Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub
Alliances Manager, Cisco Press: Ron Fligge
Product Line Manager: Brett Bartow
Acquisitions Editor: Michelle Newcomb
Managing Editor: Sandra Schroeder
Development Editor: Ginny Munroe
Senior Project Editor: Tonya Simpson

Copy Editor: Chuck Hutchinson
Technical Editors: Denise Fishburne, Orhan Ergun
Editorial Assistant: Vanessa Evans
Cover Designer: Chuti Prasertsith
Composition: codeMantra
Indexer: Lisa Stumpf
Proofreader: Deepa Ramesh
About the Authors

Marwan Al-shawi, CCDE No. 20130066, is a Cisco Press author whose titles include the top Cisco certification design books *CCDE Study Guide* and *Designing for Cisco Network Service Architectures (ARCH) Foundation Learning Guide*, Fourth Edition. He also is an experienced technical architect. Marwan has been in the networking industry for more than 12 years and has been involved in architecting, designing, and implementing various large-scale networks, some of which are global service provider-grade networks. Marwan holds a Master of Science degree in internetworking from the University of Technology, Sydney. He enjoys helping and assessing network designs and architectures; therefore, he was selected as a Cisco Designated VIP by the Cisco Support Community (CSC) (official Cisco Systems forums) in 2012 and by the Solutions and Architectures subcommunity in 2014. In addition, Marwan was selected as a member of the Cisco Champions program in 2015 and 2016. In his spare time, Marwan provides CCDP- and CCDE-related training and blogs at netdesignarena.com.

André Laurent, 3xCCIE No. 21840, CCDE No. 20120024, is the worldwide director of engineering for enterprise networking sales at Cisco Systems and a Cisco Press author. Outside his own personal development, André has an equal passion for helping others develop their systems and assisting them with the certification process. André is recognized in the industry as a subject matter expert in the areas of routing, switching, security, and design. Although he wears a Cisco badge, André takes a neutral approach in helping clients establish a long-term business and technology vision covering necessary strategy, execution, and metrics for measuring impact.
About the Technical Reviewers

Denise “Fish” Fishburne, CCDE No. 20090014, CCIE No. 2639 (R&S, SNA), is an engineer and team lead with the Customer Proof of Concept Lab (CPOC) in North Carolina. Fish is a geek who absolutely adores learning and passing it on. She works on many technologies in the CPOC, but her primary technical strength is troubleshooting. Fish has been with Cisco since 1996 and CPOC since 2001, and has been a regular speaker at Networkers/Cisco Live since 2006. Cisco Live is a huge passion for Fish! As such, in 2009, she got even more deeply involved with it by becoming a Cisco Live session group manager. Look for Fish swimming in the bits and bytes all around you, or just go to www.NetworkingWithFish.com.

Orhan Ergun, CCDE No. 2014:0017, CCIE No. 2014:0017 (CCNP, CCDP, JNCIS, and JNCIP), is a network architect who focuses on service providers, data centers, virtualization, cloud, and network security. He has more than 13 years of IT experience and has worked on many medium- and large-scale network design and deployment projects. He teaches Cisco network design concepts and writes exam questions for Cisco Systems.
Dedications

I would like to dedicate this book to my wonderful mother for her continued support, love, encouragement, guidance, and wisdom, as well as to the people in my life who always support and encourage me.

And most importantly, I would like to thank God for all blessings in my life.

—Marwan

I would like to dedicate this book to the women in my life. My mother, for her unconditional dedication and love. My sister, for rescuing me from the drifter life and setting me up with my first job in the industry. My beautiful wife, who continues to stand by my side while encouraging me through all the new challenges, opportunities, and experiences life brings.

—André

Acknowledgments

A special thank you goes to the Pearson Cisco Press team for their support in making this book possible.

A big thank you goes to André for being part of this publication and adding his expert perspective. It’s always a pleasure to work with an experienced and extremely helpful person like André.

We would like to give special recognition to the wonderful technical reviewers Denise Fishburne and Orhan Ergun for their valuable contributions in editing the book. Both Denise and Orhan are very experienced network designers and CCDE certified; therefore, their suggestions and feedback helped shape and optimize the quality of the contents on multiple areas.

In addition, a special thank you to Maurizio Portolani (Cisco Press author and distinguished system engineer at Cisco Systems) and John Weston (systems engineer at Cisco) for their help and support with the technical review and optimization of the ACI chapter.

Also, we want to thank Adrian Arumugam (network engineer for a major content provider) for his technical review and valuable comments of certain chapters.
Contents at a Glance

<table>
<thead>
<tr>
<th>Part I</th>
<th>Designing Reliable and Resilient Enterprise Layer 2 and Layer 3 Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Optimal Enterprise Campus Design 1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>EIGRP Design 49</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>OSPF Design 75</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>IS-IS Design 101</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Border Gateway Protocol Design 145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II</th>
<th>Enterprise IPv6 Design Considerations and Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6</td>
<td>IPv6 Design Considerations in the Enterprise 193</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Challenges of the Transition to IPv6 219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III</th>
<th>Modern Enterprise Wide-Area Networks Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 8</td>
<td>Service Provider–Managed VPNs 229</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Enterprise-Managed WANs 271</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Enterprise WAN Resiliency Design 323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part IV</th>
<th>Enterprise Data Center Designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 11</td>
<td>Multitier Enterprise Data Center Designs 375</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>New Trends and Techniques to Design Modern Data Centers 397</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Cisco Application-Centric Infrastructure 431</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>Data Center Connections 477</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part V</th>
<th>Design QoS for Optimized User Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 15</td>
<td>QoS Overview 513</td>
</tr>
<tr>
<td>Chapter 16</td>
<td>QoS Design Principles and Best Practices 553</td>
</tr>
</tbody>
</table>
Contents

Introduction xxix

Part I Designing Reliable and Resilient Enterprise Layer 2 and Layer 3 Networks

Chapter 1 Optimal Enterprise Campus Design 1

Enterprise Campus Design Principles 2

Hierarchy 3

Access Layer 4

Distribution Layer 5

Core Layer 6

Enterprise Campus Two-Tier Layer Model 8

Enterprise Campus Three-Tier Layer Model 9

Modularity 10

Modular Enterprise Campus Architecture and Modular Enterprise Campus with OSPF 10

Access-Distribution Block 13

Flexibility 15

Campus Network Virtualization 16

Campus Network Virtualization Technologies and Techniques 17

VLAN Assignment 17

Virtual Routing and Forwarding 18

Path Isolation Techniques 19

Resiliency 23

Enterprise Campus High-Availability Design Considerations 23

VLANs, Trunking, and Link Aggregation Design Recommendations 24

VLAN Design 24

Trunking 27

Link Aggregation 28

First-Hop Redundancy Protocol (FHRP) 31

IP Gateway Redundancy Optimization with VSS 35

Layer 2 to Layer 3 Boundary Design Options and Considerations 36

Distribution-to-Distribution Link Design Considerations 36

A Summary of Enterprise Campus HA Designs 44

Summary 46

Review Questions 46

References 48
Chapter 2 EIGRP Design 49
Scalable EIGRP Design Overview 50
EIGRP with Multiple Autonomous Systems 50
 EIGRP Queries 52
 Multiple EIGRP Autonomous System Drivers 53
EIGRP Multilayer Architectures 53
 EIGRP Two-Layer Hierarchy Architecture 56
 EIGRP Three-Layer Hierarchy Architecture 57
EIGRP Hub-and-Spoke Design 60
 Summarization Challenges 61
 Route Summarization Black Holes 61
 Route Summarization and Suboptimal Routing 63
 EIGRP Hub-and-Spoke Scalability Optimization 65
 EIGRP Stub Leaking 67
 EIGRP DMVPN Scaling 69
EIGRP Fast Convergence Design Considerations 70
 Bidirectional Forwarding Detection 70
EIGRP Graceful Restart/NSF Considerations 71
Summary 72
Review Questions 72

Chapter 3 OSPF Design 75
OSPF Scalability Design Considerations 76
 Adjacent Neighbors 76
 Routing Information in the Area and the Routed Domain 78
 Numbers of Routers in an Area 80
 Number of Areas per ABR 81
OSPF Area Design Considerations 82
 OSPF Hierarchy 84
 Area and Domain Summarization 85
OSPF Full-Mesh Design 87
OSPF Hub-and-Spoke Design 88
 OSPF ABR Placement in Hub-and-Spoke Design 89
 Number of Areas in OSPF Hub-and-Spoke Design 91
OSPF Network Types in Hub-and-Spoke Design 92
IS-IS Routing over NBMA Hub-and-Spoke 132
IS-IS Routing over a Full-Mesh Network 133
Flat IS-IS Routing Design 134
Hierarchal IS-IS Design 135
IS-IS Routes Summarization 136
Integrated IS-IS for IPv6 138
IS-IS Single-Topology Restrictions 138
Multitopology IS-IS for IPv6 140
Final Thoughts on IS-IS Routing Design 141
Summary 142
Review Questions 142

Chapter 5 Border Gateway Protocol Design 145
BGP Overview 146
 BGP Speaker Types 147
 BGP Loop Prevention and Split-Horizon Rule 148
 BGP Path Attributes and Path Selection (Review) 149
 BGP Path Attributes 150
 How BGP Selects Paths 150
Designing Scalable iBGP Networks 152
 iBGP Scalability Limitations 152
 IBGP Scalability Solutions 152
 BGP Route Reflectors 153
 BGP Confederations 155
 BGP Confederations Versus BGP Route Reflectors 157
BGP Route Reflector Design 158
 Route Reflector Split-Horizon Rule 158
 BGP Route Reflectors Redundancy Design Options and Considerations 159
 Route Reflector Clusters 160
 Loop-Prevention Mechanisms 162
 Congruence of Physical and Logical Networks 165
 Hierarchical Route Reflector Design 167
 Route Reflector Potential Network Design Issues 169
Enhancing the Design of BGP Policies with BGP Communities 169
 BGP Community Attribute Overview 169
 Well-Known BGP Communities 170
BGP Named Community List 171
Planning for the Use of BGP Communities 171
Case Study: Designing Enterprise wide BGP Policies Using BGP Communities 172
Enterprise BGP Policy Requirements 173
BGP Community Solution Design 174
Solution Detailed Design and Traffic Flow 175
BGP Load-Sharing Design 177
Single-Homing Versus Multihoming 177
Dual-Homing and Multihoming Design Considerations 178
Single-Homed, Multiple Links 178
Dual-Homed to One ISP Using a Single Local Edge Router 180
Dual-Homed to One ISP Using Multiple Edge Routers 182
Multihoming with Two ISPs Using a Single Local Edge Router 183
Multihoming with Two ISPs Using Multiple Local Edge Routers 186
Summary 189
Review Questions 189

Part II Enterprise IPv6 Design Considerations and Challenges

Chapter 6 IPv6 Design Considerations in the Enterprise 193
IPv6 Deployment and Design Considerations 194
Business and Network Discovery Phase 196
Assessment Phase 196
Planning and Design Phase 196
Implementation and Optimization Phases 197
Considerations for Migration to IPv6 Design 197
Acquiring IPv6 Prefixes 197
Provider Independent Versus Provider Assigned 198
Where to Start the Migration 199
Migration Models and Design Considerations 200
IPv6 Island 200
IPv6 WAN 201
IPv6 Transition Mechanisms 203
Dual Stack 205
NAT64 and DNS64 206
Manual Tunnels 208
Tunnel Brokers 209
Chapter 7 Challenges of the Transition to IPv6 219
IPv6 Services 219
 Name Services 220
 Implementation Recommendations 220
 Addressing Services 220
 Implementation Recommendations 221
 Security Services 221
 Link Layer Security Considerations 221
 Application Support 222
 Application Adaptation 223
 Application Workarounds 223
 Control Plane Security 224
 Dual-Stack Security Considerations 225
 Tunneling Security Considerations 225
 Multihoming 226
Summary 226
Review Questions 227

Part III Modern Enterprise Wide-Area Networks Design
Chapter 8 Service Provider–Managed VPNs 229
Choosing Your WAN Connection 230
Layer 3 MPLS VPNs 233
 MPLS VPN Architecture 234
 Enterprise Routing Considerations 236
 Provider Edge (PE) Router Architecture 237
 Route Distinguishers 238
 Route Target (RT) 240
 PE-CE Routing Protocol 241
 Using EIGRP as the PE-CE Routing Protocol 241
Part IV Enterprise Data Center Designs

Chapter 11 Multitier Enterprise Data Center Designs 375

Case Study 1: Small Data Centers (Connecting Servers to an Enterprise LAN) 376
Case Study 2: Two-Tier Data Center Network Architecture 378
Case Study 3: Three-Tier Data Center Network Architecture 380
 Data Center Inter-VLAN Routing 381
 End of Row Versus Top of Rack Design 383
 Fabric Extenders 385
 Data Center High Availability 388
 Network Interface Controller Teaming 392
Summary 394
Review Questions 394

Chapter 12 New Trends and Techniques to Design Modern Data Centers 397

The Need for a New Network Architecture 397
Limitations of Current Networking Technology 398
Modern Data Center Design Techniques and Architectures 400
 Spine-Leaf Data Center Design 400
 Network Overlays 402
 Cisco Fabric Path 402
 Virtual Extensible LAN (VXLAN) 407
 VXLAN Tunnel Endpoint 408
 Remote VTEP Discovery and Tenant Address Learning 411
 VXLAN Control-Plane Optimization 413
 Software-Defined Networking 414
 How SDN Can Help 416
 Selection Criteria of SDN Solutions 417
 SDN Requirements 419
 SDN Challenges 419
 Direction of Nontraditional SDN 421
Multitenant Data Center 422
 Secure Tenant Separation 422
 Layer 3 Separation with VRF-Lite 423
 Device-Level Virtualization and Separation 424
Chapter 13 Cisco Application-Centric Infrastructure 431

ACI Characteristics 432
How the Cisco ACI Addresses Current Networking Limitations 432
Cisco ACI Architecture Components 434
 Cisco Application Policy Infrastructure Controller (APIC) 434
 APIC Approach Within the ACI Architecture 436
Cisco ACI Fabric 437
ACI Network Virtualization Overlays 441
Application Design Principles with the Cisco ACI Policy Model 447
 Design EPGs 451
 ACI Fabric Access Policies 454
 Building Blocks of a Tenant in the Cisco ACI 456
 Crafting Applications Design with the Cisco ACI 459
 ACI Interaction with External Layer 2 Connections and Networks 461
 Connecting ACI to the Outside Layer 2 Domain 462
 ACI Integration with STP-Based Layer LAN 464
ACI Routing 465
 First-Hop Layer 3 Default Gateway in ACI 465
 Border Leaves 467
 Route Propagation inside the ACI Fabric 468
 Connecting the ACI Fabric to External Layer 3 Domains 470
 Integration and Migration to ACI Connectivity Options 471
Summary 473
Review Questions 475
References 476

Chapter 14 Data Center Connections 477

Data Center Traffic Flows 478
 Traffic Flow Directions 478
 Traffic Flow Types 479
The Need for DCI 482
IP Address Mobility 484
Case Study: Dark Fiber DCI 490
Pseudowire DCI 495
Virtual Private LAN Service DCI 496
Customer-Managed Layer 2 DCI Deployment Models 497
Any Transport over MPLS over GRE 497
Customer-Managed Layer 2 DCI Deployment 498
Layer 2 DCI Caveats 501
Overlay Transport Virtualization DCI 501
Overlay Networking DCI 507
Layer 3 DCI 507
Summary 509
Review Questions 510

Part V Design QoS for Optimized User Experience

Chapter 15 QoS Overview 513
QoS Overview 514
IntServ versus DiffServ 514
Classification and Marking 516
Classifications and Marking Tools 516
Layer 2 Marking: IEEE 802.1Q/p Class of Service 517
Layer 3 Marking: IP Type of Service 519
Layer 3 Marking: DSCP Per-Hop Behaviors 520
Layer 2.5 Marking: MPLS Experimental Bits 524
Mapping QoS Markings between OSI Layers 524
Layer 7 Classification: NBAR/NBAR2 526
Policers and Shapers 527
Token Bucket Algorithms 529
Policing Tools: Single-Rate Three-Color Marker 532
Policing Tools: Two-Rate Three-Color Marker 533
Queuing Tools 535
Tx-Ring 536
Fair Queuing 537
CBWFQ 538
Chapter 18 **MPLS VPN QoS Design** 605

The Need for QoS in MPLS VPN 605
Layer 2 Private WAN QoS Administration 607
Fully Meshed MPLS VPN QoS Administration 608
MPLS DiffServ Tunneling Modes 609
 Uniform Tunneling Mode 612
 Short-Pipe Tunneling Mode 612
 Pipe Tunneling Mode 614
Sample MPLS VPN QoS Roles 615
Summary 617
Review Questions 617

