Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members of the professional technical community.

Reader feedback is a natural continuation of this process. If you have any comments on how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please be sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Corporate and Government Sales

Cisco Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:
International Sales
intlcs@pearson.com.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc. cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.
About the Authors

Anthony Bruno, CCIE No. 2738, is a Consulting Director with BT with more than 20 years of experience in the internetworking field. Previously, he worked for International Network Services, Lucent Technologies, and as a captain in the U.S. Air Force. His other industry certifications include CCDP, PMP, CCNP Security, Cisco Certified Business Value Practitioner, Cisco Data Center Network Infrastructure Specialist, Cisco Security Solutions & Design Specialist, and ITILv3 Foundation. He has consulted for many enterprise and service provider customers in the design, implementation, and optimization of large-scale networks. Anthony leads architecture and design teams in building next-generation networks for his customers. He completed his Master of Science in Electrical Engineering at the University of Missouri–Rolla in 1994 and his Bachelor of Science in Electrical Engineering at the University of Puerto Rico–Mayaguez in 1990. He is also a part-time instructor for the University of Phoenix–Online, teaching networking courses.

Outside of work Anthony enjoys running marathons, Spartan obstacle races, and Olympic and Ironman distance triathlons.

Steve Jordan, CCIE No. 11293, is a Senior Technology Manager with Accudata Systems and has 20 years experience in the field of internetworking. For the last 10 years, Steve has specialized in data center architectures involving compute, network, storage, virtualization, and SDN. Over the years, Steve has worked with many enterprise and service provider customers in both pre-sales and post-sales engineering and architecture roles, along with working at several Cisco Gold Partners. He has extensive experience in data center architecture and design and has implemented solutions in many financial, energy, retail, healthcare, education, and telecommunications industries. Steve is a 10-Year triple CCIE in the tracks of Routing & Switching, Storage Networking, and Data Center. His other certifications include VMware VCIX-NV, VCP-NV, VCP4-DCV, VCP5-DCV, CCDP, CCNP, ACI-SE, and ACI-FE.

Steve lives in Houston, Texas, with his wife and three sons. When he is not working on technology, Steve can be found traveling to new places, finding great food, and listening to live music.

Steve was also the coauthor for the previous editions of the CCDA Official Cert Guide.
About the Technical Reviewers

Kevin Yudong Wu, CCIE No. 10697 (Routing & Switching and Security), is a senior network consultant at British Telecom (BT). He has been engaged as a leading engineer in various network design projects, including LAN, WLAN, data center, and network security with BT’s customers. Before joining BT, Kevin worked as customer support engineer at Cisco High Touch Technical Support (HTTS) to support both Cisco LAN switching and security products. He holds a master degree in both Computer Science (The University of Texas at Arlington, 2003) and Materials Engineering (Beijing University of Aeronautics and Astronautics, 1995).

Jay McMickle, CCIE No. 35355 (Routing & Switching and Security), is a double CCIE with 20 years of experience in the IT industry. He currently works as a Sr. Network and Security Consultant at Accudata Systems in Houston, Texas. Previously, he worked for Baker Hughes as a Technical Lead—first for the WAN team, followed by the Security team, and finally leading the Solution Architecture team. His other certifications include 3x CCNP (Routing & Switching, Design, and Security), Cisco Advanced Security Architect, Cisco Security Specializations, BCNE, CCSA, MCSE, and CCA. He specializes in routing designs and implementation as well as Security Architecture, implementation, and Security Operations. When he isn’t working, you can find him teaching American Karate (ASK) or on the water wakeboarding or wakesurfing with friends and family. A big thank you to God. From the bottom to here, it is only through Him that I have the family, career, and friends that surround me. Thank you to Steve and Anthony. When we met (with you both as consultants) back in 2006, little did I know that we would remain in touch and become friends. Whether it’s when I see Anthony at my neighborhood gym or Steve in the office, it goes to show how close our industry is and how you should nurture every relationship and not burn bridges. You might be working for them one day. Thank you to my wife for the patience she has with me in my work. Although I always “have one more thing to do,” she understands my passion for IT and the dedication that comes along with it. Much love to both of my daughters, Avery (a.k.a. “The Goose”) and Landyn (a.k.a. “The Bits”). I hope you both find a hobby that also serves as a career and funnels your passion for life as well. Much love to you both.
Dedications

This book is dedicated to my wife of 25 years, Yvonne Bruno, Ph.D., and to our daughters, Joanne and Dianne. Thanks for all of your support during the development of this book.

—Anthony Bruno

This book is dedicated to my wife of 22 years, Dorin Jordan, and my three sons, Blake, Lance, and Miles, for their support during the development of this book. I also want to dedicate this book to my mother Frances Brennan and my father-in law John Jordan for supporting me and being an inspiration to me throughout my life.

—Steve Jordan
Acknowledgments

This book would not have been possible without the efforts of many dedicated people. Thanks to Denise Lincoln and Michelle Newcomb for their guidance and support during the book development. Thanks to Chris Cleveland, development editor, for his guidance and special attention to detail. Thanks to Mandie Frank, project editor, for her accuracy. Thanks to Bart Reed, copy editor, for his attention to detail. Thanks to Brett Barrow, executive editor, for his vision. Thanks to all other Cisco Press team members who worked behind the scenes to make this a better book.

A special thanks my coauthor, Steve Jordan, for contributing five chapters. And a special thanks to the technical reviewers, Kevin Wu and Jay McMickle. Their technical advice and careful attention to detail made this book accurate.

—Anthony Bruno

This book would not be possible without all the great people who have assisted me. I would first like to thank Anthony Bruno for inviting me to assist him in this endeavor once more. Thanks to Denise Lincoln and Michelle Newcomb, project editors, for their guidance and support during the book development. Thanks again to Chris Cleveland, development editor, for supporting my schedule delays and keeping me on track.

Special thanks goes to the technical reviewers of this book, Kevin Wu and Jay McMickle, who provided wisdom and helped with keeping the book accurate.

Finally, thanks to all the managers and marketing people at Cisco Press who make all these books possible.

—Steve Jordan
Contents at a Glance

Introduction xxxvi

Part I General Network Design

- **Chapter 1** Network Design Methodology 3
- **Chapter 2** Network Design Models 39

Part II LAN and WAN Design

- **Chapter 3** Enterprise LAN Design 81
- **Chapter 4** Data Center Design 127
- **Chapter 5** Wireless LAN Design 167
- **Chapter 6** WAN Technologies and the Enterprise Edge 215
- **Chapter 7** WAN Design 249

Part III The Internet Protocol and Routing Protocols

- **Chapter 8** Internet Protocol Version 4 Design 287
- **Chapter 9** Internet Protocol Version 6 Design 333
- **Chapter 10** Routing Protocol Characteristics, RIP, EIGRP, and IS-IS 377
- **Chapter 11** OSPF, BGP, Route Manipulation, and IP Multicast 427

Part IV Security, Convergence, Network Management

- **Chapter 12** Managing Security 485
- **Chapter 13** Security Solutions 521
- **Chapter 14** Voice and Video Design 557
- **Chapter 15** Network Management Protocols 617

Part V Comprehensive Scenarios and Final Prep

- **Chapter 16** Comprehensive Scenarios 641
- **Chapter 17** Final Preparation 655

Part VI Appendixes

- **Appendix A** Answers to the “Do I Know This Already?” Quizzes and Q&A Questions 663
- **Appendix B** CCDA 200-310 version 1.0. Exam Updates 699
- **Appendix C** OSI Model, TCP/IP Architecture, and Numeric Conversion 701
- **Glossary** 717
- **Index** 730
Elements Available on the Book Website

Appendix D Memory Tables
Appendix E Memory Tables Answer Key
Appendix F Study Planner
Contents

Introduction xxxvi

Part I General Network Design

Chapter 1 Network Design Methodology 3

“Do I Know This Already?” Quiz 3

Foundation Topics 6

Cisco Architectures for the Enterprise 6

Borderless Networks Architecture 7

Collaboration and Video Architecture 8

Data Center and Virtualization Architecture 8

Cisco Design Lifecycle: Plan, Build, Manage 9

Plan Phase 10

Build Phase 11

Manage Phase 11

Prepare, Plan, Design, Implement, Operate, and Optimize Phases 12

Prepare Phase 14

Plan Phase 14

Design Phase 14

Implement Phase 15

Operate Phase 15

Optimize Phase 15

Summary of PPDIOO Phases 15

Project Deliverables 16

Design Methodology 16

Identifying Customer Design Requirements 17

Characterizing the Existing Network 18

Steps in Gathering Information 19

Network Audit Tools 19

Network Checklist 23

Designing the Network Topology and Solutions 24

Top-Down Approach 24

Pilot and Prototype Tests 25

Design Document 25

References and Recommended Reading 26

Exam Preparation Tasks 28
Part II LAN and WAN Design

Chapter 3 Enterprise LAN Design 81

“Do I Know This Already?” Quiz 81

Foundation Topics 83

LAN Media 83

 Ethernet Design Rules 83

 100Mbps Fast Ethernet Design Rules 84

 Gigabit Ethernet Design Rules 85

 1000BASE-LX Long-Wavelength Gigabit Ethernet 86

 1000BASE-SX Short-Wavelength Gigabit Ethernet 86

 1000BASE-CX Gigabit Ethernet over Coaxial Cable 86

 1000BASE-T Gigabit Ethernet over UTP 86

 10 Gigabit Ethernet Design Rules 87

 10GE Media Types 87

 EtherChannel 88

 Comparison of Campus Media 88

LAN Hardware 89

 Repeaters 89

 Hubs 89

 Bridges 89

 Switches 90

 Routers 91

 Layer 3 Switches 92
Campus LAN Design and Best Practices 93
 Best Practices for Hierarchical Layers 94
 Access Layer Best Practices 94
 Distribution Layer Best Practices 97
 Core Layer Best Practices 99
 STP Design Considerations 101
Cisco STP Toolkit 103
 PortFast 103
 UplinkFast 104
 BackboneFast 104
 Loop Guard 104
 Root Guard 104
 BPDU Guard 104
 BPDU Filter 104
VLAN and Trunk Considerations 105
 Unidirectional Link Detection (UDLD) Protocol 105
Large-Building LANs 106
 Enterprise Campus LANs 107
 Edge Distribution 109
Medium-Size LANs 109
Small and Remote Site LANs 110
Server Farm Module 110
 Server Connectivity Options 111
Enterprise Data Center Infrastructure 111
Campus LAN QoS Considerations 111
 Multicast Traffic Considerations 113
 CGMP 113
 IGMP Snooping 114
References and Recommended Readings 114
Exam Preparation Tasks 115
 Review All Key Topics 115
 Complete Tables and Lists from Memory 115
 Define Key Terms 115
Q&A 115

Chapter 4 Data Center Design 127
 “Do I Know This Already?” Quiz 127
Foundation Topics 130
Enterprise DC Architecture 130
 Data Center Foundation Components 131
 Data Center Topology Components 132
 Data Center Network Programmability 133

 SDN 134
 Controllers 134
 APIs 135
 ACI 135

Challenges in the DC 136
 Data Center Facility Aspects 136
 Data Center Space 138
 Data Center Power 139
 Data Center Cooling 140
 Data Center Heat 141
 Data Center Cabling 141

Enterprise DC Infrastructure 143
 Data Center Storage 144
 Data Center Reference Architecture 146
 Defining the DC Access Layer 147
 Defining the DC Aggregation Layer 148
 Defining the DC Core Layer 149
 Security in the DC 150
 Fabric Extenders 151

Virtualization Overview 151
 Challenges 151
 Defining Virtualization and Benefits 151
 Virtualization Risks 152
 Types of Virtualization 152

Virtualization Technologies 153
 VSS 153
 VRF 154
 vPC 154
 Device Contexts 155
 Server Virtualization 155
 Server Scaling 155
 Virtual Switching 156
Chapter 5 Wireless LAN Design 167

“Do I Know This Already?” Quiz 167

Foundation Topics 169

Wireless LAN Technologies 169

WLAN Standards 169

ISM and UNII Frequencies 170
Summary of WLAN Standards 171

Service Set Identifier 171

WLAN Layer 2 Access Method 172

WLAN Security 172

Unauthorized Access 173

WLAN Security Design Approach 173

IEEE 802.1X-2001 Port-Based Authentication 173

Dynamic WEP Keys and LEAP 174

Controlling WLAN Access to Servers 174

Cisco Unified Wireless Network 175

Cisco UWN Architecture 175

Autonomous Access Points 176

Centralized WLAN Architecture 177

LWAPP 177
CAPWAP 178
Cisco Unified Wireless Network Split-MAC Architecture 179
Local MAC 179
AP Modes 180
LAP Discovery of WLC Using CAPWAP 181
WLAN Authentication 182
Authentication Options 183
WLAN Controller Components 183
WLC Interface Types 184
AP Controller Equipment Scaling 185
Roaming and Mobility Groups 186
Intracontroller Roaming 187
Layer 2 Intercontroller Roaming 187
Layer 3 Intercontroller Roaming 188
Mobility Groups 189
WLAN Design 190
Controller Redundancy Design: Deterministic vs. Dynamic 190
N+1 WLC Redundancy 190
N+N WLC Redundancy 191
N+N+1 WLC Redundancy 191
Radio Management and Radio Groups 192
RF Groups 193
RF Site Survey 194
Using EoIP Tunnels for Guest Services 194
Wireless Mesh for Outdoor Wireless 195
Mesh Design Recommendations 196
Campus Design Considerations 196
Power over Ethernet (PoE) 197
Wireless and Quality of Service (QoS) 197
Branch Design Considerations 199
Local MAC 200
REAP 200
Hybrid REAP 200
Branch Office Controller Options 200
References and Recommended Readings 201
Exam Preparation Tasks 203
Review All Key Topics 203
Chapter 6 WAN Technologies and the Enterprise Edge 215

“Do I Know This Already?” Quiz 215

Foundation Topics 218
WAN and Enterprise Edge Overview 218
 WAN Defined 218
 WAN Edge Module 219
 Enterprise Edge Modules 219
WAN Transport Technologies 220
 ISDN 221
 ISDN BRI Service 221
 ISDN PRI Service 221
 Digital Subscriber Line 222
 Cable 222
 Wireless 223
 Frame Relay 224
 Time-Division Multiplexing 225
 Metro Ethernet 225
 SONET/SDH 225
 Multiprotocol Label Switching (MPLS) 226
 Dark Fiber 227
 Dense Wavelength-Division Multiplexing 228
 Ordering WAN Technology and Contracts 228
WAN and Edge Design Methodologies 229
 Response Time 230
 Throughput 231
 Reliability 231
 Bandwidth Considerations 231
 WAN Link Categories 232
Optimizing Bandwidth Using QoS 233
 Queuing, Traffic Shaping, and Policing 233
 Classification 233
 Congestion Management 234
 Priority Queuing 234
 Custom Queuing 234
Weighted Fair Queuing 234
Class-Based Weighted Fair Queuing 234
Low-Latency Queuing 235
Traffic Shaping and Policing 235
Link Efficiency 235
Window Size 236
DMZ Connectivity 236
Segmenting DMZs 237
DMZ Services 238
Internet Connectivity 238
Centralized Internet (Branch) vs. Direct Internet (Branch) 240
High Availability for the Internet Edge 240
VPN Network Design 240
References and Recommended Readings 242
Exam Preparation Tasks 243
Review All Key Topics 243
Complete Tables and Lists from Memory 243
Define Key Terms 243
Q&A 244

Chapter 7 WAN Design 249
“Do I Know This Already?” Quiz 249
Foundation Topics 252
Traditional WAN Technologies 252
Hub-and-Spoke Topology 252
Full-Mesh Topology 253
Partial-Mesh Topology 253
Point-to-Point Topology 254
Remote Site Connectivity 254
Enterprise VPN vs. Service Provider VPN 255
Enterprise Managed VPN: IPsec 255
IPsec Direct Encapsulation 256
Generic Routing Encapsulation 257
IPsec DMVPN 257
IPsec Virtual Tunnel Interface Design 258
GETVPN 258
Service Provider–Managed Offerings 259
Metro Ethernet 259
Part III The Internet Protocol and Routing Protocols

Chapter 8 Internet Protocol Version 4 Design

“Do I Know This Already?” Quiz

Foundation Topics

IPv4 Header
 ToS
 IPv4 Fragmentation
IPv4 Addressing
 IPv4 Address Classes
 Class A Addresses
 Class B Addresses
 Class C Addresses
 Class D Addresses
 Class E Addresses
IPv4 Address Types
IPv4 Private Addresses
NAT
IPv4 Address Subnets
 Mask Nomenclature
 IP Address Subnet Design Example
 Determining the Network Portion of an IP Address
 Variable-Length Subnet Masks
 VLSM Address Assignment: Example 1
 Loopback Addresses
 IP Telephone Networks
 VLSM Address Assignment: Example 2
IPv4 Addressing Design
 Goal of IPv4 Address Design
 Plan for Future Use of IPv4 Addresses
 Performing Route Summarization
 Plan for a Hierarchical IP Address Network
 Private and Public IP Address and NAT Guidelines
 Steps for Creating an IPv4 Address Plan
 Case Study: IP Address Subnet Allocation
Address Assignment and Name Resolution
 Recommended Practices of IP Address Assignment
BOOTP
Chapter 9 **Internet Protocol Version 6 Design** 333

“Do I Know This Already?” Quiz 333

Foundation Topics 336

Introduction to IPv6 336

IPv6 Header 337

IPv6 Address Representation 339

IPv4-Compatible IPv6 Addresses 339

IPv6 Prefix Representation 340

IPv6 Address Scope Types and Address Allocations 340

IPv6 Address Allocations 341

IPv6 Unicast Address 342

 Global Unicast Addresses 342
 Link-Local Addresses 343
 Unique Local IPv6 Address 343
 Global Aggregatable IPv6 Address 343
 IPv4-Compatible IPv6 Address 344

IPv6 Anycast Addresses 344

IPv6 Multicast Addresses 344

IPv6 Mechanisms 347

ICMPv6 347

IPv6 Neighbor Discovery Protocol 348

IPv6 Name Resolution 348

Path MTU Discovery 349

IPv6 Address-Assignment Strategies 350

 Manual Configuration 350
 SLAAC of Link-Local Address 350
 SLAAC of Globally Unique IPv6 Address 350
Routing Protocol Characteristics 380
 Static Versus Dynamic Route Assignment 380
 Interior Versus Exterior Routing Protocols 382
 Distance-Vector Routing Protocols 383
 EIGRP 383
 Link-State Routing Protocols 384
 Distance-Vector Routing Protocols Versus Link-State Protocols 384
 Hierarchical Versus Flat Routing Protocols 385
 Classless Versus Classful Routing Protocols 385
 IPv4 Versus IPv6 Routing Protocols 386
 Administrative Distance 386
Routing Protocol Metrics and Loop Prevention 388
 Hop Count 388
 Bandwidth 389
 Cost 389
 Load 390
 Delay 391
 Reliability 391
 Maximum Transmission Unit 391
Routing Loop-Prevention Schemes 392
 Split Horizon 392
 Poison Reverse 392
 Counting to Infinity 393
Triggered Updates 393
Summarization 393
RIPv2 and RIPng 393
 Authentication 394
 MD5 Authentication 394
RIPv2 Routing Database 394
RIPv2 Message Format 394
RIPv2 Timers 396
RIPv2 Design 396
RIPv2 Summary 396
RIPng 397
 RIPng Timers 397
 Authentication 397
 RIPng Message Format 397
Chapter 11 OSPF, BGP, Route Manipulation, and IP Multicast 427

“Do I Know This Already?” Quiz 427

Foundation Topics 430

OSPFv2 430

OSPFv2 Metric 430
Route Manipulation 455
 PBR 455
Route Summarization 455
Route Redistribution 458
 Default Metric 460
 OSPF Redistribution 460
Route Filtering 461
 Transit Traffic 461
Routing Protocols on the Hierarchical Network Infrastructure 462
IP Multicast Review 463
 Multicast Addresses 463
 Layer 3 to Layer 2 Mapping 464
IGMP 465
 IGMPv1 465
 IGMPv2 465
 IGMPv3 466
 CGMP 466
 IGMP Snooping 467
Sparse Versus Dense Multicast 467
Multicast Source and Shared Trees 468
PIM 468
 PIM-SM 469
 PIM DR 469
 Auto-RP 469
 PIMv2 Bootstrap Router 470
DVMRP 470
IPv6 Multicast Addresses 470
References and Recommended Readings 471
Exam Preparation Tasks 473
 Review All Key Topics 473
 Complete Tables and Lists from Memory 473
 Define Key Terms 474
Q&A 474

Part IV Security, Convergence, Network Management

Chapter 12 Managing Security 485
 “Do I Know This Already?” Quiz 485
Foundation Topics 488
Network Security Overview 488
Security Legislation 489
Security Threats 490
 Reconnaissance and Port Scanning 491
 Vulnerability Scanners 492
 Unauthorized Access 493
Security Risks 494
 Targets 494
 Loss of Availability 495
 Integrity Violations and Confidentiality Breaches 496
Security Policy and Process 497
 Security Policy Defined 498
 Basic Approach of a Security Policy 498
 Purpose of Security Policies 499
 Security Policy Components 499
 Risk Assessment 500
 Risk Index 501
 Continuous Security 501
 Integrating Security Mechanisms into Network Design 502
Trust and Identity Management 503
 Trust 503
 Domains of Trust 503
 Identity 504
 Passwords 505
 Tokens 505
 Certificates 506
 Network Access Control 506
Secure Services 506
 Encryption Fundamentals 507
 Encryption Keys 507
 VPN Protocols 508
 Transmission Confidentiality 509
 Data Integrity 509
Threat Defense 510
 Physical Security 510
 Infrastructure Protection 512
Security Management Solutions 512
References and Recommended Readings 513
Chapter 13 Security Solutions 521

“Do I Know This Already?” Quiz 521

Foundation Topics 524
Cisco SAFE Architecture 524
Network Security Platforms 525
Cisco Security Control Framework 526
Trust and Identity Technologies 527
Firewall Fundamentals 527
 Types of Firewalls 528
 Next-Gen Firewalls 529
 NAT Placement 529
 Firewall Guidelines 530
Firewall ACLs 530
Cisco Identity-Based Network Services 531
Identity and Access Control Deployments 532
Detecting and Mitigating Threats 533
IPS/IDS Fundamentals 534
IPS/IDS Guidelines 535
Threat Detection and Mitigation Technologies 536
Threat-Detection and Threat-Mitigation Solutions 536
FirePOWER IPS 538
Cisco ESA 538
Cisco WSA 538
Security Management Applications 539
Security Platform Solutions 540
Security Management Network 540
Integrating Security into Network Devices 541
IOS Security 542
ISR G2 Security Hardware Options 542
Cisco Security Appliances 543
Catalyst 6500 Service Modules 544
Endpoint Security 545
Chapter 14 Voice and Video Design 557

“Do I Know This Already?” Quiz 557

Foundation Topics 559

Traditional Voice Architectures 559
 PBX and PSTN Switches 559
 Local Loop and Trunks 560
 Ports 561

Major Analog and Digital Signaling Types 562
 Loop-Start Signaling 563
 Ground-Start Signaling 563
 E&M Signaling 564
 CAS and CCS Signaling 565

