The CCNA certification is the foundation for many of the Cisco professional certifications, and it would be a disservice to you if this book did not help you truly learn the material. Therefore, this book helps you pass the CCNA exam by using the following methods:

■ Helping you discover which exam topics you have not mastered
■ Providing explanations and information to fill in your knowledge gaps
■ Supplying exercises that enhance your ability to recall and deduce the answers to test questions
■ Providing practice exercises on the topics and the testing process via test questions on the DVD

Chapter Features

To help you customize your study time using these books, the core chapters have several features that help you make the best use of your time:

■ Introduction and Exam Topics: Each chapter begins with an introduction to the chapter’s main topics and a listing of the official exam topics that are covered in that chapter.
■ Foundation Topics: These are the core sections of each chapter. They explain the protocols, concepts, and configuration for the topics in that chapter.
■ Review Activities: At the end of the “Foundation Topics” section of each chapter, the “Review Activities” section lists a series of study activities that should be done at the end of the chapter. Each chapter includes the activities that make the most sense for studying the topics in that chapter. The activities include the following:
 ■ Chapter Summaries: This is a thorough summary of the main chapter topics for you to review. Make sure you understand all these points in detail, and refer to the chapter if not.
 ■ Review Questions: These questions offer a chance for you to assess how well you retained particular facts from the Foundation Topics.
 ■ Review Key Topics: The Key Topic icon appears next to the most important items in the “Foundation Topics” section of the chapter. The Key Topics Review activity lists the key topics from the chapter and their corresponding page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic.
 ■ Complete Tables and Lists from Memory: To help you exercise your memory and memorize some lists of facts, many of the more important lists and tables from the chapter are included in a document on the DVD. This document lists only partial information, allowing you to complete the table or list.
 ■ Define Key Terms: Although the exams may be unlikely to ask a question like “Define this term,” the CCNA exams require that you learn and know a lot of networking terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the Glossary at the end of this book.
Command Reference Tables: Some book chapters cover a large amount of configuration and EXEC commands. These tables list the commands introduced in the chapter, along with an explanation. For exam preparation, use it for reference, but also read the table once when performing the Review Activities to make sure that you remember what all the commands do.

Part Review
The Part Review tasks help you prepare to apply all the concepts in each respective part of the book. (Each book part contains a number of related chapters.) The Part Review includes sample test questions, which require you to apply the concepts from multiple chapters in that part, uncovering what you truly understood and what you did not quite yet understand. The Part Review also uses mind map exercises that help you mentally connect concepts, configuration, and verification, so that no matter what perspective a single exam question takes, you can analyze and answer the question.

The Part Reviews list tasks, along with checklists, so you can track your progress. The following list explains the most common tasks you will see in the Part Review; note that not all Part Reviews use every type of task.

- Repeat Chapter Review: Although you have already seen the chapter review questions from the chapters in a part, re-answering those questions can prove a useful way to review facts. The Part Review suggests that you repeat the chapter review questions, but using the Pearson IT Certification Practice Test (PCPT) exam software that comes with the book, for extra practice in answering multiple choice questions on a computer.

- Answer Part Review Questions: The PCPT exam software includes several exam databases. One exam database holds Part Review questions, written specifically for Part Review. These questions purposefully include multiple concepts in each question, sometimes from multiple chapters, to help build the skills needed for the more challenging analysis questions on the exams.

- Review Key Topics: Yes, again! They are indeed the most important topics in each chapter.

- Create Configuration Mind Maps: Mind maps are graphical organizing tools that many people find useful when learning and processing how concepts fit together. The process of creating mind maps helps you build mental connections between concepts and configuration commands, as well as develop your recall of the individual commands. For this task, you may create the mind map on paper or using any mind mapping or graphic organizer software. (For more information about mind maps, see the section “About Mind Maps and Graphic Visualization” in the Introduction of this book.)

- Create Verification Mind Maps: These mind mapping exercises focus on helping you connect router and switch show commands to either networking concepts or to configuration commands. Simply create the mind maps on paper or using any mind mapping or graphic organizer software.

- Repeat Chapter Review Tasks (Optional): Browse through all the Review Activities, and repeat any that you think might help you with review at this point.

Final Prep Tasks
Chapter 22, at the end of this book, lists a series of preparation tasks that you can best use for your final preparation before taking the exam.

Other Features
In addition to the features in each of the core chapters, this book, as a whole, has additional study resources, including the following:

- DVD-based practice exam: The companion DVD contains the powerful Pearson IT Certification Practice Test exam engine. You can take simulated ICND2 exams, as well as
simulated CCNA exams, with the DVD and activation code included in this book. (You can take simulated ICND1 and CCNA exams with the DVD in the *Cisco CCENT/CCNA ICND1 Official Cert Guide, Academic Edition.*)

- **CCNA ICND2 Simulator Lite:** This lite version of the best-selling CCNA Network Simulator from Pearson provides you with a means, right now, to experience the Cisco command-line interface (CLI). No need to go buy real gear or buy a full simulator to start learning the CLI. Just install it from the DVD in the back of this book.

- **eBook:** This Academic Edition comes complete with a free copy of the *Cisco CCNA Routing and Switching ICND2 200-101 Official Cert Guide Premium Edition eBook and Practice Test.* The Premium Edition eBook provides you with three different eBook files: PDF, EPUB, and Mobi (native Kindle format). In addition, the Premium Edition enables you to link all the questions from the practice test software to the PDF file of the book, so you can link directly to the book content from each question for further study. Instructions for accessing your Premium Edition can be found on the access code card in the DVD sleeve.

- **Mentoring videos:** The DVD included with this book includes four other instructional videos, about the following topics: OSPF, EIGRP, EIGRP Metrics, plus PPP and CHAP.

- **Companion website:** The website http://www.ciscopress.com/title/1587143739 posts up-to-the-minute materials that further clarify complex exam topics. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam.

- **PearsonITCertification.com:** The website http://www.pearsonitcertification.com is a great resource for all things IT-certification related. Check out the great CCNA articles, videos, blogs, and other certification preparation tools from the industry's best authors and trainers.

- **CCNA Simulator:** If you are looking for more hands-on practice, you might want to consider purchasing the CCNA Network Simulator. You can purchase a copy of this software from Pearson at http://pearsonitcertification.com/networksimulator or other retail outlets. To help you with your studies, I have created a mapping guide that maps each of the labs in the simulator to the specific sections in these CCNA cert guides. You can get this mapping guide for free on the Extras tab of the companion website.

- **Author’s website and blogs:** The author maintains a website that hosts tools and links useful when studying for CCENT and CCNA. The site lists information to help you build your own lab, study pages that correspond to each chapter of this book and the ICND1 book, and links to the author's CCENT Skills blog and CCNA Skills blog. Start at http://www.certskills.com; check the tabs for study and blogs in particular.

Book Organization, Chapters, and Appendices

This book contains 21 core chapters, Chapters 1 through 21, with Chapter 22 including some suggestions for how to approach the actual exams. Each core chapter covers a subset of the topics on the ICND2 exam. The core chapters are organized into sections. The core chapters cover the following topics:

Part I: LAN Switching

- **Chapter 1, “Spanning Tree Protocol Concepts,”** discusses the concepts behind IEEE Spanning Tree Protocol (STP) and how it makes some switch interfaces block frames to prevent frames from looping continuously around a redundant switched LAN.

- **Chapter 2, “Spanning Tree Protocol Implementation,”** shows how to configure, verify, and troubleshoot STP implementation on Cisco switches.

- **Chapter 3, “Troubleshooting LAN Switching,”** reviews LAN switching topics from the ICND1 book, while moving toward a deeper understanding of those topics. In particular, this chapter examines the most common LAN switching issues and how to discover those issues when troubleshooting a network.
Part II: IP Version 4 Routing

- **Chapter 4, “Troubleshooting IPv4 Routing Part I,”** reviews IPv4 routing, and then focuses on how to use two key troubleshooting tools to find routing problems: the ping and traceroute commands.

- **Chapter 5, “Troubleshooting IPv4 Routing Part II,”** looks at the most common IPv4 problems and how to find the root causes of those problems when troubleshooting.

- **Chapter 6, “Creating Redundant First-Hop Routers,”** discusses the need for a First Hop Redundancy Protocol (FHRP), how the protocols make multiple routers act like a single default router, and the configuration and verification details of both Hot Standby Router Protocol (HSRP) and Gateway Load Balancing Protocol (GLBP).

- **Chapter 7, “Virtual Private Networks,”** discusses the need for VPN technology when sending private network data over public networks like the Internet. It also discusses basic tunneling configuration using generic routing encapsulation (GRE) tunnels on Cisco routers.

Part III: IP Version 4 Routing Protocols

- **Chapter 8, “Implementing OSPF for IPv4,”** reviews the ICND1 book’s coverage of OSPF Version 2 (OSPFv2). It also takes the concepts deeper, with more discussion of the OSPF processes and database and with additional configuration options.

- **Chapter 9, “Understanding EIGRP Concepts,”** introduces the fundamental operation of the Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv4 (EIGRPv4), focusing on EIGRP neighbor relationships, how it calculates metrics, and how it quickly converges to alternate feasible successor routes.

- **Chapter 10, “Implementing EIGRP for IPv4,”** takes the concepts discussed in the previous chapter and shows how to configure and verify those same features.

- **Chapter 11, “Troubleshooting IPv4 Routing Protocols,”** walks through the most common problems with IPv4 routing protocols, while alternating between OSPF examples and EIGRP examples.

Part IV: Wide-Area Networks

- **Chapter 12, “Implementing Point-to-Point WANs,”** explains the core concepts of how to build a leased-line WAN and the basics of the two common data link protocols on these links: HDLC and PPP.

- **Chapter 13, “Understanding Frame Relay Concepts,”** explains how to build a Frame Relay WAN between routers, focusing on the protocols and concepts rather than the configuration.

- **Chapter 14, “Implementing Frame Relay,”** takes the concepts discussed in Chapter 13 and shows how to configure, verify, and troubleshoot those same features.

- **Chapter 15, “Identifying Other Types of WANs,”** gives a broad description of many other types of WAN technology, including Ethernet WANs, Multiprotocol Label Switching (MPLS), and digital subscriber line (DSL).

Part V: IP Version 6

- **Chapter 16, “Troubleshooting IPv6 Routing,”** reviews IPv6 routing as discussed in the ICND1 book. It then shows some of the most common problems with IPv6 routing and discusses how to troubleshoot these problems to discover the root cause.

- **Chapter 17, “Implementing OSPF for IPv6,”** reviews the ICND1 book’s coverage of OSPF Version 3 (OSPFv3). It then compares some deeper OSPFv3 concepts and configuration with these same concepts for OSPFv2, as discussed earlier in Chapter 8.
Chapter 18, “Implementing EIGRP for IPv6,” takes the EIGRP concepts discussed for IPv4 in Chapter 9 and shows how those same concepts apply to EIGRP for IPv6 (EIGRPv6). It then shows how to configure and verify EIGRPv6 as well.

Part VI: Network Management

Chapter 20, “Managing IOS Files,” explains some necessary details about router internals and IOS. In particular, it discusses the boot process on a router, how a router choosing which IOS image to use, and the different locations where a router can store its IOS images.

Chapter 21, “Managing IOS Licensing,” discusses Cisco’s current methods of granting a particular router the right to use a particular IOS image and feature set through the use of IOS licenses.

Part VII: Final Review

Chapter 22, “Final Review,” suggests a plan for final preparation once you have finished the core parts of the book, in particular explaining the many study options available in the book.

Part VIII: Appendixes (In Print)

Appendix A, “Numeric Reference Tables,” lists several tables of numeric information, including a binary-to-decimal conversion table and a list of powers of 2.

Appendix B, “ICND2 Exam Updates,” covers a variety of short topics that either clarify or expand on topics covered earlier in the book. This appendix is updated from time to time and posted at http://www.ciscopress.com/title/1587143739, with the most recent version available at the time of printing included here as Appendix B. (The first page of the appendix includes instructions on how to check to see if a later version of Appendix B is available online.)

The Glossary contains definitions for all of the terms listed in the “Definitions of Key Terms” section at the conclusion of Chapters 1 through 21.

Appendixes (on the DVD)

The following appendixes are available in digital format on the DVD that accompanies this book:

Appendix C, “Answers to Review Questions,” includes the explanations to all the questions from Chapters 1 through 21.

Appendix D, “Memory Tables,” holds the key tables and lists from each chapter, with some of the content removed. You can print this appendix and, as a memory exercise, complete the tables and lists. The goal is to help you memorize facts that can be useful on the exams.

Appendix E, “Memory Tables Answer Key,” contains the answer key for the exercises in Appendix D.

Appendix F, “Mind Map Solutions,” shows an image of sample answers for all the part-ending mind map exercises.

Appendix G, “Study Planner,” is a spreadsheet with major study milestones, where you can track your progress through your study.
Reference Information

This short section contains a few topics available for reference elsewhere in the book. You may read these when you first use the book, but you may also skip these topics and refer back to them later. In particular, make sure to note the final page of this introduction, which lists several contact details, including how to get in touch with Cisco Press.

Install the Pearson IT Certification Practice Test Engine and Questions

The DVD in the book includes the Pearson IT Certification Practice Test (PCPT) engine—software that displays and grades a set of exam-realistic multiple choice, drag-and-drop, fill-in-the-blank, and testlet questions. Using the PCPT engine, you can either study by going through the questions in study mode or take a simulated ICND2 or CCNA exam that mimics real exam conditions.

The installation process requires two major steps. The DVD in the back of this book has a recent copy of the PCPT engine. The practice exam—the database of ICND2 and CCNA exam questions—is not on the DVD. After you install the software, the PCPT software downloads the latest versions of both the software and the question databases for this book using your Internet connection.

NOTE The cardboard DVD case in the back of this book includes both the DVD and a piece of thick paper. The paper lists the digital product voucher code and instructions for accessing the eBook files and the practice exams associated with this book. Do not lose the activation code.

Redeem Your Digital Product Voucher to Access the eBook and Practice Test Code

To use the practice test software, you must first redeem your digital product voucher found on the card in the DVD sleeve. To do so, follow these steps:

Step 1. If you have a Cisco Press account, go to www.ciscopress.com/account and log in. If you do not have a Cisco Press account, go to www.ciscopress.com/join and create an account.

Step 2. On your Account page, find the “Digital Product Voucher” box at the top of the right column.

Step 3. Type in your digital product voucher code found on the DVD card, and click Submit.

NOTE Codes are one-time use and may not be shared.

Step 4. The products and download link will now be listed under Digital Purchases on your Account page. Click the “refresh” links to generate your eBook files for download. Use the access code to unlock and download the Premium Edition practice exams in the Pearson IT Certification Practice Test software, as described in the following sections.

Install the Software from the DVD

The software installation process is pretty routine as compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from
another Pearson product, you do not need to reinstall the software. Instead, just launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the DVD sleeve. The following steps outline the installation process:

Step 1. Insert the DVD into your PC.

Step 2. The software that automatically runs is the Cisco Press software to access and use all DVD-based features, including the exam engine and the DVD-only appendixes. From the main menu, click the **Install the Exam Engine** option.

Step 3. Respond to windows prompts as with any typical software installation process.

The installation process gives you the option to activate your exam with the activation code supplied on the paper in the DVD sleeve. This process requires that you establish a Pearson website login. You need this login to activate the exam, so please do register when prompted. If you already have a Pearson website login, you do not need to register again. Just use your existing login.

Activate and Download the Practice Exam

When the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process), as follows:

Step 1. Start the PCPT software from the Windows Start menu or from your desktop shortcut icon.

Step 2. To activate and download the exam associated with this book, from the My Products or Tools tab, click the **Activate** button.

Step 3. At the next screen, enter the activation key listed under the Premium Edition product on your account page on www.ciscopress.com, and then click the **Activate** button.

Step 4. The activation process downloads the practice exam. Click **Next**, and then click **Finish**.

After the activation process is completed, the My Products tab should list your new exam. If you do not see the exam, make sure you have selected the My Products tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the **Open Exam** button.

To update a particular product’s exams that you have already activated and downloaded, simply select the **Tools** tab and click the **Update Products** button. Updating your exams ensures that you have the latest changes and updates to the exam data.

If you want to check for updates to the PCPT software, simply select the **Tools** tab and click the **Update Application** button. This will ensure that you are running the latest version of the software engine.

Activating Other Products

The exam software installation process and the registration process have to happen only once. Then for each new product, you have to complete just a few steps. For instance, if you buy another new Cisco Press Official Cert Guide or Pearson IT Certification Cert Guide, extract the activation code from the DVD sleeve in the back of that book; you don’t even need the DVD at this point. From there, all you have to do is start PCPT (if not still up and running), and perform steps 2 through 4 from the previous list.
The practice test questions come in different exams or exam databases. When you install the PCPT software and type in the activation code, the PCPT software downloads the latest version of all these exam databases. And with the ICND2 book alone, you get 10 different “exams,” or 10 different sets of questions, as listed in Figure I-2.

You can choose to use any of these exam databases at any time, both in study mode and practice exam mode. However, many people find it best to save some of the exams until exam review time, after you have finished reading the entire book. Figure I-2 begins to suggest a plan, spelled out here:

- During Part Review, use PCPT to review the Chapter Review questions (designated as “Book Questions” in the software) for that part, using study mode.
- During Part Review, use the questions built specifically for Part Review (the Part Review questions) for that part of the book, using study mode.
- Save the remaining exams to use with Chapter 22, “Final Review,” using practice exam mode, as discussed in that chapter.

The two modes inside PCPT give you better options for study versus practicing a timed exam event. In study mode, you can see the answers immediately, so you can study the topics more easily. Also, you can choose a subset of the questions in an exam database; for instance, you can view questions from only the chapters in one part of the book.

Practice exam mode creates an event somewhat like the actual exam. It gives you a preset number of questions, from all chapters, with a timed event. Practice exam mode also gives you a score for that timed event.

How to View Only Chapter Review Questions by Part

Each Part Review asks you to repeat the Chapter Review quiz questions from the chapters in that part. You can simply scan the book pages to review these questions, but it is slightly better to review these questions from inside the PCPT software, just to get a little more practice in how to read questions from the testing software. But you can just read them in the book, as well.

To view these Chapter Review (book) questions inside the PCPT software, you need to select Book Questions, and the chapters in this part, using the PCPT menus. To do so, follow these steps:

Step 1. Start the PCPT software.

Step 2. From the main (home) menu, select the item for this product, with a name like Cisco CCNA Routing and Switching ICND2 200-101 Official Cert Guide, and click Open Exam.
Step 3. The top of the next window that appears should list some exams; check the ICND2 Book Questions box, and uncheck the other boxes. This selects the “book” questions (that is, the Chapter Review questions from the end of each chapter).