Chapter 19 **IPsec VPN QoS Design** 619

The Need for QoS in IPsec VPN 619
VPN Use Cases and Their QoS Models 621
IPsec Refresher 621
IOS Encryption and Classification: Order of Operations 623
MTU Considerations 625
DMVPN QoS Considerations 626
GET VPN QoS Considerations 629
Summary 630
Review Questions 631

Part VI **IP Multicast Design**

Chapter 20 **Enterprise IP Multicast Design** 633

How Does IP Multicast Work? 634
 Multicast Group 635
 IP Multicast Service Model 636
 Functions of a Multicast Network 638
Multicast Protocols 638
Multicast Forwarding and RPF Check 639
 Case Study 1: RPF Check Fails and Succeeds 641
Multicast Protocol Basics 642
 Multicast Distribution Trees Identification 644
PIM-SM Overview 645
 Receiver Joins PIM-SM Shared Tree 646
 Registered to RP 647
 PIM-SM SPT Switchover 649
Multicast Routing Table 652
Basic SSM Concepts 654
 SSM Scenario 655
Bidirectional PIM 657
 PIM Modifications for Bidirectional Operation 658
 DF Election 658
 DF Election Messages 660
 Case Study 2: DF Election 660
Summary 662
Review Questions 663

Chapter 21 Rendezvous Point Distribution Solutions 665
Rendezvous Point Discovery 665
 Rendezvous Placement 667
Auto-RP 668
 Auto-RP Candidate RPs 670
 Auto-RP Mapping Agents 670
 Auto-RP and Other Routers 670
 Case Study: Auto-RP Operation 670
 Auto-RP Scope Problem 674
PIMv2 BSR 676
 PIMv2 BSR: Candidate RPs 677
 PIMv2 BSR: Bootstrap Router 678
 PIMv2 BSR: All PIMv2 Routers 678
 BSR Flooding Problem 678
IPv6 Embedded Rendezvous Point 679
Anycast RP Features 681
Anycast RP Example 682
OSPF Design Optimization
Planning and Designing the Migration from the Old to the New Routing
Scaling the Design
Case Study 2: Design Enterprise BGP Network with Internet Connectivity
Detailed Requirements and Expectations
Design Analysis and Task List
Choosing the Routing Protocol
Choosing the Autonomous System Numbers
BGP Connectivity
BGP Sessions
BGP Communities
Routing Policy
Routing Policy in North American Sites
Routing Policy in European and Asian Sites
Internet Routing
Public IP Space Selection
Main HQ Multihoming
Default Routing
Case Study 3: Design Enterprise IPv6 Network
Detailed Requirements and Expectations
Design Analysis and Task List
Choosing the IP Address Type for the HQ
Connecting the Branch Sites
Deployment Model
Addressing
Address Provisioning
Communication Between Branches
Application and Service Migration
Case Study 4: Design Enterprise Data Center Connectivity
Detailed Requirements and Expectations
Design Analysis and Task List
Selecting the Data Center Architecture and Connectivity Model
DCN Detailed Connectivity
Icons Used in This Book

Layer 2 Switch Layer 3 Switch Modular Layer 3 Switch Frame-Relay/ATM WAN Switch Router
MPLS Router Layer 2 WAN/SP Aggregation Switch SAN Switch Router with IP Tunnel Firewall
Satellite Host with Virtual Machines Load Balancer Fabric Switch IP Phone
Workstation Server Remote or Regional Site Radio Tower Optical Ring
Virtual Machine Ethernet Link Legacy Link-Serial, Frame-Relay, ATM, TDM Cloud-Routed or Switched Domain

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:
Boldface indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).

Italic indicates arguments for which you supply actual values.

Vertical bars (`|`) separate alternative, mutually exclusive elements.

Square brackets (`[]`) indicate an optional element.

Braces (`{ }`) indicate a required choice.

Braces within brackets (`{{ }}`) indicate a required choice within an optional element.

Reader Services

Register your copy at www.ciscopress.com/title/9781587144622 for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to www.ciscopress.com/register and log in or create an account*. Enter the product ISBN 9781587144622 and click Submit. When the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Introduction

Enterprise environments require networks designed for performance, availability, and scalability to achieve outcomes. Seasoned IT professionals with progressive end-to-end network design expertise are crucial in ensuring networks deliver to meet today’s requirements while future-proofing investments. For senior network design engineers, principal system engineers, network/solution architects, and CCDA professionals looking to build on your fundamental Cisco network design expertise, the Cisco CCDP certification program focuses on advanced addressing and routing protocols, WANs, service virtualization, and integration strategies for multilayered enterprise architectures.

This exam tests a candidate’s knowledge and skills needed to design or help in designing an enterprise network. Successful candidates will be able to design and understand the inner workings of all elements within the common enterprise network, including internal routing, BGP routing, modern WAN connectivity, modern data center and data center interconnect, basic network security considerations, advanced quality-of-service design, transition to IPv6, and multicast routing design.

Goals of This Book

Designing Cisco Network Service Architectures (ARCH) enables network designers, engineers, architects, and CCDP candidates to perform the conceptual, intermediate, and detailed design of a network infrastructure that supports desired network solutions over intelligent network services to achieve effective performance, scalability, and availability. By applying solid Cisco network solution models and recommended design practices, ARCH enables learners to provide viable, stable enterprise internetworking solutions. This book presents concepts and examples necessary to design converged enterprise networks. Also, this new edition has content addressing software-defined networks (SDNs). You will learn additional aspects of modular campus design, advanced routing designs, WAN service designs, enterprise data center design, and security design.

Who Should Read This Book

Besides those who are planning or studying for the CCDP certification, this book is for

- Network designers, architects, consultants, or engineers seeking a thorough understanding of enterprise network design
- Network engineers or architects who are studying for the CCDE certification and need to improve their foundational knowledge of modern enterprise network design
- Anyone wanting to understand basic and advanced network design with an intermediate to advanced level of experience
How This Book Is Organized

This book is organized into eight distinct sections.

Part I of the book explains briefly the various design approaches, requirements, and principles required to design an optimum enterprise campus network. Also, it focuses on enterprise routing design, covering the different design options, considerations, and design implications with regard to business and other design requirements.

■ Chapter 1, “Optimal Enterprise Campus Design”: This chapter discusses how to design a scalable and reliable enterprise campus taking into account applications and business requirements.

■ Chapter 2, “EIGRP Design”: This chapter highlights, analyzes, and discusses different design options and considerations of EIGRP that any network designer must be aware of.

■ Chapter 3, “OSPF Design”: This chapter looks at the different design options and considerations of OSPF that any network designer must be aware of, such as OSPF area design.

■ Chapter 4, “IS-IS Design”: This chapter discusses IS-IS level design. It also compares the key functionalities of IS-IS and OSPF as link-state routing protocols.

■ Chapter 5, “Border Gateway Protocol Design”: This chapter highlights, analyzes, and discusses different design options and considerations of BGP that any network designer must be aware of. It also provides some advanced BGP design approaches to address enterprise design needs.

Part II of the book focuses on IPv6 and how to plan and migrate your network to be IPv6 enabled along with the different design considerations and implications.

■ Chapter 6, “IPv6 Design Considerations in the Enterprise”: This chapter highlights and explains the different design considerations and approaches of migrating IPv4 networks to IPv6.

■ Chapter 7, “Challenges of the Transition to IPv6”: This chapter discusses the different challenges associated with migration to IPv6 that you need to take into account.

Part III of the book focuses on the different models of modern enterprise wide-area network design.

■ Chapter 8, “Service Provider–Managed VPNs”: This chapter highlights and discusses the MPLS Layer 3 and Layer 2 VPN-based WAN modes along with the different design considerations and aspects that you need to be aware of.

■ Chapter 9, “Enterprise-Managed WAN”: This chapter discusses the different enterprise-controlled VPN-based WAN models that can be used in today’s enterprise networks.
Chapter 10, “Enterprise WAN Resiliency Design”: This chapter explains how to optimize the enterprise-managed WAN model to design a resilient overlay WAN model.

Part IV of the book focuses on the design options and technologies required to design an enterprise data center network.

Chapter 11, “Multitier Enterprise Data Center Designs”: This chapter analyzes, explains, and compares the different data center design options and where each should be used.

Chapter 12, “New Trends and Techniques to Design Modern Data Centers”: This chapter analyzes, explains, and compares the different modern data center design options and technologies and the drivers of each. It also introduces you to the data center overlay and SDN concepts.

Chapter 13, “Cisco Application-Centric Infrastructure”: This chapter analyzes and explains the foundations of the Cisco ACI and the design concepts and terms that are ACI-specific, along with the different migration options from a traditional data center network to an ACI-based data center network.

Chapter 14, “Data Center Connections”: This chapter analyzes, explains, and compares the different data center interconnect design options and considerations.

Part V of the book focuses on designing quality of service (QoS) for an optimized user experience and dives deeper, discussing QoS design for the different places in the network.

Chapter 15, “QoS Overview”: This chapter explains the different QoS design concepts, techniques, and tools that any design engineer needs to be fully aware of its foundations.

Chapter 16, “QoS Design Principles and Best Practices”: This chapter explains the different QoS design principles and strategies required to design a reliable QoS-enabled network.

Chapter 17, “Campus, WAN, and Data Center QoS Design”: This chapter explains the best-practice design principles for enabling QoS in campus, WAN, and data center networks.

Chapter 18, “MPLS VPN QoS Design”: This chapter covers the basics of designing QoS for MPLS VPN networks.

Chapter 19, “IPsec VPN QoS Design”: This chapter reviews QoS-related considerations for IPsec VPNs.

Part VI of the book is an entry point to IP multicast services. It presents the functional model of IP multicast and gives an overview of technologies that are present in IP multicasting. The part is composed of an introduction to IP multicast concepts as well as a discussion of distribution trees and protocols.
Chapter 20, “Enterprise IP Multicast Design”: This chapter reviews the foundations of IP multicast and how a multicast-enabled network delivers traffic from a source to a receiver. Also, it explains the most current scalable IP multicast routing protocol.

Chapter 21, “Rendezvous Point Distribution Solutions”: This chapter offers an overview of RP distribution solutions. It explains the drawbacks of manual RP configuration and describes the Auto-RP and the BSR mechanisms. The chapter also introduces the concept of Anycast RP, which works in combination with the MSDP.

Part VII of the book focuses on how to design security services and what solutions are available today to implement network-level security.

Chapter 22, “Designing Security Services and Infrastructure Protection”: This chapter explains how to secure the network infrastructure as it is a critical business asset.

Chapter 23, “Designing Firewall and IPS Solutions”: This chapter explains the common firewall and IPS architectures, high-availability modes, and firewall virtualization along with design recommendations.

Chapter 24, “IP Multicast Security”: This chapter describes the challenges with IP multicast security along with recommendations of how to secure a multicast network edge, Auto-RP, BSR, and MSDP.

Chapter 25, “Designing Network Access Control Solutions”: This chapter discusses the different access control design approaches, including IEEE 802.1X–based access control and Cisco TrustSec technology.

Part VIII of the book offers some design scenarios that help you, as design engineer, practice designing technology solutions based on business and technical requirements.

Chapter 26, “Design Case Studies”: This chapter provides different design scenarios that cover the design of IGP, BGP, WAN, data center networks, security, IPv6, and QoS.
Upon completing this chapter, you will be able to

- Describe basic classification and marking design principles
- Describe basic policing and remarking design principles
- Explain queuing design principles
- Explain basic dropping design principles
- Explain what are per-hop behavior queue design principles
- Explain the role of RFC 4594 recommendation
- List and describe QoS strategy models
- Describe the 4-class QoS strategy model
- Describe the 8-class QoS strategy model
- Describe the 12-class QoS strategy model

Now that we have covered the various tools for enabling quality of service (QoS) in the network, it is possible to create a QoS strategy that best meets an organization's requirements. This chapter presents some best practice QoS design principles and QoS strategy models that are used to implement the numerous QoS tools we have at our disposal. Remember that usually more than one solution fits the given QoS requirements, so simplifying the models leveraged can significantly accelerate and ensure proper QoS deployment.

QoS Overview

Quality of service is critical to ensuring application performance consistency and optimized end-user experiences. As discussed in Chapter 15, “QoS Overview,” the fundamental purpose of QoS is to manage contention for network resources while
addressing applications that require differentiated levels of service. Prior to developing a QoS strategy, you must perform the proper discovery to identify current and future applications and application characteristics within the environment. This information, coupled with an understanding of the end-to-end network design and traffic patterns, will drive the QoS design strategy model that is most appropriate for the business. Following are some common questions that you need to answer:

- What traffic needs to be classified and marked?
- Is it possible to leverage a 4-class, 8-class, or 12-class QoS strategy model from end to end?
- Will traffic-marking characteristics stay in place as data traverses the infrastructure?
- What traffic needs to be prioritized?
- What traffic requires bandwidth reservations?
- What traffic needs to be policed?
- Is shaping required at the WAN edge or at other places within the infrastructure such as the Data Center Interconnect (DCI)?
- How can congestion management and congestion avoidance techniques be leveraged to optimize TCP traffic?

Classification and Marking Design Principles

The first fundamental design principle is that QoS policies should always be enabled in hardware whenever possible. Some Cisco routers perform QoS in software, and such behavior can increase the load on the CPU. Cisco Catalyst switches have dedicated hardware called application-specific integrated circuits (ASIC), which are used to perform QoS operations. Switches can perform complex QoS policies under maximum traffic load without any marginal CPU spike. Some platforms, such as the Cisco ASR, can perform QoS operations (such as queuing) in dedicated hardware ASICs, but other functions (such as deep packet inspection) are still processed in software via the CPU.

Based on design recommendations, classification and marking should be done closest to the source of traffic as administratively and technically possible. This design principle promotes DiffServ and per-hop behaviors (PHB) as the recommended end-to-end design.

Note
“As administratively close as possible” refers to an administrative domain, in scenarios in which you are not controlling the end-to-end traffic flow path of a packet; you need to classify/mark as close to the source as possible within your administrative domain.
As a rule, it is not recommended to trust markings set by end users leveraging PCs or other endpoint devices. End users can intentionally or unintentionally abuse QoS policies that trust markings of end devices. If users and unclassified applications take advantage of the configured QoS policy as a result of trusting end devices, this can result in easily starving priority queues with nonpriority traffic, ruining quality of service for real-time applications. However, if QoS markings for end devices and associated applications are administered centrally across the enterprise, this can be an acceptable design option. An additional area of exception might also include wireless devices that can leverage Wireless Multimedia (WMM) QoS provisioning in the upstream direction.

The next important recommendation is to use Differentiated Services Code Point (DSCP) marking whenever technically possible. DSCP markings are the recommended method for marking IP traffic for the following reasons:

- It has support for end-to-end Layer 3 marking.
- It is a more granular method of marking that supports 64 levels as compared to class of service (CoS) and MPLS Experimental EXP, which have 8 levels.
- It is more extensible than Layer 2 markings as these markings are lost when media changes.

To provide interoperability on the border between enterprise and service provider networks, you should use standard-based DSCP PHB markings because the use of such markings can streamline interoperability and compliance with service provider classes of service. Classification and marking design principles covered in this section are illustrated in Figure 16-1.

![Figure 16-1 QoS Classification and Marking Architecture](image-url)
Policing and Remarking Design Principles

Traffic that is unwanted should be discarded as soon as possible to preserve network resources from unnecessary consumption. Undesirable traffic can be the result of denial of service (DoS) or worm attacks. Furthermore, excessive unwanted traffic could cause a network outage as a result of high impact on the CPU and memory resources of network devices. Malicious traffic can mask under legitimate TCP/UDP ports that are used by well-known applications, and this traffic can create large amounts of unwanted traffic. Traffic behavior must be monitored and marked down as close as possible to the source under such circumstances.

Traffic should be marked down using RFC recommendations. Those recommendations ensure interoperability and end-to-end QoS network design. Examples of these recommendations are RFC 2597 and RFC 2698, where excess traffic with marking of AFx1 should be marked down to AFx2 or AFx3. Note that 2 or 3 in AFx2 and AFx3 represent drop probability. This markdown principle should be combined properly with other QoS tools. For example, with DSCP-based WRED, AFx2 should be dropped more aggressively than AFx1 but less aggressively than AFx3. Figure 16-2 illustrates the policing and remarking design principles covered in this section.

Figure 16-2 Policing and Remarking Concepts
Queuing Design Principles

The only way to provide QoS service guarantees to business-critical applications is to enable queuing to every node that has the potential for congestion. Queuing should be enabled regardless of whether congestion is occurring rarely or frequently. Although frequently deployed at the WAN edge, this principle must be applied not only to congested WAN links but also within the campus network. Speed mismatch, link aggregation, and link subscription ratios can create congestion in the network devices by filling up queuing buffers.

