Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Publisher: Paul Boger
Associate Publisher: Dave Dusthimer
Executive Editor: Brett Bartow
Managing Editor: Sandra Schroeder
Senior Development Editor: Christopher Cleveland
Project Editor: Mandie Frank
Designer: Gary Adair
Cisco Representative: Erik Ullanderson

Cisco Press Program Manager: Anand Sundaram
Technical Editors: Sean Connelly and Robert Woods
Copy Editor: John Edwards
Editorial Assistant: Vanessa Evans
Proofreader: Sheri Cain
Composition: Mark Shirar
Indexer: Tim Wright
About the Authors

Sean Wilkins is an accomplished networking consultant for SR-W Consulting (www.sr-wconsulting.com) and has been in the field of IT since the mid 1990s working with companies like Cisco, Lucent, Verizon, and AT&T, as well as several other private companies. Sean currently holds certifications with Cisco (CCNP/CCDP), Microsoft (MCSE), and CompTIA (A+ and Network+). He also has a Master of Science degree in information technology with a focus in network architecture and design, a Master of Science in organizational management, a Master’s Certificate in network security, a Bachelor of Science degree in computer networking, and an Associate of Applied Science degree in computer information systems. In addition to working as a consultant, Sean spends a lot of his time as a technical writer and editor for various companies.

Franklin H. Smith III (Trey) is a senior network security architect with more than 15 years of experience in designing, deploying, and securing large enterprise and service provider networks. His background includes architect-level delivery for many enterprise, data center, and SMB networks. He holds a Bachelor of Business Administration degree in management information systems. Trey’s certifications include CCSP, CCNP, CCDP, Microsoft (MCSE), and ISC2 (CISSP). His current focus is on strategic and tactical efforts related to Payment Card Industry (PCI) Data Security Standard (DSS) compliance for a Fortune 50 company.
About the Technical Reviewers

Sean Connelly, CCIE #17085 (R/S & Security), is a senior network design engineer for TASC, based in Washington, D.C. He has worked for two federal agencies over the last decade. Recent projects have included architecting a global 802.1X solution and the design and implementation of a large data center, along with active involvement in other federal cyber security initiatives. Before joining TASC, Sean was director of IT Services at ADCom, which included the design of many global WAN solutions. Aside from the two CCIEs, Sean holds a CISSP and a bachelor’s degree in business administration, with a total of 14 years of IT experience.

Robert Woods is a seasoned information assurance professional with 21 years of experience in information and network security, compliance, and leadership. Recently most of his efforts have focused on securing enterprise networks for financial services organizations to satisfy regulatory and industry requirements. Specific areas of focus have included strategic and tactical efforts for the Payment Card Industry Data Security Standards (PCI DSS). Robert worked as a qualified security assessor (QSA) in a strategic role at the world’s largest retailer and as a senior-level technical advisor at the largest automobile insurer in the United States. Professional certifications include CISSP, MCSE, and GSEC Gold. Robert holds a bachelor’s degree in electronic systems technology (EST) from Southern Illinois University and a Master of Science degree in information assurance (MSIA) from Norwich University.
Dedications

I dedicate this book to my girls (Stacy, Anij, and Saliah), one of which was born during the development of this book. Without all of you, none of this would be possible.

—Sean Wilkins

To my wife and daughters (Jackie, Olivia, and Victoria): It is from you that I draw my strength, for you that I have the ambition to try to “do better,” and to you that I dedicate this book. Thank you for the support and understanding throughout this project.

—Franklin H. Smith III

Acknowledgments

We want to take this opportunity to thank all the people who took our words and transformed them into a readable, organized, and formatted text for all of you to read and learn from. Without their efforts, this book would not have been possible. Because we only work directly with a few of these people, there are many people we will be unable to directly thank. For these people, we take this opportunity to thank you for your work in developing this project and look forward to working with you in the future.
Contents at a Glance

Introduction xxxiii

Part I Network Security Technologies Overview
- Chapter 1 Network Security Fundamentals 3
- Chapter 2 Network Security Threats 21
- Chapter 3 Network Foundation Protection (NFP) Overview 39

Part II Cisco IOS Foundation Security Solutions
- Chapter 4 Configuring and Implementing Switched Data Plane Security Solutions 57
- Chapter 5 802.1X and Cisco Identity-Based Networking Services (IBNS) 91
- Chapter 6 Implementing and Configuring Basic 802.1X 109
- Chapter 7 Implementing and Configuring Advanced 802.1X 139
- Chapter 8 Implementing and Configuring Cisco IOS Routed Data Plane Security 183
- Chapter 9 Implementing and Configuring Cisco IOS Control Plane Security 219
- Chapter 10 Implementing and Configuring Cisco IOS Management Plane Security 245

Part III Cisco IOS Threat Detection and Control
- Chapter 11 Implementing and Configuring Network Address Translation (NAT) 275
- Chapter 12 Implementing and Configuring Zone-Based Policy Firewalls 295
- Chapter 13 Implementing and Configuring IOS Intrusion Prevention System (IPS) 333

Part IV Managing and Implementing Cisco IOS Site-to-Site Security Solutions
- Chapter 14 Introduction to Cisco IOS Site-to-Site Security Solutions 369
- Chapter 15 Deploying VTI-Based Site-to-Site IPsec VPNs 387
- Chapter 16 Deploying Scalable Authentication in Site-to-Site IPsec VPNs 411
- Chapter 17 Deploying DMVPNs 447
Chapter 18 Deploying High Availability in Tunnel-Based IPsec VPNs 481
Chapter 19 Deploying GET VPNs 499

Part V Managing and Implementing Cisco IOS Secure Remote Access Solutions
Chapter 20 Deploying Remote Access Solutions Using SSL VPNs 529
Chapter 21 Deploying Remote Access Solutions Using EZVPNs 569

Part VI Exam Preparation
Chapter 22 Final Preparation 591

Part VII Appendixes
Appendix A Answers to Chapter DIKTA Quizzes and Fill in the Blanks Questions 599
Appendix B CCNP Security 642-637 SECURE Exam Updates, Version 1.0 621

Index 622

Elements Available on CD
Appendix C Memory Tables
Appendix D Memory Table Answers

Glossary
Contents

Introduction xxxiii

Part I Network Security Technologies Overview

Chapter 1 Network Security Fundamentals 3

“Do I Know This Already?” Quiz 3

Foundation Topics 7
 - Defining Network Security 7
 - Building Secure Networks 7
 - Cisco SAFE 9
 - SCF Basics 9
 - SAFE/SCF Architecture Principles 12
 - SAFE/SCF Network Foundation Protection (NFP) 14
 - SAFE/SCF Design Blueprints 14
 - SAFE Usage 15

Exam Preparation 17

Chapter 2 Network Security Threats 21

“Do I Know This Already?” Quiz 21

Foundation Topics 24
 - Vulnerabilities 24
 - Self-Imposed Network Vulnerabilities 24
 - Intruder Motivations 29
 - Lack of Understanding of Computers or Networks 30
 - Intruding for Curiosity 30
 - Intruding for Fun and Pride 30
 - Intruding for Revenge 30
 - Intruding for Profit 31
 - Intruding for Political Purposes 31
 - Types of Network Attacks 31
 - Reconnaissance Attacks 32
 - Access Attacks 33
 - DoS Attacks 35

Exam Preparation 36

Chapter 3 Network Foundation Protection (NFP) Overview 39

“Do I Know This Already?” Quiz 39

Foundation Topics 42
 - Overview of Device Functionality Planes 42
Part II Cisco IOS Foundation Security Solutions

Chapter 4 Configuring and Implementing Switched Data Plane Security Solutions 57

“Do I Know This Already?” Quiz 57

Foundation Topics 60
 Switched Data Plane Attack Types 60
 VLAN Hopping Attacks 60
 CAM Flooding Attacks 61
 MAC Address Spoofing 63
 Spanning Tree Protocol (STP) Spoofing Attacks 63
 DHCP Starvation Attacks 66
 DHCP Server Spoofing 67
 ARP Spoofing 67
 Switched Data Plane Security Technologies 67
 Port Configuration 67
 Port Security 71
 Root Guard, BPDU Guard, and PortFast 74
 DHCP Snooping 75
 Dynamic ARP Inspection (DAI) 77
 IP Source Guard 79
 Private VLANs (PVLAN) 80
 Exam Preparation 84