Step 4. On this same window, click at the bottom of the screen to deselect all objectives (chapters). Then select the box beside each chapter in the part of the book you are reviewing.

Step 5. Select any other options on the right side of the window.

Step 6. Click Start to start reviewing the questions.

How to View Part Review Questions by Part Only

The exam databases you get with this book include a database of questions created solely for study during the Part Review process. Chapter Review questions focus more on facts, with basic application. The Part Review questions instead focus more on application and look more like real exam questions.

To view these questions, follow the same process as you did with Chapter Review/book questions, but select the Part Review database rather than the book database. Specifically, follow these steps:

Step 1. Start the PCPT software.

Step 2. From the main (home) menu, select the item for this product, with a name like Cisco CCNA Routing and Switching ICND2 200-101 Official Cert Guide, and click Open Exam.

Step 3. The top of the next window should list some exams; check the Part Review Questions box, and uncheck the other boxes. This selects the questions intended for part-ending review.

Step 4. On this same window, click at the bottom of the screen to deselect all objectives, and then select (check) the box beside the book part you want to review. This tells the PCPT software to give you Part Review questions from the selected part.

Step 5. Select any other options on the right side of the window.

Step 6. Click Start to start reviewing the questions.

About Mind Maps

Mind maps are a type of visual organization tool that you can use for many purposes. For instance, you can use mind maps as an alternative way to take notes.

You can also use mind maps to improve how your brain organizes concepts. Mind maps stress the connections and relationships between ideas. When you spend time thinking about an area of study, and organize your ideas into a mind map, you strengthen existing mental connections, create new connections, all into your own frame of reference.

In short, mind maps help you internalize what you learn.

Mind Map Mechanics

Each mind map begins with a blank piece of paper or blank window in an application. You then add a large central idea, with branches that move out in any direction. The branches contain smaller concepts, ideas, commands, pictures, whatever idea needs to be represented. Any concepts that can be grouped should be put near each other. As need be, you can create deeper and
deeper branches, although for this book’s purposes, most mind maps will not go beyond a couple of levels.

NOTE Many books have been written about mind maps, but Tony Buzan often gets credit for formalizing and popularizing mind maps. You can learn more about mind maps at his website, http://www.thinkbuzan.com.

For example, Figure I-3 shows a sample mind map that begins to output some of the IPv6 content from Part VII of the ICND1 book. The central concept of the mind map is IPv6 addressing, and the Part Review activity asks you to think of all facts you learned about IPv6 addressing, and organize them with a mind map. The mind map allows for a more visual representation of the concepts as compared with just written notes.

![Sample Mind Map](image)

Figure I-3 Sample Mind Map

About Mind Maps Used During Part Review

This book suggests mind mapping exercises during Part Review. This short topic lists some details about the Part Review mind mapping exercises, listed in one place for reference.

Part Review uses two main types of mind mapping exercises:

- **Configuration exercises** ask you to recall the related configuration commands and group them. For instance, in a configuration exercise, related commands that happen to be interface subcommands should be grouped, but as shown as being inside interface configuration mode.

- **Verification exercises** ask you to think about the output of `show` commands and link the output to either the configuration commands that cause that output or the concepts that explain the meaning of some of that output.

Create these configuration mind maps on paper, using any mind mapping software, or even any drawing application. Many mind mapping apps exist as well. Regardless of how you draw them, follow these rules:

- If you have only a little time for this exercise, spend your time making your own mind map, instead of looking at suggested answers. The learning happens when thinking through the problem of making your own mind map.

- Set aside the book and all your notes, and do not look at them, when first creating these maps, and do as much as you can without looking at the book or your notes (or Google, or anything else).

- Try all the mind maps listed in a Part Review before looking at your notes.

- Finally, look at your notes to complete all the mind maps.

- Make a note of where you put your final results so that you can find them later during final exam review.
Finally, when learning to use these tools, take two other important suggestions as well. First, use as few words as possible for each node in your mind map. The point is for you to remember the idea and its connections, rather than explain the concept to someone else. Just write enough to remind yourself of the concept. Second, if the mind map process is just not working for you, discard the tool. Instead, take freeform notes on a blank piece of paper. Try to do the important part of the exercise—the thinking about what concepts go together—without letting the tool get in the way.

About Building Hands-On Skills

You need skills in using Cisco routers and switches, specifically the Cisco command-line interface (CLI). The Cisco CLI is a text-based command-and-response user interface; you type a command, and the device (a router or switch) displays messages in response. To answer sim and simlet questions on the exams, you need to know a lot of commands, and you need to be able to navigate to the right place in the CLI to use those commands.

The best way to master these commands is to use them. Sometime during your initial reading of the first part of this book, you need to decide how you personally plan to build your CLI skills. This next topic discusses your options for getting the tools you need to build CLI skills.

Overview of Lab Options

To effectively build your hands-on CLI skills, you either need real routers and switches, or at least something that acts like routers and switches. People who are new to Cisco technology often choose from a few options to get those skills.

First, you can use real Cisco routers and switches. You can buy them, new or used, or borrow them at work. You can rent them for a fee. You can even rent virtual Cisco router and switch lab pods from Cisco, in an offering called Cisco Learning Labs.

Simulators provide another option. Router and switch simulators are software products that mimic the behavior of the Cisco CLI, generally for the purpose of allowing people to learn. These products have an added advantage when learning: They usually have lab exercises as well.

Simulators come in many shapes and sizes, but the publisher sells simulators that are designed to help you with CCENT and CCNA study—plus they match this book! The Pearson CCENT Network Simulator and the Pearson CCNA Network Simulator both provide an excellent environment to practice the commands, as well as hundreds of focused labs to help you learn what you need to know for the exams. Both products have the same software code base; the CCNA product simply has labs for both ICND1 and ICND2, whereas the CCENT product has only the ICND1 labs.

This book does not tell you what option to use, but you should plan on getting some hands-on practice somehow. The important thing to know is that most people need to practice using the Cisco CLI to be ready to pass these exams.

I (Wendell) have collected some information and opinions about this decision on my website, at http://certskills.com/labgear. Those pages link to sites for Dynamips and for the Pearson simulator. Also, because the information never seemed to exist in any one place, this website includes many details about how to build a CCNA lab using used real Cisco routers and switches.

A Quick Start with Pearson Network Simulator Lite

The decision of how to get hands-on skills can be a little scary at first. The good news: You have a free and simple first step. Install the Pearson NetSim Lite that comes with this book.
This lite version of the best-selling CCNA Network Simulator from Pearson provides you with a means, right now, to experience the Cisco CLI. No need to go buy real gear or buy a full simulator to start learning the CLI. Just install it from the DVD in the back of this book.

Of course, one reason that NetSim Lite comes on the DVD is that the publisher hopes you will buy the full product. However, even if you do not use the full product, you can still learn from the labs that come with NetSim Lite while deciding about what options to pursue.

NOTE The ICND1 and ICND2 books each contain a different version of the Sim Lite product, each with labs that match the book content. If you bought both books, make sure you install both Sim Lite products.

For More Information

If you have any comments about the book, submit them via http://www.ciscopress.com. Just go to the website, select **Contact Us**, and type your message.

Cisco might make changes that affect the CCNA certification from time to time. You should always check http://www.cisco.com/go/ccna and http://www.cisco.com/go/ccent for the latest details.

The *Cisco CCNA Routing and Switching ICND2 200-101 Official Cert Guide, Academic Edition* helps you attain CCNA Routing and Switching certification. This is the CCNA ICND2 certification book from the only Cisco-authorized publisher. We at Cisco Press believe that this book certainly can help you achieve CCNA certification, but the real work is up to you! I trust that your time will be well spent.
This page intentionally left blank
Chapter 5

Troubleshooting IPv4 Routing Part II

Chapter 4, “Troubleshooting IPv4 Routing Part I,” began the discussion of IPv4 troubleshooting, looking at the usual first steps when troubleshooting a problem. This chapter moves on to a later stage, when the problem has been isolated to a smaller part of the network, and to a smaller set of possible causes of the problem. The topics in this chapter get specific and look for those root causes: the causes of network problems that have specific solutions that, once a change is made, will solve the original problem.

This chapter breaks down the discussion based on the two major divisions in how packets are forwarded in an IPv4 internetwork. The first half of the chapter focuses on the root causes of problems between a host and its default router. The second half looks at the routers that forward the packet over the rest of a packet’s journey, from the router acting as default router all the way to the destination host.

Note that in addition to Chapters 4 and 5, other chapters in this book discuss troubleshooting topics that help when troubleshooting IPv4 internetworks. In particular, Chapter 11, “Troubleshooting IPv4 Routing Protocols,” discusses troubleshooting IPv4 routing protocols, namely Open Shortest Path First (OSPF) and Enhanced Interior Gateway Routing Protocol (EIGRP). Chapter 3, “Troubleshooting LAN Switching,” discussed how to troubleshoot LAN issues. Some topics inside the chapters in Part IV explain how to troubleshoot WAN links. Finally, Chapter 16, “Troubleshooting IPv6 Routing,” discusses how to apply these same IPv4 troubleshooting concepts to IPv6.

This chapter covers the following exam topics:

Troubleshooting
- Identify and correct common network problems
- Troubleshoot and resolve interVLAN routing problems
 - Connectivity
 - Encapsulation
 - Subnet
 - Native VLAN
 - Port mode trunk status
- Troubleshoot and resolve routing issues
 - routing is enabled
 - routing table is correct
 - correct path selection
Foundation Topics

Problems Between the Host and the Default Router

Imagine that you work as a customer support rep (CSR) fielding calls from users about problems. A user left a message stating that he couldn't connect to a server. You could not reach him when you called back, so you did a series of pings from that host's default router, using some of the problem isolation strategies described in Chapter 4. And at the end of those pings, you think the problem exists somewhere between the user's device and the default router—for instance, between router R1 and host A, as shown in Figure 5-1.

Figure 5-1 Focus of the Discussions in This Section of the Chapter

This first major section of the chapter focuses on problems that can occur on hosts, their default routers, and between the two. To begin, this section looks at the host itself, and its four IPv4 settings, as listed in the figure. Following that, the discussion moves to the default router, with focus on the LAN interface, and the settings that must work for the router to serve as a host's default router.

Root Causes Based on a Host's IPv4 Settings

A typical IPv4 host gets its four key IPv4 settings in one of two ways: either through static configuration or by using DHCP. In both cases, the settings can actually be incorrect. Clearly, any static settings can be set to a wrong number just through human error when typing the values. More surprising is the fact that the DHCP can set the wrong values: The DHCP process can work, but with incorrect values configured at the DHCP server, the host can actually learn some incorrect IPv4 settings.

This section first reviews the settings on the host, and what they should match, followed by a discussion of typical issues.

Ensure IPv4 Settings Correctly Match

Once an engineer thinks that a problem exists somewhere between a host and its default router, the engineer should review the host’s IPv4 settings versus the intended settings. That process begins by guiding the user through the GUI of the host operating system or by using command-line commands native to host operating systems, such as `ipconfig` and `ifconfig`. This process should uncover obvious issues, like completely missing parameters, or if using DHCP, the complete failure of DHCP to learn any of the IPv4 settings.

If the host has all its settings, the next step is to check the values to match them with the rest of the internetwork. The Domain Name System (DNS) server IP address—usually a list of at least two addresses—should match the DNS server addresses actually used in the internetwork. The rest of the settings should be compared to the correct LAN interface on the router that is used as this host’s default router. Figure 5-2 collects all the pieces that should match, with some explanation to follow.
Figure 5-2 Host IPv4 Settings Compared to What the Settings Should Match

As numbered in the figure, these steps should be followed to check the host’s IPv4 settings:

Step 1. Check the host’s list of DNS server addresses against the actual addresses used by those servers.

Step 2. Check the host’s default router setting against the router’s LAN interface configuration, for the `ip address` command.

Step 3. Check the subnet mask used by the router and the host; if they use a different mask, the subnets will not exactly match, which will cause problems for some host addresses.

Step 4. The host and router should attach to the exact same subnet—same subnet ID and same range of IP addresses. So, use both the router’s and host’s IP address and mask, calculate the subnet ID and range of addresses, and confirm they are in the same subnet as the subnet implied by the address/mask of the router’s `ip address` command.

If an IPv4 host configuration setting is missing, or simply wrong, checking these settings can quickly uncover the root cause. For instance, if you can log in to the router and do a `show interfaces G0/0` command, and then ask the user to issue an `ipconfig /all` (or similar) command and read the output to you, you can compare all the settings in Figure 5-2.

However, although checking the host settings is indeed very useful, some problems related to hosts are not so easy to spot. The next few topics walk through some example problems to show some symptoms that occur when some of these less obvious problems occur.

Mismatched Masks Impact Route to Reach Subnet

A host and its default router should agree about the range of addresses in the subnet. Sometimes, people are tempted to skip over this check, ignoring the mask either on the host or the router and assuming that the mask used on one device must be the same mask as on the other device. However, if the host and router have different subnet mask values, and therefore each calculates a different range of addresses in the subnet, problems happen.

To see one such example, consider the network in Figure 5-3. Host A has IP address/mask 10.1.1.9/24, with default router 10.1.1.150. Some quick math puts 10.1.1.150—the default router address—inside host A’s subnet, right? Indeed it does, and it should. Host A’s math for this subnet reveals subnet ID 10.1.1.0, with a range of addresses from 10.1.1.1 through 10.1.1.254, and subnet broadcast address 10.1.1.255.
In this case, the host routing of packets, to destinations outside the subnet, works well. However, the reverse direction, from the rest of the network back toward the host, does not. A quick check of router R1's configuration reveals the IP address/mask as shown in Figure 5-3, which results in the connected route for subnet 10.1.1.128/25, as shown in Example 5-1.

Example 5-1 RI's IP Address, Mask, Plus the Connected Subnet That Omits Host A's Address

```bash
R1# show running-config interface g0/0
Building configuration...

Current configuration : 185 bytes

interface GigabitEthernet0/0
description LAN at Site 1
mac-address 0200.0101.0101
ip address 10.1.1.150 255.255.255.128
ip helper-address 10.1.2.130
duplex auto
speed auto
derend

R1# show ip route connected
! Legend omitted for brevity

10.0.0.0/8 is variably subnetted, 9 subnets, 4 masks
C  10.1.1.128/25 is directly connected, GigabitEthernet0/0
L  10.1.1.150/32 is directly connected, GigabitEthernet0/0
! Other routes omitted for brevity
```

Because of this particular mismatch, R1's view of the subnet puts host A (10.1.1.9) outside RI's view of the subnet (10.1.1.128/25, range 10.1.1.129 to 10.1.1.254). R1 adds a connected route for subnet 10.1.1.128/25 into R1's routing table, and even advertises this route (with OSPF in this case) to the other routers in the network, as seen in Figure 5-4. All the routers know how to route packets to subnet 10.1.1.128/25, but unfortunately, that route does not include host A's 10.1.1.9 IP address.

Hosts should use the same subnet mask as the default router, and the two devices should agree as to what subnet exists on their common LAN. Otherwise, problems may exist immediately, as in this example, or they might not exist until other hosts are added later.
Typical Root Causes of DNS Problems

When a host lists the wrong IP addresses for the DNS servers, the symptoms are somewhat obvious: Any user actions that require name resolution fail. Assuming that the only problem is the incorrect DNS setting, any network testing with commands like `ping` and `traceroute` fails when using names, but it works when using IP addresses instead of names.

When a ping of another host's hostname fails, but a ping of that same host's IP address works, some problem exists with DNS. For example, imagine a user calls the help desk complaining that he cannot connect to Server1. The CSR issues a `ping server1` command from the CSR’s own PC, which both works and identifies the IP address of Server1 as 1.1.1.1. Then the CSR asks the user to try two commands from the user’s PC: both a `ping Server1` command (which fails), and a `ping 1.1.1.1` command (which works). Clearly, the DNS name resolution process on the user’s PC is having some sort of problem.

This book does not go into much detail about how DNS truly works behind the scenes, but the following two root causes of DNS problems do fit within the scope of the CCENT and CCNA:

- An incorrect DNS server setting
- An IP connectivity problem between the user’s host and the DNS server

Although the first problem may be more obvious, note that it can happen both with static settings on the host and with DHCP. If a host lists the wrong DNS server IP address, and the setting is static, just change the setting. If the wrong DNS server address is learned with DHCP, you need to examine the DHCP server configuration. (If using the IOS DHCP server feature, you make this setting with the `dns-server server-address` command in DHCP pool mode.)

The second bullet point brings up an important issue for troubleshooting any real-world networking problem. Most every real user application uses names, not addresses, and most hosts use DNS to resolve names. So, every connection to a new application involves two sets of packets: packets that flow between the host and the DNS server, and packets that flow between the host and the real server, as shown in Figure 5-5.
Finally, before leaving the topic of name resolution, note that the router can be configured with the IP addresses of the DNS servers, so that router commands will attempt to resolve names. For instance, a user of the router command-line interface (CLI) could issue a command `ping server1` and rely on a DNS request to resolve server1 into its matching IP address. To configure a router to use a DNS for name resolution, the router needs the `ip name-server dns1-address dns2-address...` global command. It also needs the `ip domain-lookup` global command, which is enabled by default.

For troubleshooting, it can be helpful to set a router or switch DNS settings to match that of the local hosts. However, note that these settings have no impact on the user DNS requests.

NOTE On a practical note, IOS defaults with the `ip domain-lookup` command, but with no DNS IP address known. Most network engineers either add the configuration to point to the DNS servers or disable DNS using the `no ip domain-lookup` command.

Wrong Default Router IP Address Setting
Clearly, having a host that lists the wrong IP address as its default router causes problems. Hosts rely on the default router when sending packets to other subnets, and if a host lists the wrong default router setting, the host may not be able to send packets to a different subnet.

Figure 5-6 shows just such an example. In this case, hosts A and B both misconfigure 10.1.3.4 as the default router due to the same piece of bad documentation. Router R3 uses IP address 10.1.3.3. (For the sake of discussion, assume that no other host or router in this subnet currently uses address 10.1.3.4.)

![Figure 5-6 Incorrect Default Router Setting on Hosts A and B](image)

In this case, several functions do work. For instance, hosts A and B can send packets to other hosts on the same LAN. The CSR at the router CLI can issue a `ping 10.1.3.9` and `ping 10.1.3.8` command, and both work. As a result of those two working pings, R3 would list the MAC address of the two PCs in the output of the `show arp` command. Similarly, the hosts would list R3's 10.1.3.3 IP address (and matching MAC address) in their ARP caches (usually displayed with the `arp -a` command). The one big problem in this case happens when the hosts try to send packets off-subnet. In that case, try to send the packets to IP address 10.1.3.4 next, which fails.