Because each distinctive application class requires unique QoS service requirements, it is recommended you provide a distinctive queue for each traffic class. One of the main justifications for leveraging distinctive queues is that each QoS service class can accept certain QoS-enabled behaviors such as bandwidth allocation and dropping ratios.

It is recommended you use a minimum of four standards-based queuing behaviors on all platforms and service provider links when deploying end-to-end QoS across the network infrastructure:

- RFC 3246 Expedited Forwarding PHB (used for real-time traffic)
- RFC 2597 Assured Forwarding PHB (used for guaranteed bandwidth queue)
- RFC 2474 Default Forwarding PHB (default nonprioritized queue, best effort)
- RFC 3662 Lower Effort Per-Domain Behavior (less than best-effort queue, bandwidth constrained)

Dropping Design Principles

As covered in Chapter 15, congestion avoidance mechanisms are used to selectively drop packets when a predefined limit is reached. As a review, by dropping packets early, congestion avoidance helps prevent bottlenecks downstream the network. Congestion avoidance mechanisms include RED and WRED. If WRED is designed per recommendations where every traffic class has its own queue, WRED should be used for only some types of queues (not necessarily all of them).

It is recommended that WRED not be used for the strict-priority queue, scavenger traffic queue, and control traffic queue. Traffic for the strict-priority queue and control traffic queue are highly sensitive to dropping. Scavenger traffic is often provisioned with a small amount of bandwidth, typically below 1 percent, and for this type of queue, WRED is not needed. Considering that the WRED feature is performed in software, enabling WRED for scavenger traffic class will consume additional CPU resources with no significant gain.
For AF-marked queues with DSCP-based WRED, typically traffic marked with AFx3 is more aggressively dropped than AFx2, which is in turn more aggressively dropped than AFx1.

All traffic types that are not explicitly defined in other queues fall into default (DF) traffic class. For this traffic class, it is recommended to enable WRED. WRED should be enabled in the default queue because, as explained in Chapter 15, it increases throughput by reducing the TCP synchronization effect. In the case of the default queue where all different traffic types are equally marked with a DSCP value of zero, there is no mechanism to fairly weight less aggressive applications when WRED is not enabled.

Per-Hop Behavior Queue Design Principles

The goal of convergence in the network is to enable voice, video, and data applications to seamlessly coexist in the network by providing each with appropriate QoS service expectations and guarantees.

When real-time applications are the only ones that consume link bandwidth, non-real-time applications' performance can be significantly degraded. Extensive testing results show that there is significant performance impact on non-real-time applications when more than one-third of the links is used by real-time applications as part of a strict-priority queue. Thus, it is recommended that no more than a third of link bandwidth be used for strict-priority queuing. This principle prevents non-real-time applications from being dropped out of their required QoS recommendations. In other words, it is recommended that no more than 33 percent of the bandwidth be used for the expedite forwarding (EF) queue. It is also important to note that this 33 percent design principle is simply a best practices design recommendation and not necessarily a mandatory rule.

It is recommended that a minimum of one queue be provisioned for assured forwarding per-hop behavior (AF PHB), but up to four subclasses can be defined within the AF class: AF1x, AF2x, AF3x, and AF4x. Each queue belonging to the specified AF subclass must have a bandwidth guarantee that corresponds to the application requirements of that traffic subclass.

The default forwarding (DF) class consists of all traffic that is not explicitly defined in other queues. If an enterprise is using many applications, it is important to have adequate space for those traffic types. It is recommended that typically 25 percent of link bandwidth be used for this service class. Figure 16-3 illustrates an example of bandwidth allocation leveraging these recommended best practices.
RFC 4594 QoS Recommendation

RFC 4594 QoS provides guidelines for marking, queuing, and dropping principles for different types of traffic. Cisco has made a minor modification to its adoption of RFC 4594, namely the switching of Call-Signaling and Broadcast Video markings (to CS3 and CS5, respectively). A summary of Cisco's implementation of RFC 4594 is presented in Figure 16-4.
Cisco Implementation of RFC 4594-Based QoS

<table>
<thead>
<tr>
<th>Application Class</th>
<th>Per-Hop Behavior</th>
<th>Admission Control</th>
<th>Queuing and Dropping</th>
<th>Application Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP Telephony</td>
<td>EF</td>
<td>Required</td>
<td>Priority Queue (PQ)</td>
<td>Cisco IP Phones (G.711, G.729)</td>
</tr>
<tr>
<td>Broadcast Video</td>
<td>CS5</td>
<td>Required</td>
<td>(Optional) PQ</td>
<td>Cisco IP Video Surveillance/Cisco Enterprise TV</td>
</tr>
<tr>
<td>Real-time Interactive</td>
<td>CS4</td>
<td>Required</td>
<td>(Optional) PQ</td>
<td>Cisco TelePresence</td>
</tr>
<tr>
<td>Multimedia Conferencing</td>
<td>AF4</td>
<td>Required</td>
<td>BW Queue + DSCP WRED</td>
<td>Cisco Unified Personal Communicator, WebEx</td>
</tr>
<tr>
<td>Multimedia Streaming</td>
<td>AF3</td>
<td>Recommended</td>
<td>BW Queue + DSCP WRED</td>
<td>Cisco Digital Media System (VoDs)</td>
</tr>
<tr>
<td>Network Control</td>
<td>CS6</td>
<td></td>
<td>BW Queue</td>
<td>EIGRP, OSPF, BGP, HSRP, IKE</td>
</tr>
<tr>
<td>Call Signaling</td>
<td>CS3</td>
<td></td>
<td>BW Queue</td>
<td>SCCP, SIP, H.323</td>
</tr>
<tr>
<td>Qos/Admin/Mgmt (QAM)</td>
<td>CS2</td>
<td></td>
<td>BW Queue</td>
<td>SNMP, SSH, Syslog</td>
</tr>
<tr>
<td>Transactional Data</td>
<td>AF2</td>
<td></td>
<td>BW Queue + DSCP WRED</td>
<td>ERP Apps, CRM Apps, Database Apps</td>
</tr>
<tr>
<td>Bulk Data</td>
<td>AF1</td>
<td></td>
<td>BW Queue + DSCP WRED</td>
<td>E-mail, FTP, Backup Apps, Content Distribution</td>
</tr>
<tr>
<td>Best Effort</td>
<td>DF</td>
<td></td>
<td>Default Queued + RED</td>
<td>Default Class</td>
</tr>
<tr>
<td>Scavenger</td>
<td>CS1</td>
<td></td>
<td>Min BW Queue (Differential)</td>
<td>YouTube, iTunes, BitTorrent, Xbox Live</td>
</tr>
</tbody>
</table>
Three basic QoS strategy models can be deployed, depending on the granularity of applications running within an organization’s network:

- 4-Class QoS Strategy Model
- 8-Class QoS Strategy Model
- 12-Class QoS Strategy Model

Although the more classes you define, the more specific and granular traffic treatment will be per application, the selection of a certain strategy model must be based on application requirements coupled with the WAN provider QoS model (if there is any WANs with QoS). The following sections provide a detailed view into each of these QoS strategy models.

4-Class QoS Strategy

The 4-class QoS strategy model is the simplest of the three models (in terms of QoS polices) and typically accounts for telephony, signaling, transactional/mission-critical, and best-effort data. When businesses deploy telephony applications in their network, three classes of traffic are typically required (telephony, signaling, and default/best effort). Typically, the fourth class is the Assured Forwarding (AF) class. The AF class is used for transactional and mission-critical data applications such as SQL databases. The AF class can also be used for multimedia conferencing, multimedia streaming, and bulk data applications.

The 4-class QoS strategy model, as shown in Figure 16-5, is an example of where an organization has deployed IP telephony. In addition to separating telephony, signaling, and default/best-effort traffic, the organization has defined one mission-critical transactional data class.

Figure 16-5 The 4-Class QoS Strategy Model
The four traffic classes of QoS markings and guarantees are as follows:

- **Voice (Real time):** Marked with EF and provisioned to leverage up to one-third of link bandwidth
- **Signaling:** Marked with CS3 and provisioned to leverage a minimum of 7 percent of link bandwidth
- **Mission-critical data (Transactional Data):** Marked with AF31 and provisioned to leverage 35 percent of link bandwidth
- **Default (best-effort data):** Marked with DF and provisioned to take advantage of 25 percent of link bandwidth

Voice and signaling guarantees must be selected based on the volume of voice calls and the VoIP codec that is used through the given link. Mission-critical data is selected based on the decision of the director of each company department who has given info about critical business application needs to the networking team.

8-Class QoS Strategy

The 8-class QoS strategy model builds upon the 4-class model and includes the following additional classes:

- Multimedia conferencing
- Multimedia streaming
- Network control
- Scavenger

The two additional multimedia traffic types in this model are multimedia conferencing and multimedia streaming. The explicitly defined network control traffic class is used for applications such as network routing protocol updates or network infrastructure control traffic such as OAM. The 8-class QoS strategy model is illustrated in Figure 16-6.
As can be seen from Figure 16-6, the recommendations for each traffic class in this model are as follows:

- **Voice**: Marked with EF and limited to 10 percent of link bandwidth in a strict-priority queue
- **Multimedia conferencing (Interactive video)**: Marked with AF41 or sometimes as EF and limited to 23 percent of link bandwidth in a strict-priority queue
- **Multimedia streaming**: Marked with AF31 and guaranteed 10 percent of link bandwidth with WRED enabled
- **Network control**: Marked with CS6 and guaranteed 5 percent of link bandwidth
- **Signaling**: Marked with CS3 and provisioned with minimum of 2 percent of link bandwidth
- **Transactional data**: Marked with AF21 and provisioned with 24 percent of link bandwidth with WRED enabled
- **Default (best-effort data)**: Marked with DF and provisioned with 25 percent of link bandwidth
- **Scavenger**: Marked with CS1 and provisioned with a maximum of 1 percent of link bandwidth

Note It is important to note the difference as some traffic types, such as voice traffic, are limited by bandwidth defined in a strict-priority queue, and other traffic types, such as multimedia streaming, have guaranteed provisioned bandwidth.
12-Class QoS Strategy

The 12-class QoS strategy model builds upon the 8-class model and includes the following additional classes:

- Real-time Interactive
- Broadcast Video
- Management/OAM
- Bulk Data

The 12-class QoS strategy model represents Cisco’s interpretation of the RFC 4594 recommendation and, as previously noted, incorporates a slight modification by swapping the markings used for signaling and broadcast video. The 12-class QoS strategy model is illustrated in Figure 16-7.

Figure 16-7 The 12-Class QoS Strategy Model

As can be seen from Figure 16-7, the recommendations for each traffic class in this model are as follows:

- **Voice**: Marked with EF and limited to 10 percent of link bandwidth in a strict-priority queue
- **Broadcast video**: Marked with CS5 or sometimes as EF and limited to 10 percent of link bandwidth in a strict-priority queue
- **Real-time interactive**: Marked with CS4 or sometimes as EF and limited to 13 percent of link bandwidth in a strict-priority queue
Multimedia conferencing: Marked with AF41 or sometimes as EF and limited to 10 percent of link bandwidth in a strict-priority queue

Multimedia streaming: Marked with AF31 and guaranteed 10 percent of link bandwidth with WRED enabled

Network control: Marked with CS6 and provisioned as guaranteed bandwidth 2 percent of link bandwidth

Signaling: Marked with CS3 and provisioned with a minimum of 2 percent of link bandwidth

Management/OAM: Marked with CS2 and provisioned with a minimum of 3 percent of link bandwidth

Transactional data: Marked with AF21 and provisioned with 10 percent of link bandwidth with WRED enabled

Bulk data: Marked with AF11 and provisioned with 4 percent of link bandwidth with WRED enabled

Default (best-effort data): Marked with DF and provisioned with 25 percent of link bandwidth

Scavenger: Marked with CS1 and provisioned with a maximum of 1 percent of link bandwidth

Summary

- Use QoS policies in hardware rather than in software whenever possible.
- Classify, mark, and police applications as close to the source as possible.
- Use DSCP marking whenever possible.
- Define a queue for the traffic class and enable queuing on each node that has potential congestion.
- Limit the strict-priority queue to one-third of the link bandwidth.
- Do not use WRED for priority or scavenger traffic classes.
- Use one of the three QoS strategy models to govern end-to-end QoS design.

Review Questions

After answering the following questions, please refer to Appendix A, “Answers to Review Questions,” for the answers.

1. Which of the following is recommended for a QoS queuing design?
 a. You should implement queuing policy very selectively.
 b. Classes should share queues in order to save resources.
c. You should use at minimum 4 classes of queuing behavior.
d. You should use at minimum 11 classes of queuing behavior.

2. Match the application classes with their PHBs as per RFC 4594.
 - VoIP Telephony: EF
 - Transactional Data: CS1
 - Network Control: CS6
 - Call Signaling: CS4
 - Real-time Interactive: AF21

3. Select the four classes of the 4-class QoS model.
 a. Voice, signaling, mission-critical data, and best effort
 b. Video, signaling, mission-critical data, and best effort
 c. Voice, signaling, mission-critical data, and scavenger
 d. Real-time interactive, signaling, mission-critical data, and best effort

4. Why is it recommended to leverage DSCP markings wherever possible?
 a. Support for end-to-end Layer 3 marking.
 b. It is a more granular method of marking that supports 64 levels as compared to
 CoS and MPLS EXP, which have 8 levels.
 c. It is more extensible than Layer 2 markings because these markings are lost when
 media change.
 d. All the above.
 e. None of the above.

5. Traffic should be marked down using which RFC recommendations? (Select two.)
 a. RFC 2957
 b. RFC 2597
 c. RFC 2698
 d. RFC 2968
Numbers

3G/4G VPN design models, 335
4-class QoS strategy model, 561–562
6RD (6 Rapid Deployment), IPv6, 210–211
6RD border relay, 210
6RD prefix, 211
6RD-capable router, 210
8-class 1P1Q3T egress queueing, 581–588
8-class 1P1Q3T ingress queueing, 580–581
8-class QoS strategy model, 562–563
12-class QoS strategy model, 564–565
/40 prefix, 197
/48 prefix, 198
/56 prefix, 198
802.1p, QoS (quality of service), 517–519
802.1Q, 27
QoS (quality of service), 517–519
802.1X, 759–763
message flow, 763
phased deployment, 767
supplicants, 765–766

Symbols

*, G (star comma G), 644, 645
PIM-SM (Protocol-Independent Multicast—Sparse Mode), 653