Chapter 5 802.1X and Cisco Identity-Based Networking Services (IBNS) 91

“Do I Know This Already?” Quiz 91

Foundation Topics 94
 Identity-Based Networking Services (IBNS) and IEEE 802.1x Overview 94
 IBNS and 802.1x Enhancements and Features 94
Chapter 6 Implementing and Configuring Basic 802.1X 109

“Do I Know This Already?” Quiz 109

Foundation Topics 112
 Plan Basic 802.1X Deployment on Cisco Catalyst IOS Software 112
 Gathering Input Parameters 113
 Deployment Tasks 113
 Deployment Choices 114
 General Deployment Guidelines 114
 Configure and Verify Cisco Catalyst IOS Software 802.1X Authenticator 115
 Configuration Choices 115
 Configuration Scenario 115
 Verify Basic 802.1X Functionality 121
 Configure and Verify Cisco ACS for EAP-FAST 121
 Configuration Choices 122
 Configuration Scenario 122
 Configure the Cisco Secure Services Client 802.1X Supplicant 128
 Task 1: Create the CSSC Configuration Profile 128
 Task 2: Create a Wired Network Profile 128
 Tasks 3 and 4: (Optional) Tune 802.1X Timers and Authentication Mode 130
 Task 5: Configure the Inner and Outer EAP Mode for the
Chapter 7 Implementing and Configuring Advanced 802.1X 139

“Do I Know This Already?” Quiz 139

Foundation Topics 143
 Plan the Deployment of Cisco Advanced 802.1X Authentication Features 143
 Gathering Input Parameters 143
 Deployment Tasks 144
 Deployment Choices 144
 Configure and Verify EAP-TLS Authentication on Cisco IOS Components and Cisco Secure ACS 145
 EAP-TLS with 802.1X Configuration Tasks 145
 Configuration Scenario 146
 Configuration Choices 146
 Task 1: Configure RADIUS Server 147
 Task 2: Install Identity and Certificate Authority Certificates on All Clients 147
 Task 3: Configure an Identity Certificate on the Cisco Secure ACS Server 147
 Task 4: Configure Support of EAP-TLS on the Cisco Secure ACS Server 149
 Task 5: (Optional) Configure EAP-TLS Support Using the Microsoft Windows Native Supplicant 151
 Task 6: (Optional) Configure EAP-TLS Support Using the Cisco Secure...
Chapter 8 Implementing and Configuring Cisco IOS Routed Data Plane Security 183

“Do I Know This Already?” Quiz 183

Foundation Topics 186

Routed Data Plane Attack Types 186
IP Spoofing 186
Slow-Path Denial of Service 186
Traffic Flooding 187
Routed Data Plane Security Technologies 187
Access Control Lists (ACL) 187
Chapter 9 Implementing and Configuring Cisco IOS Control Plane Security 219

“Do I Know This Already?” Quiz 219

Foundation Topics 222
 Control Plane Attack Types 222
 Slow-Path Denial of Service 222
 Routing Protocol Spoofing 222
 Control Plane Security Technologies 222
 Control Plane Policing (CoPP) 222
 Control Plane Protection (CPPr) 226
 Routing Protocol Authentication 232

Exam Preparation 237

Chapter 10 Implementing and Configuring Cisco IOS Management Plane Security 245

“Do I Know This Already?” Quiz 245

Foundation Topics 248
 Management Plane Attack Types 248
 Management Plane Security Technologies 248
 Basic Management Security and Privileges 248
 SSH 254
 SNMP 256
 CPU and Memory Thresholding 261
 Management Plane Protection 262
 AutoSecure 263
 Digitally Signed Cisco Software 265

Exam Preparation 267

Part III Cisco IOS Threat Detection and Control

Chapter 11 Implementing and Configuring Network Address Translation (NAT) 275

“Do I Know This Already?” Quiz 275

Foundation Topics 278
 Network Address Translation 278
 Static NAT Example 280
Chapter 12 Implementing and Configuring Zone-Based Policy Firewalls 295

“Do I Know This Already?” Quiz 295

Foundation Topics 298
Zone-Based Policy Firewall Overview 298
Zones/Security Zones 298
Zone Pairs 299
Transparent Firewalls 300
Zone-Based Layer 3/4 Policy Firewall Configuration 301
Class Map Configuration 302
Parameter Map Configurations 304
Policy Map Configuration 306
Zone Configuration 308
Zone Pair Configuration 309
Port to Application Mapping (PAM) Configuration 310
Zone-Based Layer 7 Policy Firewall Configuration 312
URL Filter 313
HTTP Inspection 318
Exam Preparation 323

Chapter 13 Implementing and Configuring IOS Intrusion Prevention System (IPS) 333

“Do I Know This Already?” Quiz 333

Foundation Topics 336
Configuration Choices, Basic Procedures, and Required Input Parameters 336
Intrusion Detection and Prevention with Signatures 337
Sensor Accuracy 339
Choosing a Cisco IOS IPS Sensor Platform 340
Software-Based Sensor 340
Hardware-Based Sensor 340
Deployment Tasks 341
Deployment Guidelines 342
Deploying Cisco IOS Software IPS Signature Policies 342
Configuration Tasks 342
Configuration Scenario 342
Verification 346
Guidelines 347
Tuning Cisco IOS Software IPS Signatures 347
Event Risk Rating System Overview 348
Event Risk Rating Calculation 348
Event Risk Rating Example 349
Signature Event Action Overrides (SEAO) 349
Signature Event Action Filters (SEAF) 349
Configuration Tasks 350
Configuration Scenario 350
Verification 355
Implementation Guidelines 355
 Deploying Cisco IOS Software IPS Signature Updates 355
Configuration Tasks 356
Configuration Scenario 356
Task 1: Install Signature Update License 356
Task 2: Configure Automatic Signature Updates 357
Verification 357
Monitoring Cisco IOS Software IPS Events 358
Cisco IOS Software IPS Event Generation 358
Cisco IME Features 358
Cisco IME Minimum System Requirements 359
Configuration Tasks 359
Configuration Scenario 360
Task 2: Add the Cisco IOS Software IPS Sensor to Cisco IME 361
Verification 362
Verification: Local Events 362
Verification: IME Events 363
Cisco IOS Software IPS Sensor 363
Troubleshooting Resource Use 365
Additional Debug Commands 365
Exam Preparation 366

Part IV Managing and Implementing Cisco IOS Site-to-Site Security Solutions

Chapter 14 Introduction to Cisco IOS Site-to-Site Security Solutions 369
Chapter 15 Deploying VTI-Based Site-to-Site IPsec VPNs 387

“Do I Know This Already?” Quiz 387

Foundation Topics 390

Plan a Cisco IOS Software VTI-Based Site-to-Site VPN 390

Virtual Tunnel Interfaces 390

Input Parameters 392

Deployment Tasks 393

Deployment Choices 393

General Deployment Guidelines 393

Configuring Basic IKE Peering 393

Cisco IOS Software Default IKE PSK-Based Policies 394

Configuration Tasks 394

Configuration Choices 395

Configuration Scenario 395
Task 1: (Optional) Configure an IKE Policy on Each Peer 395
Tasks 2 and 3: Generate and Configure Authentication Credentials on Each Peer 396
Verify Local IKE Sessions 396
Verify Local IKE Policies 396
Verify a Successful Phase 1 Exchange 397
Implementation Guidelines 397
Troubleshooting IKE Peering 397
Troubleshooting Flow 397
Configuring Static Point-to-Point IPsec VTI Tunnels 398
Default Cisco IOS Software IPsec Transform Sets 398
Configuration Tasks 398
Configuration Choices 399
Configuration Scenario 399
Task 1: (Optional) Configure an IKE Policy on Each Peer 399
Task 2: (Optional) Configure an IPsec Transform Set 399
Task 3: Configure an IPsec Protection Profile 400
Task 4: Configure a Virtual Tunnel Interface (VTI) 400
Task 5: Apply the Protection Profile to the Tunnel Interface 401
Task 6: Configure Routing into the VTI Tunnel 401
Implementation Guidelines 401
Verify Tunnel Status and Traffic 401
Troubleshooting Flow 402
Configure Dynamic Point-to-Point IPsec VTI Tunnels 403
Virtual Templates and Virtual Access Interfaces 403
ISAKMP Profiles 404
Configuration Tasks 404
Configuration Scenario 404
Task 1: Configure IKE Peering 405
Task 2: (Optional) Configure an IPsec Transform Set 405
Task 3: Configure an IPsec Protection Profile 405
Task 4: Configure a Virtual Template Interface 406
Task 5: Map Remote Peer to a Virtual Template Interface 406
Verify Tunnel Status on the Hub 407
Implementation Guidelines 407
Exam Preparation 408
Chapter 16 Deploying Scalable Authentication in Site-to-Site IPsec VPNs 411

