In addition to the wealth of updated content, this new edition includes a series of free hands-on exercises to help you master several real-world configuration and troubleshooting activities. These exercises can be performed on the CCENT/CCNA ICND1 100-101 Network Simulator Lite software included for free on the DVD that accompanies this book. This software, which simulates the experience of working on actual Cisco routers and switches, contains the following 13 free lab exercises:

1. Configuring IP Addresses I Skill Builder Lab
2. Configuring IP Addresses II Skill Builder Lab
3. Connected Routes Skill Builder Lab
4. Static Routes I Skill Builder Lab
5. Static Routes II Skill Builder Lab
6. Subnet Zero I Skill Builder Lab
7. Loopback Interfaces Skill Builder Lab
8. Subnet ID Calculation I Subnetting Exercise Lab
9. IP Address Rejection I Subnetting Exercise Lab
10. IP Route Selection I Subnetting Exercise Lab
11. Subnetting and Addressing I Configuration Scenario
12. Static Routing I Configuration Scenario
13. Network Discovery II Troubleshooting Scenario

If you are interested in exploring more hands-on labs and practicing configuration and troubleshooting with more router and switch commands, check out our full simulator product offerings at http://www.pearsonitcertification.com/networksimulator.

CCENT ICND1 Network Simulator Lite minimum system requirements:

- Microsoft Windows XP (SP3), Windows Vista (32-bit/64-bit) with SP1, Windows 7 (32-bit/64-bit) or Windows 8 (32-bit/64-bit, x86 processors), Mac OS X 10.6, 10.7, or 10.8
- Intel Pentium III 1GHz or faster processor
- 512 MB RAM (1GB recommended)
- 1 GB hard disk space
- 32-bit color depth at 1024x768 resolution
- Adobe Acrobat Reader version 8 and above

Other applications installed during installation:

- Adobe AIR 3.6.0
- Captive JRE 6

Cisco CCENT/CCNA ICND1 100-101 Official Cert Guide, Academic Edition is part of a recommended learning path from Cisco that includes simulation and hands-on training from authorized Cisco Learning Partners and self-study products from Cisco Press. To find out more about instructor-led training, e-learning, and hands-on instruction offered by authorized Cisco Learning Partners worldwide, please visit www.cisco.com/go/authorizedtraining.
Cisco
CCENT/
CCNA
ICND1 100-101
Official Cert Guide
Academic Edition

WENDELL ODOM, CCIE No. 1624
Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Publisher: Paul Boger
Associate Publisher: Dave Dusthimer
Business Operation Manager, Cisco Press: Jan Cornelssen
Executive Editor: Brett Bartow
Managing Editor: Sandra Schroeder
Development Editor: Andrew Cupp
Senior Project Editor: Tonya Simpson
Copy Editor: John Edwards
Technical Editor: Elan Beer
Editorial Assistant: Vanessa Evans
Book Designer: Mark Shirar
Illustrator: Michael Tanamachi
Composition: Studio Galou
Indexer: Tim Wright
Proofreader: Dan Knott
About the Author

Wendell Odom, CCIE No. 1624, has been in the networking industry since 1981. He has worked as a network engineer, consultant, systems engineer, instructor, and course developer; he currently works writing and creating certification tools. He is author of all the previous books in the Cisco Press CCNA Official Certification Guide series, as well as the CCNP ROUTE 642-902 Official Certification Guide, the QoS 642-642 Exam Certification Guide, coauthor of the CCIE Routing and Switch Official Certification Guide, and several other titles. He is also a consultant for the CCNA 640-802 Network Simulator from Pearson and for a forthcoming replacement version of that product. He maintains study tools, links to his blogs, and other resources at www.certskills.com.

About the Technical Reviewer

Elan Beer, CCIE No. 1837, is a senior consultant and Cisco instructor specializing in data center architecture and multiprotocol network design. For the past 25 years, Elan has designed networks and trained thousands of industry experts in data center architecture, routing, and switching. Elan has been instrumental in large-scale professional service efforts designing and troubleshooting internetworks, performing data center and network audits, and assisting clients with their short- and long-term design objectives. Elan has a global perspective of network architectures through his international clientele. Elan has used his expertise to design and troubleshoot data centers and internetworks in Malaysia, North America, Europe, Australia, Africa, China, and the Middle East. Most recently, Elan has been focused on data center design, configuration, and troubleshooting as well as service provider technologies. In 1993, Elan was among the first to obtain the Cisco Certified System Instructor (CCSI) certification, and in 1996, Elan was among the first to attain Cisco System’s highest technical certification, the Cisco Certified Internetworking Expert. Since then, Elan has been involved in numerous large-scale data center and telecommunications networking projects worldwide.
Dedication

In memory of William E. York: Mom’s dad, Paw Paw, wearing blue-jean overalls, always smiling, tagging along at the water works, fishing on Juliet Lake, the Catawba worm tree, and his big-belly laugh.
Acknowledgments

While this book is published as a first edition for various reasons, this book and the companion Cisco CCNA Routing and Switching ICND2 200-101 Official Cert Guide represent the seventh books in a long line of Cisco Press books focused on helping people pass the CCENT and CCNA Routing and Switching certifications. Given the long history, many people have worked on these books from their inception back in 1998. To those many people who have touched these books over these past 15 years—technical edits, development, copyedits, project editing, proofing, indexing, managing the production process, interior design, cover design, marketing, and all the other details that happen to get these books out the door—thanks so much for playing a role in this CCENT/CCNA franchise.

Many of the contributors to the previous editions returned to work on creating these new editions, including Development Editor Drew Cupp. Drew kept all the details straight, with my frequent changes to the outlines and titles, keeping the sequencing on track, while still doing his primary job: keeping the text and features clear and consistent throughout the book. Thanks, Drew, for walking me through the development.

As for the technical editor, Elan Beer did his normal job. That is, he did his usual amazing job of doing every part of the technical edit job well, from finding the tiny little cross-reference errors that sit pages apart, to anticipating how readers might misunderstand certain phrasing, to being all over the details of every technical feature. Fantastic job as usual—thanks, Elan.

Brett Bartow again served as Executive Editor on the book, as he has almost since the beginning of these titles. When my family has asked me over the years about Brett’s role with these books, the best single word definition is “teammate.” Brett might be employed at Pearson Education, but he is always working with me and for me, watching out for the business end of the books and finding ways to make the publisher/author relationship work seamlessly. Thanks for another great ride through these books, Brett!

Word docs go in and out come these beautiful finished products. Thanks to Sandra Schroeder, Tonya Simpson, and all the production team for working through the magic that takes those Word docs and makes the beautiful finished product. From fixing all my grammar, crummy word choices, and passive-voice sentences, and then pulling the design and layout together, they do it all—thanks for putting it all together and making it look easy. And Tonya, managing the details through several process steps for roughly 100 elements between the pair of CCNA books in a short time frame—thanks for the amazing juggling act! And thanks especially for the attention to detail.

The figures for these books go through a little different process than they do for other books. Together we invested a large amount of labor in updating the figures for these books, both for the design, the volume of figures, and for the color versions of the figures for the electronic versions of the books. A special thanks goes out to Laura Robbins for working with me on the color and design standards early in the process. Also, thanks to Mike Tanamachi for drawing all the figures so well—and then redrawing them every time I changed my mind about something.
Thanks to Chris Burns of Certskills for all the work on the mind maps, both those used in the final product and those used to build the book, as well as for being a bit of a test case for some of the chapters.

A special thanks to you readers who write in with suggestions, possible errors, and especially those of you who post online at the Cisco Learning Network. Without question, the comments I receive directly and overhear by participating at CLN made this edition a better book.

Thanks to my wife, Kris. Book schedules have a bigger impact than I would like, but you always make it work. Thanks to my daughter, Hannah, for all the great study/work breaks on some of these busy school days. And thanks to Jesus Christ, for this opportunity to write.
Contents at a Glance

Introduction xxxi
Getting Started 2

Part I: Networking Fundamentals 8
Chapter 1: The TCP/IP and OSI Networking Models 10
Chapter 2: Fundamentals of Ethernet LANs 34
Chapter 3: Fundamentals of WANs 56
Chapter 4: Fundamentals of IPv4 Addressing and Routing 74
Chapter 5: Fundamentals of TCP/IP Transport and Applications 100
Part I Review

Part II: Ethernet LANs and Switches 122
Chapter 6: Building Ethernet LANs with Switches 124
Chapter 7: Installing and Operating Cisco LAN Switches 148
Chapter 8: Configuring Ethernet Switching 174
Chapter 9: Implementing Ethernet Virtual LANs 208
Chapter 10: Troubleshooting Ethernet LANs 234
Part II Review

Part III: IP Version 4 Addressing and Subnetting 268
Chapter 11: Perspectives on IPv4 Subnetting 270
Chapter 12: Analyzing Classful IPv4 Networks 294
Chapter 13: Analyzing Subnet Masks 308
Chapter 14: Analyzing Existing Subnets 326
Part III Review

Part IV: Implementing IP Version 4 352
Chapter 15: Operating Cisco Routers 354
Chapter 16: Configuring IPv4 Addresses and Routes 374
Chapter 17: Learning IPv4 Routes with OSPFv2 404
Chapter 18: Configuring and Verifying Host Connectivity 434
Part IV Review

Part V: Advanced IPv4 Addressing Concepts 468
Chapter 19: Subnet Design 470
Chapter 20: Variable-Length Subnet Masks 494
Chapter 21: Route Summarization 508
Part V Review
Part VI: IPv4 Services 526
Chapter 22: Basic IPv4 Access Control Lists 528
Chapter 23: Advanced IPv4 ACLs and Device Security 550
Chapter 24: Network Address Translation 578
Part VI Review

Part VII: IP Version 6 608
Chapter 25: Fundamentals of IP Version 6 610
Chapter 26: IPv6 Addressing and Subnetting 628
Chapter 27: Implementing IPv6 Addressing on Routers 646
Chapter 28: Implementing IPv6 Addressing on Hosts 666
Chapter 29: Implementing IPv6 Routing 688
Part VII Review

Part VIII: Final Review 718
Chapter 30: Final Review 720

Part IX: Appendices 734
Appendix A: Numeric Reference Tables 736
Appendix B: ICND1 Exam Updates 744
 Glossary 746
 Index 768

DVD-only Appendices
Appendix C: Answers to Review Questions
Appendix D: Practice for Chapter 12: Analyzing Classful IPv4 Networks
Appendix E: Practice for Chapter 13: Analyzing Subnet Masks
Appendix F: Practice for Chapter 14: Analyzing Existing Subnets
Appendix G: Practice for Chapter 19: Subnet Design
Appendix H: Practice for Chapter 20: Variable-Length Subnet Masks
Appendix I: Practice for Chapter 21: Route Summarization
Appendix J: Practice for Chapter 22: Basic IPv4 Access Control Lists
Appendix L: Practice for Chapter 27: Implementing IPv6 Addressing on Routers
Appendix M: Memory Tables
Appendix N: Memory Tables Answer Key
Appendix O: Mind Map Solutions
Appendix P: Study Planner
Contents

Introduction xxxi
Getting Started 2

Part I Networking Fundamentals 8

Chapter 1 The TCP/IP and OSI Networking Models 10

- Foundation Topics 11
- Perspectives on Networking 11
- TCP/IP Networking Model 12
 - History Leading to TCP/IP 13
 - Overview of the TCP/IP Networking Model 14
- TCP/IP Application Layer 15
 - HTTP Overview 15
 - HTTP Protocol Mechanisms 16
- TCP/IP Transport Layer 17
 - TCP Error Recovery Basics 17
 - Same-Layer and Adjacent-Layer Interactions 18
- TCP/IP Network Layer 18
 - Internet Protocol and the Postal Service 18
 - Internet Protocol Addressing Basics 20
 - IP Routing Basics 21
- TCP/IP Link Layer (Data Link Plus Physical) 21
- TCP/IP Model and Terminology 23
 - Comparing the Original and Modern TCP/IP Models 23
 - Data Encapsulation Terminology 23
 - Names of TCP/IP Messages 24
- OSI Networking Model 25
 - Comparing OSI and TCP/IP 25
 - Describing Protocols by Referencing the OSI Layers 26
 - OSI Layers and Their Functions 26
 - OSI Layering Concepts and Benefits 28
 - OSI Encapsulation Terminology 28
- Review Activities 30

Chapter 2 Fundamentals of Ethernet LANs 34

- Foundation Topics 35
- An Overview of LANs 35
 - Typical SOHO LANs 35
 - Typical Enterprise LANs 36
The Variety of Ethernet Physical Layer Standards 37
Consistent Behavior over All Links Using the Ethernet Data Link Layer 38
Building Physical Ethernet Networks with UTP 38
Transmitting Data Using Twisted Pairs 39
Breaking Down a UTP Ethernet Link 39
UTP Cabling Pinouts for 10BASE-T and 100BASE-T 41
Straight-Through Cable Pinout 41
Crossover Cable Pinout 43
Choosing the Right Cable Pinouts 43
UTP Cabling Pinouts for 1000BASE-T 44
Sending Data in Ethernet Networks 44
Ethernet Data Link Protocols 45
Ethernet Addressing 45
Identifying Network Layer Protocols with the Ethernet Type Field 47
Error Detection with FCS 48
Sending Ethernet Frames with Switches and Hubs 48
Sending in Modern Ethernet LANs Using Full-Duplex 48
Using Half-Duplex with LAN Hubs 49
Review Activities 52

Chapter 3 Fundamentals of WANs 56
Foundation Topics 57
Leased Line WANs 57
Positioning Leased Lines with LANs and Routers 57
Physical Details of Leased Lines 58
Leased Line Cabling 59
Building a WAN Link in a Lab 60
Data Link Details of Leased Lines 60
HDLC Basics 61
How Routers Use a WAN Data Link 62
Ethernet as a WAN Technology 63
Ethernet WANs that Create a Layer 2 Service 64
How Routers Route IP Packets Using Ethernet Emulation 65
Accessing the Internet 65
The Internet as a Large WAN 66
Internet Access (WAN) Links 67
Digital Subscriber Line 68
Cable Internet 69
Review Activities 71
Chapter 4 **Fundamentals of IPv4 Addressing and Routing** 74

Foundation Topics 75

- Overview of Network Layer Functions 75
 - Network Layer Routing (Forwarding) Logic 75
- Host Forwarding Logic: Send the Packet to the Default Router 76
- R1 and R2’s Logic: Routing Data Across the Network 77
- R3’s Logic: Delivering Data to the End Destination 77
- How Network Layer Routing Uses LANs and WANs 77
- IP Addressing and How Addressing Helps IP Routing 78

Routing Protocols 79

IPv4 Addressing 80

- Rules for IP Addresses 80
- Rules for Grouping IP Addresses 81
- Class A, B, and C IP Networks 82
- The Actual Class A, B, and C IP Networks 83

IPv4 Subnetting 85

IPv4 Routing 87

- IPv4 Host Routing 87
- Router Forwarding Decisions and the IP Routing Table 87
- A Summary of Router Forwarding Logic 87
- A Detailed Routing Example 88

IPv4 Routing Protocols 89

Other Network Layer Features 91

- Using Names and the Domain Name System 91
- The Address Resolution Protocol 92
- ICMP Echo and the ping Command 93

Review Activities 95

Chapter 5 **Fundamentals of TCP/IP Transport and Applications** 100

Foundation Topics 101

TCP/IP Layer 4 Protocols: TCP and UDP 101

- Transmission Control Protocol 102
- Multiplexing Using TCP Port Numbers 102

Popular TCP/IP Applications 105

- Connection Establishment and Termination 106
- User Datagram Protocol 107

TCP/IP Applications 107

- QoS Needs and the Impact of TCP/IP Applications 107
- Defining Interactive and Batch Applications 108
Accessing the Cisco IOS CLI 152

Cabling the Console Connection 152

Configuring the Terminal Emulator for the Console 153

Accessing the CLI with Telnet and SSH 154

Password Security for CLI Access 155

User and Enable (Privileged) Modes 156

CLI Help Features 157

The debug and show Commands 158

Configuring Cisco IOS Software 159

Configuration Submodes and Contexts 160

Storing Switch Configuration Files 162

Copying and Erasing Configuration Files 164

Initial Configuration (Setup Mode) 165

IOS Version and Other Reload Facts 166

Review Activities 169

Chapter 8 Configuring Ethernet Switching 174

Foundation Topics 175

Configuration of Features in Common with Routers 175

Securing the Switch CLI 175

Securing Access with Simple Passwords 175

Securing Access with Local Usernames and Passwords 178

Securing Access with External Authentication Servers 179

Configuring Secure Shell (SSH) 180

Encrypting and Hiding Passwords 182

Encrypting Passwords with the service password Command 182

Hiding the Enable Password 184

Hiding the Passwords for Local Usernames 185

Console and vty Settings 185

Banners 185

History Buffer Commands 187

The logging synchronous and exec-timeout Commands 187

LAN Switch Configuration and Operation 188

Enabling IP for Remote Access 188

Configuring IPv4 on a Switch 190

Verifying IPv4 on a Switch 191

Configuring Switch Interfaces 192

Port Security 193

Configuring Port Security 195
Analyzing VLANs and VLAN Trunks 252
 Ensuring That the Right Access Interfaces Are in the Right VLANs 252
 Access VLANs Not Being Defined 253
 Access VLANs Being Disabled 253
 Check the Allowed VLAN List on Both Ends of a Trunk 254
 Mismatched Trunking Operational States 255
Review Activities 257

Part II Review 264

Part III IP Version 4 Addressing and Subnetting 268

Chapter 11 Perspectives on IPv4 Subnetting 270
 Foundation Topics 271
 Introduction to Subnetting 271
 Subnetting Defined Through a Simple Example 271
 Operational View Versus Design View of Subnetting 272
 Analyze Subnetting and Addressing Needs 273
 Rules About Which Hosts Are in Which Subnet 273
 Determining the Number of Subnets 274
 Determining the Number of Hosts per Subnet 275
 One Size Subnet Fits All—Or Not 276
 Defining the Size of a Subnet 276
 One Size Subnet Fits All 277
 Multiple Subnet Sizes (Variable-Length Subnet Masks) 278
 This Book: One Size Subnet Fits All (Mostly) 278
 Make Design Choices 278
 Choose a Classful Network 279
 Public IP Networks 279
 Growth Exhausats the Public IP Address Space 280
 Private IP Networks 281
 Choosing an IP Network During the Design Phase 281
 Choose the Mask 282
 Classful IP Networks Before Subnetting 282
 Borrowing Host Bits to Create Subnet Bits 283
 Choosing Enough Subnet and Host Bits 283
 Example Design: 172.16.0.0, 200 Subnets, 200 Hosts 284
 Masks and Mask Formats 285
 Build a List of All Subnets 286
Enabling IPv4 Support on Cisco Routers 359
Comparisons Between the Switch CLI and Router CLI 359
Router Interfaces 360
Interface Status Codes 362
Router Interface IP Addresses 363
Bandwidth and Clock Rate on Serial Interfaces 365
Router Auxiliary (Aux) Port 366
Operational Status with the show version Command 366
Review Activities 368

Chapter 16 Configuring IPv4 Addresses and Routes 374
Foundation Topics 376
IP Routing 376
IPv4 Routing Process Reference 376
An Example of IP Routing 378
Host Forwards the IP Packet to the Default Router (Gateway) 379
Routing Step 1: Decide Whether to Process the Incoming Frame 380
Routing Step 2: Deencapsulation of the IP Packet 380
Routing Step 3: Choosing Where to Forward the Packet 381
Routing Step 4: Encapsulating the Packet in a New Frame 381
Routing Step 5: Transmitting the Frame 382
Internal Processing on Cisco Routers 382
Potential Routing Performance Issues 383
Cisco Router Fast Switching and CEF 383
Configuring Connected Routes 384
Connected Routes and the ip address Command 384
Routing Between Subnets on VLANs 386
Configuring Routing to VLANs using 802.1Q on Routers 387
Configuring Routing to VLANs Using a Layer 3 Switch 390
Secondary IP Addressing 392
Supporting Connected Routes to Subnet Zero 393
Configuring Static Routes 394
Static Route Configuration 394
Static Default Routes 396
Review Activities 399

Chapter 17 Learning IPv4 Routes with OSPFv2 404
Foundation Topics 405
Comparing Dynamic Routing Protocol Features 405
Routing Protocol Functions 405
Testing Connectivity with ping, traceroute, and telnet 447

The ping Command 447

Testing IP Routes with ping on a Router 448

Controlling the Source IP Address with Extended ping 449

The traceroute Command 451

How the traceroute Command Works 452

traceroute and Similar Commands 454

Telnet and Suspend 455

Review Activities 458

Part IV Review 464

Part V Advanced IPv4 Addressing Concepts 468

Chapter 19 Subnet Design 470

Foundation Topics 471

Choosing the Mask(s) to Meet Requirements 471

Review: Choosing the Minimum Number of Subnet and Host Bits 471

No Masks Meet Requirements 472

One Mask Meets Requirements 473

Multiple Masks Meet Requirements 473

Finding All the Masks: Concepts 473

Finding All the Masks: Math 475

Choosing the Best Mask 475

The Formal Process 475

Practice Choosing Subnet Masks 476

Practice Problems for Choosing a Subnet Mask 476

Additional Practice for Choosing the Subnet Mask 477

Finding All Subnet IDs 477

First Subnet ID: The Zero Subnet 477

Finding the Pattern Using the Magic Number 478

A Formal Process with Less Than 8 Subnet Bits 479

Example 1: Network 172.16.0.0, Mask 255.255.240.0 480

Example 2: Network 192.168.1.0, Mask 255.255.255.224 481

Finding All Subnets with Exactly 8 Subnet Bits 482

Finding All Subnets with More Than 8 Subnet Bits 483

Process with 9–16 Subnet Bits 483

Process with 17 or More Subnet Bits 484

Practice Finding All Subnet IDs 485
Chapter 20 Variable-Length Subnet Masks 494
Foundation Topics 495
VLSM Concepts and Configuration 495
Classless and Classful Routing Protocols 495
VLSM Configuration and Verification 496
Finding VLSM Overlaps 497
An Example of Finding a VLSM Overlap 498
Practice Finding VLSM Overlaps 499
Adding a New Subnet to an Existing VLSM Design 500
An Example of Adding a New VLSM Subnet 500
Practice Adding New VLSM Subnets 502
Review Activities 503

Chapter 21 Route Summarization 508
Foundation Topics 509
Manual Route Summarization Concepts 509
Route Summarization Basics 509
Route Summarization and the IPv4 Subnetting Plan 510
Verifying Manually Summarized Routes 511
Choosing the Best Summary Routes 512
The Process to Find the Best Summary Route 512
Sample “Best” Summary on Router R3 513
Sample “Best” Summary on Router R2 514
Practice Choosing the Best Summary Routes 515
Review Activities 516

Part V Review 522

Part VI IPv4 Services 526

Chapter 22 Basic IPv4 Access Control Lists 528
Foundation Topics 529
IPv4 Access Control List Basics 529
ACL Location and Direction 529
Matching Packets 530
Taking Action When a Match Occurs 530
Types of IP ACLs 531
Chapter 24 Network Address Translation 578
 Foundation Topics 579
 Perspectives on IPv4 Address Scalability 579
 CIDR 579
 Route Aggregation for Shorter Routing Tables 580
 IPv4 Address Conservation 580
 Private Addressing 581
 Network Address Translation Concepts 581
 Static NAT 582
 Dynamic NAT 584
 Overloading NAT with Port Address Translation (PAT) 585
 NAT Overload (PAT) on Consumer Routers 587
 NAT Configuration and Troubleshooting 588
 Static NAT Configuration 588
 Dynamic NAT Configuration 590
 Dynamic NAT Verification 592
 NAT Overload (PAT) Configuration 594
 NAT Troubleshooting 596
 Review Activities 598

Part VI Review 604

Part VII: IP Version 6 608

Chapter 25 Fundamentals of IP Version 6 610
 Foundation Topics 611
 Introduction to IPv6 611
 The Historical Reasons for IPv6 611
 The IPv6 Protocols 612
 IPv6 Routing 614
 IPv6 Routing Protocols 615
 IPv6 Addressing Formats and Conventions 616
 Representing Full (Unabbreviated) IPv6 Addresses 617
 Abbreviating and Expanding IPv6 Addresses 617
 Abbreviating IPv6 Addresses 617
 Expanding Abbreviated IPv6 Addresses 618
 Representing the Prefix Length of an Address 619
 Calculating the IPv6 Prefix (Subnet ID) 619
 Finding the IPv6 Prefix 620
 Working with More Difficult IPv6 Prefix Lengths 621
 Review Activities 623
Chapter 26 IPv6 Addressing and Subnetting 628

Foundation Topics 629

Global Unicast Addressing Concepts 629

A Brief Review of Public and Private IPv4 Addresses 629
Review of Public IPv4 Addressing Concepts 629
Review of Private IPv4 Addressing Concepts 631
Public and Private IPv4 Addresses 631
The IPv6 Global Routing Prefix 632

Address Ranges for Global Unicast Addresses 633
IPv6 Subnetting Using Global Unicast Addresses 634
Deciding Where IPv6 Subnets Are Needed 634
The Mechanics of Subnetting IPv6 Global Unicast Addresses 635
Listing the IPv6 Subnet Identifier 637
List All IPv6 Subnets 637
Assign Subnets to the Internetwork Topology 638
Assigning Addresses to Hosts in a Subnet 638

Unique Local Unicast Addresses 639
Subnetting with Unique Local IPv6 Addresses 640
The Need for Globally Unique Local Addresses 640

Review Activities 642

Chapter 27 Implementing IPv6 Addressing on Routers 646

Foundation Topics 647

Implementing Unicast IPv6 Addresses on Routers 647
Static Unicast Address Configuration 648
Configuring the Full 128-Bit Address 648
Enabling IPv6 Routing 649
Verifying the IPv6 Address Configuration 649
Generating a Unique Interface ID Using EUI-64 651
Dynamic Unicast Address Configuration 654

Special Addresses Used by Routers 654
Link-Local Addresses 655
Link-Local Address Concepts 655
Creating Link-Local Addresses on Routers 656
IPv6 Multicast Addresses 657
Broadcasts Versus Multicasts 657
Common Local Scope Multicast Addresses 658
Solicited-Node Multicast Addresses 658
Miscellaneous IPv6 Addresses 660

Review Activities 661
Chapter 28 Implementing IPv6 Addressing on Hosts 666

Foundation Topics 668
The Neighbor Discovery Protocol 668
 Discovering Routers with NDP RS and RA 669
 Discovering Addressing Info for SLAAC with NDP RS and RA 669
 Discovering Neighbor Link Addresses with NDP NS and NA 670
 Discovering Duplicate Addresses Using NDP NS and NA 671
 NDP Summary 672
Dynamic Configuration of Host IPv6 Settings 673
 Dynamic Configuration Using Stateful DHCP and NDP 673
 Differences Between DHCPv6 and DHCPv4 674
 DHCPv6 Relay Agents 674
 Using Stateless Address Autoconfiguration 676
 Building an IPv6 Address Using SLAAC 676
 Combining SLAAC with NDP and Stateless DHCP 677
Verification of Host IPv6 Connectivity 678
 Verifying Host IPv6 Connectivity from Hosts 678
 Verifying Host Connectivity from Nearby Routers 680
Review Activities 683

Chapter 29 Implementing IPv6 Routing 688

Foundation Topics 689
Connected and Local IPv6 Routes 689
 Rules for Connected and Local Routes 689
 Example of Connected IPv6 Routes 690
 Examples of Local IPv6 Routes 691
Static IPv6 Routes 692
 Static Routes Using the Outgoing Interface 692
 Static Routes Using Next-Hop IPv6 Address 693
 Example Static Route with a Global Unicast Next-Hop Address 694
 Example Static Route with a Link-Local Next-Hop Address 695
Static Default Routes 696
Dynamic Routes with OSPFv3 697
 Comparing OSPF for IPv4 and IPv6 697
 OSPF Routing Protocol Versions and Protocols 697
 Comparing OSPFv2 and OSPFv3 698
 Configuring Single-Area OSPFv3 700
 OSPFv3 Single-Area Configuration Example 701
 OSPFv3 Passive Interfaces 703
Verifying OSPFv3 Status and Routes 703
Verifying OSPFv3 Configuration Settings 704
Verifying OSPFv3 Neighbors 706
Examining the OSPFv3 Database 707
Examining IPv6 Routes Learned by OSPFv3 707
Review Activities 709

Part VII Review 714

Part VIII: Final Review 718

Chapter 30 Final Review 720
Advice About the Exam Event 720
 Learn the Question Types Using the Cisco Certification Exam Tutorial 720
 Think About Your Time Budget Versus Numbers of Questions 721
 A Suggested Time-Check Method 722
 Miscellaneous Pre-Exam Suggestions 722
 Exam-Day Advice 722
Exam Review 723
 Practice Subnetting and Other Math-Related Skills 723
 Take Practice Exams 725
 Practicing Taking the ICND1 Exam 726
 Practicing Taking the CCNA Exam 726
 Advice on How to Answer Exam Questions 728
 Find Knowledge Gaps Through Question Review 729
 Practice Hands-On CLI Skills 731
 Review Mind Maps from Part Review 731
 Do Labs 731
 Other Study Tasks 732
 Final Thoughts 732

Part IX Appendixes 734

Appendix A Numeric Reference Tables 736

Appendix B ICND1 Exam Updates 744

Glossary 746

Index 768

DVD-only Appendixes
Appendix C: Answers to Review Questions
Appendix D: Practice for Chapter 12: Analyzing Classful IPv4 Networks
Appendix E: Practice for Chapter 13: Analyzing Subnet Masks
Appendix F: Practice for Chapter 14: Analyzing Existing Subnets
Appendix G: Practice for Chapter 19: Subnet Design
Appendix H: Practice for Chapter 20: Variable-Length Subnet Masks
Appendix I: Practice for Chapter 21: Route Summarization
Appendix J: Practice for Chapter 22: Basic IPv4 Access Control Lists
Appendix L: Practice for Chapter 27: Implementing IPv6 Addressing on Routers
Appendix M: Memory Tables
Appendix N: Memory Tables Answer Key
Appendix O: Mind Map Solutions
Appendix P: Study Planner
Icons Used in This Book

- Printer
- PC
- Laptop
- Server
- Phone
- IP Phone
- Router
- Switch
- Frame Relay Switch
- Cable Modem
- Access Point
- ASA
- DSLAM
- WAN Switch
- CSU/DSU
- Hub
- PIX Firewall
- Bridge
- Layer 3 Switch
- Network Cloud
- Ethernet Connection
- Serial Line
- Virtual Circuit
- Ethernet WAN
- Wireless

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ({|}) indicate a required choice within an optional element.
This page intentionally left blank
Introduction

About the Book and the Exams

This book serves first as a textbook in some college networking courses. At the same time, you might want a career in networking somewhere down the road, and this book helps you with a big step in that journey by helping you pass a Cisco certification exam.