A

ABR placement, hub-and-spoke design, OSPF (Open Shortest Path First), 89–90
access control lists (ACLs), 702
access coverage, WAN connections, 232
access layer, enterprise campus design, 4–5
access management, enterprise WAN, 367–368
access restrictions, 740
access-distribution block, enterprise campus design, 13–15
ACI (Application-Centric Infrastructure), 431
ANP (application network profile), 449, 459–460
application design, 459–460
architecture, 434
APIC (Application Policy Infrastructure Controller), 434–437
fabric, 437–440
characteristics, 432
EPG (endpoint groups), 450–453
external Layer 2 connections and networks, 461–465
fabric access policies, 454–455
integration and migration connectivity options, 471–473
network virtualization overlays, 441–446
networking limitations, 432–434
route propagation inside ACI fabric, 468–470
routing, 465
border leaves, 467–468
first-hop layer 3 default gateway, 465–466
STP-based layer LANs, 464–465
tenants, 456–459
ACI APIC cluster, 440
ACI fabric
connecting to external Layer 3 domains, 470–471
route propagation, 468–470
ACI policy model, application design, 447–450
ACIs (access control lists), 702
acquiring IPv6 prefixes, 197–198
active passive failover mode, ASA firewall, 722
active/active mode, firewalls, 722
adaptive security appliance (ASA), 696
Adaptive Security Virtual Appliance (ASAv), 713–714
additive keyword, 177
Address Family Translation (AFT, 206
address provisioning, 814
addressing
enterprise IPv6 networks case study, 813–814
IS-IS (Intermediate System-to-Intermediate System), 114–116
addressing services, IPv6, 220–221
adjacent neighbors, OSPF (Open Shortest Path First), 76–77
AF (Assured Forwarding), 561
AF drop probability, 521
AF PHB, 521
AF profiles, 546
AFT (Address Family Translation), 206
aggregation layer deployment model, DCI (Data Center Interconnect), 499
aggressive mode, IKE (Internet Key Exchange), 279
AH (Authentication Header), 278
algorithms, token bucket algorithms, 529–531
analysis and task list
enterprise BGP network with Internet connectivity case study, 791
enterprise data center connectivity case study, 818
enterprise IPv6 networks case study, 809
resilient enterprise WANs case study, 826–827
analyzing enterprise connectivity, 779–780
ANP (application network profile), 449
ACI (Application-Centric Infrastructure), 459–460
anti-replay window sizing, 630
Any Transport over MPLS over GRE (AToMoGRE), DCI (Data Center Interconnect), 497–498
Anycast RP, 681
examples, 682–683
MSDP (Multicast Source Discovery Protocol), 683
AnyConnect Secure Mobility Client, 623, 765–766
APIC (Application Policy Infrastructure Controller), 357–358, 434–437, 439
APIC-EM (Application Policy Infrastructure Controller Enterprise Module), 357–358, 368–370
design, 370–371
application adaptation, IPv6, 223
application design
ACI (Application-Centric Infrastructure), 459–460
ACI policy model, 447–450
application migration, enterprise IPv6 networks case study, 815–816
application network profile (ANP), 449
application optimization, WAN, 356–357
Application Policy Infrastructure (APIC), 357–358
application support, IPv6, 222–223
application adaptation, 223
application workarounds, 223–224
application tiers, separating, 714–716
Application Visibility Control (AVC), 357
application workarounds, IPv6, 223–224
Application-Centric Infrastructure. See ACI (Application-Centric Infrastructure)
application-specific integrated circuits (ASIC), 554
architecture
ACI (Application-Centric Infrastructure), 434
APIC (Application Policy Infrastructure Controller), 434–437
fabric, 437–440
big data architecture, data center QoS, 596
EAP (Extensible Authentication Protocol), 763–764
firewalls, 709–712
FlexVPN, 315
HPT (high-performance trading), data center QoS, 595
IPS (intrusion prevention system), 726–729
modular network architecture, 691–695
zones, 695
MPLS VPNs, 234–236
multilayer architectures, EIGRP (Enhanced Interior Gateway Routing Protocol), 53–56
new network architecture, 397–398
ONE (Open Network Environment) architecture, 435
provider edge (PE) routers, 237–238
route distinguishers, 238–239
route target (RT), 240–241
three-layer hierarchy architecture, EIGRP (Enhanced Interior Gateway Routing Protocol), 57–59
three-tier data center network architecture, 380–381
two-layer hierarchy architecture, EIGRP (Enhanced Interior Gateway Routing Protocol), 56–57
two-tier data center network architecture, 378–380
virtualized multiservice architectures, 596–597
area, OSPF (Open Shortest Path First)
number of areas per ABR, 81–82
numbers of routers in an area, 80–81
routing information, 78–80
area design
IS-IS (Intermediate System-to-Intermediate System), 113
OSPF (Open Shortest Path First), 82–83, 112–113
ARP inspection, 702
AS (autonomous systems), EIGRP (Enhanced Interior Gateway Routing Protocol), 50–52
multiple autonomous system drivers, 53
AS (autonomous systems) number
EIGRP (Enhanced Interior Gateway Routing Protocol), 243–244
PE-CE routing protocol, 242–243
ASA (adaptive security appliance), 696, 712
FirePOWER services, 727
ASA 1000V, 714
ASA clustering, 723
ASA firewall active/passive failover mode, 722
ASA SFR, 726–727
ASAv (Adaptive Security Virtual Appliance), 713–714
ASBRs (autonomous system border routers), 79
Asian sites, routing policies, 799–802
ASIC (application-specific integrated circuits), 554
as-override, 254
assessment phase, IPv6, 196
asymmetrical routing issues, GLBP (Gateway Load Balancing Protocol), 34
ATM WAN design, 344–346
AToMoGRE (Any Transport over MPLS over GRE), 497–498
attacks
multicast traffic, 753
preventing, 703
attributes, BGP (Border Gateway Protocol)
extended community attributes, 241–242
path attributes, 150
authentication, 740
Authentication Header (AH), 278
authentication servers, 760
authenticators, 760
authorization, 740
authorization options case study, 772–775
autonomous system border routers (ASBRs), 79
autonomous system numbers, choosing, 792–794
autonomous systems. See AS (autonomous systems)
Auto-RP, 667, 668–669
candidate RPs, 670
case studies, 670–674
mapping agents, 670
multicast network edge security, 749–751
operations, 671–674
routers, 670
scope problems, 674–676
AVC (Application Visibility Control), 357
A-VPLS (Advanced VPLS), 496
B
backdoor links between customer sites, PE-CE routing protocol
BGP (Border Gateway Protocol), 254–255
EIGRP (Enhanced Interior Gateway Routing Protocol), 245–247
OSPF (Open Shortest Path First), 250–251
backoff messages, DF election messages, 660
backoff timers, 94
bandwidth allocation, 558–559
bandwidth keyword, 539
baseline network policy enforcement, 701–702
baseline switching security, 702
bestpath as-path multipath-relax, 183
BFD (bidirectional forwarding detection), EIGRP (Enhanced Interior Gateway Routing Protocol), 70–71
BFD echo, 71
BGP (Border Gateway Protocol), 146
case studies, 172–177
communities, 169–170
named communities, 171
planning for, 171–172
well-known BGP communities, 170–171
confederations, 155–156
versus route reflectors, 157
dual-homing, 178
extended community attributes, 241–242
load-sharing design, 177
single-homing versus multi-homing, 177–178
loop prevention, 148–149
multihoming, 178
overview, 146–147
path attributes, 150
path selection, 150–151
PE-CE routing protocol, 252–254
backdoor links between customer sites, 254–255
peer-forwarding rules, 158
route reflectors, 153–155
congruence of physical and logical networks, 165–167
bierarchical route reflector design, 167–168
loop prevention, 162–165
network design issues, 169
redundancy. 159–160
route reflector cluster-ID, 161–162
route reflector clusters, 160–161
split-horizon rule, 158–159
single-homed, multiple links, 178–180
speaker types, 147–148
split-horizon rule, 148–149
traffic engineering techniques, 352–353
TTL Security Check, 700
bgp always-compare-med, 151
BGP ASN design, 792–794
bgp bestpath med missing-as-worst, 151
BGP communities, 796–797
BGP connectivity
 BGP communities, 796–797
 BGP sessions, 795–796
BGP Originator-ID attribute, 162
BGP sessions, 795–796
bidirectional forwarding detection (BFD), EIGRP (Enhanced Interior Gateway Routing Protocol), 70–71
BIDIR-PIM (bidirectional PIM), 657, 754
 DF election, 658–659
 DF election messages, 660
 PIM modifications, 658
big data architecture, data center QoS, 596
black holes, route summarization, EIGRP (Enhanced Interior Gateway Routing Protocol), 61–63
bootstrap router (BSR), 667
Border Gateway Protocol. See BGP (Border Gateway Protocol)
border leaf devices, 439
border leaves, ACI (Application-Centric Infrastructure), 467–468
boundaries, trust states and, 570–573
branch border routers, 366
branch master controller, 366
branch offices, remote-site WAN design, 346–348
branch sites, connecting, 810–812
bridge domains, tenants, ACI (Application-Centric Infrastructure), 456–457
broadcast links, IS-IS (Intermediate System-to-Intermediate System), 119
BSR (bootstrap router), 667
multicast network edge security, 749–751
PIMv2, 676–677
PIMv2 BSR, 678
securing, 751
buffering, 535
buffers, QoS (quality of service), 569–570
building a secure campus edge design (Internet and extranet connectivity) case study, 729–740
bursts, QoS (quality of service), 569–570

C

Campus Edge network, 730–736
characteristics, 730–731
DMZs (demilitarized zones), 732–733
firewalls, 731–735
case studies

internal networks, connecting, 733–734
Internet, connecting, 731
campus network virtualization, 16–23
path isolation, 19–23
VLAN assignment, 17–18
VRF (virtual routing and forwarding), 18
campus QoS, 568
design examples, 576–588
candidate RPs, 676–677
Auto-RP, 670
PIMv2 BSR, 677–678
candidate-RP announce packets, 750
candidate-RP discovery packets, 750
capabilities, FlexVPN, 315
case studies
authorization options, 772–775
Auto-RP operation, 670–674
building a secure campus edge
design (Internet and extranet connectivity), 729–740
dark fiber DCI, 490–494
DC QoS application, 599–601
design enterprise BGP network with
Internet connectivity, 788
analysis and task list, 791
BGP connectivity, 795–797
choosing autonomous system numbers, 792–794
choosing routing protocols, 792
Internet routing, 803–807
requirements and expectations, 788–791
routing policies, 797–802
design enterprise connectivity, 778
analysis and task list, 779–780
designing for new routing protocols, 780–782
migrating from old to new routing, 785–787
OSPF design optimization, 782–785
requirements and expectations, 778–779
scaling, 787–788
selecting replacement routing protocols, 780
design enterprise data center connectivity, 816–817
analysis and task list, 818
connecting network appliances, 821–822
data center interconnect, 822–823
data center network virtualization design, 823–825
DCN detailed connectivity, 819–821
requirements and expectations, 817–818
selecting architecture and connectivity model, 818–819
design enterprise IPv6 network, 807
addressing, 813–814
analysis and task list, 809
application and service migration, 815–816
choosing IP address types for HQ, 809–810
communication between branches, 815
connecting branch sites, 810–812
deployment models, 812
requirements and expectations, 808–809
design QoS in the enterprise network, 835
congestion management, 838–839
MPLS WAN DiffServ tunneling, 839–841
QoS design model, 837–838
QoS trust boundary, 838
requirements and expectations, 835–836
scavenger traffic, 839
traffic discovery and analysis, 836–837
design resilient enterprise WANs, 825
analysis and task list, 826–827
requirements and expectations, 825–826
selecting WAN links, 828
WAN overlays, 828–830
design secure enterprise networks, 830
firewalls, 835
infrastructure and network access security, 833–834
Layer 2, 834–835
requirements and expectations, 831
security domains and zone design, 832
designing enterprisewide BGP policies using BGP communities, 172–177
DF election, 660–662
EIGRP DMVPN, 295–302
firewall high availability, 720–725
implementing firewalls in a data center, 717–720
MPLS VPN routing propagation, 255–258
MPLS/VPN over GRE/DMVPN, 304–312
MSDP operations, 684–686
multitenant data centers, 425–426
redundancy and connectivity, 343–354
RPF check fails and succeeds, 641–642
separation of application tiers, 714–716
small data centers (connecting servers to an enterprise LAN), 376–378
three-tier data center network architecture, 380–381
two-tier data center network architecture, 378–380
virtualized multiservice architectures, 596–597
Catalyst switches, 554, 571, 574
CBWFQ (class-based weighted fair queueing), 536, 538–541, 591
WAN/branch edge, 592
cellular connectivity, 335
CGA (cryptographically generated access), 222
challenges of SDN (software-defined networking), 419–421
characteristics
ACI (Application-Centric Infrastructure), 432
Campus Edge network, 730–731
DiffServ, 516
ECN (explicit congestion notification), 550
IntServ (Integrated Services), 516
OSPF (Open Shortest Path First), 110–112
PIM-SM (Protocol-Independent Multicast—Sparse Mode), 645
SDN controller characteristics, 418
SSM (source-specific multicast), 654
traffic policing, 529
traffic shaping, 529
choke points
EIGRP (Enhanced Interior Gateway Routing Protocol), 54
summarization and, 55–56
choosing
autonomous system numbers, 792–794
WAN connections, 230–233
CIR (committed information rate), 530
Cisco AnyConnect Secure Mobility client, 765–766
Cisco Application-Centric Infrastructure. See ACI (Application-Centric Infrastructure)
Cisco ASA 5500-X Series Next-Generation Firewall, 696
Cisco ASA 5506-X, 696
Cisco ASA 5512-X, 696
Cisco ASA 5555-X, 696
Cisco FabricPath, 402–407
Cisco FirePOWER, NGIPS (next-generation IPS), 696, 726–727
Cisco Identity Services Engine (ISE), 768
Cisco IOS, encryption, 623–625
Cisco IOS XR software, 750
Cisco modular network architecture, 691–695
Cisco next-generation security, 696
Cisco Security Group Tag (SGT), 769–772
Cisco TrustSec, 768
Profiling Service, 768–769
SGT (Security Group Tag), 769–772
Cisco Web Security Appliance (WSA), 735–736
cLACP (Cluster Link Aggregation Control Protocol), 724
class-based weighted fair queueing (CBWFQ), 536, 538–541
classification, QoS (quality of service), order of operations, 623–625
classification and marking, QoS (quality of service)
design principles, 554–555
Layer 2 marking, 517–519
Layer 2.5 marking: MPLS experimental bits, 524
Layer 3 marking: DSCP per-hop behaviors, 520–523
Layer 3 marking: IP type of service, 519–520
Layer 7: NBAR/NBAR2, 526–527
mapping markings between OSI layers, 524–525
traffic policing and shaping, 527–529, 532
classification/marking/policing QoS model, 573–574
classifications and marking tools, QoS (quality of service), 516–517
client-server traffic, 479
CLNP (Connectionless Network Protocol), 102
CLNS (Connectionless Network Service), 102
Cluster ID, 164–165
Cluster Link Aggregation Control Protocol (cLACP), 724
Cluster-List attribute, 163
committed information rate (CIR), 530
communication between branches, enterprise IPv6 networks case study, 815
communities, BGP (Border Gateway Protocol), 169–170, 796–797
named communities, 171
planning for, 171–172
well-known BGP communities, 170–171
comparing
802.1X deployment modes, 767
control planes and data planes, 414–415
DMVPN (Dynamic Multipoint VPN) and GET VPN, 629
phases, 302
EF and AF profiles, 546
enterprise campus access-distribution design models, 45
IntServ and DiffServ, 514–516
MSDP and BGP features, 752
point-to-point GRE and multipoint GRE, 276–277
QoS design drivers and considerations based on the PIN, 602
RP deployments, 667
traffic shaping and traffic policing, 529
virtual firewall models, 714
VPLS and VPWS, 266–267
complete sequence numbers (CSNP), 123–124
confederations, BGP (Border Gateway Protocol), 155–156
versus BGP route reflectors, 157
configuration blocks, FlexVPN, 315–316
congestion avoidance, 541, 575
congestion management, QoS in the enterprise network case study, 838–839
congruence of physical and logical networks, route reflectors, BGP (Border Gateway Protocol), 165–167
connecting
ACI fabric to external Layer 3 domains, 470–471
ACI to outside Layer 2 domains, 462–465
branch sites, 810–812
external partners, 737
internal networks, Campus Edge network, 733–734
Internet, Campus Edge network, 731
network appliances, 821–822
servers to enterprise LANs, 376–378
Connectionless Network Protocol (CLNP), 102
Connectionless Network Service. See CLNS (Connectionless Network Service)
connectivity, case studies, redundancy and connectivity, 343–354
connectivity model, MPLS VPNs, 606
content and application security, 695
new network architecture, 397–398
NIC teaming, 392–393
small data centers (connecting servers to an enterprise LAN), 376–378
three-tier data center network architecture, 380–381
two-tier data center network architecture, 378–380
data flow, IS-IS (Intermediate System-to-Intermediate System), 118–119
data plane, 414–415, 697
data plane protection, 697
Database Overload Protection, OSPF (Open Shortest Path First), 97–98
DC QoS application, 599–601
DCB (Data Center Bridging) toolset, 597–598
DCI (Data Center Interconnect), 482–483
customer-managed Layer 2 DCI deployment models, 497
aggregation layer deployment model, 499
Any Transport over MPLS over GRE (ATOMoGRE), 497–498
core layer deployment model, 499
limitations of, 501
overlay transport virtualization DCI, 501–506
separate DCI layer deployment model, 500
dark fiber DCI, 490–494
IP address mobility, 484–490
Layer 3, 507–509
LISP (locator/ID separation protocol), 487–489
overlay networks, 507
pseudowire DCI, 495
virtual private LAN service DCI, 496
DCN connectivity, enterprise data center connectivity, 819–821
DCN connectivity model, 820
decision process, IS-IS (Intermediate System-to-Intermediate System), 119
default forwarding (DF), 558
default routing, 805–807
default VLANs, 773
delays, jitter and latency, WAN QoS, 590–591
demilitarized zones (DMZs), 710
dense mode protocols, 642
deployment
IPv6, 194–195
assessment phase, 196
discovery phase, 196
implementation and optimization phases, 197
planning and design phase, 196–197
PfRv3, 366–367
phased deployment, 802.1X, 767
deployment models
DHCPv6 deployment model, 814
DMVPN (Dynamic Multipoint VPN), 285
enterprise IPv6 networks, case study, 812
design
APIC-EM (Application Policy Infrastructure Controller Enterprise Module), 370–371
campus QoS, examples, 576–588
IPv6, 194–195
designing