“Do I Know This Already?” Quiz 411

Foundation Topics 414

- Describe the Concept of a Public Key Infrastructure 414
- Manual Key Exchange with Verification 414
- Trusted Introducing 414
- Public Key Infrastructure: Certificate Authorities 416
- X.509 Identity Certificate 417
- Certificate Revocation Checking 418
- Using Certificates in Network Applications 419

Deployment Choices 420
Deployment Steps 420
Input Parameters 421
Deployment Guidelines 421

- Configure, Verify, and Troubleshoot a Basic Cisco IOS Software Certificate Server 421
- Configuration Tasks for a Root Certificate Server 422
- Configuration Scenario 423
- Task 1: Create an RSA Key Pair 423
- Task 2: Create a PKI Trustpoint 424
- Tasks 3 and 4: Create the CS and Configure the Database Location 424
- Task 5: Configure an Issuing Policy 425
- Task 6: Configure the Revocation Policy 425
- Task 7: Configure the SCEP Interface 426
- Task 8: Enable the Certificate Server 426
- Cisco Configuration Professional Support 426
- Verify the Cisco IOS Software Certificate Server 427
- Feature Support 427
- Implementation Guidelines 428
- Troubleshooting Flow 429
- PKI and Time: Additional Guidelines 429
- Enroll a Cisco IOS Software VPN Router into a PKI and Troubleshoot the Enrollment Process 429
- PKI Client Features 429
- Simple Certificate Enrollment Protocol 430
- Key Storage 430
- Configuration Tasks 430
Chapter 17 Deploying DMVPNs 447

“Do I Know This Already?” Quiz 447

Foundation Topics 451

Understanding the Cisco IOS Software DMVPN Architecture 451
Building Blocks of DMVPNs 452
Hub-and-Spoke Versus On-Demand Fully Meshed VPNs 452
DMVPN Initial State 453
DMVPN Spoke-to-Spoke Tunnel Creation 453
DMVPN Benefits and Limitations 454
Plan the Deployment of a Cisco IOS Software DMVPN 455
Input Parameters 455
Deployment Tasks 455
Deployment Choices 456
General Deployment Guidelines 456
Configure and Verify Cisco IOS Software GRE Tunnels 456
GRE Features and Limitations 456
Point-to-Point Versus Point-to-Multipoint GRE Tunnels 457
Point-to-Point Tunnel Configuration Example 457
Configuration Tasks for a Hub-and-Spoke Network 459
Configuration Scenario 459
Task 1: Configure an mGRE Interface on the Hub 459
Task 2: Configure a GRE Interface on the Spoke 459
Verify the State of GRE Tunnels 460
Configure and Verify a Cisco IOS Software NHRP Client and Server 461
(m)GRE and NHRP Integration 461
Configuration Tasks 461
Configuration Scenario 461
Task 1: Configure an NHRP Server 461
Task 2: Configure an NHRP Client 462
Verify NHRP Mappings 462
Debugging NHRP 463
Configure and Verify a Cisco IOS Software DMVPN Hub 464
Configuration Tasks 464
Configuration Scenario 464
Task 1: (Optional) Configure an IKE Policy 464
Task 2: Generate and/or Configure Authentication Credentials 465
Task 3: Configure an IPsec Profile 465
Task 4: Create an mGRE Tunnel Interface 465
Task 5: Configure the NHRP Server 465
Task 6: Associate the IPsec Profile with the mGRE Interface 466
Task 7: Configure IP Parameters on the mGRE Interface 466
Cisco Configuration Professional Support 466
Verify Spoke Registration 466
Verify Registered Spoke Details 467
Implementation Guidelines 468
Feature Support 468
Configure and Verify a Cisco IOS Software DMVPN Spoke 468
Configuration Tasks 468
Configuration Scenario 469
Task 1: (Optional) Configure an IKE Policy 469
Task 2: Generate and/or Configure Authentication Credentials 469
Task 3: Configure an IPsec Profile 469
Task 4: Create an mGRE Tunnel Interface 470
Task 5: Configure the NHRP Client 470
Task 6: Associate the IPsec Profile with the mGRE Interface 470
Task 7: Configure IP Parameters on the mGRE Interface 471
Verify Tunnel State and Traffic Statistics 471
Configure and Verify Dynamic Routing in a Cisco IOS Software DMVPN 471
EIGRP Hub Configuration 472
OSPF Hub Configuration 473
Hub-and-Spoke Routing and IKE Peering on Spoke 473
Full Mesh Routing and IKE Peering on Spoke 474
Troubleshoot a Cisco IOS Software DMVPN 474
Troubleshooting Flow 475
Exam Preparation 476

Chapter 18 Deploying High Availability in Tunnel-Based IPsec VPNs 481
“Do I Know This Already?” Quiz 481
Foundation Topics 484
Plan the Deployment of Cisco IOS Software Site-to-Site IPsec VPN High-Availability Features 484
VPN Failure Modes 484
Partial Failure of the Transport Network 484
Partial or Total Failure of the Service Provider (SP) Transport Network 485
Partial or Total Failure of a VPN Device 485
Deployment Guidelines 485
Use Routing Protocols for VPN Failover 486
Routing to VPN Tunnel Endpoints 486
Task 3: Configure COOP 522
Tasks 4 and 5: Configure Traffic Protection Policy and Multiple Key Servers on Group Members 523
Verify IKE Peering 523
Verify COOP Peering 523
Implementation Guidelines 524
Troubleshooting Flow 524
Exam Preparation 525

Part V Managing and Implementing Cisco IOS Secure Remote Access Solutions

Chapter 20 Deploying Remote Access Solutions Using SSL VPNs 529
“Do I Know This Already?” Quiz 529

Foundation Topics 533
Choose an Appropriate Remote Access VPN Technology 533
Cisco IOS Software Remote Access VPN Options 533
Full Tunneling Remote Access SSL VPN: Features 533
Full Tunneling Remote Access SSL VPN: Benefits and Limitations 534
Clientless Remote Access SSL VPN: Features 534
Clientless SSL VPN: Benefits and Limitations 535
Software Client Remote Access IPsec VPN (EZVPN): Features 535
Hardware Client Remote Access IPsec VPN (EZVPN): Features 536
Remote Access IPsec VPN: Benefits and Limitations 536
VPN Access Methods: Use Cases 536
Choose Appropriate Remote Access VPN Cryptographic Controls 537
SSL/TLS Refresher 537
Algorithm Choices in Cisco SSL Remote Access VPNs 539
IKE Remote Access VPN Extensions 539
Algorithm Choices in Cisco IPsec Remote Access VPNs 540
Deploying Remote Access Solutions Using SSL VPNs 541
Solution Components 541
Deployment Tasks 541
Input Parameters 542
Configure and Verify Common SSL VPN Parameters 542
Configuration Tasks 543
Configuration Choices 543
Configuration Scenario 543
Configure and Verify Clientless Access on the Cisco IOS SSL VPN Gateway 556