Root Causes Based on the Default Router’s Configuration
While hosts must have correct IPv4 settings to work properly, having correct settings does not guarantee that a LAN-based host can successfully send a packet to the default router. The LAN between the host and the router must work. In addition, the router itself must be working correctly, based on the design of the internetwork.

This next topic looks at problems between hosts and their default router in which the root cause exists on the router. In particular, this topic looks at three main topics. The first topic looks at the trunking configuration required on a router to support multiple VLANs (known as router on a
stick, or ROAS). Following that, the text examines typical DHCP issues. The final root cause discussed here is the status of the router interface and what causes that interface to fail.

Mismatched VLAN Trunking Configuration with Router on a Stick

Examples that teach configuration details often focus on one topic at a time. For instance, IPv4 configuration examples may show a host and its default router setting with the IP address configured on the router's LAN interface, as shown earlier in Example 5-1. However, the details of the LAN to which the host and router attach may be completely omitted, to focus on the IPv4 details.

Troubleshooting, both in real life and on the exams, requires that you put all the pieces together. This next example shows a great case of how the troubleshooting process suffers if you forget to think about both the router and switch part of the problem. This example shows a valid router configuration that, unfortunately, does not match the configuration on the neighboring LAN switch like it should.

The next example focuses on how to connect routers to the subnets on multiple VLANs in the same campus LAN. Today, most sites in an enterprise LAN use at least two VLANs. To make routing work today, one of two options is typically used:

- **Router on a Stick (ROAS):** A router connects to the LAN, with one physical interface configured for VLAN trunking. The router has an IP address in each subnet, with one subnet per VLAN. The router configuration adds each matched subnet and associated VLAN to a subinterface.

- **Layer 3 switch:** Also called a multilayer switch, a Layer 3 switch performs the same job as a router using ROAS, but the switch has routing functions built in. The switch configuration adds each matched subnet and associated VLAN to a VLAN interface.

This example happens to use ROAS, but many of the same kinds of mistakes shown here can be made with Layer 3 switch configurations as well.

First, the following list outlines the rules for configuring ROAS, using 802.1Q, on both the router and the neighboring switch:

Step 1. On the router, for each VLAN that is not the native VLAN, do the following:

A. Create a unique subinterface for each VLAN that needs to be routed *(interface type number.subinterface).*

B. Enable 802.1Q, and associate one specific VLAN with the subinterface in subinterface config mode *(encapsulation dot1q vlan-id).*

C. Configure IP settings (address and mask) in subinterface config mode *(ip address address mask).*

Step 2. On the router, for the native VLAN, if using it, use one of the two following options:

A. Configure just like for other VLANs, except add the native keyword to the encapsulation command *(encapsulation dot1q vlan-id native).*

B. Configure the IP address on the physical LAN interface, without a subinterface and without the encapsulation dot1q command.
Step 3. On the switch, enable trunking (because the router will not negotiate to enable 802.1Q trunking):

A. Enable trunking with the switchport mode trunk interface subcommand.

B. Set the native VLAN to the same VLAN expected on the router, using the switchport trunk native vlan vlan-id interface subcommand.

Keeping that long list handy for reference, let’s next walk through a brief example of the router configuration. First, imagine that previously a site used a single VLAN; so, the router configuration ignored VLAN trunking, with the IP address configured on the physical LAN interface on the router. All hosts sat in default VLAN 1. The router could ignore the VLAN details, not use trunking, and act as default router for all hosts in VLAN 1, as shown in Figure 5-7.

<table>
<thead>
<tr>
<th>Interface G0/1</th>
<th>ip address</th>
<th>10.1.3.3 255.255.255.192</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW3</td>
<td>Default</td>
<td>Router is 10.1.3.3</td>
</tr>
</tbody>
</table>

Figure 5-7 Router IP Address Configuration, Without Trunking

Then, management planned an expansion in which a second VLAN will be used. This particular company has one network engineer in charge of routers and the other in charge of switches. When planning the changes with the switch engineer, the two engineers did not listen to each other very well, and then the router engineer went off to plan the changes to the router. The router engineer planned to make the following changes to use ROAS:

- Use ROAS on interface G0/1 to support both users in old subnet 10.1.3.0/26, in VLAN 1, and users in new subnet 10.1.3.64/26, in VLAN 2.
- To support VLAN 1 users, leave 10.1.3.3/26 configured as is on the physical interface. This takes advantage of the option to configure the native VLAN IP address on the physical interface because VLAN 1 is the default native VLAN.
- Add a ROAS subinterface to the router configuration to support VLAN 2, using address 10.1.3.65/26 as the router IP address/mask in that subnet.

Figure 5-8 shows the concepts and configuration.

<table>
<thead>
<tr>
<th>Interface G0/1</th>
<th>ip address</th>
<th>10.1.3.3 255.255.255.192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface G0/1.2</td>
<td>encapsulation dot1q 2</td>
<td>ip address 10.1.3.65 255.255.255.192</td>
</tr>
<tr>
<td>SW3</td>
<td>Default</td>
<td>Router is 10.1.3.65</td>
</tr>
</tbody>
</table>

Figure 5-8 Router IP Address Configuration, with ROAS, and Native VLAN 1

This configuration could work perfectly well—as long as the switch has a matching correct VLAN trunking configuration. The router configuration implies a couple of things about VLAN trunking, as follows:

- With the IP address listed on physical interface G0/1, the configuration implies that the router intends to use the native VLAN, sending and receiving untagged frames.
- The router intends to use VLAN 2 as a normal VLAN, sending and receiving frames tagged as VLAN 2.
The switch (SW3) needs to configure VLAN trunking to match that logic. In this case, that means to enable trunking on that link, support VLANs 1 and 2, and make sure VLAN 1 is the native VLAN. Instead, in this case, the switch engineer actually added the trunk configuration to the wrong port, with the F0/7 port, connected to router R3, having these settings:

```plaintext
switchport mode access — The port does not trunk.
switchport access vlan 7 — The port is assigned to VLAN 7.
```

The first command confirms, without a doubt, that the link from R3 to SW3 does not trunk. SW3 will not pass any VLAN 2 traffic over that link at all. A standard ping of host B's IP address from R3 fails; likewise, a `ping 10.1.3.65` command from host B fails.

The second command states that the access VLAN on F0/7 is VLAN 7, which means that SW3 will not forward VLAN 1's traffic over the link to R3, either. Again, pings between R3 and hosts in VLAN 1 will fail as well.

In summary, for ROAS configurations, take the time to verify the matching configuration on the neighboring switch. In particular

- Make sure the switch enables trunking (`switchport mode trunk`).
- Make sure the switch sets the correct VLAN as that trunk's native VLAN (`switchport trunk native vlan vlan-id`).
- Make sure the switch knows about all the VLANs the router has configured (`vlan vlan-id`).

DHCP Relay Issues

Hosts that use DHCP to lease an IP address (and learn other settings) rely on the network to pass the DHCP messages. In particular, if the internetwork uses a centralized DHCP server, with many remote LAN subnets using the DHCP server, the routers have to enable a feature called **DHCP Relay** to make DHCP work. Without DHCP Relay, DHCP requests from hosts never leave the local LAN subnet.

Figure 5-9 shows the big ideas behind how DHCP Relay works. In this example, a DHCP client (Host A) sits on the left, with the DHCP server (172.16.2.11) on the right. The client begins the DHCP lease process by sending a DHCP Discover message, one that would flow only across the local LAN without DHCP Relay configured on router R1. To be ready to forward the Discover message, R1 enables DHCP Relay with the `ip helper-address 172.16.2.11` command configured under its G0/0 interface.

The steps in the figure point out the need for DHCP Relay. At Step 1, host A sends a message, with destination IP and L2 broadcast address of 255.255.255.255 and ff:ff:ff:ff:ff:ff, respectively. Packets sent to this IP address, the “local subnet broadcast address,” should never be forwarded past the router. All devices on the subnet receive and process the frame. Additionally, because of the `ip helper-address` command configured on R1, router R1 will continue to deencapsulate the frame and packet to identify that it is a DHCP request and take action. Step 2 shows the results of DHCP Relay, where R1 changes both the source and destination IP address, with R1 routing the packet to the address listed in the command: 172.16.2.11.
Now, back to troubleshooting. Messages sent by a DHCP client can reach the DHCP server if the following are true:

- The server is in the same subnet as the client, with connectivity working between the two.
- The server is on another subnet, with the router on the same subnet as the client correctly implementing DHCP Relay, and with IP connectivity from that router to the DHCP server.

Two common mistakes can be made with DHCP Relay, both of which are fairly obvious. If the router omits the `ip helper-address` command on a LAN interface (or subinterface when using ROAS, or VLAN interface with a multilayer switching [MLS] configuration), DHCP fails for those clients. If the configuration includes the `ip helper-address` command but lists the wrong DHCP server IP address, again DHCP fails completely.

The symptom in both cases is that the client learns nothing with DHCP.

For instance, Example 5-2 shows an updated configuration for ROAS on router R3, based on the same scenario as in Figure 5-8. The router configuration works fine for supporting IPv4 and making the router reachable. However, only one subinterface happens to list an `ip helper-address` command.

Example 5-2 Forgetting to Support DHCP Relay on a ROAS Subinterface

```
interface GigabitEthernet0/1
  ip address 10.1.3.3 255.255.255.192
  ip helper-address 10.1.2.130

interface GigabitEthernet0/1.2
  encapsulation dot1q 2
  ip address 10.1.3.65 255.255.255.192
```

In this case, hosts in VLAN 1 that want to use DHCP can, assuming the host at address 10.1.2.130 is indeed the DHCP server. However, hosts in VLAN 2 will fail to learn settings with DHCP because of the lack of an `ip helper-address` command.

Router LAN Interface and LAN Issues

At some point, the problem isolation process may show that a host cannot ping its default router and vice versa. That is, neither device can send an IP packet to the other device on the same subnet. This basic test tells the engineer that the router, host, and LAN between them, for whatever reasons, cannot pass the packet encapsulated in an Ethernet frame between the two devices.

The root causes for this basic LAN connectivity issue fall into two categories:

- Problems that cause the router LAN interface to fail
- Problems with the LAN itself

A router’s LAN interface must be in a working state before the router will attempt to send packets out that interface (or receive packets in that interface). Specifically, the router LAN interface must be in an up/up state; if in any other state, the router will not use the interface for packet forwarding. So, if a ping from the router to a LAN host fails (or vice versa), check the interface status, and if not up, find the root cause for the router interface to not be up.

Alternatively, the router interface can be in an up/up state, but problems can exist in the LAN itself. In this case, every topic related to Ethernet LANs may be a root cause. In particular, all the topics reviewed in Chapter 3, such as Ethernet cable pinouts, port security, and even Spanning Tree Protocol, may be root causes of LAN issues.
For instance, in Figure 5-10, router R3 connects to a LAN with four switches. R3's LAN interface (G0/1) can reach an up/up state if the link from R3 to SW1 works. However, many other problems could prevent R3 from successfully sending an IP packet, encapsulated in an Ethernet frame, to the hosts attached to switches SW3 and SW4.

![Figure 5-10](image)

Figure 5-10 Where to Look for Problems Based on Router LAN Interface Status

NOTE This book leaves the discussion of LAN issues, as shown on the right side of Figure 5-10, to Part I of this book.

Router LAN interfaces can fail to reach a working up/up state for several reasons. Table 5-1 lists the common reasons discussed within the scope of the CCNA exam.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Description</th>
<th>Router Interface State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed mismatch</td>
<td>The router and switch can both use the speed interface subcommand to set the speed, but to different speeds.</td>
<td>down/down</td>
</tr>
<tr>
<td>Shutdown</td>
<td>The router interface has been configured with the shutdown interface subcommand.</td>
<td>Admin down/down</td>
</tr>
<tr>
<td>Err-disabled switch</td>
<td>The neighboring switch port uses port security, which has put the port in an err-disabled state.</td>
<td>down/down</td>
</tr>
<tr>
<td>No cable/bad cable</td>
<td>The router has no cable installed, or the cable pinouts are incorrect.*</td>
<td>down/down</td>
</tr>
</tbody>
</table>

* Cisco switches use a feature called auto-mdix, which automatically detects some incorrect cabling pinouts and internally changes the pin logic to allow the cable to be used. As a result, not all incorrect cable pinouts result in an interface failing.

Using the speed mismatch root cause as an example, you could configure Figure 5-10's R3's G0/1 with the `speed 1000` command and SW1's F0/1 interface with the `speed 100` command. The link simply cannot work at these different speeds, so the router and switch interfaces both fall to a down/down state. Example 5-3 shows the resulting state, this time with the `show interfaces description` command, which lists one line of output per interface.
Example 5-3 show interfaces description Command with Speed Mismatch

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/0</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>Gi0/1</td>
<td>down</td>
<td>down</td>
<td>link to campus LAN</td>
</tr>
<tr>
<td>Se0/0/0</td>
<td>admin down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Se0/0/1</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>Se0/1/0</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>Se0/1/1</td>
<td>admin down</td>
<td>down</td>
<td></td>
</tr>
</tbody>
</table>

Problems with Routing Packets Between Routers

The first half of this chapter focused on the first hop that an IPv4 packet takes when passing over a network. This second major section now looks at issues related to how routers forward the packet from the default router to the final host.

In particular, this section begins by looking at the IP routing logic inside a single router. These topics review how to understand what a router currently does. Following that, the discussion expands to look at some common root causes of routing problems, causes that come from incorrect IP addressing, particularly when the addressing design uses variable-length subnet masks (VLSM).

The end of this section turns away from the core IP forwarding logic, looking at other issues that impact packet forwarding, including issues related to router interface status (which needs to be up/up) and how IPv4 access control lists (ACL) can filter IPv4 traffic.

IP Forwarding by Matching the Most Specific Route

Any router’s IP routing process requires that the router compare the destination IP address of each packet with the existing contents of that router’s IP routing table. Often, only one route matches a particular destination address. However, in some cases, a particular destination address matches more than one of the router’s routes.

The following CCENT and CCNA features can create overlapping subnets:

- Autosummary (as discussed in Chapter 10, “Implementing EIGRP for IPv4”)
- Manual route summarization
- Static routes
- Incorrectly designed subnetting plans that cause subnets to overlap their address ranges

In some cases, overlapping routes cause a problem; in other cases, the overlapping routes are just a normal result of using some feature. This section focuses on how a router chooses which of the overlapping routes to use, for now ignoring whether the overlapping routes are a problem. The section “Routing Problems Caused by Incorrect Addressing Plans,” later in this chapter, discusses some of the problem cases.

Now on to how a router matches the routing table, even with overlapping routes in its routing table. If only one route matches a given packet, the router uses that one route. However, when more than one route matches a packet’s destination address, the router uses the “best” route, defined as follows:

When a particular destination IP address matches more than one route in a router’s IPv4 routing table, the router uses the most specific route—in other words, the route with the longest prefix length mask.
Using **show ip route** and Subnet Math to Find the Best Route

We humans have a couple of ways to figure out what choice a router makes for choosing the best route. One way uses the **show ip route** command, plus some subnetting math, to decide the route the router will choose. To let you see how to use this option, Example 5-4 shows a series of overlapping routes.

Example 5-4 show ip route Command with Overlapping Routes

<table>
<thead>
<tr>
<th>R1# show ip route ospf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP</td>
</tr>
<tr>
<td>D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area</td>
</tr>
<tr>
<td>N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2</td>
</tr>
<tr>
<td>E1 - OSPF external type 1, E2 - OSPF external type 2</td>
</tr>
<tr>
<td>i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2</td>
</tr>
<tr>
<td>ia - IS-IS inter area, * - candidate default, U - per-user static route</td>
</tr>
<tr>
<td>o - ODR, P - periodic downloaded static route, H - NHRP, L - LISP</td>
</tr>
<tr>
<td>+ - replicated route, % - next hop override</td>
</tr>
</tbody>
</table>

Gateway of last resort is 172.16.25.129 to network 0.0.0.0

172.16.0.0/16 is variably subnetted, 9 subnets, 5 masks
O 172.16.1.0/24 [110/50] via 172.16.25.2, 00:00:04, Serial0/1/1
O 172.16.1.0/24 [110/100] via 172.16.25.129, 00:00:09, Serial0/1/0
O 172.16.0.0/16 [110/65] via 172.16.25.129, 00:00:09, Serial0/1/1
O 172.16.0.0/16 [110/65] via 172.16.25.129, 00:00:09, Serial0/1/0
O 0.0.0.0/0 [110/129] via 172.16.25.129, 00:00:09, Serial0/1/0
!

NOTE As an aside, the **show ip route ospf** command lists only OSPF-learned routes, but the statistics for numbers of subnets and masks (9 and 5 in the example, respectively) are for all routes, not just OSPF-learned routes.

To predict which of its routes a router will match, two pieces of information are required: the destination IP address of the packet and the contents of the router's routing table. The subnet ID and mask listed for a route define the range of addresses matched by that route. With a little subnetting math, a network engineer can find the range of addresses matched by each route. For instance, Table 5-2 lists the five subnets listed in Example 5-4 and the address ranges implied by each.

Table 5-2 Analysis of Address Ranges for the Subnets in Example 5-4

<table>
<thead>
<tr>
<th>Subnet/PREFIX</th>
<th>Address Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.11/32</td>
<td>172.16.1.1 (just this one address)</td>
</tr>
<tr>
<td>172.16.10/24</td>
<td>172.16.1.0–172.16.1.255</td>
</tr>
<tr>
<td>172.16.00/22</td>
<td>172.16.0.0–172.16.3.255</td>
</tr>
<tr>
<td>172.16.00/16</td>
<td>172.16.0.0–172.16.255.255</td>
</tr>
<tr>
<td>0.0.00/0</td>
<td>0.0.0.0–255.255.255.255 (all addresses)</td>
</tr>
</tbody>
</table>
As you can see from these ranges, several of the routes' address ranges overlap. When matching more than one route, the route with the longer prefix length is used. That is, a route with /16 is better than a route with /10; a route with a /25 prefix is better than a route with a /20 prefix; and so on.

For example, a packet sent to 172.16.1.1 actually matches all five routes listed in the routing table in Example 5-4. The various prefix lengths range from /0 to /32. The longest prefix (largest /P value, meaning the best and most specific route) is /32. So, a packet sent to 172.16.1.1 uses the route to 172.16.1.1/32, and not the other routes.

The following list gives some examples of destination IP addresses. For each address, the list describes the routes from Table 5-2 that the router would match, and which specific route the router would use.

