CCNA Collaboration CICD 210-060 Official Cert Guide

Mike Valentine

Copyright© 2016 Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America
First Printing September 2015
Library of Congress Control Number: 2015943875

Warning and Disclaimer

This book is designed to provide information about the CCNA Collaboration CICD exam (210-060). Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.
About the Author

Michael Valentine has worked in the IT field since 1996 and became a trainer in 2001. Currently, he is a Cisco trainer with Skyline Advanced Technology Services and specializes in Cisco Unified Communications and CCNA classes. His accessible, humorous, and effective teaching style has demystified Cisco for thousands of students since he began teaching CCNA in 2002. Mike holds a bachelor of arts degree from the University of British Columbia and currently holds CCNA, CCNP, CCDP, CCVP, and CCSI No. 31461 certifications. Mike has developed courseware and labs for Cisco and its training partners. Mike is the coauthor of *CCNA Exam Cram (Exam 640-802)*, Third Edition (Que 2008); authored the *CCNA Voice Quick Reference Guide*, and has served as technical editor and contributor on several Cisco Press titles.

About the Technical Reviewers

Jason Ball currently works for Compass Business Solutions, a learning partner of Cisco. Compass specializes in teaching Collaboration related courses including CIVND 2. He holds many certifications, most of which are with Cisco. His current certifications with Cisco include CCNA Route/Switch, CCDA, CCSI, CCNA Video, CCNA Voice, CCNA Collaboration, CCNP Voice, CCNP Collaboration, CSE, LVCI, BACI, Cisco Video Network Specialist, and TVS Certified Specialist.

Michelle Plumb is a full-time Cisco Certified Systems Instructor (CCSI). She has 26+ years of experience in the field as an IT professional and telecommunications specialist. She maintains a high number of Cisco, Microsoft, and CompTIA certifications, including CCNP Voice (now known as CCNP Collaboration), MCSE, CompTIA A+, Network+, Project+, and iNet+. Michelle has been a technical reviewer for numerous books related to the Cisco CCNP Route and Switch, CCNP Voice, and CompTIA course materials. Her main passion is helping others learn these new and exciting technologies. She lives in Phoenix, Arizona, with her husband and two dogs.
Dedication

For my mother, Mary Hayes Valentine
Acknowledgments

Writing a book like this is basically awful. Other than the lifestyle of a Cisco Press author—the constant glamour, the fast cars, the celebrity parties in exotic places, and of course, the literal piles of cash that royalties haul in—there’s not much fun about parking your butt in a chair and hammering out chapters when there are many other urgent and interesting things needing your time. But it’s the thing I take the most pride in as an accomplishment in my career, and it’s something that I really feel needs to be good, so that people can use it, learn from it, and actually enjoy doing so.

This book simply wouldn't happen without the involvement of many individuals who variously supported, cajoled, threatened, motivated, reminded, negotiated, introduced, cooked, hugged, reality-checked, edited, coordinated, illustrated, and emailed—and most of them I don’t even know and sadly will never meet. If you worked on this book, contributed or in any way helped make it happen, or just make it better, thank you. I hope I can meet you and shake your hand to thank you in person someday.

Brett Bartow: For your professionalism when certain others lost theirs, and most especially for your uncommon kindness and caring. Thank you, sir.

Chris Cleveland: In my mind, you are some kind of mastermind, with the patience of stone and the unfailing ability to catch every single detail that I missed. All of them. Every time. Thanks. I don’t know how you do it.

Jeremy Cioara: For passing the torch.

Brian Morgan: I can't thank you enough. Your assistance made this one happen; I will buy the beer when we finally meet in person.

Toby Sauer: A dedicated and competent professional; an honorable man; a good friend and an unfailing supporter who will never hesitate to tell me what I did right, or when I messed up, and exactly how in either case. I value this.

Ed Misely: A good friend and terrifyingly capable technical resource, for his assistance with my labs.

Marshall Bradley: For your time and your help, and for having excellent taste in bass guitars and amps.

Indie and Marvin, the Cattle Dog odd couple: For keeping my feet warm and for always reminding me that Frisbee is more important than anything.

My family: Thank you, again, for your support, your patience, your love, and your belief in me. I can come upstairs now.
Contents at a Glance

Part I Voice Perspectives

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Traditional Voice Versus Unified Voice</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Understanding the Components of Cisco Unified Communications</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Understanding Cisco IP Phones</td>
<td>51</td>
</tr>
</tbody>
</table>

Part II Cisco Unified Communications Manager Express

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Getting Familiar with CME Administration</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>Managing Endpoints and End Users in CME</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>Understanding the CME Dial Plan</td>
<td>113</td>
</tr>
<tr>
<td>7</td>
<td>Enabling Telephony Features with CME</td>
<td>165</td>
</tr>
</tbody>
</table>

Part III Cisco Unified Communications Manager

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Administrator and End-User Interfaces</td>
<td>211</td>
</tr>
<tr>
<td>9</td>
<td>Managing Endpoints and End Users in CUCM</td>
<td>231</td>
</tr>
<tr>
<td>10</td>
<td>Understanding CUCM Dial Plan Elements and Interactions</td>
<td>267</td>
</tr>
<tr>
<td>11</td>
<td>Enabling Telephony and Mobility Features with CUCM</td>
<td>287</td>
</tr>
<tr>
<td>12</td>
<td>Enabling Mobility Features in CUCM</td>
<td>323</td>
</tr>
</tbody>
</table>

Part IV Voicemail and Presence Solutions

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Voice Messaging Integration with Cisco Unity Connection</td>
<td>343</td>
</tr>
<tr>
<td>14</td>
<td>Enabling CM IM and Presence Support</td>
<td>379</td>
</tr>
</tbody>
</table>

Part V Voice Network Management and Troubleshooting

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Common CME Management and Troubleshooting Issues</td>
<td>399</td>
</tr>
<tr>
<td>16</td>
<td>CUCM Monitoring, Maintenance, and Troubleshooting</td>
<td>417</td>
</tr>
<tr>
<td>17</td>
<td>Monitoring Cisco Unity Connection</td>
<td>449</td>
</tr>
<tr>
<td>18</td>
<td>Final Preparation</td>
<td>467</td>
</tr>
</tbody>
</table>
Part VI Appendixes

Appendix A Answers Appendix 473
Appendix B Exam Updates 477
Appendix C Managing CME Using the Command Line 479

Glossary 493
Index 507

CD-Only Appendixes

Appendix D Memory Tables
Appendix E Memory Table Answer Key
Appendix F Study Planner
Contents

Introduction xxiii

Part I Voice Perspectives

Chapter 1 Traditional Voice Versus Unified Voice 3

“Do I Know This Already?” Quiz 3

Analog Connections 6

Digital Connections 9

- Moving from Analog to Digital 9
- Channel Associated Signaling 11
- Common Channel Signaling 12

Understanding the PSTN 12

- Components of the PSTN 12
- Understanding PBX and Key Systems 13
- Connections To and Within the PSTN 14
- PSTN Numbering Plans 15

The Emergence of VoIP 16

- VoIP: Why It Is a Big Deal for Businesses 16
- The Process of Converting Voice to Packets 17
- The Role of Digital Signal Processors 21
- Understanding RTP and RTCP 23

Review All the Key Topics 25

- Complete the Tables from Memory 25
- Definitions of Key Terms 26

Chapter 2 Understanding the Components of Cisco Unified Communications 29

“Do I Know This Already?” Quiz 29

Unified Collaboration 32

Understanding Cisco Unified Communications Manager Express 33

- CME Key Features 34
- CME Interaction with Cisco IP Phones 35

Understanding Cisco Unified Communications Manager 37

- CUCM Key Features 37
- CUCM Database Replication and Interacting with Cisco IP Phones 38

Understanding Cisco Unity Connection 41

- Cisco Unity Connection Key Features 42
- Cisco Unity Connection and CUCM Interaction 43

Understanding Cisco Unified CM IM and Presence 44

- Cisco Jabber 45
CLI 218
User Management in CUCM: Roles and Access Control Groups 219

Roles 219
Access Control Groups 220
Describe the CUC Administration Interfaces 221
Cisco Unity Connection Administration 222
Cisco Unity Connection Serviceability 224
Describe the Cisco Unified CM IM and Presence Server Administration Interfaces 224
Cisco CM-IM and Presence Administration Interface 224
Cisco Unified IM and Presence Serviceability 225
Describe the End-User Interface for CUCM 226
Review All the Key Topics 228
Definitions of Key Terms 228

Chapter 9 Managing Endpoints and End Users in CUCM 231
“Do I Know This Already?” Quiz 231
Implementing IP Phones in CUCM 234
Special Functions and Services Used by IP Phones 234
NTP 234
CDP 235
DHCP 235
PoE 235
TFTP 235
DNS 235
IP Phone Registration Process 236
SIP Phone Registration Process 236
Preparing CUCM to Support Phones 237
Service Activation 237
DHCP Server Configuration 237
Configuring DHCP in Router IOS 239
IP Phone Configuration Requirements in CUCM 240
Device Pool 240
Device Defaults 242
Softkey Template and Phone Button Template 242
Profiles 242
Adding Phones in CUCM 243
Manual Configuration of IP Phones 243
Auto-Registration of IP Phones 247
Bulk Administration Tool 250
Auto Register Phone Tool 251
Self-Provisioning 252
Describe End Users in CUCM 252
End Users Versus Application Users 252
Credential Policy 253
Features Interacting with User Accounts 253
User Locale 254
Device Association 254
Implementing End Users in CUCM 255
Manual Entry 255
Bulk Import Using BAT 256
LDAP Integration 256
LDAP Synchronization 256
LDAP Authentication 257
LDAP Integration Considerations 257
LDAP Sync Agreements 259
LDAP Sync Mechanism 260
LDAP Custom Filters 260
Configure LDAP Sync 260
Activate DirSync 260
Configure the LDAP System 260
Configure the LDAP Directory 261
Verify LDAP Sync 262
Configuring LDAP Authentication 262
Verify LDAP Authentication 263
Create LDAP Custom Filters 263
Review All the Key Topics 264
Definitions of Key Terms 264

Chapter 10 Understanding CUCM Dial Plan Elements and Interactions 267
“Do I Know This Already?” Quiz 267
CUCM Call Flows 270
Call Flow in CUCM If DNS Is Used 270
Call Flow in CUCM If DNS Is Not Used 271
Centralized Remote Branch Call Flow 273
Centralized Deployment PSTN Backup Call Flow 274
Centralized Deployment Considerations and Limitations 275
PSTN Backup Using CAC 275
Distributed Deployment Call Flow 276
Call Routing Sources in CUCM 277
Call Routing Destinations in CUCM 277
Call Routing Configuration Elements 278
Route Pattern 278
Route List 279
Route Group 279
Gateways and Trunks 280
Call Routing Behavior 280
Digit Analysis 280
Hunt Groups 281
Class of Control 282
Partition 282
Calling Search Space 282
Interaction of Partitions and Calling Search Spaces 282
Line Device Configuration 283
Review All the Key Topics 284
Definitions of Key Terms 284

Chapter 11 Enabling Telephony and Mobility Features with CUCM 287

“Do I Know This Already?” Quiz 287
Describe Extension Mobility in CUCM 290
Enable EM in CUCM 291
Describe Telephony Features in CUCM 298
Call Coverage 298
Call Forward 298
Shared Lines 299
Barge and Privacy 299
Call Pickup 300
Call Hunting 300
Call Park 301
Intercom 301
CUCM Native Presence 301
Presence Architecture 302
Enable Telephony Features in CUCM 303
Enabling Call Coverage 303
Configuring Shared Lines 303
Configuring Barge 304
Configuring Call Pickup 305
Configuring Call Park and Directed Call Park 308
Configuring Call Hunting 310
Configuring Intercom Features 313
Configure CUCM Native Presence 315
Configuring BLF Speed Dials 315
Configuring Presence-Enabled Call Lists 316
Configuring Custom Presence Groups 317
Review All the Key Topics 321
Definitions of Key Terms 321

Chapter 12 Enabling Mobility Features in CUCM 323
“Do I Know This Already?” Quiz 323
Understanding CUCM Mobility Features 326
Describe Mobile Connect 326
Unified Mobility Architecture 327
Access Lists 327
Time-of-Day Access 327
Mobile Voice Access 328
Implementing Mobility Features in CUCM 328
Configuring Mobile Connect 329
Step 1: Configure Softkey Templates 329
Step 2: Configure User Accounts for Mobility 329
Step 3: Configure the IP Phone to Support Mobility Features 331
Step 4: Create Remote Destination Profiles 331
Step 5: Add Remote Destinations to Remote Destination Profiles 331
Step 6: Configure Ring Schedules for Each Remote Destination 332
Step 7: Configure Access Lists 333
Step 8: Apply Access Lists 334
Step 9: Configure Service Parameters 335
Configuring MVA 336
Step 1: Activate the MVA Service 337
Step 2: Configure Service Parameters 337
Step 3: Enable MVA for Each User 338
Step 4: Configure the MVA Media Resource 339
Step 5: Configure the MVA VXML Application at the IOS Gateway 340
Review All the Key Topics 341
Definitions of Key Terms 341

Part IV Voicemail and Presence Solutions

Chapter 13 Voice Messaging Integration with Cisco Unity Connection 343
“Do I Know This Already?” Quiz 343
Describe Cisco Unity Connection 346
Overview of Cisco Unity Connection 346
Single-Site and Multisite Deployment Considerations 346
CUC Integration Overview 347
CUC Integration with CUCM Using SCCP 347
CUC Integration Using SIP 348
CUC Features 349
System Settings 349
Enterprise Parameters and Service Parameters 350
LDAP 350
Call Handlers 350
Call Routing 351
Direct Routing Rules 351
Forwarded Routing Rules 352
Call Routing Rule Filters 352
Distribution Lists 352
Authentication Rules 352
Dial Plan 353
Describe Cisco Unity Connection Users and Mailboxes 353
User Templates 353
User Template Basics 353
Password Settings 354
Roles 354
Transfer Rules and Greetings 354
Call Actions 355
Message Settings, Message Actions, and Caller Input 355
TUI Settings 355
CUC End Users 355
Extension and Call Forward Options 356
Voice Messaging with SRST and AAR 356
Voicemail Box 356
Private Distribution Lists 356
Notification Devices 356
User Creation Options 356
CUC Voicemail Boxes 357
Message Aging Policy and Mailbox Quotas 357
Implement Cisco Unity Connection Users and Mailboxes 357
Configure End User Templates 357
User Template Basics 358
Password Settings 359
Roles 360
Message Settings 360
Chapter 14 Enabling CM IM and Presence Support 379

"Do I Know This Already?" Quiz 379

Describe CM-IMP Features 381

Jabber 381

Jabber Operating Modes 381
Enterpris Instant Messaging 382
Voice Calls 383
Video Calls 383
Integration Support 383
Cisco Unified Client Services Framework 383
Cisco Unified Communications Manager IP Phone Service 384

Describe Cisco Unified Presence Architecture 384

Integration with Microsoft Office Communications Server 385
Integration with LDAP 385
Integration with Cisco Unity Connection 385
Integration with Conferencing Resources 386
Integration with Calendar Resources 386
Architecture and Call Flow: Softphone Mode 386
Architecture and Call Flow: Deskphone Control Mode 386
IM/Chat, Compliance, and Persistent Chat 387
CM-IMP and QoS Considerations 387
Enabling CM-IMP 389
 Enabling End Users for Cisco Jabber in CUCM 389
 Step 1: Configure End Users in CUCM 389
 Step 2: Associate the Directory Numbers with the End Users in CUCM 390
 Step 3: Create a Cisco Unified CSF Device 390
 Step 4: Associate the CSF Device with the End User in CUCM 390
 Enabling End Users for Jabber in CUCM 390
 Enabling CUCM Presence Signaling Integration with CM-IMP 393
 Enabling End Users for Jabber in CM-IMP 394
 Troubleshooting Jabber 394
Review All the Key Topics 396
Definitions of Key Terms 396

Part V Voice Network Management and Troubleshooting

Chapter 15 Common CME Management and Troubleshooting Issues 399
 “Do I Know This Already?” Quiz 399
Troubleshooting 402
Troubleshooting Common CME Registration Issues 403
 Issue 1: Verifying PoE 405
 Issue 2: Voice VLAN Assignment 405
 Issue 3: DHCP Server 406
 Issue 4: TFTP Server 406
 Issue 5: CME Server 407
Troubleshooting Dial Plan and QoS Issues 407
 Dial Plan Issues 407
 QoS Issues 410
Review All the Key Topics 414
Definitions of Key Terms 414

Chapter 16 CUCM Monitoring, Maintenance, and Troubleshooting 417
 “Do I Know This Already?” Quiz 417
 Describe How to Provide End-User Support for Connectivity and Voice Quality Issues 421
Troubleshooting 421
Troubleshooting IP Phone Registration Problems 422
Deleting Unassigned Directory Numbers Using the Route Plan Report 424
Describe CUCM Reports and How They Are Generated 425
Generating Reports 425
Analyzing Reports 427
Understanding CUCM CDR Analysis and Reporting Tool Reports 427
Activate CAR-Related Services 428
Configure CDR Service Parameters 428
CAR Tool Users 429
CDR and CMR Architecture 429
CAR System Parameters 429
Exporting CDR and CMR Records 430
Generating CDR Reports 430
Report Generation Example 431
Generating System Reports 433
Generating Device Reports 434
Describe Cisco Unified RTMT 434
RTMT Interface 436
Monitoring CUCM with RTMT 436
Voice and Video Summary 437
Gateway Activity 437
Device Search 438
Database Summary 439
Call Activity 440
Alert Central 442
Remote Browse 443
Syslog 443
Describe the Disaster Recovery System 444
Using the DRS 445
Set Up a Backup Device 445
Create a Scheduled Backup 445
Perform a Restore 446
Review All the Key Topics 447
Definitions of Key Terms 447

Chapter 17 Monitoring Cisco Unity Connection 449
“Do I Know This Already?” Quiz 449
Generating and Accessing Cisco Unity Connection Reports 452
Cisco Unity Connection Serviceability Reports 452
Cisco Unified Serviceability: Serviceability Reports Archive 455
Analyzing Cisco Unity Connection Reports 457
Troubleshooting and Maintenance Operations Using Cisco Unity Connection Reports 459
Reports to Support Routine Maintenance 462
Review All the Key Topics 465
Definitions of Key Terms 465
Icons Used in This Book

- Communication Server
- PC
- PC with Software
- Sun Workstation
- Macintosh
- Terminal
- ISDN/Frame Relay Switch
- Token Ring
- Laptop
- File Server
- Web Server
- Ciscoworks Workstation
- ATM Switch
- Modern
- Gateway
- Access Server
- IBM Mainframe
- Front End Processor
- Cluster Controller
- Multilayer Switch without Text
- Printer
- Router
- Bridge
- Hub
- DSU/CSU
- FDDI
- Catalyst Switch
- Network Cloud
- Line: Ethernet
- Line: Serial
- Line: Circuit-Switched
- Phone
- IP Phone
- Repeater
- PBX Switch
- File Server
- Cisco Unified Communications 500 Series for Small Business
- Cisco Unity Express
- Cisco Unified Communication Manager
- Voice-Enabled Router
- Voice-Enabled Workgroup Switch
- Legacy PBX
- Multilayer Switch without Text
- Unified Personal Communicator (UPC)
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({})) indicate a required choice.
- Braces within brackets ({{}}) indicate a required choice within an optional element.

Introduction

Welcome to CCNA Collaboration! As the evolution of Voice over IP continues, Cisco has taken deliberate initiatives to further integrate and adapt communications technologies to change how we work, or create products to adapt to how we want to work. First with comprehensive support for video telephony, and now with an equally focused commitment to rich-media collaboration, CCNA Collaboration now represents a more complex set of hardware and software and consequently a larger and more challenging curriculum.

In June 2008, Cisco announced new CCNA specialties, including CCNA Security, CCNA Wireless, and CCNA Voice. These certifications, released 10 years after the initial CCNA, represented Cisco’s growth into new and emerging industries. Certification candidates can now specialize in specific areas of study, including Route/Switch; Wireless; Security; Service Provider; Cloud; Industrial; Data Center; and of course, Collaboration, the subject of this book and the companion volume by Brian Morgan and Jason Ball, *CCNA Collaboration CIVND 210-065 Official Cert Guide*.