enterprise BGP network with Internet connectivity, 788
analysis and task list, 791
BGP connectivity, 795–797
choosing autonomous system numbers, 792–794
choosing routing protocols, 792
Internet routing, 803–807
requirements and expectations, 788–791
routing policies, 797–802
enterprise connectivity, 778
analysis and task list, 779–780
designing for new routing protocols, 780–782
migrating from old to new routing, 785–787
OSPF design optimization, 782–785
requirements and expectations, 778–779
scaling, 787–788
selecting replacement routing protocols, 780
enterprise data center connectivity, 816–817
analysis and task list, 818
connecting network appliances, 821–822
data center interconnect, 822–823
data center network virtualization design, 823–825
DCN detailed connectivity, 819–821
requirements and expectations, 817–818
selecting architecture and connectivity model, 818–819
enterprise IPv6 networks, 807
addressing, 813–814
analysis and task list, 809
application and service migration, 815–816
choosing IP address types for HQ, 809–810
communication between branches, 815
connecting branch sites, 810–812
deployment models, 812
requirements and expectations, 808–809
infrastructure protection, 696–697
for new routing protocols, 780–782
QoS in the enterprise network case study, 835
congestion management, 838–839
MPLS WAN DiffServ tunneling, 839–841
QoS design model, 837–838
QoS trust boundary, 838
requirements and expectations, 835–836
scavenger traffic, 839
traffic discovery and analysis, 836–837
resilient enterprise WANs, 825
analysis and task list, 826–827
requirements and expectations, 825–826
selecting WAN links, 828
WAN overlays, 828–830
secure enterprise networks, 830
firewalls, 835
infrastructure and network access security, 833–834
Layer 2 security considerations, 834–835
requirements and expectations, 831
security domains and zone design, 832
device profiling, 769
device resiliency, 24
device-level virtualization, separation, 424–425
DF (default forwarding), 558
DF (designated forwarder), BIDIR-PIM (bidirectional PIM), 658
DF election, 658–659
DF election messages, 660
DF election, case studies, 660–662
DF election messages, BIDIR-PIM (bidirectional PIM), 660
DHCP snooping, 702
DHCPv6, 220
DHCPv6 deployment model, 814
DiffServ (Differentiated Services), 515–516
discovery phase, IPv6, deployment and design, 196
Distance Vector Multicast Routing Protocol (DVMRP), 756
distribution layer, enterprise campus design, 5–6
distribution-to-distribution interconnect
multitier access model, 37–41
routed access model, 41–42
virtual switch model, 43–44
distribution-to-distribution link design, 36–37
DMVPN (Dynamic Multipoint VPN), 621
benefits of, 286
EIGRP (Enhanced Interior Gateway Routing Protocol), 69
limitations of, 287
overview, 283–287
Phase 1, 287–289
EIGRP, 295–297
Phase 2, 289–292
EIGRP, 297–299
Phase 3, 292–295
EIGRP, 299–301
QoS (quality of service), 626–628
redundancy, 302–304
VPN WAN design models, 331–333
DMZs (demilitarized zones), 710
Campus Edge network, 732–733
DNS64, IPv6, 206–208
domains, IS-IS (Intermediate System-to-Intermediate System), 104
drop probability, 543
DSCP, 522
dropping design principles, QoS (quality of service), 557–558
dropping modes, RED (random early detection), 543–544
dropping recommendations, QoS (quality of service), 574–575
dropping tools, DSCP-based WRED, 541–546
DSCP (Differentiated Services Code Point)
 drop probability, 522
 IP precedence mapping, 523
 markings, 555
DSCP MPLS EXP bits, 611
DSCP-based WRED, 541–546
DS-Lite, IPv6, 211–212
dual domains, 104
dual IS-IS, 104–105
dual stack, IPv6, 205–206
dual-bucket policing, 532–533
dual-homed to one ISP using a single local edge router, 180–181
dual-homed to one ISP using multiple edge routers, 182–183
dual-homing, 178
dual-rate metering. See policing tools
Dual-Stack Lite, IPv6, 211–212
dual-stack security, IPv6, 225
DVMRP (Distance Vector Multicast Routing Protocol), 756
DVTI (Dynamic VTI), IPsec and, 283
DWDM, 490
Dynamic Multipoint VPN. See DMVPN (Dynamic Multipoint VPN)
dynamic trust states, 572–573
dynamic VLAN assignments, 772–774
Dynamic VTI (DVTI), IPsec and, 283

E

EAP (Extensible Authentication Protocol), 762, 763–765
types of, 764–765
EAP chaining, 765
EAP method, 762
EAP over LAN (EAPOL), 762
EAP-Chaining, 766
EAP-FASTv2 (Extensible Authentication Protocol-Flexible Authentication via Secure Tunneling), 765
EAPOL (EAP over LAN), 762, 763
east-west traffic, 478
 securing, 716–717
eBGP (external BGP), 151
ebgp multihop, 179
ECN (explicit congestion notification), 520, 547–550
 characteristics, 550
 operations, 549
 WRED, 548–549
e-commerce, 693
edge routers
dual-homed to one ISP using a single local edge router, 180–181
dual-homed to one ISP using multiple edge routers, 182–183
multihoming with two ISPs using a single local edge router, 183–186
multihoming with two ISPs using multiple local edge routers, 186–188
EF PHB, 521
EF profiles, 546
EF traffic, 546
EFC (Ethernet Flow Control), 598
EGP (Exterior Gateway Protocol), 146
egress tunnel router (ETR), 213
EIGRP (Enhanced Interior Gateway Routing Protocol), 49–50
 AS (autonomous systems), 50–52
 BFD (bidirectional forwarding detection), 70–71
DMVPN (Dynamic Multipoint VPN)

- Phase 1, 295–297
- Phase 2, 297–299
- Phase 3, 299–301
- scaling, 69
- fast convergence design, 70
- GR (graceful restart), 71–72
- hub-and-spoke design, 60–61
- scalability optimization, 65–68
- summarization challenges, 61–65
- multilayer architectures, 53–56
- multiple autonomous system drivers, 53
- with multiple autonomous systems, 50–52
- PE-CE routing protocol, 241–242
 - backdoor links between customer sites, 245–247
 - different AS number, 243–244
 - same AS number, 242–243
 - some sites only, 244–245
- queries, 52–53
- scalable EIGRP design, 50
- stub leaking, 67–68
- three-layer hierarchy architecture, 57–59
- two-layer hierarchy architecture, 56–57

EIGRP DMVPN, case study, 295–302

- election
 - DF election, BIDIR-PIM (bidirectional PIM), 658–659
 - DF election case study, 660–662
 - DF election messages, BIDIR-PIM (bidirectional PIM), 660
- encapsulating security payload (ESP), 278
- end of row versus top of rack design, 383–384
- endpoint groups (EPG), 449

enhanced VXLAN (eVXLAN), 443–444

enterprise BGP network with Internet connectivity, designing, 788
- analysis and task list, 791
- BGP connectivity, 795–797
- choosing autonomous system numbers, 792–794
- choosing routing protocols, 792
- Internet routing, 803–807
- requirements and expectations, 788–791
- routing policies, 797–802

enterprise branch, 692

enterprise campus, 692

enterprise campus access-distribution design models, comparing, 45

enterprise campus design, 2–3
- distribution-to-distribution link design, 36–37
- flexibility, 15–16
 - campus network virtualization, 16–23
- hierarchies, 3
 - access layer, 4–5
 - core layer, 6–7
 - distribution layer, 5–6
 - three-tier layer model, 9–10
 - two-tier layer model, 8–9
- high-availability enterprise campus.
 See high-availability enterprise campus
- modularity, 10
access-distribution block, 13–15
OSPF (Open Shortest Path First), 10–12
resiliency, 23
enterprise connectivity, designing, 778
analysis and task list, 779–780
designing for new routing protocols, 780–782
migrating from old to new routing, 785–787
OSPF design optimization, 782–785
requirements and expectations, 778–779
scaling, 787–788
selecting replacement routing protocols, 780
enterprise core, 692
enterprise data center connectivity, designing, 816–817
analysis and task list, 818
connecting network appliances, 821–822
data center interconnect, 822–823
data center network virtualization design, 823–825
DCN detailed connectivity, 819–821
requirements and expectations, 817–818
selecting architecture and connectivity model, 818–819
enterprise Internet edge, 692
enterprise IPv6 networks, designing, 807
addressing, 813–814
analysis and task list, 809
application and service migration, 815–816
choosing IP address types for HQ, 809–810
communication between branches, 815
connecting branch sites, 810–812
deployment models, 812
requirements and expectations, 808–809
enterprise LANs, connecting servers to, 376–378
enterprise routing, WAN, 236–237
enterprise WAN, access management, 367–368
enterprise WAN edge, 692
enterprise-managed VPNs, 272
case studies
EIGRP DMVPN, 295–302
MPLS/VPN over GRE/DMVPN, 304–312
DMVPN (Dynamic Multipoint VPN)
overview, 283–287
Phase 1, 287–289
Phase 2, 289–292
Phase 3, 292–295
GRE (generic routing encapsulation), 273–275
IPsec, 278–280
overview, 272–273
EoMPLS, 497–498
EoR (End of Row) design, 383–384
EPG (endpoint groups), 449
ACI (Application-Centric Infrastructure), 450–453
extending, 462–463
equal-cost multipath routing, 724
ESP (encapsulating security payload), 278
EtherChannel, link aggregation of EtherChannel interface, 575–576
EtherChannel convergence, 28
Ethernet, 480–481, 721
Ethernet Flow Control (EFC), 598
ETR (egress tunnel router), 213
European sites, routing policies, 799–802
event detection, OSPF (Open Shortest Path First), 94
event processing, OSPF (Open Shortest Path First), 96–97
event propagation, OSPF (Open Shortest Path First), 94–96
eVXLAN (enhanced VXLAN), 443–444
explicit congestion notification (ECN), 520
extended community attributes, BGP (Border Gateway Protocol), 241–242
Extensible Authentication Protocol (EAP), 762, 763–765
Extensible Authentication Protocol-Flexible Authentication via Secure Tunneling (EAP-FASTv2), 765
Exterior Gateway Protocol (EGP), 146
external Layer 2 connections and networks, ACI (Application-Centric Infrastructure), 461–465
external Layer 3 domains, connecting, ACI fabric, 470–471
external partners, connecting, 737
extranet topology
interconnect model, 738–739
remote LAN model, 737–738
extranets, security, 739–740

F

fabric
ACI (Application-Centric Infrastructure), 437–440
ACI fabric
connecting to external Layer 3 domains, 470–471
route propagation, 468–469
fabric access policies, ACI (Application-Centric Infrastructure), 454–455
fabric extenders, 385–388
FabricPath, 402–407
fair-queue keyword, 539
fair-queueing, 537–538
fast convergence design, EIGRP (Enhanced Interior Gateway Routing Protocol), 70
FCoE (Fibre Channel over Ethernet), 597–598
FCoE Initialization Protocol (FIP), 388
FEX (fabric extenders), 385–388
FHR (first-hop routers), 637, 644
FHRP (First-Hop Redundancy Protocol), 31–35
remote-site LANs, 342–343
Fibre Channel over Ethernet (FCoE), 597–598
FIP (FCoE Initialization Protocol), 388
FirePOWER, 726–727
FirePOWER IPS appliance, 728
FirePOWER IPS deployment modes, 728–729
FirePOWER IPS module deployment modes, 728
FireSIGHT Management Center, 727
firewall clustering, 722–723
firewall modes, 719–720
firewall permissions, 740
firewall placement, in DC networks, 718
firewall virtualization, 712–714
firewalls, 695
 architecture, 709–712
ASA (adaptive security appliance), 712
Campus Edge network, 731–735
case studies, separation of
 application tiers, 714–716
DMZs (demilitarized zones), 710
high availability, 720–725
implementing in data centers, case
 studies, 717–720
IOS firewalls, 712
nonredundant firewall connectivity
design, 721
routed mode, 719
secure enterprise networks, 835
single-tier firewalls, 710
transparent mode, 719
two-tier firewall, 710
virtualization, 712–714
first-hop layer 3 default gateway,
 ACI (Application-Centric
 Infrastructure), 465–466
First-Hop Redundancy Protocol. See
 FHRP (First-Hop Redundancy
 Protocol)
first-hop router (FHR), 644
first-hop routers (FHR), 637
first-in, first-out queueing, 535
flat IS-IS routing design, 134–135
flexibility, enterprise campus design,
 15–16
 campus network virtualization,
 16–23
FlexVPN, 314
 architecture, 315
capabilities, 315
 configuration blocks, 315–316
flooding, LSPs (link state packets),
 IS-IS (Intermediate
 System-to-Intermediate System),
 122–123
flooding problems, PIMv2 BSR,
 678–679
flooding reduction, OSPF (Open
 Shortest Path First), 97
forward process, IS-IS (Intermediate
 System-to-Intermediate System),
 119
forwarding, MPLS VPNs, 258–259
front door virtual routing and
 forwarding (fVRF), 338
full drop (tail drop), 544
full-mesh design
 IS-IS (Intermediate System-to-
 Intermediate System), 133–134
 OSPF (Open Shortest Path First),
 87–88
fully meshed MPLS VPN QoS,
 608–609
fVRF (front door virtual routing and
 forwarding), 338
IWAN Hybrid design model, 360

G

Gateway Load Balancing Protocol.
 See GLBP (Gateway Load
 Balancing Protocol)
generic routing encapsulation (GRE),
 208
GET VPN, 317–320, 621
 QoS (quality of service), 629–630
GLBP (Gateway Load Balancing
 Protocol), 31–35
global synchronization, 541
GM (group member) router, 629
GR (graceful restart), EIGRP, 71–72
GRE (generic routing encapsulation), 208
comparing point-to-point GRE and multipoint GRE, 276–277
DMVPN (Dynamic Multipoint VPN), case studies, 304–312
IPsec, 280–281, 622–623
multipoint GRE (mGRE), 275–276
overview, 273–275
group member (GM) router, 629
group-to-RP m mapping, 670–674
guest VLANs, 773

H

Head of Line (HOL), 598
hierarchal IS-IS design, 135–136
hierarchical architecture, IS-IS (Intermediate System-to-
Intermediate System), 105–106
hierarchical route reflector design,
BGP (Border Gateway Protocol), 167–168
hierarchies
tier access model, 37–41
routed access model, 41–42
with virtual swi, 43–44
FHRP (First-Hop Redundancy Protocol), 31–35
link aggregation, 28–31
overview, 44–46
trunking, 27
VLAN design, 24–26
high-performance trading (HPT), data center QoS, 595
HOL (Head of Line), 598
hold-interval, 95
hop-by-hop easy virtual network (EVN) based, 20
hop-by-hop VRF-lite based, 19
Hot Standby Router Protocol. See HSRP (Hot Standby Router Protocol)
HPT (high-performance trading), data center QoS, 595
HQ, choosing IP address types for, 809–810
HSRP (Hot Standby Router Protocol), 31
hub border router, 365
hub mast controller (MC), 365
hub-and-spoke design
DMVPN (Dynamic Multipoint VPN), 285
EIGRP (Enhanced Interior Gateway Routing Protocol), 60–61
scalability optimization, 65–68
summarization challenges, 61–65
NBMA hub-and-spoke, IS-IS (Intermediate System-to-
Intermediate System), 132–133
OSPF (Open Shortest Path First), 88
interconnecting, data centers