- **172.16.1.1**: Matches all five routes; the longest prefix is /32, the route to 172.16.1.1/32.
- **172.16.1.2**: Matches last four routes; the longest prefix is /24, the route to 172.16.1.0/24.
- **172.16.2.3**: Matches last three routes; the longest prefix is /22, the route to 172.16.0.0/22.
- **172.16.4.3**: Matches the last two routes; the longest prefix is /16, the route to 172.16.0.0/16.

Using `show ip route address` to Find the Best Route

A second way to identify the route a router will use, one that does not require any subnetting math, is the `show ip route address` command. The last parameter on this command is the IP address of an assumed IP packet. The router replies by listing the route it would use to route a packet sent to that address.

For example, Example 5-5 lists the output of the `show ip route 172.16.4.3` command on the same router used in Example 5-4. The first line of (highlighted) output lists the matched route: the route to 172.16.0.0/16. The rest of the output lists the details of that particular route, like the outgoing interface of S0/1/0 and the next-hop router of 172.16.25.129.

Example 5-5 `show ip route Command with Overlapping Routes`

```
R1# show ip route 172.16.4.3
Routing entry for 172.16.0.0/16
   Known via "ospf 1", distance 110, metric 65, type intra area
   Last update from 10.2.2.5 on Serial0/1/0, 14:22:06 ago
Routing Descriptor Blocks:
   * 172.16.25.129, from 172.16.25.129, 14:22:05 ago, via Serial0/1/0
      Route metric is 65, traffic share count is 1
```

Certainly, if you have an option, just using a command to check what the router actually chooses is a much quicker option than doing the subnetting math.

show ip route Reference

The `show ip route` command plays a huge role in troubleshooting IP routing and IP routing protocol problems. Many chapters in this book and in the ICND1 book mention various facts about this command. This section pulls the concepts together in one place for easier reference and study.
Figure 5-11 shows the output of a sample `show ip route` command. The figure numbers various parts of the command output for easier reference, with Table 5-3 describing the output noted by each number.

<table>
<thead>
<tr>
<th>Item</th>
<th>Idea</th>
<th>Value in the Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Classful network</td>
<td>10.0.0.0/8</td>
<td>The routing table is organized by classful network. This line is the heading line for classful network 10.0.0.0; it lists the default mask for class A networks (/8).</td>
</tr>
<tr>
<td>2</td>
<td>Number of subnets</td>
<td>13 subnets</td>
<td>Lists the number of routes for subnets of the classful network known to this router, from all sources, including local routes—the /32 routes that match each router interface IP address.</td>
</tr>
<tr>
<td>3</td>
<td>Number of masks</td>
<td>5 masks</td>
<td>The number of different masks used in all routes known to this router inside this classful network.</td>
</tr>
<tr>
<td>4</td>
<td>Legend code</td>
<td>C, L, O</td>
<td>A short code that identifies the source of the routing information. C is for Connected, S for Static, and L for Local. (See Example 5-4 for a sample of the legend.)</td>
</tr>
<tr>
<td>5</td>
<td>Subnet ID</td>
<td>10.2.2.0</td>
<td>The subnet number of this particular route.</td>
</tr>
<tr>
<td>6</td>
<td>Prefix length</td>
<td>/30</td>
<td>The prefix mask used with this subnet.</td>
</tr>
<tr>
<td>7</td>
<td>Administrative distance</td>
<td>110</td>
<td>If a router learns routes for the listed subnet from more than one source of routing information, the router uses the source with the lowest AD.</td>
</tr>
<tr>
<td>8</td>
<td>Metric</td>
<td>128</td>
<td>The metric for this route.</td>
</tr>
<tr>
<td>9</td>
<td>Next-hop router</td>
<td>10.2.2.5</td>
<td>For packets matching this route, the IP address of the next router to which the packet should be forwarded.</td>
</tr>
<tr>
<td>10</td>
<td>Timer</td>
<td>14:31:52</td>
<td>For OSPF and EIGRP routes, this is the time since the route was first learned.</td>
</tr>
<tr>
<td>11</td>
<td>Outgoing interface</td>
<td>Serial0/0/1</td>
<td>For packets matching this route, the interface out which the packet should be forwarded.</td>
</tr>
</tbody>
</table>

Routing Problems Caused by Incorrect Addressing Plans

The existence of overlapping routes in a router’s routing table does not necessarily mean a problem exists. Both automatic and manual route summarization result in overlapping routes on some routers, with those overlaps not causing problems. However, some overlaps, particularly those related to addressing mistakes, can cause problems for user traffic. So, when troubleshooting, if
overlapping routes exist, the engineer should also look for the specific reasons for overlaps that actually cause a problem.

Simple mistakes in either the IP addressing plan or the implementation of that plan can cause overlaps that also cause problems. In these cases, one router claims to be connected to a subnet with one address range, while another router claims to be connected to another subnet with an overlapping range, breaking IP addressing rules. The symptoms are that the routers sometimes forward the packets to the right host, but sometimes not.

This problem can occur whether or not VLSM is used. However, the problem is much harder to find when VLSM is used. This section reviews VLSM, shows examples of the problem both with and without VLSM, and discusses the configuration and verification commands related to these problems.

Recognizing When VLSM Is Used or Not

An internetwork is considered to be using VLSM when multiple subnet masks are used for different subnets of a single classful network. For example, if in one internetwork all subnets come from network 10.0.0.0, and masks /24, /26, and /30 are used, the internetwork uses VLSM.

Sometimes people fall into the trap of thinking that any internetwork that uses more than one mask must be using VLSM, but that is not always the case. For instance, if an internetwork uses subnets of network 10.0.0.0, all of which use mask 255.255.240.0, and subnets of network 172.16.0.0, all of which use a 255.255.255.0 mask, the design does not use VLSM. Two different masks are used, but only one mask is used in any single classful network. The design must use more than one mask for subnets of a single classful network to be using VLSM.

Only classless routing protocols can support VLSM. The current CCENT and CCNA Routing and Switching certifications cover only classless routing protocols (OSPF and EIGRP), so in all routing protocol discussions for this book, VLSM should be supported. However, for real life, note that RIPv2 (as a classless routing protocol) also supports VLSM, whereas classful routing protocols RIPv1 and Interior Gateway Routing Protocol (IGRP) cannot.

Overlaps When Not Using VLSM

Even when you are not using VLSM, addressing mistakes that create overlapping subnets can occur. For instance, Figure 5-12 shows a sample network with router LAN IP address/mask information. An overlap exists, but it might not be obvious at first glance.

![Figure 5-12](IP Addresses on LAN Interfaces, with One Mask (/25) in Network 10.0.0.0)

If an overlap exists when all subnets use the same mask, the overlapping subnets have the exact same subnet ID, and the exact same range of IP addresses in the subnet. To find the overlap, all you have to do is calculate the subnet ID of each subnet and compare the numbers. For instance,
Figure 5-13 shows an updated version of Figure 5-12, with subnet IDs shown and with identical subnet IDs for the LANs off R3 and R4.

Figure 5-13 Subnet IDs Calculated from Figure 5-12

Using the same subnet in two different places (as is done in Figure 5-13) breaks the rules of IPv4 addressing because the routers get confused about where to send packets. In this case, for packets sent to subnet 10.1.1.128/25, some routers send packets so they arrive at R3, whereas others think the best route points toward R4. Assuming all routers use a routing protocol, such as OSPF, both R3 and R4 advertise a route for 10.1.1.128/25.

In this case, R1 and R2 will likely send packets to two different instances of subnet 10.1.1.128/25. With these routes, hosts near R1 will be able to communicate with 10.1.1.128/25 hosts off R4’s LAN, but not those off R3’s LAN, and vice versa.

Finally, although the symptoms point to some kind of routing issues, the root cause is an invalid IP addressing plan. No IP addressing plan should use the same subnet on two different LANs, as was done in this case. The solution: Change R3 or R4 to use a different, nonoverlapping subnet on its LAN interface.

Overlaps When Using VLSM

When using VLSM, the same kinds of addressing mistakes can lead to overlapping subnets; they just may be more difficult to notice.

First, overlaps between subnets that have different masks will cause only a partial overlap. That is, two overlapping subnets will have different sizes and possibly different subnet IDs. The overlap occurs between all the addresses of the smaller subnet, but with only part of the larger subnet. Second, the problems between hosts only occur for some destinations (specifically the subnet of addresses in the overlapped range), making it even tougher to characterize the problem.

For instance, Figure 5-14 shows an example with a VLSM overlap. The figure shows only the IP address/mask pairs of router and host interfaces. First, look at the example and try to find the overlap by looking at the IP addresses.
To find the overlap, the person troubleshooting the problem needs to analyze each subnet, finding not only the subnet ID but also the subnet broadcast address and the range of addresses in the subnet. If the analysis stops with just looking at the subnet ID, the overlap may not be noticed (as is the case in this example).

Figure 5-15 shows the beginning analysis of each subnet, with only the subnet ID listed. Note that the two overlapping subnets have different subnet IDs, but the lower-right subnet (172.16.5.0/24) completely overlaps with part of the upper-right subnet (172.16.4.0/23). (Subnet 172.16.4.0/23 has a subnet broadcast address of 172.16.5.255, and subnet 172.16.5.0/24 has a subnet broadcast address of 172.16.5.255.)

To be clear, the design with actual subnets whose address ranges overlap is incorrect and should be changed. However, once implemented, the symptoms show up as routing problems, like the similar case without VLSM: ping commands fail, and traceroute commands do complete for only certain hosts (but not all).

Configuring Overlapping VLSM Subnets

IP subnetting rules require that the address ranges in the subnets used in an internetwork should not overlap. IOS sometimes can recognize when a new ip address command creates an overlapping subnet, but sometimes not, as follows:

- Preventing the overlap on a single router: IOS detects the overlap when the ip address command implies an overlap with another ip address command on the same router.
Allowing the overlap on different routers: IOS cannot detect an overlap when an
ip address command overlaps with an ip address command on another router.

The router shown in Example 5-6 prevents the configuration of an overlapping VLSM subnet.
The example shows router R3 configuring Fa0/0 with IP address 172.16.5.1/24 and attempting to
configure Fa0/1 with 172.16.5.193/26. The ranges of addresses in each subnet are as follows:

Subnet 172.16.5.0/24: 172.16.5.1 – 172.16.5.254
Subnet 172.16.5.192/26: 172.16.5.193 – 172.16.5.254

Example 5-6 Single Router Rejects Overlapped Subnets

```
R3# configure terminal
R3(config)# interface Fa0/0
R3(config-if)# ip address 172.16.5.1 255.255.255.0
R3(config-if)# interface Fa0/1
R3(config-if)# ip address 172.16.5.193 255.255.255.192
% 172.16.5.192 overlaps with FastEthernet0/0
R3(config-if)#
```

IOS knows that it is illegal to overlap the ranges of addresses implied by a subnet. In this case,
because both subnets would be connected subnets, this single router knows that these two sub-
nets should not coexist because that would break subnetting rules, so IOS rejects the second
command.

As an aside of how IOS handles these errors, IOS only performs the subnet overlap check for
interfaces that are not in a shutdown state. When configuring an interface in shutdown state, IOS
actually accepts the ip address command that would cause the overlap. Later, when the no shut-
down command is issued, IOS checks for the subnet overlap and issues the same error message
shown in Example 5-6. IOS leaves the interface in the shutdown state until the overlap condition
has been resolved.

IOS cannot detect the configuration of overlapping subnets on different routers, as shown in
Example 5-7. The example shows the configuration of the two overlapping subnets on R2 and R3
from Figure 5-15.

Example 5-7 Two Routers Accept Overlapped Subnets

```
! First, on router R2
R2# configure terminal
R2(config)# interface G0/0
R2(config-if)# ip address 172.16.4.1 255.255.255.0

! Next, on router R3
R3# configure terminal
R3(config)# interface G0/0
R3(config-if)# ip address 172.16.5.1 255.255.255.0
```

Router WAN Interface Status

One of the steps in the IP routing troubleshooting process described earlier, in the “Router LAN
Interface and LAN Issues” section, says to check the interface status, ensuring that the required
interface is working. For a router interface to be working, the two interface status codes must
both be listed as up, with engineers usually saying the interface is “up and up.”
So far, the ICND1 and ICND2 books have explored only basic information about how serial links work. For now, know that both routers must have working serial interfaces in an up/up state before they can send IPv4 packets to each other. The two routers should also have serial IP addresses in the same subnet.

Later, the chapters in Part IV further develop the details of WAN links, including what is required for routers to use these links to forward IP packets.

Filtering Packets with Access Lists

Access control lists (ACL) cause some of the biggest challenges when troubleshooting problems in real networking jobs. End-user packets sent by user applications do not look exactly like packets sent by testing tools such as ping and traceroute. The ACLs sometimes filter the ping and traceroute traffic, making the network engineer think some other kind of problems exists when no problems exist at all. Or, the problem with the end-user traffic really is caused by the ACL, but the ping and traceroute traffic works fine, because the ACL filters the user traffic but not the ping and traceroute traffic.

This section summarizes some tips for attacking ACL-related problems in real life and on the exams:

Step 1. Determine on which interfaces ACLs are enabled, and in which direction (show running-config, show ip interfaces).

Step 2. Determine which ACL statements are matched by test packets (show access-lists, show ip access-lists).

Step 3. Analyze the ACLs to predict which packets should match the ACL, focusing on the following points:

A. Remember that the ACL uses first-match logic.

B. Consider using the (possibly) faster math described in the ICND1 book, Chapter 22, “Basic IP Access Control Lists,” to find the range of addresses matched by an ACL command: Add the address and wildcard mask to find the end of the numeric range.

C. Note the direction of the packet in relation to the server (going to the server, coming from the server). Make sure that the packets have particular values as either the source IP address and port, or as the destination IP address and port, when processed by the ACL enabled for a particular direction (in or out).

D. Remember that the tcp and udp keywords must be used if the command needs to check the port numbers.

E. Note that ICMP packets do not use UDP or TCP. ICMP is considered to be another protocol matchable with the icmp keyword (instead of tcp or udp).

F. Instead of using the implicit deny any at the end of each ACL, use an explicit configuration command to deny all traffic at the end of the ACL so that the show command counts increment when that action is taken.

If you suspect ACLs are causing a problem, the first problem-isolation step is to find the location and direction of the ACLs. The fastest way to do this is to look at the output of the show running-config command and to look for ip access-group commands under each interface. However, in some cases, enable mode access may not be allowed, and show commands are required. In that case, another way to find the interfaces and direction for any IP ACLs is the show ip interfaces command, as shown in Example 5-8.
Example 5-8 Sample show ip interface Command

```
R1#show ip interface s0/0/1
Serial0/0/1 is up, line protocol is up
  Internet address is 10.1.2.1/24
  Broadcast address is 255.255.255.255
  Address determined by setup command
  MTU is 1500 bytes
  Helper address is not set
  Directed broadcast forwarding is disabled
  Multicast reserved groups joined: 224.0.0.9
  Outgoing access list is not set
  Inbound access list is 102

! roughly 26 more lines omitted for brevity
```

Note that the command output lists whether an ACL is enabled, in both directions, and which ACL it is. The example shows an abbreviated version of the `show ip interface S0/0/1` command, which lists messages for just this one interface. The `show ip interface` command would list the same messages for every interface in the router.

Step 2 then says that the contents of the ACL must be found. Again, the quickest way to look at the ACL is to use the `show running-config` command. If not available, the `show access-lists` and `show ip access-lists` commands list the same details shown in the configuration commands and a counter for the number of packets matching each line in the ACL. Example 5-9 shows an example.

Example 5-9 show ip access-lists Command Example

```
R1# show ip access-lists
Extended IP access list 102
  10 permit ip 10.1.2.0 0.0.0.255 10.1.4.0 0.0.1.255 (15 matches)
```

After the locations, directions, and configuration details of the various ACLs have been discovered in Steps 1 and 2, the hard part begins—interpreting what the ACL really does.

Of particular interest is the last item in the troubleshooting tips list, item 3F. In the ACL shown in Example 5-9, some packets (15 so far) have matched the single configured `access-list` statement in ACL 102. However, some packets have probably been denied because of the implied deny all packets logic at the end of an ACL. If you configure the `access-list 102 deny ip any any` command at the end of the ACL, which explicitly matches all packets and discards them, the `show ip access-lists` command would then show the number of packets being denied at the end of the ACL.

Finally, as a reminder about interpreting ACL commands, when you know the command comes from a router, it is easy to decide the range of addresses matched by an address and wildcard mask. The low end of the range is the address (the first number), and the high end of the range is the sum of the address and wildcard mask. For instance, with ACL 102 in Example 5-9, which is obviously configured in some router, the ranges are as follows:

- **Source 10.1.2.0, wildcard 0.0.0.255**: Matches from 10.1.2.0 through 10.1.2.255
- **Destination 10.1.4.0, wildcard 0.0.1.255**: Matches from 10.1.4.0 through 10.1.5.255
Review Activities

Chapter Summary

- Many problems can occur on the host or the default router, or between the two.
- A typical IPv4 host gets its four key IPv4 settings either statically or dynamically.
- To begin troubleshooting the host, use the `ipconfig` or `ifconfig` command to ensure IPv4 settings correctly match. If you are using DHCP, the `ipconfig` or `ifconfig` command will enable you to see whether DHCP has failed to learn any of the IPv4 settings.
- The host and router should attach to the exact same subnet with the same subnet ID and same range of IP addresses.
- When a host lists the wrong IP addresses for the DNS servers, the user actions that require name resolution will fail.
- Any network testing with commands like `ping` and `traceroute` fails when using names but works when using IP addresses when there is a problem with the DNS settings.
- Having a host that lists the wrong IP address as its default router will cause network problems.
- The default router's configuration can cause problems in a network that may stem from mismatched VLAN trunking configurations, DHCP relay issues, router LAN interface, and LAN issues.
- If a router omits the `ip helper-address` command on a LAN interface, DHCP fails for those clients.
- Another problem with network connectivity can exist with the routing or how a router forwards a packet.
- The `show ip route` command plays a huge role in troubleshooting IP routing and IP routing protocol problems.
- In some cases, overlapping routes cause a problem, while in other cases, the overlapping routes are just a normal result of using some feature.