Achieving your CCNA Collaboration requires that you pass two exams:

- 210-060 CICD
- 210-065 CIVND

There are no prerequisites for CCNA Collaboration; a CCENT or CCNA Route/Switch is no longer a requirement (but might be good knowledge to have anyway).

The official Cisco training “Implementing Cisco Collaboration Devices (CICD)” (the subject of this book) and “Implementing Cisco Video Network Devices, Part 1 (CIVND1)” and “Implementing Cisco Video Network Devices, Part 2(CIVND2)” are the courses associated with these two exams.
Goals and Methods

The most important goal of this book is to help you pass the Implementing Cisco Collaboration Devices (CICD) exam (210-060). In fact, if the primary objective of this book were different, the book's title would be misleading. The methods used in this book help you pass the CICD 210-060 exam and make you much more knowledgeable about how to do your job.

This book uses several key methodologies to help you discover the exam topics that you need to review in more depth, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. So, this book does not try to help you pass by memorization, but helps you truly learn and understand the topics. The CCNA Collaboration CICD exam is the foundation for many of the Cisco professional certifications, and it would be a disservice to you if this book did not help you truly learn the material. Therefore, this book helps you pass the CCNA Collaboration CICD exam by using the following methods:

- Helping you discover which test topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises and scenarios that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the CD-ROM

In addition, this book uses a different style from typical certification-preparation books. The newer Cisco certification exams have adopted a style of testing that essentially says, "If you don't know how to do it, you won't pass this exam." This means that most of the questions on the certification exam require you to deduce the answer through reasoning or configuration rather than just memorizing facts, figures, or syntax from a book. To accommodate this newer testing style, the author has written this book as a real-world explanation of Cisco Collaboration topics. Most concepts are explained using real-world examples rather than showing tables full of syntax options and explanations, which are freely available on Cisco.com. As you read this book, you definitely get a feeling of, "This is how I can do this," which is exactly what you need for the newer Cisco exams.

Who Should Read This Book?

The purpose of this book is twofold. The primary purpose is to greatly improve your chances of passing the CCNA Collaboration certification exam. The secondary purpose is to provide the information necessary to manage a VoIP solution using Cisco Unified Communication Manager Express (CME), Cisco Unified Communications Manager (CUCM), Cisco Unity Connection, and Cisco Communications Manager IM and Presence. Cisco’s new exam approach provides an avenue to write the book with both a real-world and certification-study approach at the same time. As you read this book and study the configuration examples and exam tips, you have a true sense of understanding how you could deploy a VoIP system, while at the same time feeling equipped to pass the CCNA Collaboration CICD certification exam.
Strategies for Exam Preparation

Strategies for exam preparation will vary depending on your existing skills, knowledge, and equipment available. Of course, the ideal exam preparation would consist of building a small voice lab with a Cisco Integrated Services Router, virtualized lab versions of CUCM, Unity Connection, and CM-IM and Presence servers, a switch, and a few IP Phones, which you could then use to work through the configurations as you read this book. However, not everyone has access to this equipment, so the next best step you can take is to read the chapters and jot down notes with key concepts or configurations on a separate notepad. Each chapter begins with a “Do I Know This Already?” quiz, which is designed to give you a good idea of the chapter’s content and your current understanding of it. In some cases, you might already know most of or all the information covered in a given chapter.

After you read the book, look at the current exam objectives for the CCNA Collaboration CICD exam listed on Cisco.com (http://www.cisco.com/web/learning/certifications/associate/ccna_collaboration/index.html). If there are any areas shown in the certification exam outline that you would still like to study, find those sections in the book and review them.

When you feel confident in your skills, attempt the practice exam included on the CD with this book. As you work through the practice exam, note the areas where you lack confidence and review those concepts or configurations in the book. After you have reviewed the areas, work through the practice exam a second time and rate your skills. Keep in mind that the more you work through the practice exam, the more familiar the questions will become, so the practice exam will become a less accurate judge of your skills.

After you work through the practice exam a second time and feel confident with your skills, schedule the real CICD (210-060) exam through Vue (http://www.vue.com). You should typically take the exam within a week from when you consider yourself ready to take the exam, so that the information is fresh in your mind.

Keep in mind that Cisco exams are very difficult. Even if you have a solid grasp of the information, many other factors play into the testing environment (stress, time constraints, and so on). If you pass the exam on the first attempt, fantastic! If not, know that this commonly happens. The next time you attempt the exam, you will have a major advantage: You already experienced the exam first-hand. Although future exams may have different questions, the topics and general “feel” of the exam remain the same. Take some time to study areas from the book where you felt weak on the exam. Retaking the exam the same or following day from your first attempt is a little aggressive; instead, schedule to retake it within a week, while you are still familiar with the content.

210-060 CICD Exam Topics

Table I-1 lists the exam topics for the 210-060 CICD exam. This table also lists the book parts in which each exam topic is covered.
<table>
<thead>
<tr>
<th>CICD 210-060 Exam Topic</th>
<th>Chapter(s) in Which Topic Is Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Describe the Characteristics of a Cisco Unified Communications Solution</td>
<td></td>
</tr>
<tr>
<td>1.1 Describe the Cisco Unified Communications components and their functions</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>1.2 Describe call signaling and media flows</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>1.3 Describe quality implications of a VoIP network</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>2.0 Provision End Users and Associated Devices</td>
<td></td>
</tr>
<tr>
<td>2.1 Describe user creation options for Cisco Unified Communications Manager and Cisco Unified Communications Manager Express</td>
<td>Chapters 4, 5, 9</td>
</tr>
<tr>
<td>2.2 Create or modify user accounts for Cisco Unified Communications Manager</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>2.3 Create or modify user accounts for Cisco Unified Communications Manager Express using the GUI</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>2.4 Create or modify endpoints for Cisco Unified Communications Manager</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>2.5 Create or modify endpoints for Cisco Unified Communications Manager Express using the GUI</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>2.6 Describe how calling privileges function and how calling privileges impact system features</td>
<td>Chapters 6 and 10</td>
</tr>
<tr>
<td>2.7 Create or modify directory numbers</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>2.8 Enable user features and related calling privileges for extension mobility, call coverage, intercom, native presence, and unified mobility remote destination configuration</td>
<td>Chapters 11 and 12</td>
</tr>
<tr>
<td>2.9 Enable end users for Cisco Unified IM and Presence</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>2.10 Verify user features are operational</td>
<td>Chapters 11 and 12</td>
</tr>
<tr>
<td>3.0 Configure Voice Messaging and Presence</td>
<td></td>
</tr>
<tr>
<td>3.1 Describe user creation options for voice messaging</td>
<td>Chapter 13</td>
</tr>
<tr>
<td>3.2 Create or modify user accounts for Cisco Unity Connection</td>
<td>Chapter 13</td>
</tr>
<tr>
<td>3.3 Describe Cisco Unified IM and Presence</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>3.4 Configure Cisco Unified IM and Presence</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>4.0 Maintain Cisco Unified Communications System</td>
<td></td>
</tr>
<tr>
<td>4.1 Generate CDR and CMR reports</td>
<td>Chapter 16</td>
</tr>
<tr>
<td>4.2 Generate capacity reports</td>
<td>Chapter 16</td>
</tr>
<tr>
<td>4.3 Generate usage reports</td>
<td>Chapter 16</td>
</tr>
</tbody>
</table>
4.4 Generate RTMT reports to monitor system activities | Chapter 16
4.5 Monitor voicemail usage | Chapter 17
4.6 Remove unassigned directory numbers | Chapter 10
4.7 Perform manual system backup | Chapter 16

5.0 Provide End User Support
5.1 Verify PSTN connectivity | Chapters 6 and 10
5.2 Define fault domains using information gathered from end user | Chapter 16
5.3 Troubleshoot endpoint issues | Chapter 16
5.4 Identify voicemail issues and resolve issues related to user mailboxes | Chapter 17
5.5 Describe causes and symptoms of call quality issues | Chapters 3 and 16
5.6 Reset single devices | Chapters 5 and 9
5.7 Describe how to use phone applications | Chapter 11

CCNA Collaboration CICD 210-060 Official Certification Guide

The objective of this book is to help you pass the CCNA Collaboration CICD exam (210-060). While you are learning about topics that can help you pass the CICD exam, you will also become more knowledgeable about how to do your job. Although this book and the accompanying CD have many exam preparation tasks and sample test questions, the method in which they are used is not to simply make you memorize as many questions and answers as you possibly can.

The methodology of this book helps you discover the exam topics about which you need more review, fully understand and remember exam topic details, and prove to yourself that you have retained your knowledge of those topics. So, this book helps you pass not by memorization, but by helping you truly learn and understand the topics. The CICD exam is just one of the foundation topics in the CCNA Collaboration certification, and the knowledge contained within is vitally important to consider yourself a truly skilled Cisco Collaboration engineer or specialist.

The strategy you use to prepare for the CICD exam might differ slightly from strategies used by other readers, mainly based on the skills, knowledge, and experience you already have obtained. For instance, if you have attended the CICD course, you might take a different approach than someone who learned switching through on-the-job training. Regardless of the strategy you use or the background you have, this book is designed to help you get to the point where you can pass the exam with the least amount of time required.
Book Features and Exam Preparation Methods

This book uses several key methodologies to help you discover the exam topics on which you need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics.

The book includes many features that provide different ways to study to be ready for the exam. If you understand a topic when you read it but do not study it any further, you will probably not be ready to pass the exam with confidence. The features included in this book give you tools that help you determine what you know, review what you know, better learn what you don’t know, and be well prepared for the exam. These tools include the following:

■ “Do I Know This Already?” Quizzes: Each chapter begins with a quiz that helps you determine the amount of time you need to spend studying that chapter.

■ Foundation Topics: These are the core sections of each chapter. They explain the protocols, concepts, and configuration for the topics in that chapter.

■ Exam Preparation Tasks: The “Exam Preparation Tasks” section lists a series of study activities that should be done after reading the “Foundation Topics” section. Each chapter includes the activities that make the most sense for studying the topics in that chapter. The activities include the following:
 ■ Key Topics Review: The Key Topic icon is shown next to the most important items in the “Foundation Topics” section of the chapter. The Key Topics Review activity lists the key topics from the chapter and page number. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic. Review these topics carefully.
 ■ Memory Tables: To help you exercise your memory and memorize some lists of facts, many of the more important lists and tables from the chapter are included in a document on the CD. This document lists only partial information, allowing you to complete the table or list. CD-only Appendix D holds the incomplete tables, and Appendix E includes the completed tables from which you can check your work.
 ■ Definition of Key Terms: Although Cisco exams might be unlikely to ask a question such as “Define this term,” the CICD exam requires that you learn and know a lot of networking terminology. This section lists some of the most important terms from the chapter, asking you to write a short definition and compare your answer to the Glossary at the end of the book.

■ CD-based practice exam: The companion CD contains an exam engine, including a bank of multiple-choice questions. You can use the practice exams to get a feel for the actual exam content and to gauge your knowledge of switching topics.

How This Book Is Organized

Although this book could be read cover-to-cover, it is designed to be flexible and allow you to easily move between chapters and sections of chapters to cover just the material that you need more work with. If you do intend to read all the chapters, the order in the book is an excellent sequence to use.
The core chapters, Chapters 1 through 17, cover the following topics:

- **Chapter 1, “Traditional Voice Versus Unified Voice.”** This chapter discusses what would be known as the traditional telephony world. It begins where the telephone system originally started: analog connectivity. It then moves into the realm of digital connections and considerations and concludes the traditional voice discussion with the primary pieces that you need to know from the public switched telephone network (PSTN). Chapter 1 then moves into the unified voice realm, discussing the benefits of Voice over IP (VoIP), the process of coding and decoding audio, digital signal processors (DSPs), and the core VoIP protocols.

- **Chapter 2, “Understanding the Components of Cisco Unified Communications.”** This chapter primarily focuses on the components of a Cisco VoIP network. By breaking down the voice infrastructure into four distinct areas, each component can be categorized and described. These components include endpoints, call processing agents, applications, and network infrastructure devices.

- **Chapter 3, “Understanding Cisco IP Phones.”** This chapter discusses the preparation and base configuration of the LAN infrastructure to support VoIP devices. This preparation includes support for Power over Ethernet (PoE), voice VLANs, a properly configured DHCP scope for VoIP devices, and the Network Time Protocol (NTP).

- **Chapter 4, “Getting Familiar with CME Administration.”** This chapter familiarizes you with Cisco Unified Communication Manager Express (CME) administration by unpacking the two primary administrative interfaces of CME: the command line and the Cisco Configuration Professional (CCP) graphical user interface (GUI).

- **Chapter 5, “Managing Endpoints and End Users in CME.”** This chapter focuses on the process to create and assign directory numbers (DNs) and user accounts to Cisco IP Phones. The chapter walks through these configurations in both the command-line and CCP interfaces.

- **Chapter 6, “Understanding the CME Dial Plan.”** Now that the internal VoIP network is operational through the CME configuration, this chapter examines connections to the outside world through the PSTN or over an IP network. Concepts covered in this chapter include the configuration of physical voice port characteristics, dial peers, digit manipulation, class of restriction (COR), and quality of service (QoS).

- **Chapter 7, “Enabling Telephony Features with CME.”** This chapter examines feature after feature supported by the CME router. By the time you finish this chapter, you will understand how to configure features such as intercom, paging, call park and pickup, and many others.

- **Chapter 8, “Administrator and End-User Interfaces.”** This chapter introduces the administration interfaces for CUCM, CUC, and CUP. From the administrative GUI for each application to the common Unified Serviceability interface, disaster recovery, and command-line interface (CLI), the fundamentals of navigation and configuration are laid out in a clear and logical sequence.

- **Chapter 9, “Managing Endpoints and End Users in CUCM.”** The configuration and management of users and phones is covered in this chapter, including integration with Lightweight Directory Access Protocol (LDAP).
■ Chapter 10, “Understanding CUCM Dial Plan Elements and Interactions.” The guts of the call-routing system in CUCM are explained with simplicity and clarity. Call flows in different deployments and under different conditions of use and failure (including Call Admission Control [CAC] and Automated Alternate Routing [AAR]) are demonstrated and compared, and the great mystery of partitions and calling search spaces (CSS) is revealed for the simple truth it really is.

■ Chapter 11, “Enabling Telephony and Mobility Features with CUCM.” A sample of the many features available in CUCM, including extension mobility and call coverage, is provided.

■ Chapter 12, “Enabling Mobility Features in CUCM.” A step-by-step guide to enabling some of the most popular and powerful features in CUCM: Mobile Connect and Mobile Voice Access.

■ Chapter 13, “Voice Messaging Integration with Cisco Unity Connection.” The power, stability, and wealth of features available in CUC are examined, followed by a look at the configuration of user accounts and their mail boxes.

■ Chapter 14, “Enabling CM IM and Presence Support.” The capabilities, features, and basic configuration of the CUP server and clients are covered, giving an introduction to one of the most powerful additions to the Unified Communications capabilities of any business.

■ Chapter 15, “Common CME Management and Troubleshooting Issues.” This chapter takes the CME concepts you learned and builds them into troubleshooting scenarios. The chapter begins by discussing a general troubleshooting process you can employ for any technical troubleshooting situation, then walks through many common CME troubleshooting situations dealing with IP phone registration. The chapter concludes by discussing dial plan and QoS troubleshooting methods.

■ Chapter 16, “CUCM Monitoring, Maintenance, and Troubleshooting.” This chapter reviews the tools available to administrators to assist in the care and feeding of their CUCM servers. From the myriad of built-in reporting tools to the power of the Real-Time Monitoring Tool (RTMT), the administrator is introduced to his arsenal of tools to monitor the health and performance of the system.

■ Chapter 17, “Monitoring Cisco Unity Connection.” The wealth of built-in reporting and monitoring tools for CUC are reviewed in this chapter.

In addition to the 17 main chapters, this book includes tools to help you verify that you are prepared to take the exam. Chapter 18, “Final Preparation,” includes guidelines that you can follow in the final days before the exam. Also, the CD-ROM includes quiz questions and memory tables that you can work through to verify your knowledge of the subject matter.

In addition, you can find the following appendixes on the CD that is included with this book:

■ Appendix D, “Memory Tables”: This appendix holds the key tables and lists from each chapter with some of the content removed. You can print this appendix, and as a memory exercise, complete the tables and lists. The goal is to help you memorize facts that can be useful on the exams.
■ Appendix E, “Memory Table Answer Key”: This appendix contains the answer key for the exercises in Appendix D.

■ Appendix F, “Study Planner”: This is a spreadsheet with major study milestones, where you can track your progress through your study

For More Information

If you have any comments about the book, you can submit those via http://www.ciscopress.com. Just go to the website, select Contact Us, and type in your message.

Cisco might make changes that affect the CICD exam from time to time. You should always check http://www.cisco.com/web/learning/certifications/associate/index.html for the latest details.
This page intentionally left blank
This chapter covers the following topics:

- **Implementing IP Phones in CUCM**: This section reviews the required network services and systems configurations to support IP phones; details the startup and registration processes; and reviews manual, automatic, and bulk administration tasks for adding phones.

- **Describe End Users in CUCM**: This section describes the characteristics of end-user configuration in CUCM.

- **Implementing End Users in CUCM**: This section reviews the methods by which end users may be added to CUCM, including manual addition, bulk administration, and LDAP synchronization and authentication.
Managing Endpoints and End Users in CUCM

IP phones and end users are important parts of a Unified Communications deployment; after all, without phones or people to use them, what is the point of having the system? This chapter reviews the configuration of endpoints and users in Cisco Unified Communications Manager (CUCM), including setting up basic network services, registering phones, configuration, and bulk administration.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read this entire chapter or simply jump to the “Exam Preparation Tasks” section for review. If you are in doubt, read the entire chapter. Table 9-1 outlines the major headings in this chapter and the corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers Appendix.”

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions Covered in This Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementing IP Phones in CUCM</td>
<td>1–6</td>
</tr>
<tr>
<td>Describe End Users in CUCM</td>
<td>7</td>
</tr>
<tr>
<td>Implementing End Users in CUCM</td>
<td>8–10</td>
</tr>
</tbody>
</table>

1. Which of the following protocols is critical for IP phone operation?
 a. DNS
 b. DHCP
 c. NTP
 d. TFTP

2. What file does an IP phone first request from TFTP during its startup and registration process?
 a. SEP<mac_address>.cnf.xml
 b. None. The phone receives all information via SCCP signaling.
 c. SEP<mac_address>.xml
 d. XMLDefault.cnf.xml
3. Which of the following statements is true?
 a. SCCP phone configuration files contain all settings, including date/time and soft-key assignments.
 b. SIP phone configuration files are larger than SCCP phone configuration files.
 c. SCCP phone configuration files are exactly the same as SIP phone configuration files.
 d. SIP phone configuration files are much smaller than SCCP configuration files because of the limited feature set of SIP phones.

4. Which of the following is true of DHCP in CUCM?
 a. The DHCP server capability is no longer available as of CUCM v8.x.
 b. The DHCP service is a basic capability intended for supporting up to 1000 IP phones.
 c. DHCP is mandatory for IP phones.
 d. CUCM supports a proprietary IP address assignment protocol called LLDP.

5. Which of the following is not a device pool setting?
 a. Cisco Unified Communications Manager Group
 b. Local Route Group
 c. Region
 d. Common Phone Profile

6. Bob asks you to provide a third DN button and a BLF speed dial for the Auto Parts desk’s 12 7965 IP phones. Which of the following is the best choice?
 a. Modify the standard user softkey template.
 b. Copy the standard user softkey template, name it PartsDesk, and add the requested features.
 c. Copy the standard 7965 SCCP Phone Button template, name it PartsDesk, and add the requested features.
 d. It is not possible to add a third DN and a BLF speed dial to a 7965 IP phone.

7. Pete recently learned that he can add his own speed dials, subscribe to phone services, and do other useful things via his Self-Care Portal web page. He comes to you complaining that he cannot do any of these things. Why can’t Pete modify his own phone?
 a. The Active Directory GPO is limiting Pete’s permissions.
 b. Pete’s account needs to be associated with his phone in the Device Associations settings in his User Configuration page.
 c. Additional licensing is required to support User Web Page functionality.
 d. Pete must be part of the CCM super users group to make these changes.
8. Angie changes her Windows domain login password but notices that her password for her Self-Care Portal in CUCM has not changed. Which of the following is true?
 a. LDAP synchronization has not been configured.
 b. Cisco Unified Services for Windows domains has not been configured.
 c. Angie must wait 24 hours for the password to synchronize.
 d. LDAP authentication has not been configured.