PSTN Numbering Plan 567

Other PSTN Services 568
 Centrex Services 569
 Voice Mail 569
 Database Services 569
 IVR 569
 ACD 569

Voice Engineering Terminology 569
 Grade of Service 569
 Erlangs 569
 Centum Call Second 570
 Busy Hour 570
 Busy-Hour Traffic 570
 Blocking Probability 571
 Call Detail Records 571
Converged Multiservice Networks 571
VoIP 572
IPT Components 574
 Design Goals of IP Telephony 575
IPT Deployment Models 576
 Single-Site Deployment 576
 Multisite WAN with Centralized Call Processing Model 576
 Multisite WAN with Distributed Call Processing Model 577
 Unified CallManager Express Deployments 578
Video Deployment Considerations 578
Codecs 580
 Analog-to-Digital Signal Conversion 580
 Codec Standards 580
VoIP Control and Transport Protocols 581
 DHCP, DNS, and TFTP 582
 SCCP 582
 RTP and RTCP 583
 MGCP 584
 H.323 584
 H.264 587
 SIP 588
IPT Design 590
Bandwidth 590
 VAD 590
Calculating Voice Bandwidth 591
Delay Components in VoIP Networks 592
Packet Loss 594
Echo Cancellation 595
QoS and Bandwidth Mechanisms for VoIP and Video Networks 595
 cRTP 596
 IEEE 802.1P 596
 Resource Reservation Protocol 597
 LFI 597
 LLQ 597
 Auto QoS 599
IPT Design Recommendations 600
 Service Class Recommendations 600
References and Recommended Readings 602
Exam Preparation Tasks 604
 Review All Key Topics 604
 Complete Tables and Lists from Memory 604
 Define Key Terms 605
Q&A 605

Chapter 15 Network Management Protocols 617
“Do I Know This Already?” Quiz 617
Foundation Topics 619
Simple Network Management Protocol 619
 SNMP Components 620
 MIB 620
 SNMP Message Versions 622
 SNMPv1 622
 SNMPv2 622
 SNMPv3 623
Other Network Management Technologies 624
 RMON 624
 RMON2 625
 NetFlow 626
 NetFlow Compared to RMON and SNMP 628
 CDP 629
 LLDP 630
 Syslog 630
References and Recommended Reading 631
Exam Preparation Tasks 633
 Review All Key Topics 633
 Complete Tables and Lists from Memory 633
 Define Key Terms 633
Q&A 634

Part V Comprehensive Scenarios and Final Prep

Chapter 16 Comprehensive Scenarios 641
Scenario One: Friendswood Hospital 641
 Scenario One Questions 642
Scenario Two: Big Oil and Gas 642
 Scenario Two Questions 643
Scenario Three: Video Games Spot 643
 Scenario Three Questions 644
Scenario Four: Diamond Communications 645
 Scenario Four Questions 646
Scenario Answers 646
 Scenario One Answers 646
 Scenario Two Answers 650
 Scenario Three Answers 651
 Scenario Four Answers 652

Chapter 17 Final Preparation 655

Tools for Final Preparation 655
 Review Tools on the Companion Website 655
 Pearson Cert Practice Test Engine and Questions 655
 Download and Install the Software 655
 Activate and Download the Practice Exam 656
 Activating Other Exams 657
 Premium Edition 657
 The Cisco Learning Network 657
 Memory Tables 657
 Chapter-Ending Review Tools 658

Suggested Plan for Final Review/Study 658
 Subnetting Practice 658
 Using the Exam Engine 659

Summary 660

Part VI Appendixes

Appendix A Answers to the Do I Know This Already?” Quizzes and Q&A Questions 663

Appendix B CCDA 200-310 version 1.0. Exam Updates 699

Appendix C OSI Model, TCP/IP Architecture, and Numeric Conversion 701
 OSI Model Overview 701
 Physical Layer (OSI Layer 1) 702
 Data Link Layer (OSI Layer 2) 703
 Network Layer (OSI Layer 3) 703
 Transport Layer (OSI Layer 4) 704
 Session Layer (OSI Layer 5) 704
 Presentation Layer (OSI Layer 6) 705
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Bold** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), bold indicates commands that are manually input by the user (such as a `show` command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (`|`) separate alternative, mutually exclusive elements.
- Square brackets (`[]`) indicate an optional element.
- Braces (`{ }`) indicate a required choice.
- Braces within brackets (`{{ }{ }}`) indicate a required choice within an optional element.
This page intentionally left blank
Introduction

So, you have worked on Cisco devices for a while, designing networks for your customers, and now you want to get certified? There are several good reasons to do so. The Cisco certification program allows network analysts, design engineers, and network architects to demonstrate their competence in different areas and levels of networking. The prestige and respect that come with a Cisco certification will definitely help you in your career. Your clients, peers, and superiors will recognize you as an expert in networking.

Cisco Certified Design Associate (CCDA) is the associate-level certification that represents knowledge of the design of Cisco internetwork infrastructure. The CCDA demonstrates skills required to design routed and switched networks, LANs, and WANs. The CCDA also has knowledge of campus designs, data centers, network security, voice, and wireless LANs.

Although it is not required, Cisco suggests taking the DESGN 3.0 course before you take the CCDA exam. For more information about the various levels of certification, career tracks, and Cisco exams, go to the Cisco Certifications page at http://www.cisco.com/c/en/us/training-events/training-certifications/certifications.html.

Our goal with this book is to help you pass the 200-310 CCDA exam. This is done by assessment on and coverage of all the exam topics published by Cisco. Reviewing tables and practicing test questions will help you practice your knowledge on all subject areas.

About the 200-310 CCDA Exam

The CCDA exam measures your ability to design networks that meet certain requirements for performance, security, capacity, and scalability. The exam focuses on small- to medium-sized networks. The candidate should have at least one year of experience in the design of small- to medium-sized networks using Cisco products. A CCDA candidate should understand internetworking technologies, including Cisco’s enterprise network architecture, IPv4 subnets, IPv6 addressing and protocols, routing, switching, WAN technologies, LAN protocols, security, IP telephony, and network management. The new exam adds topics and updates to virtualization, data centers design, IPv6, voice and video design, wireless LANs, WAN technologies, and security.

The test to obtain CCDA certification is called Designing for Cisco Internetwork Solutions (DESGN) Exam #200-310. It is a computer-based test that has 55 to 65 questions and a 75-minute time limit. Because all exam information is managed by Cisco Systems and is therefore subject to change, candidates should continually monitor the Cisco Systems site for CCDA course and exam updates at http://www.cisco.com/c/en/us/training-events/training-certifications/certifications/associate/ccda.html.

You can take the exam at Pearson VUE testing centers. You can register with VUE at www.vue.com/cisco/. The CCDA certification is valid for three years. To recertify, you can pass a current CCDA test, pass a CCIE exam, or pass any 300 level, 642 level, or Cisco Specialist exam.
200-310 CCDA Exam Topics

Table I-1 lists the topics of the 200-310 CCDA exam and indicates the part in the book where they are covered.

Table I-1 200-310 CCDA Exam Topics

<table>
<thead>
<tr>
<th>Exam Topic</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Design Methodologies</td>
<td></td>
</tr>
<tr>
<td>1.1 Describe the Cisco Design lifecycle—PBM (plan, build, manage)</td>
<td>I</td>
</tr>
<tr>
<td>1.2 Describe the information required to characterize an existing network as part of the planning for a design change</td>
<td>I</td>
</tr>
<tr>
<td>1.3 Describe the use cases and benefits of network characterization tools (SNMP, NBAR, NetFlow)</td>
<td>I</td>
</tr>
<tr>
<td>1.4 Compare and contrast the top-down and bottom-up design approaches</td>
<td>I</td>
</tr>
<tr>
<td>2.0 Design Objectives</td>
<td></td>
</tr>
<tr>
<td>2.1 Describe the importance and application of modularity in a network</td>
<td>I</td>
</tr>
<tr>
<td>2.2 Describe the importance and application of hierarchy in a network</td>
<td>I</td>
</tr>
<tr>
<td>2.3 Describe the importance and application of scalability in a network</td>
<td>I</td>
</tr>
<tr>
<td>2.4 Describe the importance and application of resiliency in a network</td>
<td>I</td>
</tr>
<tr>
<td>2.5 Describe the importance and application of concept of fault domains in a network</td>
<td>I</td>
</tr>
<tr>
<td>3.0 Addressing and Routing Protocols in an Existing Network</td>
<td></td>
</tr>
<tr>
<td>3.1 Describe the concept of scalable addressing</td>
<td></td>
</tr>
<tr>
<td>3.1.a Hierarchy</td>
<td>III</td>
</tr>
<tr>
<td>3.1.b Summarization</td>
<td>III</td>
</tr>
<tr>
<td>3.1.c Efficiency</td>
<td>III</td>
</tr>
<tr>
<td>3.2 Design an effective IP addressing scheme</td>
<td></td>
</tr>
<tr>
<td>3.2.a Subnetting</td>
<td>III</td>
</tr>
<tr>
<td>3.2.b Summarization</td>
<td>III</td>
</tr>
<tr>
<td>3.2.c Scalability</td>
<td>III</td>
</tr>
<tr>
<td>3.2.d NAT</td>
<td>III</td>
</tr>
<tr>
<td>3.3 Identify routing protocol scalability considerations</td>
<td></td>
</tr>
<tr>
<td>3.3.a Number of peers</td>
<td>III</td>
</tr>
<tr>
<td>3.3.b Convergence requirements</td>
<td>III</td>
</tr>
<tr>
<td>3.3.c Summarization boundaries and techniques</td>
<td>III</td>
</tr>
<tr>
<td>Exam Topic</td>
<td>Part</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>3.3.d Number of routing entries</td>
<td>III</td>
</tr>
<tr>
<td>3.3.e Impact of routing table of performance</td>
<td>III</td>
</tr>
<tr>
<td>3.3.f Size of the flooding domain</td>
<td>III</td>
</tr>
<tr>
<td>3.3.g Topology</td>
<td>III</td>
</tr>
<tr>
<td>3.4 Design a routing protocol expansion</td>
<td></td>
</tr>
<tr>
<td>3.4.a IGP protocols (EIGRP, OSPF, IS-IS)</td>
<td>III</td>
</tr>
<tr>
<td>3.4.b BGP (eBGP peering, iBGP peering)</td>
<td>III</td>
</tr>
<tr>
<td>4.0 Enterprise Network Design</td>
<td></td>
</tr>
<tr>
<td>4.1 Design a basic campus</td>
<td></td>
</tr>
<tr>
<td>4.1.a Layer 2/Layer 3 demarcation</td>
<td>II</td>
</tr>
<tr>
<td>4.1.b Spanning tree</td>
<td>II</td>
</tr>
<tr>
<td>4.1.c Ether channels</td>
<td>II</td>
</tr>
<tr>
<td>4.1.d First Hop Redundancy Protocols (FHRP)</td>
<td>II</td>
</tr>
<tr>
<td>4.1.e Chassis virtualization</td>
<td>II</td>
</tr>
<tr>
<td>4.2 Design a basic enterprise network</td>
<td></td>
</tr>
<tr>
<td>4.2.a Layer 3 protocols and redistribution</td>
<td>III</td>
</tr>
<tr>
<td>4.2.b WAN connectivity</td>
<td>II</td>
</tr>
<tr>
<td>4.2.b(i) Topologies (hub and spoke, spoke to spoke, point to point, full/partial mesh)</td>
<td>II</td>
</tr>
<tr>
<td>4.2.b(ii) Connectivity methods (DMVPN, get VPN, MPLS Layer 3 VPN, Layer 2 VPN, static IPsec, GRE, VTI)</td>
<td>II</td>
</tr>
<tr>
<td>4.2.b(iii) Resiliency (SLAs, backup links, QoS)</td>
<td>II</td>
</tr>
<tr>
<td>4.2.c Connections to the data center</td>
<td>II</td>
</tr>
<tr>
<td>4.2.d Edge connectivity</td>
<td>II</td>
</tr>
<tr>
<td>4.2.d(i) Internet connectivity</td>
<td>II</td>
</tr>
<tr>
<td>4.2.d(ii) ACLs and firewall placements</td>
<td>II</td>
</tr>
<tr>
<td>4.2.d(iii) NAT placement</td>
<td>II</td>
</tr>
<tr>
<td>4.3 Design a basic branch network</td>
<td></td>
</tr>
<tr>
<td>4.3.a Redundancy</td>
<td>II</td>
</tr>
<tr>
<td>4.3.a(i) Connectivity</td>
<td>II</td>
</tr>
<tr>
<td>4.3.a(ii) Hardware</td>
<td>II</td>
</tr>
<tr>
<td>4.3.a(iii) Service provider</td>
<td>II</td>
</tr>
<tr>
<td>4.3.b Link capacity</td>
<td>II</td>
</tr>
<tr>
<td>4.3.b(i) Bandwidth</td>
<td>II</td>
</tr>
<tr>
<td>Exam Topic</td>
<td>Part</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.3.b(ii) Delay</td>
<td>II</td>
</tr>
<tr>
<td>5.0 Considerations for Expanding an Existing Network</td>
<td></td>
</tr>
<tr>
<td>5.1 Describe design considerations for wireless network architectures</td>
<td></td>
</tr>
<tr>
<td>5.1.a Physical and virtual controllers</td>
<td>II</td>
</tr>
<tr>
<td>5.1.b Centralized and decentralized designs</td>
<td>II</td>
</tr>
<tr>
<td>5.2 Identify integration considerations and requirements for controller-based wireless networks</td>
<td></td>
</tr>
<tr>
<td>5.2.a Traffic flows</td>
<td>II</td>
</tr>
<tr>
<td>5.2.b Bandwidth consumption</td>
<td>II</td>
</tr>
<tr>
<td>5.2.c AP and controller connectivity</td>
<td>II</td>
</tr>
<tr>
<td>5.2.d QoS</td>
<td>II</td>
</tr>
<tr>
<td>5.3 Describe security controls integration considerations</td>
<td></td>
</tr>
<tr>
<td>5.3.a Traffic filtering and inspection</td>
<td>IV</td>
</tr>
<tr>
<td>5.3.b Firewall and IPS placement and functionality</td>
<td>IV</td>
</tr>
<tr>
<td>5.4 Identify traffic flow implications as a result of security controls</td>
<td></td>
</tr>
<tr>
<td>5.4.a Client access methods</td>
<td>IV</td>
</tr>
<tr>
<td>5.4.b Network access control</td>
<td>IV</td>
</tr>
<tr>
<td>5.5 Identify high-level considerations for collaboration (voice, streaming video, interactive video) applications</td>
<td></td>
</tr>
<tr>
<td>5.5.a QoS (shaping vs. policing, trust boundaries, jitter, delay, loss)</td>
<td>IV</td>
</tr>
<tr>
<td>5.5.b Capacity</td>
<td>IV</td>
</tr>
<tr>
<td>5.5.c Convergence time</td>
<td>IV</td>
</tr>
<tr>
<td>5.5.d Service placement</td>
<td>IV</td>
</tr>
<tr>
<td>5.6 Describe the concepts of virtualization within a network design</td>
<td>II</td>
</tr>
<tr>
<td>5.7 Identify network elements that can be virtualized</td>
<td></td>
</tr>
<tr>
<td>5.7.a Physical elements (chassis, VSS, VDC, contexts)</td>
<td>II</td>
</tr>
<tr>
<td>5.7.b Logical elements (routing elements, tunneling, VRFs, VLANs)</td>
<td>II</td>
</tr>
<tr>
<td>5.8 Describe the concepts of network programmability within a network design</td>
<td></td>
</tr>
<tr>
<td>5.8.a APIs</td>
<td>II</td>
</tr>
<tr>
<td>5.8.b Controllers</td>
<td>II</td>
</tr>
<tr>
<td>5.8.c Application Centric Infrastructure (ACI)</td>
<td>II</td>
</tr>
</tbody>
</table>
Exam Topic | Part
---|---
5.9 Describe data center components | Part 5
5.9.a Server load balancing basics | II
5.9.b Blocking vs. non-blocking Layer 2 | II
5.9.c Layer 2 extension | II

About the CCDA 200-310 Official Cert Guide
This book maps to the topic areas of the 200-310 CCDA exam and uses a number of features to help you understand the topics and prepare for the exam.

Objectives and Methods
This book uses several key methodologies to help you discover the exam topics for which you need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. Therefore, this book does not try to help you pass the exams only by memorization, but by truly learning and understanding the topics. This book is designed to help you pass the CCDA exam by using the following methods:

- Helping you discover which exam topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the companion website

Book Features
To help you customize your study time using this book, the core chapters have several features that help you make the best use of your time:

- **“Do I Know This Already?” quiz**: Each chapter begins with a quiz that helps you determine how much time you need to spend studying that chapter.
- **Foundation Topics**: This is the core section of each chapter. It explains the concepts for the topics in that chapter.
- **Exam Preparation Tasks**: After the “Foundation Topics” section of each chapter, the “Exam Preparation Tasks” section lists a series of study activities that you should do at the end of the chapter. Each chapter includes the activities that make the most sense for studying the topics in that chapter:
 - **Review All the Key Topics**: The Key Topic icon appears next to the most important items in the “Foundation Topics” section of the chapter. The Review All the Key Topics activity lists the key topics from the chapter, along with their page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic, so you should review these.
Complete the Tables and Lists from Memory: To help you memorize some lists of facts, many of the more important lists and tables from the chapter are included in a document on the CD. This document lists only partial information, allowing you to complete the table or list.

Define Key Terms: Although the exam may be unlikely to ask a question such as “Define this term,” the CCDA exams do require that you learn and know a lot of networking terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the glossary at the end of the book.

Q&A: Confirm that you understand the content you just covered.

How This Book Is Organized

This book contains 16 core chapters—Chapters 1 through 16. Chapter 17 includes some preparation tips and suggestions for how to approach the exam. Each core chapter covers a subset of the topics on the CCDA exam. The core chapters are organized into parts. They cover the following topics:

Part I: General Network Design

- Chapter 1: Network Design Methodology covers Cisco architectures for the enterprise network; the Plan, Design, Manage (PDM) network lifecycle; the Prepare, Plan, Design, Implement, Operate, and Optimize (PPDIOO) methodology; and the process of completing a network design.
- Chapter 2: Network Design Models covers hierarchical network models, the Cisco Enterprise Architecture model, and high-availability network services.

Part II: LAN and WAN Design

- Chapter 3: Enterprise LAN Design covers LAN media, campus LAN design and models, and best practices for campus networks.
- Chapter 4: Data Center Design covers enterprise data center design fundamentals, network programmability, data center challenges, virtualization technologies, data center interconnects, and load balancing in the DC.
- Chapter 5: Wireless LAN Design covers technologies and design options used for wireless LANs.
- Chapter 6: WAN Technologies and the Enterprise Edge examines technologies, design methodologies, DMZ connectivity, Internet connectivity, VPN network design, and requirements for the enterprise WANs.
- Chapter 7: WAN Design covers WAN design for the Enterprise WAN and enterprise branch, including remote access and virtual private network (VPN) architectures.
Part III: The Internet Protocol and Routing Protocols

- Chapter 8: Internet Protocol Version 4 Design covers the header, addressing, subnet design, and protocols used by IPv4.
- Chapter 10: Routing Protocol Characteristics, RIP, EIGRP, and IS-IS covers routing protocol characteristics, metrics, RIPv2, Enhanced Interior Gateway Routing Protocol (EIGRP), and Intermediate System to Intermediate System (IS-IS) characteristics and design.

Part IV: Security, Convergence, Network Management

- Chapter 12: Managing Security examines security management, security policy, threats, risks, security compliance, and trust and identity management.
- Chapter 13: Security Solutions covers Cisco SAFE architecture, security technologies, and design options for securing the enterprise.
- Chapter 14: Voice and Video Design reviews traditional voice architectures, integrated multiservice networks, Cisco’s IPT architecture and call processing deployment models, video deployment considerations, and IPT design.

Part V: Comprehensive Scenarios and Final Prep

- Chapter 16: Comprehensive Scenarios provides network case studies for further comprehensive study.
- Chapter 17: Final Preparation identifies tools for final exam preparation and helps you develop an effective study plan. It contains tips on how to best use the web-based material to study.

Part VI: Appendixes

- Appendix A: Answers to the “Do I Know This Already?” Quizzes and Q&A Questions includes the answers to all the questions from Chapters 1 through 15.
- Appendix B: CCDA Exam Updates: Version 1.0 provides instructions for finding updates to the exam and this book when and if they occur.
- Appendix C: OSI Model, TCP/IP Architecture, and Numeric Conversion reviews the Open Systems Interconnection (OSI) reference model to give you a better understanding of internetworking. It reviews the TCP/IP architecture and also reviews the techniques to convert between decimal, binary, and hexadecimal numbers. Although there might not be a specific question on the exam about converting a binary number to decimal, you need to know how to do so to do problems on the test.
- **Appendix D: Memory Tables** (a website-only appendix) contains the key tables and lists from each chapter, with some of the contents removed. You can print this appendix and, as a memory exercise, complete the tables and lists. The goal is to help you memorize facts that can be useful on the exam. This appendix is available in PDF format on the companion website; it is not in the printed book.

- **Appendix E: Memory Tables Answer Key** (a website-only appendix) contains the answer key for the memory tables in Appendix D. This appendix is available in PDF format on the companion website; it is not in the printed book.

- **Appendix F: Study Planner** is a spreadsheet, available from the book website, with major study milestones, where you can track your progress through your study.

Companion Website

Register this book to get access to the Pearson IT Certification test engine and other study materials plus additional bonus content. Check this site regularly for new and updated postings written by the authors that provide further insight into the more troublesome topics on the exam. Be sure to check the box that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow these steps:

1. Go to www.pearsonITcertification.com/register and log in or create a new account.
2. Enter the ISBN: 9781587144547.
3. Answer the challenge question as proof of purchase.
4. Click the Access Bonus Content link in the Registered Products section of your account page to be taken to the page where your downloadable content is available.

Please note that many of our companion content files can be very large, especially image and video files.

If you are unable to locate the files for this title by following the steps, please visit www.pearsonITcertification.com/contact and select the “Site Problems / Comments” option. Our customer service representatives will assist you.

Pearson IT Certification Practice Test Engine and Questions

The companion website includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice questions. Using the Pearson IT Certification Practice Test engine, you can either study by going through the questions in Study Mode, or take a simulated exam that mimics real exam conditions. You can also serve up questions in Flash Card Mode, which will display just the question and no answers, challenging you to state the answer in your own words before checking the actual answers to verify your work.
The installation process requires two major steps: installing the software and then activating the exam. The website has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam (the database of exam questions) is not on this site.

Note The cardboard sleeve in the back of this book includes a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time-use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Install the Software

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows virtual machine, but it was built specifically for the PC platform. The minimum system requirements are as follows:

- Windows 10, Windows 8.1, or Windows 7
- Microsoft .NET Framework 4.0 Client
- Pentium-class 1GHz processor (or equivalent)
- 512 MB of RAM
- 650 MB of disk space plus 50 MB for each downloaded practice exam
- Access to the Internet to register and download exam databases

The software installation process is routine as compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the access code card sleeve in the back of the book.