Review All the Key Topics

Review the most important topics from this chapter, noted with the Key Topic icon. Table 5-4 lists these key topics and where each is discussed.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Two root causes of DNS problems.</td>
<td>136</td>
</tr>
<tr>
<td>List</td>
<td>The rules for configuring ROAS.</td>
<td>138</td>
</tr>
<tr>
<td>List</td>
<td>Items to verify for switch trunking configuration to match a router’s ROAS configuration.</td>
<td>140</td>
</tr>
<tr>
<td>List</td>
<td>Conditions that must be true for DHCP messages to be able to flow from a client to a DHCP server.</td>
<td>141</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Common reasons why router LAN interfaces are not up/up.</td>
<td>142</td>
</tr>
<tr>
<td>Definition</td>
<td>When more than one route matches a packet’s destination address, the router uses the “best” (most specific) route.</td>
<td>143</td>
</tr>
<tr>
<td>List</td>
<td>Types of overlapping IP address configuration issues that IOS can and cannot recognize.</td>
<td>149</td>
</tr>
</tbody>
</table>
Complete the Tables and Lists from Memory

Print a copy of DVD Appendix D, “Memory Tables,” or at least the section for this chapter, and complete the tables and lists from memory. DVD Appendix E, “Memory Tables Answer Key,” includes completed tables and lists to check your work.

Definitions of Key Terms

After your first reading of the chapter, try to define these key terms, but do not be concerned about getting them all correct at that time. Chapter 22 directs you in how to use these terms for late-stage preparation for the exam.

forward route, reverse route
This page intentionally left blank
This page intentionally left blank
Symbols

3DES (Triple DES), 180
3G mobile phone access, 397-398
4G mobile phone access, 397-398

A

ABR (Area Border Router), 208
access control lists (ACLs), 151-152, 585-588
access interface VLAN assignments, checking, 92
access links
AR (access rate), 338
Frame Relay, 338
Layer 1 issues, 370
Layer 2 issues, 371
access rate (AR), 338
access VPNs (virtual private networks), 178
ACLs (access control lists), 151-152, 585-588
activating IOS software, 529-530
Cisco License Manager (CLM), 530-531
manual activation, 531-536
right-to-use licenses, 536-538
active/passive model, 160
active/standby model, 160
active virtual gateway (AVG), 163
active VLANs, checking for, 92-93
AD (administrative distance), 215-216
Adaptive Security Appliances (ASA), 179
address mapping (Frame Relay)
Inverse ARP, 360
static mapping, 360-361
Address Resolution Protocol. See ARP addresses
Frame Relay, 357-359
DLCI (data link connection identifiers), 342-344
frame forwarding, 344
Layer 3 addressing, 345-348
unicast IPv6 addresses, 411-413
adjacent OSPFv2 neighbors, 206
administrative distance (AD), 215-216
ADSL (asymmetric DSL), 395
AES (Advanced Encryption Standard), 180
alternate (root) ports, 573-574
anti-replay, 177
Area Border Router (ABR), 208
areas (OSPF)
design advantages, 209
design rules, 207
design terminology, 207-208
explained, 206-207
intra-area topology, 210-212
multi-area design, 212-213
multi-area OSPFv2, 217-223
reducing SPF calculation time with, 208
single-area OSPF, 206
single-area OSPFv2, 218-21
ARP (Address Resolution Protocol), 114
Inverse ARP, 360
replies (unicast), forwarding path of, 98-101
requests (broadcast), forwarding path of, 95-98
sample ARP process, 115
ASA (Adaptive Security Appliances), 179
ASN (autonomous system number), 239
asymmetric DSL (ADSL), 395
authentication
PAP/CHAP authentication, 328-329
PPP (Point-to-Point Protocol), 322-323
authNoPriv security level, 492
authPriv security level, 492
auto-cost reference-bandwidth command, 225, 228, 440, 458
autonomous system number (ASN), 239
autosummarization
discontiguous classful networks, 271-272
example of, 270-271
auto-summary command, 253, 271, 276
AVG (active virtual gateway), 163

B

backbone area, 208
backbone routers, 208
backup (designated) ports, 575-576
backup DRs (BDRs), 205, 221-222
balancing load
EIGRPv4, 267-269
EIGRPv6, 465
HSRP (Hot Standby Router Protocol), 162
OSPFv2 (Open Shortest Path First version 2), 225
with PSVT+ (Per-VLAN Spanning Tree Plus), 38
bandwidth
EIGRPv4 metric calculation, 243
EIGRPv6 settings, 464-465
reference bandwidth, 225
bandwidth command, 224, 228, 243,
264, 269, 276, 318, 334, 383, 440,
458, 462, 477
Basic Rate Interface (BRI), 394
BDR (backup DRs), 205, 221-222
BID (bridge ID), 20, 39-40
binary-to-hexadecimal conversion, 566
blocking state (STP), 18-20
boot sequence of Cisco IOS Software,
507-508
configuration register, 509
IOS image verification, 512-513
OS selection process, 509-511
recovery if IOS does not load, 511
three-router operating systems, 508-509
boot system command, 509-510, 524
boot system flash command, 511, 524
boot system rom command, 524
boot system tftp command, 511
BPDU (bridge protocol data units), 20-21
BPDU Guard, 30-31, 46-47
BRI (Basic Rate Interface), 394
bridge ID (BID), 20, 39-40
bridge protocol data units (BPDU), 20-21
broadcast storms, 16-17
broadcasts
ARP requests, forwarding path of, 95-98
forwarding in VLAN 3, 97-98
ignoring, 96-97
C

Cable Internet, 396
cable TV (CATV), 396
cabling pinouts for LAN switches, 75
calculating
powers of 2, 567
routes with EIGRP (Enhanced Interior Gateway Routing Protocol)
bandwidth issues, 243
equation, 242-243
FD (feasible distance), 244-245
metric calculation, 241
RD (reported distance), 244-245
CATV (cable TV), 396
CCNA practice exams, 552-553
CDP (Cisco Discovery Protocol), 72-73,
87-88
cdp enable command, 73
cdp run command, 73
Challenge Handshake Authentication Protocol. See CHAP
channel-group command, 48-50, 57-58,
62
Channel service unit/data service unit. See CSU/DSU
CHAP (Challenge Handshake Authentication Protocol), 398
configuring, 324-325
troubleshooting, 328-329
checking
active interface VLAN assignments, 92
for active VLANs, 92-93
choosing
DPs (designated ports), 24-25
RPs (root ports), 23-24
CIR (committed information rate), 338
circuits
PVC (permanent virtual circuits), 338, 372-377
SVC (switched virtual circuits), 338
VC (virtual circuits)
explained, 337-340
Layer 3 addressing, 345-346
Cisco Catalyst switches, 80
Cisco Certification Exam Tutorial, 546-547
Cisco Learning Network, 558
Cisco License Manager (CLM), 530-531
Cisco Prime, 487
Cisco Product License Registration Portal, 532
classful routing protocols, 270
clear ip ospf process command, 202, 229, 296
CLI (command-line interface), 556-557
clients, VPN (virtual private network)
clients, 179
CLM (Cisco License Manager), 530-531
clock rate command, 316-318
clock speed command, 334
collector (NetFlow), 500
committed information rate (CIR), 338
community strings (SNMP), 490
config-register command, 509, 524
configuration files, 517-518
copying, 519-520
erasing, 519-520
running-config, 517
setup mode, 521
startup-config, 517
configuration register, 509
configuring
BPDU Guard, 46-47
CHAP (Challenge Handshake Authentication Protocol), 324-325
Cisco Catalyst switches, 80
EIGRPv4
basic configuration, 253-254
compared to EIGRPv6, 466-467
convergence, 265-266
feasible successors, 263-265
load balancing, 267-269
maximum-paths, 267-269
metric calculation, 269-270
metric components, 266-267
successors, 262-263
topology table, viewing, 261-262
variance, 268-269
verifying core features of, 255-260
wildcard masks, 255
EIGRPv6
bandwidth and delay settings, 464-465
basic configuration, 461
compared to EIGRPv4, 466-467
configuration commands, 462
example, 462-464
interfaces, 467-469
IPv6 routes, 472-473
load balancing, 465
neighbors, 469-470
overview, 461
timers, 466
topology database, 470-472
EtherChannel, 47-48
Channel, 48-49
channel-group command options, 57-58
interface configuration settings, 58-59
manual EtherChannel, 50
Frame Relay
address mapping, 357-361
encapsulation, 356
fully meshed networks with one IP subnet, 354-355
LMI (Local Management Interface), 356
multipoint subinterfaces, 366-368
OSPF (Open Shortest Path First), 368-369
planning configurations, 353-354
point-to-point subinterfaces, 361-364
self-assessment, 381-382
verification, 364-365
GLBP (Gateway Load Balancing Protocol), 167-169
GRE (generic routing encapsulation) tunnels, 185-187
HDLC (High-level Data Link Control), 317-320
HSRP (Hot Standby Router Protocol), 164-167
IPv6 hosts
 router address, 415-416
 SLAAC (stateless address autoconfiguration), 414-415
 stateful DHCPv6, 413-414
 static routes, 416-417
 verifying connectivity, 417-420
NetFlow, 497-498
OSPFv2 (Open Shortest Path First version 2), 592-595
 basic configuration, 216-217
 load balancing, 225
 multi-area configuration, 217-220
 single-area configuration, 218-219
 verifying configuration, 220-223
OSPFv3 (Open Shortest Path First version 3)
 basic configuration, 435
 default routes, 440-441
 interface cost, 439-440
 load balancing, 440
 multi-area configuration, 435-439
 single-area configuration, 436-438
overlapping subnets, 149-150
PortFast, 46-47
PPP (Point-to-Point Protocol), 323-324
PPPoE (PPP over Ethernet), 399-400
RSTP (Rapid Spanning Tree Protocol)
 identifying STP mode on Catalyst switches, 577-579
 port roles, 579-580
 port states, 580
 port types, 581
SNMP (Simple Network Management Protocol)
 SNMP version 2c, 490-491
 SNMP version 3, 491
static routes, 582-583
 with competing routes, 584-585
 with no competing routes, 583
STP (Spanning Tree Protocol)
 BID (bridge ID), 39-40
 BPDU Guard, 46-47
 defaults/configuration options, 40
 EtherChannel, 47-50
 per-VLAN configuration settings, 38-39
 per-VLAN costs, 40
 port costs, 44
 PortFast, 46-47
 STP mode, 37-38
 STP port costs, 43-45
 switch priority, 44-46
 system ID extension, 39-40
 verifying STP operation, 40-43
Syslog (System Message Logging), 494-495
confreg command, 514
contiguous classful networks, 271
ccontrol plane, 66
ccontrol plane analysis, 67-68
cconvergence
cEIGRP (Enhanced Interior Gateway Routing Protocol)
 explained, 244
 feasible successors, 265-266
 query/reply process, 246-247
 successors, 245-246
STP (Spanning Tree Protocol), 19
 delays, 28
 troubleshooting, 56
converting
 binary to hexadecimal, 566
 decimal to binary, 563-565
 hexadecimal to binary, 566
copy command, 519, 525
copy running-config startup-config command, 509, 515, 519, 525
copy startup-config running-config command, 515-519, 525
copying
cconfiguration files, 519-520
 images into Flash memory, 505-507
CPE (customer premise equipment), 313
CSU/DSU, 315
customer premise equipment (CPE), 313
data communications equipment (DCE), 338
Data Encryption Standard (DES), 180

Data link connection identifiers (DLCI), 338
explained, 342
frame forwarding, 343-344
local DLCI, 342-343
data link headers, building, 114-115
data plane, 66
data plane analysis, 66-67
data terminal equipment (DTE), 337-338, 345
data9, 530
Dead Interval timer, 204
debug eigrp fsm command, 277
debug eigrp packets command, 302
debug frame-relay lmi command, 365, 384
debug ip ospf adj command, 294, 302
debug ip ospf events command, 302
debug ip ospf hello command, 297, 302
debug ip ospf packet command, 302
debug ipv6 ospf adj command, 445
debug ppp authentication command, 328, 335
debug ppp negotiation command, 335
debug spanning-tree events command, 44, 63
decimal-to-binary conversion, 563-565
dedicated routers (DRs), verifying, 221-222
default-information originate command, 441-442
default routers, troubleshooting, 133
 DHCP Relay, 140-141
 DNS problems, 136-137
 IP address settings, 137
 LAN issues, 141-142
 mismatched IPv4 settings, 133-134
 mismatched masks, 134-135
 mismatched VLAN trunking configuration, 138-140
default routes
 OSPFv2, 591-592
 OSPFv3, 440-441
delay, EIGRPv6 settings, 464-465
delay command, 269, 276, 462, 477
delivery headers, 184
DES (Data Encryption Standard), 180
description command, 334
designated ports (DPs)
 choosing, 24-25
determining, 54-55
explained, 19
 RSTP (Rapid Spanning Tree Protocol), 575-576
 strategies for DP exam questions, 55-56
designated routers (DRs), 205-206
determining
duplex issues, 77-78
root switches, 51-52
RPs (root ports), 52-54
switch interface speed, 76-78
DHCP (Dynamic Host Configuration Protocol)
 Relay, 140-141
 stateful DHCP, 424-425
 stateful DHCPv6, 413-414
dial access, 393-394
dialer pool command, 400
Diffusing Update Algorithm (DUAL), 246
digital subscriber line (DSL), 395-396
dir command, 541
discontiguous classful networks, 271-272
distance vector (DV) routing protocols
 explained, 233-234
 full update messages, 234-235
 route poisoning, 236-237
 split horizon, 235-236
DLCI (data link connection identifiers)
 explained, 342
 frame forwarding, 343-344
 Frame Relay, 338
 local DLCI, 342-343
DNS (Domain Name Service)
 name resolution, 123
troubleshooting
 in IPv4, 136-137
 in IPv6, 424
dns-server command, 136
Domain Name Service. See DNS
DPs (designated ports)
choosing, 24-25
determining, 54-55
explained, 19
RSTP (Rapid Spanning Tree Protocol),
575-576
strategies for DP exam questions, 55-56
DROthers, 206
DRs (dedicated routers), 221-222
DRs (designated routers), 205-206
DSL (digital subscriber line), 395-396
DSLAM (DSL access multiplexer), 395
DTE (data communications equipment),
337-338, 345
DUAL (Diffusing Update Algorithm), 246
duplex half command, 77
duplex mismatch, 77-78, 89-90
duplicate OSPF router IDs, finding,
295-296
DV (distance vector) routing protocols
explained, 233-234
full update messages, 234-235
route poisoning, 236-237
split horizon, 235-236
dynamic EtherChannels, configuring, 50