9. Which of the following is not true of LDAP synchronization in CUCM v10.x?
 a. Application user accounts must be configured in LDAP before they can be replicated to CUCM.
 b. End-user accounts that exist in CUCM and which do not exist in LDAP are maintained as local accounts in CUCM.
 c. LDAP checks the user accounts in CUCM and syncs those that also exist in LDAP.
 d. End-user accounts that exist in LDAP are synced to CUCM unless the LDAP sn attribute is blank.

10. Which is true of LDAP synchronization agreements?
 a. The User Search Base defines the point in the tree where CUCM begins searching. CUCM can search all branches below that point.
 b. The User Search Base defines the point in the tree where CUCM begins searching. CUCM can search all branches above and below that point.
 c. The User Search Base must specify the root of the domain; LDAP Custom Filters must be used to limit the search returns.
 d. All synchronization agreements must run on a regular scheduled basis.
 e. Only one synchronization agreement can be made with a single LDAP system.
Implementing IP Phones in CUCM

The implementation of IP phones is remarkably simple, considering the myriad of services, protocols, and processes going on in the background to make the system work well. This section reviews these “hidden” processes and details some of the administrative tasks required to easily and reliably run IP phones in CUCM.

Special Functions and Services Used by IP Phones

A variety of standards-based and proprietary protocols and services support IP phones in CUCM. In no particular order, they include the following:

- Network Time Protocol (NTP)
- Cisco Discovery Protocol (CDP)
- Dynamic Host Configuration Protocol (DHCP)
- Power over Ethernet (PoE)
- Trivial File Transfer Protocol (TFTP)
- Domain Name System (DNS)

The next section describes each of these services, how IP phones use them, and how to configure them in CUCM (or other systems as appropriate).

NTP

NTP is an IP standard that provides network-based time synchronization. There are many good reasons to use NTP beyond the convenience and consistency of having the same time on all devices. Call detail records (CDRs) and call management records (CMRs) are time stamped, as are log files. Comparing sequential events across multiple platforms is much simpler and easier to understand if the relative time is exactly the same on all those devices. Some functions and features can also be time (calendar) based, so time synchronization is important for those functions to operate properly.

In a typical NTP implementation, a corporate router synchronizes its clock with an Internet time server (such as an atomic clock or a GPS clock). Other devices in the corporate network then sync to the router.

The CUCM Publisher is one such device; during installation, CUCM asks for the IP address of an NTP server. (Alternatively, it can use its internal clock, which is not recommended because of its inaccuracy compared to NTP.) The Subscriber servers then sync their clocks to the Publisher, and the IP phones get their time from their subscribers via Skinny Client Control Protocol (SCCP) messages. Session Initiation Protocol (SIP) phones need an NTP reference (detailed later), but in the absence of one, they can get the time from the time stamp in the SIP OK response from the Subscriber server.
CDP
CDP is a Cisco proprietary Layer 2 protocol that provides network mapping information to directly connected Cisco devices. (You learned about CDP in your CCNA studies, so we do not detail it here.) Cisco IP phones generate CDP messages and use CDP to learn the voice VLAN ID from the Cisco switch to which they are connected. The IP phone then tags the voice frames it is transmitting with that VLAN ID in the 802.1Q/P frame header.

DHCP
DHCP is a widely used IP standard that can provide the following information to IP phones:
- IP address
- Subnet mask
- Default gateway
- DNS servers
- TFTP servers

Although it is possible to statically configure IP phones with all that information, it would be time-consuming and error-prone. DHCP is faster, easier, more scalable, and a widely accepted practice. DHCP can be provided by an existing DHCP server (because most deployments already have one), a local router, or even by CUCM itself (although this is not generally recommended for large deployments). Later sections review the configuration of DHCP services in CUCM and router IOS.

PoE
PoE is a standards-based feature that delivers DC power supply over Ethernet cabling. IP phones can use this feature, and doing so means less cabling to clutter the desk, no power supplies to buy for the phones, and potential cost savings. PoE is generally assumed to be provided by the switch that the phones connect to, but it may also be provided by a powered patch panel or inline power injector.

TFTP
TFTP is a critical service for IP phones. The phones use TFTP to download their config files, firmware, and other data. Without TFTP, the phones simply do not function properly. When you make a configuration change to a device, CUCM creates or modifies a config file for the device and uploads it to the TFTP servers. TFTP services must therefore be provided by one (or more in large deployments) of the CUCM servers in the cluster; a generic TFTP server will not have the integrated capability that a CUCM TFTP server does and will not correctly fulfill the role.

DNS
DNS provides hostname-to-IP address resolution. DNS services are not critical to IP phones. (In fact, in most deployments, it is recommended to eliminate DNS reliance from the IP phones [see Chapter 10, “Understanding CUCM Dial Plan Elements and Interactions”].) But in some circumstances, it is desirable. A DNS server must be external to the CUCM cluster; DNS is not a service that CUCM can offer.
IP Phone Registration Process

The steps that each phone goes through as it registers and becomes operational are more complex than you might think. The following section reviews these steps:

Step 1. The phone obtains power (PoE or AC adapter).

Step 2. The phone loads its locally stored firmware image.

Step 3. The phone learns the voice VLAN ID via CDP from the switch.

Step 4. The phone uses DHCP to learn its IP address, subnet mask, default gateway, and TFTP server address. (Other items may be learned also.)

Step 5. The phone contacts the TFTP server and requests its configuration file. (Each phone has a customized configuration file named SEP<mac_address>.cnf.xml created by CUCM and uploaded to TFTP when the administrator creates or modifies the phone.)

Step 6. The phone registers with the primary CUCM server listed in its configuration file. CUCM then sends the softkey template to the phone using SCCP messages.

Note What is in that SEP<mac_address>.cnf.xml file?

The file contains a list of CUCM server, in order, that the phone should register with. It lists the TCP ports it should use for SCCP communication. It also lists the firmware version for each device model and the service URLs that each device should be using.

The CUCM server sends other configurations, such as DNs, softkeys, and speed dials, via SCCP messages in the last phase of the registration process. The configuration files for SIP phones are generally larger than the equivalent files for SCCP phones. This is because SIP phones have no equivalent mechanism for configuring items that are set by SCCP messages on SCCP phones; these items must be included in the configuration file downloaded from TFTP.

SIP Phone Registration Process

SIP phones use a different set of steps to achieve the same goal. Steps 1 to 4 are the same as SCCP phones. The following are the rest of the steps:

Step 1. The phone contacts the TFTP server and requests the Certificate Trust List file (only if the cluster is secured).

Step 2. The phone contacts the TFTP server and requests its SEP<mac_address>.cnf.xml configuration file.

Step 3. The phone downloads the SIP Dial Rules (if any) configured for that phone.

Step 4. The phone registers with the primary CUCM server listed in its configuration file.

Step 5. The phone downloads the appropriate localization files from TFTP.

Step 6. The phone downloads softkey configurations from TFTP.

Step 7. The phone downloads custom ringtones (if any) from TFTP.
Preparing CUCM to Support Phones

Before we add phones, a certain amount of work should be done on the CUCM servers. Doing this setup work makes adding phones easier, more consistent, and more scalable, assuming that we follow our design plan.

The tasks we review in this section are as follows:

- **Configure and Verify Network Services:** Set up NTP, DHCP, and TFTP.
- **Configure Enterprise Parameters:** Modify and verify cluster-wide default settings.
- **Configure Service Parameters:** Tune application settings and behavior.

Service Activation

Many required services are deactivated by default on CUCM. Using the Unified Serviceability admin page, you must activate the one you need. For our purposes, we activate the Cisco CallManager, Cisco TFTP, and Cisco DHCP Monitor services. Figure 9-1 shows the Unified Serviceability Service Activation page with those services activated.

![Activating Required Services](image)

DHCP Server Configuration

CUCM includes a basic DHCP server capability. It is intended to support only IP phones, and not very many of them: only up to 1000 phones. (This is the maximum recommended due to heavy CPU load.) There is no native capability for DHCP server redundancy and only one DHCP server is supported per cluster. Multiple subnets (scopes) can be configured on the server.

If you decide that you want to use CUCM for DHCP, setting up the DHCP service is straightforward. We already activated the DHCP Monitor Service, so now we follow these basic steps:
Step 1. Navigate to System > DHCP > DHCP Server.

Step 2. Click Add New.

Step 3. Select the server running the DHCP Monitor Service from the pull-down.

Step 4. Configure the desired settings.

The settings that can be configured on the Server page include the following (among others):

- Primary DNS Server IPv4 Address
- Primary TFTP Server IPv4 Address
- IP Address Lease Time

Any settings you configure on the server page are inherited by the subnet configuration (shown next); however, any setting you change on the subnet page overrides the Server setting. Figure 9-2 shows the DHCP Server Configuration page.

Figure 9-2 DHCP Server Configuration

Configuring DHCP subnets requires some understanding of IP subnetting and assumes that you have an IP addressing plan in place. Because these topics are covered in the CCNA prerequisite, we assume you have a grasp of these fundamentals. To configure DHCP subnets, navigate to System > DHCP > DHCP Subnet. Click Add New to create subnets; you can create multiple subnets as needed for your environment design. On the Subnet Configuration page, select the server from the DHCP Server drop-down list. You can then configure the following (some other settings are not listed):

- Subnet address
- Primary range start IP
Chapter 9: Managing Endpoints and End Users in CUCM

- Primary range end IP
- Primary router IP address (default gateway)
- Subnet mask
- Primary DNS server IP address
- TFTP server IP address

Remember that settings in the subnet configuration override the same settings in the server configuration. Figure 9-3 shows the DHCP Subnet Configuration page.

```
Example 9-1 DHCP Configuration

service dhcp
    ! Enables the DHCP service

ip dhcp excluded-address 10.1.1.1 10.1.1.10
    ! Specifies a start / end range of addresses that DHCP will NOT assign

ip dhcp pool name IP_PHONES
    ! Creates a pool of addresses (case-sensitive name) and enters DHCP configuration mode

network 10.1.1.0 255.255.255.0
    ! Defines the subnet address for the pool
```

Figure 9-3 DHCP Subnet Configuration

Configuring DHCP in Router IOS

Cisco routers support basic DHCP server functionality, and this capability is commonly used in small office environments where a dedicated DHCP server is not needed or available.

Example 9-1 shows a typical DHCP configuration, with commands annotated for reference:
Multiple DHCP pools can be created, so DHCP services can be provided for PCs in a small office by the same router. For some third-party SIP phones, it may be necessary to specify Option 66 (the TFTP server DNS name).

IP Phone Configuration Requirements in CUCM

CUCM has several configuration elements for IP phones. We briefly look at the following basic required elements:

- Device pool
- Cisco Unified CM group
- Region
- Location
- Date/time group
- Phone NTP reference
- Device defaults
- Softkey template
- Phone button template
- SIP profile
- Phone security profile
- Common phone profile

Device Pool

Device pools provide a set of common configurations to a group of devices; think of a device pool as a template to apply several different settings all at once, quickly and accurately. You can create as many device pools as you need, typically one per location, but they can also be applied per function. (For example, all the phones in the call center may use a different device pool from the rest of the phones in the administration offices, although they are all at the same location.) There are several settings within the device pool; some of the ones relevant to us are as follows:

- **Cisco Unified CM group**: A CM group defines a top-down ordered list of redundant call-processing servers to which the phones can register. The list can include a maximum of three servers (plus an optional Survivable Remote Site Telephony [SRST] reference). The first server in the list is the primary subscriber, the second is the backup, and the third is the tertiary. In normal operation, phones send primary registration messages to
the primary, backup registration messages to the backup, and nothing to the tertiary. If the primary server fails or otherwise becomes unavailable, the phone sends a primary registration message to the backup server (and registers with it) and begins sending backup registration messages to the tertiary.

The number of CM groups created depends on the number of subscribers in the cluster; the goal is to provide server redundancy to the phones while distributing phone registrations evenly as planned in the system design. A server may be listed in more than one CM group to provide an overlapping depth of coverage, as long as its performance capacity will not be exceeded in any foreseeable failure circumstance. This is simply another requirement of a good design.

- **Region**: A region is a virtual assignment that allows the system designer to control the bit rate for calls. For example, if we define two regions, called Vancouver_HQ_REG and Ottawa_BR_REG, we can set the bit rate for calls within the Vancouver region to 256 kbps, within the Ottawa region to 64 kbps, and between the two regions to 16 kbps.

 We are in effect selecting (or at least influencing) the codec to be used for these calls; the codec in turn generates a known bit rate, which in turn uses a predictable amount of bandwidth and provides a predictable voice quality. In general, it is assumed that WAN bandwidth is limited; selecting a lower bit rate reduces the amount of bandwidth per call at the expense of call quality.

- **Location**: As you just saw, we can select the appropriate bit rate for calls and, therefore, the bandwidth used by each call. Given that WAN bandwidth is assumed to be limited, we need to be able to limit the amount of bandwidth used by calls to a particular location. Location defines a maximum amount of bandwidth used by calls to a particular location; each call is tracked, and the bandwidth it uses is deducted from the total for that location. When the bandwidth remaining is not enough to support another call at a given bit rate, that call is dropped by default (but may be rerouted over the PSTN if AAR is correctly configured). This is one mechanism for Call Admission Control (CAC), which is described later in this book.

- **Date/time group**: As discussed earlier, it is recommended to use NTP for time synchronization of all devices. The problem is that NTP references Greenwich mean time, which makes the time displayed on devices “wrong” if they are not in the GMT time zone. Date/time groups allow us to offset the correct time learned via NTP to match the local time zone of the device. Date/Time Groups also allow us to display the time and date in the desired format, which can vary from place to place.

- **Phone NTP reference**: SIP phones need an NTP server address from which they can obtain the time using NTP. (This is not required for SCCP phones, which are configured to the correct time using SCCP signaling.) It is preferred that the NTP reference be local to the phones that need it.

It is common to have groups of phones with similar configurations. Using a device pool for each group simplifies and speeds up administrative tasks, while making them less error-prone in the bargain. Figure 9-4 shows part of a Device Pool Configuration page.
The Device Defaults page lists all the supported endpoints (with separate entries for SCCP and SIP as necessary), and the firmware load, device pool, and phone button template each endpoint uses by default. This allows an administrator to set useful system-wide defaults for any newly registered device of each type.

Softkey Template and Phone Button Template

The softkey template controls what softkey button functions are available to the user; these are typically used for feature access (conference, transfer, park, Extension Mobility, and so on). Seven softkey templates are available by default, and you can create as many more as your design requires.

The Phone Button template defines the behavior of the buttons to the right of the phone screen (for most models). Eighty (or more) are defined by default because there are unique templates for each supported phone type—and for most phones, a separate template for SCCP and SIP. The default templates typically provide two lines and as many speed dials as there are remaining buttons on a particular phone model; you can add and customize the templates to assign each button one of many different functions.

Profiles

Profiles allow for a one-time configuration of repetitive tasks; several types of profiles exist, and you can create many versions of each type to be applied to phones as needed.
Chapter 9: Managing Endpoints and End Users in CUCM

Phone Security Profile
A default phone security profile exists for each type of phone/protocol. These default profiles have security disabled; you can choose to configure the device as secured, set encrypted TFTP configuration files, and modify Certificate Authority Proxy settings.

Common Phone Profile
The common phone profile includes settings that control the behavior of the phone, including the following:
- DND settings
- Phone personalization capabilities
- VPN settings
- USB port behavior
- Video capabilities
- Power-save options

Adding Phones in CUCM
Phones can be added to CUCM in several ways:
- **Manual configuration:** The administrator creates a new phone, configuring all settings in real time on the Phone Configuration page.
- **Auto-registration:** The administrator configures CUCM to dynamically configure and add to the database any new IP phone that connects to the network.
- **Bulk Administration Tool (BAT):** Using templates configured for the purpose by the administrator in CUCM, the administrator creates CSV files that contain all the required information to create multiple phones in one operation.
- **Auto Register Phone Tool (TAPS):** An Interactive Voice Response (IVR) server enhances the auto-register and BAT functionality, providing an automated method of adding potentially thousands of phones at a time.
- **Self-provisioning:** Operating in a manner similar to TAPS, self-provisioning is a new capability for CUCM 10.x. The IVR and CTI capabilities are now integral to the CUCM application, and no external server is required; the required administrative steps are detailed later in this section.

The following sections provide more detail on each of these operations.

Manual Configuration of IP Phones
The basic steps for manually adding an IP phone are as follows:

Step 1. Navigate to Device > Phone, and then click Add New.

Step 2. Choose the IP phone model from the drop-down list.

Step 3. Choose the device protocol (either SCCP or SIP; some phones will support only one protocol, and this step will be skipped).
Step 4. Select, or enter, the required specific information for the phone. The five required settings that do not have default values (must be manually configured) include the following:

- **MAC Address**: The MAC address is the unique identifier that links the IP phone hardware to the software configuration in CUCM. If you are building a phone for Bob, you must obtain the MAC address of the phone that will end up on Bob’s desk; otherwise, Bob will not see the correct settings, DN, and so forth.

- **Device Pool**: The device pool (as described earlier in this chapter) applies many common settings to the phone that are relevant to its physical location and desired behavior.

- **Phone Button Template**: The Phone Button template (also detailed earlier in this chapter) defines what functions are assigned to the buttons on the phone (DNs, speed dials, services, and so on).

- **Owner User ID**: Associates or assigns the phone to a user account for license calculation purposes. This setting should not be confused with the user configuration page setting for device association, which is used for features such as the Self-Care Portal and Extension Mobility.

- **Device Security Profile**: Applies a set of security-related configurations, as described previously in this chapter.

Step 5. Click **Save**.

When the page reloads, a new pane labeled Association Information appears on the left, in which you can configure the phone buttons functions. The base functionality (line, speed dial, intercom, service, and so on) is defined by the Phone Button template specified previously; here is where you specify what the DN number on the lines will be, what service is accessed, or which Intercom DN is dialed. Figure 9-5 shows the Phone Configuration page, including the Association Information pane.
In the Association Information pane, continue the basic phone configuration steps, as follows:

Step 6. Click Line [1] - Add New DN. The Directory Number Information page opens, in which you must enter a directory number, and optionally set the partition and other optional configurations. The following points highlight a few of the settings found on the Directory Number Configuration page:

- **Route Partition:** As discussed in Chapter 10, the partition is part of the calling privileges system or class of control.

- **Alerting Name:** This is the name to display on the caller’s phone when this phone is ringing. Some public switched telephone network (PSTN) connections might not support this functionality.
Call Forward and Call Pickup Settings: This is where the administrator can determine how to forward a call if the DN is busy or does not answer, or for Call Forward All. The user can set Call Forward All at the phone itself using the CallFwdAll softkey or on their user web page; other call forward settings (such as Busy and No Answer) are available to the user only on the user’s user web page and not on the phone.

Display: The text entered in the Display field serves as an internal caller ID. When this DN calls another IP phone, the display text replaces the calling DN number. In other words, if Bob’s DN is 5309 and the Display field is blank, when Bob calls Ethan, Ethan’s phone shows that 5309 is calling. If the Display field on Bob’s phone has Bob Loblaw as the entry, Ethan’s phone displays the caller as Bob Loblaw.

Line Text Label: This is the text that displays on the phone to describe the line; for example, if the second button on the phone is the shared DN for the Parts Desk, the line text label for line 2 might read “Parts Line.”

External Phone Number Mask: If this phone makes an off-net call (typically to the PSTN), this field can change the calling line ID (CLID) to present a full PSTN number instead of the internal DN.

Step 7. Click Save twice.

Tip The “Save twice” instruction is a recent one, and one that will trouble a lot of admins who are familiar with versions of CUCM prior to 9.x. Watch for the message at the top of the DN Configuration page when you click Save the first time: “Directory Number Configuration has refreshed due to a directory number change. Please click Save button to save the configuration.” If you do not Save again, your changes are not preserved (but this should only happen if you change the DN).

Step 8. In the Related Links drop-down, select Configure Device (<Phone>), and then click Go.