ABR placement, 89–90
network types, 92–93
number of areas, 91
H-VPLS, 263–264

incoming interface (IIF), 653
information data flow, IS-IS
(Intermediate System-to-Intermediate System), 118–119
infrastructure
- network infrastructure devices, resiliency and survivability, 700–701
- routing infrastructure, security, 699–700
- secure enterprise networks, designing, 833–834
- switching infrastructure, 702–703
infrastructure device access, 698–699
infrastructure devices, LISP (locator/ID separation protocol), 213–216
infrastructure protection, 695
- designing, 696–697
ingress traffic filtering, 702
ingress tunnel router (ITR), 213
inline mode, 727
inside zone, IPS (intrusion prevention system), 726
integrated IS-IS, 104–105
- for IPv6, 138–141
Integrated Services. See **IntServ**
integration options, ACI
(Application-Centric Infrastructure), 471–473
intelligent path control, WAN, 356
Intelligent WAN. See **IWAN**
(Intelligent WAN)
Intelligent WAN (IWAN), 354–355
inter-AS MPLS VPN, WAN connections, 232
interconnect model, 738–739
interconnecting, data centers, 822–823

iBGP, 148
- scalability limitations, 152
- scalability solutions, 152–153
- **conferences**, 155–156
- **route reflectors**, 153–155
Identity Services Engine (ISE), 768
IEEE 802.1X, 759–763
- message flow, 763
- phased deployment, 767
- supplicants, 765–766
IETF (Internet Engineering Task Force), 31
IGMP, multicast receiver controls, 755–757
IGMP membership report, 646–647
IGMPv3, SSM (source-specific multicast), 655
IIF (incoming interface), 653
IIH PDUs, 117–118
IIHs, IS-IS (Intermediate System-to-Intermediate System), 121–122
IKE (Internet Key Exchange), 278
- phases of, 278–279
IKE GDOI (Group Domain of Interpretation), 317–318
IKEv2, FlexVPN, 316
implementation and optimization phases, IPv6, 197
implementing, firewalls in a data center, 717–720
inter-DC traffic, 478
interdomain, 639
interface-based PIM neighbor filtering, 752
internal multicast security
multicast admission controls, 757
multicast receiver controls, 755–757
multicast sender control, 753–755
PIM (Protocol-Independent Multicast), 752
internal networks, connecting, Campus Edge network, 733–734
Internet
connecting, Campus Edge network, 731
remote sites, using local Internet, 337–339
Internet Engineering Task Force (IETF), 31
Internet Key Exchange (IKE), 278
phases of, 278–279
internet keyword, 171
Internet routing
default routing, 805–807
multihoming, 804–805
public IP space selection, 803–804
Inter-Switch Link (ISL), 27
inter-VLAN routing, 381–383
intradomain, 639
intranet data center, 692
intrusion prevention system. See IPS (intrusion prevention system)
IntServ (Integrated Services), 514–515, 516
IOS encryption, order of operations, 623–625
IOS firewalls, 712
IOS XR software, 750
IP address mobility, 484–490
IP address types, choosing for HQ, 809–810
IP ECN, 547–550
IP gateway redundancy, VSS (virtual switching system), 35–36
ip msdp sa-filter, 755
IP multicast, 633–634
how it works, 634–635
multicast forwarding and RPF check, 639–641
multicast groups, 635–636
multicast networks, 638
multicast protocols, 638–639, 642–644
security, 743
challenges of, 744
SSM (source-specific multicast). See SSM (source-specific multicast)
ip multicast boundary, 754
IP multicast service model, 636–637
IP packet DiffServ DS field, 522
ip pim accept-register, 755
ip pim register-rate-limit, 755
ip pim rp-announce-filter rp-list, 746
IP precedence mapping, DSCP, 523
IP RTP priority queueing, 536
IP source guard, 702
IP spoofing protection, 702
ip tcp adjust mss [size]626
IP type of service, QoS (quality of service), 519–520
IP-in-IP (IPIP), 208
IPIP (IP-in-IP), 208
IPS (intrusion prevention system), 696
 architecture, 726–729
 security, 695
IPsec, 278–280, 284
 DVTI (Dynamic VTI), 283
 GRE (generic routing encapsulation), 622–623
 GRE (generic routing encapsulation) and, 280–281
 VTI (virtual tunnel interface) and, 281–282
IPsec SA anti-replay, 630
IPsec VPNs
 modes, 621–623
 QoS (quality of service), 619–620
 MTU (maximum transmission unit), 625–626
 use cases, 621
IPv4 addresses, 194
IPv6, 194
 6RD (6 Rapid Deployment), 210–211
 application support, 222–223
 application adaptation, 223
 application workarounds, 223–224
 control plane security, 224
 deployment and design, 194–195
 assessment phase, 196
 discovery phase, 196
 implementation and optimization phases, 197
 planning and design phase, 196–197
 DNS64, 206–208
 dual stack, 205–206
 Dual-Stack Lite, 211–212
 dual-stack security, 225
 integrated IS-IS, 138–141
 link layer security, 221–222
 manual tunnels, 208–209
 migration
 acquiring IPv6 prefixes, 197–198
 transition mechanisms, 203–205
 where to start, 199–200
 migration models
 IPv6 islands, 200–201
 IPv6 WAN, 201–203
 multihoming, 226
 NAT64, 206–208
 transition mechanisms, 216–217
 tunnel brokers, 209
 tunneling security, 225–226
IPv6 embedded RP, 679–681
IPv6 islands, 200–201
IPv6 services, 219–220
 addressing services, 220–221
 name services, 220
 security services, 221
IPv6 WAN, 201–203
ISE (Identity Services Engine), 768, 771
IS-IS (Intermediate System-to-Intermediate System), 87, 102, 141–142
 addressing, 114–116
 adjacencies, 108–109, 120
 characteristics, 103–104, 110–112
 domains, 104
 flat routing design, 134–135
 hierarchal IS-IS design, 135–136
hierarchical architecture, 105–106
information data flow, 118–119
integrated IS-IS, 104–105
for IPv6, 138–141
level 1/level 2 LSPs, 121–122
link state packets flooding, 122–123
LSDB synchronization, 123–124
network types, 119
OSPF versus, 110–112
area design, 112–113
overview, 102–103
packets, 117
protocol operations, 119–121
route summarization, 136–138
router and link types, 106–108
routing, 125–126
asymmetric versus symmetric, 129–132
full-mesh design, 133–134
NBMA hub-and-spoke, 132–133
route leaking, 126–129
single topology leaking restrictions, 138–139
IS-IS PDUs, 117
ISL (Inter-Switch Link), 27
ITR (ingress tunnel router), 213
IWAN (Intelligent WAN), 354–355
AVC (Application Visibility Control), 357
PfR (Performance Routing), 356
PfRv3, 363–366
secure connectivity, 357
IWAN design, 358–359
IWAN Hybrid design model, 361
IWAN Hybrid WAN design model, 359
IWAN WAN aggregation (hub) designs, 359

J

jitter, WAN QoS, 590–591

K

keywords
additive, 177
bandwidth, 539
fair-queue, 539
internet, 171
KS (key server), 629

L

L3Out, connecting ACI fabric to external Layer 3 domains, 470–471
LAN segments, 703
LANs, remote-site LANs, 339–343
latency, WAN QoS, 590–591
Layer 2 attacks, 753
Layer 2 connections and networks, ACI (Application-Centric Infrastructure), 461–465
Layer 2 DCI:LISP based, 488
Layer 2 hub-and-spoke WAN QoS design model, 607
Layer 2 marking, QoS (quality of service), 517–519
Layer 2 MPLS VPN, 259
Layer 2 outside connections, ACI (Application-Centric Infrastructure), 463–464
Layer 2 private WAN QoS, 607
Layer 2 switch networks with STP, 703
Layer 2 VPN provisioning models, 497
Layer 2 WAN design models, 329–331
Layer 2.5 marking: MPLS experimental bits, QoS (quality of service), 524
Layer 3 DCI, 507–509
Layer 3 marking: DSCP per-hop behaviors, QoS (quality of service), 520–523
Layer 3 marking: IP type of service, QoS (quality of service), 519–520
Layer 3 MPLS VPNs, 233–234
Layer 3 separation with VRF-Lite, 423–424
Layer 7: NBAR/NBAR2, QoS (quality of service), 526–527
leaf nodes, ACI (Application-Centric Infrastructure), 467
leaf switches, 401, 439
level 1 router, IS-IS (Intermediate System-to-Intermediate System), 107
level 1/level 2 LSPs, IS-IS (Intermediate System-to-Intermediate System), 121–122
level 1/level 2 router, IS-IS (Intermediate System-to-Intermediate System), 107
level 2 router, IS-IS (Intermediate System-to-Intermediate System), 107
limitations of
ACI (Application-Centric Infrastructure), networking limitations, 432–434
current networking technology, 398–399
customer-managed Layer 2 DCI deployment models, 501
link aggregation, high-availability enterprise campus, 28–31
link aggregation of EtherChannel interface, QoS (quality of service), 575–576
Link Layer Discovery Protocol (LLDP), 464
link layer security, IPv6, 221–222
link types, IS-IS (Intermediate System-to-Intermediate System), 106–108
Link-State Database Overload Protection, OSPF (Open Shortest Path First), 97–98
link-state routing protocols, designing, 781
LISP (Locator/ID Separation Protocol), 212–216
LISP (locator/ID separation protocol), DCI (Data Center Interconnect), 487–489
LISP infrastructure devices, 213–216
LISP site edge devices, 213
LLDP (Link Layer Discovery Protocol), 464
LLQ (low-latency queueing), 536, 540, 591
load balancing
enterprise routing, WAN, 237
EtherChannel, 575
load-sharing design, BGP (Border Gateway Protocol), 177
single-homing versus multihoming, 177–178
Locator/ID Separation Protocol (LISP), 212–216
loop prevention
BGP (Border Gateway Protocol), 148–149
route reflectors, BGP (Border Gateway Protocol), 162–165
low-latency queueing (LLQ), 536, 540
LSA throttling timers, 96
LSDB synchronization, IS-IS
(Intermediate System-to-
Intermediate System), 123–124
LSPs (link state packets), IS-IS,
121–123
flooding, IS-IS (Intermediate System-
to-Intermediate System), 122–123

M

MAB (MAC Authentication and
Bypass), 769
main HQ multihoming, Internet
routing, 803–804
main mode, IKE (Internet Key
Exchange), 279
managed CE service, WAN
connections, 232
managed VPNs, 230
management, WAN, 357–358
management access, securing, to
infrastructure devices, 698–699
management network, 693
management plane, 697
management plane protection, 697
management restricted zones, 695
manual tunnels, IPv6, 208–209
mapping QoS markings between OSI
layers, 524–525
mapping agents, Auto-RP, 670
Map-Resolver (MR), 214
Map-Server (MS), 213–214
mark probability denominator, 543
markings
 DSCP (Differentiated Services Code
Point), 555
 mapping QoS markings between OSI
layers, 524–525
masquerading, 754
maximum threshold, 543
maximum transmission unit (MTU), 80
max-interval, 95
MCP (Mis-Cabling Protocol), 464
MEC (Multichassis EtherChannel), 30
message flow, 802.1X, 763
messages, DF election messages, 660
mGRE (multipoint GRE), 275–276,
278
 versus point-to-point GRE, 276–277
microsegmentation, overlay
tools, 427–428
migrating
 from old to new routing, designing
enterprise connectivity, 785–787
 from RIPv2 to OSPF, 785
migration, IPv6
 acquiring IPv6 prefixes, 197–198
 transition mechanisms, 203–205
 where to start, 199–200
migration models
 IPv6 islands, 200–201
 IPv6 WAN, 201–203
migration options, ACI (Application-
Centric Infrastructure), 471–473
minimum threshold, 543
Mis-Cabling Protocol (MCP), 464
mobility, IP address mobility,
484–490
models
 3G/4G VPN design models, 335
 ACI policy model, 447–450
 classification/marking/policing QoS
model, 573–574
customer-managed Layer 2 DCI
deployment models. See
customer-managed Layer 2 DCI
deployment models
DCN connectivity model, 820
deployment models
 DMVPN (Dynamic Multipoint VPN), 285
 enterprise IPv6 networks case study, 812
enterprise campus access-distribution design models, comparing, 45
interconnect model, 738–739
IP multicast service model, 636–637
IWAN Hybrid design model, 361
Layer 2 hub-and-spoke WAN QoS design model, 607
migration models
 IPv6 islands, 200–201
 IPv6 WAN, 201–203
MPLS VPNs connectivity model, 606
network-centric security model, 715
QoS (quality of service), 12-class QoS strategy model, 564–565
QoS design model, 837–838
QoS strategy models, 560–561
 4-class QoS strategy model, 561–562
 8-class QoS strategy model, 562–563
remote LAN model, 737–738
three-tier layer model, enterprise campus design, 9–10
three-tiered e-commerce application functional model, 714
two-tier layer model, enterprise campus design, 8–9
modern data centers, 400
 microsegmentation, with overlay networks, 427–428
 multitenant data centers, 422
 secure tenant separation, 422–425
network overlays, 402
 Cisco FabricPath, 402–407
 VXLAN (virtual extensible LAN), 407–408
SDN (software-defined networking), 414–416
 benefits of, 416–417
 challenges of, 419–421
 nontraditional SDN, 421
 requirements, 419
 selection criteria, 417–418
spine-leaf topologies, 400–401
VTEP (VXLAN tunnel endpoint), 408–411
modes
 active/active mode, 722
 ASA firewall active/passive failover mode, 722
 FirePOWER IPS deployment modes, 728–729
 firewall modes, 719–720
 inline mode, 727
 IPsec VPNs, 621–623
 monitor-only mode, 727
modular enterprise campus with OSPF, 10–12
modular network architecture, 691–695
 security zones, 695
modularity, enterprise campus design, 10
 access-distribution block, 13–15
 OSPF (Open Shortest Path First), 10–12
modules, 692–693
 monitor-only mode, 727
 monitor-only mode, 727
MP-BGP (Multiprotocol BGP), 468–470, 639
MP-BGP EVPN (Multiprotocol Border Gateway Protocol Ethernet Virtual Private Network), 413–414
MPLS (Multiprotocol Label Switching), 230
Layer 3 MPLS VPNs, 233–234
MPLS VPNs, architecture, 234–236
MPLS DiffServ tunneling modes, 609–611
MPLS EXP, 612–613
MPLS headers, 524
MPLS Layer 3 WAN design models, 326–329
MPLS uniform DiffServ tunneling mode, 612
MPLS VPNs
architecture, 234–236
connectivity model, 606
forwarding, 258–259
fully meshed MPLS VPN QoS, 608–609
Layer 2 MPLS VPN, 259
QoS (quality of service), 605–607
MPLS DiffServ tunneling modes, 609–611
pipe tunneling mode, 614–615
role mapping, 616
sample roles, 615–617
short-pipe tunneling mode, 612–614
uniform tunneling mode, 612
routing propagation, 255–258
MPLS WAN DiffServ tunneling, QoS in the enterprise network case study, 839–841
MQC, 536
MR (Map-Resolver), 214
mtrace, 756
MS (Map-Server), 213–214
MSDP (Multicast Source Discovery Protocol), 639, 654
multicast network edge security, 751–752
neighbor relationships, 683
operations, 684–686
RP (Rendezvous Point), 683
MTU (maximum transmission unit), 80
QoS (quality of service), 625–626
WAN connections, 232
multicast. See also IP multicast, security challenges, 744
multicast admission controls, 757
multicast boundary, 749, 752
multicast distribution trees, 642
multicast distribution trees identification, 644–645
multicast forwarding, 645
RPF check, 639–641
multicast groups, 635–636
Multicast Information Protocol, 748
multicast network edge, security, 748–749
Auto-RP and BSR, 749–751
MSDP (Multicast Source Discovery Protocol), 751–752
multicast networks, 638
network element security, 746–748
problems in, 744–745
security considerations, 745–746
multicast protocols, 638–639, 642–644
multicast receiver controls, 755–757
multicast rekeying, 318–319
multicast routing protocols, 642
multicast. See also IP multicast, security challenges, 744
multicast admission controls, 757
multicast boundary, 749, 752
multicast distribution trees, 642
multicast distribution trees identification, 644–645
multicast forwarding, 645
RPF check, 639–641
multicast groups, 635–636
Multicast Information Protocol, 748
multicast network edge, security, 748–749
Auto-RP and BSR, 749–751
MSDP (Multicast Source Discovery Protocol), 751–752
multicast networks, 638
network element security, 746–748
problems in, 744–745
security considerations, 745–746
multicast protocols, 638–639, 642–644
multicast receiver controls, 755–757
multicast rekeying, 318–319
multicast routing protocols, 642
multicast routing tables, PIM-SM (Protocol-Independent Multicast—Sparse Mode), 652–653
multicast sender control, 753–755
Multichassis EtherChannel (MEC), 30
multicontext mode, firewall virtualization, 712
multihoming, 178
 Internet routing, 804–805
IPv6, 226
 versus single-homing, BGP (Border Gateway Protocol), 177–178
with two ISPs using a single local edge router, 183–186
with two ISPs using multiple local edge routers, 186–188
multihop GRE tunneling based, 21
multihop MPLS core based, 22–23
multi-hypervisor-ready fabric, 445
multilayer architectures, EIGRP (Enhanced Interior Gateway Routing Protocol), 53–56
multiple autonomous system drivers, EIGRP (Enhanced Interior Gateway Routing Protocol), 53
multiple autonomous systems, EIGRP. See AS (autonomous systems)
multipoint GRE (mGRE), 275–276, 284
 versus point-to-point GRE, 276–277
multiplicity IS-IS, for IPv6, 140–141
Multiprotocol BGP (MP-BGP), 468–469
Multiprotocol Border Gateway Protocol Ethernet Virtual Private Network (MP-BGP EVPN), 413–414
Multiprotocol Label Switching. See MPLS (Multiprotocol Label Switching)