E

Echo Requests (ICMP), 127
dedicated ports, 576
EIGRP router-id command, 258,
462-463, 477
EIGRPv4 (Enhanced Interior Gateway
Routing Protocol version 4), 460
advantages of, 232
autosummarization
 discontiguous classful networks,
 271-272
 example of, 270-271
compared to EIGRPv6, 466-467
compared to other routing protocols,
232-233, 238
configuring
 basic configuration, 253-254
 feasible successors, 265
 maximum-paths, 267-269
 variance, 268
convergence, 265-266
explained, 244
query/reply process, 246-247
successors, 245-246, 265
development of, 231
discontiguous classful networks,
271-272
DUAL (Diffusing Update Algorithm), 246
explained, 239
feasible successors, 263-265
hello packets, 237-238
interfaces
 troubleshooting, 280-286
 working interfaces, 282-284
load balancing, 267-269
loop avoidance, 244
metric calculation, 269-270
metric components, 266-267
neighbors, 239-240
 troubleshooting, 289-292
 verification checks, 290-291
partial update messages, 237
route calculation
 bandwidth issues, 243
 example, 242-243
 FD (feasible distance), 244-245
 metric calculation, 241
 RD (reported distance), 244-245
self-assessment, 248-249, 274-275
Split Horizon issues, 595-597
successors, 262-263
topology table, 261-262
troubleshooting
 interfaces, 280-286
 neighbors, 289-292
 overview, 279-280
update messages, 240-241
variance, 268-269
verifying core features of, 255
 interfaces, 256-258
 IPv4 routing table, 259-260
 neighbor status, 258-259
wildcard masks, 255
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6)
bandwidth and delay settings, 464-465
basic configuration, 461
compared to EIGRPv4, 466-467
configuration commands, 462
configuration example, 462-464
explained, 461
interfaces, 467-469
IPv6 routes, 472-473
load balancing, 465
neighbors, 469-470
self-assessment, 475-476
Split Horizon issues, 595-597
timers, 466
topology database, 470-472
electing root switches via STP (Spanning Tree Protocol), 21-22
emulation, Ethernet, 389
encapsulation
 end-to-end, 378
 Frame Relay, 341-342, 356
encapsulation command, 138, 318, 334, 371
encapsulation frame-relay command, 353-355, 371, 383
encapsulation hdlc command, 318
encapsulation ppp command, 323-324
encryption
 encryption keys, 179
 IPsec, 179-180
end-to-end encapsulation, 378
Enhanced Interior Gateway Routing Protocol. See EIGRPv4; EIGRPv6
EoMPLS (Ethernet over MPLS), 389
equal-cost load balancing, 263
erase nvram command, 520, 525
erase startup-config command, 520, 525
erasing configuration files, 519-520
EtherChannel, 29-30
 configuring, 47-48
channel-group command options, 57-58
dynamic EtherChannel, 50
interface configuration settings, 58-59
manual EtherChannel, 48-49
troubleshooting, 56
EoMPLS (Ethernet over MPLS), 389
Ethernet WANs (wide area networks), 389-390
links, designated routers on, 205-206
PPPoE (PPP over Ethernet)
 configuring, 399-400
 explained, 398-399
eui-64 keyword, 416
exam advice
Cisco Certification Exam Tutorial, 546-547
exam-day advice, 548-549
Exam Review
 exam-taking tips, 553-554
 math-related skills, 549-550
 practice exams, 551-553
hands-on CLI skills, practicing, 556-557
other study tasks, 558
pre-exam suggestions, 548
Question Review, 554-556
time management, 547-548
Exam Review
 math-related skills, 549-550
 practice exams
 exams, 551-553
 exam-taking tips, 553-554
 Question Review, 554-556
exchanging LSAs with neighbors, 203-204
extended ping, 119-121
extended traceroute command, 126-127
extranet VPNs (virtual private networks), 178
failover, HSRP (Hot Standby Router Protocol), 161-162
FCS (Frame Check Sequence) field, 316
FD (feasible distance), 244-245
feasible successors (EIGRP), 245-246
 convergence via, 265-266
 creating/viewing, 265
 finding, 263-265
FHRP (First Hop Redundancy Protocol)
 benefits of, 159-160
 comparison of protocols, 590
 explained, 156-160
GLBP (Gateway Load Balancing Protocol)
 active virtual gateway (AVG), 163
 configuring, 167-169
 explained, 160, 163-164
 verifying, 167-169
HSRP (Hot Standby Router Protocol)
 configuring, 164-167
 explained, 160-161
 failover, 161-162
 influencing active router choice, 588-589
 load balancing, 162
 verifying, 164-167
need for network redundancy, 157-158
self-assessment, 170-172
single points of failure, 157-158
 VRRP (Virtual Router Redundancy Protocol), 160
filtering
 LAN switching, 79-82, 90-91
 packets with ACLs (access control lists), 151-152
finding
 duplicate OSPF router IDs, 295-296
 EIGRPv4 feasible successors, 263-265
 EIGRPv4 successors, 262-263
 Hello/dead timer mismatches, 296-297
First Hop Redundancy Protocol. See FHRP
Flash memory, upgrading IOS software images into, 505-507
floating static routes, 585
flows (network), 497
Forward Delay timers (STP), 26-28
forward routes, 127
forwarding
 broadcasts in VLAN 3, 97-98
 IP forwarding, 143-146
 LAN switches, 11-12, 71-72
 unicasts, 99-100
forwarding state (STP), 18-19
 DPs (designated ports)
 choosing, 24-25
 explained, 19
 reasons for, 20
 root switches
 electing, 21-22
 explained, 19
 RPs (root ports), 19
Frame Check Sequence (FCS) field, 316
Frame Relay, 336-388
 access links, 338
 Layer 1 issues, 370
 Layer 2 issues, 371
 addressing, 344
 AR (access rate), 338
 configuring
 address mapping, 357-361
 encapsulation, 356
 fully meshed networks with one IP subnet, 354-355
 LMI (Local Management Interface), 356
 multipoint subinterfaces, 366-368
 OSPF (Open Shortest Path First), 368-369
 planning configurations, 353-354
 point-to-point subinterfaces, 361-364
 self-assessment, 381-382
 verification, 364-365
 DCE (data communications equipment), 338
 DLCI (data link connection identifiers), 338
 explained, 342
 frame forwarding, 343-344
 local DLCI, 342-343
 DTE (data terminal equipment), 337-338, 345
 encapsulation and framing, 341-342
 Layer 3 addressing
 hybrid approach, 347-348
 one subnet per VC (virtual circuit), 345-346
single subnets containing all DTE, 345
LMI (Local Management Interface), 337-341
NBMA (nonbroadcast multiaccess) networks, 337-338
overview, 337-341
private WANs, 388
PVC (permanent virtual circuits), 338
 subinterface status, 377
 troubleshooting, 372-377
self-assessment, 349-350
SVC (switched virtual circuits), 338
troubleshooting, 369
 end-to-end encapsulation, 378
 Layer 1 issues on access links, 370
 Layer 2 issues on access links, 371
 mapping issues, 377-378
 mismatched subnet numbers, 379
 PVC (permanent virtual circuit) problems, 372-377
 self-assessment, 381-382
 suggested process, 369-370
VC (virtual circuits)
 explained, 337-340
 Layer 3 addressing, 345-346
frame-relay inverse-arp command, 383
frame-relay lmi-type ansi command, 356, 372
frame-relay lmi-type command, 341, 353, 356, 383
frame-relay map command, 354, 356, 361, 377, 383
full-mesh Frame Relay networks, 340
Full neighbor state (OSPF neighbors), 206
full update messages, 234-235
fully adjacent OSPFv2 neighbors, 206
fully meshed networks with one IP subnet, 354-355
gateways, active virtual gateway (AVG), 163
generic routing encapsulation tunnels.
 See GRE tunnels
GLBP (Gateway Load Balancing Protocol)
 active virtual gateway (AVG), 163
 comparing with other FHRPs (First Hop Redundancy Protocols), 590
 configuring, 167-169
 explained, 160, 163-164
 verifying, 167-169
 glbp group ip virtual-ip command, 167
GRE (generic routing encapsulation) tunnels
 configuring, 185-187
 explained, 181-182
 over unsecured network, 183-184
 routing over, 182-183
tunnel interfaces, 182-184
 verifying, 187-189
H
HDLC (High-level Data Link Control)
 leased-line WANs
 building WAN links, 315-316
 CSU/DSU, 315
 explained, 311
 HDLC configuration, 317-320
 layer 1 leased lines, 311-316
 layer 2 leased lines, 316-317
 leased line components, 312-314
 T-carrier system, 314
 overview, 113
Hello/dead timer mismatches, finding, 296-297
Hello Interval timer, 204
hello packets (EIGRP), 237-238
Hello timers (STP), 26-28
hexadecimal-to-binary conversion, 566
high availability campus network design, 159
High-Level Data Link Control. See HDLC
host IPv4 routing logic, 111-112
hostname command, 518
hostnames, pinging, 123-124
hosts
IPv4 routing, troubleshooting
 DNS problems, 136-137
 IP address settings, 137
 mismatched IPv4 settings, 133-134
 mismatched masks, 134-135
IPv6 hosts, configuring
 router address, 415-416
 stateful DHCPv6, 413-414
 stateful SLAAC (stateless address autoconfiguration), 414-415
 static routes, 416-417
 verifying connectivity, 417-420
Hot Standby Router Protocol. See HSRP
HSRP (Hot Standby Router Protocol)
 comparing with other FHRPs (First Hop Redundancy Protocols), 590
 configuring, 164-167
 explained, 160-161
 failover, 161-162
 influencing active router choice, 588-589
 load balancing, 162
 verifying, 164-167
ICMP (Internet Control Message Protocol), 115, 127
ICND2 practice exams, 551-552
identifying STP mode on Catalyst switches, 577-579
IDs
 BID (bridge ID), configuring, 39-40
 system ID extension, configuring, 39-40
IEEE 802.1d. See STP (Spanning Tree Protocol)
IEEE 802.1w. See RSTP (Rapid Spanning Tree Protocol)
ifconfig command, 417, 433
IFS (IOS File System), 520
ignoring incoming broadcast frame, 96-97
images (IOS)
 images per feature set combination, 528
 images per model/series, 527
universal images, 528
upgrading into Flash memory, 505-507
inferior hello (STP), 21
infinity, 236
Integrated Services Digital Network (ISDN), 393-394
interarea routes, 208
interface loopback command, 229
interface serial command, 363, 383
interface status codes for LAN switches, 74-75
interface tracking, 588-589
interface tunnel command, 184-186
interfaces
 EIGRPv4 interfaces, 595-597
 finding, 256-258
 troubleshooting, 280-286
 EIGRPv6 interfaces, 467-469, 595-597
 isolating (LAN switching), 73-78, 88-90
 cabling pinouts, 75
 interface status codes, 74-75
 notconnect state, 75
 OSPFv2 interfaces, 280-281, 286-288
 OSPFv3 interfaces
 troubleshooting, 443-444
 verifying, 443
Internal routers, 208
Internet Access Links, 392
Internet Control Message Protocol (ICMP), 115, 127
Internet Protocol. See IP
intra-area routes, 208
Inverse ARP, 360
IOS file management
 configuration files, 517-518
 copying, 519-520
 erasing, 519-520
 running-config, 517
 setup mode, 521
 startup-config, 517
IOS software
 boot sequence, 507-508
 configuration register, 509
 IOS image verification, 512-513
 OS selection process, 509-511
recovery if IOS does not load, 511
three-router operating systems, 505-509
password recovery
example, 515-517
explained, 513-515
self-assessment, 505, 523-524
IOS File System (IFS), 520
IOS packaging
explained, 527
images per feature set combination, 528
images per model/series, 527
universal images, 528
IOS software activation, 529-530
boot sequence, 507-508
configuration register, 509
IOS image verification, 512-513
OS selection process, 509-511
recovery if IOS does not load, 511
three-router operating systems, 508-509
Cisco License Manager (CLM), 530-531
images, upgrading into Flash memory, 505-507
manual activation
activation process, 531-533
adding permanent technology package license, 535-536
showing current license status, 533-534
right-to-use licenses, 536-538
self-assessment, 540
IP (Internet Protocol)
default router IP address settings
troubleshooting, 137
delivery headers, 184
IP forwarding
troubleshooting, 143-146
ip address command, 134, 150, 160, 185-186, 318
IP addressing
binary-to-hexadecimal conversion, 566
decimal-to-binary conversion, 563-565
hexadecimal-to-binary conversion, 566
IP ARP table, displaying, 588
ip domain-lookup command, 137
ip flow command, 497
ip flow egress command, 497
ip flow-export command, 497
ip flow-export destination command, 498
ip flow-export source command, 498
ip flow-export version command, 498
ip flow ingress command, 497
ip hello-interval eigrp command, 253, 301, 462
ip helper-address command, 140-141
ip hold-time eigrp command, 253, 276, 301, 462
ip mtu command, 450
ip name-server command, 137
ip ospf cost command, 223-225, 228, 458
ip ospf dead-interval command, 301
ip ospf hello-interval command, 301
ip ospf network point-to-multipoint command, 368
ip ospf subcommand, 592-593
ip route command, 215, 582-584
ip split-horizon eigrp asn command, 596
ipbase9, 530
ipconfig command, 417, 433
IPCP (IP Control Protocol), 321
IPsec VPNs (virtual private networks), 179-180
IPv4 routing
default router IP address settings, 137
delivery headers, 184
DV (distance vector) routing protocols explained, 233-234
full update messages, 234-235
route poisoning, 236-237
split horizon, 235-236
EIGRPv4 (Enhanced Interior Gateway Routing Protocol version 4)
advantages of, 232
autosummarization, 270-272
basic configuration, 253-254
compared to other routing protocols, 232-233, 238
convergence, 244-247, 265-266
development of, 231
discontiguous classful networks, 271-272
DUAL (Diffusing Update Algorithm), 246
explained, 239
feasible successors, 263-265
hello packets, 237-238
load balancing, 267-269
loop avoidance, 244
metric calculation, 269-270
metric components, 266-267
neighbors, 239-240
partial update messages, 237
route calculation, 241-245
self-assessment, 248-249, 274-275
successors, 262-263
topology table, viewing, 261-262
update messages, 240-241
variance, 268-269
verifying core features of, 255-260
wildcard masks, 255
FHRP (First Hop Redundancy Protocol).
See FHRP
IP forwarding, troubleshooting, 143, 144-146
normal routing behavior, predicting
data link headers, 114-115
host IPv4 routing logic, 111-112
IP routing from host to host, 113-114
IP routing logic on single router, 112-113
sample ARP process, 115
OSPFv2 (Open Shortest Path First version 2), 200
AD (administrative distance), 215-216
areas, 206-213
basic configuration, 216-217
compared to OSPFv3, 441-442
compared to other routing protocols, 232-233, 238
DRs (designated routers), 205-206
explained, 201-202
fully neighbors, 206
load balancing, 225
LSAs (link-state advertisements), 203-204, 209-213, 222
LSDB (link-state databases), 204-205
metrics, 224-225
multi-area configuration, 217-220
neighbors, 202-206
RID (router ID), 202
self-assessment, 227
single-area configuration, 218-219
SPF route calculation, 208, 214-215
verifying configuration, 220-223
OSPFv3 (Open Shortest Path First
version 3), 434
basic configuration, 435
compared to OSPFv2, 441-442
default routes, 440-441
interface cost, 439-440
interfaces, 443-444
IPv6 routes, 453-454
load balancing, 440
LSAs (link-state advertisements), 448-451
metrics, 451-453
multi-area configuration, 435-439
neighbors, 445-448
self-assessment, 456-457
single-area configuration, 436-438
problem isolation with ping command
explained, 115-117
hostnames and IP addresses, 123-124
LAN neighbors, testing, 121-122
longer routes, testing, 117-119
reverse routes, testing, 119-121
sample output, 116
WAN neighbors, testing, 122-123
problem isolation with traceroute command,
explained, 124-126
extended traceroute, 126-127
isolating problems to two routers, 127-129
sample output, 125
standard traceroute, 126
IPv4 routing protocol troubleshooting
 duplicate router IDs, 295-296
 EIGRP interfaces, 280-286
 EIGRP neighbors, 289-292
 Hello/dead timer mismatches, 296-297
 mismatched MTU settings, 299
 mismatched network types, 297-299
 OSPF area mismatches, 294
 OSPF interfaces, 280-281, 286-288
 OSPF neighbors, 289-290, 293-297
 overview, 279-280
 RIP-2, 232-233, 238
routing logic
 from host to host, 113-114
 on single router, 112-113
routing table, displaying, 259-260
static routes, configuring, 582-585
troubleshooting, 110, 132-133
ACLS (access control lists), 151-152, 585-588
DHCP Relay issues, 140-141
DNS problems, 136-137
IP address settings, 137
IP forwarding, 143-146
LAN issues, 141-142
mismatched IPv4 settings, 133-134
mismatched masks, 134-135
mismatched VLAN trunking configuration, 138-140
normal routing behavior, predicting, 111-115
with ping command, 115-124
router WAN interface status, 150-151
with show ip route command, 144-146
with traceroute command, 124-129
VLSM, 146-150
ipv6 address command, 415-416, 426-428, 432
ipv6 dhcp relay command, 425
ipv6 dhcp relay destination command, 432
ipv6 eigrp asn command, 461
ipv6 eigrp command, 463, 468, 477
ipv6 hello-interval eigrp command, 477
ipv6 hold-time eigrp command, 477
ipv6 ospf command, 432
ipv6 ospf cost command, 440
ipv6 ospf hello-interval command, 448
ipv6 router eigrp command, 463, 477
ipv6 router ospf command, 432
IPv6 routing
 EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6)
 bandwidth and delay settings, 464-465
 basic configuration, 460-461
 compared to EIGRPv4, 466-467
 configuration commands, 462
 configuration example, 462-464
 explained, 461
 interfaces, 467-469
 IPv6 routes, 472-473
 load balancing, 465
 neighbors, 469-470
 self-assessment, 475-476
 timers, 466
 topology database, 470-472
host configuration
 router address, 415-416
 SLAAC (stateless address autoconfiguration), 414-415
 stateful DHCPv6, 413-414
 static routes, 416-417
IOS packaging
 explained, 527
 images per feature set combination, 528
 images per model/series, 527
 universal images, 528
IOS software activation, 529-530
 Cisco License Manager (CLM), 530-531
 manual activation, 531-536
 right-to-use licenses, 536-538
 self-assessment, 540
NetFlow
 collector, 500
 configuring, 497-498
 explained, 495-497
 network flows, 497
 verifying, 498-499
LAN switching

SNMP (Simple Network Management Protocol)
 community strings, 490
 explained, 487-488
MIB (Management Information Base), 488-489
SNMP version 2c, 490-491
SNMP version 3, 491
traps, 488
subnetting, 411-413
Syslog (System Message Logging)
 configuring, 494-495
 explained, 492
 Syslog server, 495
 system message format, 493
 system message severity levels, 494
 verifying, 494-495
troubleshooting
 DNS issues, 424
 ping failures, 421-423
 SLAAC issues, 425-426
 stateful DHCP, 424-425
 traceroute failures, 427-429
unicast IPv6 addresses, 411-413
verifying connectivity
 from hosts, 417-418
 from routers, 419-420
ipv6 unicast-routing command, 415, 426, 432
ISDN (Integrated Services Digital Network), 393-394
isolating
IPv4 routing problems
 ping command, 115-124
 traceroute command, 124-129
LAN switching interface problems, 68-69, 73-78, 88-90
 cabling pinouts, 75
 interface status codes, 74-75
 notconnect state, 75
VLAN and trunking problems, 15, 82-86, 92-94

K-L

keepalive command, 383
keepalive failure, troubleshooting, 327

LAN neighbors, testing with ping, 121-122
LAN switching
 DPs (designated ports)
 choosing, 24-25
 explained, 19
 overview, 11
 root cost, 19
 root switches
 electing, 21-22
 explained, 19
 router LAN issues, troubleshooting, 141-142
 RPs (root ports)
 choosing, 23-24
 explained, 19
STP (Spanning Tree Protocol). See STP
switch verification, 12
 determining VLAN of frames, 13-15
 switch reactions to changes with STP, 26-28
 verifying trunks, 15
 viewing MAC address table, 12-13
troubleshooting, 64-65
 analyzing/predicting normal operation, 65-68
 ARP requests (broadcast), 95-98
 cabling pinouts, 75
 control plane analysis, 67-68
 data plane analysis, 66-67
 duplex issue, 77-78
 exam tips, 70
 example of, 91
 forwarding process overview, 11-12, 71-72
 interface status codes, 74
 isolate filtering/port security problems, 79-82, 90-91
 isolation of interface problems, 73-78, 88-90
 isolation of VLAN/trunking problems, 15, 82-86, 92-94
 network diagram confirmation via CDP, 72-73, 87-88
 notconnect state, 75
problem isolation, 68-69
R1 ARP Reply (unicast), forwarding path of, 98-101
root cause analysis, 69-70
switch interface speed and duplex, 76-77
switch interface speeds, 77-78
layer 1 leased lines, 311-316
building WAN links, 315-316
CSU/DSU, 315
physical components, 312-314
T-carrier system, 314-315
troubleshooting, 325-326
layer 2 leased lines, 316-317, 326
layer 3 leased lines, 329-330
LCP (Link Control Protocol), 321-323
Learning state (STP), 28
leased line WANs (wide area networks)
 HDLC (High-level Data Link Control)
 building WAN links, 315-316
 CSU/DSU, 315
 explained, 311
 HDLC configuration, 317-320
 layer 1 leased lines, 311-316
 layer 2 leased lines, 316-317
 leased line components, 312-314
 T-carrier system, 314
 PPP (Point-to-Point Protocol)
 authentication, 322-323
 CHAP (Challenge Handshake Authentication Protocol),
 324-325, 328-329
 configuring, 323-324
 explained, 320-321
 framing, 321
 LCP (Link Control Protocol), 321-322
 NCP (Network Control Protocols), 321
 self-assessment, 332-333
troubleshooting
 keepalive failure, 327
 layer 1 problems, 325-326
 layer 2 problems, 326
 layer 3 problems, 329-330
 PAP/CHAP authentication failure, 328-329
 leased lines, 387-388
 license boot module command, 537, 541
 license install command, 541
 licensing (IOS), 526
 IOS packaging
 images per feature set combination, 528
 images per model/series, 527
 universal images, 528
 IOS software activation, 529-530
 Cisco License Manager (CLM), 530-531
 manual activation, 531-536
 right-to-use licenses, 536-538
 license status, showing, 533-534
 permanent technology package license, adding, 535-536
 self-assessment, 540
 line status, 74
 Link Control Protocol (LCP), 321
 link-local addresses, 413
 link-state advertisements. See LSAs
 link-state databases (LSDB), 204-205
 link-state routing protocols, OSPFv2, 591-592
 Link-State Update (LSU), 204, 234
 link types, 576
 Listening state (STP), 28
 LMI (Local Management Interface), 337-341, 356
load balancing
 EIGRPv4 (Enhanced Interior Gateway Routing Protocol version 4), 267-269
 EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 465
 HSRP (Hot Standby Router Protocol), 162
 OSPFv2 (Open Shortest Path First version 2), 225
 OSPFv3 (Open Shortest Path First version 3), 440
 PSVT+ (Per-VLAN Spanning Tree Plus), 38
 local DLCI (data link connection identifiers), 342-343
 local loop, 393
Local Management Interface (LMI), 337-341, 356
logging buffered command, 494
logging console command, 494
logging with Syslog (System Message Logging)
configuring, 494-495
explained, 492
Syslog server, 495
system message format, 493
system message severity levels, 494
verifying, 494-495
Long-Term Evolution (LTE), 397
loop avoidance, 244
LSAs (link-state advertisements)
exchanging with neighbors, 203-204
explained, 209-210
in multi-area design, 212-213
network LSAs, 211-212
OSPFv3 LSAs
troubleshooting, 450-451
verifying, 448-450
router LSAs, 210
verifying, 222
LSDB (link-state databases), 204-205
LSUs (Link-State Update), 204, 234
LTE (Long-Term Evolution), 397