The following steps outline the installation process:

1. Download the exam practice test engine from the companion site.
2. Respond to Windows prompts as with any typical software installation process.

The installation process will give you the option to activate your exam with the activation code supplied on the paper in the cardboard sleeve. This process requires that you establish a Pearson website login. You need this login to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

Once the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process) as follows:

1. Start the Pearson IT Certification Practice Test software from the Windows Start menu or from your desktop shortcut icon.
2. To activate and download the exam associated with this book, from the My Products or Tools tab, click the Activate Exam button.

3. At the next screen, enter the activation key from the paper inside the cardboard sleeve in the back of the book. Once this is entered, click the Activate button.

4. The activation process will download the practice exam. Click Next, and then click Finish.

When the activation process completes, the My Products tab should list your new exam. If you do not see the exam, make sure you have selected the My Products tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the Open Exam button.

To update a particular exam you have already activated and downloaded, display the Tools tab and click the Update Products button. Updating your exams will ensure that you have the latest changes and updates to the exam data.

If you want to check for updates to the Pearson Cert Practice Test exam engine software, display the Tools tab and click the Update Application button. You can then ensure that you are running the latest version of the software engine.

Activating Other Exams

The exam software installation process, and the registration process, only has to happen once. Then, for each new exam, only a few steps are required. For instance, if you buy another Pearson IT Certification Cert Guide, extract the activation code from the cardboard sleeve in the back of that book; you do not even need the exam engine at this point. From there, all you have to do is start the exam engine (if not still up and running) and perform Steps 2 through 4 from the previous list.

Assessing Exam Readiness

Exam candidates never really know whether they are adequately prepared for the exam until they have completed about 30 percent of the questions. At that point, if you are not prepared, it is too late. The best way to determine your readiness is to work through the “Do I Know This Already?” quizzes at the beginning of each chapter and review the foundation and key topics presented in each chapter. It is best to work your way through the entire book unless you can complete each subject without having to do any research or look up any answers.

Premium Edition eBook and Practice Tests

This book also includes an exclusive offer for 70 percent off the Premium Edition eBook and Practice Tests edition of this title. Please see the coupon code included with the cardboard sleeve for information on how to purchase the Premium Edition.
This chapter covers the following subjects:

- Cisco Architectures for the Enterprise
- Plan, Build, and Manage Lifecycle
- Prepare, Plan, Design, Implement, Operate, and Optimize Phases
- Identifying Customer Requirements
- Characterizing the Existing Network
- Designing the Network Topology and Solutions

Networks can become complex and difficult to manage. Network architectures and design methodologies help you manage the complexities of networks. This chapter provides an overview of Cisco’s architectures for the enterprise and the Plan, Build, Manage (PBM) network lifecycle. This chapter also describes steps in design methodology and contents of design documents.
This chapter covers the following subjects:

- **Hierarchical Network Models**
- **Cisco Enterprise Architecture Model**
- **High Availability Network Services**

This chapter reviews the hierarchical network model and introduces Cisco’s Enterprise Architecture model. This architecture model separates network design into more manageable modules. This chapter also addresses the use of device, media, and route redundancy to improve network availability.
CHAPTER 2

Network Design Models

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz helps you identify your strengths and deficiencies in this chapter’s topics.

The eight-question quiz, derived from the major sections in the “Foundation Topics” portion of the chapter, helps you determine how to spend your limited study time.

Table 2-1 outlines the major topics discussed in this chapter and the “Do I Know This Already?” quiz questions that correspond to those topics.

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions Covered in This Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical Network Models</td>
<td>1, 3</td>
</tr>
<tr>
<td>Cisco Enterprise Architecture Model</td>
<td>2, 5, 6, 7</td>
</tr>
<tr>
<td>High Availability Network Services</td>
<td>4, 8</td>
</tr>
</tbody>
</table>

1. In the hierarchical network model, which layer is responsible for fast transport?
 - a. Network layer
 - b. Core layer
 - c. Distribution layer
 - d. Access layer

2. Which Enterprise Architecture model component interfaces with the service provider (SP)?
 - a. Campus infrastructure
 - b. Access layer
 - c. Enterprise edge
 - d. Edge distribution

3. In the hierarchical network model, at which layer do security filtering, address aggregation, and media translation occur?
 - a. Network layer
 - b. Core layer
 - c. Distribution layer
 - d. Access layer
4. Which of the following is (are) a method (methods) of workstation-to-router redundancy in the access layer?
 a. AppleTalk Address Resolution Protocol (AARP)
 b. Hot Standby Router Protocol (HSRP)
 c. Virtual Router Redundancy Protocol (VRRP)
 d. Answers b and c
 e. Answers a, b, and c

5. The network-management module has tie-ins to which component(s)?
 a. Campus infrastructure
 b. Server farm
 c. Enterprise edge
 d. SP edge
 e. Answers a and b
 f. Answers a, b, and c
 g. Answers a, b, c, and d

6. Which of the following is an SP edge module in the Cisco Enterprise Architecture model?
 a. Public switched telephone network (PSTN) service
 b. Edge distribution
 c. Server farm
 d. Core layer

7. In which module would you place Cisco Unified Communications Manager (CUCM)?
 a. Campus core
 b. E-commerce
 c. Server farm
 d. Edge distribution farm

8. High availability, port security, and rate limiting are functions of which hierarchical layer?
 a. Network layer
 b. Core layer
 c. Distribution layer
 d. Access layer
Foundation Topics

With the complexities of network design, the CCDA needs to understand network models used to simplify the design process. The hierarchical network model was one of the first Cisco models that divided the network into core, distribution, and access layers.

The Cisco Enterprise Architecture model provides a functional modular approach to network design. In addition to a hierarchy, modules are used to organize server farms, network management, campus networks, WANs, and the Internet. A modular approach to network design allows for higher scalability, better resiliency, and easier fault isolation of the network.

Hierarchical Network Models

Hierarchical models enable you to design internetworks that use specialization of function combined with a hierarchical organization. Such a design simplifies the tasks required to build a network that meets current requirements and can grow to meet future requirements. Hierarchical models use layers to simplify the tasks for internetworking. Each layer can focus on specific functions, allowing you to choose the right systems and features for each layer. Hierarchical models apply to both LAN and WAN design.

Benefits of the Hierarchical Model

The benefits of using hierarchical models for your network design include the following:

- Cost savings
- Ease of understanding
- Modular network growth
- Improved fault isolation

After adopting hierarchical design models, many organizations report cost savings because they are no longer trying to do everything in one routing or switching platform. The model’s modular nature enables appropriate use of bandwidth within each layer of the hierarchy, reducing the provisioning of bandwidth in advance of actual need.

Keeping each design element simple and functionally focused facilitates ease of understanding, which helps control training and staff costs. You can distribute network monitoring and management reporting systems to the different layers of modular network architectures, which also helps control management costs.

Hierarchical design facilitates changes and growth. In a network design, modularity lets you create design elements that you can replicate as the network grows—allowing maximum scalability. As each element in the network design requires change, the cost and complexity of making the upgrade are contained to a small subset of the overall network. In large, flat network architectures, changes tend to impact a large number of systems. Limited mesh topologies within a layer or component, such as the campus core or backbone connecting central sites, retain value even in the hierarchical design models.
Structuring the network into small, easy-to-understand elements improves fault isolation. Network managers can easily understand the transition points in the network, which helps identify failure points. It is more difficult to troubleshoot if hierarchical design is not used because the network is not divided into segments.

Today’s fast-converging protocols were designed for hierarchical topologies. To control the impact of routing-protocol processing and bandwidth consumption, you must use modular hierarchical topologies with protocols designed with these controls in mind, such as the Open Shortest Path First (OSPF) routing protocol.

Hierarchical network design facilitates route summarization. Enhanced Interior Gateway Routing Protocol (EIGRP) and all other routing protocols benefit greatly from route summarization. Route summarization reduces routing-protocol overhead on links in the network and reduces routing-protocol processing within the routers. It is less possible to provide route summarization if the network is not hierarchical.

Hierarchical Network Design

As shown in Figure 2-1, a traditional hierarchical LAN design has three layers:

- The core layer provides fast transport between distribution switches within the enterprise campus.
- The distribution layer provides policy-based connectivity.
- The access layer provides workgroup and user access to the network.

Each layer provides necessary functionality to the enterprise campus network. You do not need to implement the layers as distinct physical entities. You can implement each layer in one or more devices or as cooperating interface components sharing a common chassis. Smaller networks can “collapse” multiple layers to a single device with only an implied hierarchy. Maintaining an explicit awareness of hierarchy is useful as the network grows.

Core Layer

The core layer is the network’s high-speed switching backbone that is crucial to corporate communications. It is also referred as the backbone. The core layer should have the following characteristics:

![Figure 2-1 Hierarchical network design has three layers: core, distribution, and access](image-url)
Chapter 2: Network Design Models

- Fast transport
- High reliability
- Redundancy
- Fault tolerance
- Low latency and good manageability
- Avoidance of CPU-intensive packet manipulation caused by security, inspection, quality of service (QoS) classification, or other processes
- Limited and consistent diameter
- QoS

When a network uses routers, the number of router hops from edge to edge is called the diameter. As noted, it is considered good practice to design for a consistent diameter within a hierarchical network. The trip from any end station to another end station across the backbone should have the same number of hops. The distance from any end station to a server on the backbone should also be consistent.

Limiting the internetwork’s diameter provides predictable performance and ease of troubleshooting. You can add distribution layer routers and client LANs to the hierarchical model without increasing the core layer’s diameter. Use of a block implementation isolates existing end stations from most effects of network growth.

Distribution Layer

The network’s distribution layer is the isolation point between the network’s access and core layers. The distribution layer can have many roles, including implementing the following functions:

- Policy-based connectivity (for example, ensuring that traffic sent from a particular network is forwarded out one interface while all other traffic is forwarded out another interface)
- Redundancy and load balancing
- Aggregation of LAN wiring closets
- Aggregation of WAN connections
- QoS
- Security filtering
- Address or area aggregation or summarization
- Departmental or workgroup access
- Broadcast or multicast domain definition
- Routing between virtual LANs (VLANs)
- Media translations (for example, between Ethernet and Token Ring)
- Redistribution between routing domains (for example, between two different routing protocols)
- Demarcation between static and dynamic routing protocols
You can use several Cisco IOS Software features to implement policy at the distribution layer:

- Filtering by source or destination address
- Filtering on input or output ports
- Hiding internal network numbers by route filtering
- Static routing
- QoS mechanisms, such as priority-based queuing

The distribution layer provides aggregation of routes providing route summarization to the core. In the campus LANs, the distribution layer provides routing between VLANs that also apply security and QoS policies.

Access Layer

The access layer provides user access to local segments on the network. The access layer is characterized by switched LAN segments in a campus environment. Microsegmentation using LAN switches provides high bandwidth to workgroups by reducing the number of devices on Ethernet segments. Functions of the access layer include the following:

- Layer 2 switching
- High availability
- Port security
- Broadcast suppression
- QoS classification and marking and trust boundaries
- Rate limiting/policing
- Address Resolution Protocol (ARP) inspection
- Virtual access control lists (VACLs)
- Spanning tree
- Trust classification
- Power over Ethernet (PoE) and auxiliary VLANs for VoIP
- Network Access Control (NAC)
- Auxiliary VLANs

You implement high availability models at the access layer. The section “High Availability Network Services” covers availability models. The LAN switch in the access layer can control access to the port and limit the rate at which traffic is sent to and from the port. You can implement access by identifying the MAC address using ARP, trusting the host, and using access lists.

Other chapters of this book cover the other functions in the list.

For small office/home office (SOHO) environments, the entire hierarchy collapses to interfaces on a single device. Remote access to the central corporate network is through traditional WAN technologies such as ISDN, Frame Relay, and leased lines. You can implement
features such as dial-on-demand routing (DDR) and static routing to control costs. Remote access can include virtual private network (VPN) technology.

Table 2-2 summarizes the hierarchical layers.

<table>
<thead>
<tr>
<th>Hierarchical Layer</th>
<th>Description</th>
</tr>
</thead>
</table>
| Core | Fast transport
| | High reliability
| | Redundancy
| | Fault tolerance
| | Low latency and good manageability
| | Avoidance of slow packet manipulation caused by filters or other processes
| | Limited and consistent diameter
| | QoS
| Distribution | Policy-based connectivity
| | Redundancy and load balancing
| | Aggregation of LAN wiring closets
| | Aggregation of WAN connections
| | QoS
| | Security filtering
| | Address or area aggregation or summarization
| | Departmental or workgroup access
| | Broadcast or multicast domain definition
| | Routing between VLANs
| | Media translations (for example, between Ethernet and Token Ring)
| | Redistribution between routing domains (for example, between two different routing protocols)
| | Demarcation between static and dynamic routing protocols
| Access | Layer 2 switching
| | High availability
| | Port security
| | Broadcast suppression
| | QoS

Hierarchical Model Examples

You can implement the hierarchical model by using a traditional switched campus design or routed campus network. Figure 2-2 is an example of a switched hierarchical design in the enterprise campus. In this design, the core provides high-speed transport between the distribution layers. The building distribution layer provides redundancy and allows policies to be applied to the building access layer. Layer 3 links between the core and distribution switches are recommended to allow the routing protocol to take care of load balancing and fast route redundancy in the event of a link failure. The distribution layer is the boundary between the Layer 2 domains and the Layer 3 routed network. Inter-VLAN communications are routed in the distribution layer. Route summarization is configured under the routing protocol on interfaces towards the core layer. The drawback with this design is that Spanning Tree Protocol (STP) allows only one of the redundant links between the access switch and the distribution switch to be active. In the event of a failure, the second link becomes active, but at no point does load balancing occur.

Figure 2-3 shows examples of a routed hierarchical design. In this design, the Layer 3 boundary is pushed toward the access layer. Layer 3 switching occurs in access, distribution, and core layers. Route filtering is configured on interfaces toward the access layer. Route summarization is configured on interfaces toward the core layer. The benefit of this design is that load balancing occurs from the access layer since the links to the distribution switches are routed.

Another solution for providing redundancy between the access and distribution switching is the Virtual Switching System (VSS). VSS solves the STP looping problem by converting the distribution switching pair into a logical single switch. It removes STP and negates the need for Hot Standby Router Protocol (HSRP), Virtual Router Redundancy Protocol (VRRP), or Gateway Load Balancing Protocol (GLBP).
Layer 3 Switching in the Core
Route Summarization and Load Balancing
Layer 3 Boundary, Packet Filtering, Policing, Aggregation of Access
Layer 2 Switching in Wiring Closet

Figure 2-2 Switched Hierarchical Design

With VSS, the physical topology changes as each access switch has a single upstream distribution switch versus having two upstream distribution switches. VSS is configured only on Cisco 6500 switches using the VSS Supervisor 720-10G. As shown in Figure 2-4, the two switches are connected via 10GE links called virtual switch links (VSLs), which makes them seem as a single switch. The key benefits of VSS include the following:

- Layer 3 switching can be used toward the access layer, enhancing nonstop communication.
- Scales system bandwidth up to 1.44 Tbps.
- Simplified management of a single configuration of the VSS distribution switch.
- Better return on investment (ROI) via increased bandwidth between the access layer and the distribution layer.
- Supported on Catalyst 4500, 6500, and 6800 switches.

Layer 3 Switching in the Core
Route Summarization and Load Balancing
Layer 3 Boundary, Packet Filtering, Policing
Route Filtering Toward Access Layer
VLANs Local to Wiring Closet

Figure 2-3 Routed Hierarchical Design
Hub-and-Spoke Design

For designing networks, the hub-and-spoke design provides better convergence times than ring topology. The hub-and-spoke design, illustrated in Figure 2-5, also scales better and is easier to manage than ring or mesh topologies. For example, implementing security policies in a full mesh topology would become unmanageable because you would have to configure policies at each point location.
Collapsed Core Design

One alternative to the three-layer hierarchy is the collapsed core design. It is a two-layer hierarchy used with smaller networks. It is commonly used on sites with a single building with just multiple floors. As shown in Figure 2-6, the core and distribution layers are merged, providing all the services needed for those layers. Design parameters to decide if you need to migrate to the three-layer hierarchy include not enough capacity and throughput at the distribution layer, network resiliency, and geographic dispersion.

Cisco Enterprise Architecture Model

The Cisco Enterprise Architecture model facilitates the design of larger, more scalable networks.

As networks become more sophisticated, it is necessary to use a more modular approach to design than just WAN and LAN core, distribution, and access layers. The architecture divides the network into functional network areas and modules. These areas and modules of the Cisco Enterprise Architecture are

- Enterprise campus area
- Enterprise data center module
- Enterprise branch module
- Enterprise teleworker module

The Cisco Enterprise Architecture model maintains the concept of distribution and access components connecting users, WAN services, and server farms through a high-speed campus backbone. The modular approach in design should be a guide to the network architect. In smaller networks, the layers can collapse into a single layer, even a single device, but the functions remain.

Figure 2-7 shows the Cisco Enterprise Architecture model. The enterprise campus area contains a campus infrastructure that consists of core, building distribution, and building access layers, with a data center module. The enterprise edge area consists of the Internet,
e-commerce, VPN, and WAN modules that connect the enterprise to the service provider’s facilities. The SP edge area provides Internet, public switched telephone network (PSTN), and WAN services to the enterprise.

![Cisco Enterprise Architecture model](image-url)

The network management servers reside in the campus infrastructure but have tie-ins to all the components in the enterprise network for monitoring and management.

The enterprise edge connects to the edge-distribution module of the enterprise campus. In small and medium sites, the edge distribution can collapse into the campus backbone component. It provides connectivity to outbound services that are further described in later sections.

Enterprise Campus Module

The enterprise campus consists of the following submodules:

- Campus core
- Building distribution and aggregation switches
- Building access
- Server farm/data center

Figure 2-8 shows the Enterprise Campus model. The campus infrastructure consists of the campus core, building distribution, and building access layers. The campus core provides a high-speed switched backbone between buildings, to the server farm, and towards the enterprise edge. This segment consists of redundant and fast-convergence connectivity. The building distribution layer aggregates all the closet access switches and performs access control, QoS, route redundancy, and load balancing. The building access switches provide VLAN access, PoE for IP phones and wireless access points, broadcast suppression, and spanning tree.
The server farm or data center provides high-speed access and high availability (redundancy) to the servers. Enterprise servers such as file and print servers, application servers, email servers, Dynamic Host Configuration Protocol (DHCP) servers, and Domain Name System (DNS) servers are placed in the server farm. Cisco Unified CallManager servers are placed in the server farm for IP telephony networks. Network management servers are located in the server farm, but these servers link to each module in the campus to provide network monitoring, logging, trending, and configuration management.

An enterprise campus infrastructure can apply to small, medium, and large locations. In most instances, large campus locations have a three-tier design with a wiring-closet component (building access layer), a building distribution layer, and a campus core layer. Small campus locations likely have a two-tier design with a wiring-closet component (Ethernet access layer) and a backbone core (collapsed core and distribution layers). It is also possible to configure distribution functions in a multilayer building access device to maintain the focus of the campus backbone on fast transport. Medium-sized campus network designs sometimes use a three-tier implementation or a two-tier implementation, depending on the number of ports, service requirements, manageability, performance, and availability required.
Enterprise Edge Area

As shown in Figure 2-9, the enterprise edge consists of the following submodules:

■ Business web applications and databases, e-commerce networks and servers
■ Internet connectivity and demilitarized zone (DMZ)
■ VPN and remote access
■ Enterprise WAN connectivity

E-Commerce Module

The e-commerce submodule of the enterprise edge provides highly available networks for business services. It uses the high availability designs of the server farm module with the Internet connectivity of the Internet module. Design techniques are the same as those described for these modules. Devices located in the e-commerce submodule include the following:

■ Web and application servers: Primary user interface for e-commerce navigation
■ Database servers: Contain the application and transaction information
- **Firewall and firewall routers**: Govern the communication between users of the system
- **Network intrusion prevention systems (IPS)**: Provide monitoring of key network segments in the module to detect and respond to attacks against the network
- **Multilayer switch with IPS modules**: Provide traffic transport and integrated security monitoring

Internet Connectivity Module

The Internet submodule of the enterprise edge provides services such as public servers, email, and DNS. Connectivity to one or several Internet service providers (ISPs) is also provided. Components of this submodule include the following:

- **Firewall and firewall routers**: Provide protection of resources, stateful filtering of traffic, and VPN termination for remote sites and users
- **Internet edge routers**: Provide basic filtering and multilayer connectivity
- **FTP and HTTP servers**: Provide for web applications that interface the enterprise with the world via the public Internet
- **SMTP relay servers**: Act as relays between the Internet and the intranet mail servers
- **DNS servers**: Serve as authoritative external DNS servers for the enterprise and relay internal requests to the Internet

Several models connect the enterprise to the Internet. The simplest form is to have a single circuit between the enterprise and the SP, as shown in Figure 2-10. The drawback is that you have no redundancy or failover if the circuit fails.

![Simple Internet connection diagram](image)

Figure 2-10 Simple Internet connection

You can use multihoming solutions to provide redundancy or failover for Internet service. Figure 2-11 shows four Internet multihoming options:

- **Option 1**: Single router, dual links to one ISP
- **Option 2**: Single router, dual links to two ISPs
- **Option 3**: Dual routers, dual links to one ISP
- **Option 4**: Dual routers, dual links to two ISPs
Figure 2-11 Internet multihoming options

Option 1 provides link redundancy but does not provide ISP and local router redundancy. Option 2 provides link and ISP redundancy but does not provide redundancy for a local router failure. Option 3 provides link and local router redundancy but does not provide for an ISP failure. Option 4 provides for full redundancy of the local router, links, and ISPs.

VPN/Remote Access

The VPN/remote access module of the enterprise edge provides remote-access termination services, including authentication for remote users and sites. Components of this submodule include the following:

- **Firewalls**: Provide stateful filtering of traffic, authenticate trusted remote sites, and provide connectivity using IPsec tunnels
- **Dial-in access concentrators**: Terminate legacy dial-in connections and authenticate individual users
- **Cisco Adaptive Security Appliances (ASAs)**: Terminate IPsec tunnels, authenticate individual remote users, and provide firewall and intrusion prevention services
- **Network intrusion prevention system (IPS) appliances**

If you use a remote-access terminal server, this module connects to the PSTN. Today’s networks often prefer VPNs over remote-access terminal servers and dedicated WAN links. VPNs reduce communication expenses by leveraging the infrastructure of SPs. For critical applications, the cost savings might be offset by a reduction in enterprise control and the loss of deterministic service. Remote offices, mobile users, and home offices access the Internet using the local SP with secured IPsec tunnels to the VPN/remote access submodule via the Internet submodule.
Figure 2-12 shows a VPN design. Branch offices obtain local Internet access from an ISP. Teleworkers also obtain local Internet access. VPN software creates secured VPN tunnels to the VPN server that is located in the VPN submodule of the enterprise edge.