Basic Portal Features 556
Cisco Secure Desktop for Clientless Access 557
Port Forwarding Overview 557
Port Forwarding Benefits and Limitations 558
Portal ACLs 558
Configuration Tasks 558
Configuration Scenario 559
Task 1: Enable Full Tunneling Access 560
Task 2: (Optional) Configure Port Forwarding 560
Task 3: (Optional) Configure Cisco Secure Desktop 561
Task 4: (Optional) Configure Access Control 561
Basic Portal Verification 562
Web Application Access 562
File Server Access 562
Port Forwarding Access 562
Cisco Secure Desktop Verification 563
Gateway-Side Verification 563
Troubleshoot the Basic SSL VPN Operation 563
Port Forwarding Access 563
Troubleshooting Flow (VPN Establishment) 563
Troubleshooting Flow (Data Flow) 563
Gateway-Side Issue 564
Client-Side Issues: Certificates 564
Exam Preparation 565

Chapter 21 Deploying Remote Access Solutions Using EZVPNs 569

“Do I Know This Already?” Quiz 569

Foundation Topics 572
Plan the Deployment of a Cisco IOS Software EZVPN 572
Solution Components 573
Deployment Tasks 573
Input Parameters 574
Deployment Guidelines 574
Configure and Verify a Basic Cisco IOS Software VTI-Based EZVPN Server 575
Group Pre-Shared Key Authentication 575
Extended Authentication (XAUTH) Overview 575
Configuration Groups and ISAKMP Profiles 576
Configuration Tasks 576
Configuration Scenario 576
Task 1: (Optional) Verify an IKE Policy 577
Task 2: Configure an IPsec Transform Set and Profile 577
Task 3: Configure a Dynamic VTI Template 577
Task 4: Create a Client Configuration Group 578
Task 5: Create an ISAKMP Profile 578
Tasks 6 and 7: Configure and Enable User Authentication 579
Cisco Configuration Professional Support 579
Implementation Guidelines 580
Configure the Cisco VPN Client 580
Configuration Tasks 580
Configuration Scenario 580
Task 1: Install the Cisco VPN Client Software 580
Task 2: Configure the VPN Client Connection Entry 580
Task 3: Establish the EZVPN Connection 581
Client-Side Verification 581
Gateway-Side Verification 581
Configure and Verify VTI-Based EZVPN Remote Client Functionality on the Cisco ISR 582
EZVPN Remote Modes 582
Configuration Tasks 583
Configuration Scenario 583
Task 1: Configure EZVPN Remote Profile 583
Task 2: Designate EZVPN Interface Roles 584
Implementation Guidelines 584
Configure and Verify EZVPN Server and VPN Client PKI Features 585
Head-End PKI Configuration 585
VPN Client Configuration: SCEP Enrollment 585
VPN Client Enrollment Verification 586
VPN Client Configuration: Profile 586
Troubleshoot Basic EZVPN Operation 587
Troubleshooting Flow: VPN Session Establishment 587
Troubleshooting Flow: VPN Data Flow 587
Exam Preparation 588
Part VI Exam Preparation

Chapter 22 Final Preparation 591

Tools for Final Preparation 591
Pearson Cert Practice Test Engine and Questions on the CD 591
Install the Software from the CD 592
Activate and Download the Practice Exam 592
Activating Other Exams 593
Premium Edition 593
Cisco Learning Network 593
Memory Tables 593
Chapter-Ending Review Tools 594
Suggested Plan for Final Review/Study 594
Step 1: Review the Key Topics, the DIKTA Questions, and the Fill in the Blanks Questions 595
Step 2: Complete the Memory Tables 595
Step 3: Do Hands-On Practice 595
Step 4: Build Configuration Checklists 596
Step 5: Use the Exam Engine 596

Part VII Appendixes

Appendix A Answers to Chapter DIKTA Quizzes and Fill in the Blanks Questions 599

Appendix B CCNP Security 642-637 SECURE Exam Updates, Version 1.0 621

Index 622

Elements Available on CD

Appendix C Memory Tables

Appendix D Memory Table Answers

Glossary
Icons Used in This Book

- Wireless Router
- Router
- ATM/FastGb Etherswitch
- Access Point
- Switch

- Secure Switch
- Cisco IOS Firewall
- CS-MARS
- IPS
- SSL VPN Gateway

- IP Phone
- AAA Server
- Web Server
- Secure Endpoint
- Database

- PC
- File/Application Server
- Laptop
- Wireless Connection
- Network Cloud
- Ethernet Connection
Introduction

This book helps you prepare for the Cisco SECURE certification exam. The SECURE exam is one in a series of exams required for the Cisco Certified Network Professional - Security (CCNP - Security) certification. This exam focuses on the application of security principles with regard to Cisco IOS routers, switches, and Virtual Private Network (VPN) devices.

Who Should Read This Book

Network security is a complex business. It is important that you have extensive experience in and an in-depth understanding of computer networking before you can begin to apply security principles. The Cisco SECURE program was developed to introduce the security products associated with or integrated into Cisco IOS Software, explain how each product is applied, and explain how it can increase the security of your network. The SECURE program is for network administrators, network security administrators, network architects, and experienced networking professionals who are interested in applying security principles to their networks.

How to Use This Book

This book consists of 22 chapters. Each chapter tends to build upon the chapter that precedes it. The chapters that cover specific commands and configurations include case studies or practice configurations.

The chapters cover the following topics:

- Chapter 1, “Network Security Fundamentals”: This chapter reviews the basic network security concepts and elements along with a review of the Cisco SAFE approach. It is this core of understanding that provides a good base for the other chapters.

- Chapter 2, “Network Security Threats”: This chapter reviews the different methods used to exploit a network and the elements on it. With a better understanding of the methods used, network security personnel are better equipped to face these security challenges as they are found.

- Chapter 3, “Network Foundation Protection (NFP) Overview”: NFP details a layered approach to protecting Cisco IOS Software–based devices. Attacks against the control, data, and management planes and the appropriate mitigation techniques are covered.

- Chapter 4, “Configuring and Implementing Switched Data Plane Security Solutions”: This chapter reviews the different types of attacks that are focused at the data plane of the switches in the network. It then goes on to review the technologies that can be used to mitigate them and shows how to configure them to best protect the switched data plane.
- **Chapter 5, “802.1X and Cisco Identity-Based Networking Services (IBNS)”**: This chapter reviews IEEE 802.1X and the Cisco IBNS framework that are both used to protect the network from unauthorized users. It goes into the basics of 802.1X, including the various Extensible Authentication Protocol (EAP) methods that can be used as well as the different IBNS features that can be used to secure the network.

- **Chapter 6, “Implementing and Configuring Basic 802.1X”**: This chapter describes how to configure basic 802.1X authentication on a Cisco IOS Software–based device to prevent unauthorized clients (supplicants) from gaining access to the network.

- **Chapter 7, “Implementing and Configuring Advanced 802.1X”**: This chapter describes how to configure advanced 802.1X authentication features on a Cisco IOS Software–based device to prevent unauthorized clients (supplicants) from gaining access to the network.

- **Chapter 8, “Implementing and Configuring Cisco IOS Routed Data Plane Security”**: This chapter reviews the different types of attack that are focused at the data plane of the routers (or Layer 3 switches) in the network. It then reviews the different features that can be used to mitigate these threats and how to configure them.

- **Chapter 9, “Implementing and Configuring Cisco IOS Control Plane Security”**: This chapter reviews the different types of attack that are focused at the control plane of the devices in the network. It then reviews the different features that can be used to mitigate these threats and how to configure them.

- **Chapter 10, “Implementing and Configuring Cisco IOS Management Plane Security”**: This chapter reviews the different types of attack that are focused at the management plane of the devices in the network. It then reviews the different features that can be used to mitigate these threats and how to configure them.

- **Chapter 11, “Implementing and Configuring Network Address Translation (NAT)”**: This chapter reviews the Network Address Translation (NAT) feature and how it can be used in various ways on the network. NAT is an important feature that is used by almost everyone on a daily basis; a through understanding of it is vital now that the majority of the IPv4 address space has been depleted.

- **Chapter 12, “Implementing and Configuring Zone-Based Policy Firewalls”**: This chapter reviews the Zone-Based Policy Firewall (ZBPFW) feature and how it can be used to secure the different parts of the network. In the modern network environment, there are a number of threats that exist that are focused on the network and the devices on it. The ZBPFW feature has a number of different capabilities that can be used to mitigate these threats and keep the network and the devices on it secure.