MAC address table
STP (Spanning Tree Protocol), 17
viewing, 12-13
maintaining OSPFv2 neighbors, 204-205
Management Information Base (MIB), 488-489
manual software activation, 531-533
adding permanent technology package license, 535-536
showing current license status, 533-534
mapping addresses (Frame Relay), 357-359
Inverse ARP, 360
static mapping, 360-361
troubleshooting, 377-378
math-related skills, 549-550
Max Age timers (STP), 26-28
maximum-paths command, 225, 229, 253, 267-269, 276, 440, 462, 465, 477
memory (Flash), upgrading IOS software images into, 505-507
message logging. See Syslog
metric calculation (EIGRP), 241-243
metrics
EIGRPv4 (Enhanced Interior Gateway Routing Protocol version 4), 266-270
OSPFv2 (Open Shortest Path First version 2)
 interface costs, 224
 reference bandwidth, 225
MetroE (Metropolitan Ethernet), 389
MIB (Management Information Base), 488-489
microseconds, 242
mismatched IPv4 settings, 133-134
mismatched masks, 134-135
mismatched MTU settings, 299
mismatched OSPF network types, 297-299
mismatched subnet numbers, 379
mobile phone 3G/4G access, 397-398
MPLS (Multiprotocol Label Switching), 390-391
mst parameter (spanning-tree mode command), 576
MTU settings, troubleshooting, 299
multi-area design, LSAs (link-state advertisements) in, 212-213
multi-area OSPFv2 configuration, 217-223
multi-area OSPFv3 configuration, 435-439
multiple frame transmission, 17
multipoint subinterfaces, Frame Relay configuration, 366-368
Multiprotocol Interconnect over Frame Relay, 342
Multiprotocol Label Switching (MPLS), 390-391
name resolution (DNS), 123
NBMA (nonbroadcast multiaccess) networks, 337-338
NDP (Neighbor Discovery Protocol), 413
neighbors
EIGRPv4 neighbors, 239-240
displaying status of, 258-259
troubleshooting, 289-292
verification checks, 290-291
EIGRPv6 neighbors, 469-470
OSPFv2 neighbors
adjacent neighbors, 206
area mismatches, 294
duplicate router IDs, 295-296
exchanging LSAs (link-state advertisements) with neighbors, 203-204
Hello/dead timer mismatches, 296-297
forming neighbor relationships, 202-203
fully adjacent neighbors, 206
LSDB (link-state databases), 204-205
maintaining, 204-205
states, 206
troubleshooting, 289-290, 293-297
OSPFv3 neighbors
troubleshooting, 446-448
verifying, 445-446
NetFlow
collector, 500
configuring, 497-498
explained, 495-497
network flows, 497
verifying, 498-499
netsh interface ipv6 show neighbors command, 433
network area command, 217, 435
network command, 228, 253-255, 276, 280, 458, 461-462, 592
network diagrams, confirming via CDP (LAN switching), 72-73, 87-88
network flows, 497
network LSAs (link-state advertisements), 211-212
network management
configuration files, 517-518
copying, 519-520
erasing, 519-520
running-config, 517
setup mode, 521
startup-config, 517
IOS software
boot sequence, 507-513
upgrading images into Flash memory, 505-507
NetFlow
collector, 500
configuring, 497-498
explained, 495-497
network flows, 497
verifying, 498-499
password recovery
example, 515-517
explained, 513-515
self-assessment, 502-503
SNMP (Simple Network Management Protocol)
community strings, 490
explained, 487-488
MIB (Management Information Base), 488-489
SNMP version 2c, 490-491
SNMP version 3, 491
traps, 488
Syslog (System Message Logging)
configuring, 494-495
explained, 492
Syslog server, 495
system message format, 493
system message severity levels, 494
verifying, 494-495
Network Management Station (NMS), 487
network types (OSPF), troubleshooting, 297-299
NMS (Network Management Station), 487
no auto-summary command, 272, 276
Open Shortest Path First. See OSPFv2; OSPFv3

operating systems
selection process, 509-511
three-router operating systems, 508-509

OSPF routes, 585

OSPFv2 (Open Shortest Path First version 2), 200

AD (administrative distance), 215-216
areas
 design advantages, 209
design rules, 207
design terminology, 207-208explained, 206-207
intra-area topology, 210-212
multi-area design, 212-213
reducing SPF calculation time with, 208
single-area OSPF, 206

basic configuration, 216-217

compared to OSPFv3, 441-442
compared to other routing protocols, 232-233, 238
configuring, 592-595
default routes, 591-592
DRs (designated routers), 205-206
explained, 201-202
Frame Relay configuration, 368-369
load balancing, 225

LSAs (link-state advertisements)
exchanging with neighbors, 203-204explained, 209-210
in multi-area design, 212-213
network LSAs, 211-212
router LSAs, 210
verifying, 222

LSDB (link-state databases), 204-205
metrics
 interface cost, 224
 reference bandwidth, 225

multi-area configuration, 217-220
neighbors
 adjacent neighbors, 206
 area mismatches, 294
duplicate router IDs, 295-296
exchanging LSAs with neighbors, 203-204
forming neighbor relationships, 202-203
Hello/dead timer mismatches, 296-297
maintaining, 204-205
states, 206
troubleshooting, 293-297

RID (router ID), 202
self-assessment, 227

single-area configuration, 218-219
SPF route calculation
 calculating best routes, 214-215
 reducing calculation time with areas, 208

troubleshooting
 area mismatches, 294
duplicate router IDs, 295-296
Hello/dead timer mismatches, 296-297
interfaces, 280-281, 286-288
mismatched MTU settings, 299
mismatched network types, 297-299
neighbors, 289-297
network types, 297-299
overview, 279-280
verifying configuration, 220-223
areas, 221
DRs (dedicated routers) and BDRs (backup DRs), 221-222
LSAs (link-state advertisements), 222
OSPF routes, 223
OSPFv3 (Open Shortest Path First Version 3), 434
basic configuration, 435
compared to OSPFv2, 441-442
default routes, 440-441
interfaces, 443
cost, 439-440
troubleshooting, 443-444
verifying, 443
IPv6 routes, troubleshooting, 453-454
load balancing, 440
LSAs (link-state advertisements)
troubleshooting, 450-451
verifying, 448-450
metrics, verifying, 451-453
multi-area configuration, 435-439
neighbors
troubleshooting, 446-448
verifying, 445-446
self-assessment, 456-457
single-area configuration, 436-438
overlapping subnets
configuring, 149-150
with VLSM, 148-149
without VLSM, 147-148

P
packaging (IOS)
explained, 527
images per feature set combination, 528
images per model/series, 527
universal images, 528
packet filtering with ACLs (access control lists), 151-152
PAP/CHAP authentication failure, 328-329
partial-mesh networks, 340
partial update messages, 237
passive-interface command, 229, 257, 277, 280-281, 285, 301, 444
passive-interface default command, 229, 277
password recovery
example, 515-517
explained, 513-515
periodic update messages, 234
permanent keyword (ip route command), 583-584
permanent virtual circuits (PVC), 338, 372-377
Per-VLAN Spanning Tree Plus (PVST+), 38
physical subinterfaces, EIGRP on, 595-597
PID (product ID), 531
ping command, 418-419, 432-433
extended ping
LAN neighbors, testing, 122
reverse routes, testing, 119-121
IPv4 testing
explained, 115-117
with hostnames and IP addresses, 123-124
LAN neighbors, 121-122
longer routes, 117-119
reverse routes, 119-121
sample output, 116
WAN neighbors, 122-123
PPP (Point-to-Point Protocol) 637

troubleshooting in IPv4
neighboring devices over Ethernet, 588
over serial links with ACLs (access control lists), 585-588
troubleshooting in IPv6, 421-423
ping6 command, 418, 433
pinouts (cabling) for LAN switches, 75
point of presence (PoP), 393
point-to-multipoint subinterfaces, EIGRP on, 595-597
point-to-point edge ports, 576
point-to-point links, 576
point-to-point ports, 576
Point-to-Point Protocol. See PPP
point-to-point subinterfaces
configuring, 361-364
EIGRP on, 595-597
point-to-point WANs (wide area networks)
HDLC (High-level Data Link Control)
building WAN links, 315-316
CSU/DSU, 315
explained, 311
HDLC configuration, 317-320
layer 1 leased lines, 311-316
layer 2 leased lines, 316-317
leased line components, 312-314
T-carrier system, 314
PPP (Point-to-Point Protocol)
authentication, 322-323
CHAP (Challenge Handshake Authentication Protocol), 324-329
configuring, 323-324
explained, 320-321
framing, 321
LCP (Link Control Protocol), 321-322
NCP (Network Control Protocols), 321
troubleshooting
delay failure, 327
layer 1 problems, 325-326
layer 2 problems, 326
layer 3 problems, 329-330
PAP/CHAP authentication failure, 328-329
framing, 321
LCP (Link Control Protocol), 321-322
NCP (Network Control Protocols), 321
PPPoE (PPP over Ethernet)
configuring, 399-400
explained, 398-399
pppoeg-client command, 400
practice exams, 551-553
exam-taking tips, 553-554
Question Review, 554-556
predicting normal IPv4 routing behavior
data link headers, 114-115
host IPv4 routing logic, 111-112
IP routing from host to host, 113-114
IP routing logic on single router, 112-113
sample ARP process, 115
pre-exam suggestions (Cisco Certification Exam), 548
PRI (Primary Rate Interface), 394
Primary Rate Interface (PRI), 394
priority of switches, configuring, 45-46
private WANs (wide area networks)
explained, 387
Frame Relay, 388
leased lines, 387-388
problem isolation
IPv4 routing problems
ping command, 115-124
trace route command, 124-129
LAN switching, 68-69
product ID (PID), 531
protocol status, 74
protocols. See specific protocols
psvt parameter (spanning-tree mode command), 576
public WANs (wide area networks)
3G/4G mobile phone access, 397-398
Cable Internet, 396
dial access with modems and ISDN, 393-394
DSL (digital subscriber line), 395-396
Internet Access Links, 392
PPPoE (PPP over Ethernet)
configuring, 399-400
explained, 398-399
PVC (permanent virtual circuits)
Frame Relay, 338
status codes, 376
subinterface status, 377
troubleshooting in Frame Relay, 372-377
pvst parameter (spanning-tree mode command), 577
PVST+ (Per-VLAN Spanning Tree Plus), 38
query/reply process (EIGRP), 246-247
Question Review, 554-556
question types (Cisco Certification Exam), 546-547
Rapid Spanning Tree Protocol. See RSTP (Rapid Spanning Tree Protocol)
rapid-pvst parameter (spanning-tree mode command), 579
RD (reported distance), 244-245
read-only (RO) community strings, 490
read-write (RW) community strings, 490
recovering passwords
example, 515-517
explained, 513-515
recovery if IOS does not load, 511
redundancy. See FHRP (First Hop Redundancy Protocol)
reference bandwidth, 224-225
Relay (DHCP), troubleshooting, 140-141
releases, 527
Reliable Transport Protocol (RTP), 240
reload command, 519, 525
remote-access VPNs (virtual private networks), 178
replies (ARP), forwarding path of, 98-101
reported distance (RD), 244-245
requests
ARP requests (broadcast), forwarding path of, 95-98
ICMP Echo Requests, 127
resetting passwords
example, 515-517
explained, 514-515
reverse routes, 127
RID (router ID), 202
right-to-use licenses, 536-538
RIP steady-state operations, 234-235
RIP-2, 232-233, 238
RO (read-only) community strings, 490
ROAS (Router on a Stick), 138-140
ROMMON mode, 508, 514-515
root cause analysis, 69-70
root cost, 19
root ports (RPs)
 - choosing, 23-24
 - determining, 52
 - explained, 19
 - RSTP (Rapid Spanning Tree Protocol), 573-574
 - STP tiebreakers when choosing RP, 53-54
 - strategies for RP exam questions, 54
root switches
 - determining, 51-52
 - electing via STP, 21-22
route calculation (EIGRPv4)
 - bandwidth issues, 243
 - example, 242-243
 - FD (feasible distance), 244-245
 - metric calculation, 241
 - RD (reported distance), 244-245
route poisoning, 236-237
route redistribution, 215
router eigrp command, 253-254, 276, 286, 462
router ID (RID), 202
router-id command, 202, 216, 229, 435-437, 458
router LSAs (link-state advertisements), 210
Router on a Stick (ROAS), 138-140
router ospf command, 216, 228, 286, 435, 458
routers
 - active virtual gateway (AVG), 163
 - address configuration, 415-416
 - clock speed, 316-317
 - FHRP (First Hop Redundancy Protocol)
 - See FHRP
 - for VPNS (virtual private networks), 179
routing. See IPv4 routing; IPv6 routing
routing protocols, OSPFv2, 591-592
routing table (IPv4), displaying, 259-260
RPs (root ports)
 - choosing, 23-24
 - determining, 52
 - explained, 19
 - RSTP (Rapid Spanning Tree Protocol), 573-574
 - STP tiebreakers when choosing RP, 53-54
 - strategies for RP exam questions, 54
RSTP (Rapid Spanning Tree Protocol), 29-31, 572-573
 - alternate (root) ports, 573-574
 - backup (designated) ports, 575-576
 - capabilities, 571-572
 - configuring
 - identifying STP mode on Catalyst switches, 577-579
 - port roles, 579-580
 - port states, 574-575, 580
 - port types, 576, 581
 - link types, 575
 - point-to-point ports, 576
 - shared ports, 576
RTP (Reliable Transport Protocol), 240
running-config, 517
RW (read-write) community strings, 490
RxBoot operating system, 508