![VPN Architecture Diagram](image)

Enterprise WAN

The enterprise edge of the enterprise WAN includes access to WANs. WAN technologies include the following:

- Multiprotocol Label Switching (MPLS)
- Metro Ethernet
- Leased lines
- Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH)
- PPP
- Frame Relay
- ATM
- Cable
- Digital subscriber line (DSL)
- Wireless

Chapter 6, “WAN Technologies and the Enterprise Edge,” and Chapter 7, “WAN Design,” cover these WAN technologies. Routers in the enterprise WAN provide WAN access, QoS, routing, redundancy, and access control to the WAN. Of these WAN technologies, MPLS is the most popular WAN technology used today. For MPLS networks, the WAN routers prioritize IP packets based on configured differentiated services code point (DSCP) values to use one of several MPLS QoS levels. Figure 2-13 shows the WAN module connecting to the Frame Relay SP edge. The enterprise edge routers in the WAN module connect to the SP’s Frame Relay switches.
Use the following guidelines when designing the enterprise edge:

- Determine the connection needed to connect the corporate network to the Internet. These connections are assigned to the Internet connectivity module.
- Create the e-commerce module for customers and partners that require Internet access to business and database applications.
- Design the remote access/VPN module for VPN access to the internal network from the Internet. Implement the security policy and configure authentication and authorization parameters.
- Assign the edge sections that have permanent connections to remote branch offices. Assign these to the WAN, metro area network (MAN), and VPN module.

Service Provider Edge Module

The SP edge module, shown in Figure 2-14, consists of SP edge services such as the following:

- Internet services
- PSTN services
- WAN services

Enterprises use SPs to acquire network services. ISPs offer enterprises access to the Internet. ISPs can route the enterprise’s networks to their network and to upstream and peer Internet providers. ISPs can provide Internet services via Ethernet, DSL, or T1/DS3 access. It is common now for the SP to have their ISP router at the customer site and provide Ethernet access to the customer. Connectivity with multiple ISPs was described in the section “Internet Connectivity Module.”

For voice services, PSTN providers offer access to the global public voice network. For the enterprise network, the PSTN lets dialup users access the enterprise via analog or cellular wireless technologies. It is also used for WAN backup using ISDN services.

WAN SPs offer MPLS, Frame Relay, ATM, and other WAN services for enterprise site-to-site connectivity with permanent connections. These and other WAN technologies are described in Chapter 6.
Remote Modules

The remote modules of the Cisco Enterprise Architecture model are the enterprise branch, enterprise data center, and enterprise teleworker modules.

Enterprise Branch Module

The enterprise branch normally consists of remote offices or sales offices. These branch offices rely on the WAN to use the services and applications provided in the main campus. Infrastructure at the remote site usually consists of a WAN router and a small LAN switch, as shown in Figure 2-15. As an alternative to MPLS, it is common to use site-to-site IPsec VPN technologies to connect to the main campus.
The enterprise data center uses the network to enhance the server, storage, and application servers. The offsite data center provides disaster recovery and business continuance services for the enterprise. Highly available WAN services are used to connect the enterprise campus to the remote enterprise data center. The data center components include the following:

- **Network infrastructure**: Gigabit and 10 Gigabit Ethernet, InfiniBand, optical transport, and storage switching
- **Interactive services**: Computer infrastructure services, storage services, security, and application optimization
- **DC management**: Cisco Fabric Manager and Cisco VFrame for server and service management

The enterprise data center is covered in detail in Chapter 4, “Data Center Design.”

Enterprise Teleworker Module

The enterprise teleworker module consists of a small office or a mobile user who needs to access services of the enterprise campus. As shown in Figure 2-16, mobile users connect from their homes, hotels, or other locations using dialup or Internet access lines. VPN clients are used to allow mobile users to securely access enterprise applications. The Cisco Virtual Office solution provides a solution for teleworkers that is centrally managed using small integrated service routers (ISRs) in the VPN solution. IP phone capabilities are also provided in the Cisco Virtual Office solution, providing corporate voice services for mobile users.
Figure 2-16 *Enterprise teleworker solution*

Table 2-3 summarizes the Cisco Enterprise Architecture.

<table>
<thead>
<tr>
<th>Enterprise Area or Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise campus area</td>
<td>The enterprise campus module includes the building access and building distribution components and the shared campus backbone component or campus core. Edge distribution provides connectivity to the enterprise edge. High availability is implemented in the server farm, and network management monitors the enterprise campus and enterprise edge.</td>
</tr>
<tr>
<td>Enterprise edge area</td>
<td>Consists of e-commerce, Internet, VPN/remote access, and WAN modules.</td>
</tr>
<tr>
<td>Enterprise WAN module</td>
<td>This module provides MPLS or other WAN technologies.</td>
</tr>
<tr>
<td>Enterprise remote branch module</td>
<td>The enterprise branch normally consists of remote offices, small offices, or sales offices. These branch offices rely on the WAN to use the services and applications provided in the main campus.</td>
</tr>
<tr>
<td>Enterprise data center module</td>
<td>The enterprise data center consists of using the network to enhance the server, storage, and application servers. The offsite data center provides disaster recovery and business continuance services for the enterprise.</td>
</tr>
<tr>
<td>Enterprise teleworker</td>
<td>The enterprise teleworker module supports a small office, mobile users, or home users providing access to corporate systems via VPN tunnels.</td>
</tr>
</tbody>
</table>

High Availability Network Services

This section covers designs for high availability network services in the access layer.

Key Topic

When designing a network topology for a customer who has critical systems, services, or network paths, you should determine the likelihood that these components will fail and then design redundancy where necessary. Consider incorporating one of the following types of redundancy into your design:
Workstation-to-router redundancy in the building access layer
Server redundancy in the server farm module
Route redundancy within and between network components
Link media redundancy in the access layer

The following sections discuss each type of redundancy.

Workstation-to-Router Redundancy and LAN High Availability Protocols

When a workstation has traffic to send to a station that is not local, the workstation has many possible ways to discover the address of a router on its network segment, including the following:

- ARP
- Explicit configuration
- ICMP Router Discovery Protocol (RDP)
- RIP
- HSRP
- VRRP
- GLBP
- VSS

The following sections cover each of these methods. VSS is covered earlier in the chapter.

ARP

Some IP workstations send an ARP frame to find a remote station. A router running proxy ARP can respond with its data link layer address. Cisco routers run proxy ARP by default.

Explicit Configuration

Most IP workstations must be configured with the IP address of a default router, which is sometimes called the default gateway.

In an IP environment, the most common method for a workstation to find a server is via explicit configuration (a default router). If the workstation’s default router becomes unavailable, you must reconfigure the workstation with the address of a different router. Some IP stacks enable you to configure multiple default routers, but many other IP implementations support only one default router.

RDP

RFC 1256 specifies an extension to the Internet Control Message Protocol (ICMP) that allows an IP workstation and router to run RDP to let the workstation learn a router’s address.
RIP
An IP workstation can run RIP to learn about routers, although this is not a common practice anymore and is not recommended. You should use RIP in passive mode rather than active mode. (Active mode means that the station sends RIP frames every 30 seconds.) Usually in these implementations, the workstation is a UNIX system running the routed or gated UNIX process.

HSRP
The Cisco HSRP provides a way for IP workstations that support only one default router to keep communicating on the internetwork even if their default router becomes unavailable. HSRP works by creating a virtual router that has its own IP and MAC addresses. The workstations use this virtual IP address as their default router.

HSRP routers on a LAN communicate among themselves to designate two routers as active and standby. The active router sends periodic hello messages. The other HSRP routers listen for the hello messages. If the active router fails and the other HSRP routers stop receiving hello messages, the standby router takes over and becomes the active router. Because the new active router assumes both the phantom’s IP and MAC addresses, end nodes see no change. They continue to send packets to the phantom router’s MAC address, and the new active router delivers those packets.

HSRP also works for proxy ARP. When an active HSRP router receives an ARP request for a node that is not on the local LAN, the router replies with the phantom router’s MAC address instead of its own. If the router that originally sent the ARP reply later loses its connection, the new active router can still deliver the traffic.

Figure 2-17 shows a sample implementation of HSRP.

Figure 2-17 HSRP: The phantom router represents the real routers

In Figure 2-17, the following sequence occurs:

1. The workstation is configured to use the phantom router (192.168.1.1) as its default router.
2. Upon booting, the routers elect Router A as the HSRP active router. The active router
does the work for the HSRP phantom. Router B is the HSRP standby router.

3. When the workstation sends an ARP frame to find its default router, Router A
responds with the phantom router’s MAC address.

4. If Router A goes offline, Router B takes over as the active router, continuing the
delivery of the workstation’s packets. The change is transparent to the workstation.

VRRP

VRRP is a router redundancy protocol defined in RFC 3768. RFC 5768 defined VRRPv3
for both IPv4 and IPv6 networks. VRRP is based on Cisco’s HSRP, but is not compatible.
VRRP specifies an election protocol that dynamically assigns responsibility for a virtual
router to one of the VRRP routers on a LAN. The VRRP router controlling the IP addresses
associated with a virtual router is called the master, and it forwards packets sent to these IP
addresses. The election process provides dynamic failover in the forwarding responsibility
should the master become unavailable. This allows any of the virtual router IP addresses on
the LAN to be used as the default first-hop router by end hosts. The virtual router backup
assumes the forwarding responsibility for the virtual router should the master fail.

GLBP

GLBP protects data traffic from a failed router or circuit, such as HSRP, while allowing
packet load sharing between a group of redundant routers. Methods for load balancing with
HSRP and VRRP work with small networks, but GLBP allows for first-hop load balancing
on larger networks.

The difference in GLBP from HSRP is that it provides for load balancing between multiple
redundant routers—up to four gateways in a GLBP group. It load-balances by using a single
virtual IP address and multiple virtual MAC addresses. Each host is configured with the
same virtual IP address, and all routers in the virtual router group participate in forwarding
packets. By default, all routers within a group forward traffic and load-balance automati-
cally. GLBP members communicate between each other through hello messages sent every
three seconds to the multicast address 224.0.0.102, User Datagram Protocol (UDP) port
3222. GLBP benefits include the following:

- **Load sharing**: GLBP can be configured in a way that traffic from LAN clients can be
 shared by multiple routers.

- **Multiple virtual routers**: GLBP supports up to 1024 virtual routers (GLBP groups) on
each physical interface of a router.

- **Preemption**: GLBP enables you to preempt an active virtual gateway with a higher-
priority backup.

- **Authentication**: Simple text password authentication is supported.

Server Redundancy

Some environments need fully redundant (mirrored) file and application servers. For
example, in a brokerage firm where traders must access data to buy and sell stocks, two
or more redundant servers can replicate the data. Also, you can deploy Cisco Unified
Communications Manager (CUCM) servers in clusters for redundancy. The servers should
be on different networks and use redundant power supplies. To provide high availability in
the server farm module, you have the following options:

- **Single attachment**: This is not recommended because it requires alternate mechanisms
 (HSRP, GLBP) to dynamically find an alternate router.
- **Dual attachment**: This solution increases availability by using redundant network inter-
 face cards (NIC).
- Fast EtherChannel (FEC) and Gigabit EtherChannel (GEC) port bundles: This solution
 bundles 2 or 4 Fast or Gigabit Ethernet links to increase bandwidth.

Route Redundancy

Designing redundant routes has two purposes: balancing loads and increasing availability.

Load Balancing

Most IP routing protocols can balance loads across parallel links that have equal cost. Use
the maximum-paths command to change the number of links that the router will balance
over for IP; the default is four, and the maximum is six. To support load balancing, keep the
bandwidth consistent within a layer of the hierarchical model so that all paths have the same
cost. (Cisco Enhanced Interior Gateway Routing Protocol [EIGRP] is an exception because
it can load-balance traffic across multiple routes that have different metrics by using a fea-
ture called variance.)

A hop-based routing protocol does load balancing over unequal-bandwidth paths as long as
the hop count is equal. After the slower link becomes saturated, packet loss at the saturated
link prevents full utilization of the higher-capacity links; this scenario is called pinhole con-
gestion. You can avoid pinhole congestion by designing and provisioning equal-bandwidth
links within one layer of the hierarchy or by using a routing protocol that takes bandwidth
into account.

IP load balancing in a Cisco router depends on which switching mode the router uses.
Process switching load balances on a packet-by-packet basis. Fast, autonomous, silicon,
optimum, distributed, and NetFlow switching load balances on a destination-by-destination
basis because the processor caches information used to encapsulate the packets based on
the destination for these types of switching modes.

Increasing Availability

In addition to facilitating load balancing, redundant routes increase network availability.

You should keep bandwidth consistent within a given design component to facilitate load bal-
ancing. Another reason to keep bandwidth consistent within a layer of a hierarchy is that rout-
ing protocols converge much faster on multiple equal-cost paths to a destination network.

By using redundant, meshed network designs, you can minimize the effect of link failures.
Depending on the convergence time of the routing protocols, a single link failure cannot
have a catastrophic effect.

You can design redundant network links to provide a full mesh or a well-connected partial
mesh. In a full-mesh network, every router has a link to every other router, as shown in
Figure 2-18. A full-mesh network provides complete redundancy and also provides good performance because there is just a single-hop delay between any two sites. The number of links in a full mesh is \(n(n-1)/2 \), where \(n \) is the number of routers. Each router is connected to every other router. A well-connected partial-mesh network provides every router with links to at least two other routing devices in the network.

![Full-mesh network](image)

Figure 2-18 *Full-mesh network: Every router has a link to every other router in the network.*

A full-mesh network can be expensive to implement in WANs because of the required number of links. In addition, groups of routers that broadcast routing updates or service advertisements have practical limits to scaling. As the number of routing peers increases, the amount of bandwidth and CPU resources devoted to processing broadcasts increases.

A suggested guideline is to keep broadcast traffic at less than 20 percent of the bandwidth of each link; this amount limits the number of peer routers that can exchange routing tables or service advertisements. When designing for link bandwidth, reserve 80 percent of it for data, voice, and video traffic so that the rest can be used for routing and other link traffic. When planning redundancy, follow guidelines for simple, hierarchical design. Figure 2-19 illustrates a classic hierarchical and redundant enterprise design that uses a partial-mesh rather than a full-mesh topology. For LAN designs, links between the access and distribution layers can be Fast Ethernet, with links to the core at Gigabit Ethernet speeds.

![Partial-mesh design with redundancy](image)

Figure 2-19 *Partial-mesh design with redundancy*
Link Media Redundancy

In mission-critical applications, it is often necessary to provide redundant media.

In switched networks, switches can have redundant links to each other. This redundancy is good because it minimizes downtime, but it can result in broadcasts continuously circling the network, which is called a broadcast storm. Because Cisco switches implement the IEEE 802.1d spanning-tree algorithm, you can avoid this looping in Spanning Tree Protocol (STP). The spanning-tree algorithm guarantees that only one path is active between two network stations. The algorithm permits redundant paths that are automatically activated when the active path experiences problems.

STP has a design limitation of only allowing one of the redundant paths to be active. VSS can be used with Catalyst 6500 switches to overcome this limitation.

You can use EtherChannel to bundle links for load balancing. Links are bundled in powers of 2 (2, 4, 8) groups. It aggregates the bandwidth of the links. Hence, two 10GE ports become 20 Gbps of bandwidth when they are bundled. For more granular load balancing, use a combination of source and destination per-port load balancing if available on the switch. In current networks, EtherChannel uses LACP, which is a standard-based negotiation protocol that is defined in IEEE 802.3ad (an older solution included the Cisco proprietary PAgP protocol). LACP helps protect against Layer 2 loops that are caused by misconfiguration. One downside is that it introduces overhead and delay when setting up the bundle.

Because WAN links are often critical pieces of the internetwork, WAN environments often deploy redundant media. As shown in Figure 2-20, you can provision backup links so that they become active when a primary link goes down or becomes congested.

![Figure 2-20](backup_links.png)

Figure 2-20 Backup links can provide redundancy.

Often, backup links use a different technology. For example, it is common to use Internet VPNs to back up primary MPLS links in today’s networks. By using floating static routes, you can specify that the backup route must have a higher administrative distance (used by Cisco routers to select routing information) so that it is not normally used unless the primary route goes down.
When provisioning backup links, learn as much as possible about the physical circuit routing. Different carriers sometimes use the same facilities, meaning that your backup path might be susceptible to the same failures as your primary path. Do some investigative work to ensure that your backup really is acting as a backup.

Cisco supports Multilink Point-to-Point Protocol (MPPP), which is an Internet Engineering Task Force (IETF) standard for ISDN B-channel (or asynchronous serial interface) aggregation. It bonds multiple WAN links into a single logical channel. MPPP is defined in RFC 1990. MPPP does not specify how a router should accomplish the decision-making process to bring up extra channels. Instead, it seeks to ensure that packets arrive in sequence at the receiving router. Then, the data is encapsulated within PPP and the datagram is given a sequence number. At the receiving router, PPP uses this sequence number to re-create the original data stream. Multiple channels appear as one logical link to upper-layer protocols. For Frame Relay networks, FRF.16.1 Multilink Frame Relay is used to perform a similar function.

Table 2-4 summarizes the four main redundancy models.

<table>
<thead>
<tr>
<th>Redundancy Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workstation-to-router redundancy</td>
<td>Use of HSRP, VRRP, GLBP, and VSS</td>
</tr>
<tr>
<td>Server redundancy</td>
<td>Uses dual-attached NICs, FEC, or GEC port bundles</td>
</tr>
<tr>
<td>Route redundancy</td>
<td>Provides load balancing and high availability</td>
</tr>
<tr>
<td>Link redundancy</td>
<td>Uses multiple WAN links that provide primary and secondary failover for higher availability. On LANs, use EtherChannel.</td>
</tr>
</tbody>
</table>

References and Recommended Reading

RFC 3758: Virtual Router Redundancy Protocol (VRRP).
Exam Preparation Tasks

Review All Key Topics

Review the most important topics in the chapter, noted with the Key Topics icon in the outer margin of the page. Table 2-5 lists a reference of these key topics and the page numbers on which each is found.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>Hierarchical Network models</td>
<td>41</td>
</tr>
<tr>
<td>List</td>
<td>Hierarchical Network Design</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2-7</td>
<td>Cisco Enterprise Architecture model</td>
<td>50</td>
</tr>
<tr>
<td>Summary</td>
<td>High availability network services</td>
<td>59</td>
</tr>
</tbody>
</table>

Complete Tables and Lists from Memory

Print a copy of Appendix D, “Memory Tables” (found on the book website), or at least the section for this chapter, and complete the tables and lists from memory. Appendix E, “Memory Tables Answer Key,” also on the website, includes completed tables and lists to check your work.

Define Key Terms

Define the following key terms from this chapter, and check your answers in the glossary:

- core layer, distribution layer, access layer, VLAN, PoE, ARP, VSS, enterprise campus module, enterprise edge, enterprise WAN module, enterprise remote branch module, enterprise data center module, enterprise teleworker module, HSRP, VRRP, GLBP

Q&A

The answers to these questions appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes and Q&A Questions.” For more practice with exam format questions, use the exam engine from the website.

1. True or false: The core layer of the hierarchical model does security filtering and media translation.

2. True or false: The access layer provides high availability and port security.

3. You add Communications Manager to the network as part of a Voice over IP (VoIP) solution. In which submodule of the Enterprise Architecture model should you place Communications Manager?

4. True or false: HSRP provides router redundancy.
5. Which enterprise edge submodule connects to an ISP?
7. True or false: In the Cisco Enterprise Architecture model, the network management submodule does not manage the SP edge.
8. True or false: You can implement a full-mesh network to increase redundancy and reduce a WAN's costs.
9. How many links are required for a full mesh of six sites?
10. List and describe four options for multihoming to the SP between the enterprise edge and the SP edge. Which option provides the most redundancy?
11. To what enterprise edge submodule does the SP edge Internet submodule connect?
12. What are four benefits of hierarchical network design?
13. In an IP telephony network, in which submodule or layer are the IP phones and CUCM servers located?
14. Match the redundant model with its description:
 i. Workstation-router redundancy
 ii. Server redundancy
 iii. Route redundancy
 iv. Media redundancy
 a. Cheap when implemented in the LAN and critical for the WAN.
 b. Provides load balancing.
 c. Host has multiple gateways.
 d. Data is replicated.
15. True or false: Small-to-medium campus networks must always implement three layers of hierarchical design.
16. How many full-mesh links do you need for a network with ten routers?
17. Which layer provides routing between VLANs and security filtering?
 a. Access layer
 b. Distribution layer
 c. Enterprise edge
 d. WAN module
18. List the four modules of the enterprise edge area.
19. List the three submodules of the SP edge.
20. List the components of the Internet edge.
21. Which submodule contains firewalls, VPN concentrators, and ASAs?
 a. WAN
 b. VPN/remote access
 c. Internet
 d. Server farm

22. Which of the following describe the access layer? (Select two.)
 a. High-speed data transport
 b. Applies network policies
 c. Performs network aggregation
 d. Concentrates user access
 e. Provides PoE
 f. Avoids data manipulation

23. Which of the following describe the distribution layer? (Select two.)
 a. High-speed data transport
 b. Applies network policies
 c. Performs network aggregation
 d. Concentrates user access
 e. Provides PoE
 f. Avoids data manipulation

24. Which of the following describe the core layer? (Select two.)
 a. High-speed data transport
 b. Applies network policies
 c. Performs network aggregation
 d. Concentrates user access
 e. Provides PoE
 f. Avoids data manipulation

25. Which campus submodule connects to the enterprise edge module?
 a. SP edge
 b. WAN submodule
 c. Building distribution
 d. Campus core
 e. Enterprise branch
 f. Enterprise data center

26. Which remote module connects to the enterprise via the Internet or WAN submodules and contains a small LAN switch for users?
 a. SP edge
b. WAN submodule

c. Building distribution

d. Campus core

e. Enterprise branch

f. Enterprise data center

27. Which three types of servers are placed in the e-commerce submodule?

a. Web

b. Application

c. Database

d. Intranet

e. Internet

f. Public share

Use Figure 2-21 to answer questions 28–33.

Figure 2-21 Scenario for questions 28–33

28. Which is the campus core layer?

a. Block 1

b. Block 2

c. Block 3

d. Block 4

e. Block 5

f. Block 6
29. Which is the enterprise edge?
 a. Block 1
 b. Block 2
 c. Block 3
 d. Block 4
 e. Block 5
 f. Block 6

30. Which is the campus access layer?
 a. Block 1
 b. Block 2
 c. Block 3
 d. Block 4
 e. Block 5
 f. Block 6

31. Which is the enterprise edge distribution?
 a. Block 1
 b. Block 2
 c. Block 3
 d. Block 4
 e. Block 5
 f. Block 6

32. Which is the campus distribution layer?
 a. Block 1
 b. Block 2
 c. Block 3
 d. Block 4
 e. Block 5
 f. Block 6

33. Which is the campus data center?
 a. Block 1
 b. Block 2
 c. Block 3
 d. Block 4
 e. Block 5
 f. Block 6
34. Which solution supports the enterprise teleworker?
 a. IP telephony
 b. Enterprise campus
 c. Cisco Virtual Office
 d. SP edge
 e. Hierarchical design
 f. Data Center 3.0

35. Which are two benefits of using a modular approach?
 a. Simplifies the network design
 b. Reduces the amount of network traffic on the network
 c. Often reduces the cost and complexity of the network
 d. Makes the network simple by using full mesh topologies

36. Which three modules provide infrastructure for remote users? (Select three.)
 a. Teleworker module
 b. WAN module
 c. Enterprise branch module
 d. Campus module
 e. Enterprise data center
 f. Core, distribution, access layers

37. Which are borderless networks infrastructure services? (Select three.)
 a. IP telephony
 b. Security
 c. QoS
 d. SP edge
 e. High availability
 f. Routing

38. Which module contains devices that supports AAA and stores passwords?
 a. WAN module
 b. VPN module
 c. Server farm module
 d. Internet connectivity module
 e. SP edge
 f. TACACS
39. Which topology is best used for connectivity in the building distribution layer?
 a. Full mesh
 b. Partial mesh
 c. Hub and spoke
 d. Dual ring
 e. EtherChannel

40. What are two ways that wireless access points are used? (Choose two.)
 a. Function as a hub for wireless end devices
 b. Connect to the enterprise network
 c. Function as a Layer 3 switch for wireless end devices
 d. Provide physical connectivity for wireless end devices
 e. Filter out interference from microwave devices

41. In which ways does application network services help resolve application issues? (Choose two.)
 a. It can compress, cache, and optimize content.
 b. Optimizes web streams, which can reduce latency and offload the web server.
 c. Having multiple data centers increases productivity.
 d. Improves application response times by using faster servers.