- **Chapter 13, “Implementing and Configuring IOS Intrusion Prevention System (IPS)”**: The Cisco IOS Intrusion Prevention System (IPS) feature set is the evolution of the Cisco IOS Intrusion Detection System (IDS). Cisco IPS products go beyond the IDS signature matching by incorporating features such as stateful pattern recognition, protocol analysis, traffic anomaly detection, and protocol anomaly detection. This chapter discusses the security features of the Cisco IOS IPS.
Chapter 14, “Introduction to Cisco IOS Site-to-Site Security Solutions”: This chapter introduces site-to-site VPN technologies and an overview of the many topologies and technologies that are possible with IPsec VPNs.

Chapter 15, “Deploying VTI-Based Site-to-Site IPsec VPNs”: This chapter covers deployment of static and dynamic point-to-point VTI tunnels using Cisco IOS Software. IP Security (IPsec) Virtual Tunnel Interfaces (VTI) greatly simplify the configuration process that is required to create site-to-site VPN tunnels.

Chapter 16, “Deploying Scalable Authentication in Site-to-Site IPsec VPNs”: Cisco IOS devices are designed with a feature called CA interoperability support, which allows them to interact with a certificate authority (CA) when deploying IPsec. This functionality allows a scalable and manageable enterprise VPN solution.

Chapter 17, “Deploying DMVPNs”: Dynamic Multipoint Virtual Private Networks (DMVPN) are a feature of Cisco IOS Software that makes the deployment of large hub-and-spoke, partial mesh, and full mesh VPN topologies much easier. This chapter covers implementing DMVPN on Cisco IOS Software–based devices.

Chapter 18, “Deploying High Availability in Tunnel-Based IPsec VPNs”: This chapter describes the mechanisms that can be put in place to provide a high-availability solution that will protect an organization from outages.

Chapter 19, “Deploying GET VPNs”: This chapter covers the deployment of the Cisco Group Encrypted Transport Virtual Private Network (GET VPN) technology. It provides a solution that allows easy deployment of a complex, redundant, fully meshed VPN network.

Chapter 20, “Deploying Remote Access Solutions Using SSL VPNs”: Remote access VPN technologies allow mobile workers to access internal resources over untrusted networks. This chapter will discuss a comparison of remote access VPN technologies and then cover configuring, verifying, and troubleshooting a basic client-based and clientless SSL VPN solution on a Cisco ISR.

Chapter 21, “Deploying Remote Access Solutions Using EZVPNs”: Cisco Easy VPN is a client/server application that allows VPN security parameters to be “pushed out” to the remote locations that connect using a growing array of Cisco products.

Chapter 22, “Final Preparation”: This short chapter lists the exam preparation tools useful at this point in the study process and provides a suggested study plan now that you have completed all the earlier chapters in this book.

Appendix A, “Answers to Chapter DIKT A Quizzes and Fill in the Blanks Questions”: This appendix provides the answers to the Do I Know This Already? quizzes that you will find at the beginning of each chapter as well as the answers to the Fill in the Blanks questions that you will find at the end of each chapter.

Appendix B, “CCNP Security 642-637 SECURE Exam Updates, Version 1.0”: This appendix provides you with updated information if Cisco makes minor modifications to the exam upon which this book is based. When Cisco releases an entirely
new exam, the changes are usually too extensive to provide in a simple update appendix. In those cases, you need to consult the new edition of the book for the updated content. This additional content about the exam will be posted as a PDF document on this book’s companion website (www.ciscopress.com/title/9781587142802).

- **Appendix C, “Memory Tables” (CD only):** This appendix, which you will find in PDF form on the CD accompanying this book, provides a series of tables that highlight some of the key topics in each chapter. Each table provides some cues and clues that will enable you to complete the table and test your knowledge on the table topics.

- **Appendix D, “Memory Table Answers” (CD only):** This appendix, which you will find in PDF form on the CD accompanying this book, provides the completed memory tables from Appendix C so that you can check your answers. In addition, you can use this appendix as a standalone study tool to help you prepare for the exam.

- **Glossary:** This glossary defines the key terms that appear at the end of each chapter, for which you should be able to provide definitions on your own in preparation for the exam.

Each chapter follows the same format and incorporates the following tools to assist you by assessing your current knowledge and emphasizing specific areas of interest within the chapter:

- **Do I Know This Already? quiz:** Each chapter begins with a quiz to help you assess your current knowledge of the subject. The quiz is divided into specific areas of emphasis that enable you to best determine where to focus your efforts when working through the chapter.

- **Foundation Topics:** The foundation topics are the core sections of each chapter. They focus on the specific protocols, concepts, or skills that you must master to successfully prepare for the examination.

- **Exam Preparation:** Near the end of each chapter, the Exam Preparation section highlights the key topics from the chapter and the pages where you can find them for quick review. This section also refers you to the Memory Tables appendixes and provides a list of key terms that you should be able to define in preparation for the exam. It is unlikely that you will be able to successfully complete the certification exam by just studying the key topics, memory tables, and key terms, although they are a good tool for last-minute preparation just before taking the exam.

- **Fill in the Blanks:** Each chapter ends with a series of review questions to test your understanding of the material covered. These questions are a great way to ensure that you not only understand the material, but that you also exercise your ability to recall facts.

- **CD-ROM-based practice exam:** This book includes a CD-ROM containing a free, complete practice exam. It is recommended that you continue to test your knowledge and test-taking skills by using this exam. You will find that your test-taking skills will improve by continued exposure to the test format. Remember that the potential range of exam questions is limitless. Therefore, your goal should not be to “know” every possible answer but to have a sufficient understanding of the subject matter so that you can figure out the correct answer with the information provided.

Premium Edition

In addition to the free practice exam provided on the CD-ROM, you can purchase additional exams with expanded functionality directly from Pearson IT Certification. The Premium Edition of this title contains an additional two full practice exams as well as an eBook (in both PDF and ePub format). In addition, the Premium Edition title also has remediation for each question to the specific part of the eBook that relates to that question.

Because you have purchased the print version of this title, you can purchase the Premium Edition at a deep discount. A coupon code in the CD sleeve contains a one-time-use code as well as instructions for where you can purchase the Premium Edition.

Certification Exam and This Preparation Guide

The questions for each certification exam are a closely guarded secret. The truth is that if you had the questions and could only pass the exam, you would be in for quite an embarrassment as soon as you arrived at your first job that required these skills. The point is to know the material, not just to successfully pass the exam. We do know which topics you must know to successfully complete this exam because they are published by Cisco.

Coincidentally, these are the same topics required for you to be proficient when configuring Cisco security devices. It is also important to understand that this book is a “static” reference, whereas the exam topics are dynamic. Cisco can and does often change the topics covered on certification exams. This exam guide should not be your only reference when preparing for the certification exam. You can find a wealth of information available at Cisco.com that covers each topic in painful detail. The goal of this book is to prepare you as well as possible for the SECURE exam. Some of this is completed by breaking a 600-page (average) implementation guide into 30-page chapters that are easier to digest. If you think that you need more detailed information on a specific topic, feel free to surf.

Table I-1 lists each exam topic along with a reference to the chapter that covers the topic.