If you want to succeed as a technical person in the networking industry, you need to know Cisco. Cisco has a ridiculously high market share in the router and switch marketplace, with more than an 80 percent share in some markets. In many geographies and markets around the world, networking equals Cisco. If you want to be taken seriously as a network engineer, Cisco certification makes perfect sense.

The Exams That Help You Achieve CCENT and CCNA

Cisco announced changes to the CCENT and CCNA Routing and Switching certifications, and the related 100-101 ICND1, 200-101 ICND2, and 200-120 CCNA exams, early in 2013. For those of you who understand how the old Cisco ICND1, ICND2, and CCNA exams worked, the structure remains the same. For those of you new to Cisco certifications, this Introduction begins by discussing the basics.

Almost everyone new to Cisco certifications begins with either CCENT or CCNA Routing and Switching. CCENT certification requires knowledge and skills on about half as much material as does CCNA Routing and Switching, so CCENT is the easier first step.

The CCENT certification requires a single step: pass the ICND1 exam. Simple enough.

The CCNA Routing and Switching certification gives you two options, as shown in Figure I-1: Pass both the ICND1 and ICND2 exams, or just pass the CCNA exam. (Note that there is no separate certification for passing the ICND2 exam.)

Figure I-1 Cisco Entry-Level Certifications and Exams
As you can see, although you can obtain the CCENT certification by taking the ICND1 exam, you do not have to be CCENT certified before you get your CCNA Routing and Switching certification. You can choose to take the CCNA exam and bypass the CCENT certification.

As for the topics themselves, the ICND1 and ICND2 exams cover different topics, but with some overlap required. For example, ICND1 covers the basics of the Open Shortest Path First (OSPF) routing protocol. ICND2 covers more detail about OSPF, but to discuss those additional details, ICND2 must rely on the parts of OSPF included in ICND1. Many topics in ICND2 build upon topics in ICND1, causing some overlap.

The CCNA exam covers all the topics in both ICND1 and ICND2—no more, no less.

Types of Questions on the Exams

The ICND1, ICND2, and CCNA exams all follow the same general format. At the testing center, you will sit in a quiet room with a PC. Before the exam timer begins, you will have a chance to do a few other tasks on the PC—for example, you can take a sample quiz just to get accustomed to the PC and the testing engine. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment.

After the exam starts, the screen shows you question after question. The questions typically fall into one of the following categories:

- Multiple-choice (MC) single answer
- Multiple-choice (MC) multiple answer
- Testlet
- Drag-and-drop (DND)
- Simulated lab (Sim)
- Simlet

The first three items in the list are all actually multiple-choice questions. The multiple-choice format simply requires that you point and click a circle beside the correct answer(s). Cisco traditionally tells you how many answers you need to choose, and the testing software prevents you from choosing too many answers. The Testlet style gives you one larger scenario statement, with multiple different multi-choice questions about that one scenario.

Drag-and-drop questions require you to move some items around on the GUI. You left-click and hold, move a button or icon to another area, and release the mouse button to place the object somewhere else—typically into a list. So, for some questions, to get the question correct, you might need to put a list of five things in the proper order.

The last two types both use a network simulator to ask questions. Interestingly, the two types actually allow Cisco to assess two very different skills. First, Sim questions generally describe a problem, and your task is to configure one or more routers and switches to fix the problem. The exam then grades the question based on the configuration you changed or added.

The Simlet questions might well be the most difficult style of question on the exams. Simlet questions also use a network simulator, but instead of answering the question by changing the configuration, the question includes one or more MC questions. The questions require that you use the simulator to examine the current behavior of a network, interpreting the output of any show commands that you can remember to answer the question. While Sim questions require you to troubleshoot problems related to a configuration, Simlets require you to analyze both working and broken networks, correlating show command output with your knowledge of networking theory and configuration commands.
You can watch and even experiment with these command types using the Cisco Exam Tutorial. To find the Cisco Certification Exam Tutorial, go to www.cisco.com and search for “exam tutorial.”

What’s on the CCNA Exam(s)?

Ever since I was in grade school, whenever the teacher announced that we were having a test soon, someone would always ask, “What’s on the test?” Even in college, people would try to get more information about what would be on the exams. At heart, the goal is to know what to study hard, what to study a little, and what to not study at all.

Cisco tells the world the topics on each of its exams. Cisco wants the public to know both the variety of topics, and an idea about the kinds of knowledge and skills required for each topic, for every Cisco certification exam. To that end, Cisco publishes a set of exam topics for each exam.

Many Cisco exam topics list both a networking topic and an important verb. The verb tells us to what degree the topic must be understood, and what skills are required. The topic also implies the kinds of skills required for that topic. For example, one topic might start with “Describe…,” another with “Configure…,” another with “Verify…,” and another might begin with “Troubleshoot….” That last topic has the highest required skill level, because to troubleshoot, you must understand the topic, be able to configure it (to see what’s wrong with the configuration), and verify it (to find the root cause of the problem). By listing the topics and skill level, Cisco helps us all prepare for its exams.

Although the exam topics are helpful, keep in mind that Cisco adds a disclaimer that the posted exam topics for all of its certification exams are guidelines. Cisco makes the effort to keep the exam questions within the confines of the stated exam topics, and I know from talking to those involved that every question is analyzed for whether it fits within the stated exam topics.

ICND1 Exam Topics

Tables I-1 through I-7 list the exam topics for the ICND1 exam. Following those tables, Tables I-8 through I-12 list the exam topics for ICND2. These tables note the book chapters in which each exam topic is covered.

The tables follow the Cisco organization of topics, by both grouping similar topics and listing subtopics. The subtopics simply give more specific terms and concepts to provide more detail about some exam topics. The tables show the main topics with bold, and the subtopics as indented text inside the tables.

<table>
<thead>
<tr>
<th>Table I-1</th>
<th>ICND1 Exam Topics: Operation of IP Data Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter</td>
<td>Operation of IP Data Networks</td>
</tr>
<tr>
<td>1–4, 6, 15</td>
<td>Recognize the purpose and functions of various network devices such as Routers, Switches, Bridges and Hubs.</td>
</tr>
<tr>
<td>1–4, 6, 15</td>
<td>Select the components required to meet a given network specification.</td>
</tr>
<tr>
<td>5</td>
<td>Identify common applications and their impact on the network</td>
</tr>
<tr>
<td>1</td>
<td>Describe the purpose and basic operation of the protocols in the OSI and TCP/IP models.</td>
</tr>
<tr>
<td>2–5, 6, 9, 16, 24, 25</td>
<td>Predict the data flow between two hosts across a network.</td>
</tr>
<tr>
<td>2, 6, 15</td>
<td>Identify the appropriate media, cables, ports, and connectors to connect Cisco network devices to other network devices and hosts in a LAN</td>
</tr>
<tr>
<td>Table I-2</td>
<td>ICND1 Exam Topics: LAN Switching Technologies</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Chapter</td>
<td>LAN Switching Technologies</td>
</tr>
<tr>
<td>2, 6</td>
<td>Determine the technology and media access control method for Ethernet networks</td>
</tr>
<tr>
<td>6, 8, 9</td>
<td>Identify basic switching concepts and the operation of Cisco switches</td>
</tr>
<tr>
<td>6, 8</td>
<td>Collision Domains</td>
</tr>
<tr>
<td>6, 9</td>
<td>Broadcast Domains</td>
</tr>
<tr>
<td>6</td>
<td>Types of switching</td>
</tr>
<tr>
<td>6, 8, 9</td>
<td>CAM Table</td>
</tr>
<tr>
<td>7</td>
<td>Configure and verify initial switch configuration including remote access management</td>
</tr>
<tr>
<td>7, 18, 28</td>
<td>Verify IOS commands to perform basic switch setup</td>
</tr>
<tr>
<td>7, 18, 28</td>
<td>Configure and verify initial switch configuration including remote access management</td>
</tr>
<tr>
<td>9</td>
<td>Describe network segmentation and basic traffic management concepts</td>
</tr>
<tr>
<td>9</td>
<td>Configure and verify VLANs</td>
</tr>
<tr>
<td>9, 10</td>
<td>Configure and verify trunking on Cisco switches</td>
</tr>
<tr>
<td>9, 10</td>
<td>DTP</td>
</tr>
<tr>
<td>10</td>
<td>Auto negotiation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table I-3</th>
<th>ICND1 Exam Topics: IP Addressing (IPv4 / IPv6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter</td>
<td>IP Addressing (IPv4/IPv6)</td>
</tr>
<tr>
<td>11</td>
<td>Describe the operation and necessity of using private and public IP addresses for IPv4 addressing</td>
</tr>
<tr>
<td>25, 26</td>
<td>Identify the appropriate IPv6 addressing scheme to satisfy addressing requirements in a LAN/WAN environment</td>
</tr>
<tr>
<td>11, 19, 20, 21</td>
<td>Identify the appropriate IPv4 addressing scheme using VLSM and summarization to satisfy addressing requirements in a LAN/WAN environment</td>
</tr>
<tr>
<td>27, 28, 29</td>
<td>Describe the technological requirements for running IPv6 in conjunction with IPv4 such as dual stack</td>
</tr>
<tr>
<td>25–28</td>
<td>Describe IPv6 addresses</td>
</tr>
<tr>
<td>25, 26</td>
<td>Global unicast</td>
</tr>
<tr>
<td>27, 27</td>
<td>Multicast</td>
</tr>
<tr>
<td>27</td>
<td>Link local</td>
</tr>
<tr>
<td>26</td>
<td>Unique local</td>
</tr>
<tr>
<td>27, 28</td>
<td>eui 64</td>
</tr>
<tr>
<td>28</td>
<td>autoconfiguration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table I-4</th>
<th>ICND1 Exam Topics: IP Routing Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter</td>
<td>IP Routing Technologies</td>
</tr>
<tr>
<td>16</td>
<td>Describe basic routing concepts</td>
</tr>
<tr>
<td>16</td>
<td>CEF</td>
</tr>
<tr>
<td>16</td>
<td>Packet forwarding</td>
</tr>
<tr>
<td>16</td>
<td>Router lookup process</td>
</tr>
<tr>
<td>15–18, 27</td>
<td>Configure and verify utilizing the CLI to set basic Router configuration</td>
</tr>
<tr>
<td>Chapter</td>
<td>IP Routing Technologies</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>16–18, 27</td>
<td>Cisco IOS commands to perform basic router setup</td>
</tr>
<tr>
<td>16, 27</td>
<td>Configure and verify operation status of an ethernet interface</td>
</tr>
<tr>
<td>16–18, 27–29</td>
<td>Verify router configuration and network connectivity</td>
</tr>
<tr>
<td>16–18, 27, 29</td>
<td>Cisco IOS commands to review basic router information and network connectivity</td>
</tr>
<tr>
<td>16, 29</td>
<td>Configure and verify routing configuration for a static or default route given specific routing requirements</td>
</tr>
<tr>
<td>4, 16, 17, 25, 29</td>
<td>Differentiate methods of routing and routing protocols</td>
</tr>
<tr>
<td>4, 17, 29</td>
<td>Static vs. Dynamic</td>
</tr>
<tr>
<td>17</td>
<td>Link state v. Distance Vector</td>
</tr>
<tr>
<td>16, 25</td>
<td>next hop</td>
</tr>
<tr>
<td>16, 25</td>
<td>ip routing table</td>
</tr>
<tr>
<td>17, 29</td>
<td>Passive interfaces</td>
</tr>
<tr>
<td>17, 29</td>
<td>Configure and verify OSPF (single area)</td>
</tr>
<tr>
<td>17, 29</td>
<td>Benefit of single area</td>
</tr>
<tr>
<td>17</td>
<td>Configure OSPF v2</td>
</tr>
<tr>
<td>29</td>
<td>Configure OSPF v3</td>
</tr>
<tr>
<td>17, 29</td>
<td>Router ID</td>
</tr>
<tr>
<td>17, 29</td>
<td>Passive interface</td>
</tr>
<tr>
<td>16</td>
<td>Configure and verify interVLAN routing (Router-on-a-stick)</td>
</tr>
<tr>
<td>16</td>
<td>sub interfaces</td>
</tr>
<tr>
<td>16</td>
<td>upstream routing</td>
</tr>
<tr>
<td>16</td>
<td>encapsulation</td>
</tr>
<tr>
<td>8, 16</td>
<td>Configure SVI interfaces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>IP Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>18, 28</td>
<td>Configure and verify DHCP (IOS Router)</td>
</tr>
<tr>
<td>18, 28</td>
<td>configuring router interfaces to use DHCP</td>
</tr>
<tr>
<td>18</td>
<td>DHCP options</td>
</tr>
<tr>
<td>18</td>
<td>excluded addresses</td>
</tr>
<tr>
<td>18</td>
<td>lease time</td>
</tr>
<tr>
<td>22, 23</td>
<td>Describe the types, features, and applications of ACLs</td>
</tr>
<tr>
<td>22</td>
<td>Standard</td>
</tr>
<tr>
<td>23</td>
<td>Sequence numbers</td>
</tr>
<tr>
<td>23</td>
<td>Editing</td>
</tr>
<tr>
<td>23</td>
<td>Extended</td>
</tr>
<tr>
<td>23</td>
<td>Named</td>
</tr>
<tr>
<td>22, 23</td>
<td>Numbered</td>
</tr>
<tr>
<td>22</td>
<td>Log option</td>
</tr>
<tr>
<td>22, 23</td>
<td>Configure and verify ACLs in a network environment</td>
</tr>
<tr>
<td>23</td>
<td>Named</td>
</tr>
<tr>
<td>22, 23</td>
<td>Numbered</td>
</tr>
<tr>
<td>22</td>
<td>Log option</td>
</tr>
<tr>
<td>24</td>
<td>Identify the basic operation of NAT</td>
</tr>
<tr>
<td>24</td>
<td>Purpose</td>
</tr>
<tr>
<td>24</td>
<td>Pool</td>
</tr>
<tr>
<td>Chapter</td>
<td>IP Services</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>24</td>
<td>Static</td>
</tr>
<tr>
<td>24</td>
<td>1 to 1</td>
</tr>
<tr>
<td>24</td>
<td>Overloading</td>
</tr>
<tr>
<td>24</td>
<td>Source addressing</td>
</tr>
<tr>
<td>24</td>
<td>One way NAT</td>
</tr>
<tr>
<td>24</td>
<td>Configure and verify NAT for given network requirements</td>
</tr>
<tr>
<td>23</td>
<td>Configure and verify NTP as a client</td>
</tr>
</tbody>
</table>

Table I-6 ICND1 Exam Topics: Network Device Security

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Network Device Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 15</td>
<td>Configure and verify network device security features such as</td>
</tr>
<tr>
<td>8, 15</td>
<td>Device password security</td>
</tr>
<tr>
<td>8, 15</td>
<td>Enable secret vs enable</td>
</tr>
<tr>
<td>23</td>
<td>Transport</td>
</tr>
<tr>
<td>23</td>
<td>Disable telnet</td>
</tr>
<tr>
<td>8</td>
<td>SSH</td>
</tr>
<tr>
<td>8</td>
<td>VTYs</td>
</tr>
<tr>
<td>23</td>
<td>Physical security</td>
</tr>
<tr>
<td>8</td>
<td>Service password</td>
</tr>
<tr>
<td>8</td>
<td>Describe external authentication methods</td>
</tr>
<tr>
<td>8, 10</td>
<td>Configure and verify Switch Port Security features such as</td>
</tr>
<tr>
<td>8</td>
<td>Sticky MAC</td>
</tr>
<tr>
<td>8</td>
<td>MAC address limitation</td>
</tr>
<tr>
<td>8, 10</td>
<td>Static / dynamic</td>
</tr>
<tr>
<td>8, 10</td>
<td>Violation modes</td>
</tr>
<tr>
<td>8, 10</td>
<td>Err disable</td>
</tr>
<tr>
<td>8, 10</td>
<td>Shutdown</td>
</tr>
<tr>
<td>8, 10</td>
<td>Protect restrict</td>
</tr>
<tr>
<td>8</td>
<td>Shutdown unused ports</td>
</tr>
<tr>
<td>8</td>
<td>Err disable recovery</td>
</tr>
<tr>
<td>8</td>
<td>Assign unused ports to an unused VLAN</td>
</tr>
<tr>
<td>8</td>
<td>Setting native VLAN to other than VLAN 1</td>
</tr>
<tr>
<td>22, 23</td>
<td>Configure and verify ACLs to filter network traffic</td>
</tr>
<tr>
<td>23</td>
<td>Configure and verify an ACLs to limit telnet and SSH access to the router</td>
</tr>
</tbody>
</table>

Table I-7 ICND1 Exam Topics: Troubleshooting

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–15, 18–21, 25–28</td>
<td>Troubleshoot and correct common problems associated with IP addressing and host configurations.</td>
</tr>
<tr>
<td>9, 10</td>
<td>Troubleshoot and Resolve VLAN problems</td>
</tr>
<tr>
<td>9, 10</td>
<td>identify that VLANs are configured</td>
</tr>
<tr>
<td>9, 10</td>
<td>port membership correct</td>
</tr>
<tr>
<td>9, 10</td>
<td>IP address configured</td>
</tr>
<tr>
<td>9, 10</td>
<td>Troubleshoot and Resolve trunking problems on Cisco switches</td>
</tr>
<tr>
<td>9, 10</td>
<td>correct trunk states</td>
</tr>
</tbody>
</table>
ICND2 Exam Topics

Tables I-8 through I-12 list the exam topics for ICND2. These tables note the book chapters in which each exam topic is covered in the ICND2 book. Note that each table covers a main exam topic. Cisco released further information on each topic to several sublevels of hierarchy. In this table, those sublevels are indented to indicate the topic above them that they are related to.

Table I-8 ICND2 Exam Topics: LAN Switching Technologies

<table>
<thead>
<tr>
<th>Chapters</th>
<th>LAN Switching Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify enhanced switching technologies</td>
</tr>
<tr>
<td>1</td>
<td>RSTP</td>
</tr>
<tr>
<td>1</td>
<td>PVSTP</td>
</tr>
<tr>
<td>1</td>
<td>Etherchannels</td>
</tr>
<tr>
<td>1, 2</td>
<td>Configure and verify PVSTP operation</td>
</tr>
<tr>
<td>1, 2</td>
<td>describe root bridge election</td>
</tr>
<tr>
<td>2</td>
<td>spanning tree mode</td>
</tr>
</tbody>
</table>

Table I-9 ICND2 Exam Topics: IP Routing Technologies

<table>
<thead>
<tr>
<th>Chapters</th>
<th>IP Routing Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Describe the boot process of Cisco IOS routers</td>
</tr>
<tr>
<td>20</td>
<td>POST</td>
</tr>
<tr>
<td>20</td>
<td>Router bootup process</td>
</tr>
<tr>
<td>12</td>
<td>Configure and verify operation status of a Serial interface.</td>
</tr>
<tr>
<td>20, 21</td>
<td>Manage Cisco IOS Files</td>
</tr>
<tr>
<td>20</td>
<td>Boot preferences</td>
</tr>
<tr>
<td>20</td>
<td>Cisco IOS image(s)</td>
</tr>
<tr>
<td>21</td>
<td>Licensing</td>
</tr>
<tr>
<td>21</td>
<td>Show license</td>
</tr>
<tr>
<td>21</td>
<td>Change license</td>
</tr>
</tbody>
</table>
Chapters | IP Routing Technologies
---|---
8–11, 16–18 | **Differentiate methods of routing and routing protocols**
8 | Administrative distance
9 | split horizon
8, 9, 17, 18 | metric
8, 9, 17, 18 | next hop
8, 17 | **Configure and verify OSPF (single area)**
8, 11, 17 | neighbor adjacencies
8, 11, 17 | OSPF states
8, 17 | Discuss Multi area
8 | Configure OSPF v2
17 | Configure OSPF v3
8, 17 | Router ID
8, 17 | LSA types
9, 10, 18 | **Configure and verify EIGRP (single AS)**
9, 10, 18 | Feasible Distance / Feasible Successors / Administrative distance
9, 18 | Feasibility condition
9, 18 | Metric composition
9, 10, 18 | Router ID
9, 10 | Auto summary
9, 10, 18 | Path selection
9, 10, 18 | Load balancing
9, 10, 18 | Equal
9, 10, 18 | Unequal
9, 10, 18 | Passive interface

Table I-10 ICND2 Exam Topics: IP Services

Chapters	IP Services
6 | **Recognize High availability (FHRP)**
6 | VRRP
6 | HSRP
6 | GLBP
19 | **Configure and verify Syslog**
19 | Utilize Syslog Output
19 | Describe SNMP v2 & v3

Table I-11 ICND2 Exam Topics: Troubleshooting

Chapters	Troubleshooting
3, 4, 5, 16 | **Identify and correct common network problems**
19 | Utilize netflow data
2 | **Troubleshoot and Resolve Spanning Tree operation issues**
2 | root switch
2 | priority
2 | mode is correct
2 | port states
4, 5, 16 | **Troubleshoot and Resolve routing issues**
4, 5, 16 | routing is enabled
Troubleshooting

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 5, 16</td>
<td>routing table is correct</td>
</tr>
<tr>
<td>4, 5, 16</td>
<td>correct path selection</td>
</tr>
<tr>
<td>11, 17</td>
<td>Troubleshoot and Resolve OSPF problems</td>
</tr>
<tr>
<td>11, 17</td>
<td>neighbor adjacencies</td>
</tr>
<tr>
<td>11, 17</td>
<td>Hello and Dead timers</td>
</tr>
<tr>
<td>11, 17</td>
<td>OSPF area</td>
</tr>
<tr>
<td>11, 17</td>
<td>Interface MTU</td>
</tr>
<tr>
<td>11, 17</td>
<td>Network types</td>
</tr>
<tr>
<td>11, 17</td>
<td>Neighbor states</td>
</tr>
<tr>
<td>11, 17</td>
<td>OSPF topology database</td>
</tr>
<tr>
<td>11, 18</td>
<td>Troubleshoot and Resolve EIGRP problems</td>
</tr>
<tr>
<td>11, 18</td>
<td>neighbor adjacencies</td>
</tr>
<tr>
<td>11, 18</td>
<td>AS number</td>
</tr>
<tr>
<td>11, 18</td>
<td>Load balancing</td>
</tr>
<tr>
<td>11, 18</td>
<td>Split horizon</td>
</tr>
<tr>
<td>3, 5</td>
<td>Troubleshoot and Resolve interVLAN routing problems</td>
</tr>
<tr>
<td>5</td>
<td>Connectivity</td>
</tr>
<tr>
<td>5</td>
<td>Encapsulation</td>
</tr>
<tr>
<td>5</td>
<td>Subnet</td>
</tr>
<tr>
<td>3, 5</td>
<td>Native VLAN</td>
</tr>
<tr>
<td>3, 5</td>
<td>Port mode trunk status</td>
</tr>
<tr>
<td>12, 14</td>
<td>Troubleshoot and Resolve WAN implementation issues</td>
</tr>
<tr>
<td>12</td>
<td>Serial interfaces</td>
</tr>
<tr>
<td>12</td>
<td>PPP</td>
</tr>
<tr>
<td>14</td>
<td>Frame relay</td>
</tr>
<tr>
<td>19</td>
<td>Monitor NetFlow statistics</td>
</tr>
<tr>
<td>2</td>
<td>Troubleshoot etherchannel problems</td>
</tr>
</tbody>
</table>

ICND2 Exam Topics: WAN Technologies

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>15, 13, 7</td>
<td>Identify different WAN Technologies</td>
</tr>
<tr>
<td>15</td>
<td>Metro Ethernet</td>
</tr>
<tr>
<td>15</td>
<td>VSAT</td>
</tr>
<tr>
<td>15</td>
<td>Cellular 3G / 4G</td>
</tr>
<tr>
<td>15</td>
<td>MPLS</td>
</tr>
<tr>
<td>12, 15</td>
<td>T1 / E1</td>
</tr>
<tr>
<td>15</td>
<td>ISDN</td>
</tr>
<tr>
<td>15</td>
<td>DSL</td>
</tr>
<tr>
<td>13</td>
<td>Frame relay</td>
</tr>
<tr>
<td>15</td>
<td>Cable</td>
</tr>
<tr>
<td>7</td>
<td>VPN</td>
</tr>
<tr>
<td>12</td>
<td>Configure and verify a basic WAN serial connection</td>
</tr>
<tr>
<td>12</td>
<td>Configure and verify a PPP connection between Cisco routers</td>
</tr>
<tr>
<td>14</td>
<td>Configure and verify Frame Relay on Cisco routers</td>
</tr>
<tr>
<td>15</td>
<td>Implement and troubleshoot PPPoE</td>
</tr>
</tbody>
</table>
200-120 CCNA Exam Topics

The 200-120 CCNA exam actually covers everything from both the ICND1 and ICND2 exams, at least based on the published exam topics. As of this writing, the CCNA exam topics include all topics in Tables I-1 through I-12. In short, CCNA = ICND1 + ICND2.

NOTE Because it is possible that the exam topics can change over time, it might be worth the time to double-check the exam topics as listed on the Cisco website (www.cisco.com/go/ccent and www.cisco.com/go/ccna). If Cisco does happen to add exam topics at a later date, note that Appendix B, “ICND1 Exam Updates,” describes how to go to www.ciscopress.com and download additional information about those newly added topics.