scalability
OSPfv2 with areas
 - design advantages, 209
 - design rules, 207
 - design terminology, 207-208
 - explained, 206-207
 - intra-area topology, 210-212
 - multi-area design, 212-213
 - reducing SPF calculation time with, 208
 - single-area OSPF, 206
VPNs (virtual private networks), 179
Secure Shell (SSH), 115
Secure Socket Layer (SSL) VPNS, 181
security
 - port security, 79-82, 90-91
 - VPNS (virtual private networks), 177
securityk9, 530
self-assessments
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 475-476
FHRP (First Hop Redundancy Protocol), 170-172
Frame Relay, 349-350, 381-382
IOS file management, 505, 523-524
IOS licensing, 540
leased-line WANs, 332-333
network management, 502-503
OSPFv2 (Open Shortest Path First version 2), 227
OSPFv3 (Open Shortest Path First version 3), 456-457
STP (Spanning Tree Protocol), 32-34, 60-61
VPNs (virtual private networks), 190-191
WAN (wide area network) technologies, 402
self ping, 586-587
serial cables, 313
serial links, troubleshooting, 325
ACLs (access control lists), 585-588
keepalive failure, 327
layer 1 problems, 325-326
layer 2 problems, 326
layer 3 problems, 329-330
PAP/CHAP authentication failure, 328-329
serial number (SN), 531
servers, Syslog, 495
service providers, 312
session keys, 180
setup command, 521, 525
setup mode, 521
severity levels (Syslog), 494
shared keys, 180
shared ports, 576
shared session keys, 180
show access-lists command, 152
show arp command, 137
show cdp command, 73
show cdp entry command, 73, 87
show cdp neighbors command, 73, 87
show cdp neighbors detail command, 73
show command, 92, 463, 577
show controllers command, 319
show controllers serial command, 318, 335
show etherchannel command, 48, 63
show etherchannel summary command, 58
show flash command, 507, 525
show frame-relay lmi command, 371-372, 383
show frame-relay map command, 359-360, 365, 368, 375, 378, 384
show frame-relay pvc command, 359, 365, 374-376, 383
show glbp brief command, 167-168
show glbp command, 169
show interface switchport command, 83-85
show interfaces command, 74-78, 89, 224, 241, 269, 301, 324, 334, 379, 383-384
show interfaces description command, 74, 142-143, 301, 320
show interfaces status command, 13-15, 74-77, 88
show interfaces trunk command, 15, 84
show interfaces tunnel command, 187
show ip access-lists command, 152
show ip access-lists summary command, 499
show ip access-lists detail command, 257, 287
show ip eigrp interfaces command, 256, 277, 280-286, 301
show ip eigrp interfaces detail command, 256, 277
show ip eigrp neighbors command, 258, 277, 290, 301
show ip eigrp topology all-links command, 265
show ip eigrp topology command, 241, 261-266, 277
show ip flow export command, 499
show ip flow interface command, 499
show ip interface brief command, 187, 288, 320, 334, 379, 384
show ip interface command, 151
show ip interfaces command, 151-152
show ip ospf command, 229, 301, 458
show ip ospf interface command, 594
show ip ospf interface brief command, 287
show ip ospf database command, 209, 222, 229, 459
show ip ospf interface brief command, 221, 229, 281, 286, 301, 458
show ip ospf interface command, 221-222, 229, 296, 301, 459
show ip ospf neighbor command, 202-203, 206, 222, 229, 293, 301, 459
show ip protocols command, 221, 229, 256-259, 277, 280, 282-288, 291, 301, 459, 593
show ip route command, 144-145, 188, 216, 229, 260, 271, 277, 459, 465, 583, 585
command output, 145-146
finding best route with, 145
overlapping routes, 144
show ip route eigrp command, 259-260, 284, 301
show ip route ospf command, 144, 229, 301, 459
show ip route | section command, 277
show ip route static command, 583
ship ip route subnet command, 585
show ipv6 eigrp interfaces command, 467-468, 477
show ipv6 eigrp interfaces detail command, 478
show ipv6 eigrp neighbors command, 469-470, 478
show ipv6 eigrp topology command, 471, 478
show ipv6 eigrp topology | section command, 478
show ipv6 interface command, 429, 432
show ipv6 neighbors command, 420, 432
show ipv6 ospf command, 432, 453
show ipv6 ospf database command, 432
show ipv6 ospf interface brief command, 432, 443-444, 453
show ipv6 ospf interface command, 443-444, 448
show ipv6 ospf neighbor command, 432, 445-447, 451
show ipv6 protocols command, 432, 443, 468-470, 478
show ipv6 route command, 432, 465, 478
show ipv6 route eigrp command, 478
show ipv6 route ospf command, 452
show ipv6 route | section command, 452
show ipv6 routers command, 432
show license command, 534, 537
show license feature command, 534, 541
show license udi command, 531-532, 541
show logging command, 494-495
show mac address-table command, 13, 83, 100
show mac address-table dynamic command, 12, 83, 100
show port-security command, 90
show port-security interface command, 79-81
show running-config command, 47, 152, 256, 318, 443, 518, 525
show spanning-tree bridge command, 46, 63
show spanning-tree command, 42, 49-56, 63, 581
show spanning-tree interface command, 63
show spanning-tree root command, 42, 46, 51-52, 63
show spanning-tree vlan command, 41-42, 51, 63, 84, 95, 579-580
show standby brief command, 165-166
show standby command, 166-167
show startup-config command, 518
show version command, 512-513, 534-536, 541
show vlan brief command, 14, 83
show vlan command, 14, 83
show vlan id command, 83
shutdown command, 59, 81, 91, 334, 477
Simple Network Management Protocol. See SNMP
single-area OSPF (Open Shortest Path First), 206
single-area OSPFv2 configuration, 218-219
single-area OSPFv3 configuration, 436-438
single points of failure, 157-158
site-to-site VPNs (virtual private networks), 177-178
SLAAC (stateless address autoconfiguration), 411, 414-415, 425-426
SN (serial number), 531
SNMP (Simple Network Management Protocol)
community strings, 490 explained, 487-488
MIB (Management Information Base), 488-489
SNMP version 2c, 490-491
SNMP version 3, 491
traps, 488
snmp-server community command, 490
snmp-server contact command, 490
snmp-server location command, 490
SNMPGET utility, 489
software activation (IOS), 529-530
Cisco License Manager (CLM), 530-531
manual activation
activation process, 531-534
adding permanent technology
package license, 535-536
right-to-use licenses, 536-538
self-assessment, 540
spanning tree algorithm (STA), 19
Spanning Tree Protocol. See STP
spanning-tree bpduguard default
command, 47
spanning-tree bpduguard disable
command, 47, 63
spanning-tree bpduguard enable
command, 46-47, 63
spanning-tree cost command, 56
spanning-tree mode command, 62, 577, 580
spanning-tree mode mst command, 38
spanning-tree mode pvst command, 38, 577
spanning-tree mode rapid-pvst command, 38, 579
spanning-tree portfast bpduguard default
command, 63
spanning-tree portfast command, 46-47, 63
spanning-tree portfast default command, 47, 63
spanning-tree portfast disable command, 47, 63
spanning-tree vlan vlan-id priority value
command, 45
spanning-tree vlan vlan_id priority x
command, 39, 62
spanning-tree vlan vlan-id root primary
command, 45
spanning-tree vlan vlan-id root secondary
command, 45
spanning-tree vlan vlan-number port-
priority priority command, 62
spanning-tree vlan vlan-number root
secondary command, 62
spanning-tree vlan x cost command, 40, 43-44, 62
speed command, 77
SPF route calculation
calculating best routes, 214-215
reducing calculation time with areas, 208
split horizon, 235-236, 595-597
SSH (Secure Shell), 115
SSL (Secure Socket Layer) VPNs, 181
STA (spanning tree algorithm), 19
standby command, 164
startup-config, 517
stateful DHCPv6, 413-414, 424-425
stateless address autoconfiguration
(SLAAC), 411, 414-415, 425-426
states of OSPFv2 neighbors, 206
states (port), 574-575, 580
static address mapping, 360-361
static router configuration (IPv6), 416-417
static routes, configuring, 582-583
with competing routes, 584-585
with no competing routes, 583
steady-state networks (STP), 26
steady-state operations (RIP), 234-235
STP (Spanning Tree Protocol), 10, 36
BID (bridge ID), 20
blocking state, 18-20
BPDUs (bridge protocol data units), 20-21
BPDUs Guard feature, 30-31
broadcast storms, 16-17
configuring
BID (bridge ID), 39-40
BPDUs Guard, 46-47
defaults and configuration options, 40
EtherChannel, 47-50
per-VLAN configuration settings, 38-39
per-VLAN costs, 40
port costs, 44
PortFast, 46-47
STP mode, 37-38
STP port costs, 43-45
switch priority, 44-46
system ID extension, 39-40
convergence, 19, 28
delays, 28
troubleshooting, 56
DPs (designated ports)
choosing, 24-25
determining, 54-55
explained, 19
strategies for DP exam questions, 55-56
EtherChannel, 29-30
explained, 15-16
forwarding state, 18-19
reasons for, 20
root switches, 19-22
interface state changes, 28-29
Learning state, 28
Listening state, 28
MAC table instability, 17
multiple frame transmission, 17
need for, 16-17
port costs, 25-26
PortFast, 30
PSVT+ (Per-VLAN Spanning Tree Plus), 38
root switches
determining, 51-52
electing, 21-22
RPs (root ports)
choosing, 23-24
determining, 52
explained, 19
STP tiebreakers when choosing RP, 53-54
strategies for RP exam questions, 54
RSTP (Rapid Spanning Tree Protocol).
See RSTP
self-assessment, 32-34, 60-61
STA (spanning tree algorithm), 19
state comparison table, 28
steady-state networks, 26
timers, 26-28
topology
influencing with configuration changes, 25-26
interface state changes, 28-29
reacting to state changes that affect STP topology, 26
simple STP tree, 18-19
switch reactions to changes with STP, 26-28
troubleshooting, 51
cconvergence, 56
DPs (designated ports), 54-56
EtherChannel, 56-59
root switches, 51-52
RPs (root ports), 52-54
verifying default operation, 42
verifying STP operation, 40-43
subinterfaces, 346
multipoint subinterfaces, 366-368
point-to-point subinterfaces, configuring, 361-364
subnet masks, troubleshooting, 134-135
subnets, 549-550
Frame Relay networks
fully meshed networks with one IP subnet, 354-355
hybrid Layer 3 addressing, 347-348
one subnet containing all Frame Relay DTEs, 345
one subnet per VC, 345-346
IPv6, 411-413
mismatched masks, troubleshooting, 134-135
mismatched subnet numbers, troubleshooting, 379
overlapping subnets
configuring, 149-150
with VLSM, 148-149
without VLSM, 147-148
successors (EIGRP), 245-246
 feasible successors, 265
 finding, 262-263
superior hello (STP), 21
SVC (switched virtual circuits), 338
switch priority, configuring, 45-46
switch verification (LAN)
 determining VLAN of frames, 13-15
 verifying trunks, 15
 viewing MAC address table, 12-13
switchport access vlan command, 83, 92, 140
switchport mode access command, 82, 140
switchport mode trunk command, 82, 139
switchport port-security command, 82
switchport port-security mac-address command, 82, 100
switchport port-security mac-address sticky command, 82
switchport port-security violation command, 79, 82
switchport trunk allowed vlan command, 84
switchport trunk mode command, 85
switchport trunk native vlan command, 139
Syslog (System Message Logging)
 configuring, 494-495
 explained, 492
 Syslog server, 495
 system message format, 493
 system message severity levels, 494
 verifying, 494-495
system ID extension, configuring, 39-40
System Message Logging. See Syslog

T

T-carrier system, 314
tables, MAC address tables, 12-13, 17
TDM (time-division multiplexing), 314
tens-of-microseconds, 242
testing IPv4 routing with ping command
 with hostnames and IP addresses, 123-124
 LAN neighbors, 121-122
 longer routes, 117-119
 reverse routes, 119-121
 WAN neighbors, 122-123
time burners, 547
time-division multiplexing (TDM), 314
time management (Cisco Certification Exam), 547-548
Time To Live (TTL), 125
Time-to-Live Exceeded (TTL Exceeded), 125
timers
 Dead Interval, 204
 EIGRPv6, 466
 Hello/dead timer mismatches, 296-297
 Hello Interval, 204
topology table
 EIGRPv4
 convergence, 265-266
 feasible successor routes, 263-265
 successor routes, 262-263
 viewing, 261-262
 EIGRPv6, 470-472
traceroute command, 124, 418-419, 432-433
 explained, 124-126
 extended traceroute, 126-127
 GRE (generic routing encapsulation) tunnels, verifying, 188
 isolating problems to two routers, 127-129
 sample output, 125
 standard traceroute, 126
 troubleshooting in IPv6, 427-429
traceroute6 command, 433
traps (SNMP), 488
Triple DES (3DES), 180
troubleshooting
 CHAP (Challenge Handshake Authentication Protocol), 328-329
 EIGRPv4 (Enhanced Interior Gateway Routing Protocol version 4)
 interfaces, 280-286
 neighbors, 289-292
 overview, 279-280
EtherChannel, 56
 channel-group command options, 57-58
 interface configuration settings, 58-59
Frame Relay, 369
 end-to-end encapsulation, 378
 Layer 1 issues on access links, 370
 Layer 2 issues on access links, 371
 mapping issues, 377-378
 mismatched subnet numbers, 379
 PVC (permanent virtual circuit) problems, 372-377
 self-assessment, 381-382
 suggested process, 369-370
IPv4 routing, 110, 132-133
 ACLs (access control lists), 151-152, 585-588
 DHCP Relay issues, 140-141
 DNS problems, 136-137
 IP address settings, 137
 IP forwarding, 143-146
 LAN issues, 141-142
 mismatched IPv4 settings, 133-134
 mismatched masks, 134-135
 mismatched VLAN trunking configuration, 138-140
 normal routing behavior, predicting, 111-115
 with ping command, 115-124
 router WAN interface status, 150-151
 with show ip route command, 144-146
 with traceroute command, 124-129
 VLSM, 146-150
IPv6 routing, 421
 DNS issues, 424
 ping failures, 421-423
 SLAAC issues, 425-426
 stateful DHCP, 424-425
 traceroute failures, 427-429
LAN switching, 64-65
 analyzing/predicting normal operation, 65-68
 ARP Reply (unicast), forwarding path of, 98-101
 ARP requests (broadcast), forwarding path of, 95-98
 cabling pinouts, 75
 control plane analysis, 67-68
 data plane analysis, 66-67
 duplex issues, 77-78
 exam tips, 70
 example of, 91
 forwarding process overview, 11-12, 71-72
 interface status codes, 74
 isolate filtering/port security problems, 79-82, 90-91
 isolation of interface problems, 73-78, 88-90
 isolation of VLAN/trunking problems, 15, 82-86, 92-94
 network diagram confirmation via CDP, 72-73, 87-88
 notconnect state, 75
 problem isolation, 68-69
 root cause analysis, 69-70
 switch interface speed and duplex, 76-77
 switch interface speeds, 77-78
OSPFv2 (Open Shortest Path First version 2)
 area mismatches, 294
 duplicate router IDs, 295-296
 Hello/dead timer mismatches, 296-297
 interfaces, 280-281, 286-288
 mismatched MTU settings, 299
 mismatched network types, 297-299
 neighbors, 289-297
 overview, 279-280
OSPFv3 (Open Shortest Path First version 3)
 interfaces, 443-444
 IPv6 routes, 453-454
 LSAs (link-state advertisements), 450-451
 neighbors, 446-448
 serial links
 keepalive failure, 327
 layer 1 problems, 325-326
layer 2 problems, 326
layer 3 problems, 329-330
PAP/CHAP authentication failure, 328-329
STP (Spanning Tree Protocol), 51
 convergence, 56
 DPs (designated ports), 54-56
 EtherChannel, 56-59
 root switches, 51-52
 RPs (root ports), 52-54
VLSM, 146
 overlapping subnets, 148-150
 recognizing when VLSM is used, 147
trunking
 mismatched VLAN trunking configuration, 138-140
 trunking problems, isolating, 15, 82-86, 92-94
 verifying, 15, 93-94
TTL (Time To Live), 125
TTL (Time-To-Live) Exceeded, 125
tunnel destination command, 186, 192
tunnel interfaces, 182-184
tunnel mode gre command, 192
tunnel source command, 186, 192
tunnels
 explained, 178
 GRE (generic routing encapsulation) tunnels
 configuring, 185-187
 explained, 181-182
 over unsecured network, 183-184
 routing over, 182-183
 tunnel interfaces, 182-184
 verifying, 187-189
 VPN tunnels, 177-178
Two-way neighbor state (OSPF neighbors), 206
unicast IPv6 addresses, 411-413
unicasts, forwarding, 99-100
unique device identifier (UDI), 531
universal images
 explained, 528
 IOS software activation, 529-530
 Cisco License Manager (CLM), 530-531
 manual activation, 531-536
 right-to-use licenses, 536-538
unsecured networks, GRE (generic routing encapsulation) tunnels, 183-184
update messages (EIGRP), 240-241
upgrading images into Flash memory, 505-507
username command, 334
V
 variance, 268-269
 variance command, 253, 268-269, 276, 462, 465, 477
VC (virtual circuits)
 CIR (committed information rate), 338
 explained, 337-340, 345-346
 verifying
 EIGRPv4 core features, 255
 interfaces, 256-258
 IPv4 routing table, 259-260
 neighbor status, 258-259
 neighbors, 290-291
 Frame Relay configurations, 364-365
 GLBP (Gateway Load Balancing Protocol), 167-169
 GRE (generic routing encapsulation) tunnels, 187-189
 HSRP (Hot Standby Router Protocol), 164-167
 IOS images, 512-513
 IPv6 connectivity
 from hosts, 417-418
 from routers, 419-420
 LAN switches
 determining VLAN of frames, 13-15
 verifying trunks, 15
 viewing MAC address table, 12-13
U
 uck9, 530
 UDI (unique device identifier), 531
 undebug all command, 302
 unequal-cost load balancing, 268
NetFlow, 498-499
OSPFv2 (Open Shortest Path First version 2), 220-223
areas, 221
configuration, 593-594
DRs (dedicated routers) and BDRs (backup DRs), 221-222
LSAs (link-state advertisements), 222
OSPF routes, 223
OSPFv3 (Open Shortest Path First version 3)
interfaces, 443
LSAs (link-state advertisements), 448-450
metrics, 451-453
neighbors, 445-446
STP (Spanning Tree Protocol) operation, 40-43
Syslog (System Message Logging), 494-495
trunking and VLAN 3, 93-94
very small aperture terminal (VSAT), 391
virtual circuits (VC)
explained, 337-340
Layer 3 addressing, 345-346
Virtual Private LAN Service (VPLS), 389
virtual private networks. See VPNs
Virtual Router Redundancy Protocol (VRRP), 160
VLANs
access interface VLAN assignments, checking, 92
active VLANs, checking for, 92-93
broadcast forwarding, 97-98
determining VLAN of frames, 13-15
isolating VLAN and trunking problems, 15, 82-86, 92-94
STP (Spanning Tree Protocol) configuration
BID (bridge ID), 39-40
per-VLAN configuration settings, 38-39
per-VLAN costs, 40
system ID extension, 39-40
trunking
mismatched VLAN trunking configuration, 138-140
verifying, 93-94
VLSM, troubleshooting, 146
overlapping subnets, 148-150
recognizing when VLSM is used, 147
VPLS (Virtual Private LAN Service), 389
VPNs (virtual private networks)
ASA (Adaptive Security Appliances), 179
clients, 179
explained, 176
extranet VPNs, 178
intranet VPNs, 178
IPsec VPNs, 179-180
remote-access VPNs, 178
routers, 179
scalability, 179
security, 177
self-assessment, 190-191
site-to-site VPNs, 177
SSL VPNs, 181
tunnels, 177
VPN tunnels, 177-178
VRRP (Virtual Router Redundancy Protocol), 160, 590
VSAT (very small aperture terminal), 391
W-A-B-C
cable management, 11, 306
Cisco Systems, 180
D-H-I
Frame Relay, 315
HDLC (High-level Data Link Control), 315
Layer 3 addressing, 346
Layer 3 routing, 346
Layer 4 traffic, 346
Link Layer, 346
LLC, 346
management, 11, 306
OSPFv2 (Open Shortest Path First version 2), 221
OSPFv3 (Open Shortest Path First version 3), 443
overlapping subnets, 148-150
recognized when VLSM is used, 147
WAN interface cards (WICs), 313
WANs (wide area networks)
Frame Relay, See Frame Relay
HDLC (High-level Data Link Control), 315
CSU/DSU, 315
explained, 311
HDLC configuration, 317-320
layer 1 leased lines, 311-316
layer 2 leased lines, 316-317
leased line components, 312-314
self-assessment, 332-333
T-carrier system, 314
neighbors, testing with ping, 122-123
PPP (Point-to-Point Protocol)
authentication, 322-323
CHAP (Challenge Handshake Authentication Protocol),
configuring, 323-324
explained, 320-321
framing, 321
LCP (Link Control Protocol),
explained, 321
NCP (Network Control Protocols),
explained, 321
private WANs
Ethernet WANs, 389-390
explained, 387
Frame Relay, 388
leased lines, 387-388
MPLS (Multiprotocol Label Switching), 390-391
VSAT (very small aperture terminal), 391
public WANs, 392
3G/4G mobile phone access, 397-398
Cable Internet, 396
dial access with modems and ISDN, 393-394
DSL (digital subscriber line), 395-396
Internet Access Links, 392
PPPoE (PPP over Ethernet), 398-400
router WAN interface status,
troubleshooting, 150-151
self-assessment, 402
troubleshooting
keepalive failure, 327
layer 1 problems, 325-326
layer 2 problems, 326
layer 3 problems, 329-330
PAP/CHAP authentication failure, 328-329
VPNs (virtual private networks)
ASA (Adaptive Security Appliances), 179
clients, 179
explained, 176
extranet VPNs, 178
GRE (generic routing encapsulation) tunnels, 181-189
intranet VPNs, 178
IPsec VPNs, 179-180
remote-access VPNs, 178
routers, 179
scalability, 179
security, 177
self-assessment, 190-191
site-to-site VPNs, 177
SSL VPNs, 181
tunnels, 177
VPN tunnels, 177-178
WICs (WAN interface cards), 313
wildcard masks, configuring EIGRPv4 with, 255
wireless Internet, 397
write erase command, 520, 525