Multiprotocol Label Switching Virtual Private Networks. See MPLS VPNs
multitenant data centers, 422
 case studies, 425–426
 secure tenant separation, 422–425
multitenant segmentation, extranets, 739–740
multitier, access-distribution block, 13
multitier access model, distribution-to-distribution interconnect, 37–41
multitier data center designs
 data center high availability, 388–392
 end of row versus top of rack design, 383–384
 fabric extenders, 385–388
 inter-VLAN routing, 381–383
 NIC teaming, 392–393
 small data centers (connecting servers to an enterprise LAN), 376–378
two-tier data center network architecture, 378–380

name services, IPv6, 220
named communities, BGP (Border Gateway Protocol), 171
NAT64, IPv6, 206–208
NBAR (Network-Based Application Recognition), 526–527
NBAR2 (next-generation NBAR), 526–527, 837
neighbor relationships, MSDP (Multicast Source Discovery Protocol), 683
NetFlow, 837
network access control
authorization options case study, 772–775
Cisco TrustSec, 768
 Profiling Service, 768–769
 SGT (Security Group Tag), 769–772
EAP (Extensible Authentication Protocol), 763–765
IEEE 802.1X, 759–763
secure enterprise networks, 833–834
Network Access Manager, 766
network and security management, 695
network appliances, connecting, 821–822
network bgp router, 151
network design issues, route reflectors, BGP (Border Gateway Protocol), 169
network element security, 746–748
network infrastructure devices, resiliency and survivability, 700–701
network interface controller teaming, 392–393
Network Layer 2 separation, 423
Network Layer 3 separation, 422
network overlays, modern data centers, 402
 Cisco FabricPath, 402–407
 VXLAN (virtual extensible LAN), 407–408
network policy enforcement, 701–702
network resiliency, 24
network security zoning, 690–691
network separation, multitenant data centers, 422–423
network service access points (NSAPs), 102
network services separation, 423
network targeted attacks, security, 747
network types
 hub-and-spoke design, OSPF (Open Shortest Path First), 92–93
 IS-IS (Intermediate System-to-Intermediate System), 119
network virtualization overlays, ACI (Application-Centric Infrastructure), 441–446
Network-Based Application Recognition (NBAR), 526–527
network-centric security model, 715
networking limitations, ACI (Application-Centric Infrastructure), 432–434
networking technology, limitations of, 398–399
networks
 multicast networks
 problems in, 744–745
 security considerations, 745–746
 overlay networks
 microsegmentation, 427–428
new network architecture, data centers, 397–398
next-generation IPS (NGIPS), Cisco FirePOWER, 726–727
next-generation NBAR (NBAR2), 526–527
next-generation security, 696
next-generation WAN (NGWAN), 354–355
Nexus ACI fabric software, 440
Nexus switches, ACI fabric mode, 439
NGIPS (next-generation IPS), Cisco
FirePOWER, 726–727
NGWAN (next-generation WAN),
354–355
NHRP, 284
DMVPN (Dynamic Multipoint
VPN), Phase 2, 290
NIC teaming, 392–393
no drop, 543
no next-hop-self, 298
no-advertise, 170
no-export, 170
no-export-subconfed, 170
nonclients, 155
nonredundant firewall connectivity
design, 721
non-RR clients, 155
nonstop forwarding (NSF), EIGRP
(Enhanced Interior Gateway
Routing Protocol), 71–72
nontraditional SDN, 421
nontunnel EAP, 763
no-peer, 171
North American sites, routing
policies, 797–799
north-south traffic, 478
NSAPs (network service access
points), 102
NSF (nonstop forwarding), EIGRP
(Enhanced Interior Gateway
Routing Protocol), 71–72
number of areas, hub-and-spoke
design, OSPF (Open Shortest Path
First), 91
number of areas per ABR, OSPF
(Open Shortest Path First), 81–82
numbers of routers in an area, OSPF
(Open Shortest Path First), 80–81

offer message, DF election messages, 660
OILs (outgoing interface lists), 639
ONE (Open Network Environment)
architecture, 435
ONF (Open Networking Foundation),
398
OpenFlow, 415–416
Open Network Environment (ONE)
architecture, 435
Open Networking Foundation (ONF),
398
Open Shortest Path First. See OSPF
(Open Shortest Path First)
OpenFlow, ONF (Open Networking
Foundation), 415–416
open-source sniffing solutions, 837
operational resiliency, 24
operations
Auto-RP, 671–674
MSDP (Multicast Source Discovery
Protocol), 684–686
PfR (Performance Routing), 362–363
operations zone, 694
order of operations, QoS (quality of
service), 623–625
OSI layers, mapping QoS markings,
524–525
OSPF (Open Shortest Path First), 75
adjacent neighbors, 76–77
area design, 82–83
characteristics, 110–112
convergence, 93
event detection, 94
event processing, 96–97
event propagation, 94–96
design optimization, 782–785
DMVPN (Dynamic Multipoint VPN), 289
flooding reduction, 97
full-mesh design, 87–88
hierarchies, 84–85
hub-and-spoke design, 88
 ABR placement, 89–90
 network types, 92–93
 number of areas, 91
IS-IS versus, 110–112
 area design, 112–113
Link-State Database Overload Protection, 97–98
migrating from RIPv2, 785
modularity, enterprise campus design, 10–12
number of areas per ABR, 81–82
numbers of routers in an area, 80–81
PE-CE routing protocol, 247–250
 backdoor links between customer sites, 250–251
 route summarization, 251–252
rout ing information in the area and routed domain, 78–80
scalability design, 76
sham links, 250–251
summarization, 85–86
OSPF backbone area design, 781–782
OTV (overlay transport virtualization), DCI (Data Center Interconnect), 501–506
outgoing interface lists (OILs), 639
outside zone, IPS (intrusion prevention system), 726
overlay networks
 ACI network virtualization overlays, 441–446
DCI (Data Center Interconnect), 507
overlay transport virtualization DCI, 501–506
overlay transport virtualization (OTV), DCI (Data Center Interconnect), 501–506
oversubscription, 380

P

P routers, 235
PA (Provider-Assigned) prefixes, 197–198
PaaS (platform as a service), 596
packet dropping, 547
packets, IS-IS (Intermediate System-to-Intermediate System), 117
PAGP (Port Aggregation Protocol), 28, 30
partial SNP. See PSNPs
partner and extranet modules, 693
pass messages, DF election messages, 660
passive interfaces, 700
path attributes, BGP (Border Gateway Protocol), 150
path isolation, campus network virtualization, 19–23
path selection, BGP (Border Gateway Protocol), 150–151
PAUSE frame, 598
PBR (policy-based routing), 724
PDUs, 117
PE (provider edge) routers,
 architecture, 237–238
 route distinguishers, 238–239
 route target (RT), 240–241
peak information rate (PIR), 533
PE-CE routing protocol, 241
BGP (Border Gateway Protocol), 252–254
 backdoor links between customer sites, 254–255
EIGRP (Enhanced Interior Gateway Routing Protocol), 241–242
 backdoor links between customer sites, 245–247
different AS number, 243–244
same AS number, 242–243
 some sites only, 244–245
OSPF (Open Shortest Path First), 247–250
 backdoor links between customer sites, 250–251
route summarization, 251–252
peer-forwarding rules, BGP (Border Gateway Protocol), 158
performance, platform performance, WAN QoS, 589–590
per-hop behavior (PHB)
 Layer 3 marking, 520–523
 queue design principles, 558–559
Pervasive SVI, 465–466
PFC (Priority-based Flow Control), 598
PfR (Performance Routing), 361–362
 IWAN (Intelligent WAN), 356
 operations, 362–363
PfRv3
 design and deployment, 366–367
 IWAN (Intelligent WAN), 363–366
Phase 1, DMVPN (Dynamic Multipoint VPN), 287–289
EIGRP (Enhanced Interior Gateway Routing Protocol), 295–297
Phase 2, DMVPN (Dynamic Multipoint VPN), 289–292
EIGRP (Enhanced Interior Gateway Routing Protocol), 297–299
Phase 3, DMVPN (Dynamic Multipoint VPN), 292–295
EIGRP (Enhanced Interior Gateway Routing Protocol), 299–301
phased deployment, 802.1X, 767
phases of IKE (Internet Key Exchange), 278–279
PHB (per-hop behavior), Layer 3 marking, 520–523
PHB-DSCP bit mapping, 520
PI (Provider-Independent) prefixes, 197–198
PILE Forensic Accounting, enterprise BGP network with Internet connectivity case study. See enterprise BGP network with Internet connectivity
PIM (Protocol-Independent Multicast), 637
 BIDIR-PIM (bidirectional PIM), 658
 internal multicast security, 752
 multicast admission controls, 757
 multicast receiver controls, 755–757
PIM source-specific multicast (PIM-SSM), 646
PIM-DM (PIM Dense Mode), 750
PIM-SM (Protocol-Independent Multicast—Sparse Mode), 645–646
 (S, G), 653–654
 *, G (star comma G), 653
 bidirectional PIM (BIDIR-PIM), 657
 characteristics, 645
 IP multicast, 645–646
 multicast routing tables, 652–653
 receiver joins PIM-SM shared tree, 646–647
RP registration, 647–648
SPT switchover, 649–652
SSM (source-specific multicast). See SSM (source-specific multicast)
PIM-SM SPT switchover, 668
PIM-SSM (PIM source-specific multicast), 646
PIMv1, 756
PIMv2 BSR, 676–677
BSR (bootstrap router), 678
candidate RPs, 677–678
flooding problems, 678–679
routers, 678
PIMv6, 646
PIN (Places-in-the-Network), 568
internal multicast security, multicast sender control, 753–755
pipe mode, MPLS DiffServ tunneling modes, 610
pipe tunneling mode, MPLS VPNs, 614–615
PIR (peak information rate), 533
placement of, RP (Rendezvous Point), 667–668
Places-in-the-Network (PIN), 568
planning and design phase, IPv6, 196–197
platform performance, WAN QoS, 589–590
PoE (Power over Ethernet), 378
point-to-point GRE versus mGRE, 276–277
point-to-point links, IS-IS
(Intermediate System-to-Intermediate System), 119
policies, ACI fabric access policies, 454–455
policing and remarking design principles, QoS (quality of service), 556
policing tools
single-rate three-color marker, 532–533
two-rate three-color marker, 533–535
policing traffic, 527–529, 532
policy-based centralized control, 418
policy-based routing (PBR), 724
Port Aggregation Protocol (PAgP), 28
port extenders, 385–388
Power over Ethernet (PoE), 378
PQ (priority queueing), 535
PQ-WFQ, 536
prefixes
6RD prefix, 211
acquiring IPv6 prefixes, 197–198
prefix-suppression, 79
preventing, attacks, 703
priority command, 540
priority queueing (PQ), 535
Priority-based Flow Control (PFC), 598
problems, in multicast networks, 744–745
Profiling Service, 768–769
protocol operations, IS-IS
(Intermediate System-to-Intermediate System), 119–121
Protocol-Independent Multicast (PIM), 637
Protocol-Independent Multicast—Sparse Mode. See PIM-SM
(Protocol-Independent Multicast—Sparse Mode)
protocols
BGP. See BGP (Border Gateway Protocol)
EAP (Extensible Authentication Protocol), 762, 763–765
EIGRP (Enhanced Interior Gateway Routing Protocol), 241–242

OSPF (Open Shortest Path First), 247–250

routing protocol authentication mechanisms, 699

SAP (Session Announcement Protocol), 748

SXP (Security Group Tag Exchange Protocol), 770

QoS (quality of service), 514, 745

buffers, 569–570

bursts, 569–570

campus QoS

design examples, 576–588

overview, 568

classification, order of operations, 623–625

classification and marking
classification and marking tools, 516–517
Layer 2 marking, 517–519
Layer 2.5 marking: MPLS experimental bits, 524
Layer 3 marking: DSCP per-hop behaviors, 520–523
Layer 3 marking: IP type of service, 519–520
Layer 7: NBAR/NBAR2, 526–527
mapping markings between OSI layers, 524–525
traffic policing and shaping, 527–529, 532
classification and marking design principles, 554–555
classification/marking/policing QoS model, 573–574
classifications and marking tools, 516–517
data center QoS, 594
big data architecture, 596
DC QoS application case study, 599–601
HPT (high-performance trading), 595
DMVPN (Dynamic Multipoint VPN), 626–628
dropping design principles, 557–558
dropping tools, DSCP-based WRED, 541–546
GETVPN, 629–630
IP ECN, 547–550
IPsec VPN, 619–620
MTU (maximum transmission unit), 625–626
use cases, 621
Layer 2 private WAN QoS, 607
link aggregation of EtherChannel interface, 575–576
MPLS VPNs, 605–607
fully meshed MPLS VPN QoS, 608–609
MPLS DiffServ tunneling models, 609–611
pipe tunneling mode, 614–615
sample roles, 615–617
short-pipe tunneling mode, 612–614
uniform tunneling mode, 612
overview, 553–554
per-hop behavior queue design principles, 558–559
policing and remarking design principles, 556
policing tools, 532–533
queueing
CBWFQ (class-based weighted fair queueing), 538–541
fair-queueing, 537–538
Tx-Ring, 536–537
queueing design principles, 557
queueing tools, 535–536
queueing/dropping recommendations, 574–575
RFC 4594, 559–560
token bucket algorithms, 529–531
traffic descriptors, 516–517
traffic policing, 527–529
traffic shaping, 527–529
trust boundary, QoS in the enterprise network case study, 838
trust states, boundaries and, 570–573
video, 568–569
VoIP (voice over IP), 568–569
WAN connections, 231
WAN QoS. See WAN QoS
QoS design model, 837–838
QoS in the enterprise network case study, 835
designing
 congestion management, 838–839
 MPLS WAN DiffServ tunneling, 839–841
 QoS design model, 837–838
 QoS trust boundary, 838
 requirements and expectations, 835–836
 scavenger traffic, 839
 traffic discovery and analysis, 836–837
QoS strategy models, 560–561
 4-class QoS strategy model, 561–562
 8-class QoS strategy model, 562–563
 12-class QoS strategy model, 564–565
quality of service (QoS). See QoS (quality of service), WAN connections, 231
queries, EIGRP (Enhanced Interior Gateway Routing Protocol), 52–53
queueing, 535
 8-class 1P1Q3T egress queueing, 581–588
 8-class 1P1Q3T ingress queueing, 580–581
 CBWFQ (class-based weighted fair queueing), 538–541
 fair-queueing, 537–538
 Tx-Ring, 536–537
 WAN QoS, 591–592
queueing design principles, QoS (quality of service), 557
queueing recommendations, QoS (quality of service), 574–575
queueing tools, 535–536

R

RA spoofing, 222
rACLs (receive access control lists), 747
RADIUS (Remote Authentication Dial-In User Service), 762, 763
random drop, 544
random early detection (RED), 542
dropping modes, 543–544
rate-limiting PIM register messages, 752
receive access control lists (rACLs), 747
receive process, IS-IS (Intermediate System-to-Intermediate System), 118
receiver joins PIM-SM shared tree, 646–647
Recovery Point Objective (RPO), 482
Recovery Time Objective (RTO), 482
RED (random early detection), 542
dropping modes, 543–544
redundancy
case studies, redundancy and connectivity, 343–354
DMVPN (Dynamic Multipoint VPN), 302–304
Regional Internet Registries (RIR), 809
regional offices WAN design, 348–351
rekeying options, 318–319
Remote Authentication Dial-In User Service (RADIUS), 762, 763
remote LAN model, 737–738
remote sites
 local Internet, 337–339
 WAN, 324–326
remote VPN solutions, 272
remote VTEP discovery, 411–413
tenant address learning, 411–413
remote-site LANs, 339–343
remote-site WAN design, 346–348
Rendezvous Point. See RP
 (Rendezvous Point)
replacement routing protocols,
 selecting, 780
requirements
 enterprise BGP network with
 Internet connectivity case study,
 788–791
 for enterprise connectivity, 778–779
 enterprise data center connectivity
 design, 817–818
 enterprise IPv6 networks case study,
 808–809
 QoS in the enterprise network case
 study, 835–836
resilient enterprise WANs case study,
 825–826
 for SDN, 419
secure enterprise networks case
 study, 831
resiliency
 enterprise campus design, 23
 high-availability enterprise campus,
 23–24
 network infrastructure devices,
 700–701
VPLS (Virtual Private LAN Service),
 265–266
resilient enterprise WANs, designing,
 825
 analysis and task list, 826–827
 requirements and expectations,
 825–826
 selecting WAN links, 828
 WAN overlays, 828–830
REST, 422
restricted VLANs, 773
restricted zones, 690, 694
reverse path forwarding (RPF), 635
RFC 791, 523
RFC 2474, 523
RFC 2597, 556
RFC 3168, 547
RFC 3171, 636
RFC 3956, 679
RFC 4594, 559–560
RIPv2, migrating to OSPF, 785
RIR (Regional Internet Registries),
 809
role mapping, MPLS VPNs, 616
route distinguishers, provider edge
 (PE) routers, 238–239
route filtering, 224
route leaking, IS-IS (Intermediate
 System-to-Intermediate System),
 126–129
route reflector clients, 155
route reflector cluster-ID, BGP
 (Border Gateway Protocol),
 161–162
route reflector clusters, BGP
 (Border Gateway Protocol),
 160–161
route reflectors, BGP (Border
 Gateway Protocol), 153–155
 versus confederations, 157
congruence of physical and logical networks, 165–167
hierarchical route reflector design, 167–168
loop prevention, 162–165
network design issues, 169
redundancy, 159–160
route reflector cluster-ID, 161–162
route reflector clusters, 160–161
split-horizon rule, 158–159
route summarization
black holes, EIGRP (Enhanced Interior Gateway Routing Protocol), 61–63
OSPF (Open Shortest Path First), PE-CE routing protocol, 251–252
suboptimal routing, EIGRP (Enhanced Interior Gateway Routing Protocol), 63–65
route target (RT), provider edge (PE) routers, 240–241
routed access, access-distribution block, 14–15
routed access model, distribution-to-distribution interconnect, 41–42
routed domains, OSPF (Open Shortest Path First), 78–80
routed mode, firewalls, 719
router hardening, 745
router types, IS-IS (Intermediate System-to-Intermediate System), 106–108
routers
Auto-RP, 670
customer edge (CE) routers, 235
P routers, 235
PIMv2 BSR, 678
provider edge (PE) routers, 235
routing
ACI (Application-Centric Infrastructure), 465
border leaves, 467–468
first-hop layer 3 default gateway, 465–466
default routing, 805–807
enterprise routing, WAN, 236–237
Internet routing, 803–807
inter-VLAN routing, 381–383
IS-IS (Intermediate System-to-Intermediate System), 125–126
asymmetric versus symmetric, 129–132
flat IS-IS routing design, 134–135
full-mesh design, 133–134
NBMA hub-and-spoke, 132–133
route leaking, 126–129
routing information, area and routed domain, OSPF (Open Shortest Path First), 78–80
routing infrastructure, security, 699–700
routing policies
Asian sites, 799–802
Enterprise BGP network with Internet connectivity, case study, 797–802
European sites, 799–802
North American sites, 797–799
routing policy language (RPL), 169
routing propagation, MPLS VPNs, 255–258
routing protocol authentication mechanisms, 699
routing protocols, choosing, for enterprise BGP network with Internet connectivity design, 792
RP (Rendezvous Point), 665
Anycast RP, 681
examples, 682–683
Auto-RP, 668–669
candidate RPs, 670
case studies, 670–674
mapping agents, 670
routers, 670
scope problems, 674–676
candidate RPs, 676–677
IPv6 embedded RP, 679–681
MSDP (Multicast Source Discovery Protocol), 683
neighbor relationships, 683
operations case study, 684–686
PIMv2 BSR, 676–677
BSR (bootstrap router), 678
candidate RPs, 677–678
flooding problems, 678–679
routers, 678
placement of, 667–668
RP (Rendezvous Point) discovery, 665–667
RP deployments, comparing, 667
RP registration, PIM-SM (Protocol-Independent Multicast—Sparse Mode), 647–648
RPF (reverse path forwarding), 635
RPF check
 case studies, 641–642
 multicast forwarding, 639–641
RPL (routing policy language), 169
RPO (Recovery Point Objective), 482
RT (route target), provider edge (PE) routers, 240–241
RTO (Recovery Time Objective), 482