About This Book

This book discusses the content and skills needed to pass the 100-101 ICND1 exam. That content also serves as basically the first half of the CCNA content, with this book’s companion title, CCNA ICND2 200-101 Official Cert Guide, Academic Edition, discussing the second half of the content.

Each of these books uses the same kinds of book features, so if you are reading both this book and the ICND2 book, there is no need to read the Introduction to the other book. Also, for those of you using both books to prepare for the 200-120 CCNA exam (rather than taking the two-exam option), the end of this Introduction lists a suggested reading plan.

Book Features

The most important and somewhat obvious objective of this book is to help you pass the ICND1 exam or the CCNA exam. In fact, if the primary objective of this book were different, the book’s title would be misleading! However, the methods used in this book to help you pass the exams are also designed to make you much more knowledgeable about how to do your job.

This book uses several tools to help you discover your weak topic areas, to help you improve your knowledge and skills with those topics, and to prove that you have retained your knowledge of those topics. So, this book does not try to help you pass the exams only by memorization, but by truly learning and understanding the topics. The CCNA Routing and Switching certification is the foundation for many of the Cisco professional certifications, and it would be a disservice to you if this book did not help you truly learn the material. Therefore, this book helps you pass the CCNA exam by using the following methods:

■ Helping you discover which exam topics you have not mastered
■ Providing explanations and information to fill in your knowledge gaps
■ Supplying exercises that enhance your ability to recall and deduce the answers to test questions
■ Providing practice exercises on the topics and the testing process through test questions on the DVD

Chapter Features

To help you customize your study time using these books, the core chapters have several features that help you make the best use of your time:

■ Introduction and Exam Topics: Each chapter begins with an introduction to the chapter’s main topics and a listing of the official exam topics covered in that chapter.
Foundation Topics: These are the core sections of each chapter. They explain the protocols, concepts, and configurations for the topics in that chapter.

Review Activities: At the end of the “Foundation Topics” section of each chapter, the “Review Activities” section lists a series of study activities that should be done at the end of the chapter. Each chapter includes the activities that make the most sense for studying the topics in that chapter. The activities include the following:

- Chapter Summaries: This is a thorough summary of the main chapter topics for you to review. Be sure you understand all these points in detail, and refer to the chapter if not.
- Review Questions: These questions offer a chance for you to assess how well you retained particular facts from the Foundation Topics.
- Review Key Topics: The Key Topic icon is shown next to the most important items in the “Foundation Topics” section of the chapter. The Key Topics Review activity lists the key topics from the chapter and their corresponding page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic.
- Complete Tables and Lists from Memory: To help you exercise your memory and memorize some lists of facts, many of the more important lists and tables from the chapter are included in a document on the DVD. This document lists only partial information, allowing you to complete the table or list.
- Define Key Terms: Although the exams are unlikely to ask a question like, “Define this term,” the CCNA exams require that you learn and know a lot of networking terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the Glossary at the end of this book.
- Command Reference Tables: Some book chapters cover a large amount of configuration and EXEC commands. These tables list the commands introduced in the chapter, along with an explanation. For exam preparation, use it for reference, but also read the table once when performing the Review Activities to make sure that you remember what all the commands do.

Part Review

The Part Review tasks help you prepare to apply all the concepts in this part of the book. (Each book part contains a number of related chapters.) The part review includes sample test questions, which require you to apply the concepts from multiple chapters in that part, uncovering what you truly understood and what you did not quite yet understand. The part review also uses mind map exercises that help you mentally connect concepts, configuration, and verification, so that no matter what perspective a single exam question takes, you can analyze and answer the question.

The part reviews list tasks, along with checklists so that you can track your progress. The following list explains the most common tasks you will see in the Part Review sections; note that not all Part Review sections use every type of task:

- Repeat Chapter Review Questions: Although you have already seen the Chapter Review questions from the chapters in a part, reanswering those questions can be a useful way to review facts. The Part Review section suggests that you repeat the Chapter Review questions, but using the PCPT exam software that comes with the book, for extra practice in answering multichoice questions on a computer.
- Answer Part Review Questions: The PCPT exam software includes several exam databases. One exam database holds Part Review questions, written specifically for Part Review. These questions purposefully include multiple concepts in each question, sometimes from multiple chapters, to help build the skills needed for the more challenging analysis questions on the exams.
Review Key Topics: Yes, again! They are indeed the most important topics in each chapter.

Create Configuration Mind Maps: Mind maps are graphical organizing tools that many people find useful when learning and processing how concepts fit together. The process of creating mind maps helps you build mental connections between concepts and configuration commands, as well as develop your recall of the individual commands. For this task, you can create the mind map on paper or using any mind-mapping or graphic organizer software. (For more information on mind maps, refer to this book's Introduction, in the section “About Mind Maps.”)

Create Verification Mind Maps: These mind-mapping exercises focus on helping you connect router and switch `show` commands to either networking concepts or to configuration commands. Simply create the mind maps on paper or use any mind-mapping or graphic organizer software.

Repeat Chapter Review Tasks: (Optional) Browse through all the Review Activities, and repeat any that you think might help you with review at this point.

Final Prep Tasks
Chapter 30, “Final Review,” near the end of this book, lists a series of preparation tasks that you can best use for your final preparation before taking the exam.

Other Features
In addition to the features in each of the core chapters, this book, as a whole, has additional study resources, including

DVD-based practice exam: The companion DVD contains the powerful Pearson IT Certification Practice Test exam engine. You can take simulated ICND1 exams, as well as simulated CCNA exams, with the DVD and activation code included in this book. (You can take simulated ICND2 and CCNA exams with the DVD in the *Cisco CCNA Routing and Switching ICND2 200-101 Official Cert Guide*, Academic Edition.)

CENT/CCNA ICND1 Simulator Lite: This lite version of the best-selling CCNA Network Simulator from Pearson provides you with a means, right now, to experience the Cisco command-line interface (CLI). There’s no need to go buy real gear or buy a full simulator to start learning the CLI. Just install it from the DVD in the back of this book.

eBook: This Academic Edition comes complete with a free copy of the *Cisco CCENT/CCNA ICND1 100-101 Official Cert Guide Premium Edition eBook and Practice Test*. The Premium Edition eBook provides you with three different eBook files: PDF, EPUB, and Mobi (native Kindle format). In addition, the Premium Edition enables you to link all the questions from the practice test software to the PDF file of the book, so you can link directly to the book content from each question for further study. Instructions for accessing your Premium Edition can be found on the access code card in the DVD sleeve.

Subnetting videos: The companion DVD contains a series of videos that show you how to calculate various facts about IP addressing and subnetting (in particular, using the shortcuts described in this book).

Subnetting practice: The companion DVD contains five appendixes (D through H), and each appendix contains a set of IPv4 subnetting practice problems, with the answers, and with explanations of how the answers were found. This is a great resource to get ready to do subnetting well and fast.

Other practice: The companion DVD contains four other appendixes (I through L) that each contain other practice problems related to a particular chapter from the book. Use these for more practice on the particulars with some of the math- and process-oriented activities in the chapters.
■ **Mentoring videos:** The DVD included with this book includes four other instructional videos, about the following topics: Switch Basics, CLI Navigation, Router Configuration, and VLANs.

■ **Companion website:** The website www.ciscopress.com/title/9781587144851 posts up-to-the-minute materials that further clarify complex exam topics. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam.

■ **PearsonITCertification.com:** The www.pearsonitcertification.com website is a great resource for all things IT-certification related. Check out the great CCNA Routing and Switching articles, videos, blogs, and other certification preparation tools from the industry’s best authors and trainers.

■ **CCNA Simulator:** If you are looking for more hands-on practice, you might want to consider purchasing the CCNA Network Simulator. You can purchase a copy of this software from Pearson at http://pearsonitcertification.com/networksimulator or from other retail outlets. To help you with your studies, I have created a mapping guide that maps each of the labs in the simulator to the specific sections in these CCNA Cert Guides. You can get this mapping guide for free on the “Extras” tab of the companion website.

■ **Author’s website and blogs:** The author maintains a website that hosts tools and links useful when studying for CCENT and CCNA Routing and Switching. The site lists information to help you build your own lab, study pages that correspond to each chapter of this book and the ICND2 book, and links to the author’s CCENT Skills blog and CCNA Skills blog. Start at www.certsksills.com; check the tabs for study and blogs in particular.

Book Organization, Chapters, and Appendixes

This book contains 29 core chapters, Chapters 1 through 29, with Chapter 30 including some suggestions for how to approach the actual exams. Each core chapter covers a subset of the topics on the ICND1 exam. The core chapters are organized into sections. The core chapters cover the following topics:

Part I: Networking Fundamentals

■ **Chapter 1, “The TCP/IP and OSI Networking Models,”** introduces the terminology surrounding two different networking architectures, namely Transmission Control Protocol/Internet Protocol (TCP/IP) and Open Systems Interconnection (OSI).

■ **Chapter 2, “Fundamental of Ethernet LANs,”** covers the concepts and terms used for the most popular option for the data link layer for local-area networks (LAN), namely Ethernet.

■ **Chapter 3, “Fundamentals of WANs,”** covers the concepts and terms used for the most popular options for the data link layer for wide-area networks (WAN), including High-Level Data Link Control (HDLC).

■ **Chapter 4, “Fundamentals of IPv4 Addressing and Routing”:** The Internet Protocol (IP) is the main network layer protocol for TCP/IP. This chapter introduces the basics of IP version 4 (IPv4), including IPv4 addressing and routing.

■ **Chapter 5, “Fundamentals of TCP/IP Transport and Applications”:** The Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the main transport layer protocols for TCP/IP. This chapter introduces the basics of TCP and UDP.

Part II: Ethernet LANs and Switches

■ **Chapter 6, “Building Ethernet LANs with Switches,”** deepens and expands the introduction to LANs from Chapter 2, discussing the roles and functions of LAN switches.
Chapter 7, “Installing and Operating Cisco LAN Switches,” explains how to access, examine, and configure Cisco Catalyst LAN switches.

Chapter 8, “Configuring Ethernet Switching,” shows how to configure a variety of switch features, including duplex and speed, port security, securing the CLI, and the switch IP address.

Chapter 9, “Implementing Ethernet Virtual LANs”: This chapter explains the concepts and configuration surrounding virtual LANs, including VLAN trunking and the VLAN Trunking Protocol.

Chapter 10, “Troubleshooting Ethernet LANs,” focuses on how to tell whether the switch is doing what it is supposed to be doing, mainly through the use of show commands.

Part III: IP Version 4 Addressing and Subnetting

Chapter 11, “Perspectives on IPv4 Subnetting,” walks you through the entire concept of subnetting, from starting with a Class A, B, or C network; analyzing requirements; making choices; calculating the resulting subnets; and assigning those on paper, all in preparation to deploy and use those subnets by configuring the devices.

Chapter 12, “Analyzing Classful IPv4 Networks”: IPv4 addresses originally fell into several classes, with unicast IP addresses being in Class A, B, and C. This chapter explores all things related to address classes and the IP network concept created by those classes.

Chapter 13, “Analyzing Subnet Masks”: In most jobs, someone else came before you and chose the subnet mask used in a network. What does that mean? What does that mask do for you? This chapter focuses on how to look at the mask (and IP network) to discover key facts, like the size of a subnet (number of hosts) and the number of subnets in the network.

Chapter 14, “Analyzing Existing Subnets”: Most troubleshooting of IP connectivity problems starts with an IP address and mask. This chapter takes that paired information and shows you how to find and analyze the subnet in which that IP address resides, including finding the subnet ID, range of addresses in the subnet, and subnet broadcast address.

Part IV: Implementing IP Version 4

Chapter 15, “Operating Cisco Routers,” is like Chapter 8, but it focuses on routers instead of switches.

Chapter 16, “Configuring IPv4 Addresses and Routes,” discusses how to add IPv4 address configuration to router interfaces, the routes that the router creates as a result, and how to configure static IPv4 routes.

Chapter 17, “Learning IPv4 Routes with OSPFv2,” explains how routers work together to find all the best routes to each subnet using a routing protocol. This chapter also shows how to configure the OSPF routing protocol for use with IPv4.

Chapter 18, “Configuring and Verifying Host Connectivity,” discusses several tools useful when working with IPv4 configuration on hosts. In particular, this chapter discusses DHCP, ping, and traceroute and how to configure IPv4 settings on a host.

Part V: Advanced IPv4 Addressing Concepts

Chapter 19, “Subnet Design,” reverses the approach to IPv4 subnetting as compared to Part III of this book. Instead, this chapter considers questions about why a particular mask might be chosen, and if chosen, what subnet IDs exist.

Chapter 20, “Variable-Length Subnet Masks,” takes IPv4 subnetting to another challenge level, in which different subnets in the same network can use a different subnet mask so that the subnets in the same network have different sizes.
Chapter 21, “Route Summarization,” looks at a process that can be configured for routing protocols so that the protocol advertises one route, for a larger set of addresses, rather than many routes, each for a smaller set of addresses.

Part VI: IPv4 Services

Chapter 22, “Basic IPv4 Access Control Lists”: This chapter examines how standard IP ACLs can filter packets based on the source IP address so that a router will not forward the packet.

Chapter 23, “Advanced IPv4 ACLs and Device Security”: This chapter examines both named and numbered ACLs, with emphasis on how extended IP ACLs can match packets based on both source and destination IP address, and by matching source and destination TCP and UDP port numbers.

Chapter 24, “Network Address Translation”: This chapter closely examines the concepts behind the depletion of the IPv4 address space, and how NAT, in particular the Port Address Translation (PAT) option, helps solve the problem. The chapter also shows how to configure NAT on routers using the IOS CLI.

Part VII: IP Version 6

Chapter 25, “Fundamentals of IP Version 6,” discusses the most basic concepts of IP version 6, focusing on the rules for writing and interpreting IPv6 addresses.

Chapter 26, “IPv6 Addressing and Subnetting,” works through the two branches of unicast IPv6 addresses—global unicast addresses and unique local addresses—that act somewhat like IPv4 public and private addresses, respectively. This chapter also shows how IPv6 implements subnetting.

Chapter 27, “Implementing IPv6 Addressing on Routers,” shows how to configure IPv6 routing and addresses on routers. It also shows the link-local unicast address, plus other special addresses used by routers.

Chapter 28, “Implementing IPv6 Addressing on Hosts,” shows how to add IPv6 configuration on hosts, with emphasis on the two methods by which hosts can learn IPv6 settings: stateful DHCPv6 and Stateless Address Autoconfiguration (SLAAC).

Chapter 29, “Implementing IPv6 Routing,” shows how to add routes to an IPv6 router’s routing table, both through static configuration and with OSPF version 3 (OSPFv3).

Part VIII: Final Preparation

Chapter 30, “Final Review,” suggests a plan for final preparation after you have finished the core parts of the book, in particular explaining the many study options available in the book.

Part IX: Appendixes (In Print)

Appendix A, “Numeric Reference Tables,” lists several tables of numeric information, including a binary-to-decimal conversion table and a list of powers of 2.

Appendix B, “ICND1 Exam Updates,” covers a variety of short topics that either clarify or expand upon topics covered earlier in the book. This appendix is updated from time to time, and posted at www.ciscopress.com/title/1587143852, with the most recent version available at the time of printing included here as Appendix B. (The first page of the appendix includes instructions on how to check to see whether a later version of Appendix B is available online.)

The Glossary contains definitions for all the terms listed in the “Definitions of Key Terms” sections at the conclusion of Chapters 1 through 29.
Appendixes (on the DVD)

The following appendixes are available in digital format on the DVD that accompanies this book:

- Appendix C, “Answers to the Review Questions,” includes the explanations to all the questions from Chapters 1 through 29.
- Appendix D, “Practice for Chapter 12: Analyzing Classful IPv4 Networks,” lists practice problems associated with Chapter 12. In particular, the practice questions ask you to find the classful network number in which an address resides, and all other facts about that network.
- Appendix E, “Practice for Chapter 13: Analyzing Subnet Masks,” lists practice problems associated with Chapter 13. In particular, the practice questions ask you to convert masks between the three formats, and to examine an existing mask, determine the structure of the IP addresses, and calculate the number of hosts/subnet and number of subnets.
- Appendix F, “Practice for Chapter 14: Analyzing Existing Subnets,” lists practice problems associated with Chapter 14. In particular, the practice questions ask you to take an IP address and mask, and find the subnet ID, subnet broadcast address, and range of IP addresses in the subnet.
- Appendix G, “Practice for Chapter 19: Subnet Design,” lists practice problems associated with Chapter 19. In particular, the practice questions ask you to examine a set of requirements, determine which mask (if any) meets those requirements, and choose the best mask based on the requirements. It also asks you to find all the subnet IDs in a classful network when given a single mask used throughout the network.
- Appendix H, “Practice for Chapter 20: Variable-Length Subnet Masks,” lists practice problems associated with Chapter 20, including problems in which you look for a place to add a new VLSM subnet so that no VLSM overlap is created.
- Appendix I, “Practice for Chapter 21: Route Summarization,” lists practice problems associated with Chapter 21. In particular, the practice questions ask you to find the best summary route that includes all the subnets in a list.
- Appendix J, “Practice for Chapter 22: Basic IPv4 Access Control Lists,” lists practice problems associated with Chapter 22. In particular, the practice questions give you a chance to practice working with ACL wildcard masks.
- Appendix L, “Practice for Chapter 27: Implementing IPv6 on Routers,” lists practice problems associated with Chapter 27. In particular, it provides practice in using the EUI-64 process to build an IPv6 address, and in how to find the solicited node multicast used based on a unicast address.
- Appendix M, “Memory Tables,” holds the key tables and lists from each chapter, with some of the content removed. You can print this appendix and, as a memory exercise, complete the tables and lists. The goal is to help you memorize facts that can be useful on the exams.
- Appendix N, “Memory Tables Answer Key,” contains the answer key for the exercises in Appendix M.
- Appendix O, “Mind Map Solutions,” shows an image of sample answers for all the part-ending mind map exercises.
- Appendix P, “Study Planner,” is a spreadsheet with major study milestones, where you can track your progress through your study.
Reference Information

This short section contains a few topics available for reference elsewhere in the book. You can read these when you first use the book, but you can also skip these topics and refer back to them later. In particular, make sure to note the final page of this Introduction, which lists several contact details, including how to get in touch with Cisco Press.

Install the Pearson IT Certification Practice Test Engine and Questions

The DVD in the book includes the Pearson IT Certification Practice Test (PCPT) engine—software that displays and grades a set of exam-realistic multiple-choice, drag and drop, fill-in-the-blank, and Testlet questions. Using the Pearson IT Certification Practice Test engine, you can either study by going through the questions in Study Mode, or take a simulated ICND1 or CCNA exam that mimics real exam conditions.

The installation process requires two major steps. The DVD in the back of this book has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam—the database of ICND1 and CCNA exam questions—is not on the DVD. After you install the software, the PCPT software will download the latest versions of both the software and the question databases for this book using your Internet connection.

NOTE The cardboard DVD case in the back of this book includes both the DVD and a piece of thick paper. The paper lists the digital product voucher code and instructions for accessing the eBook files and for the practice exams associated with this book. Do not lose the code.

Redeem Your Digital Product Voucher to Access the eBook and Practice Test Code

To use the practice test software, you must first redeem your digital product voucher found on the card in the DVD sleeve. To do so, follow these steps:

Step 1. If you have a Cisco Press account, go to www.ciscopress.com/account and log in. If you do not have a Cisco Press account, go to www.ciscopress.com/join and create an account.

Step 2. On your Account page, find the “Digital Product Voucher” box at the top of the right column.

Step 3. Type in your digital product voucher code found on the DVD card, and click Submit.

NOTE Codes are one-time use and may not be shared.

Step 4. The products and download link will now be listed under Digital Purchases on your Account page. Click the “refresh” links to generate your eBook files for download. Use the access code to unlock and download the Premium Edition practice exams in the Pearson IT Certification Practice Test software, as described in the following sections.

Install the Software from the DVD

The software installation process is pretty routine as compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the
software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the DVD sleeve. The following steps outline the installation process:

Step 1. Insert the DVD into your PC.

Step 2. The software that automatically runs is the Cisco Press software to access and use all DVD-based features, including the exam engine and the DVD-only appendixes. From the main menu, click the Install the Exam Engine option.

Step 3. Respond to windows prompts as with any typical software installation process.

The installation process will give you the option to activate your exam with the activation code supplied on the paper in the DVD sleeve. This process requires that you establish a Pearson website login. You will need this login to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

When the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process) as follows:

Step 1. Start the PCPT software from the Windows Start menu or from your desktop shortcut icon.

Step 2. To activate and download the exam associated with this book, from the My Products or Tools tab, click the Activate button.

Step 3. At the next screen, enter the activation key listed under the Premium Edition product on your account page on www.ciscopress.com. When it is entered, click the Activate button.

Step 4. The activation process will download the practice exam. Click Next, and then click Finish.

After the activation process is completed, the My Products tab should list your new exam. If you do not see the exam, make sure that you have selected the My Products tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the Open Exam button.

To update a particular product's exams that you have already activated and downloaded, simply select the Tools tab and click the Update Products button. Updating your exams will ensure that you have the latest changes and updates to the exam data.

If you want to check for updates to the PCPT software, simply select the Tools tab and click the Update Application button. This will ensure that you are running the latest version of the software engine.

Activating Other Products

The exam software installation process and the registration process only have to happen once. Then for each new product, only a few steps are required. For example, if you buy another new Cisco Press Official Cert Guide or Pearson IT Certification Cert Guide, extract the activation code from the DVD sleeve in the back of that book—you don’t even need the DVD at this point. From there, all you have to do is start PCPT (if not still up and running) and perform Steps 2 through 4 from the previous list.
PCPT Exam Databases with This Book

The practice test questions come in different exams or exam databases. When you install the PCPT software, and type in the activation code, the PCPT software downloads the latest version of all these exam databases. And with the ICND1 book alone, you get 10 different “exams,” or 10 different sets of questions, as listed in Figure I-2.

![Exam Databases Diagram]

Use for Part Review
- Chapter Review (“Book”)
- Part Review

Use for Exam Review
- ICND1 Exam #1
- ICND1 Exam #2
- CCNA Exam #1
- CCNA Exam #2

Figure I-2 PCPT Exams/Exam Databases and When to Use Them

You can choose to use any of these exam databases at any time, both in study mode and practice exam mode. However, many people find it best to save some of the exams until exam review time, after you have finished reading the entire book. Figure I-2 begins to suggest a plan, spelled out here:

- During part review, use PCPT to review the Chapter Review questions (designated as “Book Questions” in the software) for that part, using study mode.
- During part review, use the questions built specifically for part review (the Part Review questions) for that part of the book, using study mode.
- Save the remaining exams to use with the Final Review chapter, using practice exam mode, as discussed in Chapter 30.

The two modes inside PCPT give you better options for study versus practicing a timed exam event. In study mode, you can see the answers immediately, so you can study the topics more easily. Also, you can choose a subset of the questions in an exam database—for example, you can view questions from only the chapters in one part of the book.

Practice exam mode creates an event somewhat like the actual exam. It gives you a preset number of questions, from all chapters, with a timed event. Practice exam mode also gives you a score for that timed event.

How to View Only Chapter Review Questions by Part

Each Part Review section asks you to repeat the Chapter Review questions from the chapters in that part. While you can simply scan the book pages to review these questions, it is slightly better to review these questions from inside the PCPT software, just to get a little more practice in how to read questions from the testing software. But, you can just read them in the book as well.

To view these Chapter Review (book) questions inside the PCPT software, you need to select “Book Questions” and the chapters in this part, using the PCPT menus. To do so, follow these steps:

Step 1. Start the PCPT software.

Step 2. From the main (home) menu, select the item for this product, with a name like Cisco CCENT/CCNA ICND1 100-101 Official Cert Guide, and click Open Exam.
Step 3. The top of the next window that appears should list some exams; select the check box beside ICND1 Book Questions and deselect the other check boxes. This selects the “book” questions, that is, the Chapter Review questions from the end of each chapter.

Step 4. In this same window, click at the bottom of the screen to deselect all objectives (chapters). Then select the box beside each chapter in the part of the book you are reviewing.

Step 5. Select any other options on the right side of the window.

Step 6. Click Start to start reviewing the questions.

How to View Only Part Review Questions by Part

The exam databases you get with this book include a database of questions created solely for study during the Part Review process. Chapter Review questions focus more on facts, with basic application. The Part Review questions instead focus more on application, and look more like real exam questions.

To view these questions, follow the same process as you did with Chapter Review/Book questions, but select the “Part Review” database instead of the “Book” database. Specifically:

Step 1. Start the PCPT software.

Step 2. From the main (home) menu, select the item for this product, with a name like CCENT/CCNA ICND1 100-101 Official Cert Guide, and click Open Exam.

Step 3. The top of the next window should list some exams; select the check box beside Part Review Questions and deselect the other check boxes. This selects the questions intended for part-ending review.

Step 4. In this same window, click at the bottom of the screen to deselect all objectives, and then select (check) the box beside the book part you want to review. This tells the PCPT software to give you Part Review questions from the selected part.

Step 5. Select any other options on the right side of the window.

Step 6. Click Start to start reviewing the questions.

About Mind Maps

Mind maps are a type of visual organization tool that can be used for many purposes. For example, mind maps can be used as an alternative way to take notes.

Mind maps can also be used to improve how your brain organizes concepts. Mind maps stress the connections and relationships between ideas. When you spend time thinking about an area of study, and organize your ideas into a mind map, you strengthen existing mental connections, create new connections, all into your own frame of reference.

In short, mind maps help you internalize what you learn.

Mind Map Mechanics

Each mind map begins with a blank piece of paper or blank window in an application. You then add a large central idea, with branches that move out in any direction. The branches contain smaller concepts, ideas, commands, pictures—whatever idea needs to be represented. Any concepts that can be grouped should be put near each other. As need be, you can create deeper
and deeper branches, although for this book’s purposes, most mind maps will not go beyond a couple of levels.

NOTE While many books have been written about mind maps, Tony Buzan often gets credit for formalizing and popularizing mind maps. You can learn more about mind maps at his website, www.thinkbuzan.com.

For example, Figure I-3 shows a sample mind map that begins to output some of the IPv6 content from Part VII of the book. The central concept of the mind map is IPv6 addressing, and the Part Review activity asks you to think of all facts you learned about IPv6 addressing and organize them with a mind map. The mind map allows a more visual representation of the concepts as compared with just written notes.

![Sample Mind Map](image)

Figure I-3 Sample Mind Map

About Mind Maps Used During Part Review

This book suggests mind-mapping exercises during Part Review. This short topic lists some details about the Part Review mind-mapping exercises, listed in one place for reference.

The Part Review sections use two main types of mind-mapping exercises:

Configuration exercises ask you to recall the related configuration commands and group them. For example, in a configuration exercise, related commands that happen to be interface subcommands should be grouped, but shown as being inside interface configuration mode.

Verification exercises ask you to think about the output of `show` commands and link the output to either the configuration commands that cause that output or the concepts that explain the meaning of some of that output.

Create these configuration mind maps on paper, using any mind-mapping software, or even any drawing application. Many mind-mapping apps exist as well. Regardless of how you draw them, follow these rules:

- If you have only a little time for this exercise, spend your time making your own mind map, instead of looking at suggested answers. The learning happens when thinking through the problem of making your own mind map.
- Set aside the book and all your notes, and do not look at them when first creating these maps, and do as much as you can without looking at the book or your notes (or Google, or anything else).
- Try all the mind maps listed in a Part Review section before looking at your notes.
- Finally, look at your notes to complete all the mind maps.
- Make a note of where you put your final results so that you can find them later during final exam review.
Finally, when learning to use these tools, take two other important suggestions as well. First, use as few words as possible for each node in your mind map. The point is for you to remember the idea and its connections, rather than explain the concept to someone else. Just write enough to remind yourself of the concept. Second, if the mind map process just is not working for you, discard the tool. Instead, take freeform notes on a blank piece of paper. Try to do the important part of the exercise—the thinking about what concepts go together—without letting the tool get in the way.