<table>
<thead>
<tr>
<th>Exam Topic</th>
<th>Chapter Where Topic Is Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preproduction Design</td>
<td>Chapters 3, 4, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Choose Cisco IOS technologies to implement HLD (High Level Design)</td>
<td>Chapters 3, 4, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Choose Cisco products to implement HLD</td>
<td>Chapters 3, 4, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Choose Cisco IOS features to implement HLD 2</td>
<td>Chapters 3, 4, 8, 9, 10, 11, 12</td>
</tr>
</tbody>
</table>
Table I-1
SECURE Exam Topics and Chapter References

<table>
<thead>
<tr>
<th>Exam Topic</th>
<th>Chapter Where Topic Is Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrate Cisco network security solutions with other security technologies</td>
<td>Chapters 1, 3, 4, 5, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Create and test initial Cisco IOS configurations for new devices/services</td>
<td>Chapters 4, 5, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Configure and verify ASA VPN feature configurations</td>
<td>Chapters 20, 21</td>
</tr>
<tr>
<td>Complex Operations Support</td>
<td></td>
</tr>
<tr>
<td>Optimize Cisco IOS security infrastructure device performance</td>
<td>Chapters 3, 4, 5, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Create complex network security rules to meet the security policy requirements</td>
<td>Chapters 1, 2</td>
</tr>
<tr>
<td>Optimize security functions, rules, and configuration</td>
<td>Chapters 3, 4, 5, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Configure and verify classic IOS firewall and NAT to dynamically mitigate identified threats to the network</td>
<td>Chapters 11, 12</td>
</tr>
<tr>
<td>Configure and verify IOS Zone-Based Firewalls including advanced application inspections and URL filtering</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>Configure and verify the IPS features to identify threats and dynamically block them from entering the network</td>
<td>Chapters 2, 13</td>
</tr>
<tr>
<td>Maintain, update, and tune IPS signatures</td>
<td>Chapters 2, 13</td>
</tr>
<tr>
<td>Configure and verify IOS VPN features</td>
<td>Chapters 14–19</td>
</tr>
<tr>
<td>Configure and verify Layer 2 and Layer 3 security features</td>
<td>Chapters 4, 5, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Advanced Troubleshooting</td>
<td></td>
</tr>
<tr>
<td>Advanced Cisco IOS security software configuration fault finding and repairing</td>
<td>Chapters 4, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>Advanced Cisco routers and switches hardware fault finding and repairing</td>
<td>Chapters 4, 8, 9, 10, 11, 12</td>
</tr>
</tbody>
</table>

You will notice that not all the chapters map to a specific exam topic. This is because of the selection of evaluation topics for each version of the certification exam. Our goal is to provide the most comprehensive coverage to ensure that you are well prepared for the exam. To do this, we cover all the topics that have been addressed in different versions of this exam (past and present). Network security can (and should) be extremely complex and usually results in a series of interdependencies between systems operating in concert.
This book will show you how one system (or function) relies on another, and each chapter of the book provides insight into topics in other chapters. Many of the chapters that do not specifically address exam topics provide a foundation that is necessary for a clear understanding of network security. Your short-term goal might be to pass this exam, but your overall goal is to become a qualified network security professional.

Note that because security vulnerabilities and preventive measures continue apace, Cisco Systems reserves the right to change the exam topics without notice. Although you can refer to the list of exam topics listed in Table I-1, always check the Cisco Systems website to verify the actual list of topics to ensure that you are prepared before taking an exam. You can view the current exam topics on any current Cisco certification exam by visiting its website at Cisco.com, hovering over Training & Events, and selecting from the Certifications list. Note also that, if needed, Cisco Press might post additional preparatory content on the web page associated with this book at www.ciscopress.com/title/9781587142802. It’s a good idea to check the website a couple of weeks before taking your exam to be sure that you have up-to-date content.

Overview of the Cisco Certification Process

The network security market is currently in a position where the demand for qualified engineers vastly surpasses the supply. For this reason, many engineers consider migrating from routing/networking to network security. Remember that “network security” is just “security” applied to “networks.” This sounds like an obvious concept, but it is actually an important one if you are pursuing your security certification. You must be familiar with networking before you can begin to apply the security concepts. For example, the skills required to complete the CCNA exam will give you a solid foundation that you can expand into the network security field.

The requirements for and explanation of the CCNP certification are outlined at the Cisco Systems website. Go to Cisco.com, hover over Training & Events, and select CCNP from the Certifications list.

Taking the SECURE Certification Exam

As with any Cisco certification exam, it is best to be thoroughly prepared before taking the exam. There is no way to determine exactly what questions are on the exam, so the best way to prepare is to have a good working knowledge of all subjects covered on the exam. Schedule yourself for the exam and be sure to be rested and ready to focus when taking the exam.

The best place to find out the latest available Cisco training and certifications is under the Training & Events section at Cisco.com.
Tracking CCNP Status

You can track your certification progress by checking www.cisco.com/go/certifications/login. You must create an account the first time you log on to the site.

How to Prepare for an Exam

The best way to prepare for any certification exam is to use a combination of the preparation resources, labs, and practice tests. This guide has integrated some practice questions and labs to help you better prepare. If possible, you want to get some hands-on time with the Cisco IOS devices. There is no substitute for experience, and it is much easier to understand the commands and concepts when you can actually work with Cisco IOS devices. If you do not have access to Cisco IOS devices, you can choose from among a variety of simulation packages available for a reasonable price. Last, but certainly not least, Cisco.com provides a wealth of information about the Cisco IOS Software, all the products that operate using Cisco IOS Software, and the products that interact with Cisco devices. No single source can adequately prepare you for the SECURE exam unless you already have extensive experience with Cisco products and a background in networking or network security. At a minimum, you will want to use this book combined with the Technical Support and Documentation site resources (www.cisco.com/cisco/web/support/index.html) to prepare for this exam.

Assessing Exam Readiness

After completing a number of certification exams, we have found that you do not actually know whether you are adequately prepared for the exam until you have completed about 30 percent of the questions. At this point, if you are not prepared, it is too late. The best way to determine your readiness is to work through the “Do I Know This Already?” quizzes at the beginning of each chapter and the review questions in the “Fill in the Blanks” sections at the end of each chapter. It is best to work your way through the entire book unless you can complete each subject without having to do any research or look up any answers.

Cisco Security Specialist in the Real World

Cisco has one of the most recognized names on the Internet. You cannot go into a data center or server room without seeing some Cisco equipment. Cisco-certified security specialists can bring quite a bit of knowledge to the table because of their deep understanding of the relationship between networking and network security. This is why the Cisco certification carries such clout. Cisco certifications demonstrate to potential employers and contract holders a certain professionalism and the dedication required to complete a goal. Face it, if these certifications were easy to acquire, everyone would have them.
Cisco IOS Software Commands

A firewall or router is not normally something to play with. That is to say that after you have it properly configured, you will tend to leave it alone until there is a problem or you need to make some other configuration change. This is the reason that the question mark (?) is probably the most widely used Cisco IOS Software command. Unless you have constant exposure to this equipment, it can be difficult to remember the numerous commands required to configure devices and troubleshoot problems. Most engineers remember enough to go in the right direction but will use the ? to help them use the correct syntax. This is life in the real world. Unfortunately, the question mark is not always available in the testing environment. Many questions on this exam require you to select the best command to perform a certain function. It is extremely important that you familiarize yourself with the different commands and their respective functions.

Rules of the Road

We have always found it confusing when different addresses are used in the examples throughout a technical publication. For this reason, we use the address space defined in RFC 1918. We understand that these addresses are not routable across the Internet and are not normally used on outside interfaces. Even with the millions of IP addresses available on the Internet, there is a slight chance that we could have chosen to use an address that the owner did not want to have published in this book.

It is our hope that this will assist you in understanding the examples and the syntax of the many commands required to configure and administer Cisco IOS routers.

Exam Registration

The SECURE exam is a computer-based exam, with multiple-choice, fill-in-the-blank, list-in-order, and simulation-based questions. You can take the exam at any Pearson VUE (www.pearsonvue.com) testing center. Your testing center can tell you the exact length of the exam. Be aware that when you register for the exam, you might be told to allow a certain amount of time to take the exam that is longer than the testing time indicated by the testing software when you begin. This discrepancy is because the testing center will want you to allow some time to get settled and take the tutorial about the test engine.

Book Content Updates

Because Cisco Systems occasionally updates exam topics without notice, Cisco Press might post additional preparatory content on the web page associated with this book at www.ciscopress.com/title/9781587142802. It is a good idea to check the website a couple of weeks before taking your exam, to review any updated content that might be posted online. We also recommend that you periodically check back to this page on the Cisco Press website to view any errata or supporting book files that may be available.
This page intentionally left blank
This chapter covers the following subjects:

- **Routed data plane attack types:** Reviews the types of attack that are focused on the routed data plane.

- **Access control lists (ACL):** Covers the fundamentals of using ACLs and the configuration and verification commands to use.

- **Flexible Packet Matching (FPM):** Covers the steps involved in developing a traffic class and policy and assigning it to an interface. It also goes over the verification commands that can be used in configuration and troubleshooting.