42. Which are key features of the distribution layer? (Select three.)
 a. Aggregates access layer switches
 b. Provides a routing boundary between access and core layers
 c. Provides connectivity to end devices
 d. Provides fast switching
 e. Provides transport to the enterprise edge
 f. Provides VPN termination

43. Which Cisco solution allows a pair of switches to act as a single logical switch?
 a. HSRP
 b. VSS
 c. STP
 d. GLB

44. Which module or layer connects the server layer to the enterprise edge?
 a. Campus distribution layer
 b. Campus data center access layer
 c. Campus core layer
d. Campus MAN module
e. WAN module
f. Internet connectivity module

45. Which server type is used in the Internet connectivity module?
 a. Corporate
 b. Private
 c. Public
 d. Internal
 e. Database
 f. Application

46. Which server types are used in the e-commerce module for users running applications and storing data? (Select three.)
 a. Corporate
 b. Private
 c. Public
 d. Internet
 e. Database
 f. Application
 g. Web

47. Which are submodules of the enterprise campus module? (Select two.)
 a. WAN
 b. LAN
 c. Server farm/data center
 d. Enterprise branch
 e. VPN
 f. Building distribution

48. Which are the three layers of the hierarchical model? (Select three.)
 a. WAN layer
 b. LAN layer
 c. Core layer
 d. Aggregation layer
 e. Access layer
 f. Distribution layer
 g. Edge layer
49. You need to design for a packet load-sharing between a group of redundant routers. Which protocol allows you to do this?
 a. HSRP
 b. GLBP
 c. VRRP
 d. AARP

50. Which is a benefit of using network modules for network design?
 a. Network availability increases.
 b. Network becomes more secure.
 c. Network becomes more scalable.
 d. Network redundancy is higher.

51. The Cisco Enterprise Architecture takes which approach to network design?
 a. It takes a functional modular approach.
 b. It takes a sectional modular approach.
 c. It takes a hierarchical modular approach.
 d. It takes a regional modular approach.

52. Which is the recommended design geometry for routed networks?
 a. Design linear point-to-point networks
 b. Design in rectangular networks
 c. Design in triangular networks
 d. Design in circular networks

53. Which layer performs rate limiting, network access control, and broadcast suppression?
 a. Core layer
 b. Distribution layer
 c. Access layer
 d. Data link layer

54. Which layer performs routing between VLANs, filtering, and load balancing?
 a. Core layer
 b. Distribution layer
 c. Access layer
 d. Application layer
55. Which topology allows for maximum growth?
 a. Triangles
 b. Collapsed core-distribution
 c. Full mesh
 d. Core-distribution-access

56. Which layer performs port security and DHCP snooping?
 a. Core layer
 b. Distribution layer
 c. Access layer
 d. Application layer

57. Which layer performs Active Directory and messaging?
 a. Core layer
 b. Distribution layer
 c. Access layer
 d. Application layer

58. Which layers perform redundancy? (Select two.)
 a. Core layer
 b. Distribution layer
 c. Access layer
 d. Data Link Layer

59. Which statement is true regarding hierarchical network design?
 a. Makes the network harder since there are many submodules to use
 b. Provides better performance and network scalability
 c. Prepares the network for IPv6 migration from IPv4
 d. Secures the network with access filters in all layers
60. Based on Figure 2-22, and assuming that devices may be in more than one layer, list which devices are in each layer.

Figure 2-22 Question 60

Access layer:
Distribution layer:
Core:

Use Figure 2-23 to answer questions 61–63.

Figure 2-23 Scenario for questions 61–63
61. Which section(s) belong(s) to the core layer?
62. Which section(s) belong(s) to the distribution layer?
63. Which section(s) belong(s) to the access layer?
Index

Numbers

4-way handshakes, WLAN, 172
4G LTE (Long Term Evolution), 224
10 Gigabit Ethernet, LAN design, 87
40 Gigabit Ethernet, LAN design, 87-88
100 Gigabit Ethernet, LAN design, 87-88
100BASE-FX Fast Ethernet, LAN design, 85
100BASE-T4 Fast Ethernet, LAN design, 84
100BASE-TX Fast Ethernet, LAN design, 84
802.1X, 527
1000BASE-CX Gigabit Ethernet over Coaxial Cable, LAN design, 86
1000BASE-LX long-wavelength Gigabit Ethernet, LAN design, 86
1000BASE-SX short-wavelength Gigabit Ethernet, LAN design, 86
1000BASE-T Gigabit Ethernet over UTP, LAN design, 86

A

AAA (Authentication, Authorization, Accounting), 542
ABR (Area Border Routers)
 OSPFv2, 434-436
 OSPFv3, 440
access
 controlling access, network virtualization, 156-157
 unauthorized access (security threats), 490-494
access layer
 campus LAN, 94-97, 101
 DC, 147-148
 hierarchical network models, 44-46
access services, video networks, 579
accounting (security), 506
accounting management (networks), 619
ACD (Automatic Call Distribution), PSTN, 569
ACI (Application Centric Infrastructure), 135
Acknowledgment packets, EIGRP, 403
ACL (Access Control Lists), 495, 530
AD (Administrative Distance), BGP, 449
administrative distance, routing protocols, 386-387
ADSL (Asymmetric Digital Subscriber Lines), 222
adware, 490
AES (Advanced Encryption Standard), WLAN, 172
AFI field (RIPv2 message format), 395
aggregation layer (DC), 147-149
AIM (Advanced Integration Module), 543
AirMagnet Analyzer Pro, network audits, 20
ALG (Application Layer Gateways), 359
AMP (Advanced Malware Protection), 538
analog signaling, voice networks, 562-567
analog-to-digital signal conversion (codecs), 580
antivirus software, 529
Anycast-based load balancing, 160
anycast IPv6 addresses, 344-346
AP (Access Points)
 autonomous AP, Cisco UWN, 176
 Bridge mode, 181
 CAPWAP, 178-182
 Controller Equipment scaling and WLC, 185-186
 H-REAP mode, 180
 LAP discovery of WLC via CAPWAP, 181-182
 Local mode, 180
 LWAPP, 177-178
 MAP, 196
 Monitor mode, 181
 RAP, 196
 Rogue Detector mode, 181
 self-healing, 193
 Sniffer mode, 181
 WLAN, campus design, 196
AP Manager interface (WLC), 185
API (Application Programming Interfaces), 135, 359
APIC (Application Centric Infrastructure Controller), 135
Application layer (SDN), 134
application level getaways, 528
applications
 filtering, 529
 growth of applications and network design, 6
 load balancing, DC, 159
 security, 533
architectures (networks)
 benefits of, 9
 borderless network architectures, 7
 collaboration and video architectures, 8
 data center and virtualization architectures, 8-9
areas
 defining, 432
 OSPFv2 areas, 432-433
 OSPFv3 areas, 440
ARP (Address Resolution Protocol), 60
 DAI, 495
 IPv4 addressing, 321-322
ASA (Access Control Servers), 540, 548
ASA (Adaptive Security Appliances), 525, 543
ASA Services Modules, 544
ASBR (Autonomous System Boundary Routers)
 OSPFv2, 434-436
 OSPFv3, 440
Assessment process (Plan phase), 10
ATM (Asynchronous Transfer Mode), VoATM, 572
atomic aggregate attribute, BGP, 452
audits (networks), 19
 AirMagnet Analyzer Pro, 20
 CDP, 20
 Cisco Prime Infrastructure and Solarwinds, 20
 Ekahau Site Survey, 20
 LanGuard network security scanner, 20
 LLDP, 20
 manual assessments, 20-22
 NBAR, 20
 NetFlow, 20-23
 show commands, 20-22
 SNMP, 20
 Syslog, 20
 Wireshark, 20
authentication, 506
 EAP-FAST, 183
 EAP-TLS, 183
 EAP-TTLS, 183
 IS-IS, 411
 LEAP, 183
 PEAP, 183
 RIPng, 397
 RIPv2, 394
 router authentication, OSPFv2, 439
 user authentication, 532
WLAN, 173, 182-183
authNoPriv security (SNMPv3), 623
authorization (security), 506
authPriv security (SNMPv3), 623
Auto QoS (Quality of Service), 599
Auto-RP, 469
autonomous system path attribute, BGP, 451
availability
 route redundancy, 63-64
 security risks, 494-495
AVC (Application Visibility and Control), 538

B

backbone routers
 OSPFv2, 434
 OSPFv3, 440
BackboneFast, 104-105
backups
 enterprise branch architectures, 271
 WAN, 263-264
bandwidth. See also QoS; throughput
 routing protocols, 389, 401-402, 409
 video networks, 595-599
 VoIP, 595-599
 WAN
 backups, 263
 enterprise edge design, 231-236
BGP (Border Gateway Protocol), 382-383, 388, 443, 462
 AD, 449
 atomic aggregate attribute, 452
 autonomous system path attribute, 451
 characteristics of, 454-455
 community attribute, 452
 confederations, 448
 decision process, 453-454
 eBGP, 445
 iBGP, 445-446
 local preference attributes, 450
 MED attribute, 451
 MP-BGP, 446
 neighbor discovery, 444-445
 next-hop attributes, 450
 origin attributes, 450
 path attributes, 449
 QPPB, 446
 route filtering, 461
 route reflectors, 446-447
 weight, 453
BGP4+, 353
BHT (Busy Hour Traffic), voice networks, 570
Big Oil and Gas comprehensive scenario, 642-643, 650-651
blade servers, enterprise DC, 136
blocking probability (voice networks), 571
blocking state (STP switch ports), 102
BOM (Bills of Materials) and LLD documents, 16
BOOTP (Bootstrap Protocol), IPv4 address assignments, 317
borderless network architectures, 7
borders (removal of), network design, 6
bottom-up network design versus top-down design, 25
BPDU Filter, 104-105
BPDU Guard, 97, 104-105
Bridge mode (AP), 181
bridges
 flooding, 90
 LAN, 89
 root bridges, 90, 102
 STP, 90
 wireless bridges, 223
bridging services, video networks, 579
broadcast IPv4 addresses, 299
BSR (Bootstrap Routers), 470
Build phase (network design), 9-12
business forces and network design, 6
busy hour (voice networks), 570
C

cable
CMTS, 222
coaxial cable, 1000BASE-CX Gigabit Ethernet over Coaxial Cable, 86
dark fiber, 227
DC cabling, 141-143
DOCSIS protocol, 223
modems, 223
WAN strategies, 222
call processing, converged multiservice networks, 571
campus LAN
access layer best practices, 94-97, 101
application layer best practices, 93
core layer best practices, 99-101
distribution layer best practices, 97-101
network requirements, 93
STP, 101-103
STP Toolkit, 103-105
transmission media comparisons, 88
VLAN trunking, 105
campus networks, security, 545
CAPWAP (Control and Provisioning for Wireless Access Point), 178-182
CAR (Committed Access Rate), 233
CAS (Channel Associated Signaling) circuits, 562, 565
case studies
Big Oil and Gas, 642-643, 650-651
Diamond Communications, 645-646, 652-653
Friendswood Hospital, 641-642, 646-650
Video Games Spot, 643-645, 651-652
Catalyst 6500 security service modules, 544
CBWFQ (Class-Based Weighted Fair Queuing), 234
CCS (Centum Call Seconds), video networks, 570
CCS (Common Channel Signaling) circuits, 562-566
CDP (Cisco Discovery Protocol), 20, 629-631
CDR (Call Detail Records), voice networks, 571
cell-switched WAN, 252
centralized Internet, WAN and enterprise edge connectivity, 240
Centrex services (PSTN), 569
certificates (security), 506
CGMP (Cisco Group Management Protocol), 113, 466-467
channelized T1/E1 circuits, 562, 565
characterizing networks, 24
information gathering process, 19
network audits, 19-23
performance checklists, 23
CIR (Committed Information Rates), 228
circuit-switched WAN, 252
Cisco APIC (Application Centric Infrastructure Controller), 135
Cisco Catalyst switches, 526
Cisco Enterprise Architecture Model, 49
Enterprise Campus module, 50, 59
Enterprise Edge module, 52, 59
E-Commerce module, 52
Enterprise WAN, 55-56, 59
Internet Connectivity module, 53-54
SP edge module, 56
VPN/Remote Access module, 54-55
remote modules
Enterprise Branch module, 57-59
Enterprise Data Center module, 58-59
Enterprise Teleworker module, 58-59
SP edge module, 56
Cisco ESA (Email Security Appliances), 538
Cisco ISE (Identity Services Engines), 527, 544
Cisco Learning Network, 657
Cisco Prime Infrastructure and Solarwinds, network audits, 20
Cisco SAFE (Security Architecture for the Enterprise)
ASA, 525
benefits of, 525
Cisco Catalyst switches, 526
Cisco SCF, 526
Compliance, 524
ISR G2, 525
Management, 525
Secure Services, 524
Security Intelligence, 525
Segmentation, 525
Threat Defense, 524
Cisco SCF (Security Control Framework), 526
Cisco TDS (Threat Defense System)
infrastucture protection, 512
physical security, 510-511
Cisco unified networks, 571
Cisco UWN (Unified Wireless Networks)
architecture of, 175-176
autonomous AP, 176
benefits of, 175
CAPWAP, 178-182
centralized WLAN architecture, 177
local MAC, 179, 200
LWAPP, 177-178
split-MAC architectures, 179
WLAN
authentication, 182-183
intracontroller roaming, 187
Layer 2 intercontroller roaming, 187
Layer 3 intercontroller roaming, 188
mobility groups, 189-190
WLC, 183-186
Cisco Virtual Office Solution, enterprise teleworker design, 279-280
Cisco WSA (Web Security Appliances), 538-539
Class A IPv4 addresses, 297
Class B IPv4 addresses, 298
Class C IPv4 addresses, 298
Class D IPv4 addresses, 298
Class E IPv4 addresses, 298
classful routing protocols versus classless protocols, 385
classification (QoS), 233
classless routing protocols versus classful routing protocols, 385
cloud services DMZ, 237
CME (CallManager Express), unified CME deployments, 578
CMTS (Cable Modem Termination System), 222
CO-to-PBX trunks, 561
c coaxial cable, 1000BASE-CX Gigabit Ethernet over Coaxial Cable, 86
codecs
analog-to-digital signal conversion, 580
converged multiservice networks, 580-581
MOS, 581
standards, 580-581
collaboration and video architectures, 8
collaboration services, 8
collapsed core design
enterprise branch architectures, 275
hierarchical network design, 49
Command field
RIPng message format, 397
RIPv2 message format, 395
communication and collaboration applications (collaboration and video architectures), 8
community attribute, BGP, 452
competition, network design, 6
Compliance (Cisco SAFE), 524
composite metric, routing protocols, 403, 409
comprehensive scenarios
Big Oil and Gas, 642-643, 650-651
data modification/disclosure attacks (security threats) 735

Diamond Communications, 645-646, 652-653
Friendswood Hospital, 641-642, 646-650
Video Games Spot, 643-645, 651-652
confederations (BGP), 448
confidentiality (data), security risks, 494-497
configuration management (networks), 619
configuration/software archive hosts and security management, 540
congestion management (QoS), 234
connected mode (H-REAP), 200
connection management, borderless network architectures, 7
content security defense, 533
continuous security, 501-502
Control layer (SDN), 134
controllers (SDN), 134-135
converged multiservice networks
call packetized voice systems, 571
call processing, 571
codecs, 580-581
design recommendations, 600
dial plans, 571
IPT
components of, 574
CUCM, 574-577
design goals, 575
functional areas, 574
multisite WAN with centralized call processing deployments, 576
multisite WAN with distributed call processing deployments, 577
PoE, 575
single-site deployments, 576
unified CME deployments, 578
service class recommendations, 600-602
video deployment considerations, 578-579
VoATM, 572
VoFR, 572
VoIP, 572-573

control protocols, 581-589
delays, 592-593
design goals, 575
echo cancellation, 595
packet loss, 594
QoS, 595-599
transport protocols, 581-589
VAD, 590-591

cooling, DC cooling requirements/solutions, 140-141
core layer
campus LAN, 99-101
DC, 149-150
hierarchical network models, 42-45
counting to infinity, routing loops, 393
country codes (numbering plans), PSTN switches, 567-568
CQ (Custom Queuing), 234
cRTP (Compressed Real-time Transport Protocol), 583, 596, 599
CSM (Cisco Security Manager), 540
CUCM (Cisco Unified Communications Manager), 574
multisite WAN
with centralized call processing, 576
with distributed call processing, 577
single-site deployments, 576
customer requirements and network design, 17-18

D

DAI (Dynamic ARP Inspection), 495
dark fiber, 227
data center
security, 546-547
virtualization architectures, 8-9
data confidentiality (security risks), 494
data integrity (security), 494-497, 509-510
data leaks (security threats), 490-491
data modification/disclosure attacks (security threats), 490-491
data packets
- Acknowledgment packets, EIGRP, 403
- Hello packets, EIGRP, 403
- packet loss, VoIP, 594
- Query packets, EIGRP, 403
- Reply packets, EIGRP, 403
- Update packets, EIGRP, 403

database services (PSTN), 569

DC (Data Centers)
- access layer, 147-148
- aggregation layer, 147-149
- cabling, 141-143
- challenges of, 136
- cooling requirements/solutions, 140-141
- core layer, 149-150

DCI
- L2 considerations, 159
- transport options, 158
- use cases, 157-158

enterprise DC, 111
- architecture of, 130-131
- foundation layer, 130
- network programmability, 133-135

SDN, 134
- SDN controllers, 134
- services layer, 130
- topology of, 133
- UCS, 132
- unified fabric, 132
- user services layer, 131
- virtualization, 132

facility consideration, 136-138
- FEX, 151

load balancing
- application load balancing, 159
- network load balancing, 160

physical space constraints, 138-139
power requirements, 139-140
reference architecture, 146-147
security, 150
servers, 136
storage, 144-146
virtualization, 151
- access control, 156-157
- device contexts, 155
- device virtualization, 153
- network virtualization, 152
- path isolation, 156-157
- risks of, 152
- servers, 155
- services edge, 157
- virtual switches, 156
- vPC, 154
- VRF, 154
- VSS, 153

DDoS (Distributed DoS) attacks, 495
decryption, 529
dedicated L4-7 load balancers, 160
delay metric, routing protocols, 391, 402
delays
- jitter, 594
- processing delay, 593-594
- propagation delay, 593-594
- queuing delay, 593-594
- serialization delay, 593-594
- VoIP, 592-593
deliverables (projects)
- HLD documents, 16
- LLD documents, 16
- NIP documents, 16
- NRFU documents, 16

deploying IPv6, 357
dual-stack model, 360, 363
hybrid model, 361-363
service block model, 362-363

Deployment process (Build phase), 11
design documents, 25-26
Design phase (network design), PPDIOO, 14-15
Design process (Plan phase), 10
Design Strategy (STP Toolkit), 97
designing IP addressing schemes
IPv4 addresses
 goal of, 310
 NAT guidelines, 313
 planning for future growth, 310
 planning for hierarchical IP address networks, 311-312
 private/public IP addresses, 313
 route summarization, 311
 standards for addressing, 313-314
 subnet allocation case study, 314-316
IPv6 addresses
 /64 subnets, 354-355
 address allocations, 355-356
 address blocks, 354-355
 planning, 354
 private addresses, 355
 route summarization, 354
designing networks
 borderless network architectures, 7
 Build phase, 9-12
 business forces effects on, 6
 campus LAN
 access layer best practices, 94-97, 101
 application types, 93
 core layer best practices, 99-101
 distribution layer best practices, 97-101
 enterprise campus LAN, 107-109
 enterprise DC, 111
 large-building LAN, 106
 medium-size LAN, 109
 multicast traffic, 113-114
 network requirements, 93
 QoS, 111-112
 remote site LAN, 110
 server farm modules, 110
 small LAN, 110
 STP, 101-103
 STP Toolkit, 103-105
 VLAN trunking, 105
 characterizing networks, 19-24
 collaboration and video architectures, 8
 competition, 6
 customer requirements, 17-18
 data center and virtualization architectures, 8-9
 design documents, 25-26
 Design phase (PPDIOO), 14-15
 EIGRP, 404-407
 enterprise DC
 access layer, 147-148
 aggregation layer, 147-149
 architecture of, 130-131
 cabling, 141-143
 challenges of, 136
 cooling requirements, 140
 cooling solutions, 141
 core layer, 149-150
 DCI, 157-159
 facility considerations, 136-138
 FEX, 151
 foundation layer, 130
 load balancing, 159-160
 network programmability, 133-135
 physical space constraints, 138-139
 power requirements, 139-140
 reference architecture, 146-147
 SDN, 134
 SDN controllers, 134
 security, 150
 servers, 136
 services layer, 130
 storage, 144-146
 topology of, 133
 UCS, 132
 unified fabric, 132
 user services layer, 131
 virtualization, 132, 151-157
growth of applications, 6
Implement phase (PPDIOO), 15
IPv6, 407
IS-IS, 409-411
IT optimization, 6
Manage phase, 10-12
methodology of, 16
Operate phase (PPDIOO), 15
Optimize phase (PPDIOO), 15
pilot sites, 25
Plan phase, 9
Plan phase (PBM), 10-12
Plan phase (PPDIOO), 14-15
PPDIOO, 12-15
Prepare phase (PPDIOO), 14-15
project deliverables, 16
prototype networks, 25
regulation, 6
removal of borders, 6
return on investment, 6
RIPng, 398
RIPv2, 396
security integration with network design, 502
technological forces effects on, 6
top-down design approach, 24-25
virtualization, 6
VPN, 240-241
WAN
design requirements, 218
DMZ connectivity, 236-238
enterprise edge design methodologies, 229-236
Internet connectivity, 238-240
VPN, 240-241
Destination Address field
IPv4 headers, 291
IPv6 headers, 338
device virtualization, 153-155
DHCP (Dynamic Host Configuration Protocol)
DHCPv6, 352
DHCPv6 Lite, 352
IPv4
address assignments, 317-319
name resolution, 321
snooping, 495
VoIP, 582, 589
dial plans, converged multiservice networks, 571
Diamond Communications comprehensive scenario, 645-646, 652-653
digital signaling
DTMF, 567
voice networks, 562-567
digital signatures (security), 510
direct Internet, WAN and enterprise edge connectivity, 240
Directive 95/46/EC security legislation, 489
disabled state (STP switch ports), 102
disclosure/data modification attacks (security threats), 490-491
discovery, network audits, 20
disruption of service (security threats), 490-491
distance-vector routing protocols, 383-384
distribution layer
campus LAN, 97-101
hierarchical network models, 43-45
DLCI (Data Link Connection Identifiers), 225
DMVPN (Dynamic Multipoint VPN), 257-258
DMZ (Demilitarized Zones), 220
cloud services DMZ, 237
Internet DMZ, 236
per-service DMZ, 238
remote access VPN DMZ, 236
security services DMZ, 237
segmenting, 237
shared DMZ, 238
EIGRP (Enhanced Interior Gateway Routing Protocol) 739