Step 9. You are now back at the Phone Configuration page for the new phone. At this point, if you need to continue making config changes you can do so, or you can click Save again to commit the changes so far. The page prompts you to “Click on the Apply Config button to have the changes take effect.” This happens because in order for the phone to adopt the changes, it has to reload with its new config. This requires either a restart or a reset, depending on what was changed.

Note There is a great deal of confusion about Restart, Reset, and Apply Config. The differences are explained in the following points:

- A reset reboots both the firmware and the configuration of the phone. Some information such as firmware version, locale changes, SRST, or Communications Manager Group changes require a full reset so that the phone will pull a new file from the TFTP server. A reset can be triggered
from the Administration web page, or from the phone itself by entering Settings > **#** (using the keypad).

- A restart unregisters the phone, and then the phone comes right back and registers again. Because Communications Manager reads the database for this device when it registers, it is a good way to refresh information that is not passed through the configuration file. Button changes, names, and forwarding would only require a restart. A restart is faster than a reset because the firmware is not rebooted as well.

- The confusion between Restart and Reset was such that in CUCM 8.x, a new function called Apply Config was introduced. This button intelligently triggers either a reset or a restart as appropriate, depending on what changes were made to the device. In all cases, the phone has to be registered for the reset or restart to be sent to the phone.

It is common, especially if advanced features such as Extension Mobility or Cisco Unified Personal Communicator are in use, to associate a user with a particular device (IP phone). It is required to associate the user with the device if you want users to be able to use the user web pages to customize their phones. The end user is associated with the device (IP phone), and the device is associated with one or more DNs. This allows the user not only to access the user web pages to configure this phone, but for other applications and processes to interact with the user through the phone system.

So, what happens if you delete an end user who is associated with a device that is associated with a DN? Nothing. Although the association exists and is important and useful, the three database entities of user, device, and DN are independent of each other. The device and the DN do not go away if the user is deleted, and the same result applies if the device or DN are deleted (although a phone without a DN, or a DN without a phone, cannot make calls).

Auto-Registration of IP Phones

CUCM includes the auto-registration feature, which dynamically adds new phones to the database and allows them to register, including issuing each new phone a DN so that it can place and receive calls. Auto-registration is supported by all Cisco IP phones.

To enable auto-registration, perform the following steps:

Step 1. Verify your auto-registration phone protocol. Access this setting under System > Enterprise Parameters; choose either SCCP (default) or SIP. Phones that do not support the chosen protocol will still auto-register using their native protocol.

Step 2. Verify that at least one CM Group has auto-registration enabled (by selecting the check box for Auto-Registration Cisco Unified Communications Manager Group).

Step 3. Enable and configure auto-registration on one or more CUCM servers within the CM group enabled for auto-registration:
Enable auto-registration by deselecting the **Auto-Registration Disabled on this Cisco Unified Communications Manager** check box; it is disabled by default, so unchecking the box enables it.

Configure the range of DNs that will be dynamically and sequentially issued to auto-registering phones. The default starting directory number is 1000; if you change the ending directory number to anything higher than 1000, auto-registration is automatically enabled. If you set the starting and ending DNs to the same value, auto-registration is automatically disabled. (Auto-registration is disabled by default because both the starting and ending directory numbers are set to 1000.) You want to choose a range of DNs that fits in well with your dial plan to avoid overlap and confusion.

Select a (previously configured) universal device template (UDT) and universal line template (ULT). UDTs and ULTs are introduced and explained in the following note.

Set the Partition that will be assigned to the auto-registered DNs. This is optional, but it is one good way to limit and control auto-registered phones.

Verify that the **Auto-Registration Disabled on this Cisco Unified Communications Manager** check box is unchecked, and then click **Save**.

A simple way to test auto-registration is to plug in a new phone; if it receives a DN in the range you specified (or a DN in the range of 1000 to 1999 if you left it at the defaults), auto-registration is working.

Some administrators see auto-registration as a security weakness because any IP phone will be dynamically added to the database and potentially begin making calls, perhaps even to the PSTN if it is not restricted. It is common to enable auto-registration only when it is needed to prevent the registration of “rogue phones.”

Figure 9-6 shows the Auto-Registration Information section of the Unified CM Configuration page.

Note

UDTs and ULTs were introduced in CUCM v9.0 as a way to simplify and accelerate the administrative process of adding new phones and users. In essence, they are simply ordinary templates that you create (as many as you need) and set up with common settings for each of the different groups of phones you identify. What makes universal templates interesting is that they utilize variables so that as you create a phone, the UDT/ULT can be set up to create a description as “User’s first name followed by user’s last name,” for example, and have the actual names inserted when the associated user is identified. The other cool part of the universal templates is the interface, which is modern and interactive.

Figure 9-7 shows a UDT under construction. In the UDT configuration screen, clicking the little pencil icon next to the Device Description field opens the Build Input for Device Description dialog box shown in the callout bubble. In this dialog, clicking the various icons labeled with **First Name**, **Last Name**, and so forth builds a string of variables (for example,

#FirstName##LastName#) as shown in the Device Description field. Those variables are
replaced by the actual first and last names of the user when the phone is associated to the user during self-provisioning. You can do this any time the pencil icon is available next to a field. It is not always applicable, of course. Most of the fields do not use data for which variables are necessary; for those, simply enter or select the appropriate data.

UDTs and ULTs are a cool and useful tool in the day-to-day move/add/change routine of CM administration.

Figure 9-6 Auto-Registration Configuration
The Bulk Administration Tool (BAT) enables administrators to perform database inserts, modifications, or deletions in bulk. This makes it feasible to add a great many phones, users, or other elements more quickly and with fewer errors; it also allows the administrator to schedule the operation to happen automatically and unattended.

The BAT Export feature enables the administrator to pull selected records from the database and export them. The administrator can then modify the records and re-import them into the database, making bulk changes faster and more accurate.

BAT can be used to add, modify, or delete almost any component in CUCM, including phones, users, forced authorization codes and client matter codes, user device profiles, the region matrix, gateway devices, and many others.

The components of BAT include an Excel template that provides the required fields and formatting for the new unique data server-side templates that configure the common data and a set of web page interfaces for preparing and executing the many operations that BAT supports.

The Excel template is downloaded from the CUCM server. The administrator then customizes the templates for the needs of this BAT operation, populates the required fields with the correct data, and uploads the resulting CSV file to the server.

Using the BAT interface appropriate for the operation (insert phones, insert users, create call routing components, and so on), the administrator may need to create a server-side BAT Template for adding new devices, or in some cases simply select the uploaded CSV file for
processing. If templates are required (as they would be if adding phones, for example), the template specifies all the settings that all the phones have in common, whereas the CSV file specifies all of the unique settings for each phone, such as DN, line text label, and so forth.

The only trick to adding phones with the BAT tool is that the MAC address of each phone must be specified. Using a barcode scanner to scan the MAC barcode label on the phone into the CSV file makes things faster and more accurate, but there is another challenge waiting for you: You create a detailed config for the phone, including DNs and other user-specific settings, and you specify the MAC address of the new phone. Now you must make sure that the physical phone with that MAC gets to the user it was built for; this is no easy task if several hundred phones are being deployed at once.

A couple of alternative strategies are available to make BAT deployments easier. One is to use auto-registration to get all the phones working and then use the BAT tool to modify the phones’ configurations after the fact. This approach still has some weaknesses, notably that you must still be positive of the MAC address of the physical phone that sits on the desk and match it to the database entry that BAT changes.

Auto Register Phone Tool

A more sophisticated (but much more complex) strategy involves the use of the Auto Register Phone Tool (formerly known as the Tool for Auto Registered Phone Support, but which is still known as TAPS because it is a better acronym than ARPT). TAPS goes one step further in the automation of new IP phone deployments, as summarized in the following steps:

Step 1. An IP-IVR server is built and configured to support TAPS, and the CUCM server is integrated with the IP-IVR server. The IP-IVR functionality is supported by several Cisco applications, including Unified Contact Center Express.

Step 2. The administrator prepares a BAT job, specifying a device template for all the common phone settings and a detailed CSV file with all the unique phone settings. The administrator runs the BAT job, substituting fake “dummy” MAC addresses for the as-yet-unknown real ones. (A simple check box in the BAT interface does this substitution automatically.)

Step 3. The new phones are auto-registered and receive a DN. They can now place calls.

Step 4. Using Bob’s phone as an example: Bob (or perhaps an administrator if Bob feels uncomfortable doing so) picks up his new auto-registered phone that currently has DN 1024 (from the default auto-registration range) and dials the specially configured IP-IVR pilot number.

Step 5. The IP-IVR may prompt Bob to authenticate. (This is an optional but more secure approach.) When Bob has authenticated successfully, the IP-IVR prompts Bob to enter the extension his phone should have; in a new deployment, this may be provided to Bob on an information sheet, or it may simply be the same extension (let’s assume 5309 in this case) that he had on the old phone system that is being migrated to CUCM.
Step 6. When Bob enters the extension, the IP-IVR records his input of 5309 and captures the MAC address of the phone Bob is using. The IP-IVR sends all this information to CUCM.

Step 7. CUCM looks up the extension of 5309 in the database and finds it in the record for one of the newly added BAT job phones; the one that will become Bob’s phone. CUCM replaces the dummy MAC address in the BAT record with the real MAC captured and forwarded by the IP-IVR. The database record is now complete and accurate, including the real MAC address of the phone that sits on Bob’s desk.

Step 8. CUCM restarts Bob’s phone, and when it comes back online, it is fully configured with all the specific details from the BAT record for Bob’s phone.

This is a powerful way to deploy thousands of IP phones. With some minor tweaks and some training of the users, it requires minimal administrator involvement in the phone deployment. The downside is that it requires the IP-IVR hardware and software and a capable administrator to configure it and still involves either training users to set up their own phones or using administrators to perform repetitive simple tasks, which are not cost-effective uses of their time.

Self-Provisioning

Self-provisioning is conceptually almost exactly the same as TAPS, with the very significant difference being that all of the IVR capability has been integrated into the CUCM application. This means that we no longer need to go to the trouble and expense of building and configuring an external IVR; we just configure CM to do it for us. Self-provisioning utilizes UDTs and ULTs, giving us even better customization with much less effort because we can leverage the variables definitions in the UDT and ULT.

Describe End Users in CUCM

It is technically true that a phone system does not need end users. If a person sits in front of a phone and starts using it, it does not really matter who the person is as long as the phone does what that person needs it to do. But a Unified Communications system provides much more than just phone functionality; it has a massive array of features that can be provided to and customized by individual users. Converged networks are increasingly complex, and end users expect an increasing simplicity of use. The configuration of end users is an integral part of a full-featured system, or as one of my friends put it: “All the fun stuff needs user accounts.”

End Users Versus Application Users

CUCM makes a clear distinction between end users and application users. The distinction is simple: End Users are typically people who type a username and password into a login screen (usually a web page) to access features or controls. An application user is typically an application that sends authentication information inline with a request to read or write information to a system (perhaps a third-party billing application accessing the CDR/CAR database, for example). Table 9-2 lists some of the characteristics and limitations of end users versus application users.
Table 9-2 End Users Versus Application Users

<table>
<thead>
<tr>
<th>End Users</th>
<th>Application Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated with an actual person</td>
<td>Associated with an application</td>
</tr>
<tr>
<td>For individual use in interactive logins</td>
<td>For noninteractive logins</td>
</tr>
<tr>
<td>Used to assign user features and administrative rights</td>
<td>Used for application authorization</td>
</tr>
<tr>
<td>Included in the user directory</td>
<td>Not included in the user directory</td>
</tr>
<tr>
<td>Can be provisioned and authenticated using Lightweight Directory Access Protocol (LDAP)</td>
<td>Must be provisioned locally (no LDAP)</td>
</tr>
</tbody>
</table>

Credential Policy

The credential policy defines preset passwords, end-user PINs, and application-user passwords. The default credential policy applies the application password specified at install to all application users.

Administrators can define additional policies that can specify the allowed number of failed login attempts, minimum password length, minimum time between password changes, number of previous passwords stored, and the lifetime of the password. The policy can also check for weak passwords. A strong password:

- Contains three of the four characteristics: uppercase, lowercase, numbers, and symbols
- Cannot use the same number or character more than three times consecutively
- Cannot include the alias, username, or extension
- Cannot include consecutive numbers or characters

Similar rules exist for phone PINs:

- Cannot use any number more than two times consecutively
- Cannot include the user mailbox or extension, nor the reverse of them
- Must contain at least three different numbers (for example, 121212 is invalid)
- Cannot be the dial-by-name version of the user name (such as Mike = 6453)
- Cannot contain repeated digit patterns, nor any patterns that are dialed in a straight line on the phone keypad (for example, 2580 or 357)

Features Interacting with User Accounts

The following features use the end-user account login process, with either the username/password or PIN as the authentication:

- Unified CM Administration web pages
- User web pages (Self-Care Portal)
- Serviceability
- OS administration
- Disaster recovery system
User account information is divided into three categories, with fields for specific data in each category:

1. **Personal and Organizational Settings:**
 - UserID
 - First, Middle, Last Name
 - Manager UserID
 - Department
 - Phone Number, Mail ID
2. **Password Information:** Password
3. **CUCM Configuration Settings:**
 - PIN
 - SIP Digest Credentials
 - User Groups and Roles
 - Associated PCs, controlled devices, and DNs
 - Application and feature parameters (Extension Mobility, Presence Group, CAPF)

Application user accounts use a subset of the previous attributes.

User Locale

User locales allow different languages to be displayed on the IP phone and the user web pages. Additional locales are installed on the CUCM server; then specific locale files are downloaded to the phone via TFTP. This allows for the customization of the primary interfaces for users in a wide range of available locales/languages.

Device Association

For users to be able to control their own devices (using the Self-Care Portal to up their own speed dials, services, and ring preferences, for example), the end-user account must be associated with the device. In CUCM, end users can be associated with IP phones, Cisco IP Communicator (CIPC), and Cisco Extension Mobility profiles.

Because the end-user account must have a unique user attribute name in the CUCM database, it is possible to dial a user by name. Cisco Unified Presence Server (CUPS) tracks the availability status of a user and his communication capabilities (such as voice, video, and chat).
Implementing End Users in CUCM

End users can be added to the CUCM database via three main methods:

■ Manual, one-at-a-time entry
■ Bulk import using the Bulk Administration Tool
■ LDAP synchronization (and optional authentication)

This section reviews each of these methods.

Manual Entry

The CUCM database includes fields for comprehensive user information. Only some of these fields are required, including the following:

■ User ID
■ Last Name
■ Presence Group (defaults to Shared Presence Group)
■ Remote Destination Limit (defaults to 4)

Given that the last two required fields are populated by default, it is clear that CUCM does not require much information to create a new user. The user ID must be unique, which implies that you should have a naming convention that accommodates many users with similar names.

There are many optional fields on the End User Configuration page, including Password, PIN, First Name, Telephone Number, and Device Association. The more users you have, the more likely it is that these optional fields will be populated to implement features, improve searching and reporting, or improve security. Figure 9-8 shows part of the End User Configuration page.

![Figure 9-8 End User Configuration Page](image-url)
Bulk Import Using BAT

Instead of adding potentially hundreds or thousands of users one at a time, the administrator can add users in bulk using the Bulk Administration Tool. BAT allows the administrator to create and upload a CSV file with all the users’ information populated and insert the data into the database in an automated way. BAT is a fast way to add, remove, or modify database entries for many fields in the CUCM database.

LDAP Integration

CUCM supports integration with Lightweight Directory Access Protocol (LDAP). LDAP is a standards-based system that allows an organization to create a single, centralized directory information store. LDAP holds information about user accounts, passwords, and user privileges. The information centralized in LDAP is available to other applications, so that separate directories do not need to be maintained for each application. Using LDAP simplifies user administration, and makes using systems slightly easier for users because they only need to maintain their information and passwords in one place.

Note Only end users are replicated by LDAP sync. Application users are always and only maintained as local entries in the CUCM database.

CUCM supports LDAP integration with several widely used LDAP systems, including the following:

- Microsoft Active Directory 2000, 2003 and 2008 (support for AD 2012 only in CUCM 10.x and later)
- Microsoft Active Directory Application Mode 2003
- Microsoft Lightweight Directory Services 2008
- iPlanet Directory Server 5.1
- Sun ONE Directory Server (5.2, 6.x)
- Open LDAP (2.3.39, 2.4)

CUCM can interact with LDAP in two ways: LDAP Synchronization populates the CUCM database with user attributes from LDAP, and (as an optional additional configuration) LDAP authentication redirects password authentication to the LDAP system. Typically, synchronization and authentication are enabled together. In either case, some information that now comes from LDAP is no longer configurable in CUCM; the fields actually become read-only in CUCM, because the information can only be edited in LDAP. The following sections review LDAP synchronization and authentication in more detail.

LDAP Synchronization

Implementing LDAP synchronization (LDAP sync) means that some user data (but not all) for LDAP-sourced end user accounts is maintained in LDAP and replicated to the CUCM database. When LDAP sync is enabled, LDAP-sourced user accounts must be created and maintained in LDAP and cannot be created or deleted in CUCM; the user attributes that LDAP holds become read-only in CUCM. However, some user attributes are not held in
LDAP and are still configured in CUCM because those attributes exist only in the CUCM database. As of CUCM v9.x, local CUCM user accounts can coexist with LDAP-sourced accounts; in this case, CUCM maintains read-write access to all the attributes of local accounts, but LDAP-sourced accounts still have attributes that are read-only in CUCM and which must be managed in the LDAP system.

It is important to understand that when using LDAP sync without LDAP authentication, the user passwords are still managed in the CUCM database. This means that, although a user account in LDAP is replicated to the CUCM database, the user password must be maintained separately in both the LDAP system and in CUCM.

CUCM uses the DirSync service to perform LDAP sync. The synchronization can be configured to run just once, on demand, or on a regular schedule. The choice depends on the system environment and the frequency of changes to LDAP content; the need for up-to-date information must be balanced against the load on the servers and network if the sync is frequent or takes place during busy times.

Note If LDAP authentication is enabled and LDAP fails or is inaccessible, only local end-user accounts will be able to log in to the CUCM (in addition to any application user accounts including the primary Administrator account defined at install). This may cause drastic unified communications service interruption, depending on how users normally interact with the system. Of course, if LDAP has failed, it is likely to be a serious issue already, causing many applications to cease functioning.

LDAP Authentication

LDAP authentication redirects password authentication requests from CUCM to the LDAP system. End-user account passwords are maintained in the LDAP system and are not configured, stored, or replicated to CUCM. Because one of the benefits (particularly to the end user) of LDAP is a centralized password system (making single sign-on possible), it is typical and desirable to implement LDAP authentication with LDAP sync.

LDAP Integration Considerations

A common misconception regarding CUCM LDAP integration is that all user data resides in LDAP. This is absolutely false. With LDAP sync, certain LDAP user attributes are held in the LDAP directory and are replicated to the CUCM database as read-only attributes. The balance of the user attributes in the CUCM database (fields such as associated devices, PINs, Extension Mobility profile, and so on) are still held and managed only in the CUCM database.

There is a similar misconception with LDAP authentication: Remember that the LDAP password is not replicated to the CUCM database; rather, the authentication process is redirected to the LDAP system. When an LDAP authentication-enabled user logs in to CUCM, the username and password are sent to the LDAP system (the password in sent as an MD5 hash). The LDAP system compares the submitted hash with its own hash of the correct password, and if they match, then the LDAP system indicates to the CUCM that the user is successfully authenticated (and, obviously, if the hashes do not match, the authentication fails).
The interaction of CUCM with LDAP varies with the type of LDAP implementation. The primary concern is how much data is replicated with each synchronization event. For example, Microsoft Active Directory performs a full sync of all records contained in the configuration every time; this can mean a very large amount of data is being synchronized, potentially causing network congestion and server performance issues. For this reason, sync intervals and scheduling should be carefully considered to minimize the performance impact.

Synchronization with all other supported LDAP systems is incremental (for example, only the new or changed information is replicated), which typically greatly reduces the amount of data being replicated, thereby reducing the impact on the network and servers.

LDAP Attribute Mapping

The user attribute field names that LDAP uses are most likely different from the equivalent attribute field names in the CUCM database. Therefore, the various LDAP attributes must be mapped to the appropriate CUCM database attribute. Creating an LDAP sync agreement involves identifying the one LDAP user attribute that will map to the CUCM user ID attribute. In a Microsoft Active Directory integration, for example, the LDAP attribute that will become the CUCM user ID can be any one of the following:

- `sAMAccountName`
- `uid`
- `mail`
- `TelephoneNumber`

It does not matter which one is chosen, but for consistency and ease of use, the attribute that the users are already using to log in to other applications should be used.