S

(S, G)
PIM-SM (Protocol-Independent Multicast—Sparse Mode), 653–654
PIM-SM SPT switchover, 649–652
SA (Security Association), 278
sandbox infrastructures, 740
SAP (Session Announcement Protocol), 748
scalability
iBGP, 152–153
confederations, 155–156
VPLS (Virtual Private LAN Service), 263–265
WAN connections, 231
scalability design, OSPF (Open Shortest Path First), 76
scalability optimization
DMVPN (Dynamic Multipoint VPN), EIGRP (Enhanced Interior Gateway Routing Protocol), 69
hub-and-spoke design, EIGRP (Enhanced Interior Gateway Routing Protocol), 65–68
scalable EIGRP design, 50
scalable passive monitoring, PfRv3, 364
scaling, enterprise connectivity design, 787–788
scavenger traffic, QoS in the enterprise network case study, 839
scheduling, 535
WFQ (weighted fair queueing), 537–538
scope problems, Auto-RP, 674–676
SDN (software-defined networking), 398, 414–416
 benefits of, 416–417
 challenges of, 419–421
 nontraditional SDN, 421
 requirements, 419
 security, 703–704
 selection criteria, 417–418
SDN controller characteristics, 418
SDWAN (software-defined WAN), 354–355
secure connectivity, WAN, 357
secure enterprise networks, designing, 830
 firewalls, 835
 infrastructure and network access security, 833–834
 Layer 2 security, 834–835
 requirements and expectations, 831
 security domains and zone design, 832
secure neighbor discovery (SeND), 222
secure network access, 695
secure network design, 695
Secure Sockets Layer (SSL) VPN, 312–313
Secure Sockets Layer virtual private network (SLL VPN), 221
secure tenant separation, multitenant data centers, 422–425
securing
 BSR (bootstrap router), 751
 east-west traffic, 716–717
 management access, to infrastructure devices, 698–699
security
 control plane security, IPv6, 224
 dual-stack security, IPv6, 225
 extranets, 739–740
 firewalls. See firewalls
 infrastructure device access, 698–699
 internal multicast security, 752
 IP multicast, 743
 challenges of, 744
 link layer security, IPv6, 221–222
 multicast network edge, 748–749
 Auto-RP and BSR, 749–751
 MSDP (Multicast Source Discovery Protocol), 751–752
 multicast networks, 745–746
 network element security, 746–748
 network infrastructure devices, resiliency and survivability, 700–701
 network policy enforcement, 701–702
 network security zoning, 690–691
 next-generation security, 696
 routing infrastructure, 699–700
 SDN (software-defined networking), 703–704
 switching infrastructure, 702–703
 tunneling security, IPv6, 225–226
Security Association (SA), 278
security domains, designing, 832
security group access control lists (SGACL), 770
Security Group Tag Exchange Protocol (SXP), 770
Security Group Tag (SGT), 769–772
security services, IPv6, 221
security zones, modular network architecture, 695
segmentation, multitenant segmentation, extranets, 739–740
selecting
data center architecture and connectivity model, 818–819
replacement routing protocols, 780
WAN links, 828
selection criteria, SDN (software-defined networking), 417–418
SeND (secure neighbor discovery), 222
send-community, 169–170
separate DCI layer deployment model, 500
separating, application tiers, 714–716
sequence number packets (SNPs), 123
server-server traffic, 480
service graphs, 459
service migration, enterprise IPv6 networks case study, 815–816
service provider-managed VPNs, 230
service-level agreement (SLA), WAN connections, 231
Session Announcement Protocol (SAP), 748
SGACL (security group access control lists), 770
SGT (Security Group Tag), 769–772
sham links, OSPF (Open Shortest Path First), 250–251
shaping traffic, 527–529, 532
WAN QoS, 592–593
shared distribution trees, 643–644
shared trees, 642, 643–644
shortest path trees (SPT), 637
short-pipe mode, MPLS DiffServ tunneling modes, 610
short-pipe tunneling mode, MPLS VPNs, 612–614
show ip community-list, 171
show ip pim rp mapping, 671
SIA (stuck in active), 52
simple demarcation, 329
single topology restrictions,
IS-IS (Intermediate System-to-Intermediate System), 138–139
single-homed, multiple links, BGP (Border Gateway Protocol), 178–180
single-homing, versus multihoming, BGP (Border Gateway Protocol), 177–178
single-rate three-color marker, 532–533
single-tier firewalls, architecture, 710
site-to-site VPN solutions, 272–273
SLA (service-level agreement), WAN connections, 231
SLAAC (Stateless Address Autoconfiguration), 221
SLL VPN (Secure Sockets Layer virtual private network), 221
small data centers (connecting servers to an enterprise LAN), connecting servers to an enterprise LAN, 376–378
smart probing, 364
SNPs (sequence number packets), 123
software-defined networking (SDN), 398, 414–416
benefits of, 416–417
challenges of, 419–421
nontraditional SDN, 421
requirements, 419
selection criteria, 417–418
software-defined WAN (SDWAN), 354–355
solution manageability, 355
source distribution trees, 643
source-rooted trees, 642
source-specific multicast. See SSM
(source-specific multicast)
source-specific multicast mode, 655
spanned EtherChannel, 724
sparse mode protocols, 642
speaker types, BGP (Border Gateway
Protocol), 147–148
SPF-Hold, 96
SPF-Max, 96
SPF-Start, 96
spine switches, 439
spine switches, 401
spine-leaf topologies, modern data
centers, 400–401
split brain, 485
split-horizon rule, BGP (Border
Gateway Protocol), 148–149
route reflectors, 158–159
spoke-to-spoke, DMVPN (Dynamic
Multipoint VPN), 285
SP-provided VPN services, 230
SPT (shortest path trees), 637
SPT switchover, PIM-SM
(Protocol-Independent
Multicast—Sparse Mode), 649–652
SSL (Secure Sockets Layer) VPN,
312–313
SSM (source-specific multicast),
654–656
characteristics, 654
SSM out-of-band source directory, 656
stages of PfRv2, 363
start-interval, 94
Stateless Address Autoconfiguration
(SLAAC), 221
storage traffic, 480–482
STP blocking links, GLBP (Gateway
Load Balancing Protocol), 35
STP-based layer LANs, ACI
(Application-Centric Infrastructure), 464–465
stub leaking, EIGRP (Enhanced
Interior Gateway Routing
Protocol), 67–68
stuck in active (SIA), 52
suboptimal bandwidth utilization,
541–542
suboptimal routing, route
summarization, EIGRP (Enhanced
Interior Gateway Routing
Protocol), 63–65
summarization
choke points and, 55–56
hub-and-spoke design, EIGRP
(Enhanced Interior Gateway
Routing Protocol), 61–65
OSPF (Open Shortest Path First),
85–86
route summarization, IS-IS
(Intermediate System-to-
Intermediate System),
136–138
supplicants, 759
802.1X, 765–766
supported traffic, WAN connections,
232
survivability, network infrastructure
devices, 700–701
SVI (switched virtual interface), 468
switched virtual interface (SVI), 468
switching infrastructure, 702–703
SXP (Security Group Tag Exchange
Protocol), 770
synchronization, LSDB synchronization, IS-IS (Intermediate System-to-Intermediate System), 123–124

TACACS+ 833
tail drop, 544
task lists, enterprise connectivity, 779–780
TCP windowing, 547
TDM (time-division multiplexing), 530
TEAP (Tunnel Extensible Authentication Protocol), 765
teleworker, 693
tenant address learning, remote VTEP discovery, 411–413
tenant separation
device-level virtualization, 424–425
multitenant data centers, 422–425

tenants
ACI (Application-Centric Infrastructure), 456–459
multitenant data centers, 422

TEP (tunnel endpoint), 441

theft of service, 754
three-layer hierarchy architecture, EIGRP (Enhanced Interior Gateway Routing Protocol), 57–59
three-tier data center network architecture, 380–381
three-tier layer model, enterprise campus design, 9–10

three-tiered e-commerce application functional model, 714
TID (Transport-Independent Design), 356
time-division multiplexing (TDM), 530
TLVs (type, length, value, 103
token bucket algorithms, 529–531

tools
dropping tools, DSCP-based WRED, 541–546
policing tools. See policing tools
queueing tools, 535–536
topology depths, 54
ToR (Top of Rack) design, 383–384
traffic
east-west traffic, 716–717
scavenger traffic, 839
traffic descriptors, QoS (quality of service), 516–517
traffic discovery, QoS in the enterprise network case study, 836–837
traffic engineering techniques, 351–354
traffic filtering, Layer 2 segments, 703
traffic flow directions, 478–479
traffic flow types, 479–482
traffic policing
ECN (explicit congestion notification), 547–550
QoS (quality of service), 527–529
traffic shaping, QoS (quality of service), 527–529
traffic trombone, 487
trail drop, 547
transit border router, 366
virtual firewalls, 712

two-layer hierarchy architecture,
EIGRP (Enhanced Interior Gateway Routing Protocol), 56–57

two-rate three-color marker, 533–535
two-tier data center network architecture, 378–380
two-tier firewall, architecture, 710
two-tier layer model, enterprise
campus design, 8–9
Tx-Ring, 536–537, 591

U

unicast, 635
unicast rekeying, 318
unicast reverse pack forwarding (uRPF), 702
uniform mode, MPLS DiffServ
tunneling modes, 610
uniform tunneling mode, MPLS VPNs, 612
untrusted, 571

update process, IS-IS (Intermediate System-to-Intermediate System), 118
uRPF (unicast reverse pack forwarding), 702

V

VDCs (virtual device contexts), 424–425
video, QoS (quality of service), 568–569
virtual device contexts (VDCs), 424–425
virtual extensible LAN (VXLAN), 407–408
virtual firewalls, 712
Virtual MAC (vMAC), 489
virtual machines (VMs), 716–717
virtual network interface cards (vNICs), 715–716
Virtual Network Management Center (VNMC), 713
virtual private LAN service DCI, 496
Virtual Private LAN Service (VPLS), 259, 261–263, 265–266
scalability, 263–265
Virtual Private Wire Service (VPWS), 259–261
Virtual Router Redundancy Protocol (VRRP), 31
virtual routing and forwarding.
See VRF (virtual routing and forwarding)
Virtual Security Gateway (VSG), 713
virtual switch model, distribution-to-distribution interconnect, 43–44
virtual switch (switch clustering), access-distribution block, 13–14
virtual switching system (VSS), IP gateway redundancy, 35–36
virtual tunnel interface (VTI), IPsec and, 281–282
virtualization
campus network virtualization, 16–23
device-level virtualization, 424–425
virtualized firewalls, 712–714
virtualized multiservice architectures, 596–597
Virtualized Multiservice Data Centers (VMDC), 596–597
VLAN design, high-availability enterprise campus, 24–26
vMAC (Virtual MAC), 489
VMDC (Virtualized Multiservice Data Centers), 596–597
VMs (virtual machines), 716–717
vNICs (virtual network interface cards), 715–716
VNMC (Virtual Network Management Center), 713
voice traffic, QoS (quality of service), 568–569
VoIP (voice over IP), QoS (quality of service), 568–569
vPC, 388–392
firewall routing, 725
VPLS (Virtual Private LAN Service), 259, 261–263
DCI (Data Center Interconnect), 496
resiliency, 265–266
scalability, 263–265
versus VPWS, 266–267
VPN use cases, QoS (quality of service), 621
VPN WAN design models, 331–335
VPNs (virtual private networks)
enterprise-managed VPNs. See enterprise-managed VPNs
FlexVPN, 314
architecture, 315
capabilities, 315
configuration blocks, 315–316
GETVPN, 317–320
Layer 3 MPLS VPNs, 233–234
managed VPNs, 230
MPLS VPNs, architecture, 234–236
security, 695
WAN remote sites, overview

service provider-managed VPNs
SSL (Secure Sockets Layer) VPN,
VPWS (Virtual Private Wire Service),
versus VPLS, VRF (virtual routing and forwarding)
campus network virtualization, firewalls,
VRF-Lite, Layer 3 separation,
VRRP (Virtual Router Redundancy Protocol),
VSG (Virtual Security Gateway),
VSS (virtual switching system), IP
gateway redundancy, VTEP (VXLAN tunnel endpoint),
VTI (virtual tunnel interface), IPsec
VXLAN (virtual extensible LAN),
control plane optimization, overlay networks, microsegmentation,
remote VTEP discovery, VTEP (VXLAN tunnel endpoint),
VXLAN tunnel endpoint (VTEP),

WAN (Wide Area Network)
3G/4G VPN design models, application optimization, case studies, redundancy and connectivity,
enterprise routing, intelligent path control, IWAN (Intelligent WAN), Layer 2 WAN design models,
management, MPLS Layer 3 WAN design models, NGWAN (next-generation WAN),
regional offices WAN design, remote sites, local Internet, remote-site LANs, remote-site WAN design,
SDWAN (software-defined WAN), secure connectivity, TID (Transport-Independent Design),
traffic engineering techniques, VPN WAN design models, WAN aggregation, WAN connections, choosing,
WAN links, selecting, WAN overlays, resilient enterprise
WANs case study, WAN QoS
examples, latency and jitter, overview, platform performance, queueing, shaping traffic,
WAN remote sites, overview,
WAN remote-site design models, 328
WAN remote-site transport options, 325–326
WAN/branch edge, 588–589
 CBWFQ (class-based weighted fair queueing), 592
WAN/VPN QoS design, 593
WDM, 490
web proxy, 740
Web Security Appliance (WSA), 735–736
weighted fair queueing (WFQ), 536
well-known BGP communities, 170–171
WFQ (weighted fair queueing), 536, 537–538
winner messages, DF election messages, 660
wired networks, 802.1X, 760

wireless LAN controller (WLC), 771
WLC (wireless LAN controller), 771
WRED, 544–546, 547–591
 dropping design principles, 557–558
 ECN (explicit congestion notification), 548–549
WSA (Web Security Appliance), 735–736

X-Y-Z
zone interface points, 690
zones
 designing, 832
 EIGRP (Enhanced Interior Gateway Routing Protocol), 54
 modular network architecture, 695
zoning, 690–691