WAN and enterprise edge connectivity, 236-238

dynamic routing versus static routing assignment, 380-381

dynamic WEP keys, WLAN, 174

DNS (Domain Name Systems)
DHCP and DNS servers, 321
IPv4 name resolution, 319-321
load balancing, 160
RR, 320

DOCSIS (Data Over Cable Service Interface Specifications) protocol, 223

documents
design documents, 25-26
project deliverables, 16

DoS (Denial of Service) attacks, 490, 495

DR (Disaster Recovery), 157
IS-IS, 410
OSPFv2, 435

DS (Differentiated Services) field (IPv4 headers), 293

DSCP (Differentiated Services Codepoints)
AF packet-drop precedence values, 294
IP precedence values, 293-295

DSL (Digital Subscriber Lines), 222

DSTM (Dual-Stack Transition Mechanism), 359

DTMF (Dual-Tone Multifrequency) dialing, digital signaling, 567

DTP (Dynamic Trunking Protocol), 105

DUAL (Diffusing Update Algorithm), EIGRP, 400-401, 407
dual-stack IPv6 deployment model, 360, 363

DVMRP (Distance Vector Multicast Routing Protocol), 470

DWDM (Dense Wavelength-Division Multiplexing), 228

Dynamic interface (WLC), 185
dynamic NAT, 300-301
dynamic routing versus static routing assignment, 380-381

E-Commerce module (Enterprise Edge module), 52

E&M (Ear and Mouth)
ports, 561
signaling, 562-565

E1 circuits (channelized), 562, 565

EAP-FAST (EAP-Flexible Authentication via Secure Tunneling), 183

EAP-TLS (EAP-Transport Layer Security), 183

EAP-TTLS (EAP-Tunneled Transport Layer Security), 183
eBGP (External Border Gateway Protocol), 445

edge distribution, campus LAN, 109

EIGRP (Enhanced Interior Gateway Routing Protocol), 383-388, 398, 462

network design, 407-408
neighbor discovery/recovery, 399
network design, 404-405
protocol-dependent modules, 399
Query packets, 403
reliability metric, 402
Reply packets, 403
route redistribution, 460
RTRP, 400

EAP-TLS (EAP-Transport Layer Security), 183

egress bandwidth, 401-402

egress metrics, 402

Egress bandwidth, 401-402
EIGRP (Enhanced Interior Gateway Routing Protocol)

stub routers, 404
timers, 399-401
Update packets, 403
variance command, 405
Ekahau Site Survey, network audits, 20

e-mail
Cisco ESA, 538
Cisco WSA, 538-539

e-ncryption
AES, 172
decryption, 529
encryption keys, 507-508
fundamentals of, 507
Secure Services, 507-508
endpoint security, 533, 545

e-ncorporate branch architectures
backups, 271
collapsed core design, 275
components of, 270
design questions, 270
dual WAN carriers, 272
Flat Layer 2 design, 274
Hybrid WAN, 271-275
Internet traffic flows, 274
Internet WAN, 271
large branch design, 275, 278-279
medium branch design, 275-277
MPLS WAN, 271
dual MPLS carriers, 272-273
single MPLS carriers, 272
single WAN carriers, 271
small branch design, 275-276
Enterprise Branch module (Cisco Enterprise Architecture model), 57-59
enterprise campus LAN (Local Area Networks), 107-109
Enterprise Campus module (Cisco Enterprise Architecture Model), 50, 59
enterprise campus security, 545
Enterprise Data Center module (Cisco Enterprise Architecture model), 58-59
enterprise data centers, 546-547

enterprise edge
defining, 218
design methodologies, 229
application requirements, 230
bandwidth, 231-236
key design principles, 230
links, 232
QoS and bandwidth optimization, 233-236
reliability, 231
response time, 230-231
throughput, 231

DMZ, 220
cloud DMZ, 237
connectivity, 236-238
Internet DMZ, 236
per-service DMZ, 238
remote access VPN DMZ, 236
security services DMZ, 237
segmenting, 237
shared DMZ, 238
site-to-site VPN DMZ, 236
unified communications DMZ, 237

Internet connectivity, 238-240
security, 548-550
SP edge, 220
VPN, 240-241

Enterprise Edge module (Cisco Enterprise Architecture Model)
E-Commerce module, 52
Enterprise WAN, 55-56, 59
Internet Connectivity module, 53-54
SP edge module, 56
VPN/Remote Access module, 54-55
enterprise MAN/WAN architectures, 265-267
enterprise teleworker design, WAN, 279-280
Enterprise Teleworker module (Cisco Enterprise Architecture model), 58-59
Enterprise VPN
DMVPN, 257-258
GETVPN, 258
GRE, 257
IPsec, 255
 direct encapsulation, 256-257
 DMVPN, 257-258
 GETVPN, 258
 GRE, 257
 IPsec tunneling across the Internet, 263-264
 VTI, 258
Service Provider VPN versus, 255-263
VTI, 258

enterprise WAN architectures
components of, 268-270
Enterprise Edge module, 55-56, 59
growth, support for, 265
HA, 264
implementation costs, 265
network segmentation support, 265
operational complexity, 265
operational expenses, 265
video support, 265
voice support, 265

EoIP tunnels, WLAN, 194
Erlangs, 569-570

Ethernet
EtherChannel, 110
 LAN design, 88
 MEC, 95, 99, 153
Fast Ethernet
 100BASE-FX Fast Ethernet, 85
 100BASE-T4 Fast Ethernet, 84
 100BASE-TX Fast Ethernet, 84
 LAN design, 84
Gigabit Ethernet
 10 Gigabit Ethernet, 87
 40 Gigabit Ethernet, 87-88
 100 Gigabit Ethernet, 87-88
 1000BASE-CX Gigabit Ethernet over Coaxial Cable, 86
 1000BASE-LX long-wavelength Gigabit Ethernet, 86
 1000BASE-SX short-wavelength Gigabit Ethernet, 86
 1000BASE-T Gigabit Ethernet over UTP, 86
 LAN design, 85-88
 handoffs, 260
 LAN design, 83
 EtherChannel, 88
 Fast Ethernet, 84
 Gigabit Ethernet, 85-88
 Metro Ethernet, 225, 259-260
 PoE, 197, 575

exam preparation
Cisco Learning Network, 657
memory tables, 657
Pearson Cert Practice Test engine, 655, 659-660
Pearson IT Certification website, 655-657
practice tests, 655-660
Premium Editions, 657
review tools
 chapter-ending review tools, 658
 Pearson IT Certification website, 655
 review/study plan, 658
 subnetting practice, 658-659

exams
updates, 699
web resources, 699

Explicit Configuration protocol, 60
Extranet VPN, 241

F

Fast Ethernet
 100BASE-FX Fast Ethernet, 85
 100BASE-T4 Fast Ethernet, 84
 100BASE-TX Fast Ethernet, 84
 LAN design, 84
fault management (networks), 619
FEX (Fabric Extenders), DC, 151
filtering (routing), 461
final review/study plan (exam preparation), 658
FirePOWER IPS, 538
firewalls, 527
 ACL, 530
 antivirus software, 529
 applications
 application level gateways, 528
 filtering, 529
decryption, 529
guidelines, 530
host-based firewalls, 528
hybrid firewalls, 529
IOS firewalls, 542
IPS, 529
NAT, 529
NGFW, 529
packet-filtering firewalls, 528
stateful firewalls, 528
transparent mode firewalls, 529
URL filtering, 529
user identification, 529
first-hop redundancy protocols, 98
Flags field (IPv4 headers), 290-291
Flat Layer 2 design, enterprise branch architectures, 274
flat routing protocols versus hierarchical protocols, 385
Flexible NetFlow, 627-628
FLGS (Flags) field (multicast IPv6 addresses), 345
flooding and bridges, 90
Flow Label field (IPv6 headers), 337
forwarding state (STP switch ports), 102
foundation layer (enterprise DC), 130
Fragment Offset field (IPv4 headers), 290-291
fragmentation, IPv4, 295
Frame Relay, 224, 228
PVC, 225
SVC, 225
VoFR, 572
fraud/identity theft (security threats), 490-491
Friendswood Hospital comprehensive scenario, 641-642, 646-650
full-mesh topologies, WAN, 253
FXO (Foreign Exchange Offices), 561
FXS (Foreign Exchange Stations), 561

G

Get request messages
SNMPv1, 622
SNMPv2, 623

Get response messages
SNMPv1, 622
SNMPv2, 623

GetBulk messages (SNMPv2), 623

GetNext request messages
SNMPv1, 622
SNMPv2, 623

GETVPN (Group Encrypted Transport VPN), 258

Gigabit Ethernet
10 Gigabit Ethernet, 87
40 Gigabit Ethernet, 87-88
100 Gigabit Ethernet, 87-88
1000BASE-CX Gigabit Ethernet over Coaxial Cable, 86
1000BASE-LX long-wavelength Gigabit Ethernet, 86
1000BASE-SX short-wavelength Gigabit Ethernet, 86
1000BASE-T Gigabit Ethernet over UTP, 86
LAN design, 85-88
GLBA (Gramm-Leach-Bliley Act) security legislation, 489
GLBP (Gateway Load Balancing Protocol), 62, 98
global aggregatable IPv6 addresses, 343
global unicast IPv6 addresses, 342
globally unique IPv6 addresses, SLAAC, 350-351
GoS (Grade of Service), voice networks, 569
GLBP (Gateway Load Balancing Protocol), 62
HSRP, 61
RDP, 60
redundancy
link media, 65-66
routes, 63-66
servers, 62, 66
RIP, 61
VRRP, 62
VSS, 47
HIPAA (Health Insurance Portability and Accountability Act) security legislation, 489
HLD (High-Level Design) documents, 16
hop counts, routing protocols, 388-389
Hop Limit field (IPv6 headers), 338
host-based firewalls, 528
H-REAP (Hybrid Remote Edge AP) mode (AP), 180, 200
HSRP (Hot Standby Router Protocol), 61, 98
hub-and-spoke (star) topologies
hierarchal network design, 48
WAN, 252
hubs, LAN, 89
hybrid firewalls, 529
hybrid IPv6 deployment model, 361-363
Hybrid WAN, enterprise branch architectures, 271-275
iBGP (Internal Border Gateway Protocol), 445-446
ICMPv6, 347-348
Identification field (IPv4 headers), 290-291
identity management/trust (security)
802.1X, 527
access control deployments, 532
ACL, 527
certificates, 506
Cisco ISE, 527, 544
domains of trust, 503-504
firewalls, 527-530
identity-based network services, 531
IOS, 542
network access control, 506
passwords, 505
port security, 527
tokens, 505
identity theft/fraud (security threats), 490-491
IDS (Intrusion Detection Systems), 534-536
IEEE 802.1P, VoIP, 596
IGMP (Internet Group Management Protocol), 113
IGMP snooping, 114, 467
IGMPv1, 465
IGMPv2, 465
IGMPv3, 466
IGP (Interior Gateway Protocols)
EGP versus, 382
OSPFv2, 430, 462
ABR, 434-436
adjacencies, 431
advancements to OSPFv3, 440
areas, 432-433
ASBR, 434-436
backbone routers, 434
changes from OSPFv2, 440
characteristics of, 439
cost metric, 430-431
DR, 435
hello timers, 431
internal routers, 434
LSA, 436
neighbor discovery, 431
NSSA, 438
router authentication, 439
route redistribution, 460
stub areas, 437
totally stubby areas, 438
virtual links, 438
OSPFv3, 462
ABR, 440
areas, 440
ASBR, 440
backbone routers, 440
characteristics of, 443
LSA, 441-443
route redistribution, 460
IHL (Internet Header Length) field (IPv4 headers), 289-291
Implement phase (network design), PPDIOO, 15
infection containment (security), 533
infinity, counting to (routing loops), 393
Inform request messages (SNMPv2), 623
information gathering process (characterizing networks), 19
Infrastructure layer (SDN), 134
infrastructure protection (security), 512
infrastructures (collaboration and video architectures), 8
inside/outside global addresses, 301
inside/outside local addresses, 301
integrity of data (security), 494-497, 509-510
intercontroller roaming, WLAN, 187-188
internal routers
OSPFv2, 434
OSPFv3, 440
Internet
DMZ, 236
telephone branch architectures, traffic flow, 274
WAN
telephone branch architectures, 271
telephone edge connectivity, 238-240
Internet Connectivity module (Enterprise Edge module), 53-54
interoffice trunks, 560
intertoll trunks, 561
intracontroller roaming, WLAN, 187
investment (return on), network design, 6
IOS security, 542
IP Address field (RIPv2 message format), 395
IP (Internet Protocol). See also IPv4; IPv6
IP multicast
 Auto-RP, 469
 BSR, 470
 CGMP, 466-467
 dense multicast, 467-468
 DVMRP, 470
 IGMP snooping, 467
 IGMPv1, 465
 IGMPv2, 465
 IGMPv3, 466
 IPv6 multicast addresses, 470-471
 Layer 3 to Layer 2 mapping, 464-465
 multicast addresses, 463-464
 PIM DR, 469
 PIM-SM, 469
 shared trees, 468
 source trees, 468
 sparse multicast, 467-468
IPsec, 255
 direct encapsulation, 256-257
 DMVPN, 257-258
 GETVPN, 258
 GRE, 257
 IOS, 542
 IPsec tunneling across the Internet, 263-264
 IPsec VPN SPA, 544
 VTI, 258
spoofing, 109
VoIP, 572-573
 bandwidth, 590-592, 595-599
 control protocols, 581-589
 delays, 592-593
 design goals, 575
 echo cancellation, 595
 packet loss, 594
 QoS, 595-599
 transport protocols, 581-589
 VAD, 590-591
IP Options field (IPv4 headers), 291
IP telephony networks, VLSM and IPv4 addressing, 308
IPS (Intrusion Prevention Systems), 529
 FirePOWER IPS, 538
 guidelines, 535-536
 inline IPS and anomaly detection, 534
 IOS, 542
 IPS NME, 543
 pros/cons, 535
 security, anomaly detection, 534
 signatures, 495
IPT (Internet Protocol Telephony)
 codecs, 580-581
 components of, 574
 CUCM, 574
 multisite WAN with centralized call processing, 576
 multisite WAN with distributed call processing, 577
 single-site deployments, 576
 design goals, 575
 design recommendations, 600
 functional areas, 574
 multisite WAN
 centralized call processing model, 576
 distributed call processing model, 577
 PoE, 575
 service class recommendations, 600-602
 single-site deployments, 576
 unified CME deployments, 578
IPv4 (Internet Protocol version 4)
 addressing, 296
 ARP, 321-322
 assigning addresses, 317-319
 broadcast addresses, 299
 Class A addresses, 297
IPv4 (Internet Protocol version 4)

- Class B addresses, 298
- Class C addresses, 298
- Class D addresses, 298
- Class E addresses, 298
- goal of, 310
- IPv4-compatible IPv6 addresses, 339-340, 344
- multicast addresses, 299
- NAT, 300-302, 313
- PAT, 313
- planning for future growth, 310
- planning for hierarchical IP address networks, 311-312
- private addresses, 299
- private/public IP addresses, 313
- route summarization, 311
- standards for addressing, 313-314
- subnet allocation case study, 314-316
- unicast addresses, 299

EIGRP, 406
fragmentation, 295
headers
- Destination Address field, 291
- DSCP, 293-295
- DS field, 293
- Flags field, 290-291
- fragmentation, 295
- Fragment Offset field, 290-291
- Header Checksum field, 291
- Identification field, 290-291
- IHL field, 289-291
- IP Options field, 291
- Padding field, 291
- Protocol field, 290-291
- Source Address field, 291
- Time to Live field, 290-291
- ToS field, 290-293
- Total Length field, 290-291
- Version field, 289-291

IPv6
- dual-stack mechanism, 357

IPv4-compatible IPv6 addresses, 339-340, 344
IPv6 enhancements over IPv4, 336-337
IPv6/IPv4 comparison table, 363-364
partly linked IPv4 addresses in IPv6, 355
protocol translation mechanisms, 359-360
routing protocols versus IPv4 protocols, 386
transition mechanisms, 357-360
tunneling mechanisms, 357-359
whole IPv4 addresses linked in IPv6, 356

name resolution
- DHCP, 321
- DNS, 319-321

subnetting
- AND logical operation, 304
design example, 303-304
determining network portion of IP addresses, 304-305
planning for future growth, 310
subnet allocation case study, 314-316
subnet masks, 302-305
VLSM, 305-310

IPv6 (Internet Protocol version 6)
addressing
- /64 subnets, 354-355
- address allocations, 341-342, 355-356
- address blocks, 354-355
- address representation, 339-340, 344
- anycast addresses, 344-346
- DHCPv6, 352
- DHCPv6 Lite, 352
- IPv4-compatible IPv6 addresses, 339-340, 344
- loopback addresses, 342
LAN (Local Area Networks) 747

manual address configuration, 350
multicast addresses, 344-346
name resolution, 348-349
planning, 354
prefix allocations, 341-342
prefix representation, 340, 346
private addresses, 355
route summarization, 354
SLAAC of globally-unique addresses, 350-351
SLAAC of link-local addresses, 350
unicast addresses, 342-346
deployment models, 357
dual-stack model, 360, 363
hybrid model, 361-363
service block model, 362-363
EIGRP, 406
IPv6 characteristics, 407-408
network design, 407
headers, 337-339
ICMPv6, 347-348
IPv4
dual-stack mechanism, 357
IPv4-compatible IPv6 addresses, 339-340, 344
IPv4/IPv6 comparison table, 363-364
IPv6 enhancements over IPv4, 336-337
partly linked IPv4 addresses in IPv6, 355
protocol translation mechanisms, 359-360
routing protocols versus IPv6 protocols, 386
transition mechanisms, 357-360
tunneling mechanisms, 357-359
whole IPv4 addresses linked in IPv6, 356
multicast addresses, 470-471
ND protocol, 348
path MTU discovery, 349-350
routing protocols, 353
security, 352
subnetting, 354-355
IPv6 prefix field (RIPng message format), 397
IS-IS, 388, 408
authentication, 411
bandwidth metric, 409
characteristics of, 411-412
composite metric, 409
DR, 410
IPv6 and, 353
NET addressing, 409
network design, 409-411
routers (areas), 410
ISATAP (Intra-Site Automatic Tunnel Addressing Protocol), 359
ISDN (Integrated Services Digital Network), 221
ISDN PRI/BRI circuits, 565-566
ISE (Identity Services Engines), 527, 540, 544
ISM frequencies, WLAN, 170
ISP service, 267
ISR (Integrated Services Routers)
ISR G2, 525, 542-543
teleworkers, 280
IT optimization, 6
IVR systems (PSTN), 569