- **Flexible NetFlow:** Reviews the fundamentals of Flexible NetFlow and describes the configuration and verification commands to use it.

- **Unicast Reverse Path Forwarding (Unicast RPF):** Covers the basics of how Unicast RPF functions and discusses the commands required to configure and verify it.
Several different parts of a network need to be secured from internal and external attack. The three planes as defined by Cisco include the data plane, management plane, and control plane, and these are split between those focused on the switched parts of the network and those focused on the routed parts of the network. This chapter addresses the routed data plane, including the Cisco IOS Software features that can be used to secure the network user data that traverses the network and discusses how to configure these features on the network devices within the network.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz helps you decide whether you really need to read the entire chapter. If you already intend to read the entire chapter, you do not necessarily need to answer these questions now.

The ten-question quiz, derived from the major sections in the “Foundation Topics” section of this chapter, helps you determine how to spend your limited study time.

Table 8-1 outlines the major topics discussed in this chapter and the “Do I Know This Already?” quiz questions that correspond to those topics.

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions Covered in This Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed Data Plane Attack Types</td>
<td>1</td>
</tr>
<tr>
<td>Routed Data Plane Security Technologies</td>
<td>2–10</td>
</tr>
</tbody>
</table>

Caution: The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark this question wrong for purposes of the self-assessment. Giving yourself credit for an answer that you correctly guess skews your self-assessment results and might provide you with a false sense of security.
1. Which of the following are some of the most common types of routed data plane attacks?
 a. Routing protocol spoofing
 b. Slow-path denial of service
 c. STP spoofing
 d. Traffic flooding

2. Which of the following ACL ranges are used for standard access lists?
 a. 100–199
 b. 2000–2699
 c. 1–99
 d. 1300–1999

3. When using a reflexive access list, which of the following ACL types must be used?
 a. Standard IP ACL
 b. Extended IP ACL
 c. Extended IP named ACL
 d. Reflexive ACL
 e. Standard IP named ACL

4. Which of the following are valid steps required for the creation of an FPM filtering policy?
 a. Defining a service policy
 b. Loading of a PCFD
 c. Defining an access list
 d. Loading of a PHDF

5. Which command are used to load a traffic classification file (TCDF)?
 a. load protocol
 b. load classification
 c. load tcdf
 d. load class-file

6. Which commands are used to configure matching for a traffic class?
 a. match field
 b. match start
 c. match beginning
 d. match l2-layer
 e. match packet
7. Which of the following are restrictions when using FPM?
 a. Stateful inspection only
 b. IPv4/IPv6 unicast packets only
 c. IPv4 unicast packets only
 d. Cannot be used with IP options packets

8. Which of the following are benefits that are gained by using Flexible NetFlow?
 a. Flexible key and nonkey fields
 b. Version 5 export format
 c. Standardized key and nonkey fields
 d. Version 9 export format

9. Which of the following are Flexible NetFlow components?
 a. Flow sequencers
 b. Flow policers
 c. Flow monitors
 d. Flow samplers

10. Unicast RPF utilizes which of the following to compare source packet information?
 a. IP routing table
 b. CEF FIB
 c. Topology tables
 d. NetFlow records

The answers to the “Do I Know This Already?” quiz are found in Appendix A. The suggested choices for your next step are as follows:

- **8 or less overall score**: Read the entire chapter. This includes the “Foundation Topics” section.
- **9 or 10 overall score**: If you want more review on these topics, skip to the “Exam Preparation” section. Otherwise, move on to Chapter 9, “Implementing and Configuring Cisco IOS Control Plane Security.”
Foundation Topics

Routed Data Plane Attack Types

As stated in previous chapters, understanding the attack makes the mitigation of the attack easier to accomplish. The routed infrastructure encompasses a large part of people's everyday lives, and because of this, it is a very large attack target. The following sections review the attacks that are targeted at the routed data plane.

The most common types of routed data plane attacks are

- IP spoofing
- Slow-path denial of service
- Traffic flooding

IP Spoofing

Although IP spoofing has been covered in earlier chapters, it is reviewed here. With IP spoofing, an attacker attempts to send and receive traffic on the network using an IP address of another known host or known network. The attacker is then able to use resources on the network that are associated with that specific IP address. IP spoofing is just as much of a threat on the routed network as it is with the switched network, but it is mitigated using different techniques and technologies. The three primary methods used to perform IP spoofing are as follows:

- Injecting packets with the IP address of an existing host
- Spoofing an existing host using source routing
- Injecting packets from nonexisting hosts to perform a denial of service attack

Slow-Path Denial of Service

Generic denial of service attacks are well known because they are rather simple to understand. A host or group of hosts attempts to deny a specific service or services to their intended audience, typically through the flooding of traffic to the targeted sites. Slow-path denial of service looks to deny a service or services by sending a large number of packets through the routed pieces of equipment that are required to be process switched. Process switching compared with other alternatives is the “slow path” through the equipment. The CPU of each device is tasked to perform three functions:

- Process control plane traffic
- Process management plane traffic
- Process slow-path data plane traffic

This chapter focuses on the methods of mitigating slow-path data plane attacks.
Traffic Flooding

This attack type involves the flooding of packets at a specific target. Typically, these types of attack are focused on breaking down the functionality of the target host. The techniques described in this chapter can be used to mitigate traffic-flooding attacks on not only the data plane but also the control and management planes.

Routed Data Plane Security Technologies

A number of different security technologies can be used to mitigate the attacks covered in the previous sections. A description of these technologies and how to implement them will be covered in the following sections.

Access Control Lists (ACL)

ACLs are rules that deny or permit packets coming into or out of an interface. An ACL typically consists of multiple ACL entries (ACE), organized internally by the router. When a packet is subjected to access control, the router searches this linked list in order from top to bottom to find a matching element. The matching element is then examined to determine whether the packet is permitted or denied.

ACLs can be used to mitigate a number of attacks and can also be used in combination with other technologies to mitigate many more. ACLs can be used in small businesses or at the edge of larger businesses to mitigate both IP spoofing and slow-path denial of service attacks. These types of ACLs are called infrastructure ACLs because they look to protect not just the device but also the entire infrastructure. To mitigate IP spoofing attacks, an ACL is configured to automatically disallow inbound traffic that has a source IP address that is known to be inside the network. When being legitimately routed, these addresses, which are inside the network, will never be sourced outside the network. ACLs can also be used to screen traffic that has been sent in an effort to slow the device by forcing its traffic to be process switched. In small amounts, this is not an issue, but when a large number of packets need to be process switched, it has the chance of affecting the performance of the device.

Figure 8-1 shows the behavior of a router that has an ACL configured on its interfaces. The function of ACLs includes their ability to

- Control the transmission of packets coming into or out of an interface
- Control virtual terminal line access
- Restrict contents of routing updates
- Define interesting traffic

There are two different methods to configure an ACL:

- **Numbered ACLs:** These are entered one line at a time, and the list is scanned for a match in that same order. If a change is required, the entire list must be reentered.

- **Named ACLs:** These provide a method of configuration that does not require the complete reentry of the ACL.
Figure 8-1 High-Level Overview of How an ACL Is Processed by a Router
The ACL criteria that can be used is quite large and includes information like the source and destination network layer information as well as a number of different fields provided by upper-layer protocols.

At the end of each ACL, there is an implied deny for traffic that has not been previously permitted. There must be at least one permit statement in an ACL; otherwise, all traffic will be blocked.

ACLs also have the capability to drop or ignore packets based on whether they contain any IP options. There are two ways in which this can be controlled: through the IP Options Selective Drop feature or through the use of the option keyword when creating an extended named access list. The IP Options Selective Drop feature is used by issuing the ip options \{drop | ignore\} global configuration command.

Determining Where and When to Configure Access Lists
To provide the security benefits of ACLs, at a minimum an ACL should be configured on the border routers, which are routers situated at the edges of the network. This setup provides a basic buffer from the outside network or from a less-controlled area of the network into a more sensitive area of the network.

An ACL can be configured so that inbound traffic or outbound traffic, or both, are filtered on an interface. ACLs should be defined on a per-protocol basis. In other words, an ACL should be defined for every protocol enabled on an interface if that protocols traffic is to be controlled.