About Building Hands-On Skills
You need skills in using Cisco routers and switches, specifically the Cisco command-line interface (CLI). The Cisco CLI is a text-based command-and-response user interface in which you type a command and the device (a router or switch) displays messages in response. To answer Sim and Simlet questions on the exams, you need to know a lot of commands, and you need to be able to navigate to the right place in the CLI to use those commands.

The best way to master these commands is to use them. Sometime during your initial reading of the first part of this book, you need to decide how you personally plan to build your CLI skills. This next topic discusses your options for getting the tools you need to build CLI skills.

Overview of Lab Options
To effectively build your hands-on CLI skills, you either need real routers and switches, or at least something that acts like routers and switches. People who are new to Cisco technology often choose from a few options to get those skills.

First, you can use real Cisco routers and switches. You can buy them, new or used, or borrow them at work. You can rent them for a fee. You can even rent virtual Cisco router and switch lab pods from Cisco, in an offering called Cisco Learning Labs.

Simulators provide another option. Router and switch simulators are software products that mimic the behavior of the Cisco CLI, generally for the purpose of allowing people to learn. These products have an added advantage when learning: They usually have lab exercises as well. Simulators come in many shapes and sizes, but the publisher sells simulators that are designed to help you with CCENT and CCNA study—plus they match this book! The Pearson CCENT Network Simulator and the Pearson CCNA Network Simulator both provide an excellent environment to practice the commands, as well as hundreds of focused labs to help you learn what you need to know for the exams. Both products have the same software code base. The CCNA product simply has labs for both ICND1 and ICND2, while the CCENT product has only the ICND1 labs.

This book does not tell you what option you have to use, but you should plan on getting some hands-on practice somehow. The important thing to know is that most people need to practice using the Cisco CLI to be ready to pass these exams.

I (Wendell) have collected some information and opinions about this decision on my website, at certskills.com/labgear. Those pages link to sites for Dynamips and for the Pearson Simulator. Also, because the information never seemed to exist in any one place, this website includes many details about how to build a CCNA lab using used real Cisco routers and switches.

A Quick Start with Pearson Network Simulator Lite
The decision of how to get hands-on skills can be a little scary at first. The good news: You have a free and simple first step: Install the Pearson NetSim Lite that comes with this book.
This lite version of the best-selling CCNA Network Simulator from Pearson provides you with a means, right now, to experience the Cisco command-line interface (CLI). There’s no need to go buy real gear or buy a full simulator to start learning the CLI. Just install it from the DVD in the back of this book.

Of course, one reason that NetSim Lite comes on the DVD is that the publisher hopes you will buy the full product. However, even if you do not use the full product, you can still learn from the labs that come with NetSim Lite while deciding about what options to pursue.

NOTE The ICND1 and ICND2 books each contain a different version of the Sim Lite product, each with labs related to the matching book. If you bought both books, make sure that you install both Sim Lite products.

For More Information

If you have any comments about the book, submit them through www.ciscopress.com. Just go to the website, select Contact Us, and type your message.

Cisco might make changes that affect the CCNA Routing and Switching certification from time to time. You should always check www.cisco.com/go/ccna and www.cisco.com/go/ccent for the latest details.

The *Cisco CCENT/CCNA ICND1 100-101 Official Cert Guide*, Academic Edition helps you attain both CCENT and CCNA Routing and Switching certifications. This is the CCENT/CCNA ICND1 certification book from the only Cisco-authorized publisher. We at Cisco Press believe that this book certainly can help you achieve CCNA Routing and Switching certification, but the real work is up to you! I trust that your time will be well spent.
Getting Started

This Getting Started section provides some valuable advice about how to use the study features in this book. Taking a few minutes to read through this short section before going on to Chapter 1 helps you get the most out of the book, regardless of whether you are using it with the end goal of preparing for the CCNA Routing and Switching certification exams or just learning basic networking concepts.

A Brief Perspective on Cisco Certification Exams

Cisco sets the bar pretty high for passing the ICND1, ICND2, and/or CCNA exams. Most anyone can study and pass these exams, but it takes more than just a quick read through the book and the cash to pay for the exam.

The challenge of these exams comes from many angles. Each of these exams covers a lot of concepts, as well as many commands specific to Cisco devices. Beyond knowledge, these Cisco exams also require deep skills. You must be able to analyze and predict what really happens in a network. You must be able to configure Cisco devices to work correctly in those networks. And you must be ready to troubleshoot problems when the network does not work correctly.

The more challenging questions on these exams work a lot like a jigsaw puzzle—but with four out of every five puzzle pieces not even in the room. To solve the puzzle, you have to mentally re-create the missing pieces. To do that, you must know each networking concept and remember how the concepts work together. You also have to match the concepts with what happens on the devices with the configuration commands that tell the devices what to do. You also have to connect the concepts, and the configuration, with the meaning of the output of various troubleshooting commands, to analyze how the network is working and why it is not working right now.

For example, you need to know IP subetting well, and that topic includes some math. A simple question—one that might be too simple to be a real exam question—would tell you enough of the numbers so that all you have to do is the equivalent of a little addition or multiplication to find a number called a subnet ID.

A more exam-realistic question makes you connect concepts together to set up the math problem. For example, a question might give you a network diagram and ask you to list the subnet ID used in one part of the diagram. But the diagram has no numbers at all. Instead, you have the output of a command from a router, for example, the `show ip ospf database` command, which does list some numbers. But before you can use those numbers, you might need to predict how the devices are configured and what other troubleshooting commands would tell you. So you end up with a question like a puzzle, as shown in Figure 1. The question puts some pieces in the right place; you have to find other pieces using different commands and by applying your knowledge. And some pieces will just remain unknown for a given question.
Figure 1 Filling in Puzzle Pieces with Your Analysis Skills

These skills require that you prepare by doing more than just reading and memorizing what you read. Of course, you will need to read many pages in this book to learn many individual facts and how these facts are related to each other. But a big part of this book lists exercises beyond reading, exercises that help you build the skills to solve these networking puzzles.

Suggestions for How to Approach Your Study with This Book

Whether you are using this book with the goal of learning introductory networking concepts or to prepare for the CCNA Routing and Switching exams, there are a few things you should consider about how to use it to achieve your goals. What do you need to do to be ready to pass the CCNA Routing and Switching exams or to be successful as a networking professional, beyond reading and remembering all the facts? You need to develop skills. You need to mentally link each idea with other related ideas. Doing that requires additional work. To help you along the way, the next few pages give you five key perspectives about how to use this book to build those skills and make those connections, before you dive into this exciting but challenging world of learning networking on Cisco gear.

Not One Book: 29 Short Read-and-Review Sessions

First, look at your study as a series of read-and-review tasks, each on a relatively small set of related topics.

Each of the core chapters of this book (1 through 29) have around 22 pages of content on average. If you glance around any of those chapters, you will find a heading called “Foundation Topics” on about the fifth page of each chapter. From there to the “Review Activities” section at the end of the chapter, the chapters average about 22 pages.

So, do not approach this book as one big book. Treat the task of your first read of a chapter as a separate task. Anyone can read 22 pages. Having a tough day? Each chapter has two or three major sections, so read just one of them. Or, do some related labs or review something you have already read. This book organizes the content into topics of a more manageable size to give you something more digestible to manage your study time throughout the book.
For Each Chapter, Do Not Neglect Practice

Next, plan to do the Review Activities at the end of each chapter.

Each chapter ends with practice and study tasks under a heading “Review Activities.” Doing these tasks, and doing them at the end of the chapter, really does help you get ready. Do not put off using these tasks until later! The chapter-ending “Review Activities” section helps you with the first phase of deepening your knowledge and skills of the key topics, remembering terms and linking the concepts together in your brain so that you can remember how it all fits together.

The following list describes the majority of the activities you will find in “Review Activities” sections:

- Chapter summary
- Review questions
- Review key topics
- Complete memory tables
- Define key terms
- Review command summary tables
- Review feature configuration checklists
- Do subnetting exercises

Use Book Parts for Major Milestones

Third, view the book as having seven major milestones, one for each major topic.

Beyond the more obvious organization into chapters, this book also organizes the chapters into seven major topic areas called book parts. Completing each part means that you have completed a major area of study. At the end of each part, take a little extra time. Do the Part Review tasks at the end of each part. Ask yourself where you are weak and where you are strong. And give yourself some reward for making it to a major milestone. Figure 2 lists the seven parts in this book.

Seven Major Milestones: Book Parts

<table>
<thead>
<tr>
<th>Networking Fundamentals</th>
<th>Part Prep Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet LANs and Switches</td>
<td>Part Prep Tasks</td>
</tr>
<tr>
<td>IP Version 4 Addressing and Subnetting</td>
<td>Part Prep Tasks</td>
</tr>
<tr>
<td>Implementing IP Version 4</td>
<td>Part Prep Tasks</td>
</tr>
<tr>
<td>Advanced IPv4 Addressing Concepts</td>
<td>Part Prep Tasks</td>
</tr>
<tr>
<td>IPv4 Services</td>
<td>Part Prep Tasks</td>
</tr>
<tr>
<td>IP Version 6</td>
<td>Part Prep Tasks</td>
</tr>
</tbody>
</table>

Figure 2 Parts as Major Milestones
The tasks in the Part Review sections focus on helping you apply concepts (from that book part) to new scenarios for the exam. Some tasks use sample test questions so that you can think through and analyze a problem. This process helps you refine what you know and to realize what you did not quite yet understand. Some tasks use mind map exercises that help you mentally connect the theoretical concepts with the configuration and verification commands. These Part Review activities help build these skills.

Note that the part review directs you to use the Pearson Certification Practice Test (PCPT) software to access the practice questions. Each part review tells you to repeat the Chapter Review questions, but using the PCPT software. Each part review also directs you how to access a specific set of questions reserved for reviewing concepts at part review. Note that the PCPT software and exam databases with this book give you the rights to additional questions as well; Chapter 30, "Final Review," gives some recommendations on how to best use those questions for your final exam preparation.

Also, consider setting a goal date for finishing each part of the book, and a reward as well! Plan a break, some family time, some time out exercising, eating some good food—whatever helps you get refreshed and motivated for the next part.

Use the Final Review Chapter to Refine Skills

Fourth, do the tasks outlined in the final preparation chapter (Chapter 30) at the end of this book.

The Final Review chapter has two major goals. First, it helps you further develop the analysis skills you need to answer the more complicated questions on the exam. Many questions require that you connect ideas about concepts, configuration, verification, and troubleshooting. More reading on your part does not develop all these skills; this chapter's tasks give you activities to further develop these skills.

The tasks in the Final Review chapter also help you find your weak areas. This final element gives you repetition with high-challenge exam questions, uncovering any gaps in your knowledge. Many of the questions are purposefully designed to test your knowledge of the most common mistakes and misconceptions, helping you avoid some of the common pitfalls people experience with the actual exam.

Set Goals and Track Your Progress

Finally, before you start reading the book and doing the rest of these study tasks, take the time to make a plan, set some goals, and be ready to track your progress.

While making lists of tasks might or might not appeal to you, depending on your personality, goal setting can help everyone studying for these exams. And to do the goal setting, you need to know what tasks you plan to do.

As for the list of tasks to do when studying, you do not have to use a detailed task list. (You could list every single task in every chapter-ending “Review Activities” section, every task in the Part Review tasks section, and every task in the Final Preparation Tasks chapter.) However, listing the major tasks can be enough.

You should track at least two tasks for each typical chapter: reading the “Foundation Topics” section and doing the “Review Activities” section at the end of the chapter. And of course, do not forget to list tasks for Part Reviews and Final Review. Table 1 shows a sample for Part I of this book.
Table 1 Sample Excerpt from a Planning Table

<table>
<thead>
<tr>
<th>Element</th>
<th>Task</th>
<th>Goal Date</th>
<th>First Date Completed</th>
<th>Second Date Completed (Optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Read Foundation Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Do Review Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Read Foundation Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Do Review Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Read Foundation Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Do Review Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Read Foundation Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Do Review Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Read Foundation Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Do Review Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part I Review</td>
<td>Do Part Review Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE Appendix P, “Study Planner,” on the DVD that comes with this book, contains a complete planning checklist like Table 1 for the tasks in this book. This spreadsheet allows you to update and save the file to note your goal dates and the tasks you have completed.

Use your goal dates as a way to manage your study, and not as a way to get discouraged if you miss a date. Pick reasonable dates that you can meet. When setting your goals, think about how fast you read and the length of each chapter's “Foundation Topics” section, as listed in the Table of Contents. Then, when you finish a task sooner than planned, move up the next few goal dates.

If you miss a few dates, do not start skipping the tasks listed at the ends of the chapters! Instead, think about what is impacting your schedule—real life, commitments, and so on—and either adjust your goals or work a little harder on your study.

Other Small Tasks Before Getting Started

You will need to do a few overhead tasks to install software, find some PDFs, and so on. You can do these tasks now, or do them in your spare moments when you need a study break during the first few chapters of the book. But do these early, so that if you do stumble upon an installation problem, you have time to work through it before you need a particular tool.

Register (for free) at the Cisco Learning Network (CLN, http://learningnetwork.cisco.com) and join the CCENT and CCNA study groups. These mailing lists allow you to lurk and participate in discussions about topics related to CCENT (ICND1) and CCNA (ICND1 + ICND2). Register, join the groups, and set up an email filter to redirect the messages to a separate folder. Even if you do not spend time reading all the posts yet, later, when you have time to read, you can browse through the posts to find interesting topics. Or just search the posts from the CLN website.
Find and print a copy of Appendix M, “Memory Tables.” Many of the Chapter Review sections use this tool, in which you take the incomplete tables from the appendix and complete the table to help you remember some key facts.

If you bought an eBook version of this book, find and download the media files (videos and Sim Lite software) per the instructions supplied on the last page of the eBook file under the heading “Where Are the Companion Files?”

Install the PCPT exam software and activate the exams. For more details on how to load the software, refer to the Introduction, under the heading “Install the Pearson IT Certification Practice Test Engine and Questions.”

Finally, install the Sim Lite software (unless you bought the full simulator product already). The Sim Lite that comes with this book contains a subset of the lab exercises in the full Pearson Network Simulator product.

Getting Started—Now

Now dive in to your first of many short, manageable tasks: reading Chapter 1, “The TCP/IP and OSI Networking Models.” Enjoy!
IPv4 has been a solid and highly useful part of the growth of TCP/IP and the Internet. For most of the long history of the Internet, and for most corporate networks that use TCP/IP, IPv4 is the core protocol that defines addressing and routing. However, even though IPv4 has many great qualities, it does have some shortcomings, creating the need for a replacement protocol: IP version 6 (IPv6).

IPv6 defines the same general functions as IPv4, but with different methods of implementing those functions. For example, both IPv4 and IPv6 define addressing, the concepts of subnetting larger groups of addresses into smaller groups, headers used to create an IPv4 or IPv6 packet, and the rules for routing those packets. At the same time, IPv6 handles the details differently, for example, using a 128-bit IPv6 address rather than the 32-bit IPv4 address.

This chapter focuses on the core network layer functions of addressing and routing. The first section of this chapter looks at the big concepts, while the second section looks at the specifics of how to write and type IPv6 addresses.

This chapter covers the following exam topics:

Operation of IP Data Networks
- Predict the data flow between two hosts across a network.

IP addressing (IPv4 / IPv6)
- Identify the appropriate IPv6 addressing scheme to satisfy addressing requirements in a LAN/WAN environment.
- Describe IPv6 addresses
 - Global unicast

IP Routing Technologies
- Differentiate methods of routing and routing protocols
 - next hop
 - ip routing table

Troubleshooting
- Troubleshoot and correct common problems associated with IP addressing and host configurations.
Foundation Topics

Introduction to IPv6

IP version 6 (IPv6) serves as the replacement protocol for IP version 4 (IPv4).

Unfortunately, that one bold statement creates more questions than it answers. Why does IPv4 need to be replaced? If IPv4 needs to be replaced, when will that happen—and will it happen quickly? What exactly happens when a company or the Internet replaces IPv4 with IPv6? And the list goes on.

While this introductory chapter cannot get into every detail of why IPv4 needs to eventually be replaced by IPv6, the clearest and most obvious reason for migrating TCP/IP networks to use IPv6 is growth. IPv4 uses a 32-bit address, which totals to a few billion addresses. Interestingly, that seemingly large number of addresses is too small. IPv6 increases the address to a 128 bits in length. For perspective, IPv6 supplies over $10,000,000,000,000,000,000,000,000,000,000$ times as many addresses as IPv4.

The fact that IPv6 uses a different size address field, with some different addressing rules, means that many other protocols and functions change as well. For example, IPv4 routing—in other words, the packet-forwarding process—relies on an understanding of IPv4 addresses. To support IPv6 routing, routers must understand IPv6 addresses and routing. To dynamically learn routes for IPv6 subnets, routing protocols must support these different IPv6 addressing rules, including rules about how IPv6 creates subnets. As a result, the migration from IPv4 to IPv6 is much more than changing one protocol (IP), but it impacts many protocols.

This first section of the chapter discusses some of the reasons for the change from IPv4 to IPv6, along with the protocols that must change as a result.

The Historical Reasons for IPv6

In the last 40 years, the Internet has gone from its infancy to being a huge influence in the world. It first grew through research at universities, from the ARPANET beginnings of the Internet in the late 1960s into the 1970s. The Internet kept growing fast in the 1980s, with the Internet's fast growth still primarily driven by research and the universities that joined in that research. By the early 1990s, the Internet began to transform to allow commerce, allowing people to sell services and products over the Internet, which drove yet another steep spike upward in the growth of the Internet. Figure 25-1 shows some of these major milestones.

![Figure 25-1](image_url)
Some Major Events in the Growth of the Internet

Note that the figure ends with an event in which IANA/ICANN, the groups that assign public IPv4 addresses, gave out the last public IPv4 address blocks. IANA/ICANN assigned the final Class A networks to each of the Regional Internet Registries (RIR) in February 2011. This event was an important event for the Internet, bringing us closer to the day when a company simply cannot get new IPv4 public address blocks.
In other words, one day, a company could want to connect to the Internet, but it cannot, just because IPv4 has no public addresses left.

Even though the press made a big deal about running out of IPv4 addresses in 2011, those who care about the Internet knew about this potential problem since the late 1980s. The problem, generally called the **IPv4 address exhaustion** problem, could literally have caused the huge growth of the Internet in the 1990s to have come to a screeching halt! Something had to be done.

The IETF came up with several short-term solutions to make IPv4 last longer, hoping to put off the day when the world ran out of public IPv4 addresses. The two primary short-term solutions were Network Address Translation/Port Address Translation (NAT/PAT) and classless interdomain routing (CIDR). Both worked wonderfully. At the time, the Internet community hoped to extend the life of IPv4 for a few more years. In practice, these tools helped extend IPv4’s life another couple of decades, as seen in the timeline of Figure 25-2.

![Timeline for IPv4 Address Exhaustion and Short-/Long-Term Solutions](image)

Figure 25-2 Timeline for IPv4 Address Exhaustion and Short-/Long-Term Solutions

NOTE The website www.potaroo.net, by Geoff Huston, shows many interesting statistics about the growth of the Internet, including IPv4 address exhaustion.

While the short-term solutions to the IPv4 address exhaustion problem gave us all a few more decades to use IPv4, IPv6 gives the world a long-term solution to the problem. IPv6 replaces IPv4 as the core Layer 3 protocol, with a new IPv6 header and new IPv6 addresses. The address size supports a huge number of addresses, solving the address shortage problem for generations (we hope).

The rest of this first section examines IPv6, comparing it to IPv4, focusing on the common features of the two protocols. In particular, this section compares the protocols (including addresses), routing, routing protocols, and miscellaneous other related topics.

NOTE You might wonder why the next version of IP is not called IP version 5. There was an earlier effort to create a new version of IP, and it was numbered version 5. IPv5 did not progress to the standards stage. However, to prevent any issues, because version 5 had been used in some documents, the next effort to update IP was numbered as version 6.

The IPv6 Protocols

The primary purpose of the core IPv6 protocol mirrors the same purpose of the IPv4 protocol. That core IPv6 protocol, as defined in RFC 2460, defines a packet concept, addresses for those packets, and the role of hosts and routers. These rules allow the devices to forward packets sourced by hosts, through multiple routers, so that they arrive at the correct destination host. (IPv4 defines those same concepts for IPv4 back in RFC 791.)
However, because IPv6 impacts so many other functions in a TCP/IP network, many more RFCs must define details of IPv6. Some other RFCs define how to migrate from IPv4 to IPv6. Others define new versions of familiar protocols, or replace old protocols with new ones. For example:

Older OSPF Version 2 Upgraded to OSPF Version 3: The older OSPF version 2 works for IPv4, but not for IPv6, so a newer version, OSPF version 3, was created to support IPv6.

ICMP Upgraded to ICMP Version 6: Internet Control Message Protocol (ICMP) worked well with IPv4, but needed to be changed to support IPv6. The new name is ICMPv6.

ARP Replaced by Neighbor Discovery Protocol: For IPv4, Address Resolution Protocol (ARP) discovers the MAC address used by neighbors. IPv6 replaces ARP with a more general Neighbor Discovery Protocol (NDP).

NOTE But if you go to any website that lists the RFCs, like www.rfc-editor.org, you can find almost 300 RFCs that have IPv6 in the title.

While the term IPv6, when used broadly, includes many protocols, the one specific protocol called IPv6 defines the new 128-bit IPv6 address. Of course, writing these addresses in binary would be a problem—they probably would not even fit on the width of a piece of paper! IPv6 defines a shorter hexadecimal format, requiring at most 32 hexadecimal digits (one hex digit per 4 bits), with methods to abbreviate the hexadecimal addresses as well.

For example, all of the following are IPv6 addresses, each with 32 or less hex digits.

- FE80::1

The upcoming section “IPv6 Addressing Formats and Conventions” discusses the specifics of how to represent IPv6 addresses, including how to legally abbreviate the hex address values.

Like IPv4, IPv6 defines a header, with places to hold both the source and destination address fields. Compared to IPv4, the IPv6 header does make some other changes besides simply making the address fields larger. However, even though the IPv6 header is larger than an IPv4 header, the IPv6 header is actually simpler (on purpose), to reduce the work done each time a router must route an IPv6 packet. Figure 25-3 shows the required 40-byte part of the IPv6 header.
IPv6 Routing

As with many functions of IPv6, IPv6 routing looks just like IPv4 routing from a general perspective, with the differences being clear only once you look at the specifics. Keeping the discussion general for now, IPv6 uses these ideas the same way as IPv4:

- To be able to build and send IPv6 packets out an interface, end-user devices need an IPv6 address on that interface.
- End-user hosts need to know the IPv6 address of a default router, to which the host sends IPv6 packets if the host is in a different subnet.
- IPv6 routers deencapsulate and reencapsulate each IPv6 packet when routing the packet.
- IPv6 routers make routing decisions by comparing the IPv6 packet’s destination address to the router’s IPv6 routing table; the matched route lists directions of where to send the IPv6 packet next.

NOTE You could take the preceding list, and replace every instance of IPv6 with IPv4, and all the statements would be true of IPv4 as well.

While the list shows some concepts that should be familiar from IPv4, the next few figures show the concepts with an example. First, Figure 25-4 shows a few settings on a host. The host (PC1) has an address of 2345::1. PC1 also knows its default gateway of 2345::2. (Both values are valid abbreviations for real IPv6 addresses.) To send an IPv6 packet to host PC2, on another IPv6 subnet, PC1 creates an IPv6 packet and sends it to R1, PC1’s default gateway.

![IPv6 Host Building and Sending an IPv6 Packet](image)

Figure 25-4 IPv6 Host Building and Sending an IPv6 Packet

The router (R1) has many small tasks to do when forwarding this IPv6 packet, but for now, focus on the work R1 does related to encapsulation. As seen in Step 1 of Figure 25-5, R1 receives the incoming data link frame, and extracts (deencapsulates) the IPv6 packet from inside the frame, discarding the original data link header and trailer. At Step 2, once R1 knows to forward the IPv6 packet to R2, R1 adds a correct outgoing data link header and trailer to the IPv6 packet, encapsulating the IPv6 packet.
When a router like R1 deencapsulates the packet from the data link frame, it must also decide what type of packet sits inside the frame. To do so, the router must look at a protocol type field in the data link header, which identifies the type of packet inside the data link frame. Today, most data link frames carry either an IPv4 packet or an IPv6 packet.

To route an IPv6 packet, a router must use its IPv6 routing table instead of the IPv4 routing table. The router must look at the packet’s destination IPv6 address and compare that address to the router’s current IPv6 routing table. The router uses the forwarding instructions in the matched IPv6 route to forward the IPv6 packet. Figure 25-6 shows the overall process.

Note that again, the process works like IPv4, except that the IPv6 packet lists IPv6 addresses, and the IPv6 routing table lists routing information for IPv6 subnets (called prefixes).

Finally, in most enterprise networks, the routers will route both IPv4 and IPv6 packets at the same time. That is, your company will not decide to adopt IPv6, and then late one weekend night turn off all IPv4 and enable IPv6 on every device. Instead, IPv6 allows for a slow migration, during which some or all routers forward both IPv4 and IPv6 packets. (The migration strategy of running both IPv4 and IPv6 is called dual stack.) All you have to do is configure the router to route IPv6 packets, in addition to the existing configuration for routing IPv4 packets.

IPv6 Routing Protocols

IPv6 routers need to learn routes for all the possible IPv6 prefixes (subnets). Just like with IPv4, IPv6 routers use routing protocols, with familiar names, and generally speaking, with familiar functions.
None of the IPv4 routing protocols could be used to advertise IPv6 routes originally. They all required some kind of update to add messages, protocols, and rules to support IPv6. Over time, Routing Information Protocol (RIP), Open Shortest Path First (OSPF), Enhanced Interior Gateway Routing Protocol (EIGRP), and Border Gateway Protocol (BGP) were all updated to support IPv6. Table 25-1 lists the names of these routing protocols, with a few comments.

Table 25-1 IPv6 Routing Protocols

<table>
<thead>
<tr>
<th>Routing Protocol</th>
<th>Defined By</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIPng (RIP Next Generation)</td>
<td>RFC</td>
<td>The “Next Generation” is a reference to a TV series, “Star Trek: the Next Generation.”</td>
</tr>
<tr>
<td>OSPFv3 (OSPF version 3)</td>
<td>RFC</td>
<td>The OSPF you have worked with for IPv4 is actually OSPF version 2, so the new version for IPv6 is OSPFv3.</td>
</tr>
<tr>
<td>EIGRPv6 (EIGRP for IPv6)</td>
<td>Cisco</td>
<td>Cisco owns the rights to the EIGRP protocol, but Cisco also now publishes EIGRP as an informational RFC.</td>
</tr>
<tr>
<td>MP BGP-4 (Multiprotocol BGP version 4)</td>
<td>RFC</td>
<td>BGP version 4 was created to be highly extendable; IPv6 support was added to BGP version 4 through one such enhancement, MP BGP-4.</td>
</tr>
</tbody>
</table>

Additionally, these routing protocols also follow the same IGP and EGP conventions as their IPv4 cousins. RIPng, EIGRPv6, and OSPFv3 act as interior gateway protocols, advertising IPv6 routes inside an enterprise.

As you can see from this introduction, IPv6 uses many of the same big ideas as IPv4. Both define headers with a source and destination address. Both define the routing of packets, with the routing process discarding old data link headers and trailers when forwarding the packets. And routers use the same general process to make a routing decision, comparing the packet’s destination IP address to the routing table.

The big differences between IPv4 and IPv6 revolve around the bigger IPv6 addresses. The next topic begins looking at the specifics of these IPv6 addresses.

IPv6 Addressing Formats and Conventions

The CCENT and CCNA R/S exams require some fundamental skills in working with IPv4 addresses. For example, you need to be able to interpret IPv4 addresses, like 172.21.73.14. You need to be able to work with prefix-style masks, like /25, and interpret what that means when used with a particular IPv4 address. And you need to be able to take an address and mask, like 172.21.73.14/25, and find the subnet ID.