J-K-L

jitter, VoIP, 594

Kismet, 491

L4-7 load balancers (dedicated), 160
LAG (Link Aggregation), WLC LAG, 184-186
LAN (Local Area Networks)
bridges, 89
campus LAN
access layer best practices, 94-97, 101
application types, 93
core layer best practices, 99-101
distribution layer best practices, 97-101
enterprise campus LAN, 107-109
enterprise DC, 111
large-building LAN, 106
medium-size LAN, 109
multicast traffic, 113-114
network requirements, 93
QoS, 111-112
remote site LAN, 110
server farm modules, 110
small LAN, 110
STP, 101-103
STP Toolkit, 103-105
transmission media comparisons, 88
VLAN trunking, 105
enterprise campus LAN, 107-109
enterprise DC, 111
access layer, 147-148
aggregation layer, 147-149
architecture of, 130-131
cabling, 141-143
challenges of, 136
cooling requirements/solutions, 140-141
core layer, 149-150
DCI, 157-159
facility considerations, 136-138
FEX, 151
foundation layer, 130
load balancing, 159-160
network programmability, 133-135
physical space constraints, 138-139
power requirements, 139-140
reference architecture, 146-147
SDN, 134
security, 150
servers, 136
services layer, 130
storage, 144-146
topology of, 133
UCS, 132
unified fabric, 132
user services layer, 131
virtualization, 132, 151-157
Ethernet, 83
EtherChannel, 88
Fast Ethernet, 84
Gigabit Ethernet, 85-88
High Availability protocols
ARP, 60
Explicit Configuration protocol, 60
GLBP, 62
HSRP, 61
RDP, 60
RIP, 61
VRRP, 62
VSS, 47
hubs, 89
large-building LAN, 106
Layer 3 switches, 92
medium-size LAN, 109
remote site LAN, 110
repeaters, 89
routers, 91-92
server farm modules, 110
small LAN, 110
switches, 90-91
VLAN
MST, 103
PVST+, 102
Rapid PVST+, 102
RPVST+, 147
trunking, 105
VTP, 97
VPLS, 261
WLAN, 223
LanGuard network security scanner,
network audits, 20
LAP (Lightweight Access Protocol), WLC
discovery via CAPWAP, 181-182
MANAGING LARGE-BUILDING LAN (LOCAL AREA NETWORKS), 106
large office design, enterprise branch architectures, 275, 278-279
layer 2 access method (WLAN), 172
Layer 2 intercontroller roaming, 187
Layer 2 VPN service, 260
 VPLS, 262
 VPWS, 261
Layer 3 intercontroller roaming, 188
Layer 3 switches, LAN, 92
Layer 3 VPN service, 260
 Hybrid WAN, 273-275
 MPLS, 262-263
LEAP (Lightweight Extensible Authentication Protocol), 174, 183
learning state (STP switch ports), 102
leased line WAN, 252, 255
leased links, 232
legislation (security), 489
LFI (Link Fragmentation and Interleaving), 236, 597-599
link-local IPv6 addresses, 343, 350
link-state routing protocols, 384
links
 efficiency (QoS), 235-236
 leased links, 232
 media redundancy, 65-66
 private links, 232
 shared links, 232
 UDLD protocol, 106
 virtual links, OSPFv2, 438
 WAN and enterprise edge design, 232
listening state (STP switch ports), 102
LLD (Low-Level Design) documents, 16
LLDP (Link Layer Discovery Protocol), 20, 630
LLQ (Low Latency Queuing), 235, 597-599
load balancing
 application load balancing, DC, 159
 network load balancing, 160
 route redundancy, 63
 WAN backups, 263
load metric, routing protocols, 390
load sharing, WAN backups, 263
local loops, voice networks, 560-561
local MAC, 179, 200
Local mode (AP), 180
local preference attributes, BGP, 450
Loop Guard, 97, 104-106
loop-start signaling, 562-563
loopback addresses
 IPv6, 342
 VLSM and IPv4 addressing, 307
loops
 local loops, voice networks, 560-561
 routing loops
 counting to infinity versus, 393
 poison reverse versus, 392
 split horizon versus, 392
 triggered updates versus, 393
 STP loops, 106, 147
LSA (Link-State Agreements)
 OSPFv2, 436
 OSPFv3, 441-443
LTE (Long Term Evolution), 224
LWAPP (Lightweight Access Point Protocol), 177-178
MALWARE, 490, 538
Manage phase (network design), 10-12
Management interface (WLC), 184-185
managing
 Management (Cisco SAFE), 525
 networks
 accounting management, 619
 CDP, 629-631
 configuration management, 619
 fault management, 619
LLDP, 630
NetFlow, 626-628, 631
performance management, 619
RMON, 619, 624-628, 631
security management, 619
SNMP, 619-624, 628
Syslog, 630-631
security, 512-513, 539-541, 619
MAP (Mesh AP), 196
MBSA (Microsoft Baseline Security Analyzer), 492
MDM authentication, RIPv2, 394
MEC (Multichassis EtherChannel), 95, 99, 153
MED attribute, BGP, 451
medium office design, enterprise branch architectures, 275-277
medium-size LAN (Local Area Networks), 109
memory tables (exam preparation), 657
methodology of network design, 16
Metric field
 RIPng message format, 397
 RIPv2 message format, 395
metrics, routing protocols
 bandwidth, 389, 401-402, 409
 composite, 403, 409
 cost, 389
 delay, 391, 402
 EIGRP, 401-403
 hop count, 388
 IS-IS, 409
 load, 390
 MTU, 391
 reliability, 391, 402
Metro Ethernet, 225, 259-260
MGCP (Media Gateway Control Protocol), VoIP, 582-584
MIB (Management Information Bases), SNMP, 620-621
Migration process (Build phase), 11
MLP (Multilink PPP), 236
mobile wireless WAN strategies, 223-224
mobility groups, WLAN, 189-190
modems
cable modems, 223
CMTS, 222
Monitor mode (AP), 181
MOS (Mean Opinion Scores), codecs, 581
MP-BGP (Multiprotocol BGP), 353, 446
MPLS (Multiprotocol Label Switching), 226-228, 360
time-to-live
 dual MPLS carriers, 272-273
 MPLS WAN, 271
 single MPLS carriers, 272
Layer 3 VPN service, 262-263
Private MPLS, 267
VPLS, 261
MST (Multiple Spanning Tree), 103
MTU (Maximum Transmission Units), routing protocols, 391
multicast (IP)
 Auto-RP, 469
 BSR, 470
campus LAN, 113-114
 CGMP, 466-467
dense multicast, 467-468
 DVMRP, 470
IGMP
 IGMP snooping, 467
 IGMPv1, 465
 IGMPv2, 465
 IGMPv3, 466
IPv4 multicast addresses, 299
IPv6 multicast addresses, 344-346, 470-471
Layer 3 to Layer 2 mapping, 464-465
multicast addresses, 463-464
PIM DR, 469
PIM-SM, 469
shared trees, 468
source trees, 468
sparse multicast, 467-468
multiservice networks (converged)
call processing, 571
codecs, 580-581
design recommendations, 600
dial plans, 571
IPT
 components of, 574
 CUCM, 574-577
design goals, 575
 functional areas, 574
 multisite WAN with centralized call processing deployments, 576
 multisite WAN with distributed call processing deployments, 577
PoE, 575
 single-site deployments, 576
 unified CME deployments, 578
packetized voice systems, 571
service class recommendations, 600-602
video deployment considerations, 578-579
VoATM, 572
VoFR, 572
VoIP, 572-573
 bandwidth, 590-592, 595-599
 control protocols, 581-589
 delays, 592-593
design goals, 575
echo cancellation, 595
packet loss, 594
QoS, 595-599
transport protocols, 581-589
VAD, 590-591
multisite WAN (Wide Area Networks)
centralized call processing model, 576
distributed call processing model, 577

N

N+1 WLC redundancy, 190-192
N+N WLC redundancy, 191-192
N+N+1 WLC redundancy, 191-192
name resolution, IPv6 addresses, 348-349
NAT (Network Address Translation)
dynamic NAT, 300-301
firewalls, 529
inside/outside global addresses, 301
inside/outside local addresses, 301
IPv4 addresses, 300-302
IPv4 addressing, 313
PAT, 301
public networks, 301
static NAT, 300-301
stub domains, 301
NAT-PT, 359-360
NBAR (Network-Based Application Recognition), 20, 233
ND (Neighbor Discovery) protocol, IPv6, 348
Nessus, 492
NET addressing, IS-IS, 409
NetFlow, 536, 631
 benefits of, 627
 components of, 626
data analysis, 627
data records, 627
 Flexible NetFlow, 627-628
 network audits, 20-23
 RMON versus, 628
NetscanTools, 491
NetStumbler, 491
Network Analysis Module 3, 544
network services, borderless network architectures, 7
networks
 abuse (security threats), 490-491
 access control, 506
 architectures
 benefits of, 9
 borderless network architectures, 7
collaboration and video architectures, 8
data center and virtualization architectures, 8-9
networks

audits, 19

AirMagnet Analyzer Pro, 20
CDP, 20
Cisco Prime Infrastructure and Solarwinds, 20
Ekahau Site Survey, 20
LanGuard network security scanner, 20
LLDP, 20
manual assessments, 20-22
NBAR, 20
NetFlow, 20-23
show commands, 20-22
SNMP, 20
Syslog, 20
Wireshark, 20
campus network security, 545
characterizing, 24
information gathering process, 19
network audits, 19-23
performance checklists, 23
Cisco Enterprise Architecture Model, 49
Enterprise Campus module, 50, 59
Enterprise Edge module, 52-56, 59
remote modules, 57-59
SP edge module, 56
designing
borderless network architectures, 7
Build phase, 9-12
business forces effects on, 6
campus LAN, 93-114
characterizing networks, 19-24
collaboration and video architectures, 8
competition, 6
customer requirements, 17-18
data center and virtualization architectures, 8-9
design documents, 25-26
Design phase (PPDIOO), 14-15
EIGRP, 404-407
e enterprise campus LAN, 107-109
enterprise DC, 111, 130-160
growth of applications, 6
Implement phase (PPDIOO), 15
IPv6, 407
IS-IS, 409-411
IT optimization, 6
large-building LAN, 106
Manage phase, 10-12
medium-size LAN, 109
methodology of, 16
Operate phase (PPDIOO), 15
Optimize phase (PPDIOO), 15
pilot sites, 25
Plan phase, 9
Plan phase (PBM), 10-12
Plan phase (PPDIOO), 14-15
PPDIOO, 12-15
Prepare phase (PPDIOO), 14-15
project deliverables, 16
prototype networks, 25
regulation, 6
remote site LAN, 110
removal of borders, 6
return on investment, 6
RIPvng, 398
RIPv2, 396
security integration with network design, 502
server farm modules, 110
small LAN, 110
technological forces effects on, 6
top-down design approach, 24-25
virtualization, 6
VPN, 240-241
WAN, 218, 229-241
hierarchical network models
access layer, 44-46
benefits of, 41
collapsed core design, 49
core layer, 42-45
distribution layer, 43-45
e examples of, 46-47
hub-and-spoke design, 48
route summarization, 42
High Availability Network Services, 59
ARP, 60
Explicit Configuration protocol, 60
GLBP, 62
HSRP, 61
link media redundancy, 65-66
RDP, 60
RIP, 61
route redundancy, 63-66
server redundancy, 62, 66
VRRP, 62
VSS, 47
IP telephony networks, VLSM and IPv4 addressing, 308
LAN
bridges, 89
campus LAN, 88, 93-114
enterprise campus LAN, 107-109
enterprise DC, 111, 130-160
EtherChannel, 88
Ethernet design rules, 83-88
Fast Ethernet, 84
Gigabit Ethernet, 85-88
hubs, 89
large-building LAN, 106
Layer 3 switches, 92
medium-size LAN, 109
remote site LAN, 110
repeaters, 89
routers, 91-92
server farm modules, 110
small LAN, 110
switches, 90-91
VLAN, 97
load balancing, 160
managing
accounting management, 619
CDP, 629-631
configuration management, 619
fault management, 619
LLDP, 630
NetFlow, 626-628, 631
performance management, 619
RMON, 619, 624-628, 631
security management, 619
SNMP, 619-624, 628
Syslog, 630-631
performance checklist, 23
pilot sites, 25
programmability, enterprise DC, 133-135
prototype networks, 25
public networks, 301
reconnaissance, 109
segmentation, enterprise WAN architectures, 265
virtualization
access control, 156-157
DC, 152
path isolation, 156-157
services edge, 157
Next Header field (IPv6 headers), 338
Next Hop field (RIPv2 message format), 395, 398
next-hop attributes, BGP, 450
Nexus 9000 series switches, 135
NGFW (Next-Generation Firewalls), 529
NGIPS (Next-Generation Intrusion Prevention System), 538
NIC (Network Interface Cards), 111
NIP (Network Implementation Plan) documents, 16
NMAP (Network Mapper), 491
NMP (Network Migration Plans) and LLD documents, 16
NMS manager
SNMPv1, 622
SNMPv2, 623
noAuthNoPriv security (SNMPv3), 623
NRFU (Network Ready For Use) documents, 16
NSSA (Not So Stubby Areas), OSPFv2, 438
NTP (Network Time Protocol), 540
numbering plans, PSTN switches, 567-568
OC (Optical Carrier) rates, SONET/SDH, 226
online resources, 699
OpenDaylight, 135
Operate phase (network design), PPDIOO, 15
Operation Management process (Manage phase), 11
optimization
IT, 6
Optimization process (Manage phase), 11
Optimize phase (network design), PPDIOO, 15
origin attributes, BGP, 450
OSPF (Open Shortest Path First), 383, 388-389
OSPFv2, 384, 462
 ABR, 434-436, 440
 adjacencies, 431
 advancements to OSPFv3, 440
 areas, 432-433
 ASBR, 434-436
 backbone routers, 434
 characteristics of, 439
 cost metric, 430-431
 DR, 435
 hello timers, 431
 internal routers, 434
 LSA, 436
 neighbor discovery, 431
 NSSA, 438
 router authentication, 439
 route redistribution, 460
 stub areas, 437
 totally stubby areas, 438
 virtual links, 438
OSPFv3, 384, 462
 areas, 440
 ASBR, 440
 backbone routers, 440
 changes from OSPFv2, 440
 characteristics of, 443
 internal routers, 440
 IPv6 and, 353
 LSA, 441-443
 route redistribution, 460
outdoor wireless, WLAN, 195-196
outside/inside global addresses, 301
outside/inside local addresses, 301
overlapping dynamic NAT, 300
overloading dynamic NAT, 300
packets
 filtering firewalls, 528
 inspection, NBAR, 233
 loss, VoIP, 594
 packet-switched WAN, 252
 packetized voice systems, converged multiservice networks, 571
 sniffers, 109
Padding field (IPv4 headers), 291
partial-mesh topologies, WAN, 253
passwords (security), 505
PAT (Port Address Translation), 301, 313
path attributes, BGP, 449
path isolation, network virtualization, 156-157
path MTU, IPv6, 349-350
Payload Length field (IPv6 headers), 338
PBM (Plan, Build, Manage) phase
 Build phase, 11-12
 design methodology, 16
 Manage phase, 11-12
 Plan phase, 10-12
PBR (Policy-Based Routing), 455
PBX switches, voice networks, 559
PBX-to-CO trunks, 561
PCI DSS (Payment Card Industry Data Security Standard) security legislation, 489
PEAP (Protected Extensible Authentication Protocol), 183
Pearson Cert Practice Test engine, 655, 659-660
Pearson IT Certification website, 655-657
performance, networks
checklists, 23
managing, 619
per-service DMZ, 238
physical security, 510-511
pilot sites, 25
PIM DR, 469
PIM-SM, 469
PKI (Public Key Infrastructure), 542
Plan phase (network design), 9
PBM, 10-12
PPDIOO, 14-15
PoE (Power over Ethernet), 197, 575
point-to-point topologies, WAN, 254
poison reverse, routing loops, 392
policing (QoS), 233-235
policy and control (borderless network architectures), 7
PortFast, 97, 103-105
ports
authentication, WLAN security, 173
CAS circuits, 562
CCS circuits, 562-563
channelized T1/E1 circuits, 562
E&M, 561
FXO, 561
FXS, 561
scanning attacks, 491
security, 527
STP switch ports, 102
voice networks, 561-562
power requirements, DC, 139-140
PPDIOO (Prepare, Plan, Design, Implement, Operate, Optimize) phase
benefits of, 12-13
Design phase, 14-15
Implement phase, 15
Operate phase, 15
Optimize phase, 15
Plan phase, 14-15
Prepare phase, 14-15
PQ (Priority Queuing), 234
practice tests (exam preparation), 655-660
Prefix Length field (RIPng message format), 397
Premium Editions (exam preparation), 657
Prepare phase (PPDIOO), 14-15
preparing for the exam
Cisco Learning Network, 657
memory tables, 657
Pearson Cert Practice Test engine, 655, 659-660
Pearson IT Certification website, 655-657
practice tests, 655-660
Premium Editions, 657
review tools
chapter-ending review tools, 658
Pearson IT Certification website, 655
review/study plan, 658
subnetting practice, 658-659
private IP addresses, 313
private IPv4 addresses, 299
private IPv6 addresses, 355
private links, 232
Private MPLS (Multiprotocol Label Switching), 267
Private WAN (Wide Area Networks), 266
processing delays, VoIP, 593-594
Product Support process (Manage phase), 11
programmability (network), enterprise DC, 133
ACI, 135
API, 135
SDN, 134
SDN controllers, 134
project deliverables
HLD documents, 16
LLD documents, 16
NRFU documents, 16
propagation delay, VoIP, 593-594
Protocol field (IPv4 headers), 290-291
protocol translation mechanisms, IPv4-toIPv6 transitions, 359-360
prototype networks, 25
proxy firewalls. See application level getaways
pseudowires. See VPWS
PSTN (Public Switched Telephone Networks)
SP edge module, 56
switches
 ACD, 569
centrex services, 569
country codes, 567-568
database services, 569
IVR systems, 569
numbering plans, 567-568
voice mail, 569
voice networks, 559-560, 567-569
public IP addresses, 313
public networks, 301
pulse (rotary) dialing, digital signaling, 567
Pure OpenFlow, 135
PVC (Permanent Virtual Circuits), 225
PVST+ (Per VLAN Spanning Tree Plus), 102
QoS (Quality of Service). See also bandwidth
 Auto QoS, 599
campus LAN, 111-112
classification, 233
 congestion management, 234
 link efficiency, 235-236
policing, 233-235
QoS policing, 495
QPPB, 446
queueing, 233-235
traffic shaping, 233-235
video networks, 595-599
VoIP, 595-599
WAN and enterprise edge design, 233-236
 window size, 236
WLAN campus design, 197-199
QPPB (QoS Policy Propagation on BGP), 446
Query packets, EIGRP, 403
queueing
delays, VoIP, 593-594
QoS, 233-235
rack-mounted servers, enterprise DC, 136
Rapid PVST+ (Per VLAN Spanning Tree Plus), 102
RAP (Rooftop AP), 196
RDP (Remote Desktop Protocol), 60
REAP (Remote-Edge AP), WLAN branch design, 200
reconnaissance
 networks, 109
security threats, 490-491
records (CDR), voice networks, 571
redistribution (routing), 458-460
redundancy
 enterprise brand architectures, 271
 link media, 65-66
 routes, 66
 availability, 63-64
 load balancing, 63
 servers, 62, 66
 VSS, 46-47
WAN
 backup links, 263
 bandwidth, 263
Q.SIG, 563, 566
IPsec tunneling across the Internet, 263-264
load sharing/balancing, 263
secondary WAN links, 263

WLAN
controller redundancy design, 190-192
N+1 WLC redundancy, 190-192
N+N+1 WLC redundancy, 191-192
N+N WLC redundancy, 191-192

WLC
controller redundancy design, 190-192
N+1 WLC redundancy, 190-192
N+N WLC redundancy, 191-192
N+N+1 WLC redundancy, 191-192
workstation-to-router redundancy protocols, 66
ARP, 60
Explicit Configuration protocol, 60
GLBP, 62
HSRP, 61
RDP, 60
RIP, 61
VRRP, 62
VSS, 47

regulation, network design, 6
reliability
reliability metric, routing protocols, 391, 402
WAN and enterprise edge design, 231
remote access VPN, 236, 241
remote modules (Cisco Enterprise Architecture model)
Enterprise Branch module, 57-59
Enterprise Data Center module, 58-59
Enterprise Teleworker module, 58-59
remote site connectivity, WAN, 254-255
remote site LAN (Local Area Networks), 110
removal of borders, network design, 6
repeaters, LAN, 89

Reply packets, EIGRP, 403
requirements (customer) and network design, 17-18
resources (web), 699
response time, WAN and enterprise edge design, 230-231
return on investment, network design, 6
review tools (exam preparation)
chapter-ending review tools, 658
Pearson IT Certification website, 655
review/study plan (exam preparation), 658
RF groups, WLAN, 193-194
RF site surveys, WLAN, 194
RIP (Routing Information Protocol), 61
RIPv1, 382-383, 393-395
RIPv2, 382-383, 388, 393
authentication, 394
classification of, 396
message format, 394-395, 398
network design, 396
routing database, 394
timers, 396
RIPng, 383, 386, 393
authentication, 397
classification of, 398
IPv6 and, 353
message format, 397
network design, 398
timers, 397
risk assessments (security), 500-501
risk indexes (security), 501
RMON (Remote Monitoring), 619, 631
NetFlow versus, 628
RMON1, 624-625
RMON2, 625-626
roaming
intercontroller roaming, 187-188
intracontroller roaming, WLAN, 187
Rogue Detector mode (AP), 181
root bridges, 90, 102
Root Guard, 97, 104-105
rotary (pulse) dialing, digital signaling, 567
route redundancy, 66
 availability, 63-64
 load balancing, 63
route reflectors, BGP, 446-447
route summarization
 hierarchical network models, 42
 IPv4 addresses, 311
 IPv6 addresses, 354
Route tag field
 RIPng message format, 397
 RIPv2 message format, 395
routers
 ABR
 OSPFv2, 434-436
 OSPFv3, 440
 ASBR
 OSPFv2, 434-436
 OSPFv3, 440
 authentication, OSPFv2, 439
backbone routers
 OSPFv2, 434
 OSPFv3, 440
 BSR, 470
internal routers
 OSPFv2, 434
 OSPFv3, 440
IS-IS, 410
ISR G2, 525
LAN, 91-92
security, 548
stub routers, EIGRP, 404
workstation-to-router redundancy protocols, 66
 ARP, 60
 Explicit Configuration protocol, 60
 GLBP, 62
 HSRP, 61
 RDP, 60
 RIP, 61
 VRRP, 62
 VSS, 47
routing
 loops, 392-393
 PBR, 455
 route filtering, 461
 route redistribution, 458-460
 route summarization, 455-458
 weight, BGP, 453
routing protocols
 administrative distance, 386-387
 bandwidth metric, 389, 401-402, 409
 BGP, 382-383, 388
 characteristics of, 380
 classful routing protocols, 385
 classless routing protocols, 385
 composite metric, 403, 409
 cost metric, 389
 counting to infinity, 393
 delay metric, 391, 402
 distance-vector routing protocols, 383-384
 dynamic routing assignments, 380-381
 EGP versus IGP, 382
 EIGRP, 383-388, 398
 Acknowledgment packets, 403
 bandwidth metric, 401-402
 characteristics of, 399
 composite metric, 403
 delay metric, 402
 DUAL, 400-401, 407
 Hello packets, 403
 IPv4, 406
 IPv6, 406-408
 neighbor discovery/recovery, 399
 network design, 404-405
 protocol-dependent modules, 399
 Query packets, 403
 reliability metric, 402
 Reply packets, 403
 RTP, 400
 stub routers, 404
SDN (Software-Defined Networking) 759

- timers, 399-401
- Update packets, 403
- variance command, 405

flat routing protocols, 385
hierarchical routing protocols, 385
hop count, 388-389
IGP versus EGP, 382
IPv4 protocols, 386
IPv6 protocols, 386
IS-IS, 388, 408
 - authentication, 411
 - bandwidth metric, 409
 - characteristics of, 411-412
 - composite metric, 409
 - DR, 410
 - NET addressing, 409
 - network design, 409-411
 - routers (areas), 410
link-state routing protocols, 384
load metric, 390
MTU metric, 391
OSPF, 383, 388-389
 - OSPFv2, 384
 - OSPFv3, 384
poison reverse, 392
reliability metric, 391, 402
RIPng, 383, 386, 393
 - authentication, 397
 - characteristics of, 398
 - message format, 397
 - network design, 398
 - timers, 397
RIPv1, 382-383, 393-395
RIPv2, 382-383, 388, 393
 - authentication, 394
 - characteristics of, 396
 - message format, 394-395, 398
 - network design, 396
 - routing database, 394
 - timers, 396
routing loops, 392-393
split horizon, 392
static routing assignments, 380-381
summarization, 393
triggered updates, 393
RP (Rendezvous Points), Auto-RP, 469
RPVST+ (Rapid Per-VLAN Spanning Tree Plus), 97, 147
RRM (Radio Resource Management)
 - WLAN, 192-193
 - WLC, 193
RT (Resource Records), 320
RSN (Robust Security Networks), WLAN, 172
RSVP (Resource Reservation Protocol), VoIP, 597
RTCP (Real-time Transport Control Protocol), VoIP, 582-583, 590
RTP (Real-time Transport Protocol), 236
cRTP, 583-586, 599
EIGRP packets, 400
VoIP, 582-583, 589