After the initial user ID mapping is selected, some other LDAP attributes should be manually mapped to CUCM database fields. Table 9-3 lists the fields in the CUCM database that map to the possible equivalent attribute in each type of supported LDAP database.

<table>
<thead>
<tr>
<th>Table 9-3</th>
<th>LDAP User Attribute Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUCM</td>
<td>Microsoft AD</td>
</tr>
<tr>
<td>User ID</td>
<td><code>sAMAccountName</code></td>
</tr>
<tr>
<td></td>
<td><code>mail</code></td>
</tr>
<tr>
<td></td>
<td><code>employeeNumber</code></td>
</tr>
<tr>
<td></td>
<td><code>telephoneNumber</code></td>
</tr>
<tr>
<td></td>
<td><code>UserPrincipalName</code></td>
</tr>
<tr>
<td>First Name</td>
<td><code>givenName</code></td>
</tr>
<tr>
<td>Middle Name</td>
<td><code>middleName</code></td>
</tr>
<tr>
<td></td>
<td><code>Initials</code></td>
</tr>
<tr>
<td>Last Name</td>
<td><code>sn</code></td>
</tr>
</tbody>
</table>
Chapter 9: Managing Endpoints and End Users in CUCM

<table>
<thead>
<tr>
<th>CUCM</th>
<th>Microsoft AD</th>
<th>Other Supported LDAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager ID</td>
<td>manager</td>
<td>manager</td>
</tr>
<tr>
<td>Department</td>
<td>department</td>
<td>department</td>
</tr>
<tr>
<td>Phone Number</td>
<td>telephoneNumber</td>
<td>telephonenumber</td>
</tr>
<tr>
<td></td>
<td>ipPhone</td>
<td></td>
</tr>
<tr>
<td>Mail ID</td>
<td>mail</td>
<td>mail</td>
</tr>
<tr>
<td></td>
<td>sAMAccountName</td>
<td>uld</td>
</tr>
</tbody>
</table>

LDAP Sync Requirements and Behavior

Keep these points in mind when planning and implementing an LDAP sync:

- The data in the LDAP attribute that is mapped to the CUCM User ID field must be unique in the LDAP (and therefore CUCM) database. Some LDAP fields allow duplicate entries, but the CUCM user ID must be unique, so it is necessary to verify that the LDAP data is unique before the sync agreement is built.
- The sn attribute (surname/last name) in LDAP must be populated with data; otherwise, the record will not be replicated to CUCM.
- If the LDAP attribute that maps to the CUCM user ID attribute contains the same data as an existing application user in CUCM, that entry is skipped and not imported into the CUCM database.

LDAP Sync Agreements

An LDAP sync agreement defines what part of the LDAP directory will be searched for user accounts. Many LDAP systems have a highly organized structure, with different containers for different functions, departments, locations, or privileges. The synchronization agreement specifies at which point in the tree the search for user accounts will begin. CUCM has access to the container specified in the agreement, and all levels below that in the tree; it cannot search higher up the tree than the start point, nor can it search across to other branches in the tree that must be accessed by going higher than the starting point then back down.

The agreement can specify the root of the domain, but although this is a simple agreement to create, it causes the entire LDAP structure to be searched, which may return unwanted accounts or simply too many accounts.

CUCM can integrate with only one LDAP system, but within that system version 10.x can support up to 20 synchronization agreements. The total number of LDAP-sourced user accounts should not exceed 160,000. To be more precise

- If the number of users is less than 80,000, up to 20 sync agreements are possible.
- If the number of users is greater than 80,000 (to the maximum recommended 160,000), the number of sync agreements supported is 10.
LDAP Sync Mechanism
The LDAP sync agreement specifies when to begin synchronizing and when to repeat the synchronization (a schedule). It is possible to have a synchronization run only once, although this is somewhat unusual.

LDAP Custom Filters
The default behavior of LDAP sync is to import all user accounts from the start point in the tree on down. This may cause accounts to be imported that are not wanted. Using a custom filter allows an administrator to limit which accounts are imported; for example, a filter could specify that only user accounts in a particular organizational unit (OU) are imported. If the filter is changed, a full LDAP sync must be performed for the change to take effect.

Configure LDAP Sync
Setting up LDAP sync is surprisingly simple. The main difficulty is typically gaining a full understanding of the target LDAP structure, knowing what containers hold the users to be imported, and knowing where to start the LDAP search.

The basics steps to set up LDAP sync are as follows:

- **Step 1.** Activate the Cisco DirSync service.
- **Step 2.** Configure the LDAP system.
- **Step 3.** Configure the LDAP directory.
- **Step 4.** Configure LDAP custom filters.

For CUCM to be able to access and search LDAP, an account must be created in LDAP for CUCM. Configurations may vary between LDAP systems, but the account must essentially have read permissions on everything in the search base.

Activate DirSync
Using the Unified Serviceability application, navigate to **Tools > Service Activation**. From the Server drop-down list, choose the **Publisher**. Find the Cisco DirSync service, check the box next to it, and click **Save**.

Configure the LDAP System
Follow these steps to enable LDAP sync in CUCM:

- **Step 1.** Using the Unified CM Administration application, navigate to **System > LDAP > LDAP System**.
- **Step 2.** Check the **Enable Synchronizing from LDAP Server** box.
- **Step 3.** From the LDAP Server Type drop-down, choose the type of LDAP system with which CUCM will synchronize.
- **Step 4.** From the LDAP Attribute for User ID drop-down, select which LDAP attribute will map to the CUCM User ID attribute.
- **Step 5.** Click **Save**.
Figure 9-9 shows the LDAP System Configuration page.

Configure the LDAP Directory

To configure the LDAP directory, follow these steps:

Step 1. Using the Unified CM Administration application, navigate to System > LDAP > LDAP Directory.

Step 2. Specify a name for this LDAP Sync agreement in the LDAP Configuration Name field.

Step 3. Add the account name and password that CUCM will use to access LDAP.

Step 4. Define the User Search Base. This will be the full LDAP path syntax (for example, ou=Users,dc=Pod1,dc=com).

Step 5. Set the synchronization schedule.

Step 6. Specify the LDAP user fields to be synchronized (mapping CUCM fields to LDAP fields).

Step 7. Specify at least one (up to three for redundancy) LDAP server IP address. Specify SSL to secure the LDAP sync process (requires similar configuration on the LDAP system).
Note There are several new and interesting capabilities in the LDAP integration system that are beyond the scope for CICD. Things such as the ability to add users to specified groups as you import them and to associate or even create directory numbers based on the LDAP information or specified settings, are good news for ease of user administration, but not CICD exam material.

Figure 9-10 shows the LDAP Directory configuration page.

Verify LDAP Sync

The simplest way to verify that LDAP sync is working is to do a quick search of the end users on the CUCM. In the column under LDAP Sync Status, the LDAP-sourced users’ status will be listed as Active LDAP Synchronized User. Users that are locally maintained in the CUCM database will be listed as Enabled Local User.

When you open the configuration page for an LDAP-synced user, you see that the User ID, Last Name, Middle Name, First Name, Telephone Number, Mail ID, Manager User ID, Department and a few other fields are not editable; this is because they are synced with LDAP and can only be edited in the LDAP system.

Configuring LDAP Authentication

Configuring CUCM to redirect authentication to the LDAP system is normally done as part of an LDAP integration. It is not typical to sync all the users but still make them maintain a separate password in CUCM.
To set up LDAP authentication, follow these steps:

Step 1. Navigate to System > LDAP > LDAP Authentication.

Step 2. Check the box next to Use LDAP Authentication for End Users.

Step 3. Specify the account and password CUCM will use to access the LDAP system.

Step 4. Specify the LDAP User Search Base.

Step 5. Specify the LDAP server IP address (up to three for redundancy).

Step 6. Click Save.

Verify LDAP Authentication

Verifying LDAP authentication can be achieved by opening a user configuration page and observing that the Password field is gone; this is because the password is maintained in LDAP, not locally in the CUCM database. A user can test the LDAP authentication by changing her password in LDAP and observing that CUCM requires the new password to log in.

Note that the user PIN is always locally maintained in the CUCM database, as are all the other CUCM-specific attributes.

Create LDAP Custom Filters

Create LDAP custom filters by navigating to System > LDAP > LDAP Custom Filter. Click Add New. In the Filter Configuration page, specify a name for the filter.

In the Filter field, type the filter statement. The statement must be in parentheses: (). Some sample filter statements follow; for more detail, see RFC 4515, *LDAP: String Representation of Search Filters*:

- (cn=Milton Macpherson)
- !(cn=Milton Macpherson))
- (&(objectClass=Person)(|(sn=Macpherson)(cn=Milton M*)))
- (sn=M*)
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics in the chapter, noted with the Key Topic icon in the outer margin of the page. Table 9-4 describes these key topics and identifies the page number on which each is found.

Table 9-4 Key Topics for Chapter 9

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>IP phone registration process</td>
<td>236</td>
</tr>
<tr>
<td>Section</td>
<td>IP phone configuration requirements in CUCM</td>
<td>240</td>
</tr>
<tr>
<td>Section</td>
<td>End users versus application users</td>
<td>252</td>
</tr>
<tr>
<td>Section</td>
<td>LDAP integration</td>
<td>256</td>
</tr>
</tbody>
</table>

Definitions of Key Terms

Define the following key terms from this chapter, and check your answers in the Glossary:

device pool, Unified CM group, softkey template, phone button template, region, location, date/time group, self-provisioning
This page intentionally left blank
Symbols

μ-law (mu-law), G.711 codec, 20, 23

A

A-law, G.711 codec, 20, 23
AAR (Automated Alternate Routing), CUC voice messaging, 356
Access Control Groups (CUCM user management), 220-221
access lists (Mobile Connect), 327-328
applying, 334-335
configuring, 333-334
address signaling, 8
administration (CME) via command-line, 479-491
administration interfaces
CM-IMP
 CM-IMP Administration, 224-225
 CM-IMP Serviceability, 225-226
CUC, 221
 CUC Administration, 222-223
 CUC Serviceability, 224
CUCM
 accessing, 214
 Cisco Unified Operating System Administration, 217
 Cisco Unified Reporting, 218

Cisco Unified Serviceability Administration, 215-216
CLI, 218-219
CM Administration, 214-215
DRS, 218
End-User interface, 226-227
passwords, 214
security, 214
Self Care Portal, 226-227
Advanced Features menu (CM Administration interface), 215
Advanced menu (CUC Administration), 223
after-hours call blocking, configuring with CME, 191-194
aging policy (messages), CUC voicemail boxes, 357, 374-375
Alarm menu (Cisco Unified Serviceability Administration interface), 216
alerts, monitoring via RTMT, 442-443
Alerts Report (Serviceability Reports Archive), 457-458
allow multiple logins option (EM in CUCM), 290
analog connections, 6
analog waveforms, 7
Cisco, CME, Cisco IP phone interaction with PTSN, 36
converting to digital, 9, 17-20
difficulties with, 9
glare, 8
ground start signaling, 8
loop start signaling, 8
PSTN, 14
repeaters, 9
analog telephones, PSTN, 12
analog voice ports
 CME dial plans
 FXO voice ports, 119, 146-147
 FXS voice ports, 116-118
FXO voice ports
 CME dial plans, 119
designating POTS lines for emergency calls, 146-147
 PLAR, 137
FXS voice ports
 CME dial plans, 116-118
 PLAR, 136
any voice codec (dial peer 0), 142
Application menu
 CM Administration interface, 215
 CM-IMP Administration, 224
application users (CUCM), 252, 256
attempt forward rule (forward routing), CUC voice messaging integration, 352
attempt sign-in rule (direct routing), CUC voice messaging integration, 351
audio encryption, SRTP, 60
audio telephony, CUCM, 37
Audio Text Administrator role (CUC voice messaging integration), 349
Audit Administrator role (CUC voice messaging integration), 349
authentication
 LDAP authentication, 257
 configuring, 262
 verifying, 263
local authentication, CME configuration with CCP, 88
authentication rules, CUC voice messaging integration, 352
auto-log-out option (EM in CUCM), 290
AutoQoS (Quality of Service), 74-81
auto-registration of IP phones in CUCM, 243, 247-252
AXL (Administrative XML), CUC voice messaging, 357, 369-370

B

B8ZS linecoding, 122
backups, DRS, 444
 backup device configuration, 445
 CUC, 445
 CUCM, 445
 CUP, 445
 restore process, 446
 scheduling backups, 445-446
bandwidth, VoIP networks, 69
Barge feature, CUCM telephony, 299, 304-305
barge-in functionality in intercoms, 185
BAT (Bulk Administration Tool)
 end users (CUCM), importing, 256
 IP phone registration in CUCM, 243, 250-251
Bell Systems Corporation, analog to digital conversions, 17
best effort QoS model, 71
billing reports, 464
Bitrate codec (iLBC), 21-23
BLF (Busy Lamp Fields) and Native Presence (CUCM), 301-303, 315-317
blind transfers (call transfers), 175
blocking calls after-hours, configuring with CME, 191-194
boot processes, troubleshooting IP phones, 404-407
browsing (remote), monitoring via RTMT, 443
Bulk Administration menu
 CM Administration interface, 215
 CM-IMP Administration, 225
Cabling, VoIP, 17
CAC (Call Admission Control), PSTN backup using CAC call flows (CUCM), 275-276
calendar resources, CM-IMP integration, 386
call accounting, configuring with CME, 194-199
call actions, CUC voice messaging, 355
call activity, monitoring via RTMT, 440-442
call blocking after-hours, configuring with CME, 191-194
call coverage, CUCM
 Barge feature, 299, 304-305
call forward options, 298-299
call hunting, 300-301, 310-313
call park, 301, 308-310
call pickup groups, 300, 305-308
CFA, 298
CFB internal/external, 299
CFNA internal/external, 299
CFNC internal/external, 299
CFUR internal/external, 299
GPickup, 300
Intercom feature, 301, 313-315
Other Group Pickup, 300
privacy, 300
shared lines, 299, 303-304
Whisper intercom feature, 301
caller input, CUC voice messaging, 355
call flows (CUCM)
call routing
 destinations in CUCM, 277-278
digit analysis, 280-281
gateways, 280
hunt groups, 281
route groups, 279
route lists, 279
route patterns, 278-279
sources of, 277
trunking, 280
centralized deployment
 considerations/limitations, 275
 PSTN backup call flows, 274
centralized remote branch call flows, 273-274
class of control
 CSS, 282-283
 partitions, 282
distributed deployment call flows, 276-277
DNS (with/without), 270-273
PSTN backup using CAC call flows, 275-276
call forwarding
CME and
 CLI, 172-173
 H.450.3 call forwarding, 173-175
 IP phone calls, 172
CUCM and
 CFA, 298
 CFB internal/external, 299
 CFNA internal/external, 299
CCM (Cisco CallManager) 509

Call Routing menu (CM Administration interface), 214

call transfers
blind transfers, 175
CME and, 175-177
consult transfers, 175

CAR (Call Detail Record Analysis and Reporting) tool, 427
CDR and, 429
exporting records, 430
generating reports, 430-433

CMR and
exporting records, 430
system requirements, 429-430

exporting records, 430
generating reports
CDR reports, 430-433
device reports, 434
system reports, 433-434

service activation, 428
service parameter configuration, 428
system parameters, 429-430
user types, 429