This second major section of this chapter discusses these same ideas for IPv6 addresses. In particular, this section looks at

- How to write and interpret unabbreviated 32-digit IPv6 addresses
- How to abbreviate IPv6 addresses, and how to interpret abbreviated addresses
- How to interpret the IPv6 prefix length mask
- How to find the IPv6 prefix (subnet ID), based on an address and prefix length mask

The biggest challenge with these tasks lies in the sheer size of the numbers. Thankfully, the math to find the subnet ID—often a challenge for IPv4—is easier for IPv6, at least to the depth discussed in this book.
Representing Full (Unabbreviated) IPv6 Addresses

IPv6 uses a convenient hexadecimal (hex) format for addresses. To make it more readable, IPv6 uses a format with eight sets of four hex digits, with each set of four digits separated by a colon. For example:

NOTE For convenience, the author uses the term quartet for one set of four hex digits, with eight quartets in each IPv6 address. Note that the IPv6 RFCs do not use the term quartet.

IPv6 addresses also have a binary format as well, but thankfully, most of the time you do not need to look at the binary version of the addresses. However, in those cases, converting from hex to binary is relatively easy. Just change each hex digit to the equivalent 4-bit value listed in Table 25-2.

<table>
<thead>
<tr>
<th>Hex</th>
<th>Binary</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>

Abbreviating and Expanding IPv6 Addresses

IPv6 also defines ways to abbreviate or shorten how you write or type an IPv6 address. Why? Although using a 32-digit hex number works much better than working with a 128-bit binary number, 32 hex digits is still a lot of digits to remember, recognize in command output, and type on a command line. The IPv6 address abbreviation rules let you shorten these numbers.

Computers and routers typically use the shortest abbreviation, even if you type all 32 hex digits of the address. So even if you would prefer to use the longer unabbreviated version of the IPv6 address, you need to be ready to interpret the meaning of an abbreviated IPv6 address as listed by a router or host. This section first looks at abbreviating addresses, and then at expanding addresses.

Abbreviating IPv6 Addresses

Two basic rules let you, or any computer, shorten or abbreviate an IPv6 address:

1. Inside each quartet of four hex digits, remove the leading 0s (0s on the left side of the quartet) in the three positions on the left. (Note: at this step, a quartet of 0000 will leave a single 0.)

2. Find any string of two or more consecutive quartets of all hex 0s, and replace that set of quartets with a double colon (::). The :: means “two or more quartets of all 0s.” However, you can only use :: once in a single address, because otherwise the exact IPv6 might not be clear.
For example, consider the following IPv6 address. The bold digits represent digits in which the address could be abbreviated.

FE00:0000:0000:0001:0000:0000:0000:0056

Applying the first rule, you would look at all eight quartets independently. In each, remove all the leading 0s. Note that five of the quartets have four 0s, so for these, only remove three 0s, leaving the following value:

FE00:0:0:1:0:0:0:56

While this abbreviation is valid, the address can be abbreviated more, using the second rule. In this case, two instances exist where more than one quartet in a row has only a 0. Pick the longest such sequence, and replace it with ::, giving you the shortest legal abbreviation:

FE00:0:0:1::56

While FE00:0:0:1::56 is indeed the shortest abbreviation, this example happens to make it easier to see the two most common mistakes when abbreviating IPv6 addresses. First, never remove trailing 0s in a quartet (0s on the right side of the quartet). In this case, the first quartet of FE00 cannot be shortened at all, because the two 0s trail. So, the following address, that begins now with only FE in the first quartet, is not a correct abbreviation of the original IPv6 address:

FE:0:0:1::56

The second common mistake is to replace all series of all 0 quartets with a double colon. For example, the following abbreviation would be incorrect for the original IPv6 address listed in this topic:

FE00::1::56

The reason this abbreviation is incorrect is because now you do not know how many quartets of all 0s to substitute into each :: to find the original unabbreviated address.

Expanding Abbreviated IPv6 Addresses

To expand an IPv6 address back into its full unabbreviated 32-digit number, use two similar rules. The rules basically reverse the logic of the previous two rules:

1. **In each quartet, add leading 0s as needed until the quartet has four hex digits.**
2. **If a double colon (::) exists, count the quartets currently shown; the total should be less than 8. Replace the :: with multiple quartets of 0000 so that eight total quartets exist.**

The best way to get comfortable with these addresses and abbreviations is to do some yourself. Table 25-3 lists some practice problems, with the full 32-digit IPv6 address on the left, and the best abbreviation on the right. The table gives you either the expanded or abbreviated address, and you need to supply the opposite value. The answers sit at the end of the chapter, in the section “Answers to Earlier Practice Problems.”
Table 25-3 IPv6 Address Abbreviation and Expansion Practice

<table>
<thead>
<tr>
<th>Full Address</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2222:3333:4444:5555:0000:0000:6060:0707</td>
<td>3210:</td>
</tr>
<tr>
<td>210F:0000:0000:0000:CCCC:0000:0000:000D</td>
<td>34BA:B:B:20</td>
</tr>
<tr>
<td>FE80:000F:00E0:0D00:FACE:BAFF:FE00:0000</td>
<td>FE80:800:0:40:CAFE:FF:FE00:1</td>
</tr>
</tbody>
</table>

You will become more comfortable with these abbreviations as you get more experience. The “Review Activities” section at the end of this chapter lists several suggestions for getting more practice.

Representing the Prefix Length of an Address

IPv6 uses a mask concept, called the *prefix length*, similar to IPv4 subnet masks. Similar to the IPv4 prefix-style mask, the IPv6 prefix length is written as a /, followed by a decimal number. The prefix length defines how many bits of the IPv6 address defines the IPv6 prefix, which is basically the same concept as the IPv4 subnet ID.

When writing IPv6 addresses, if the prefix length matters, the prefix length follows the IPv6 address. When writing documentation, you can leave a space between the address and the /, but when typing the values into a Cisco router, you might need to configure with or without the space. For example, use either of these for an address with a 64-bit prefix length:

- 2222::1111:0:1:A:B:C/D/64
- 2222::1111:0:1:A:B:C/D 64

Finally, note that the prefix length is a number of bits, so with IPv6, the legal value range is from 0 through 128, inclusive.

Calculating the IPv6 Prefix (Subnet ID)

With IPv4, you can take an IP address and the associated subnet mask, and calculate the subnet ID. With IPv6 subnetting, you can take an IPv6 address and the associated prefix length, and calculate the IPv6 equivalent of the subnet ID: an *IPv6 prefix*.

Like with different IPv4 subnet masks, some IPv6 prefix lengths make for an easy math problem to find the IPv6 prefix, while some prefix lengths make the math more difficult. This section looks at the easier cases, mainly because the size of the IPv6 address space lets us all choose to use IPv6 prefix lengths that make the math much easier.
Finding the IPv6 Prefix

In IPv6, a prefix represents a group of IPv6 addresses. For now, this section focuses on the math, and only the math, for finding the number that represents that prefix. Chapter 26, “IPv6 Addressing and Subnetting,” then starts putting more meaning behind the actual numbers.

Each IPv6 prefix, or subnet if you prefer, has a number that represents the group. Per the IPv6 RFCs, the number itself is also called the prefix, but many people just call it a subnet number or subnet ID, using the same terms as IPv4.

Like IPv4, you can start with an IPv6 address and prefix length, and find the prefix, with the same general rules that you use in IPv4. If the prefix length is /P, use these rules:

1. Copy the first P bits.
2. Change the rest of the bits to 0.

When using a prefix length that happens to be a multiple of 4, you do not have to think in terms of bits, but in terms of hex digits. A prefix length that is a multiple of 4 means that each hex digit is either copied, or changed to 0. Just for completeness, if the prefix length is indeed a multiple of 4, the process becomes

1. Identify the number of hex digits in the prefix by dividing the prefix length (which is in bits) by 4.
2. Copy the hex digits determined to be in the prefix per the first step.
3. Change the rest of the hex digits to 0.

Figure 25-7 shows an example, with a prefix length of 64. In this case, Step 1 looks at the /64 prefix length, and calculates that the prefix has 16 hex digits. Step 2 copies the first 16 digits of the IPv6 address, while Step 3 records hex 0s for the rest of the digits.

![Diagram of prefix calculation](image)

Legend:
- **ID** Subnet ID

Figure 25-7 Creating the IPv6 Prefix from an Address/Length

After you find the IPv6 prefix, you should also be ready to abbreviate the IPv6 prefix using the same rules you use to abbreviate IPv6 addresses. However, you should pay extra attention to the end of the prefix, because it often has several octets of all 0 values. As a result, the abbreviation typically ends with two colons (:).

For example, consider the following IPv6 address that is assigned to a host on a LAN:

```
```

This example shows an IPv6 address that itself cannot be abbreviated. After you calculate the prefix for the subnet in which the address resides, by zeroing out the last 64 bits (16 digits) of the address, you find the following prefix value:

```
2000:1234:5678:9ABC:0000:0000:0000:0000/64
```
This value can be abbreviated, with four quartets of all 0s at the end, as follows:

\[2000:1234:5678:9ABC::/64 \]

To get better at the math, take some time to work through finding the prefix for several practice problems, as listed in Table 25-4. The answers sit at the end of the chapter, in the section “Answers to Earlier Practice Problems.”

<table>
<thead>
<tr>
<th>Address/Length</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>2340:0:10:100:1000:ABCD:101:1010/64</td>
<td></td>
</tr>
<tr>
<td>30A0:ABCD:EF12:3456:ABCD:0000:9999:9009/64</td>
<td></td>
</tr>
<tr>
<td>2222:3333:4444:5555:6060:707/64</td>
<td></td>
</tr>
<tr>
<td>3210::ABCD:101:1010/64</td>
<td></td>
</tr>
<tr>
<td>210F::CCCC:B0B0:9999:9009/64</td>
<td></td>
</tr>
<tr>
<td>34BA:B0:5555:0606:707/64</td>
<td></td>
</tr>
<tr>
<td>3124::DEAD:CAFE:FF:FE00:1/64</td>
<td></td>
</tr>
<tr>
<td>2BCD::FACE:BEFF:FEBE:CAFE/64</td>
<td></td>
</tr>
<tr>
<td>3FED:FE:00:FACE:BAFF:FE00:0/64</td>
<td></td>
</tr>
<tr>
<td>3BED:800::FACE:BAFF:FE00:0/64</td>
<td></td>
</tr>
</tbody>
</table>

The “Review Activities” section at the end of this chapter lists several suggestions for getting more practice. The “Answers to Earlier Practice Problems” section at the end of the chapter also contains Table 25-8, which lists a completed version of this table so that you can check your work.

Working with More Difficult IPv6 Prefix Lengths

Some prefix lengths make the math to find the prefix very easy, some mostly easy, and some require you to work in binary. If the prefix length is a multiple of 16, the process of copying part of the address copies entire quartets. If the prefix length is not a multiple of 16, but is a multiple of 4, at least the boundary sits at the edge of a hex digit, so you can avoid working in binary.

Although the /64 prefix length is by far the most common prefix length, you should be ready to find the prefix when using a prefix length that is any multiple of 4. For example, consider the following IPv6 address and prefix length:

Because this example uses a /56 prefix length, the prefix includes the first 56 bits, or first 14 complete hex digits, of the address. The rest of the hex digits will be 0, resulting in the following prefix:

\[2000:1234:5678:9A00:0000:0000:0000:0000/56 \]

This value can be abbreviated, with four quartets of all 0s at the end, as follows:

\[2000:1234:5678:9A00::/56 \]

This example shows an easy place to make a mistake. Sometimes, people look at the /56 and think of that as the first 14 hex digits, which is correct. However, they then copy the first 14 hex digits, and add a double colon, showing the following:

\[2000:1234:5678:9A::/56 \]
This abbreviation is not correct, because it removed the trailing ‘00’ at the end of the fourth quartet. So, be careful when abbreviating when the boundary is not at the edge of a quartet.

Once again, some extra practice can help. Table 25-5 uses examples that have a prefix length that is a multiple of 4, but is not on a quartet boundary, just to get some extra practice. The answers sit at the end of the chapter, in the section “Answers to Earlier Practice Problems.”

<table>
<thead>
<tr>
<th>Address/Length</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>34BA:B:B:0:5555:0:6060:707/80</td>
<td></td>
</tr>
<tr>
<td>3124::DEAD:CAFE:FF:FE00:1/80</td>
<td></td>
</tr>
<tr>
<td>2BCD::FACE:BEFF:FE00:1/80</td>
<td></td>
</tr>
<tr>
<td>3FED:F:00:FACE:BAFF:FE00:0/48</td>
<td></td>
</tr>
<tr>
<td>210F:A:B:C:CCCC:B0B0:9999:9009/40</td>
<td></td>
</tr>
<tr>
<td>34BA:B:B:0:5555:0:6060:707/36</td>
<td></td>
</tr>
<tr>
<td>3124::DEAD:CAFE:FF:FE00:1/60</td>
<td></td>
</tr>
<tr>
<td>2BCD::FACE:BEFF:FE00:1/56</td>
<td></td>
</tr>
<tr>
<td>3FED:F:00:FACE:BAFF:FE00:0/52</td>
<td></td>
</tr>
<tr>
<td>3BED:800:0:40:FACE:BAFF:FE00:0/44</td>
<td></td>
</tr>
</tbody>
</table>
Review Activities

Chapter Summary

- The primary purpose of the core IPv6 protocol mirrors the same purpose of the IPv4 protocol. That core IPv6 protocol, as defined in RFC 2460, defines a packet concept, addresses for those packets, and the role of hosts and routers. These rules enable the devices to forward packets sourced by hosts, through multiple routers, so that they arrive at the correct destination host.

- However, because IPv6 impacts so many other functions in a TCP/IP network, many more RFCs must define details of IPv6. Some other RFCs define how to migrate from IPv4 to IPv6. Others define new versions of familiar protocols or replace old protocols with new ones. For example:

 - **Older OSPF Version 2 Upgraded to OSPF Version 3:** The older OSPF version 2 works for IPv4 but not for IPv6, so a newer version, OSPF version 3, was created to support IPv6.

 - **ICMP Upgraded to ICMP Version 6:** ICMP worked well with IPv4 but needed to be changed to support IPv6. The new name is ICMPv6.

 - **ARP Replaced by Neighbor Discovery Protocol:** For IPv4, ARP discovers the MAC address used by neighbors. IPv6 replaces ARP with a more general Neighbor Discovery Protocol (NDP).

- Although the term IPv6, when used broadly, includes many protocols, the one specific protocol called IPv6 defines the new 128-bit IPv6 address.

- As with many functions of IPv6, IPv6 routing looks just like IPv4 routing from a general perspective, with the differences being clear only when you look at the specifics. IPv6 uses these ideas the same way as IPv4:

 - To be able to build and send IPv6 packets out an interface, end-user devices need an IPv6 address on that interface.

 - End-user hosts need to know the IPv6 address of a default router, to which the host sends IPv6 packets if the host is in a different subnet.

 - IPv6 routers deencapsulate and reencapsulate each IPv6 packet when routing the packet.

 - IPv6 routers make routing decisions by comparing the IPv6 packet's destination address to the router's IPv6 routing table; the matched route lists directions of where to send the IPv6 packet next.

- IPv6 uses a convenient hexadecimal (hex) format for addresses. To make it more readable, IPv6 uses a format with 8 sets of 4 hex digits, with each set of 4 digits separated by a colon. For example:

- Two basic rules let you, or any computer, shorten or abbreviate an IPv6 address:

 - Inside each quartet of four hex digits, remove the leading 0s (0s on the left side of the quartet) in the three positions on the left. (Note: At this step, a quartet of 0000 will leave a single 0.)

 - Find any string of two or more consecutive quartets of all hex 0s, and replace that set of quartets with a double colon (::). The :: means “two or more quartets of all 0s.” However, you can use :: only once in a single address, because otherwise the exact IPv6 might not be clear.
To expand an IPv6 address back into its full unabbreviated 32-digit number, use two similar rules. The rules basically reverse the logic of the previous two rules.

- In each quartet, add leading 0s as needed until the quartet has four hex digits.
- If a double colon (::) exists, count the quartets currently shown; the total should be less than 8. Replace the :: with multiple quartets of 0000 so that 8 total quartets exist.

IPv6 uses a mask concept, called the prefix length, similar to IPv4 subnet masks. Similar to the IPv4 prefix-style mask, the IPv6 prefix length is written as a / followed by a decimal number. The prefix length defines how many bits of the IPv6 address defines the IPv6 prefix, which is basically the same concept as the IPv4 subnet ID.

Like IPv4, you can start with an IPv6 address and prefix length and find the prefix, with the same general rules that you use in IPv4. If the prefix length is /P, then use these rules:

- Copy the first P bits.
- Change the rest of the bits to 0.

When using a prefix length that happens to be a multiple of 4, you do not have to think in terms of bits but in terms of hex digits. A prefix length that is a multiple of 4 means that each hex digit is either copied or changed to 0. Just for completeness, if the prefix length is indeed a multiple of 4, the process becomes

- Identify the number of hex digits in the prefix by dividing the prefix length (which is in bits) by 4.
- Copy the hex digits determined to be in the prefix per the first step.
- Change the rest of the hex digits to 0.

Review Questions

Answer these review questions. You can find the answers at the bottom of the last page of the chapter. For thorough explanations, see DVD Appendix C, “Answers to Review Questions.”

1. Which of the following was a short-term solution to the IPv4 address exhaustion problem?
 - A. IP version 6
 - B. IP version 5
 - C. NAT/PAT
 - D. ARP

2. A router receives an Ethernet frame that holds an IPv6 packet. The router then makes a decision to route the packet out a serial link. Which of the following statements is true about how a router forwards an IPv6 packet?
 - A. The router discards the Ethernet data link header and trailer of the received frame.
 - B. The router makes the forwarding decision based on the packet’s source IPv6 address.
 - C. The router keeps the Ethernet header, encapsulating the entire frame inside a new IPv6 packet before sending it over the serial link.
 - D. The router uses the IPv4 routing table when choosing where to forward the packet.
3. Which of the following is the shortest valid abbreviation for FE80:0000:0000:0100:0000:0000:0000:0123?
 A. FE80::100::123
 B. FE8::1::123
 C. FE80::100:0:0:123:4567
 D. FE80::0:100::123

 A. 2:3:4:5:6:7:8:9
 B. 2000:300:40::5:6000:700:80:9

5. Which of the following is the unabbreviated version of IPv6 address 2001:DB8::200:28?
 A. 2001:0DB8:0000:0000:0000:0000:0200:0028
 B. 2001:0DB8::0200:0028
 C. 2001:0DB8:0:0:0:0:0::0200:0028
 D. 2001:0DB8:0000:0000:0000:0000:200:0028

6. Which of the following is the prefix for address 2000:0000:0000:0005:6000:0700:0080:0009, assuming a mask of /64?
 A. 2000::5::/64
 B. 2000:5:0:0:0/64
 C. 2000:0:5::/64
 D. 2000::5:0:0:0/64

Review All the Key Topics

Review the most important topics from this chapter, noted with the Key Topic icon. Table 25-6 lists these key topics and where each is discussed.

Table 25-6 Key Topics for Chapter 25

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Similarities between IPv4 and IPv6</td>
<td>614</td>
</tr>
<tr>
<td>List</td>
<td>Rules for abbreviating IPv6 addresses</td>
<td>617</td>
</tr>
<tr>
<td>List</td>
<td>Rules for expanding an abbreviated IPv6 address</td>
<td>618</td>
</tr>
<tr>
<td>List</td>
<td>Process steps to find an IPv6 prefix, based on the IPv6 address and prefix length</td>
<td>620</td>
</tr>
</tbody>
</table>
Complete the Tables and Lists from Memory

Print a copy of DVD Appendix M, “Memory Tables,” or at least the section for this chapter, and complete the tables and lists from memory. DVD Appendix N, “Memory Tables Answer Key,” includes completed tables and lists for you to check your work.

Definitions of Key Terms

After your first reading of the chapter, try to define these key terms, but do not be concerned about getting them all correct at that time. Chapter 30 directs you in how to use these terms for late-stage preparation for the exam.

IPv4 address exhaustion, IETF, NAT, CIDR, IP version 6 (IPv6), OSPF version 6 (OSPFv3), EIGRP version 6 (EIGRPv6), prefix, prefix length, quartet

Additional Practice with IPv6 Address Abbreviations

For additional practice abbreviating IPv6 addresses:

- Create your own problems using any real router or simulator. Get into the router CLI, into configuration mode, and configure a 32-digit unabbreviated IPv6 address. Then predict the shortest abbreviation. Finally, use the `show ipv6 interface` command to see if the router used the same abbreviation you used.

Answers to Earlier Practice Problems

This chapter includes practice problems spread around different locations in the chapter. The answers are located in Tables 25-7, 25-8, and 25-9.

Table 25-7 Answers to Questions in the Earlier Table 25-3

<table>
<thead>
<tr>
<th>Full</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>30A0:ABCD:EF12:3456:0ABC:B0B0:9999:9009</td>
<td>30A0:ABCD:EF12:3456:ABC:B0B0:9999:9009</td>
</tr>
<tr>
<td>3210:0000:0000:0000:0000:0000:0000:0000</td>
<td>3210::</td>
</tr>
<tr>
<td>210F:0000:0000:0000:CCCC:0000:0000:0000</td>
<td>210F::CCCC:0:0:D</td>
</tr>
<tr>
<td>34BA:000B:000B:0000:0000:0000:0000:0020</td>
<td>34BA:B:B:20</td>
</tr>
<tr>
<td>FE80:000F:00E0:0D00:FACE:BAFF:FE00:0000</td>
<td>FE80:F0:E0:D00:FACE:BAFF:FE00:0</td>
</tr>
<tr>
<td>FE80:0800:0000:0040:CAFE:00FF:FE00:0001</td>
<td>FE80:800:0:40:CAFE:FF:FE00:1</td>
</tr>
</tbody>
</table>
Table 25-8 Answers to Questions in the Earlier Table 25-4

<table>
<thead>
<tr>
<th>Address/Length</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>2340::10:100:1000:ABCD:101:1010/64</td>
<td>2340::10:100::/64</td>
</tr>
<tr>
<td>30A0:ABCD:EF12:3456:ABCB00999:9009/64</td>
<td>30A0:ABCD:EF12:3456::/64</td>
</tr>
<tr>
<td>2222:3333:4444:5555::6060:707/64</td>
<td>2222:3333:4444:5555::/64</td>
</tr>
<tr>
<td>3210::ABCD:101:1010/64</td>
<td>3210::/64</td>
</tr>
<tr>
<td>210F::CCCC:BBBB:9999:9009/64</td>
<td>210F::/64</td>
</tr>
<tr>
<td>34BA:B:B:0:5555:0:6060:707/64</td>
<td>34BA:B:B::/64</td>
</tr>
<tr>
<td>3124::DEAD:CAFE:FE00::/64</td>
<td>3124:0:0:DEAD::/64</td>
</tr>
<tr>
<td>2BCD::FACE:BEFF:FE00::/64</td>
<td>2BCD::/64</td>
</tr>
<tr>
<td>3FED::E00:FACE:BAFF:FE00::/64</td>
<td>3FED::E00:FACE:BAFF:FE00::/64</td>
</tr>
<tr>
<td>3BED:800:0:40:FACE:BAFF:FE00::/64</td>
<td>3BED:800:0:40::/64</td>
</tr>
</tbody>
</table>

Table 25-9 Answers to Questions in the Earlier Table 25-5

<table>
<thead>
<tr>
<th>Address/Length</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>34BA:B:B:0:5555:0:6060:707/80</td>
<td>34BA:B:B:0:5555::/80</td>
</tr>
<tr>
<td>3124::DEAD:CAFE:FE00::/80</td>
<td>3124:0:0:DEAD:CAFE::/80</td>
</tr>
<tr>
<td>2BCD::FACE:BEFF:FE00::/48</td>
<td>2BCD::/48</td>
</tr>
<tr>
<td>3FED::E00:FACE:BAFF:FE00::/48</td>
<td>3FED::E00:FACE:BAFF:FE00::/48</td>
</tr>
<tr>
<td>210F::CCCC:BBBB:9999:9009/40</td>
<td>210F::/40</td>
</tr>
<tr>
<td>34BA:B:B:0:5555:0:6060:707/36</td>
<td>34BA:B:B::/36</td>
</tr>
<tr>
<td>3124::DEAD:CAFE:FE00::/60</td>
<td>3124:0:0:DEA0::/60</td>
</tr>
<tr>
<td>2BCD::FACE:BEFF:FE00::/56</td>
<td>2BCD::0:0:FA00::/56</td>
</tr>
<tr>
<td>3FED::E00:FACE:BAFF:FE00::/52</td>
<td>3FED::E00:FACE:BAFF:FE00::/52</td>
</tr>
<tr>
<td>3BED:800:0:40:FACE:BAFF:FE00::/44</td>
<td>3BED:800::/44</td>
</tr>
</tbody>
</table>

Answers to Review Questions:

1. C
2. A
3. D
4. B
5. A
6. C
Index

Symbols & Numerics

| (pipe function), 184
? (question mark), CLI command help, 158
/ (slash), prefix subnet mask format, 309

10 Gig Ethernet, 37
10BASE-T, 37
 bridges, 125
 hubs, 125
 switches, 126
10GBASE-T, 37
100BASE-LX, 37
/64 prefix length, 621
100BASE-T, 37
128-bit IPv6 addresses, See also IPv6 addressing
 configuring on Cisco routers, 648
 verifying configuration, 650
404 return code (HTTP), 112
802.1Q trunking, 212
 native VLAN, 213
 configuring, 387-390
802.3 standard, 37
802.3ab standard, 37
802.3an standard, 37
802.3u standard, 37
802.3z standard, 37
802.11 standard, wireless LANs, 35-36
1000BASE-T, 37
2960 Catalyst switch series, 149
 CLI, 152. See also commands
 accessing with the console, 152-154
 accessing with SSH, 155
 accessing with Telnet, 154
 configuration submodes, 160-162
 debug commands, 159
 EXEC modes, navigating, 156-157
 help features, 157-158
 password security, 155
 privileged EXEC mode, 156
 show commands, 158-159
 user EXEC mode, 156
 LED status indicators, 150
 port, 151
 SYST LED, 151