S

SAINT (Security Administrator’s Integrated Network Tool), 492
scaling servers, 155
SCCP (Skinny Client Control Protocol), VoIP, 582, 589
scenarios (comprehensive)
 - Big Oil and Gas, 642-643, 650-651
 - Diamond Communications, 645-646, 652-653
 - Friendswood Hospital, 641-642, 646-650
 - Video Games Spot, 643-645, 651-652
SCF (Security Control Framework), 526
SCOP (Scope) field (multicast IPv6 addresses), 345
SCP (Signaling Control Points), SS7, 567
SDN (Software-Defined Networking)
 - Application layer, 134
Control layer, 134
controllers, 134-135
enterprise DC, 134
Infrastructure layer, 134

security
4-way handshakes, 172
AAA, 542
accounting, 506
ACL, 495
adware, 490
AES, 172
AIM, 543
AMP, 538
application security, 533
ASA, 525, 540, 543, 548
ASA Services Modules, 544
authentication, 173, 182-183, 506, 532
authorization, 506
AVC, 538
campus networks, 545
Catalyst 6500 security service modules, 544
certificates, 506
Cisco Catalyst switches, 526
Cisco ESA, 538
Cisco ISE, 527
Cisco SAFE
ASA, 525
benefits of, 525
Cisco Catalyst switches, 526
Cisco SCF, 526
Compliance, 524
ISR G2, 525
Management, 525
Secure Services, 524
Security Intelligence, 525
Segmentation, 525
Threat Defense, 524
Cisco TDS
infrastructure protection, 512
physical security, 510-511
Cisco WSA, 538-539
confidentiality breaches, 496-497
configuration/software archive hosts, 540
content security defense, 533
continuous security, 501-502
CSM, 540
DAI, 495
data centers, 546-547
data integrity, 509-510
data leaks, 490-491
DC, 150
DDoS attacks, 495
design goals, 488
digital security, 510
disclosure/data modification attacks, 490-491
DoS attacks, 490, 495
design goals, 488
encryption
AES, 172
decryption, 529
encryption keys, 507-508
fundamentals of, 507
endpoints, 533, 545
e-mail, ESA, 538
enterprise edge, 548-550
firewalls, 527
ACL, 530
antivirus software, 529
application level gateways, 528
application-filtering, 529
decryption, 529
guidelines, 530
host-based firewalls, 528
hybrid firewalls, 529
IOS, 542
IPS, 529
NAT, 529
NGFW, 529
packet-filtering firewalls, 528
stateful firewalls, 528
transparent mode firewalls, 529
URL filtering, 529
user identification, 529
group key handshakes, 172
identity theft/fraud, 490-491
IDS, 534
guidelines, 535-536
pro/cons, 535
infection containment, 533
infrastructure protection, 512
integrating security into network devices
ASA, 543
ASA VPN, 543
Catalyst 6500 security service modules, 544
Cisco ISE, 544
endpoint security, 545
IOS security, 542
ISR G2 security, 542-543
integrity violations, 496-497
IOS security, 542
IPS
FirePOWER IPS, 538
guidelines, 535-536
inline IPS and anomaly detection, 534
IOS, 542
pro/cons, 535
signatures, 495
IPS NME, 543
IPsec
IOS, 542
IPsec VPN SPA, 544
IPv6, 352
ISE, 540, 544
ISR G2, 525, 542-543
LanGuard network security scanner, network audits, 20
legislation, 489
lifecycle of, 497-498
malware, 490, 538
management solutions, 512-513
managing, 539
ASA, 540
configuration/software archive hosts, 540
CSM, 540
ISE, 540
networks, 619
NTP, 540
security management network, 540-541
system administration jump hosts, 540
MBSA, 492
NetFlow, 536
Network Analysis Module 3, 544
networks
abuse, 490-491
access control, 506
design, 502
managing, 619
NGIPS, 538
NTP, 540
passwords, 505
physical security, 510-511
PKI, 542
policies, 497
basic approach of, 498
components of, 499-500
continuous security, 501-502
creating, 498
defined, 498
purpose of, 499
risk assessments, 500-501
risk indexes, 501
port scanning, 491
port security, 527
process of, 497-498
QoS policing, 495
reconnaissance attacks, 490-491
risks
assessments, 500-501
data confidentiality, 494
security

- data integrity, 494
- indexes, 501
- system availability, 494-495
- targets, 494
- routers, 548
- RSN, 172
- Secure Services, 506
 - data integrity, 509-510
 - DMZ, 237
 - encryption, 507-508
 - transmission confidentiality, 509
 - VPN protocols, 508-509
- service disruption, 490-491
- SNMP, 536
 - SNMPv1, 624
 - SNMPv2, 624
 - SNMPv3, 623-624
- spyware, 490
- SSH, 542
- SSL, 542
- Syslog, 536
- system administration jump hosts, 540
- targets, 494
- threat categories
 - adware, 490
 - data leaks, 490-491
 - DDoS attacks, 495
 - disclosure/data modification, 490-491
 - DoS attacks, 490, 495
 - identity theft/fraud, 490-491
 - malware, 490
 - network abuse, 490-491
 - reconnaissance, 490-491
 - service disruption, 490-491
 - spyware, 490
 - unauthorized access, 490-494
- threat detection/mitigation, 538, 536-537
- tokens, 505
- transmission confidentiality, 509
- trust/identity management
 - 802.1X, 527
- access control deployments, 532
- ACL, 527
- certificates, 506
- Cisco ISE, 527, 544
- domains of trust, 503-504
- firewalls, 527-530
- identity-based network services, 531
- network access control, 506
- passwords, 505
- port security, 527
- tokens, 505
- unauthorized access attacks, 490-494
- uRFP, 495
- URL filtering, 538
- USB, 543
- voice networks, Secure Voice, 543
- VPN
 - ASA VPN, 543
 - built-in acceleration, 543
 - IPsec VPN SPA, 544
 - WebVPN Services Module, 544
- vulnerability scanners, 492-493
- WebVPN Services Module, 544
- WLAN, 172
 - controlling server access, 174
 - design approach, 173
 - dynamic WEP keys, 174
 - LEAP, 174
 - port-based authentication, 173
 - unauthorized access, 173
- segmentation
 - Cisco SAFE, 525
 - networks, enterprise WAN architectures, 206
- serialization delay, VoIP, 593-594
- server distribution switches, 110
- server farm modules, 110
- servers
 - access, controlling, WLAN, 174
 - blade servers, enterprise DC, 136
 - connectivity options, 111
enterprise DC, 136
rack-mounted servers, enterprise DC, 136
redundancy, 62, 66
scaling, 155
virtualization, 155
service block IPv6 deployment model, 362-363
service disruption (security threats), 490-491
Service-Port interface (WLC), 184-185
Service Provider VPN
Enterprise VPN versus, 255-263
Layer 2 VPN service, 260
 VPLS, 262
 VPWS, 261
Layer 3 VPN service, 260
 Hybrid WAN, 273-275
 MPLS, 262-263
Metro Ethernet, 259-260
MPLS
 Layer 3 VPN service, 262-263
 Private MPLS, 267
 VPLS, 261
VPLS, 261-262
VPWS, 260-261
services edge, network virtualization, 157
services layer (enterprise DC), 130
session control services, video networks, 579
Set request messages
 SNMPv1, 622
 SNMPv2, 623
shared DMZ, 238
shared links, 232
show commands, network audits, 20-22
signaling
 CAS T1/E1 circuits, 562, 565
 CCS ISDN PRI circuits, 563-565
 E&M, 562-565
ground-start signaling, 562-563
IEEE 802.1P, VoIP, 596
ISDN PRI/BRI circuits, 565-566
loop-start signaling, 562-563
Q.SIG, 563, 566
SS7 interswitch PSTN signaling, 563, 566-567
voice networks
 analog signaling, 562-567
digital signaling, 562-567
signatures (digital), 510
single NIC (Network Interface Cards), 111
SIP (Session Initiation Protocol), VoIP, 582, 588-590
site-to-site VPN, 236, 241
SLA (Service Level Agreements), WAN, 218
SLAAC (Stateless Address Autoconfiguration)
 DHCPv6 and, 352
globally unique IPv6 addresses, 350-351
link-local IPv6 addresses, 350
small LAN (Local Area Networks), 110
small office design, enterprise branch architectures, 275-276
Sniffer mode (AP), 181
SNMP (Simple Network Management Protocol), 536, 619
 components of, 620
 MIB, 620-621
 NetFlow versus SNMP, 628
 network audits, 20
 SNMPv1, 622-624
 SNMPv2, 622-624
 SNMPv3, 623-624
Solarwinds, Cisco Prime Infrastructure and, 20
Solution Support process (Manage phase), 11
SONET/SDH, 225-226
Source Address field
 IPv4 headers, 291
 IPv6 headers, 338
SOX (Sarbane-Oxley) security legislation, 489
spanning-tree portfast default global commands, 97
SP (Service Provider) edge, 220
SP edge module
 Cisco Enterprise Architecture Model, 56
 Enterprise Edge model, 56
SP MPLS/IP VPN, 267
split horizon, routing loops, 392
spyware, 490
SS7 interswitch PSTN signaling, 563, 566-567
SSH (Secure Shell), 542
SSID (Service Set Identifiers), WLAN, 171
SSL (Secure Sockets Layer), 542
SSP (Signaling Switching Point), SS7, 567
standalone mode (H-REAP), 200
star (hub-and-spoke) topologies, WAN, 252
stateful firewalls, 528
stateless firewalls, See packets, filtering firewalls
static NAT, 300-301
static routing, 380-381, 462
storage
 DC storage, 144-146
 storage services, video networks, 579
STP (Spanning Tree Protocol)
 bridges and, 90
 campus LAN, 101-103
 loops, 106, 147
 MST, 103
 PVST+, 102
 Rapid PVST+, 102
 root bridges, 102
 RPVST+, 97, 147
 switch ports, 102
 UDLD protocol, 106
STP Toolkit
 BackboneFast, 104-105
 BPDU Filter, 104-105
 BPDU Guard, 97, 104-105
 Design Strategy, 97
 Loop Guard, 97, 104-106
 PortFast, 97, 103-105
 Root Guard, 97, 104-105
 UplinkFast, 104-105
Strategy and Analysis process (Plan phase), 10
stub areas, OSPFv2, 437
stub domains, 301
stub routers, EIGRP, 404
study/review plan (exam preparation), 658
Subnet Mask field (RIPv2 message format), 395
subnetting
 IPv4 addresses
 AND logical operation, 304
design example, 303-304
determining network portion of IP addresses, 304-305
planning for future growth, 310
subnet allocation case study, 314-316
subnet masks, 302-305
VLSM, 305-310
IPv6 addresses, 354-355
practicing (exam preparation), 658-659
summarization (routing), 393, 455-458
SVC (Switched Virtual Circuits), 225
switches
 Catalyst 6500 security service modules, 544
 Cisco Catalyst switches, 526
 LAN, 90-91
 MST, 103
 Nexus 9000 series switches, 135
 PBX switches, voice networks, 559
 PSTN switches
 ACD, 569
 Centrex services, 569
country codes, 567-568
database services, 569
IVR systems, 569
numbering plans, 567-568
voice mail, 569
voice networks, 559-560, 567-569
PVST+, 102
Rapid PVST+, 102
server distribution switches, 110
server farm switches, 110
STP switch ports, 102
virtual switches, 156
switchport host commands, 97
Syslog, 20, 36, 630-631
system administration jump hosts and security management, 540
system availability (security risks), 494-495

T

T1 circuits (channelized), 562, 565
tandem trunks, 560
tariffs, 218, 229
TDM (Time-Division Multiplexing), 225
TDS (Threat Defense System)
 infrastructure protection, 512
 physical security, 510-511
technological forces and network design, 6
teleworkers
 enterprise teleworker design, WAN, 279-280
 ISR, 280
tests (practice), 655-660
TFTP (Trivial File Transfer Protocol), VoIP, 582, 589
Threat Defense (Cisco SAFE), 524
threat detection/mitigation (security), 533, 536-537
throughput, WAN and enterprise edge design, 231. See also bandwidth
tie trunks, 561
Time to Live field (IPv4 headers), 290-291
timers
 EIGRP, 399-401
 RIPng, 397
 RIPv2, 396
tokens (security), 505
toll-connecting trunks, 561
top-down network design, 24-25
topologies, WAN
 full-mesh, 253
 hub-and-spoke (star), 252
 partial-mesh, 253
 point-to-point, 254
 star (hub-and-spoke), 252
ToS (Type of Service) field (IPv4 headers), 290-293
Total Length field (IPv4 headers), 290-291
totally stubby areas, OSPFv2, 438
traffic
 BHT, 570
 busy hour (voice networks), 570
 shaping (QoS), 233-235
Traffic Class field (IPv6 headers), 337
transmission confidentiality (security), 509
transparent mode firewalls, 529
transport services, video networks, 579
Trap messages
 SNMPv1, 622
 SNMPv2, 623
triggered updates, routing loops, 393
trunking
 CO-to-PBX trunks, 561
 DTP, 105
 interoffice trunks, 560
 intertoll trunks, 561
 PBX-to-CO trunks, 561
tandem trunks, 560
tie trunks, 561
toll-connecting trunks, 561
 VLA, 105
voice networks, 560-561
VTP, 97
trust/identity management (security)
802.1X, 527
access control deployments, 532
ACL, 527
certificates, 506
Cisco ISE, 527, 544
domains of trust, 503-504
firewalls, 527-530
identity-based network services, 531
IOS, 542
network access control, 506
passwords, 505
port security, 527
tokens, 505
tunneling
EAP-FAST, 183
EAP-TTLS, 183
EoIP tunnels, WLAN, 194
IPsec tunneling across the Internet, 263-264
IPv6 over IPv4 tunnels, 357-359
ISATAP, 359
VFI, 258
UCS (Unified Computing System), enterprise DC, 132
UDLD (Unidirectional Link Detection) protocol, 106
UMTS (Universal Mobile Telecommunications Service), 224
unauthorized access (security threats), 109, 490-494
unicast IPv4 addresses, 299
unicast IPv6 addresses, 342, 346
global aggregatable addresses, 343
global unicast addresses, 342
IPv4-compatible IPv6 addresses, 344
link-local addresses, 343
unique local addresses, 343
unified communications DMZ, 237
unified computing, data center and virtualization architectures, 9
unified fabric
data center and virtualization architectures, 8
enterprise DC, 132
unified management, data center and virtualization architectures, 8
unified networks, 571
UNII frequencies, WLAN, 170
unique local IPv6 addresses, 343
Update packets, EIGRP, 403
updates
exam updates, 699
triggered updates, routing loops, 393
UplinkFast, 104-105
uRFP (Unicast Reverse Path Forwarding), 495
URL filtering, 529, 538
USB (Universal Serial Buses), security, 543
user authentication, 532
user identification, 529
user services, borderless network architectures, 7
user services layer (enterprise DC), 131
UTP (Unshielded Twisted Pair), 1000BASE-T Gigabit Ethernet over UTP, 86
VAD (Voice Activity Detection), VoIP, 590-591
Validation process (Build phase), 11
variance command (EIGRP), 405
Version field
IPv4 headers, 289-291
IPv6 headers, 337
RIPng message format, 397
RIPv2 message format, 395
voice networks 767

video

collaboration and video architectures, 8
enterprise WAN architectures, 265

video networks

 access services, 579
 bandwidth, 595-599
 bridging services, 579
 CCs, 570
 deployment considerations, 578-579
 Erlangs, 569-570
 QoS, 595-599
 session control services, 579
 storage services, 579
 transport services, 579

Video Games Spot comprehensive scenario, 643-645, 651-652

virtual circuits

 PVC, 225
 SVC, 225

Virtual interface (WLC), 185

virtual links, OSPFv2, 438

virtual offices

 enterprise teleworker design, WAN, 279-280
 ISR, 280

virtual switches, 156

virtualization

 data center and virtualization architectures, 8-9
 DC, 151

 access control, 156-157
 device contexts, 155
 device virtualization, 153
 network virtualization, 152
 path isolation, 156-157
 risks of, 152
 servers, 155
 services edge, 157
 virtual switches, 156
 vPC, 154
 VRF, 154
 VSS, 153

 device contexts, 155
 device virtualization, DC, 153
 enterprise DC, 132
 networks

 access control, 156-157
 DC, 152
 design, 6
 path isolation, 156-157
 services edge, 157

 servers, 155
 virtual switches, 156
 vPC, 154
 VRF, 154
 VSS, 153

viruses, antivirus software, 529

VLAN (Virtual Local Area Networks)

 MST, 103
 PVST+, 102
 RPVST+, 97, 102, 147
 trunking, 105
 VTP, 97

VLSM (Variable-Length Subnet Masks), IPv4 addressing

 address assignment

 example 1, 305-307
 example 2, 308-310

 IP telephony networks, 308
 loopback addresses, 307

VMware NSX Controller, 135

VoATM (Voice over Asynchronous Transfer Mode), 572

VoFR (Voice over Frame Relay), 572

voice mail (PSTN), 569

voice networks

 BHT, 570
 blocking probability, 571
 busy hour, 570
 CDR, 571
 converged multiservice networks

 call processing, 571
 codecs, 580-581
design recommendations, 600

dial plans, 571

IPT, 574-578

packetized voice systems, 571

service class recommendations, 600-602

VoATM, 572

VoFR, 572

VoIP, 572-575, 581-599

enterprise WAN architectures, 265

GoS, 569

IPT

codes, 580-581

components of, 574

CUCM, 574-577

design goals, 575

design recommendations, 600

functional areas, 574

multisite WAN with centralized all

processing deployments, 576

multisite WAN with distributed all

processing deployments, 577

PoE, 575

service class recommendations,

600-602

single-site deployments, 576

unified CME deployments, 578

local loops, 560-561

PBX switches, 559

ports, 561-562

PSTN switches, 559-560, 567-569

security, Secure Voice, 543

signaling

analog signaling, 562-567

digital signaling, 562-567

trunks, 560-561

VoIP

bandwidth, 590-592, 595-599

control protocols, 581-589

delays, 592-593

echo cancellation, 595

packet loss, 594

QoS, 595-599

transport controls, 581-589

VAD, 590-591

VoIP (Voice over Internet Protocol), 572-573

bandwidth, 590-592, 595-599

control protocols, 581-589

delays, 592-593

design goals, 575

echo cancellation, 595

packet loss, 594

QoS, 595-599

transport protocols, 581-589

VAD, 590-591

vPC (Virtual Port Channel), 154

VPLS (Virtual Private LAN Services), 261-262

VPN/Remote Access module (Enterprise

Edge module), 54-55

VPN (Virtual Private Networks), 240

acceleration (built-in), 543

ASA VPN, 543

benefits of, 263

Enterprise VPN

DMVPN, 257-258

GETVPN, 258

GRE, 257

IPsec, 255-257

Service Provider VPN versus, 255-263

VTI, 258

Extranet VPN, 241

IPsec VPN SPA, 544

Layer 2 VPN service, 260

VPLS, 262

VPWS, 261

Layer 3 VPN service, 260

Hybrid WAN, 273-275

MPLS, 262-263

protocols, Secure Services, 508-509
remote access
 requirements, 241
 VPN, 241
Service Provider VPN
 Enterprise VPN versus, 255-263
 Layer 2 VPN service, 260-262
 Layer 3 VPN service, 260-263, 273-275
 Metro Ethernet, 259-260
 MPLS, 261-263
 VPLS, 261-262
 VPWS, 260-261
site-to-site VPN, 241
WebVPN Services Module, 544
VPWS (Virtual Private Wire Services), 260-261
VRF (Virtual Routing and Forwarding), 154
VRRP (Virtual Router Redundancy Protocol), 62
VSS (Virtual Switching Systems), 46-47, 98, 153
VTI (Virtual Tunnel Interface), 258
VTP (VLAN Trunking Protocol), 97
vulnerability scanners, 492-493

W – X – Y – Z

WAN (Wide Area Networks)
 backups
 backup links, 263
 bandwidth, 263
 IPsec tunneling across the Internet, 263-264
 secondary WAN links, 263
benefits of, 263
cell-switched WAN, 252
circuit-switched WAN, 252
connectivity, 219
costs, 218
defining, 218
design requirements, 218
DMZ connectivity, 236-238
enterprise branch architectures
 backups, 271
collapsed core design, 275
components of, 270
design questions, 270
dual MPLS carriers, 272-273
dual WAN carriers, 272
Flat Layer 2 design, 274
Hybrid WAN, 271-275
Internet traffic flows, 274
Internet WAN, 271
large branch design, 275, 278-279
medium branch design, 275-277
MPLS WAN, 271
single MPLS carriers, 272
single WAN carriers, 271
small branch design, 275-276
enterprise edge design methodologies, 229
 application requirements, 230
 bandwidth, 231-236
 key design principle, 230
 links, 232
 QoS and bandwidth optimization, 233-236
 reliability, 231
 response time, 230-231
 throughput, 231
enterprise MAN/WAN architectures, 265
 ISP service, 267
 Private MPLS, 267
 Private WAN, 266
 SP MPLS/IP VPN, 267
enterprise teleworker design, 279-280
Enterprise VPN
 DMVPN, 257-258
 GETVPN, 258
 GRE, 257
 IPsec, 255-257
 Service Provider VPN versus, 255-263
 VTI, 258
enterprise WAN architectures, 55-56, 59
components of, 268-270
growth, support for, 265
HA, 264
implementation costs, 265
network segmentation support, 265
operational complexity, 265
operational expenses, 265
video support, 265
voice support, 265
Hybrid WAN, enterprise branch architectures, 271-275
Internet connectivity, 238-240
Internet WAN, enterprise branch architectures, 271
leased line WAN, 252, 255
load sharing/balancing, 263
MPLS, enterprise branch architectures, 271-273
multisite WAN
centralized call processing model, 576
distributed call processing model, 577
packet-switched WAN, 252
remote site connectivity, 254-255
Service Provider VPN
Enterprise VPN versus, 255-263
Layer 2 VPN service, 260-262
Layer 3 VPN service, 260-263, 273-275
Metro Ethernet, 259-260
MPLS, 261-263
VPLS, 261-262
VPWS, 260-261
SLA, 218
tariffs, 218, 229
topologies
full-mesh topology, 253
hub-and-spoke (star) topology, 252
partial-mesh topology, 253
point-to-point topology, 254
transport technologies
cable, 222
CIR, 228
comparison table, 220-221
dark fiber, 227
DSL, 222
DWDM, 228
Frame Relay, 224-225, 228
ISDN, 221
Metro Ethernet, 225
MPLS, 226-228
ordering/contracting, 228-229
SONET/SDH, 225-226
TDM, 225
wireless strategies, 223-224
usage, 218
virtual offices, 279-280
VPN, 240-241
WCS (Wireless Control System), 196
web resources, 699
WebVPN Services Module, 544
weight (routing), BGP, 453
WEP (Wired Equivalent Privacy), dynamic
WEP keys and WLAN, 174
WFQ (Weighted Fair Queuing), 234
window size (QoS), 236
wireless bridges, 223
wireless mesh
MAP, 196
RAP, 196
WCS, 196
WLAN, 195-196
WLC, 196
Wireshark, network audits, 20
WLAN (Wireless Local Area Networks), 223
AP, campus design, 196
authentication, 182-183
branch design, 200-201
workstation-to-router redundancy protocols

SSID, 171
standards, 169
 ISM frequencies, 170
 summary of, 171
 UNII frequencies, 170
wireless bridges, 223
wireless mesh, 195-196

WLC (WLAN Controllers), 183, 196
 AP controller equipment scaling, 185-186
 AP Manager interface, 185
 controller redundancy design
 N+1 redundancy, 190-192
 N+N+1 redundancy, 191-192
 N+N redundancy, 191-192
 Dynamic interface, 185
 LAP discovery of WLC via CAPWAP, 181-182
 Management interface, 184-185
 mobility groups, 189
 RRM, 193
 Service-Port interface, 184-185
 Virtual interface, 185
 WLAN, campus design, 197
 WLC LAG, 184-186

workstation-to-router redundancy protocols, 66
 ARP, 60
 Explicit Configuration protocol, 60
 GLBP, 62
 HSRP, 61
 RDP, 60
 RIP, 61
 VRRP, 62
 VSS, 47