cards, PBX systems
control cards, 13
line cards, 13
trunk cards, 13

CAS (Channel Associated Signaling), 10-11

catalyst switch PoE (Power over Ethernet), IP phones, 56

CBarge option (Barge feature), 305

CBWFQ (Class-Based Weighted Fair Queuing), 73

CCMCIP (Cisco Unified Communication Manager IP phone)
service, 384

CCM (Cisco CallManager). See CUCM
CCP (Cisco Configuration Professional)
capabilities of, 105
CCP GUI, CME end user/endpoint implementation, 107-110
CME dial plans, 151-152, 159-161
CME routers
 CME integrated GUI, 89
 configuring, 88
 managing, 89-93
CME voice networks
 after-hours call blocking, 194
 call forwarding, 175
 call parks, 180-181
 call pickup, 183-184
 call transfers, 177
 directories, 170-171
 ephone hunt groups, 201-202
 intercoms, 185-187
 paging, 189-190
 shared ephone-dn, configuring, 206-207
 Single Number Reach, 199-200
 communities, definition of, 91
COR implementation, 159-161
interface management, 105
license management, 105
Night Service, configuring for CME, 203-206
routers, 105
security, 105
shared ephone-dn, configuring for CME, 206-207
Unified Communications, 105-107
utilities, 105
virtual machines, building, 93
CCP Express (Cisco Configuration Professional Express), 90
CCS (Common Channel Signaling), 11-12
CD, Exam Engine
 activating exams, 468
 installing, 467
 Practice Exam mode, 468-471
 Study mode, 470-471
CDP (Cisco Discovery Packets)
 AutoQoS and, 76
 IP phone VLAN configuration, 63
CDR (Call Detail Records)
 CAR tool and, 429
 exporting records, 430
 generating reports, 430-433
 CME and, 194-198
CFA (Call Forward All), CUCM, 298
CFB (Call Forward Busy) internal/external, CUCM, 299
CFNA (Call Forward No Answer) internal/external, CUCM, 299
CFNC (Call Forward No Coverage) internal/external, CUCM, 299
CFUR (Call Forward UnRegistered) option
 centralized deployment PSTN back call flows, 274
 CUCM, 299
chapter-ending review tools (test preparation), 469
chats, CM-IMP
 group chat storage, 384
 persistent chats, 387
Cisco IP phones
 CME interaction
 PSTN-connected interfaces, 36
 RTP, 35
 SCCP, 35
 SIP, 35
 CUCM interaction, 38-41
Cisco Learning Network, 469
Cisco Unified Communications Manager Instant Messaging and Presence. See IMP
Cisco Unified CUCME as Cisco Unified SRST, CCP and CME router configuration, 92-93
Cisco Unified Operating System Administration interface (CUCM), 217
Cisco Unified Reporting interface (CUCM), 218
Cisco Unified Serviceability
Cisco Serviceability Reporter service, 455
Serviceability Reports Archive, 455-456
 Alerts Report, 457-458
 Server Report, 458-459
Cisco Unified Serviceability Administration interface (CUCM), 215-216
Cisco Unity Connection
CUCM interaction, 43-44
Exchange and, 42
features of, 42
LDAP directory server integration, 42
mailboxes, 42
voicemail, 42
voice messaging, 41
VPIM, 42
classification and marking mechanisms (QoS), 71
class of control (CUCM call flows), 282-283
Class of Service menu (CUC Administration), 222
CLI (Command Line Interface)
CUCM, 218-219
forwarding calls from, 172-173
clocks, setting in Cisco devices, 65-67
clusters and CUCM, 37-39
CM Administration interface (CUCM), 214-215
CM groups (device pools), 240
CM-IMP (Communications Manager IM and Presence), 381
administration interfaces
 CM-IMP Administration, 224-225
 CM-IMP Serviceability, 225-226
calendar resource integration, 386
CCMCIP service, 384
components of, 384
conferencing resource integration, 386
CUC integration, 385
CUCM Presence Signaling integration, 393-394
group chat storage, 384
Jabber
 chats, 387
 compliance, 387
 CSF, 383, 390
deskphone mode, 381-382, 386
enterprise IM, 382
IM, 387
integration support, 383
persistent chats, 387
QoS, 387-388
softphone mode, 382, 386
troubleshooting, 394-395
user integration in CM-IMP, 394
user integration in CUCM, 389-392
video calls, 383
voice calls, 383
LDAP integration, 385, 391
MeetingPlace integration, 386
Microsoft Exchange 2003/2007 integration, 386
Microsoft Office Communications Server integration, 385
QoS, 387-388
Rich Presence service, 384
user integration in CM-IMP, 394
user integration in CUCM, 391-392
configuring users, 389
CSF devices, 390
directory number associations, 390
WebEx integration, 386
CME (Communication Manager Express)
administration
 CCP and CME, 88-93
 CME GUI, 89, 101-103
 Customer Admin account creation, 103-104
 customer administrators, 100
 endpoint implementation, 107-110
 end user implementation, 107-110
 ephone-dn, 103-104
 phone users, 100
 SCCP, 104-105
 SIP, 104-105
 system administrators, 100
 user creation, 101
after-hours call blocking, 191-194
call accounting, 194-199
call forwarding
 CLI, 172-173
 H.450.3 call forwarding, 173-175
 IP phone calls, 172
call parks, 177-181
call pickup, 182-184
call processing, 34
call transfers, 175-177
CCP
 CCP GUI and end user/endpoint implementation, 107-110
 CME configuration, 88
 CME management, 89-93
CDR, configuring, 194-198
Cisco IP phones, 35-36
CME GUI, 89
 Customer Admin account creation, 103-104
 enabling, 101-103
 user creation, 101
command-line administration
 administration, 479-491
 configuring, 34
COR, 153-161
CTI support, 34
Customer Admin accounts, creating, 103-104
customer administrators, 100
device control, 34
dial plans
 CCP and COR implementation, 159-161
 CCP and dial plan configuration, 151-152, 159-161
 COR, 153-161
dial peer configuration, 125-151, 155
 router call processing, 137-142
 router digit manipulation, 142-151
 voice port configuration, 116-125
direct integration with CUE, 34
EM, 207
ephone hunt groups, configuring, 201-203
ephone-dn
 shared ephone-dn, configuring with CCP, 206-207
 user creation, 103-104
features of, 34
GUI-based configuration, 34
intercoms, configuring, 184-187
ISR G2 platform support, 33-34
local directory service, 34
managing with CCP, 89-93
MoH, configuring, 198-199
Night Service, configuring with CCP, 203-206
paging, configuring, 187-190
phone users, 100
SCCP, 104-105
Single Number Reach, configuring, 199-200
SIP, 104-105
system administrators, 100
troubleshooting
 CME servers, 407
dial plans, 407-410
QoS, 410-413
 registration issues, 403-407
voice network directories, configuring, 168-171
VoIP trunking, 34
CMR (CallManager) service and CAR tool
exporting records, 430
system requirements, 429-430
codecs
 Bitrate (iLBC), 21-23
 G.711, 21
 μ-law (mu-law), 20, 23
 A-law, 20, 23
 G.722, 21
 G.726 codec, 23
 G.728, 21
 G.729, 20-21
 G.729a, 21
 G.729ab codec, 23
 G.729a codec, 23
 G.729b, 21
 G.729b codec, 23
 iLBC (Bitrate), 21-23
 Internet Low, 21
command-line (CME)
 administration, 479-491
 configuration, 34
common phone profiles, IP phones and CUCM implementation, 243
communities, definition of, 91
compatibility, VoIP, 17
compliance, CM-IMP, 387
compression
 analog to digital conversion, 20
 G.729 codec, 20
 header compression (link efficiency mechanisms), 73
 MOS, 20
 payload compression (link efficiency mechanisms), 72
conferencing resources, CM-IMP integration, 386
congestion avoidance mechanisms (QoS), 72
congestion management mechanisms (QoS), 72
connections
 analog, 6
 converting to digital, 9, 17-20
difficulties with, 9
glare, 8
ground start signaling, 8
loop start signaling, 8
PSTN, 14
repeaters, 9
waveforms, 7
digital
CAS, 10-11
CCS, 11-12
converting analog connections to, 9, 17-20
PSTN, 14
signal degradation, 10
TDM, 10
console ports, CME administration via command-line, 479
consult transfers (call transfers), 175
Contacts menu (CUC Administration), 222
control cards, PBX systems, 13
COR (Class of Restriction), CME, 153-161
CO switches, PSTN, 13
couplers (inline PoE), IP phones, 56-57
credential policies and end users (CUCM), 253
CSF (Client Services Framework), Jabber, 383, 390
CSS (Calling Search Spaces) and CUCM call flow class of control line device configuration, 283
partition interaction with, 282
CSS (Common Channel Signaling), SS7, 14
CTI (Computer Telephony Integration), CME support, 34
CUBE (Cisco Unified Border Element), CCP and CME router configuration, 92
CUC (Cisco Unity Connection) administration interfaces, 221
CUC Administration, 222-223
CUC Serviceability, 224
Cisco Serviceability Reporter service (Cisco Unified Serviceability), 455
CM-IMP integration, 385
CUC Serviceability reports
accessing, 452
billing reports, 464
Mailbox Store Report, 462-463
maintenance with, 462-464
Outcall Billing Detail Report, 464
Outcall Billing Summary Report, 464
Phone Interface Failed Logon Report, 459-460
Port Activity Report, 461-462
Transfer Call Billing Report, 464
troubleshooting with, 459-462
Unused Voice Mail Accounts Report, 463-464
User Lockout Report, 460-461
Users report, 453-454
DRS and disaster recovery, 445
Serviceability Reports Archive (Cisco Unified Serviceability), 455-456
Alerts Report, 457-458
Server Report, 458-459
CUCM (Cisco Unified Communications Manager), 33
administration interfaces
accessing, 214
Cisco Unified Operating System Administration, 217
Cisco Unified Reporting, 218
Cisco Unified Serviceability Administration, 215-216
CLI, 218-219
CM Administration, 214-215
DRS Administration, 218
End-User interface, 226-227
passwords, 214
security, 214
Self Care Portal, 226-227
appliance-based operation, 37
application users, 252, 256
audio telephony support, 37
call coverage
 Barge feature, 299, 304-305
 call forward options, 298-299
 call hunting, 300-301, 310-313
 call park, 301, 308-310
 call pickup groups, 300, 305-308
 CFA, 298
 CFB internal/external, 299
 CFNA internal/external, 299
 CFNC internal/external, 299
 CFUR internal/external, 299
 GPickup, 300
 Intercom feature, 301, 313-315
 Other Group Pickup, 300
 privacy, 300
 shared lines, 299, 303-304
 Whisper intercom feature, 301
call flows
 call routing and digit analysis, 280-281
 call routing and gateways, 280
 call routing and hunt groups, 281
 call routing and trunking, 280
 call routing destinations, 277-278
 call routing groups, 279
 call routing lists, 279
 call routing patterns, 278-279
 call routing sources, 277
 centralized deployment considerations/limitations, 275
 centralized deployment PSTN backup call flows, 274
 centralized remote branch call flows, 273-274
 class of control, 282-283
distributed deployment call flows, 276-277
 DNS (with/without), 270-273
 PSTN backup using CAC call flows, 275-276
call processing, 41
cell routing
 destinations in CUCM, 277-278
digit analysis, 280-281
gateways, 280
 hunt groups, 281
 route groups, 279
 route lists, 279
 route patterns, 278-279
 sources of, 277
 trunking, 280
CAR tool, 427
 CDR and, 429-433
 CMR and, 429-430
device reports, 434
exporting records, 430
service activation, 428
 system parameters, 428-430
 system reports, 433-434
 user types, 429
Cisco IP phones, 38-41
Cisco Unity Connection interaction, 43-44
clusters, 39
CM-IMP
 chats, 387
 compliance, 387
 CUCM Presence Signaling integration, 393-394
deskphone mode, 381-382, 386
IM, 387
Jabber, 381-383, 386-395
persistent chats, 387
QoS, 387, 388
softphone mode, 382, 386
user integration in CM-IMP, 394
user integration via Jabber, 389-392
CUC voice messaging integration, 347-348
importing accounts via AXL, 357, 369-370
importing users from CUCM, 368-370
CUPS and, 273
database replication, 38
dial plans
call routing and digit analysis, 280-281
call routing and gateways, 280
call routing and hunt groups, 281
call routing and trunking, 280
call routing destinations, 277-278
call routing groups, 279
call routing lists, 279
call routing patterns, 278-279
call routing sources, 277
centralized deployment considerations/limitations, 275
centralized deployment PSTN backup call flows, 274
centralized remote branch call flows, 273-274
class of control, 282
class of control and CSS, 282-283
class of control and partitions, 282
distributed deployment call flows, 276-277
DNS (with/without), 270-273
PSTN backup using CAC call flows, 275-276
directory service support/integration, 38
DRS, 38, 445
EM
enabling, 291-298
logins, 290
end users
account interaction features, 253-254
application users versus, 252
credential policies, 253
device association, 254
importing via BAT, 256
LDAP attribute mapping, 258-259
LDAP authentication, 257, 262-263
LDAP custom filters, 263
LDAP integration, 256-263
LDAP sync, 256-262
manually importing, 255
passwords, 253
PIN, 253
user locales, 254
features of, 37-38
ICCS, 38
Intercluster trunking, 38
IP phones, 234
auto-registration, 243, 247-252
BAT, 243, 250-251
CDP, 235
common phone profiles, 243
configuration requirements, 240-243
device defaults, 242
CUCM (Cisco Unified Communications Manager) 517

device pools, 240-242
DHCP, 235-240
DNS, 235
manual configuration, 243-247
NTP, 234, 241
phone button templates, 242
phone security profiles, 243
PoE, 235
registering, 236, 243-252
self-provisioning registration, 243, 252
service activation, 237
SIP phone registration process, 236
softkey templates, 242
TAPS, 243, 251-252
TFTP, 235
LDAP integration
 attribute mapping, 258-259
custom filters, 263
LDAP authentication, 257, 262-263
LDAP sync, 256-262
mobility
 Mobile Connect, 326-336
 MVA, 328, 336-340
 unified mobility architecture, 327-328
Native Presence, 301-303
 BLF call lists, 317
 BLF speed dials, 315-316
custom presence groups, 317-320
presence-enabled call lists, 316
Presence Signaling integration with CM-IMP, 393-394
redundant server clusters, 37
reports
 analyzing, 427
 CAR tool, 427-434
generating, 425-426
maintenance reports, 427
route plan reports, deleting unassigned DN, 424-425
system analysis reports, 427
RTMT monitoring
 alerts, 442-443
call activity, 440-442
database summaries, 439-440
device searches, 438-439
gateway activity, 437-438
remote browsing, 443
syslog, 443-444
voice/video summaries, 437
runtime data, 38
SIP phones, registering, 236
telephony
 Barge feature, 299, 304-305
call coverage, 298-315
call forward options, 298-299
call hunting, 300-301, 310-313
call parks, 301, 308-310
call pickup groups, 300, 305-308
CFA, 298
CFB internal/external, 299
CFN internal/external, 299
CFNC internal/external, 299
CFUR internal/external, 299
GPickup, 300
Intercom feature, 301, 313-315
Native Presence, 301-303, 315-320
Other Group Pickup, 300
privacy, 300
shared lines, 299, 303-304
Whisper intercom feature, 301
TFTP servers, 39
troubleshooting, 421-422
 analyzing reports, 427
 CAR tool, 427-434
 DN, 424-425
 generating reports, 425-426
 IP phone registration, 422-424
 maintenance reports, 427
 QoS, 413
 system analysis reports, 427
user management
 Access Control Groups, 220-221
 privileges, 219
 roles, 219-220
video telephony support, 37
VMware installation, 37
voice gateway control/communication, 38
CUCME (Cisco Unified Call Manager Express), CCP and CME router configuration, 92
CUC voice messaging integration, 343
 Audio Text Administrator role, 349
 Audit Administrator role, 349
 authentication rules, 352
call handlers, 350
call routing, 351-352
CUC Message Store, 373
 memberships, 374
 message aging policy, 374-375
 quotas, 375-376
CUCM using SCCP, 347-348
dial plans, 353
direct routing rules, 351
DL, 352
enterprise parameters, 350
forward routing rules, 352
Greeting Administrator role, 349
Help Desk Administrator role, 349
LDAP, 350, 357, 370-372
Mailbox Access Delegate Account role, 349
mailboxes
 call actions, 355
caller input, 355
greetings, 354
 message actions, 355
 message settings, 355
 transfer rules, 354
multisite deployments, 347
overview of CUC, 346
Remote Administrator role, 349
service parameters, 350
single-site deployments, 346
SIP and CUC integration, 348
System Administrator role, 350
system settings
 general configuration, 349
 roles, 349-350
Technician role, 350
User Administrator role, 350
user configuration, 355
 AAR, 356
 account creation options, 356
 alternate extensions/names, 366-367
call forward options, 356
direct routing rules, 351
extension numbers, 356
manual configuration, 365-366
notification devices, 356
private DL, 356, 367-368
SRST, 356
toll call control, 356
voicemail boxes, 356
user importation
 bulk administration import, 372-373
DHCP (Dynamic Host Configuration Protocol)

CUCM, 368-370
LDAP, 370-372

user templates

basic elements of, 353-354
basics of, 358
call actions, 355
caller input, 355
configuring, 357-358
greetings, 354
message actions, 355, 361-362
message settings, 355, 360-361
notification devices, 364-365
password settings, 354, 359-360
phone menu, 362-363
playback message settings, 363-364
roles, 354, 360
transfer rules, 354
TUI settings, 355

voicemail boxes

message aging policy, 357, 374-375
message storage, 373-375
quotas, 357, 375-376

CUE (Cisco Unity Express), direct
CME integration, 34

CUPS (Cisco Unified Presence Servers)
CUCM and, 273
DRS and disaster recovery, 445

Customer Admin accounts (CME),
creating, 103-104
customer administrators (CME), 100

databases

replicating, CUCM, 38
summarizing via RTMT, 439-440
date/time
date time groups (device pools), 241
setting in Cisco devices, 65-67
degradening signal, 10
delay in VoIP networks, 69-70
demultiplexing devices, digital voice
ports and CME dial plans, 122
deny login option (EM in CUCM), 290
deskphone mode (Jabber), 381-382, 386
device control, CME, 34
device defaults, IP phones and CUCM
implementation, 242
Device menu (CM Administration
interface), 215
device pools
CM groups, 240
date/time groups, 241
IP phones and CUCM implementa-
tion, 240-242
locations, 241
manual IP phone configuration in
CUCM, 244
phone NTP references and SIP
phones, 241
regions, 241
device reports, generating via CAR
tool, 434
device searches via RTMT, 438-439
device security profiles, manual IP
phone configuration in CUCM, 244

dDHCP (Dynamic Host Configuration
Protocol)

IP phones

CUCM implementation, 235
CUCM support, 237-240
registering, 423
troubleshooting, 423
servers

IP phone boot process, 63, 406
router-based DHCP server configuration, 64-65
troubleshooting, 406

Diagnostics menu (CM-IMP Administration), 225

dial peers

CME dial plans, 125-144, 151, 155
dial peer 0, 142
inbound/outbound dial peers, matching, 139-142
PLAR, 136-137
POTS dial peers, 125-131, 142, 151, 155
router call processing, 137-142
router digit manipulation, 142-151
designating POTS lines for emergency calls, 146-147
directing operator calls to receptionist, 145-146
PSTN failover using prefix command, 143-145
translation profiles, 148-151
voice call legs, 126-127
VoIP dial peers, 125, 131-133, 143-144
wildcards, 133-134

Dial Plan menu (CUC Administration), 222
dial plans

CME dial plan

CCP and COR implementation, 159-161
CCP and dial plan configuration, 151-152, 159-161
COR, 153-161
dial peer configuration, 125-151, 155

router call processing, 137-142
router digit manipulation, 142-151
voice port configuration, 116-125

CUC voice messaging integration, 353

CUCM
call routing, 277-281
centralized deployments, 274-275
centralized remote branch call flows, 273-274
class of control, 282-283
distributed deployment call flows, 276-277
DNS (with/without), 270-273
PSTN backup using CAC call flows, 275-276
PSTN dial plans, 134-135
troubleshooting, 407-410

DiffServ (Differentiated Services) QoS model, 71
digit analysis and CUCM call routing, 280-281
digit manipulation

CME dial plans, 142
emergency calls, designating POTS lines for, 146-147
operator calls, directing to receptionist, 145-146
PSTN failover using prefix command, 143-145
translation profiles, 148-151
digit-stripping rule (POTS dial peers), 131
digital connections

CAS, 10-11
CCS, 11-12
converting analog connections to, 9, 17-20
PSTN, 14
signal degradation, 10
TDM, 10
digital telephones, PSTN, 13
digital voice ports, CME dial plans, 120-125
direct routing rules, CUC voice messaging integration, 351
directed call park, 301, 309-310
directed pickup, 183
directories
LDAP sync directories, configuring, 261, 262
voice network directories, configuring, 168-171
directory handlers, CUC voice messaging integration, 350
directory numbers, user associations in CUCM via Jabber, 390
directory services
CUCM, 38
local directory service, CME, 34
DirSync and LDAP sync, 260
disaster recovery
CUCM, 38
DRS, 444
backup device configuration, 445
CUC, 445
CUCM, 445
CUP, 445
restore process, 446
scheduling backups, 445-446
DRS interface (CUCM), 218
Distribution Lists menu (CUC Administration), 222

DL (Distributed Lists)
CUC voice messaging integration, 352, 356, 367-368
private DL, 356, 367-368

DN (Directory Numbers)
call hunting, 300, 310-313
call parks, 308-309
call pickup groups, 300, 305-308
call routing in CUCM, 277
custom Native Presence groups (CUCM), 317-320
Intercom feature, 313-315
intercom lines, 301
Native Presence (CUCM), 303
troubleshooting, 424-425
unassigned numbers, deleting via Route Plan Reports, 424-425

DNS (Domain Name Systems)
CUCM call flows
centralized remote branch call flows, 273-274
DNS (with/without), 270-273
IP phones, CUCM implementation, 235
downloading practice exams, 468

DRS (Disaster Recovery System)
interface (CUCM), 218

DRS (Disaster Recovery Systems), 444
backup device configuration, 445
CUC, 445
CUCM, 38, 445
CUP, 445
restore process, 446
scheduling backups, 445-446

DSP (Digital Signal Processors)
calculating, 22
PVDM, 22-23
VoIP, 10
VoIP and, 21-23
E.164 numbering plan, 15
Edison, Thomas, 6
email, VoIP, 17
emergency calls, designating POTS lines for (digit manipulation scenarios), 146-147
EM (Extension Mobility), 207, 290-298
encoding analog to digital conversions, 19-20
encryption (audio), SRTP, 60
ded-to-end delay, VoIP networks, 70
End-User interface (CUCM), 226-227
end users (CUCM)
 account interaction features, 253-254
 application users versus, 252
 credential policies, 253
 device association, 254
 importing via BAT, 256
LDAP integration
 attribute mapping, 258-259
 custom filters, 263
 LDAP authentication, 257, 262-263
 LDAP sync, 256-262
manually importing, 255
passwords, 253
PIN, 253
user locales, 254
enterprise IM and Jabber, 382
ephones (Ethernet Phones), 103
ephone hunt groups, configuring with CME, 201-203
ephone-dn
 call parks, 177-180
 call pickup, 182-183
CME user accounts, 103-104
CME voice network directories, 168
configuring, 117, 125, 129, 156-158
intercoms, configuring, 185
Notepad templates, call forwarding configuration, 173
paging, configuring, 187
shared ephone-dn, configuring with CCP, 206-207
Single Number Reach, configuring, 201
ESF (Extended Super Frame) framing, 122
Ethernet
 ephone-dn, CME user accounts, 103-104
ephones, 103
IP phone connections, 54-55
 catalyst switch PoE power, 56
 inline PoE couplers, 56-57
 power bricks, 57
 power patch panels, 56-57
PoE
 catalyst switch PoE, 56
 inline PoE couplers, 56-57
 IP phones and CUCM implementation, 235
 PoE Plus, 56
 power bricks, 57
 power patch panels, 56-57
 troubleshooting, 405
 verifying, 405
SEP, 65
Exam Engine
 activating exams, 468
downloading exams, 468
installing, 467
Practice Exam mode, 470-471
Study mode, 470-471
exam preparation
web resources, 477
Exam Preparation Tasks sections (test preparation), 470
Exchange and Cisco Unity Connection, 42
extension numbers, CUC voice messaging, 356
External Services menu (CUC Administration), 223
external video calls, 46

F
facts, recalling (test preparation), 470
Fax-rate voice (dial peer 0), 142
faxes and VoIP, 17
feature services versus network services, 217
filters (LDAP custom)
creating, 263
syncing, 260
final number forwards, ephone hunt groups, 203
fixed delay in VoIP networks, 69
forwarding calls, configuring with CME
CLI, 172-173
H.450.3 call forwarding, 173-175
IP phone calls, 172
forward routing rules, CUC voice messaging integration, 352
framing (ESF), 122
FXO voice ports
CME dial plans, 119
PLAR, 137
POTS lines, designating for emergency calls, 146-147