A

AAA (authentication, authorization, and accounting), 178-179
abbreviated IPv6 addresses, expanding, 618-619
abbreviating
 CLI commands, 362
 IPv6 addresses, 617-618
ABRs (Area Border Routers), 416
access-class command, 567
access interfaces, 216-219
access-list command
 eq parameter, 554, 557
 for extended numbered IP ACLs, matching, 552-553
 interpreting, 542-543
 log keyword, 540
 syntax, 533
 any/all addresses, matching, 536
 exact IP address, matching, 533
 subset of address, matching, 533-535
access switches, 137
accessing
 Cisco Catalyst CLI, 152
 EXEC modes, navigating, 156-157
 help features, 157-158
 password security, 155
 privileged EXEC mode, 156
 user EXEC mode, 156
 with SSH, 155
addressing conventions for Class A, Class B, and Class C networks, 300
adjacent-layer interactions, 18
administrative distance, 410-411
administrative mode (trunking), 221-222, 225
administratively down interfaces, 363
advanced distance vector routing protocols, 408
allowing zero subnets, 394
always-on service, 70
analyzing
Layer 2 forwarding path, 248-251
subnet masks
easy masks, 336
practicing, 318-319
answering exam questions, 728-729
any/all addresses, matching with IPv4 ACLs, 536
application layer
TCP/IP networking model, 15-17
WWW
DNS resolution, 110-111
URLs, 109-110
application layer (OSI model), 26
applications
TCP/IP, 108
DNS, 105
QoS requirements, 108
SNMP, 105
TFTP, 105
well-known port numbers, 105
WWW, 105
applying
ACLs to vty line, 567
IPv4 ACLs, practice problems, 541-542
APs (access points), 35-36
ARIN (American Registry for Internet Numbers), ASNs, 407
ARP (Address Resolution Protocol), 78.
See also NDP
role of network layer in DNS name resolution, 92-93
verifying, 446-447
ARP cache, 93
ARP Reply messages, 93
ARP request messages 93
AS (autonomous systems), 407
ASICs (Application Specific Integrated Circuits), 383
ASN (AS number), 407
assigning
IP addresses, subnetting rules, 273-274
IPv6 addresses to hosts in subnets, 638-639
IPv6 subnets to internetwork topology, 638
subnets to different locations, 287-288
VLANs to access interfaces, 217-219
asymmetric speeds, 69
authentication
external authentication servers, configuring, 179
local usernames, hiding passwords, 185
autonegotiation, 139-140, 360
disabling, 140
duplex mismatches, 141
failure of, 140
on hubs, 141
autosummarization, 509
Aux ports, configuring, 366
B
bandwidth, 108
bandwidth metric, 409
banners, configuring on Cisco Catalyst switches, 185-187
batch applications, QoS requirements, 108
Bellman-Ford protocols, 408
Berners-Lee, Tim, 16
best path selection, Dijkstra SPF algorithm, 413
best summary route, selecting, 512-514
BIA (burned-in address), 46
binary number format
calculating IPv6 prefix lengths, 621
converting to hexadecimal, numeric reference table, 740
default masks for classful networks, 297
memorization versus calculation, 342
practices problems, 333-334
range of usable subnet addresses, calculating, 336
subnet broadcast address, calculating, 332-335
subnet IDs, calculating, 330-335
binary subnet mask format, 309
converting to DDN, 310-312
converting to prefix format, 310
wildcard masks, 535
blocking state (STP), 130
blogs, www.certskills.com, 732
Boolean math, 335
subnet broadcast address, calculating, 335
subnet IDs, calculating, 335
bootstrap program, 162
borrowing bits from host part for subnetting, 283
bridges, 125-126
broadcast addresses, 127
do Class B networks, 300
Ethernet, 47
subnet broadcast address, 329-330
calculating, 332-335, 340-341
broadcast domains, 133-134, 209
design concepts, 209
impact on LAN design, 134-135
broadcast subnet, 481
broadcasts versus multicasts, 657
budgeting your time during exam, 721-725
building
extended numbered IP ACLs, practice problems, 559
IPv6 addresses with SLAAC, 676-677
list of all subnets in internetwork, 286-287
C
cable Internet, 69-70
cable modems, 358
cabling
CRC errors, 248
crossover cables, 43
distance limitations on campus LANs, 138-139
EMI, 39
Ethernet, 37
for leased lines
 connectors, 60
 CPE, 59
 CSU/DSU, 59
data link layer protocols, 61-63
DCE, 60
DTE, 60
serial cable, 59
optical fiber, 138, 244
for SOHO network installation, 358
telco cable, 356
UTP
 10BASE-T pinouts, 41-43
 100BASE-T pinouts, 41-43
 1000BASE-T pinouts, 44
categories, 138
data transmission on Ethernet LANs, 39
electrical circuits, creating on Ethernet LANs, 39
Ethernet links, 39-41
 pinouts, selecting, 43-44
WAN links, creating in lab, 60
calculating. See also deriving
IPv6 prefix, 619-622
number of hosts
 for classful networks, 298
 per subnet, 275-276, 316-318
number of subnets per internetwork, 274
powers of 2, numeric reference table, 742
range of usable subnet addresses with binary, 336
subnet broadcast addresses, 329
 with binary math, 332-335
 with Boolean math, 335
 with decimal math, 340-341
 practice problems, 341
 versus memorization, 342
subnet IDs
 with binary math, 330-335
 with Boolean math, 335
 with decimal math, 340-341
 practice problems, 341
 versus memorization, 342
total subnets in network, 316-318
CAM (Content Addressable Memory), 128
campus LANs
 access switches, 137
 core switches, 137
 distribution switches, 137
 Ethernet technology, selecting, 136
 maximum cable lengths, 138-139
candidate default routes, 398
Catalyst switches
 banners, configuring, 185-187
 CLI, securing, 175-178
 memory types, 162
 password encryption, configuring, 182-184
 usernames, configuring, 178
categories of UTP cabling, 138
CCNA certification, practice exams, 726-727
CDP (Cisco Discovery Protocol)
 as troubleshooting tool, 239-241
 CDP status, examining, 242
 show cdp neighbors command, 241
 disabling, 242
CEF (Cisco Express Forwarding), 383
CIDR (classless interdomain routing), 309, 579, 612
classless routing protocol implementation, 580
goals of, 579
IPv4 address conservation, 580-581
route aggregation, 580
Cisco 2901 ISR, 356
Cisco Binary Game, 310
Cisco Catalyst 2960 switch, 149
CLI, 149, 152. See also commands
 accessing with SSH, 155
 accessing with Telnet, 154
 accessing with the console, 152-154
 configuration submodes, 160-162
debug commands, 159
EXEC modes, navigating, 156-157
help features, 157-158
password security, 155
privileged EXEC mode, 156
show commands, 158-159
user EXEC mode, 156
LED status indicators, 150-151
Cisco Catalyst switches
Cisco IOS Software, setup mode, 165-166
CLI, 152. See also commands
accessing with SSH, 155
accessing with Telnet, 154
accessing with the console, 152-154
comparing with router CLI, 360
configuration submodes, 160-162
debug commands, 159
EXEC modes, navigating between, 156-157
help features, 157-158
history buffer commands, 187
password security, 155
privileged EXEC mode, 156
show commands, 158-159
user EXEC mode, 156
interfaces
configuring, 192-193
duplex mismatches, 246-247
Layer 1 problems, 247-248
securing, 198
status codes, 243-244
IP address
configuring, 188-190
verifying, 191-192
LED status indicators, 150
port LEDs, 151
SYST LED, 151
MAC address table, Layer 2, 248-251
memory types, 162
port security, 251-252
configuring, 193-198
verifying, 197
ports, supporting Ethernet link types, 41
SSH, configuring, 180-181
time-of-day clocks, synchronizing, 569-570
VLANs
mismatched operational state, 255-256
mismatched VLAN-allowed, 254-255
verifying state of, 253-254
Cisco Exam Tutorial, 720-721
Cisco IOS Software
CLI, 152. See also commands
accessing SSH, 155
accessing Telnet, 154
accessing with the console, 152-154
comparing on routers and switches, 360
configuration submodes, 160-162
debug commands, 159
EXEC modes, navigating between, 156-157
help features, 157-158
IPv6 link-local addresses, creating, 656-657
password security, 155
privileged EXEC mode, 156
show commands, 158-159
user EXEC mode, 156
configuration files, 162-164
copying, 164-165
erasing, 165
rebooting, 156
services, disabling, 565-566
setup mode, 165-166
statistics, displaying, 166-168
subnet zero support, 394
Cisco Learning Network, 732
Cisco-proprietary version of HDLC, 61
Cisco routers
Aux ports, configuring, 366
CLI, comparing with switch CLI, 360
command reference, 359
consumer-grade, PAT configuration, 587-588
classful networks

773

DHCP servers
 configuring, 439-440
 verifying, 441
DHCP support, configuring, 435
dynamic unicast IPv6 addresses,
 configuring, 654
enterprise routers, installing, 355-356
 interfaces, 360
 configuration commands, 361
 Ethernet interfaces, 360
 interface status codes, 362-363
 IP addresses, configuring, 363-364
 IP addresses, verifying, 364
 serial interfaces, 361, 365
IP routing
 CEF, 383
 fast switching, 383
 internal processing, 382
 performance issues, 383
IPv6 addressing, link-local addresses, 655-657
IPv6 routing, enabling, 649
ISRs, installing, 356-357
 operational status, displaying, 366-367
 routing table, verifying OSPFv3 routes, 707-708
static unicast IPv6 addresses
 configuring, 648
 verifying, 649-650
time-of-day clocks, synchronizing with NTP, 569-570
unicast IPv6 addresses
 EUI-64, configuring, 651-653
 verifying, 650
 verifying IPv6 host connectivity, 680-682
Class A networks
 default mask, 296
 hosts per network, 296
 loopback address, 300
 octets in host and network address part, 296
 total networks provisioned for, 296
 unicast IP addresses, 295
 valid network numbers, 296
 broadcast address, 300
 default mask, 296
 hosts per network, 296
 octets in host and network address part, 296
 total networks provisioned for, 296
 unicast IP addresses, 295
 valid network numbers, 296
Class B networks
default mask, 296
hosts per network, 296
network IDs, 300
octets in host and network address part, 296
 total networks provisioned for, 296
 unicast IP addresses, 295
 valid network numbers, 296
classes of IPv4 networks, 82
 identifying, 83-84
 private addressing, 581
classful addressing, 316
classful networks, 85, 295-296
 Class A networks, loopback address, 300
default masks, 297
first usable address, deriving, 298-299
host part, 296-297
hosts per network, calculating number of, 298
last usable address, deriving, 298-299
multicast addresses, 295
 network broadcast address, deriving, 298-299
 network ID, deriving, 298-299
 network part, 296-297
private addressing, 581
private IP networks, 281
public classful IP networks, 279-281
subnetting. See also subnetting
 example design, 284-285
 host part of IP address, 283
 list of all subnets, building, 286-287
 mask format, 285-286
 mask, selecting, 282
subnet bits, calculating, 283-284
subnets of equal size, 327-328
unicast IP addresses, 295
classful routing protocols, 316
classless addressing, 316
classless routing protocols, 316, 409
CIDR implementation, 580
VLSM, support for, 496
clear ip nat translation command, 585
clear ip ospf process command, 424
clearing
dynamic entries from translation table, 585
running config files, 165
CLI, 149. See also commands
accessing, 152
with SSH, 155
with Telnet, 154
with the console, 152-154
banners, configuring, 185-187
comparing on routers and switches, 360
configuration mode, 159
configuration submodes, 160-162
debug commands, 159
EXEC modes, navigating between, 156-157
help features, 157-158
enable mode, hiding password, 184-185
hands-on practice, 731-732
history buffer commands, 187
passwords
encryption, configuring, 182-184
security, 155
privileged EXEC mode, 156
securing with passwords, 175-178, 565
show commands, 158-159
user EXEC mode, 156
usernames, configuring, 178
clients, IPv6
dynamic configuration with DHCPv6, 673
IPv6 address, building, 676-677
clock rate command, 60, 365
clocking, 60, 365
clouds, 12
collision domains, 126, 133-135
collisions, 50, 248
commands
abbreviating, 362
access-class, 567
access-list
eq parameter, 554, 557
interpreting, 542-543
log keyword, 540
syntax, 533, 536
access-list command, matching parameters (extended IP ACLs), 552-553
clear ip nat translation, 585
clear ip ospf process, 424
clock rate, 60, 365
configuration commands, 159
configure terminal, 177
copy, 164
default-information originate, 427
description, 192
delay, 187-188
echo, 157
eeval, 158
encapsulation, 388
equip, 156
erase startup-config, 165
EXEC commands, 157
eexec, 157
exit, 162
help features, 157-158
history buffer commands, 187
hostname, 163
ifconfig, 443
interface loopback, 423
interface range, 193, 219
ip access-group, 538
ip access-list command, 560
ip address, 384, 417, 496
ip address dhcp, 588
ipconfig, /all switch, 443
ip helper-address, 437
ip helper-address, 437
ip nat inside, 588
ip nat inside source list, 590
ip nat inside source static, 590
ip nat outside, 588
ip ospf neighbor, 420-421
ip route, 395
ip subnet-zero, 394
ipv6 address, 648, 653, 656, 670, 689
ipv6 dhcp relay, 675
ipv6 route, 692-696
ipv6 route ospf, 702
ipv6 unicast-routing, 649
line aux 0, 366
logging synchronous, 187-188
login, 176
netsh interface ipv6 show neighbors, 671
netstat -rm, 446
network, 417-420
no ip subnet-zero, 394, 502
no shutdown, 190, 198
nslookup, 445
passive-interface, 425
password, 177
ping
 connectivity, testing, 93-94
 connectivity, verifying, 447-449
 in organized troubleshooting process, 237-238
recalling, 158
reload, 156
resume, 457
router and switch CLI, comparing, 360
router ospf, 417
service password, 182-184
service password-encryption, 182
show cdp, role in troubleshooting, 241
show cdp entry name, 241
show cdp neighbors, 241
show commands, 158-159
show controllers, 365
show dhcp lease, 191
show interfaces, 243, 247-248, 361-362, 649
show interfaces status, 193, 245
show interfaces switchport, 223-225, 255
show interfaces trunk, 223, 226, 255
show ip dhcp conflict, 442
show ip interface brief, 361-362
show ip interfaces, 538
show ip nat statistics, 592
show ip nat translations, 590-592
show ip ospf database, 412, 420-421
show ip ospf interface brief, 425
show ip ospf neighbor, 707
show ip ospf neighbors, 413
show ip protocols, 422-423
show ip route, 360, 384, 392, 398, 411, 420-422, 496-497, 509-511
show ip route static, 396
show ipv6 route, 656-658
show ipv6 interface brief, 649
show ipv6 neighbors, 681-682
show ipv6 ospf, 704
show ipv6 ospf database, 707
show ipv6 ospf interface brief, 705
show ipv6 route, 655, 694-696
show ipv6 route local, 691
show ipv6 route static, 695
show mac address-table, 248, 360
show mac address-table dynamic, 249
show ntp associations, 574
show ntp status, 570
show port security, 197
show protocols, 364
show running config, 219, 365
show running-config, 163, 704
show sessions, 457
show ssh, 457
show startup-config, 163
show users, 457
show version, 166, 366-367
show vlan brief, 219, 251
show vtp status, 221
shutdown, 190
shutdown vlan, 226, 254
switchport access vlan, 219
switchport mode, 221-222
switchport mode dynamic auto, 255
switchport mode dynamic desirable, 223
switchport mode trunk, 387
switchport port security, 196
telnet, verifying connectivity, 455
traceroute, verifying connectivity, 451-455
write erase, 165
comparing broadcasts and multicasts, 657
DHCPv6 and DHCPv4, 674
Ethernet and HDLC header fields, 61
IGPs, 409
internal routing logic, types of, 383
LANs and WANs, 56
link-local and EUI-generated unicast addresses, 656
memorization and calculation for subnetting, 342
networks and subnets, 329
operational and design view of subnetting, 272-273
original and modern TCP/IP models, 23
OSI and TCP/IP networking models, 25
OSPFv2 and OSPFv3, 697-699
router and switch CLI, 360
routing and routed protocols, 405
TCP and UDP, 101
computer networking before TCP/IP, 13
Config Museum labs, 732
configuration commands, 159
for router Cisco routers, 361
standard numbered IPv4 ACLs 532-533, 536
configuration files, 162-164
copying, 164-165
erasing, 165
running configuration, 162
configuration mode (CLI), 159
configuration submodes (CLI), 160-162
configure terminal command, 177
configuring Cisco Catalyst switches
 banners, 185-187
 CLI, securing, 175-178
 interfaces, 192-193
 IP address, 188-190
 password encryption, 182-184
 port security, 193-198
 SSH, 180-181
 usernames, 178
connected routes, 384-385
DHCP on Cisco routers, 435, 439-440
DHCPv6 relay, 674-675
EUI-64 on routers, 651-653
extended numbered IP ACLs, 556-559
Layer 3 switching, 390-392
named IP ACLs, 560-561
NAT
dynamic NAT, 590-591
PAT, 594-596
static NAT, 588-590
NTP, 569, 574
OSPF
 matching interface IP address with, 419-420
 passive interfaces, 424-425
 RID, 423-424
 single-area OSPF, 417-419
 verifying configuration, 420-423
OSPFv3, single-area OSPFv3, 700-702
ROAS, 387-390
router interfaces, 360, 363-364
secondary IP addressing, 392-393
serial interfaces, clock rate, 365
standard numbered IPv4 ACLs, 536-539
static routes, 394-396
terminal emulator for console connections, 153-154
unicast IPv6 addresses on routers
dynamic, 654
static, 648
VLANs
 allowed VLAN lists, 225-227, 255-256, 259
 full configuration, 217-219
 shorter configurations, 219-220
 trunking configuration, 221-225
VLSM, 496
conflicts (DHCP), detecting, 442
connected routes. See also static routes
administrative distance, 410
configuring, 384-385
directly connected routes, 385
host routes, 386
IPv6, 689
displaying on Cisco routers, 650
example, 690-691
local routes, 386
VLANs, routing between subnets, 386
Layer 3, 390-392
ROAS, 387-390
zero subnets, 394

connecting
Ethernet links, 40-41
LANs with WANs, 57
subnets with routers, 274

connection establishment, 106
connection-oriented protocols, 107
collection termination (TCP), 106
connectionless protocols, 107

connectivity
of IPv6 hosts, verifying, 678-682
testing with ping command, 93-94
troubleshooting, 237-238
verifying
with ping command, 447-451
with telnet command, 455
with traceroute command, 451-455

connectors, CSU/DSU, 60
conservation of IPv4 addresses through CIDR, 580-581
console connections, 152
terminal emulator, configuring, 153-154
virtual terminal lines, 155

console inactivity timeouts, defining, 187-188

consumer-grade Cisco routers, PAT configuration, 587-588
context-setting commands, 160
controlling telnet access to devices with ACLs, 567

conventions, addressing conventions for Class A, Class B, and Class C networks, 300

convergence, 405-406

converting
binary subnet masks to DDN, 310-312
binary to hexadecimal, numeric reference table, 740
DDN subnet masks to prefix format, 312
DDN to binary, 310-312, 737-739

hexadecimal IPv6 addresses to binary, 617, 740
prefix subnet masks
to binary, 310
to DDN, 312

copy command, 164
copying configuration files, 164-165
core switches, 137
COs (central offices), 59, 68
cost metric, 408
counters (show interfaces command), 247-248
CPE (customer premises equipment), 59

CPU
broadcasts effect on, 657
performance issues during IP routing, 383
CRC (cyclic redundancy check) errors, 247
creating link-local IPv6 addresses, 656-657
crossover cable pinouts, 43
CSMA/CD
collisions, 248
collisions, preventing, 50-51
CSU/DSU (channel service unit/data service unit), 59-60, 356-358, 365
cut-through processing, 131

D

DAD (Duplicate Address Detection), 668, 671-672
data applications, interactive applications, 109
data encapsulation, 23-25
data link layer (OSI model), 27, 38

Ethernet addressing
CSMA/CD, 50-51
EtherType field, 47
FCS field, 48
full-duplex data, 48-49
half-duplex data, 49-50

HDLC
data transmission through, 62-63
terms, 60
role in IP routing, 78
data link layer (TCP/IP networking model), 21-23
data link protocols, 45, 101
data segmentation, 101
DCE (data communications equipment), 60
DDN, 20, 80, 285, 309
 converting
to binary, 310-312
to prefix format, 312
 octets, 81
 wildcard masks, 534-535
debug commands, 159
decimal math
 memorization versus calculation, 342
 subnet broadcast address, calculating, 340-341
 subnet IDs, calculating, 338-340
decimal-to-binary conversion
 Cisco Binary Game, 310
 numeric reference table, 737-739
deeencapsulation, 63, 380, 615
default administrative distance values, 411
default gateway, 77, 87, 377
default-information originate command, 427
default masks, 297
 for Class A networks, 296
 for Class B networks, 296
 for Class C networks, 296
default routers, 76, 445-447
default routes
 candidate default routes, 398
 OSPF, 426-427
 static default routes, 396-398
default static routes, IPv6, 696
defining
 size of planned subnets, 276
 one-size-fits-all design, 277
 VLSMs, 278
 subnets, 327
delay, 108
delete vtp command, 232
deny keyword, ACL packet matching, 531
depletion of IPv4 addresses, 612
deriving
 first usable address from classful network, 298-299
 last usable address from classful network, 298-299
 network broadcast address from classful network, 298-299
 network ID from classful network addresses, 298-299
descriving protocols by referencing
 OSI layers, 26
description command, 192
description interface subcommand, 362
design view of subnetting, comparing to operational view, 272-273
designing subnets
 example design, 284-285
 host part of IP address, borrowing bits, 283
 list of all subnets, building, 286-287
 masks
 format, 285-286
 selecting, 282, 471-477
 patterns, identifying with magic number, 478-479
 powers of 2, 471
 private IP networks, 281
 public IP networks, 279-281
 subnet bits, calculating requirements, 283-284
 subnet IDs, finding, 477-486
destination IP address parameter (access-list command), 552-553
Destination MAC Address field (Ethernet frames), 45
destination port number, 103
destination ports as packet filtering criteria, 553-555
development of TCP/IP, 14
devices. See also Cisco Catalyst switches; Cisco routers
 hubs, half-duplex data transmission, 49-51
 routers, wireless, 36
DHCP (Dynamic Host Configuration Protocol). See also SLAAC

addresses, 436
configuring on Cisco routers, 435
IP address
 configuring on Cisco Catalyst switches, 188-190
 verifying on Cisco Catalyst switches, 191-192
IPv6 address learning, 654
leases, 435
protocol messages, 435-436
 Discover, 436
 Offer, 436
servers
 Cisco router configuration, 439-440
 Cisco router verification, 441
 conflicts, detecting, 442
 information stored by, 438
 preconfiguration, 439
stateful DHCPv6, 673
stateless DHCPv6, 673
static and dynamic ranges per subnet, selecting, 288-289
DHCP relay, 437-438
DHCPv4 versus DHCPv6, 674
DHCPv6
 combining with SLAAC, 677
dynamic IPv6 host configuration, 673
 versus DHCPv4, 674
DHCPv6 relay
 configuring, 674-675
 Solicit message, 675
difficult masks, 336
 interesting masks, predictability within, 337-338
 interesting octets, 337
 memorization versus calculation, 342
 subnet broadcast address, calculating with, 340-341
 subnet ID, calculating with decimal math, 338-340
Dijkstra SPF (Shortest Path First) algorithm, 413
directed broadcast address, 286
direction of ACLs, verifying, 540
directly connected routes, 385
disabling
 autonegotiation, 140
 CDP, 242
 services for Cisco IOS Software, 565-566
 trunk negotiation, 225
 VLANs on a switch, 253-254
discarded packets, deny all keyword (ACLs), 533
Discover messages (DHCP), 436
discovering knowledge gaps through practice exam question, 729-731
displaying
 Cisco IOS statistics, 166-168
 contents of ARP cache, 93
dynamic NAT statistics, 592
 interface speed and duplex settings, 244-246
 line status with show interfaces command, 243
 log messages, 187-188
 MAC address table contents, 248
 NDP neighbor table, 682
 neighbor table of IPv6 hosts, 671
 protocol status with show interfaces command, 243
 router interface status, 361-362
 router operational status with show version command, 366-367
 SSH status, 181
 static NAT statistics, 590
 switch interface status codes, 243
distance vector routing protocols, 408
distribution switches, 137
DNS (Domain Name System), 105
 ARP cache, viewing contents of, 93
 name resolution, 91-93, 110-111
 verifying, 444-445
dotted decimal format, default masks for classful networks, 297
DRAM, running configuration files, 162
DSLAM (DSL Access Multiplexer), 69
DSL (digital subscriber line), 68-69, 358
DTE (data terminal equipment), 60
DTP (Dynamic Trunking Protocol), 221-223
dual stack, 615
dynamic unicast IPv6, 654
EUI-64, configuring, 651-653
static unicast IPv6, 648-650
unicast IPv6, 650
duplex settings
displaying, 244-246
mismatches, troubleshooting, 141, 246-247
dynamic IPv6 host configuration with DHCPv6, 673
dynamic MAC address table entries, examining, 249
dynamic NAT, 584-585
configuring, 590-591
statistics, displaying, 592
verifying configuration, 592-594
dynamic port numbers, 103
dynamic ranges per subnet, selecting, 288-289
dynamic unicast IPv6 addresses, configuring on routers, 654

E
easy masks, 336
Echo service, disabling, 566
editing
ACLs with sequence numbers, 562-563
commands, 158
EGPs (exterior gateway protocols), 406
EIGRP (Enhanced Interior Gateway Routing Protocol), 408
EIGRPv6, 616

electrical circuits over Ethernet LANs, 39
EMI (electromagnetic interference), 39, 244
enable passwords, 176, 184-185
enable secret password, 176
enabling
IPv6 routing on Cisco routers, 649
router interfaces, 363
VLANs on a switch, 253-254
encapsulation, 23-25, 381-382
HDLC, 62
IPv6 routing process, 614-615
encapsulation command, 388
encoding scheme, data transmission over Ethernet LANs, 39
encryption configuring on Cisco Catalyst switches, 182-184
enable password, hiding, 184-185
end command, 177
enterprise LANs, 36-37
enterprise networks, 11
enterprise routers, installing, 355-356
EoMPLS (Ethernet over MPLS), 64-65
eq parameter (access-list command), 554, 557
erase startup-config command, 165
erasing configuration files, 165
er disabled state, 198
error detection, 101
error recovery, 17, 101
estimating time needed to finish exam, 722
Ethernet, 35

10BASE-T
bridges, 125
crossover cable pinouts, 43
hubs, 125
pinouts, selecting, 43-44
straight-through cable pinouts, 41-42
switches, 126
UTP cabling pinouts, 41

100BASE-T
crossover cable pinouts, 43
pinouts, selecting, 43-44
straight-through cable pinouts, 41-42
UTP cabling pinouts, 41

1000BASE-T, UTP cable pinouts, 44
addressing, 45
BIA, 46
broadcast addresses, 47
EtherType field, 47
FCS field, 48
multicast addressees, 47
OUI, 46
unicast Ethernet addresses, 46
autonegotiation, 139
disabling, 140
duplex mismatches, 141
failure of, 140
on hubs, 141
broadcast domains, 133-135
cabling, EMI, 39
collision domains, 126, 133
data link layer standard, 38
data link protocols, 45
data transmission over, 39
electrical circuits, creating, 39
EoMPLS, 64-65
frames, VLAN trunking, 211
full-duplex data transmission, 48-49
half-duplex data transmission, 49-51
interfaces, 360
LANs
enterprise LANs, 36-37
SOHO, 35-36
troubleshooting with CDP, 239-242
links, 39
connecting, 41
RJ-45 connectors, 40
RJ-45 ports, 40
physical layer standards, 37
as WAN technology, 63
Ethernet emulation, 65
EtherType field, 47
EUI-64
configuring, 651-653
universal/local bit, 652
exam
practicing for, two-phase approach, 301-302
questions, how to answer, 728-729
exam, preparing for
exam-day advice, 722-723
hands-on CLI practice, 731-732
knowledge gaps, discovering through, 729-731
math-related skills, practicing for, 723-725
practice exams, 725-726
CCNA, 726-727
ICND1, 726
pre-exam suggestions, 722
suggested time-check method, 722
examining
CDP neighbor information, 239-241
CDP protocol status, 242
MAC address table, dynamic entries, 249
example configuration
extended numbered IP ACLs, 557-559
port security, 195-196
single-are OSPFv3, 701-702
standard numbered IPv4 ACLs, 537-539
examples
of calculating subnet broadcast address with, 340-341
of calculating subnet ID with decimal math, 338-340
of IPv6 connected routes, 690-691
of IPv6 local routes, 691-692
of IP routing, 88-89, 378-382
of subnetting, 271
adding to VLSM design, 500-502
subnet design, 284-285
subnets of equal size, 327-328
EXEC modes, navigating between, 156-157
exec-timeout command, 187-188
exhaustion of IPv4 addresses, 612
exhaustion of public IP address space, solutions to, 280-281
exit command, 162
expanding IPv6 addresses, 618-619
extended numbered IP ACLs
adding to configuration, 563-564
configuring, 556
creating, practice problems, 559
example configuration, 557-559
matching parameters (access-list command), 552-553
packet filtering, 553-556
standard ACLs, comparing to, 552
extended ping, 449-451
extended traceroute command, 454
external authentication servers, 179

F

failure of autonegotiation, rules for, 140
Fast Ethernet, 37
fast switching, 383
 comparing to process switching and
 CEF, 383
FCS (Frame Check Sequence), CRC
 errors, 247
FCS field
 Ethernet frames, 45, 48
 HDLC, 61
fiber-optic cabling, 37
fields in Ethernet frames, 45
files, transferring with HTTP, 112
filtering packets
 by destination port, 553-555
 by source port, 555-556
 versus forwarding, 127-128
FIN bit, 106
finding
 overlapping subnets, 497-499
 subnet ID for subnet design, 477-479,
 482-484
 example, 480-482
 identifying patterns with magic,
 478-479
 practice problems, 485-486
 zero subnet, 478
first-match logic, standard numbered
IPv4 ACLs, 532-533
first usable address, deriving from class-
 ful network, 298-299
Flag field (HDLC), 61
flash memory, 162
flooding, 129, 412
flow control, 101
format of subnet masks, 285-286
 binary, 309
 converting to DDN, 310-312
 converting to prefix, 310
DDN, 309
 converting to prefix format, 312
 converting to binary, 310-312
prefix format, 309
 converting to binary, 310
 converting to DDN, 312
forwarding data between VLANs,
 213-215
forwarding logic in IP routing, 75, 87-88
 delivering data to end, 77
 example of, 88-89
 routing across the network, 77
 transmitting packets to, 76
forwarding packets
 routing logic, 381
 versus filtering, 127-128
forwarding path, metrics, 408-409
forwarding state (STP), 130
forward-versus-filter decisions, 128
fragment-free processing, 131
frames. See also packets
 encapsulation, 24
 Ethernet
 data link layer, 38
 EtherType field, 47
 FCS field, 48
 header and trailer fields, 45
 VLAN trunking, 211
FCS, CRC errors, 247
forwarding logic on switches
 flooding, 129
 forwarding versus filtering,
 127-128
 internal switch processing,
 130-131
 loop avoidance, 130
 MAC address learning process,
 128-129
 giants, 247
 host routing, 87-88
 router processing for IP routing, 380
 runts, 247
 transmitting via IP routing process, 382
 unknown unicast, 129
FTP (File Transfer Protocol), 105
full-duplex data transmission
collisions, 50
duplex mismatches, 141
on Ethernet LANs, 48-49
WANs, 58
functions
of NDP, 668
duplicate address discovery with NS and, 671-672
neighbor link address discovery with RS, 670
router discovery, 669
SLAAC address discovery with RS and RA, 669-670
of routing protocols, 405-406

H

half-duplex data transmission
collisions, 50
duplex mismatches, 141
on Ethernet LANs, 49-51
hands-on CLI practice, 731-732
HDLC (High-Level Data Link Control), 378
Cisco-proprietary version of, 61
data transmission, 62-63
header fields, 61
headers, 16, 22
capsulation, 23-25
fields
Ethernet frames, 45
HDLC, 61
TCP, 102
HDLC, 378
IPv6, 613
TCP, SEQ, 17
Hello messages (OSPF), 415
Hello process (OSPF)
Hello messages, 415
RID, 414, 423-424
help features of CLI, 157-158
hexadecimal IPv6 format, 613
hexadecimal-to-binary conversion, 617, 740
hiding
enable password, 184-185
local username password, 185
hierarchical OSPF design
multiarea OSPF, 416
single-area OSPF, 415
high-speed Internet connections, 11
historical reasons for IPv6, 611-612
history
of OSI, 13
of TCP/IP
comparing original and modern networking, 23
pre-TCP/IP computer networking, 13

G

Gateway of Last Resort, 398
gateways, 406
GBIC (gigabit interface converter), 41
giants, 247
Gigabit Ethernet, 37
global routing prefix (IPv6), 632-633
global unicast addresses (IPv6), 629-631
address ranges, 633-634
subnetting, 634-637
addresses, 628-639
placement of, 634
subnet IDs, 637
subnets, 638
global unicast next-hop addresses to IPv6 static routes, 694
goals
of CIDR, 579
of routing protocols, 89
grouping IP addresses into networks, 81-82
growth of internetworks, planning for, 275
growth of the Internet, milestones, 611
guaranteed delivery, 17
guidelines for ACL implementation, 568
history buffer commands, 187
home page, 15
hop count, 408
hostname command, 163
host part (classful network addresses), 296-297, 315
host routing, 386
example of, 88-89
routing logic, 376
hosts
forwarding logic in IP routing, 75
delivering data to, 77
routing across the, 77
transmitting packets, 76
IPv6
connectivity, verifying, 678-682
dynamic configuration with
DHCPv6, 673
IPv6 address, building, 676-677
role in IP routing, 87-88
per network, 296
per subnet, calculating, 275-276, 316-318
HTTP (Hypertext Transfer Protocol), 15-17, 110
404 return code, 112
files, transferring between web servers and web, 112
GET requests, 112
GET responses, 112
TCP error recovery, 17
hubs
10BASE-T topologies, 125
autonegotiation, 141
half-duplex data transmission, 49-51
Huston, Geoff, 612
ICND1 practice exams, 726
identifying
classes of IPv4 networks, 83-84
interesting octet, 482
patterns with magic number, 478-479
IEEE (Institute of Electrical and Electronics Engineers), 35
autonegotiation, 139
disabling, 140
duplex mismatches, 141
failure of, 140
on hubs, 141
standards naming conventions, 37
IEEE 802.1Q, 212-213
IEEE 802.11 standard, 35-36
IETF, short-term solutions to IPv4 address exhaustion, 612
ifconfig command, 443, 679
IGPs (interior gateway protocols), 406, 409
IGRP (Interior Gateway Routing Protocol), 408
implementing
ACLs, guidelines, 568
standard numbered IPv4 ACLs, 536-539
inactivity timer, 129
inbound ACLs, 529
initial configuration, Cisco IOS Software, 165-166
input errors, 247
inside global IP addresses, 583-584
inside local IP addresses, 583-584
installing
Cisco ISRs, 356-357
enterprise routers, 355-356
integrated devices, SOHO network installation, 359
interactive applications
QoS requirements, 108
WWW
dns resolution, 110-111
urls, 109-110
interesting octets
identifying, 482
predictability in numeric patterns, 337-338
interface IDs, generating with EUI-64, 651-653
interface loopback command, 423
interface range command, 193, 219
interface status codes, 243
interfaces
 ACLs, verifying direction of, 540
 CDP, disabling, 242
 configuring, 360
 configuring on Cisco Catalyst switches, 192-193
duplex mismatches, troubleshooting, 246-247
err disable state, 198
Layer 1 problems, troubleshooting, 247-248
loopback, 423
matching IP address with OSPF network command, 419-420
on switches, 150
OSPF passive interfaces, configuring, 424-425
passive interfaces (OSPFv3), 703
router interfaces
 configuration commands, 361
 enabling, 363
 Ethernet interfaces, 360
 interface status codes, 362-363
 IP addresses, configuring, 363-364
 IP addresses, verifying, 364
 serial interfaces, 361, 365
 status, displaying, 361-362
secure-shutdown state, 197
selection for EUI-64, 654
speed issues, troubleshooting, 244-246
status codes, 244
SVI, 189
unused, securing, 198
VLANs, 135-136
interference, effect on Layer 1 interface operation, 248
interleaving 0s and 1s
 binary subnet mask rules, 309
 wildcard masks, 543
internal routing logic
 CEF, 383
 comparing types of, 383
 fast switching, 383
 performance issues, 383
internal switch processing
cut-through processing, 131
fragment-free processing, 131
store-and-forward processing, 130
Internet
 high-speed connections, 11
 ISPs, 66
 milestones in growth of, 611
 service providers, 58
Internet access routers, SOHO network installation, 358
Internet access technologies, 67
 always-on service, 70
 cable Internet, 69-70
 DSL, 68-69
Internet core, 66
internetworks, building list of all subnets, 286-287
interpreting access-list command, 542-543
IOS (Internetwork Operating System).
 See Cisco IOS Software
IP, 18-20
ip access-group command, 538
ip access-list command, 560
IP address
 configuring on Cisco Catalyst switches, 188-190
 verifying on Cisco Catalyst switches, 191-192
ip address command, 384, 394, 417
 secondary keyword, 393
 VLSM, 496
ip address dhcp command, 588
ipconfig command, 679
 /all switch, 443
ip helper-address command, 437
ip nat inside command, 588
ip nat inside source list command, 590
ip nat inside source static command, 590
ip nat outside command, 588
ip ospf neighbor command, 420-421
IP phones, 108
ip route command, 395-396
IP routing
connected routes, 384-385
 secondary IP addressing, 392-393
 zero subnets, 394
default gateway, 377
telephone, 378-382
telephone example of, 88-89
host logic, 376
host routes, 386
host routing, 87-88
internal processing on Cisco, 383
internal processing on Cisco routers, 382
internal routing logic
 CEF, 383
 fast switching, 383
 performance issues, 383
local routes, 386
routing logic, 376-378
static routes
 configuring, 394-396
 static default routes, 396-398
IP routing table, 77
ip subment-zero command, 394
IP telephony, 108
IPv4 ACLs
 editing with sequence numbers, 562-563
 extended numbered IP ACLs, 552
 adding to, 563-564
 configuring, 556
destination port as, 553-554
 example configuration, 557-559
 matching parameters, 552-553
 practicing, 559
source port as packet, 555-556
 standard ACLs, 552
guidelines for implementing, 568
 matching packets, 530
deny keyword, 531
permit keyword, 531
named ACLs
 configuring, 560-561
 numbered ACLs, comparing to, 560
 placement of, 529-530
 standard numbered ACLs, 531
 command syntax, 533, 536
 first-match logic, 532-533
 list logic, 532
telnet access, restricting on devices, 567
troubleshooting, 540
IPv4 addressing, 20, 80
 address classes, 82-84
 address exhaustion, 612
 binary-to-hexadecimal conversion, 740
 CIDR, 579
 address conservation, 580-581
 route aggregation, 580
classful addressing, 316
classful IP networks, 85
classful networks
 default masks, 297
 first usable address, 298-299
 host part, 296-297
 hosts per network, 298
 last usable address, 298-299
 multicast addresses, 295
 network broadcast, 298-299
 network ID, deriving, 298-299
 network part, 296-297
 unicast addresses, 295
classless addressing, 316
decimal-to-binary conversion, 737-739
default routers, verifying, 445-447
DDN, 80-81
DHCP
 configuring on Cisco routers, 435
 conflicts, detecting, 442
 protocol messages, 435-436
 servers, information stored by, 438
 servers, preconfiguration, 439
DHCP relay, 437-438
DNS
 verifying, 444-445
 name resolution, 110-111
dual stack, 615
grouping into IP networks, 81-82
hexadecimal-to-binary conversion, 740
IPv6 addressing

local routes, 689-692
loopback address, 660
multicast addresses
 local-scope multicast, 658
 solicited-node, 658-660
NDP, 613
 duplicate address discovery with NS, 671-672
 functions of, 668
 neighbor link address discovery with, 670
 router discovery, 669
 SLAAC address discovery with RS and RA, 669-670
OSPFv3. See OSPFv3
prefix, calculating, 619-622
prefix length, representing, 619
private addresses, 631
public addresses, 631
quartets, 617
RFCs, 613
SLAAC, 638, 676-677
static routes, 692-693
 using global unicast next, 694
 using link-local next-hop, 695
 using next-hop address, 693
 verifying, 693
static unicast addresses
 configuring, 648
 verifying, 649-650
subnetting
 assigning addresses to hosts in subnets, 638-639
 assigning subnets to internetwork topology, 638
unicast addresses
 global unicast addresses, 629-637
 unique local unicast, 639-641
 verifying configuration, 649
unique local addresses, 631-632
unknown address, 660
ipv6 dhcp relay command, 675
ipv6 neighbors command, 681-682
ipv6 route command, 692-696
ipv6 route ospf command, 702
IPv6 routing, 614
dee encapsulation, 615
 enabling on Cisco routers, 649
encapsulation, 614-615
 routing protocol support, 616
ipv6 unicast-routing command, 649
IS-IS (Intermediate System to Intermediate System), 408
ISL (Inter-Switch Link), 212-213
ISO (International Organization for Standardization), 61
isolating problems, 237-238
ISPs (Internet service providers), 66
 AS, 407
 Internet access technologies
 cable Internet, 69-70
 DSL, 68-69
 Internet core, 66
ISRs (Integrated Services Routers) 356-357

J-K

jitter, 108
just-left octet, 483

keyboard shortcuts, command help, 158
knowledge gaps, discovering through question review, 729-731

L

L3 PDUs, 28, 78
L4 PDUs, 102
labs
 Config Museum labs, 732
 practicing hands-on CLI skills, 731
LAN switching, frame forwarding logic, 127
 flooding, 129
 forwarding versus filtering, 127-128
 internal switch processing, 130-131
 loop avoidance, 130
 MAC address learning process, 128-129
LANs. See also VLANs
 campus LANs
 access switches, 137
 core switches, 137
distribution switches, 137
maximum cable lengths, 138-139
selecting Ethernet technology, 136
comparing with WANs, 56
connecting with WANs, 57
enterprise,
enterprise LANs 11, 36-37
Ethernet
addressing, 45-47
broadcast domains, 133-135
collision domains, 126, 133-135
CSMA/CD, 50-51
data link layer standard, 38
data link protocols, 45
data transmission, 39
electrical circuits, creating over, 39
Ethernet links, 39-41
full-duplex data transmission, 48-49
half-duplex data transmission, 49-50
physical layer standards, 37
IP telephony, 108
SOHO, 35-36
subnets, IP address assignment, 274
wired LANs, 34
last usable address, deriving from classful network, 298-299
late collisions, 248
Layer 1, 26-27, 60, 247-248
Layer 2 switching, 189. See also data link layer
forwarding data between VLANs, 213-215
forwarding path, analyzing, 248-251
Layer 3. See also network layer
Layer 3 switching, 189, 213-216, 390-392
problem isolation, 238
routing between VLANs, 214-215
Layer 4 protocols. See also transport layer (OSI model)
TCP
connection establishment, 106
connection termination, 106
header fields, 102
multiplexing, 103-104
port numbers, 104
well-known port numbers, 105
UDP
header format, 107
multiplexing, 103-104
port numbers, 104
well-known port numbers, 105
Layer 5, 26
Layer 6, 26
layers
adjacent-layer interactions, 18
encapsulation, OSI networking model, 28
of networking models, 14, 23-25
of OSI networking model, 28
problem isolation, 238
protocols, describing with, 26
remembering with mnemonic, 27
same-layer interactions, 18
leased circuits, 58
leased lines
cabling
connectors, 60
COs, 59
CSU/DSU, 59
dce, 60
dte, 60
serial cables, 59
CPE, 59
data link layer protocols, HDLC, 61-63
Ethernet as WAN technology, 63-65
full-duplex operation, 58
Internet access technologies, 67
cable Internet, 69-70
DSL, 68-69
Layer 1 service, 60
links, 58
point-to-point links, 58
private lines, 58
serial links, 58
service providers, 58
T1, 58
leases (DHCP), 435
LED status indicators, 150-151
LEDs (light-emitting diodes), 138
line aux 0 command, 366
line status, displaying with show interfaces command, 243
link layer (TCP/IP model), 15, 21-23
link-local addresses (IPv6), 655
creating, 656-657
listing, 655
link-local next-hop addresses to IPv6 static routes, 695
link-state routing protocols, 408
OSPF, 411
 ABRs, 416
 best route selection, 413
 configuring, 417-420
 default routes, 426-427
 flooding process, 412
 Hello process, 414
 LSAs, 412-413
 LSDB, 412-413
 multiarea OSPF, 416
 neighbors, 413-414
 passive interfaces, 424-425
 reinitializing, 424
 RID, 414-415
 RID, configuring, 423-424
 single-area, configuring, 417-419
 single-area OSPF, 415
 verifying configuration, 420-423
OSPFv3
 LSDB, 707
 neighbors, verifying, 706-707
 passive interfaces, 703
 single-area, 700-702
 verifying, 703-706
 verifying routes in, 707-708
links, 58-60
Linux OS, ifconfig command, 679
list logic, standard numbered IPv4 ACLs, 532
listing
 IPv6 subnet IDs, 637
 link-local addresses, 655
LLDP (Link Layer Discovery Protocol), 239
local routes, 386, 689-692
local-scope IPv6 multicast addresses, 658
local usernames
 configuring on Cisco Catalyst switches, 178-179
 password, hiding, 185
locations for CLI passwords, 565
log keyword (access-list command), 540
log messages, displaying, 187-188
logging synchronous command, 187-188
login authentication. See passwords
login command, 176
loop avoidance, STP, 130
loopback address, 300, 660
loopback interfaces, 423
loss, 108
LSAs (link-state advertisements), 412-413, 707
LSDB (link-state database), 412-413, 707
M
MAC addresses, 46, 127
BIA, 46
 interface selection with EUI-64, 654
neighbor MAC discovery, 668
OUI, 46
 role in frame forwarding process, 128-129
 sticky secure MAC addresses, 194
 switching table, 128
MAC address table
 contents, displaying, 248
 dynamic entries, examining, 249
 Layer 2 forwarding path, analyzing, 248-251
Mac OS
 ifconfig command, 679
 IPv4 settings, verifying, 443
 NDP neighbor table, listing, 682
macrobending, 244
magic numbers, 338
 memorization versus calculation, 342
 patterns, identifying, 478-479
manual route summarization, 509
 benefits of, 510
 practice problems, 515
 subnets, designing for, 510
 summary routes, selecting, 512-514
 verifying, 511
masks. See also VLSMs, 495
 selecting for planned subnet, 282, 471-477
 example subnet design, 284-285
 host part of IP address, 283
 mask format, 285-286
 subnet bits, calculating, 283-284
 settings, verifying, 443
matching IP address on OSPF interface
 with network command, 419-420
matching logic, standard numbered IPv4
 ACLs
 any/all, 536
 exact IP, 533
 subset of, 533-535
 WC masks, 534-535
matching packets
 ACLs, 530
 deny keyword, 531
 permit keyword, 531
 standard numbered IPv4 ACLs, 531
 first-match, 532-533
 list logic, 532
 wildcard, 535
matching parameters (access-list
 command) for extended IP ACLs, 552-553
math-related skills, practicing for speed,
 723-725
maximum cable lengths on campus
 LANs, 138-139
memorization versus calculation, 342
memory
 NVRAM, erasing, 165
 RAM, 162
 running config, changing, 163-164
 running config, copying, 164-165
 running config, erasing, 165
messages
 DHCP, 435-436
 Discover, 436
 Offer, 436
 Hello messages (OSPF), 415
 Hello (OSPF), 414
 NA (NDP), 670
 NDP, 669
 NS (NDP), 670
 Solicit (DHCPv6), 675
 TCP/IP, 24, 25
 TTL Exceeded, 452
metrics, 408-409
migrating to IPv6
 dual stack, 615
 dynamic unicast IPv6, 654
 EUI-64, configuring, 651-653
 static unicast IPv6, 648-650
 unicast IPv6 addresses, 650
reasons for, 611
milestones in growth of Internet, 611
mind maps, 731
mismatched operational state on trunks,
 troubleshooting, 255-256
mismatched VLAN-allowed list on
 trunks, troubleshooting, 254-255
MOTD (message of the day) banners,
 configuring on Cisco Catalyst
 switches, 186-187
MP BGP-4, 616
MPLS (Multiprotocol Level Switching),
 64
multiarea OSPF, 416
multicast addresses, 127, 295
 Ethernet, 47
 local-scope IPv6 multicast addresses,
 658
 solicited-node IPv6 multicast, 658-660
multicasts versus broadcasts, 657
multilayer switches, 189
multimode fiber cabling, 138
multiple-choice questions, strategies for
 solving, 236
multiplexing, 101-102
 destination port number, 103
 dynamic port numbers, 103
 sockets, 103-104
multiswitch VLANs, 210-211
NA (neighbor advertisement) messages, 670
NA messages, duplicate address discovery, 671-672
named IP ACLs
- configuring, 560-561
- numbered ACLs, comparing to, 560
name resolution (DNS)
- network layer role in, 91-93
- verifying, 444-445
naming conventions, IEEE standards, 37
NAT (Network Address Translation), 280, 579-581
dynamic NAT, 584-585
- configuring, 590-591
- verifying, 592-594
inside global IP addresses, 583-584
inside local IP addresses, 583-584
outside global addresses, 584
outside local addresses, 584
PAT, 585-587
- configuring, 594-596
- on consumer-grade, 587-588
static NAT, 582
- configuring, 588-590
- statistics, displaying, 590
troubleshooting, 596-597
NAT Overload, 585-587
- configuring, 594-596
- on consumer-grade Cisco routers, 587-588
NAT/PAT, 612
native VLAN, 213
navigating
- between EXEC modes, 156-157
- between configuration modes, 161
NDP (Neighbor Discovery Protocol), 613
- combining with SLAAC, 677
duplicate address, 670-672
dynamic IPv6 host configuration, 673
functions of, 668
NA messages, 670
neighbor table, listing, 682
NS messages, 670
router discovery, 669
SLAAC address discovery, 669-670, 676
neighbor information from CDP,
- examining, 239-241
neighbor MAC discovery, 668
neighbor table
- NDP, listing, 682
IPv6 hosts, viewing, 671
neighbors
- OSPF, 413-415
- OSPFv3, verifying, 706-707
netsh interface ipv6 show neighbors
- command, 671
netstat --rn command, 446
network broadcast address, deriving from classful network, 298-299
network command, 417-418
network IDs, 83-84
deriving from classful network addresses, 298-299
within Class C networks, 300
network layer (OSI model), 27
IP routing
delivering data to end, 77
routing across the network, 77
routing logic over LANs and WANs, 62
transmitting packets to default, 76
IP Layer 3 switches, 215-216
role in DNS resolution, 91-93
routing. See also routing protocols
designed to "IP addressing role in, 78-79
TCP/IP networking model, 18-19
IP addressing, 20
IP routing, 21
network part of classful network addresses, 296-297
network part of IPv4 address prefix, 315
networking diagrams, 12, 22
networking models, 12
- encapsulation, 23-25
OSI model
application layer, 26
comparing with TCP/IP, 25
data link layer, 27
encapsulation, 28
history of, 13
layers, 28
network layer, 27
PDUs, 28
physical layer, 27
presentation layer, 26
session layer, 26
transport layer, 27
TCP/IP
application layer, 15-17
comparing original and modern, 23
comparing with OSI model, 25
development of, 14
link layer, 21-23
network layer, 18-21
RFCs, 14-15
transport layer, 17-18
networks versus subnets, 329
next-hop addresses
for IPv6 static routes, 693
global unicast, 694
link-local, 695
link-local addresses, 655
NIC (network interface card), 40
no ip subnet-zero command, 394, 502
no shutdown command, 190, 198
no shutdown subcommand, 363
notconnect state (Cisco switches), troubleshooting, 244
NS messages, duplicate address discovery, 671-672
NS (neighbor solicitation) messages, 670
nslookup command, 445
NTP (Network Time Protocol)
configuring, 569, 574
time-of-day clocks, synchronizing, 568-569
numbered ACLs, See extended numbered IP ACLs
number of hosts per network, calculating for classful, 298
numeric patterns, predictability within interesting octets, 337-338
numeric reference table
binary-to-hexadecimal conversion, 740
decimal-to-binary conversion, 737-739
hexadecimal-to-binary conversion, 740
NVRAM (nonvolatile RAM), 162, 165

objects, 112
octets, 81
decimal-to-binary conversion, 310
in Class A network addresses, 296
in Class B network addresses, 296
in Class C network addresses, 296
interesting octets
identifying, 482
predictability in numeric, 337-338
just-left octet, 483
subnet broadcast address, calculating with binary, 335
subnet ID
calculating on masks, 336
calculating with binary math, 334-335
Offer messages (DHCP), 436
one-size-fits-all design philosophy, 277
operational status of routers, displaying with show version, 366-367
operational view of subnetting, comparing to design view, 272-273
optical fiber, 138, 244
organized troubleshooting process, 236-238
OSI networking model
application layer, 26
comparing with TCP/IP, 25
data link layer, 27, 78
history of, 13
layers, 28
layers, remembering with mnemonics, 27
network layer, 27
forwarding logic, 75-77
IP routing logic over LANs, 62
overloading NAT with PAT, 585-587
 configuring, 594-596
 on consumer-grade Cisco routers, 587-588

P

packet filters, 529
 IPv4 ACLs
 placement of, 529-530
troubleshooting, 540
 matching packets, 530-531
standard numbered IPv4 ACLs
 example, 537-539
implementing, 536

packet switching, comparing to CEF and fast switching, 383

packets. See also IP routing
deencapsulation, 380, 615
encapsulation, 24, 381-382, 614-615
forwarding routing logic, 381
loss, 108
routing, 214-216

passive-interface command, 425

passive interfaces, OSPFv3, 424-425, 703

password command, 177

passwords
 CLI, 155, 175-178, 565
 configuring on Cisco Catalyst switches, 182-184
 enable secret password, 176, 184-185
 encrypting with service password command, 182-184
 for local username, hiding, 185
 recovering, 175
 vty password, 175

path selection, 76

PAT (Port Address Translation), 585-587
 configuring, 594-596
 on consumer-grade Cisco, 587-588