FXS voice ports
CME dial plans, 116-118
PLAR, 136

G
G.711 codec, 21
μ-law (mu-law), 20, 23
A-law, 20, 23
G.722 codec, 21
G.726 codec, 23
G.728 codec, 21
G.729ab codec, 23
G.729a codec, 21-23
G.729b codec, 21-23
G.729 codec, 20-21
gateways
call routing in CUCM, 277
CUCM call routing, 280
IOS gateway, VXML configuration, 340
monitoring activity via RTMT, 437-438
glare, analog connections, 8
goodbye call handler, CUC voice messaging integration, 350
GPickup (Group Call Pickup), CUCM telephony, 300
Greeting Administrator role (CUC voice messaging integration), 349
greetings (CUC voice messaging), 354
ground start signaling
analog connections, 8
loop starts versus, 117
group chat storage, CM-IMP, 384
GUI (Graphical User Interface)
CCP GUI, CME end user/endpoint implementation, 107-110
GUI (Graphical User Interface)

CME GUI, 34
 Customer Admin account creation, 103-104
 enabling, 101-103
 user creation, 101
CME integrated GUI, 89

ICCS (Intracluster Communication Signaling) and CUCM, 38
iLBC (Bitrate) codec, 21-23
IM (Instant Messaging)
 CM-IMP, 387
 enterprise IM and Jabber, 382
IMP (Instant Messaging and Presence)
 features of, 44
 interdomain federation, 44
 Jabber XCP, 44-46
 message compliance, 44
 secure messaging, 45
importing users into CUC
 bulk administration import, 372-373
 CUCM, 368-370
 LDAP, 370-372
informational signaling, 8
inline PoE couplers, IP phones, 56-57
inline power. See catalyst switch PoE
intercluster trunking, CUCM, 38
Intercom feature, CUCM telephony, 301, 313-315
intercoms
 barge-in functionality, 185
 configuring with CME, 184-187
 no-auto-answer functionality, 185
internal desktop calls, 46
Internet Low codec, 21
interview handlers, CUC voice messaging integration, 350
IntServ (Integrated Services) QoS model, 71
IOS gateway, VXML configuration at, 340
IP addresses, CME router configuration with CCP, 88

IP phones
 boot process, 63, 404-407
 call routing in CUCM, 277
 CDP, 63
 clock configuration, 65-67
 CME interaction, 35-36
 CUCM, adding to
 auto-registration, 243, 247-252
 BAT, 243, 250-251
 manual configuration, 243-247
 self-provisioning registration, 243, 252
 TAPS, 243, 251-252
 CUCM call flows
 call routing and digit analysis, 280-281
 call routing and gateways, 280
 call routing and hunt groups, 281
 call routing and trunking, 280
 call routing destinations, 277-278
 call routing groups, 279
 call routing lists, 279
 call routing patterns, 278-279
 call routing sources, 277
 centralized deployment considerations/limitations, 275
 centralized deployment PSTN backup call flows, 274
 centralized remote branch call flows, 273-274
 class of control, 282
 class of control and CSS, 282-283
 class of control and partitions, 282
 distributed deployment call flows, 276-277
 DNS (with/without), 270-273
 PSTN backup using CAC call flows, 275-276
 CUCM implementation
 CDP, 235
 DHCP, 235-240
 DNS, 235
 IP phone registration process, 236, 243-252
 NTP, 234, 241
 PoE, 235
 SIP phone registration process, 236
 TFTP, 235
 CUCM interaction, 38-41
 CUCM support
 common phone profiles, 243
 configuration requirements, 240-243
 device defaults, 242
 device pools, 240-242
 DHCP router IOS configuration, 239-240
 DHCP server configuration, 237-239
 phone button templates, 242
 phone security profiles, 243
 service activation, 237
 softkey templates, 242
 dial plans, 407-410
 Ethernet connections, 54-55
 forwarding calls from, 172
 mobility
 Mobile Connect configuration, 331
 MVA, 328
 paging, configuring, 187
port configuration, 54-55
PortFast, 62
powering
catalyst switch PoE, 56
inline PoE couplers, 56-57
power bricks, 57
power patch panels, 56-57
QoS, 68-69
applying, 74
AutoQoS, 74-81
best effort model, 71
classification and marking mechanisms, 71
congestion avoidance mechanisms, 72
congestion management mechanisms, 72
data network requirements, 70-71
DiffServ model, 71
IntServ model, 71
link efficiency mechanisms, 72-73
policing and shaping mechanisms, 72
queueing algorithms, 73
troubleshooting, 410-413
video network requirements, 70
voice network requirements, 70
registering, 67-68, 422-424
router-based DHCP server configuration, 64-65
SIP phones
custom Native Presence groups (CUCM), 319-320
phone NTP references, 241
registering, 236
troubleshooting
boot process, 404-407
dial plans, 407-410
registration, 422-424
VLAN configuration, 57, 61-63
tagging, 59
trunking, 58-59
voice VLAN, 60
IP Precedence 0 (dial peer 0), 142
IP WAN (Internet Protocol Wide Area Networks), CUCM call flows, 273-274
ISR (Integrated Services Routers), CME support, 33-34

J

Jabber, 384
chats, 387
compliance, 387
CSF, 383, 390
deskphone mode, 381-382, 386
IM, 387
integration support, 383
persistent chats, 387
QoS, 387-388
softphone mode, 382, 386
troubleshooting, 394-395
user integration
CM-IMP, 394
CUCM, 389-392
video calls, 383
voice calls, 383
Jabber XCP (Enterprise Instant Messaging), 44-46
jitter and VoIP networks, 69-70
mailboxes

K - L

key systems, 14
Kiwi Syslog Daemon, 196

LDAP (Lightweight Directory Access Protocol)
- attribute mapping, 258-259
- CM-IMP integration, 385, 391
- CUC voice messaging integration, 350, 357, 370-372
- CUCM integration
 - attribute mapping, 258-259
 - LDAP authentication, 257, 262-263
 - LDAP custom filters, 263
 - LDAP sync, 256-262
- custom filters, creating, 263
- LDAP authentication, configuring, 257
 - verifying, 263
- LDAP servers, Cisco Unity Connection integration, 42
- LDAP sync, 256-258
 - agreements, 259
 - configuring, 260-262
 - custom filters, 260
 - DirSync activation, 260
 - requirements/behavior, 259
 - single instances of, 260
 - verifying, 262
- LDAP menu (CUC Administration), 223
- LFI (Link Fragmentation and Interleaving), 73
- licenses (CCP), managing, 105
- Licenses menu (CUC Administration), 222
- line cards, PBX systems, 13

line coding (B8ZS), 122

line groups
- call hunting, 300
- CUCM hunt groups (call routing), 282

link efficiency mechanisms (QoS)
- header compression, 73
- LFI, 73
- payload compression, 72

LLQ (Low-Latency Queuing), 73

local authentication, CME
- configuration with CCP, 88

local directory service (CME), 34

locales (user), end users (CUCM), 254

local group pickup, 183

local loops, PSTN, 12

locations (device pools), 241

logins, EM, 290

longest idle hunt groups, 201

loops (local), PSTN, 12

loop start signaling
 - analog connections, 8
 - ground starts versus, 117

M

MAC addresses, manual IP phone configuration in CUCM, 244

Mailbox Access Delegate Account role (CUC voice messaging integration), 349

mailboxes. See also voicemail boxes

Cisco Unity Connection, 42

CUC voice messaging, 356
- call actions, 355
- caller input, 355
- greetings, 354
- message actions, 355
- message settings, 355
- transfer rules, 354
Mailbox Store Report (CUC Serviceability reports), 462-463
maintenance, CUC Serviceability reports and maintenance operations, 462-464
maintenance reports (CUCM), 427
manually configuring
CUC voice messaging user accounts, 365-366
IP phones in CUCM, 243-247
Media Resources menu (CM Administration interface), 214
MeetingPlace, CM-IMP integration, 386
Meet-Me numbers, call routing in CUCM, 278
memberships, CUC Message Store, 374
memory tables (test preparation), 469
Message Storage menu (CUC Administration), 222
Message Store (CUC), 373
memberships, 374
message aging policy, 374-375
message quotas, 375-376
messaging
CUC voice messaging
aging policies, 357, 374-375
mailboxes, 355
memberships, 374
quotas, 375-376
user templates, 355, 360-362
playback settings, CUC voice messaging user templates, 363-364
voice messaging systems, comparing, 41
VoIP, 17
Messaging menu (CM-IMP Administration), 224
Microsoft Exchange
Cisco Unity Connection and, 42
Microsoft Exchange 2003/2007,
CM-IMP integration, 386
Microsoft Office Communications Server, CM-IMP integration, 385
Mobile Connect. See also Single Number Reach
access lists, 327-328
applying, 334-335
configuring, 333-334
configuring
access lists, 333-335
IP phones, 331
remote destination profiles, 331-332
ring schedules for each remote destination, 332
service parameters, 335-336
softkey templates, 329-330
user accounts, 329-330
description of, 326
remote destination profiles
adding remote destinations to, 331-332
configuring, 331
configuring ring schedules for each remote destination, 332
time-of-day access, 327-328
time-of-day access, 327-328
unified mobility architecture, 327-328
mobility in CUCM
EM, 290-298
Mobile Connect
access lists, 327-328, 333-335
configuring, 329-332
description of, 326
remote destination profiles, 327-328, 331-332
ring schedules, 332
service parameters, 335-336
Night Service (CME), configuring with CCP

NANP (North American Numbering Plan), 15-16
Native Presence (CUCM), 301-303
 BLF call lists, 317
 BLF speed dials, 315-316
 custom presence groups, 317-320
 presence-enabled call lists, 316
Networking menu (CUCM Administration), 222

networks
PSTN
 analog connections, 14
 analog telephones, 12
 components of, 12-13
 CO switches, 13
 digital connections, 14
 digital telephones, 13
 key systems, 14
 local loops, 12
 numbering plans, 15-16
 PBX systems, 13
 private switches, 13
 SS7, 14
 trunks, 13
troubleshooting
 CME servers, 407
 DHCP servers, 406
 PoE verification, 405
 TFTP servers, 406
 Voice VLAN assignments, 405
voice network directories, 168-171
VoIP, 17

network services versus feature services, 217

Night Service (CME), configuring with CCP, 203-206

MoH (Music on Hold)
 configuring with CME, 198-199
EM and CUCM, 290
monitoring via RTMT (Real-Time Monitoring Tool), 434
CUCM monitoring
 alerts, 442-443
 call activity, 440-442
 database summaries, 439-440
 device searches, 438-439
 gateway activity, 437-438
 remote browsing, 443
 syslog, 443-444
 voice/video summaries, 437
interface of, 436
multiple instances of, installing, 435
MOS (Mean Opinion Scores), compression, 20
mu-law (µ-law), G.711 codec, 20, 23
multi-VLAN access ports, 60-63
MVA (Mobile Voice Access), 328, 336
 activating MVA service, 337
 enabling MVA for each user, 338
 media resources, 339
 service parameters, 337
 VXML application, configuring at IOS gateway, 340

time-of-day access, 327-328
unified mobility architecture, 327-328
MVA, 328
 activating MVA service, 337
 configuring, 336-340
 enabling MVA for each user, 338
 media resources, 339
 service parameters, 337
 VXML application, configuring at IOS gateway, 340
No Access privilege (CUCM roles), 219

No application support (dial peer 0), 142

no-auto-answer functionality in intercoms, 185

No DID support (dial peer 0), 142

No DTMF relay (dial peer 0), 142

no-mute functionality in intercoms, 185

No Resource RSVP (Reservation Protocol) support (dial peer 0), 142

Notepad templates, ephone-dn call forwarding configuration, 173

notification devices, CUC voice messaging, 356, 364-365

NTP (Network Time Protocol)
 clock configuration on Cisco devices, 65-67
 IP phones, CUCM implementation, 234-235, 241
 SIP phones, phone NTP references, 241

numbering plans
 E.164, 15
 NANP, 15-16
 PSTN, 15-16
 Nyquist, Dr. Henry, 17-20

Packet loss, VoIP networks, 69-70

packetization intervals, 411

packets, VoIP and voice to packet conversions, 17-21

paging, configuring with CME, 187-190

parallel hunt groups, 201

partitioning call class of control, 282

passwords
 CME administration, 88
 CUCM administration interface, 214
 CUC voice messaging user templates, 354, 359-360
 end users (CUCM), 253
 LDAP authentication and CUCM, 257, 262-263

payload compression (link efficiency mechanisms), 72
PBX (Private Branch Exchange) systems
- CCS, 12
- components of, 13
- control cards, 13
- ground start signaling, 8
- line cards, 13
- trunk cards, 13

Policing and shaping mechanisms (QoS), 72

Port Activity Report (CUC Serviceability reports), 461-462
port caller ID, FXS voice ports, 118
PortFast and IP phones, 62

Ports
- console ports, CME administration via command-line, 479
- IP phone port configuration, 54-55
voice ports
 - analog voice ports, 116-119
 - CME dial plans, 116-125
 - digital voice ports, 120-125
 - FXO voice ports, 119, 137, 146-147
 - FXS voice ports, 116-118, 136

POTS (Plain Old Telephone Service)
- dial peers, 125-131, 142, 151, 155
- lines, designating for emergency calls (digit manipulation scenarios), 146-147
- power bricks, 57
- power patch panels, 56-57
- Practice configurations (test preparation), 470

Practice exams
- activating, 468
- downloading, 468
- Practice Exam mode (Exam Engine), 470-471

Presence, CM-IMP
- calendar resource integration, 386
- CCMCIP, 384
- chats, 387
- compliance, 387
- components of, 384
- conferencing resource integration, 386
- CUC integration, 385
CUCM Presence Signaling integration, 393-394
deskphone mode, 381-382, 386
IM, 387
Jabber, 381-395
LDAP integration, 385, 391
MeetingPlace integration, 386
Microsoft Exchange 2003/2007 integration, 386
Microsoft Office Communications Server integration, 385
persistent chats, 387
QoS, 387-388
Rich Presence service, 384
softphone mode, 382, 386
user integration
 CM-IMP, 394
 CUCM, 389-392
WebEx integration, 386
Presence menu (CM-IMP Administration), 224
privacy, CUCM telephony, 300
private DL (Distribution Lists), CUC voice messaging integration, 356, 367-368
private switches, PSTN, 13
privileges (CUCM user management), 219
productivity, VoIP, 17
profiles (phone) and CUCM implementation, 243
PSTN (Public Switched Telephone Networks), 10
analog connections, 14
analog telephones, 12
centralized deployment PSTN backup call flows (CUCM), 274
CME and Cisco IP phone interaction, 36
components of, 12-13
CO switches, 13
dial plans, 134-135
digital connections, 14
digital telephones, 13
emergency calls, designating POTS lines for (digit manipulation scenarios), 146-147
failover using prefix command (digit manipulation scenarios), 143-145
key systems, 14
local loops, 12
MVA, 328
numbering plans, 15-16
PBX systems, 13
private switches, 13
PSTN backup using CAC call flows (CUCM), 275-276
SS7, 14
trunks, 13
Publisher role, CUCM and Cisco IP phone interaction, 39-41
PVDM (Packet Voice DSP Modules), 22-23

Q

QoS (Quality of Service)
applying, 74
AutoQoS, 74-81
best effort model, 71
classification and marking mechanisms, 71
CM-IMP, 387-388
congestion avoidance mechanisms, 72
congestion management mechanisms, 72
definition of, 68
DiffServ model, 71
registering 533

IntServ model, 71
IP phones, 68-69
 applying to, 74
 AutoQoS, 74-81
best effort QoS model, 71
classification and marking mechanisms, 71
congestion avoidance mechanisms, 72
congestion management mechanisms, 72
data network requirements, 70-71
DiffServ QoS model, 71
IntServ QoS model, 71
link efficiency mechanisms, 72-73
policing and shaping mechanisms, 72
queuing algorithms, 73
video network requirements, 70
voice network requirements, 70
quantization, 19-20
queuing algorithms (QoS), 73

R

RBS (Robbed Bit Signaling), 11
Read privilege (CUCM roles), 219
recalling facts (test preparation), 470
receptionist, directing operator calls to (digit manipulation scenarios), 145-146
redundant server clusters and CUCM, 37
regions (device pools), 241
registering
 CME, troubleshooting, 403
 CME servers, 407
 DHCP servers, 406
 PoE verification, 405
 TFTP servers, 406
 Voice VLAN assignments, 405
IP phones, 67-68
 auto-registration, 243, 247-252
 BAT, 243, 250-251
 CUCM implementation process, 236
 manual configuration, 243-247
self-provisioning registration, 243, 252
TAPS, 243, 251-252
troubleshooting registration, 422-424
SIP phones, CUCM implementation process, 236
Remote Administrator role (CUC voice messaging integration), 349
remote browsing, monitoring via RTMT, 443
remote destination profiles (Mobile Connect)
adding remote destinations to, 331-332
configuring, 331-332
time-of-day access, 327-328
repeaters, analog connections, 9
reports
Alerts Report (Serviceability Reports Archive), 457-458
billing reports, 464
CAR tool, 427
CDR and, 429-433
CMR and, 429-430
device reports, 434
exporting records, 430
service activation, 428
service parameter configuration, 428
system parameters, 429-430
system reports, 433-434
user types, 429
Cisco Serviceability Reporter service
(Cisco Unified Serviceability), 455
Cisco Unified Serviceability
Cisco Serviceability Reporter service, 455
Serviceability Reports Archive, 455-459
CUC
CUC Serviceability reports, 452-454, 459-464
Serviceability Reporter service (Cisco Unified Serviceability), 455
Serviceability Reports Archive (Cisco Unified Serviceability), 455-459
CUCM reports
analyzing, 427
CAR tool, 427-434
generating, 425-426
maintenance reports, 427
system analysis reports, 427
device reports, generating via CAR tool, 434
Mailbox Store Report (CUC Serviceability reports), 462-463
Outcall Billing Detail Report (CUC Serviceability reports), 464
Outcall Billing Summary Report (CUC Serviceability reports), 464
Phone Interface Failed Logon Report (CUC Serviceability reports), 459-460
Port Activity Report (CUC Serviceability reports), 461-462
Route Plan Reports, deleting unassigned DN, 424-425
Server Report (Serviceability Reports Archive), 458-459
Serviceability Reports Archive (Cisco Unified Serviceability), 455-456
Alerts Report, 457-458
Server Report, 458-459
system reports, generating via CAR tool, 433-434
Transfer Call Billing Report (CUC Serviceability reports), 464
voice ports
analog voice ports, 116-119
CME dial plans, 116-125
digital voice ports, 120-125
FXO voice ports, 119, 137, 146-147
FXS voice ports, 116-118, 136
RTCP (Real-Time Transport Control Protocol) and VoIP, 23-24
RTMT (Real-Time Monitoring Tool), 434
CUCM monitoring
alerts, 442-443
call activity, 440-442
database summaries, 439-440
device searches, 438-439
gateway activity, 437-438
remote browsing, 443
syslog, 443-444
voice/video summaries, 437
interface of, 436
multiple instances of, installing, 435
routers
call processing and dial peers, 137-142
CCP, 105
CME routers
CME integrated GUI, 89
configuring with CCP, 88
managing with CCP, 89-93
DHCP configuration in IOS, IP phone and CUCM support, 239-240
digit manipulation, 142
designating POTS lines for emergency calls, 146-147
directing operator calls to receptionist, 145-146
PSTN failover using prefix command, 143-145
translation profiles, 148-151
DSP, 21-23
ISR, CME support, 33-34

s
sampling analog to digital conversions, 19
SCCP (Skinny Client Control Protocol)
CME
administration, 104-105
Cisco IP phone interaction, 35
CUC voice messaging integration, 347-348

CUCM call flows
- centralized remote branch call flows, 274
- distributed deployment call flows, 277
- with DNS (with/without), 270-271

IP phone registration, 67-68

scheduling
- backups via DRS, 445-446
- ring schedules, configuring for each remote destination in Mobile Connect, 332

searching for devices via RTMT, 438-439

security
- audio encryption, SRTP, 60
- CCP, 105
- CUCM administration interface, 214
- device security profiles, manual
- IP phone configuration in CUCM, 244
- phone security profiles, IP phones and CUCM implementation, 243
- VLAN, 58