PCPT (Pearson IT Certification Practice Test) exam, 725-727

PDUs (protocol data units), 28
Pearson Network Simulator, 732
performance
Cisco routers during IP routing process, 383
pps, 382
permanent keyword (ip route command), 396
permit keyword, ACL packet matching, 531
physical installation, Cisco ISRs, 357
physical layer
Ethernet standards, 37
OSI model, 27
TCP/IP networking model, 21-23
ping command
connectivity, verifying, 447-449
extended ping, 449-451
in organized troubleshooting process, 237-238
verifying IPv6 connectivity, 679
ping6 command, 679
pinouts
for 10-BASE-T
crossover cable pinouts, 43
straight-through cable pinouts, 41-42
for 100-BASE-T
crossover cable pinouts, 43
straight-through cable pinouts, 41-42
for 1000-BASE-T, 44
for IEEE autonegotiation, 139
selecting, 43-44
pins, 40
pipe function (|), 184
placement
of ACLs, 529-530
of subnets (IPv6), 634
planning
for internetwork growth, 275
for subnet implementation
assigning subnets to, 287-288
hosts per subnet, calculating, 275-276
IP address assignment, 273-274
number of subnets, calculating, 274
one-size-fits-all design philosophy, 277
size of subnet, defining, 276
static and dynamic, 288-289
VLSMs, 278
point-to-point links, 58
port LEDs (2960 Catalyst switches), 151
port numbers, 104-105
port security, 251-252
configuring on Cisco Catalyst switches, 193-198
verifying, 197
ports, 150. See also port security
destination ports as packet filtering criteria, 553-555
on Cisco switches
SFP, 41
supporting Ethernet link types, 41
RJ-45 ports, 40-41
source ports as packet filtering criteria, 555-556
trunk negotiation, disabling, 225
postal code example of subnetting, 273
powers of 2, subnet design, 471, 742
PPDIOO (Prepare, Plan, Design Implement, Operate, and Optimize), 273
pps (packets per second), 382
practice exams, 725-726. See also practice problems; practicing
CCNA, 726-727
discovering knowledge gaps through questions, 729-731
ICND1, 726
practice problems
binary math, 333-334
extended numbered IP ACLs, building, 559
IPv4 ACLs, applying, 541-542
overlapping subnets, finding, 499
route summarization, 515
subnet broadcast addresses, 341
subnet IDs, calculating, 340
subnet mask selection, 476-477
subnetting, 342, 502
practicing
CLI skills, 731-732
decimal-to-binary conversion
Cisco Binary Game, 310
math-related skills for speed, 723-725
subnet mask analysis, 318-319
subnet mask conversion, 313
two-phase practice approach, 301-302
preconfiguration of DHCP servers, 439
predictability within interesting octets, 337-338
predicting MAC address table entries, 248-251
pre-exam suggestions, 722
prefix length, representing, 619
prefix notation, 286
prefix subnet mask format, 309, 314-315
converting to binary format, 310
converting to DDN, 312
network part, 315
subnet part, 315
preparing for exam
Cisco Exam Tutorial, 720-721
exam-day advice, 722-723
hands-on CLI practice, 731-732
math-related skills, practicing for, 723-725
multiple-choice questions, solving, 236
practice exams, 725
CCNA, 726-727
ICND1, 726
knowledge gaps, 729-731
pre-exam suggestions, 722
Sim questions, 720
suggested time-check method, 722
Testlet questions, 721
presentation layer (OSI model), 26
pre-TCP/IP computer networking, 13
preventing collisions on Ethernet LANs, 50
private addressing, 579-581
IPv4, 629
IPv6, 631
NAT, 581
dynamic NAT, 584-585, 590-594
PAT, 585-588, 594-596
static NAT, 582, 588-590
private internets, 581
private IP networks, 279-281
private lines, 58
privileged EXEC mode, 156
problem isolation, 237-238
process switching, 382-383
protocol messages, DHCP, 435-436
protocol status, displaying with show interfaces command, 243
protocol type parameter (access-list command), 552-553
protocols, 12
describing with OSI layers, 26
headers, 16, 22-25
layered protocols, 28
trailers, 22
public addresses
IPv4, 629
IPv6, 631
public IP networks, 279-281
QoS (quality of service), 107, 529
bandwidth, 108
data application requirements, 108
delay, 108
jitter, 108
loss, 108
video application requirements, 109
voice application requirements, 108
quartets
abbreviating IPv6 addresses, 617-618
expanding IPv6 addresses, 618-619
questions
how to answer on exam, 728-729
knowledge gaps, discovering through review, 729-731
R
RA (Router Advertisement) messages, 669
RA messages
neighbor link address discovery, 670
SLAAC address discovery, 669-670
RAM (random access memory), running config, 162
changing, 163-164
copying, 164-165
erasing, 165
range of usable subnet addresses, 330, 336
rebooting Cisco IOS Software, 156
recalling commands, 158, 187
recovering passwords, 175
registered public IP networks, 279
 NAT, 280-281
relay agents (DHCP), 674
reload command, 156
reloading switches, 156, 391
remote DHCPv6 server, configuring, 674-676
representing
 prefix length of IPv6 addresses, 619
 unabbreviated IPv6 addresses, 617
requirements
 for single-size subnets, 277
 for VLSMs, 278
reserved IP addresses, 300
resident addresses, memorization versus calculation, 342
resident subnet, 327-329, 340
resolving URL host name to IP address, 110-111
restarting OSPF, 424
restricting telnet access with ACLs, 567
resume command, 457
resuming suspended telnet sessions, 457
reviewing practice exam questions for knowledge gaps, 729-731
RFC 1122, 15
RFC 1918, 281, 581
RFC 4193, 641
rfc-editor.org, 104
RFCs, 14, 104
RID (Router ID), 414, 423-424, 700
RIP (Routing Information Protocol), 408
RIPng (RIP Next Generation), 616, 698
RIR (Regional Internet Registry), 633
RJ-45 ports, 40-41
RJ-48 connector, 356
ROAS (Router-on-a-Stick), configuring, 387-390
roles of subnet broadcast address, 329
ROM (read-only memory), 162
routable protocols, 405
route aggregation (CIDR), 580
route learning process for routing protocols, 90-91
route redistribution, 410
route summarization, 509
 benefits of, 510
 practice problems, 515
 routing protocol support, 409
 subnets, designing for, 510
 summary routes, selecting, 512-514
 verifying, 511
routed protocols, 405
router discovery (NDP), 668-669
router-id command, 700
router-on-a-stick, 215
router ospf command, 417, 700
routers, 35
 ASICs, 383
 Aux ports, configuring, 366
 connectivity, testing
 with ping command, 448-449
 with traceroute command, 451-455
 convergence, 406
 data transmission using HDLC, 62
 deencapsulation, 63
 encapsulation, 62
 default router, 76, 445-447
 DHCP support, configuring, 435
dynamic unicast IPv6 addresses, configuring, 654
telnet access with ACLs, 567
enterprise routers, installing, 355-356
eUI-64, configuring, 651-653
integrated devices, SOHO network installation, 359
interfaces
 configuration commands, 361
 enabling, 363
 Ethernet interfaces, 360
 interface status codes, 362-363
 IP addresses, configuring, 363-364
 IP addresses, verifying, 364
serial interfaces, 361-365
status, displaying, 361-362
Internet access routers, SOHO network installation, 358
IP routing
Cisco routers, internal processing, 382
Cisco routers, performance issues, 383
IPv6 addresses, link-local addresses, 655-657
ISRs, installing, 356-357
LANs, connecting with WANs, 57
Layer 3 switches, 215-216
routing logic, 377-378
deenapsulation, 380
encapsulation, 381-382
frames, processing, 380
frame transmission, 382
packets, forwarding, 381
routing table, verifying OSPFv3 routes, 707-708
serial interface cards, 59
static unicast IPv6 addresses
configuring, 648
verifying, 649-650
subnets, connecting, 274
time-of-day clocks, synchronizing, 569-70
unicast IPv6 addresses, verifying configuration, 650
verifying IPv6 host connectivity, 680-682
wireless, 36
routings, 21. See also routing protocols
between VLANs, 214-215
data link layer role in, 78
EoMPLS, 65
example of, 88-89
forwarding logic, 75
delivering data to end, 77
routing across the network, 77
transmitting packets to default, 76
IP addressing role in, 78-79
IP role in, 19-20
IPv6, 614
deenapsulation, 615
encapsulation, 614-615
Layer 3 switches, 215-216
network layer, 77
path selection, 76
routing logic (IP routing), 376
routing protocols, 79-80, 405-407
ABRs, 416
administrative distance, 410-411
and routed protocols, comparing, 405
classful, 316
classless, 316, 409
convergence, 405-406
distance vector routing protocols, 408
EGPs, 406
functions of, 405
goals of, 89
IGPs, 406, 409
IPv6 support, 616, 698
link-state routing protocols, 408
metrics, 408-409
OSPF, 411
best route selection, 413
configuring, 417-420
default routes, 426-427
flooding process, 412
Hello messages, 415
Hello process, 414
LSAs, 412-413
LSDB, 412-413
multiarea OSPF, 416
neighbors, 413-414
passive interfaces, configuring, 424-425
reinitializing, 424
RID, 414, 423-424
single-area OSPF, 415-419
verifying configuration, 420-423
OSPFv3
LSDB, 707
neighbors, verifying, 706-707
passive interfaces, 703
single-area configuration, 700-702
verifying configuration settings, 704-706
verifying operation of, 703
verifying routes in routing table, 707-708
route learning process, 90-91
route redistribution, 410
route summarization support, 409
VLSM support, 495-496
routinig tables, 77, 707-708
RS (Router Solicitation) messages
neighbor link address discovery, 670
SLAAC address discovery, 669-670
running configuration files, 162-164
 copying, 164-165
 erasing, 165
runts, 247

S
same-layer interactions, 18
scalability, solutions for IPv4 addressing, 579
 CIDR, 579-581
 NAT, 581-596
 private addressing, 581
scaling OSPF
 multiarea OSPF, 416
 single-area OSPF, 415
secondary IP addressing, configuring, 392-393
secondary keyword (ip address command), 393
secure-shutdown state, 197
securing, CLI, 175-178
security
 broadcast domains, reducing size of, 134
 CLI, password protection, 565
 CLI access, 155
passwords
 enable password, hiding, 184-185
 for local username, hiding, 185
 recovering, 175
 port security, 251-252
 configuring on Cisco Catalyst, 193-196
verifying, 197
services for Cisco IOS Software, disabling, 565-566
segmentation, 101
segmenting LANs
 broadcast domains, 133-135
 collision domains, 133
 impact on LAN design, 134-135
segments, encapsulation, 24
selecting
classful network for subnet design
 private IP, 281
 public IP, 279-281
Ethernet technology for campus LANs, 136
mask for planned subnet, 282
 format, 285-286
 host part of IP address, 283
 subnet bits, calculating, 283-284
masks for subnet design, 471-477
pinouts for Ethernet UTP cabling, 43-44
static and dynamic ranges per subnets, 288-289
subnet IDs for subnet design, 477
 example, 480-482
 patterns, identifying with, 478-479
 practice problems, 485-486
 zero subnet, 478
summary routes, 512-514
sending frames via IP routing process, 382
SEQ (sequence number), 17
sequence numbers, editing ACLs with, 562-563
serial cables, 59
serial interface cards, 59
serial interfaces, 361, 365
serial links, 58
service password command, 182-184
service password-encryption command, 182
service providers, 58
 Ethernet as WAN technology, 63-65
 Internet access technologies
 cable, 69-70
 DSL, 68-69
services for Cisco IOS Software, disabling, 565-566
session layer (OSI model), 26
setup mode (Cisco IOS Software), 165-166
SFD (Start Frame Delimiter) field, Ethernet frames, 45
SFP (small form-factor pluggables), 41 shortcuts
 for calculating subnet broadcast address with, 335
 for calculating subnet ID with binary math, 334-335
show cdp command, role in troubleshooting, 241
show cdp entry name command, 241
show cdp neighbors command, 241
show CDP neighbors command, 241
show commands, 158-159, 237
show controllers command, 365
show dhcp lease command, 191
show interface switchport command, 253
show interfaces command, 243, 247-248, 361-362, 384, 649
show interfaces status command, 193, 243-245
show interfaces switchport command, 223-225, 255
show interfaces trunk command, 223, 226, 255
show ip dhcp conflict command, 442
show ip interface brief command, 361-362
show ip interfaces command, 538
show ip nat statistics command, 592
show ip nat translations command, 590-592
show ip ospf database command, 412, 420-421
show ip ospf interface brief command, 425
show ip ospf neighbor command, 707
show ip ospf neighbors command, 413
show ip protocols command, 422-423
show ip route command, 360, 384, 392, 398, 411, 420-422, 496-497, 509-511
show ip route static command, 396
show ipv6 interface brief command, 649
show ipv6 interface command, 656-658
show ipv6 neighbors command, 681-682
show ipv6 ospf command, 704
show ipv6 ospf database command, 707
show ipv6 ospf interface brief command, 705
show ipv6 route command, 655, 694-696
show ipv6 route local command, 691
show ipv6 route static command, 695
show mac address-table command, 248, 253, 360
show mac address-table dynamic command, 249
show ntp associations command, 574
show ntp status command, 570
show port security command, 197
show protocols command, 364
show running config command, 219, 365
show running-config command, 163, 704
show sessions command, 457
show ssh command, 457
show startup-config command, 163
show users command, 457
show version command, 166, 366-367
show vlan brief command, 219, 251-253
show vlan command, 253
show vtp status command, 221
shutdown command, 190
shutdown mode (port security), 251
shutdown vlan command, 226, 254
Sim questions, 236, 720
Simlet questions
 hands-on CLI practice, 731-732
 versus Sim questions, 236
single-area OSPF, 415-419, 700-702
single-building enterprise LAN, 37
single-mode fiber cabling, 138
single-size subnets, requirements, 277
site local addresses, 632
size of broadcast domains, impact on security, 134
size of subnets
 defining, 276
one-size-fits-all design philosophy, 277
VLSMs, 278
SLAAC (Stateless Address Autoconfiguration), 638, 651, 668
combining with NDP and stateless DHCPv6, 677
IPv6 addresses, building, 676-677
IPv6 address learning, 654
slash mask, 309
SLSM (static-length subnet masks), 498
SNA (Systems Network Architecture), 13
SNMP (Simple Network Management Protocol), 105
SOHO network installation
with integrated switch, 359
LANs, 35-36
with separate switch, router, and modem, 358
Solicit message (DHCPv6), 675
solicited-node IPv6 multicast addresses, 658-660
solutions to public IP address exhaustion, 280-281
solving multiple-choice questions, 236
source IP address parameters (access-list command), 552-553
Source MAC Address field (Ethernet frames), 45
source MAC addresses, 129
source ports as packet filtering criteria, 555-556
speed settings, displaying, 244-246
SSH (Secure Shell)
 CLI, accessing, 155
 configuring for Cisco Catalyst switches, 180-181
 restricting device access with ACLs, 567
standard numbered IPv4 ACLs, 531
 command syntax, 533, 536
 example configuration, 537-539
 extended numbered IP ACLs, 552
 first-match logic, 532-533
 implementing, 536
 list logic, 532
 practice problems, 541-542
 wildcard masks, 534
 binary format, 535
 decimal format, 534
 subnets, 535
startup configuration files, 162-165
stateful DHCPv6, 673
stateless DHCPv6, 673, 677
static access state, 256
static default routes, 396-398
static NAT, 582
 configuring, 588-590
 statistics, displaying, 590
 static ranges per subnet, selecting, 288-289
static routes
 configuring, 394-396
IPv6, 692-693
 default static routes, 696
 using global unicast next hop address, 694
 using link-local next hop address, 695
 using next hop address, 693
 verifying, 693
static unicast IPv6 addresses
 configuring on routers, 648
 verifying configuration, 649-650
statistics
 for current IOS operation, displaying, 166-168
 for dynamic NAT, displaying, 592
 for static NAT, displaying, 590
status
 LED status indicators, 150-151
 of CDP, examining, 242
 of SSH, displaying, 181
status codes
 Cisco switches, 243-244
 for router interfaces, 362-363
status of router interfaces, displaying, 361-362
sticky secure MAC addresses, 194
store-and-forward processing, 131
stored information on DHCP servers, 438
STP (Spanning Tree Protocol), loop avoidance, 130
straight-through cable pinouts, 41-42

subcommands
 description interface subcommand, 362
 no shutdown, 363

subinterfaces, 387

subnet addresses
 host part, 315
 prefix part, 314-315

subnet bits, calculating requirements for, 283-284

subnet broadcast address, 286, 329-330, 481
 calculating
 with binary math, 332-335
 with Boolean math, 335
 with decimal math, 340-341
 memorization versus calculation, 342
 practice problems, 341

subnet design
 example of, 284-285
 masks, selecting, 471-477
 subnet IDs, finding, 477-479, 482-484
 example, 480-482
 patterns, identifying with magic, 478-479
 practice problems, 485-486
 zero subnet, 478

subnet IDs, 328-329
 broadcast subnet, 481
 calculating
 with binary math, 330-335
 with Boolean math, 335
 with decimal math, 338-340
 IPv6, listing, 637
 practice problems, 340

subnet masks
 analysis, practicing, 318-319
 binary format, 309
 converting to DDN, 310-312
 converting to prefix format, 310
 conversion, practicing, 313
 DDN format, 309
 converting to binary, 310-312
 converting to prefix format, 312

difficult masks
 subnet broadcast address, 340-341
 subnet ID, calculating, 338-341

easy masks, 336
 formats, 309
 host part of subnet addresses, 315
 prefix format, 309
 converting to binary format, 310
 converting to DDN, 312
 prefix part of subnet addresses, 314-315
 slash mask, 309
 total subnets in network, calculating, 316-318

subnet part of IPv4 address prefix, 315

subnet router anycast addresses, 638

subnet zero, 394

subnetting, 85-86
 binary math, practice problems, 333-334
 classful network, selecting
 private IP networks, 281
 public IP networks, 279-281
 connected routes
 configuring, 384-385
 zero subnets, 394
 connecting with routers, 274
 defining subnets, 327
 example of, 271
 host part of IP address, borrowing bits from, 283
 hosts per subnet, calculating, 275-276
 interesting octets, predictability within, 337-338
 IP address assignment, rules for, 273-274

IPv6
 addresses, assigning to hosts in subnet, 638-639
 global unicast addresses, 634-637
 placement of subnets, 634
 subnet IDs, listing, 637
 subnets, assigning to internetwork, 638
 unique local unicast addresses, 640-641
masks
 easy masks, 336
 format, 285-286
 selecting, 282

matching subnets with wildcard masks, 535

networks and subnets, comparing, 329

operational and design views, comparing, 272-273

planning the implementation, 287
 assigning subnets, 287-288
 static and dynamic, 288-289

postal code example, 273

practice problems, 342

practicing for speed, 723-725

range of usable addresses, 330, 336

route summarization, designing for, 510

size of subnet, defining, 276
 one-size-fits-all, 277

VLSMs, 278

SLSMs, 498

subnet bits, calculating requirements for, 283-284

subnet broadcast address, calculating with, 332-335, 340-341

subnet ID, 328-329
 broadcast subnet, 481
 calculating with binary math, 330-335
 calculating with Boolean math, 335
 calculating with decimal math, 338-340

subnets of equal size, 327-328

subnets per internetwork, calculating, 274

unicast IP addresses, 327

on VLANs, routing between, 386, 390-392

VLSMs, 495
 ip address command, 496
 overlapping subnets, finding, 497-499
 overlapping subnets, practice problems, 499

ROAS, configuring, 387-390

routing protocols supporting, 495-496

subnets, adding, 500-502

support for, 409

verifying with show ip route command, 496-497

subordinate routes, 510

summary routes, See also route summarization
 best summary route, 512
 selecting, 512-514
 verifying, 511

suspended telnet sessions resuming, 457

suspending telnet sessions, 455-457

SVI (Switched Virtual Interfaces), 189, 390

switches
 access switches, 137
 banners, configuring, 185-186

CLI
 accessing with SSH, 155
 accessing with Telnet, 154
 accessing with the console, 152-154
 configuration submodes, 160-162
 debug commands, 159
 EXEC modes, navigating between, 156-157
 help features, 157-158
 password security, 155
 privileged EXEC mode, 156
 See also commands, 158
 show commands, 158-159
 user EXEC mode, 156

collision domains, 126

core switches, 137

distribution switches, 137

external authentication servers, configuring, 179

forward-versus-filter decisions, 128

frame forwarding logic
 flooding, 129
 forwarding versus filtering, 127-128
 internal switch processing, 130-131

loop avoidance, 130
MAC address learning process, 128-129
inactivity timer, 129
input errors, 247
interfaces, 150
duplex mismatches, troubleshooting, 246-247
Layer 1 problems, troubleshooting, 247-248
status codes, 243-244
unused, securing, 198
IP address
configuring, 190
verifying, 191-192
Layer 2 switches, 189
LED status indicators, 150
port LEDs, 151
SYST LED, 151
MAC address table, Layer 2 forwarding path, 248-251
memory types, 162
ports, 150
port security, 251-252
reloading, 391
SSH, configuring, 180-181
statics access operational state, 256
time-of-day clocks, synchronizing, 569-570
VLANs, 135-136, 209
access interfaces, 216
configuring, 216-220
forwarding data between, 213-215
verifying state of, 253-254
VTP, 220
switching table, 128
switchport access vlan command, 219, 253
switchport mode command, 221-222
switchport mode dynamic auto command, 255
switchport mode dynamic desirable command, 223
switchport mode trunk command, 387
switchport port-security command, 196
switchport trunk encapsulation interface subcommand, 221
symmetric speeds, 69
synchronizing time-of-day clocks with NTP, 568-569
syntax, access-list command, 533
any/all addresses, matching, 536
exact IP address, matching, 533
matching parameters (extended), 552-553
subset of address, matching, 533-534
SYST LED (2960 Catalyst switches), 151
T
T1 leased lines, 58
tagging (VLAN), 210
TCP (Transmission Control Protocol)
comparing with UDP, 101
connection establishment, 106
connection termination, 106
destination ports as packet filtering criteria, 553-555
error recovery, 17
header fields, 102
multiplexing
destination port number, 103
dynamic, 103
sockets, 103-104
port numbers, 104-105
SEQ, 17
source port as packet filtering criteria, 555-556
TCP segments, 102
TCP/IP. See also TCP/IP networking model
applications
HTTP, 112
video applications, 109
voice applications, 108
WWW, 109-111
data applications, QoS requirements, 108
development of, 14
DNS, 105
messages, 24-25
pre-TCP/IP computer networking, 13
SNMP, 105
truncating CLI commands

TFTP, 105
WWW, 105
TCP/IP networking model
application layer, 15-17
comparing
original and modern versions, 23
with OSI model, 25
encapsulation, 23-25
layers, 14
link layer, 21-23
network layer, 18-20
IP addressing, 20
IP routing, 21
RFCs, 14-15
transport layer, 17-18, 101
telcos
COs, 59
CSU/DSU, connectors, 60
Internet core, 66
leased lines, cabling, 59, 356
Telnet
CLI, accessing, 154
restricting access with ACLs, 567
resuming suspended sessions, 457
suspending sessions, 455-457
telnet command, verifying connectivity, 455
terminal emulators
configuring for console connections, 153-154
Zterm Pro, 154
terminology, NAT, 583-584
testing connectivity
with ping command, 93-94, 447-449
with telnet command, 455
with traceroute command, 451-455
Testlet questions, preparing for, 721
TFTP (Trivial File Transfer Protocol), 105
three-area OSPF, 416
three-way handshake, 106
time needed for exam completion, estimating, 722
timed practice exams, 725-726
topics of RFCs, searching, 104
total networks provisioned for Class A, B, and C networks, 296
traceroute command, verifying connectivity, 451-455, 679
traceroute6 command, 679-680
trailers, 22, 45
transferring files with HTTP, 112
transparent mode (VTP), 220
transport layer (OSI model), 27, 101
TCP
connection establishment, 106
connection termination, 106
header fields, 102
multiplexing, 103-104
port numbers, 104
well-known port numbers, 105
TCP/IP networking model
adjacent-layer, 18
same-layer, 18
TCP error recovery, 17
UDP
header format, 107
multiplexing, 103-104
port numbers, 104
well-known port numbers, 105
troubleshooting
with CDP, 239-242
duplex mismatches, 246-247
interfaces
Layer 1 problems, 247-248
speed/duplex issues, 244-246
IPv4 ACLs, 540
NAT, 596-597
organized troubleshooting process, 236-238
problem isolation, 237
switches, interface status codes, 243-244
trunking, mismatched operational state, 255-256
VLANs, 252-253
mismatched VLAN-allowed list, 254-255
truncating CLI commands, 362
trunking, 210-211
802.1Q, 212-213
configuring, 387-390
native VLAN, 213
administrative mode options, 221-222
allowed VLAN list, 225-227, 255-256, 259
configuring, 221-224
ISL, 212-213
mismatched operational state, troubleshooting, 255-256
mismatched VLAN-allowed list, troubleshooting, 254-255
subinterfaces, 387
troubleshooting, 252-254
verifying configuration, 225
VTP, 220
TTL Exceeded (Time-to-Live Exceeded) message, 452
two-phase practice approach, 301-302
Type field
Ethernet frames, 45
HDLC, 61

UDP (User Datagram Protocol), 107
comparing with TCP, 101
destination ports as packet filtering criteria, 553-555
header format, 107
multiplexing
destination port number, 103
dynamic port numbers, 103
sockets, 103-104
port numbers, 104-105
source port as packet filtering criteria, 555-556
unabbreviated IPv6 addresses
abbreviating, 617-618
representing, 617
unicast Ethernet addresses, 46
unicast IPv4 addresses, 127, 295, 327, 629-630
unicast IPv6 addresses
dynamic unicast, 654
EUI-64, configuring, 651-653
global unicast, 631-639
static unicast, 648-650
unique local unicast, 639-641
verifying configuration, 650
uninteresting octets, calculating subnet IDs, 339
unique local unicast addresses (IPv6), 631-632, 639
need for, 640-641
RFC 4193, 640
subnetting, 640
universal/local bit, 652
unknown address, IPv6, 660
unknown unicast frames, 129
unused interfaces, securing, 198
up/up status code, 243
URLs (Uniform Resource Locators), 16, 109-110
USB ports, console access on Cisco switches, 153
user EXEC mode, 156
usernames, configuring on Cisco Catalyst switches, 178
UTP (unshielded twisted-pair), 37
10BASE-T
crossover cable pinouts, 43
pinouts, selecting, 431-44
straight-through cable pinouts, 41-42
100BASE-T
crossover cable pinouts, 43
pinouts, selecting, 41-44
straight-through cable pinouts, 41-42
1000BASE-T cable pinouts, 44
categories, 138
data transmission on Ethernet LANs, 39
electrical circuits, creating on Ethernet LANs, 39
EMI, 39
Ethernet links, 39
connecting, 41
RJ-45 connectors, 40
RJ-45 ports, 40
valid network numbers
for Class A networks, 296
for Class B networks, 296
for Class C networks, 296
verifying
ARP, 446-447
Cisco Catalyst switch IP address, 191-192
connectivity
 with ping command, 447-451
 with telnet command, 455
 with traceroute command, 451-455
default routers, 445-447
DHCP on Cisco routers, 441
direction of ACLs, 540
dynamic NAT configuration, 592-594
IPv4 settings
 DNS, 444-445
 IP address, 443
 mask configuration, 443
IPv6 host connectivity, 678-682
IPv6 static routes, 693
OSPF configuration, 420-423
OSPFv3 configuration, 704-708
OSPFv3 operation, 703
port security, 197
router interface IP addresses, 364
route summarization, 511
state of VLANs, 253-254
subinterfaces, 387
subnets
 requirements, calculating, 275
 routing between, 386
tagging, 210
troubleshooting, 252-254
trunking, 210-211
 802.1Q, 212-213
 allowed VLAN lists, 225-227, 255-256, 259
 configuring, 221-224
 ISL, 212-213
 mismatched operational state, 255-256
 verifying configuration, 225
VTP, 220
VLAN allowed list, troubleshooting mismatches, 254-255
VLAN ID (VLAN identifiers), 210
VLANs, 135-136
 access interfaces, 216
 administrative mode, 225
 broadcast domains, design concepts, 209
 configuring, 216-219
 allowed VLAN lists, 225-227, 255-256, 259
 full configuration, 217-219
 shorter configurations, 219-220
 trunking configuration, 223-224
 forwarding data between, 213-215
 Layer 2 forwarding path, analyzing, 250
 Layer 3 switching, configuring, 390-392
 ROAS, configuring, 387-390
 state of, verifying, 253-254
VLAN trunking configuration, 225
VLSM with show ip route command, 496-497
version information of IOS, displaying, 166-168
versions of OSPF routing protocols, comparing, 697-699
video applications, QoS requirements, 109
viewing
 contents of ARP cache, 93
 IPv6 host neighbor table, 671
virtual terminal lines, 155
VLSMs (Variable-Length Subnet Masks), 278
 configuring, 496
 ip address command, 496
 overlapping subnets
 finding, 497-499
 practice problems, 499
 routing protocols supporting, 409, 495-496
 subnets, adding, 500-502
voice applications, QoS requirements, 108
VoIP (Voice over IP), 108
VTP (VLAN Trunking Protocol), 213
vty, 155, 567

W

WANs, 57
cabling
 connectors, 60
 COs, 59
 DCE, 60
 DTE, 60
 serial cable, 59
comparing with LANs, 56
CPE, 59
CSU/DSU, 59
data link layer protocols, HDLC, 61-63
Ethernet, 63-65
full-duplex operation, 58
Internet access technologies, 67
cable Internet, 69-70
DSL, 68-69
LANs, connecting, 57
leased circuits, 58
leases, 56
links, 58
 creating in lab, 60
point-to-point links, 58
private lines, 58
serial links, 58
service providers, 58
subnets, IP address assignment, 274

WC (wildcard) masks
applying to IPv4 ACLs, 533-535
 binary wildcard, 535
 DDN, 534-535
interleaving 0s and 1s, 543
matching interface IP address with OSPF, 419-420
subnets, matching, 535

Windows OS, ipconfig command, 679
wired LANs, 34
wireless enterprise LANs, 37
wireless LANs, 35-36
write erase command, 165
WWW (world-wide web)
 DNS resolution, 110-111
 URLs, 109-110

X-Y-Z

zero subnets, 394, 478
Zterm Pro, 154

web clients, 109, 112
web pages, 109
 links, 110
 objects, 112
web servers, 109
websites
 rfc-editor.org, 104
 www.certsksills.com, 732
 www.potaroo.net, 612
 www.rfc-editor.org, 613
well-known port numbers, 104-105
WICs (WAN interface cards), 357
wildcard masks
applying to IPv4 ACLs
 binary format, 535
 DDN, 535
interleaving 0s and 1s, 543
matching interface IP address with OSPF, 419-420
subnets, matching, 535

Zterm Pro, 154