Self Care Portal (CUCM), 226-227

self-provisioning IP phone registration in CUCM, 243, 252

SEP (Selsius Ethernet Phone), 65

sequential hunt groups, 201

Server Report (Serviceability Reports Archive), 458-459

servers
- CME servers, 407
- CUPS and CUCM, 273
- DHCP servers
 - boot process, 406

IP phone and CUCM support, 237-239

IP phone boot process, 63, 406

router-based configuration, 64-65

LDAP, Cisco Unity Connection integration, 42

TFTP servers
- boot process, 406
- CUCM and, 39
- IP phone boot process, 63, 406
- IP phone registration, 68
- registering IP phones, 423
- troubleshooting IP phones, 423

VCS, 46-47

service activation (IP phones), CUCM support, 237

service parameters, configuring via Mobile Connect, 335-337

shared lines, CUCM telephony, 299, 303-304

signaling
- address, 8
- CAS, 10-11
- CCS, 11-12
- CSS, 14
- degradation, 10
- ground start, analog connections, 8
- ICCS and CUCM, 38
- informational, 8
- loop start, analog connections, 8
- OOB, 12
- RBS, 11
- SS7 and PSTN, 14
- supervisory, 8

Single Number Reach, configuring with CME, 199-200. See also Mobile Connect

CUCM call flows
- centralized remote branch call flows, 274
- distributed deployment call flows, 277
- with DNS (with/without), 270-271

IP phone registration, 67-68

scheduling
- backups via DRS, 445-446
- ring schedules, configuring for each remote destination in Mobile Connect, 332

searching for devices via RTMT, 438-439

security
- audio encryption, SRTP, 60
- CCP, 105
- CUCM administration interface, 214
- device security profiles, manual
- IP phone configuration in CUCM, 244
- phone security profiles, IP phones and CUCM implementation, 243
- VLAN, 58

Self Care Portal (CUCM), 226-227

self-provisioning IP phone registration in CUCM, 243, 252

SEP (Selsius Ethernet Phone), 65

sequential hunt groups, 201

Server Report (Serviceability Reports Archive), 458-459

servers
- CME servers, 407
- CUPS and CUCM, 273
- DHCP servers
 - boot process, 406

IP phone and CUCM support, 237-239

IP phone boot process, 63, 406

router-based configuration, 64-65

LDAP, Cisco Unity Connection integration, 42

TFTP servers
- boot process, 406
- CUCM and, 39
- IP phone boot process, 63, 406
- IP phone registration, 68
- registering IP phones, 423
- troubleshooting IP phones, 423

VCS, 46-47

service activation (IP phones), CUCM support, 237

service parameters, configuring via Mobile Connect, 335-337

shared lines, CUCM telephony, 299, 303-304

signaling
- address, 8
- CAS, 10-11
- CCS, 11-12
- CSS, 14
- degradation, 10
- ground start, analog connections, 8
- ICCS and CUCM, 38
- informational, 8
- loop start, analog connections, 8
- OOB, 12
- RBS, 11
- SS7 and PSTN, 14
- supervisory, 8

Single Number Reach, configuring with CME, 199-200. See also Mobile Connect
SIP (Session Initiation Protocol)
 CME
 administration, 104-105
 Cisco IP phone interaction, 35
CUC voice messaging integration, 348
CUCM call flows
 centralized remote branch call flows, 274
distributed deployment call flows, 277
 DNS (with/without), 270-271
IP phone registration, 67-68
SIP phones
custom Native Presence groups (CUCM), 319-320
phone NTP references, 241
registering (CUCM implementation process), 236
SIP URI, 278
SNMP menu (Cisco Unified Serviceability Administration interface), 216
softkey templates
 IP phones and CUCM implementation, 242
 Mobile Connect configuration, 329-330
softphones
 softphone mode (Jabber), 382, 386
 VoIP and, 17
SRST (Survivable Remote Site Telephony)
 CCP and CME router configuration, 92
centralized deployment PSTN backup call flows (CUCM), 274
CUC voice messaging, 356
PSTN backup using CAC call flows (CUCM), 276
SRTP (Secure Real-Time Protocol), audio encryption, 60
SS7 (Signaling System 7), PSTN, 14
SSH (Secure Shell), CME
 administration via command-line, 479
 configuration with CCP, 88
storing
 group chats with CM-IMP, 384
 messages, CUC voicemail boxes, 373
 memberships, 374
 message aging policy, 374-375
 quotas, 375-376
Study mode (Exam Engine), 470-471
study Plans (test preparation), 469
Subscriber role, CUCM and Cisco IP phone interaction, 39-41
supervisory signaling, 8
switches and PSTN
 CO, 13
 private, 13
synchronizing LDAP sync, 256-258
 agreements, 259
 configuring, 260-262
 custom filters, 260
 DirSync activation, 260
 requirements/behavior, 259
 single instances of, 260
 verifying, 262
syslog, monitoring via RTMT, 443-444
system administrators
 CME, 100
 System Administrator role (CUC voice messaging integration), 350
system analysis reports (CUCM), 427
system call handlers, CUC voice messaging integration, 350
System menu
 CM Administration interface, 214
 CM-IMP Administration, 224
system reports, generating via CAR tool, 433-434
System Settings menu (CUC Administration), 222

T

tagging (VLAN), 59
TAPS (Auto Register Phone Tool), IP phone registration in CUCM, 243, 251-252
TDM (Time-Division Multiplexing), 10
Technician role (CUC voice messaging integration), 350
telephones and PSTN
analog, 12
digital, 13
telephony
CUCM
Barge feature, 299, 304-305
call coverage, 298-315
call forward options, 298-299
call hunting, 300-301, 310-313
call park, 301, 308-310
call pickup groups, 300, 305-308
CFA, 298
CFB internal/external, 299
CFNA internal/external, 299
CFNC internal/external, 299
CFUR internal/external, 299
GPickup, 300
Intercom feature, 301, 313-315
Native Presence, 301-303, 315-320
Other Group Pickup, 300
privacy, 300
shared lines, 299, 303-304
Whisper intercom feature, 301

Telephony Integrations menu (CUC Administration), 223
TelePresence calls, 46
Telnet
CME administration via command-line, 479
CME configuration with CCP, 88, 91
templates
Notepad templates, configuring
ephone-dn call forwarding, 173
Phone Button templates, 313
phone button templates
IP phones and CUCM implementation, 242
manual IP phone configuration, 244
softkey templates
IP phones and CUCM implementation, 242
Mobile Connect configuration, 329-330
UDT, 248-250
ULT, 248-250
user templates in CUC voice messaging integration
basic elements of, 353-354
basics of, 358
call actions, 355
caller input, 355
configuring, 357-358
greetings, 354
message actions, 355, 361-362
message settings, 355, 360-361
notification devices, 364-365
password settings, 354, 359-360
phone menu, 362-363
playback message settings, 363-364
roles, 354, 360
transfer rules, 354
TUI settings, 355
Template menu (CUC Administration), 222
test preparation
chapter-ending review tools, 469
Cisco Learning Network, 469
Exam Engine
activating other exams, 468
activating practice exams, 468
downloading practice exams, 468
installing, 467
Practice Exam mode, 470-471
Study mode, 470-471
Exam Preparation Tasks, 470
memory tables, 469
Practice configurations, 470
Premium Edition, 468
recalling facts, 470
study plans, 469
web resources, 477
TFTP (Trivial File Transfer Protocol)
CUCM and, 39
IP phones
boot process, 63, 406
CUCM implementation, 235
registering, 423
troubleshooting, 406, 423
time/date, setting in Cisco devices, 65-67
time-of-day access in Mobile Connect, 327-328
TMS (TelePresence Management Suite), 47
toll call control, CUC voice messaging, 356
tones (call progress), FXS voice ports, 118
Tools menu
Cisco Unified Serviceability
Administration interface, 216
CUC Administration, 223
Trace menu (Cisco Unified Serviceability Administration interface), 216
Transfer Call Billing Report (CUC Serviceability reports), 464
transferring calls
blind transfers, 175
configuring with CME, 175-177
consult transfers, 175
transfer rules, CUC voice messaging, 354
translation patterns, call routing in CUCM, 277
translation profiles, digit manipulation scenarios, 148-151
troubleshooting
best practices, 402-403, 421-422
boot processes, IP phones, 404-407
CME
CME servers, 407
dial plans, 407-410
QoS, 410-413
registration issues, 403-407
CUC Serviceability reports and troubleshooting operations, 459-462
CUCM, 421
analyzing reports, 427
CAR tool, 427-434
DN, 424-425
generating reports, 425-426
IP phone registration, 422-424
maintenance reports, 427
QoS, 413
system analysis reports, 427
DHCP servers, IP phone boot process, 406
dial plans, 407-410
PSTN, 13
VLAN trunking, 58-59
VoIP trunking and CME, 34
TUI settings, CUC voice messaging
user templates, 355

UDT (Universal Device Templates),
248-250
ULT (Universal Line Templates),
248-250
unified collaboration, 32
Cisco Unity Connection, 41
CUCM interaction, 43-44
Exchange and, 42
features of, 42
LDAP directory server integration, 42
mailboxes, 42
voicemail, 42
voice messaging, 41
VPIM, 42

CME
call processing, 34
Cisco IP phones, 35-36
command-line configuration, 34
CTI support, 34
device control, 34
direct integrating with CUE, 34
features of, 34
GUI-based configuration, 34
ISR G2 platform support, 33-34
local directory service, 34
VoIP trunking, 34
CUCM, 33
appliance-based operation, 37
audio telephony support, 37
call processing, 41
Cisco IP phones, 38-41
Cisco Unity Connection interaction, 43-44
clusters, 39
database replication, 38
directory service support/integration, 38
DRS, 38
features of, 37-38
ICCS, 38
Intercluster trunking, 38
redundant server clusters, 37
runtime data, 38
TFTP servers, 39
video telephony support, 37
VMware installation, 37
voice gateway control/communication, 38
IMP
features of, 44
interdomain federation, 44
Jabber XCP, 44-46
message compliance, 44
secure messaging, 45
TMS, 47
VCS, 46-47
Unified Communications (CCP), 105-107
unregistered entries, Native Presence (CUCM), 302
Unused Voice Mail Accounts Report (CUC Serviceability reports), 463-464
Update privilege (CUCM roles), 219
User Administrator role (CUC voice messaging integration), 350
user locales, end users (CUCM), 254
User Lockout Report (CUC Serviceability reports), 460-461
user management
CUCM
Access Control Groups, 220-221
privileges, 219
roles, 219-220
User Management menu (CM Administration interface), 215
usernames (CME administration), CME configuration with CCP, 88
Users menu (CUC Administration), 222
Users Report (CUC Serviceability reports), 453-454
user templates, CUC voice messaging integration
basic elements of, 353-354
basics of, 358
call actions, 355
caller input, 355
configuring, 357-358
greetings, 354
message actions, 355, 361-362
message settings, 355, 360-361
notification devices, 364-365
password settings, 354, 359-360
phone menu, 362-363
playback message settings, 363-364
roles, 354, 360
transfer rules, 354
TUI settings, 355
V
VAD (Voice Activity Detection), 21, 142
variable delay, VoIP networks, 69
VCS (Video Communication Server), 46-47
verifying
LDAP sync, 262
PoE, 405

video
video calls
external video calls, 46
internal desktop calls, 46
Jabber, 383
TelePresence calls, 46
TMS, 47
VCS, 46-47
video telephony and CUCM, 37
voice/video summaries (CUCM), monitoring via RTMT, 437

VLAN (Virtual Local Area Networks)
benefits of, 58
IP phones, 57
configuring, 61-63
registering, 423
troubleshooting, 423
VLAN tagging, 59
VLAN trunking, 58-59
voice VLAN, 60
manageability, 58
multi-VLAN access ports, 60-63
performance, 58
security, 58
tagging, 59
topology independence, 58
trunking, 58-59
VLAN-hopping attacks, 63
voice VLAN, 60

VMware installation and CUCM, 37

voice
VoIP and voice to packet conversions, 17-21
voice calls
Jabber, 383
voice call legs, 126-127
voice gateway control and CUCM, 38
voice messaging and CUC integration, 41, 343
Audio Text Administrator role, 349
Audit Administrator role, 349
authentication rules, 352
call handlers, 350
call routing, 351
call routing rule filters, 352
CUC Message Store, 373
memberships, 374
message aging policy, 374-375
quotas, 375-376
CUCM using SCCP, 347-348
dial plans, 353
direct routing rules, 351
DL, 352
enterprise parameters, 350
forward routing rules, 352
Greeting Administrator role, 349
Help Desk Administrator role, 349
LDAP, 350, 357, 370-372
Mailbox Access Delegate Account role, 349
mailboxes
call actions, 355
caller input, 355
greetings, 354
message actions, 355
message settings, 355
transfer rules, 354
multisite deployments, 347
overview of CUC, 346
Remote Administrator role, 349
service parameters, 350
single-site deployments, 346
SIP and CUC integration, 348
System Administrator role, 350

VMware installation and CUCM, 37

voice
VoIP and voice to packet conversions, 17-21
voice calls
Jabber, 383
voice call legs, 126-127
voice gateway control and CUCM, 38
voice messaging and CUC integration, 41, 343
Audio Text Administrator role, 349
Audit Administrator role, 349
authentication rules, 352
call handlers, 350
call routing, 351
call routing rule filters, 352
CUC Message Store, 373
memberships, 374
message aging policy, 374-375
quotas, 375-376
CUCM using SCCP, 347-348
dial plans, 353
direct routing rules, 351
DL, 352
enterprise parameters, 350
forward routing rules, 352
Greeting Administrator role, 349
Help Desk Administrator role, 349
LDAP, 350, 357, 370-372
Mailbox Access Delegate Account role, 349
mailboxes
call actions, 355
caller input, 355
greetings, 354
message actions, 355
message settings, 355
transfer rules, 354
multisite deployments, 347
overview of CUC, 346
Remote Administrator role, 349
service parameters, 350
single-site deployments, 346
SIP and CUC integration, 348
System Administrator role, 350

VMware installation and CUCM, 37

voice
VoIP and voice to packet conversions, 17-21
voice calls
Jabber, 383
voice call legs, 126-127
voice gateway control and CUCM, 38
voice messaging and CUC integration, 41, 343
Audio Text Administrator role, 349
Audit Administrator role, 349
authentication rules, 352
call handlers, 350
call routing, 351
call routing rule filters, 352
CUC Message Store, 373
memberships, 374
message aging policy, 374-375
quotas, 375-376
CUCM using SCCP, 347-348
dial plans, 353
direct routing rules, 351
DL, 352
enterprise parameters, 350
forward routing rules, 352
Greeting Administrator role, 349
Help Desk Administrator role, 349
LDAP, 350, 357, 370-372
Mailbox Access Delegate Account role, 349
mailboxes
call actions, 355
caller input, 355
greetings, 354
message actions, 355
message settings, 355
transfer rules, 354
multisite deployments, 347
overview of CUC, 346
Remote Administrator role, 349
service parameters, 350
single-site deployments, 346
SIP and CUC integration, 348
System Administrator role, 350

VMware installation and CUCM, 37

voice
VoIP and voice to packet conversions, 17-21
voice calls
Jabber, 383
voice call legs, 126-127
voice gateway control and CUCM, 38
voice messaging and CUC integration, 41, 343
Audio Text Administrator role, 349
Audit Administrator role, 349
authentication rules, 352
call handlers, 350
call routing, 351
call routing rule filters, 352
CUC Message Store, 373
memberships, 374
message aging policy, 374-375
quotas, 375-376
CUCM using SCCP, 347-348
dial plans, 353
direct routing rules, 351
DL, 352
enterprise parameters, 350
forward routing rules, 352
Greeting Administrator role, 349
Help Desk Administrator role, 349
LDAP, 350, 357, 370-372
Mailbox Access Delegate Account role, 349
mailboxes
call actions, 355
caller input, 355
greetings, 354
message actions, 355
message settings, 355
transfer rules, 354
multisite deployments, 347
overview of CUC, 346
Remote Administrator role, 349
service parameters, 350
single-site deployments, 346
SIP and CUC integration, 348
System Administrator role, 350
system settings
 general configuration, 349
 roles, 349-350
 Technician role, 350
 User Administrator role, 350
user configuration, 355
 AAR, 356
 account creation options, 356
 alternate extensions/names, 366-367
 call forward options, 356
 extension numbers, 356
 manual configuration, 365-366
 notification devices, 356
 private DL, 356, 367-368
 SRST, 356
 toll call control, 356
 voicemail boxes, 356
user importation
 bulk administration import, 372-373
 CUCM, 368-370
 LDAP, 370-372
user templates
 basic elements of, 353-354
 basics of, 358
 call actions, 355
 caller input, 355
 configuring, 357-358
 greetings, 354
 message actions, 355, 361-362
 message settings, 355, 360-361
 notification devices, 364-365
 password settings, 354, 359-360
 phone menu, 362-363
 playback message settings, 363-364
 roles, 354, 360
 transfer rules, 354
 TUI settings, 355
 voicemail boxes
 message aging policy, 357, 374-375
 message storage, 373-375
 quotas, 357, 375-376
 voice network directories, configuring, 168-171
voice ports
 analog voice ports
 CME dial plans, 116-119
 FXO voice ports, 119, 137, 146-147
 FXS voice ports, 116-118, 136
 CME dial plans
 analog voice ports, 116-119
 digital voice ports, 120-125
 FXO voice ports, 119, 146-147
 FXS voice ports, 116-118
 digital voice ports, 120-125
 voice/video summaries (CUCM), monitoring via RTMT, 437
 voice VLAN (Virtual Local Area Networks), 60, 405
 voice/video summaries (CUCM), monitoring via RTMT, 437
 voicemail
 call hunting, 300
 Cisco Unity Connection, 42
 Unused Voice Mail Accounts Report (CUC Serviceability reports), 463-464
 voicemail pilots, CUC voice messaging integration, 347-348
 voicemail ports, call routing in CUCM, 277
 VoIP, 17
voicemail boxes (CUC voice messaging), 356. See also mailboxes
message aging policy, 357, 374-375
message storage, 373-375
quotas, 357, 375-376
Voicemail Port Wizard, CUC voice messaging integration, 347-348
VoIP (Voice over IP)
business benefits of, 16-17
cabling, 17
CME, VoIP trunking, 34
compatibility, 17
cost of, 16
dial peers, 125, 131-133, 143-144
DSP, 10, 21-23
e-mail, 17
faxes, 17
messaging, 17
networks, 17
productivity, 17
PVDM, 22-23
RTCP, 23-24
RTP, 23-24
softphones, 17
voicemail, 17
voice to packet conversions, 17-21
VoIP networks
bandwidth, 69
delay, 69-70
delay, 69-70
delay, 70
end-to-end delay, 70
fixed delay, 69
IP phones
boot process, 63
catalyst switch PoE power, 56
CDP, 63
clock configuration, 65-67
Ethernet connections, 54-55
inline PoE couplers, 56-57
port configuration, 54-55
PortFast, 62
power bricks, 57
power patch panels, 56-57
QoS, 68-81
registering, 67-68
router-based DHCP server configuration, 64-65
VLAN configuration, 57-63
jitter, 69-70
packet loss, 69-70
potential problems with, 69-70
QoS, 68-69
applying, 74
AutoQoS, 74-81
best effort model, 71
classification and marking mechanisms, 71
congestion avoidance mechanisms, 72
congestion management mechanisms, 72
data network requirements, 70-71
DiffServ model, 71
IntServ model, 71
link efficiency mechanisms, 72-73
policing and shaping mechanisms, 72
queuing algorithms, 73
video network requirements, 70
voice network requirements, 70
variable delay, 69
VOMIT (Voice Over Misconfigured Internet Telephones), voice
VLAN, 60
VPIM (Voice Profile for Internet Mail) and Cisco Unity Connection, 42
VXML (Voice eXtensible Markup Language)
MVA, 328
MVA VXML, configuring at IOS gateway, 340

W

waveforms (analog), 7
web resources for exam preparation, 477
WebEx, CM-IMP integration, 386
WFQ (Weighted Fair Queuing), 73
Whisper intercom feature, CUCM telephony, 301
wildcards (dial peer), 133-134
Wireshark, voice VLAN, 60

X - Y - Z

XCP (Extensible Communication Platform). See Jabber XCP