Types of ACLs
Cisco IOS Software supports the following types of ACLs for IP:

- **Standard ACLs**: Use source addresses for matching operations.
- **Extended ACLs**: Use source and destination addresses for matching operations and optional protocol type information for finer granularity of control.
- **Reflexive ACLs**: Allow IP packets to be filtered based on session information. Reflexive ACLs contain temporary entries and are nested within extended-named IP ACLs.
- **Time-based ACLs**: As the name intuitively indicates, these ACLs are triggered by a time function.

The following sections discuss each type of ACL in detail.

Standard ACLs
Standard ACLs are the oldest type of ACLs, dating back as early as Cisco IOS Software Release 8.3. Standard ACLs control traffic by comparing the source address of the traffic to the addresses configured in the ACL.

The following is the command syntax format of a standard ACL:

```
router(config)# access-list access-list-number {permit | deny} {host | source source-wildcard | any} [log]
```
In all software releases, the access list number for standard IP access lists can be anything from 1 to 99. Table 8-2 shows the various protocol options and their corresponding number range for the ACL identification. In Cisco IOS Software Release 12.0.1, standard IP ACLs began using additional numbers (1300 to 1999). These additional numbers are referred to as expanded IP ACLs. In addition to using numbers to identify ACLs, Cisco IOS Software Release 11.2 and later added the ability to use the list name in standard IP ACLs.

Table 8-2 Protocols and Their Corresponding Number Identification for an ACL

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard IP</td>
<td>1–99 and 1300–1999</td>
</tr>
<tr>
<td>Extended IP</td>
<td>100–199 and 2000–2699</td>
</tr>
<tr>
<td>Ethernet type code</td>
<td>200–299</td>
</tr>
<tr>
<td>Ethernet address</td>
<td>700–799</td>
</tr>
<tr>
<td>Transparent bridging (protocol type)</td>
<td>200–299</td>
</tr>
<tr>
<td>Transparent bridging (vendor code)</td>
<td>700–799</td>
</tr>
<tr>
<td>Extended transparent bridging</td>
<td>1100–1199</td>
</tr>
<tr>
<td>DECnet and extended DECnet</td>
<td>300–399</td>
</tr>
<tr>
<td>Xerox Network Systems (XNS)</td>
<td>400–499</td>
</tr>
<tr>
<td>Extended XNS</td>
<td>500–599</td>
</tr>
<tr>
<td>AppleTalk</td>
<td>600–699</td>
</tr>
<tr>
<td>Source-route bridging (protocol type)</td>
<td>200–299</td>
</tr>
<tr>
<td>Source-route bridging (vendor code)</td>
<td>700–799</td>
</tr>
<tr>
<td>Internetwork Packet Exchange (IPX)</td>
<td>800–899</td>
</tr>
<tr>
<td>Extended IPX</td>
<td>900–999</td>
</tr>
<tr>
<td>IPX Service Advertising Protocol (SAP)</td>
<td>1000–1099</td>
</tr>
<tr>
<td>Standard Virtual Integrated Network Service (VINES)</td>
<td>1–100</td>
</tr>
<tr>
<td>Extended VINES</td>
<td>101–200</td>
</tr>
<tr>
<td>Simple VINES</td>
<td>201–300</td>
</tr>
</tbody>
</table>

The **log** option enables the monitoring of how many packets are permitted or denied by a particular ACL, including the source address of each packet. The logging message includes the ACL number, whether the packet was permitted or denied, the source IP address.
of the packet, and the number of packets from that source permitted or denied in the prior 5-minute interval.

Wildcard masks are used in conjunction with IP addresses to identify the source address in an ACL. Wildcard masks are also known as reverse netmasks and are one of the topics that many people have considerable problem understanding. In an effort to make this a little clearer, an example will be shown. So, if the netmask normally is 255.255.255.0, it’s this in binary:

```
11111111 11111111 11111111 00000000
```

Swapping the bits yields the reverse netmask, shown as follows:

```
00000000 00000000 00000000 11111111
```

or

```
0.0.0.255 (the wildcard mask)
```

Another way to calculate the wildcard mask is to take the network mask and subtract each octet from 255. If the network mask is 255.255.248.0, for example, the wildcard is calculated by subtracting it from 255 on each octet, yielding a 0.0.7.255 wildcard mask.

After defining an ACL, it must be applied to the interface (inbound or outbound):

```
rout(config)# interface interface
rout(config-if)# ip access-group number {in | out}
```

Example 8-1 shows the use of a standard IP ACL to block all traffic except that from source 192.168.100.x.

Example 8-1 Sample ACL Configuration Permitting Network 192.168.100.0 into the FastEthernet 0/0 Interface and Implicitly Denying All Other IP Traffic

```
rout(config)# interface FastEthernet0/0
rout(config-if)# ip address 192.168.100.1 255.255.255.0
rout(config-if)# ip access-group 1 in
rout(config)# access-list 1 permit 192.168.100.0 0.0.0.255
```

The terms *in*, *out*, *source*, and *destination* are used as referenced by the router. Traffic on the router could be compared to traffic on the highway. If a law enforcement officer in the United States wanted to stop a truck coming from Mexico and traveling to Canada, the truck’s source would be Mexico and the truck’s destination would be Canada. The roadblock could be applied at the U.S./Mexican border (in) or the U.S./Canadian border (out).

With regard to a router, these terms mean the following:

- **In:** Traffic that is arriving on the interface and that will go through the router; the source is where it has been, and the destination is where it is going.
■ **Out:** Traffic that has already been through the router and is leaving the interface; the source is where it has been, and the destination is where it is going.

Extended IP ACLs

Extended IP ACLs were introduced in Cisco IOS Software Release 8.3. Extended IP ACLs can control traffic by not only comparing the source IP addresses but also comparing the destination IP address as well as other information, including the source and destination port numbers of the IP packets to those configured in the ACL.

The following is the command syntax format of extended IP ACLs:

```
router(config)# access-list access-list-number [dynamic dynamic-name [timeout minutes]] [deny | permit] protocol source source-wildcard destination destination-wildcard [precedence precedence] [tos tos] [log | log-input] [time-range time-range-name]
```

or

```
router(config)# ip access-list extended {access-list-number | access-list-name}
```

```
router(config-std-nacl)# [sequence-number] permit protocol source source-wildcard destination destination-wildcard [option option-value] [precedence precedence] [tos tos] [time-range time-range-name] [log]
```

or

```
router(config-ext-nacl)# [sequence-number] permit protocol source source-wildcard destination destination-wildcard [option option-value] [precedence precedence] [tos tos] [time-range time-range-name] [log]
```

In all software releases, the access list number for extended IP access lists can be 100 to 199. In Cisco IOS Software Release 12.0.1, extended IP ACLs began using additional numbers (2000 to 2699). These additional numbers are referred to as *expanded IP ACLs*. Cisco IOS Software Release 11.2 added the ability to use the list name in extended IP ACLs.

Example 8-2 shows an extended IP ACL used to permit traffic on the 192.168.100.x network (inside) and to receive ping responses from the outside while preventing unsolicited pings from people outside (permitting all other traffic).

Example 8-2 Sample Configuration for an Extended IP ACL

```
router(config)# access-list 101 deny icmp any 192.168.100.0 0.0.0.255 echo
router(config)# access-list 101 permit ip any 192.168.100.0 0.0.0.255
router(config)# interface FastEthernet0/0
router(config-if)# ip address 172.16.8.1 255.255.255.0
router(config-if)# ip access-group 101 in
```
Reflexive ACLs

Cisco IOS Software Release 11.3 introduced reflexive ACLs. Reflexive ACLs enable IP packets to be filtered based on upper-layer session information.

They are generally used in one of two ways:

- To allow outbound traffic out of an interface facing away from the internal network and filtering inbound traffic based on existing sessions originating inside the internal network.
- To allow all inbound traffic to an interface facing toward the internal network and filtering outbound traffic based on the existing session originating inside the internal network.

The former of these two is more typical with a network that does not utilize a demilitarized zone (DMZ). The latter is used to allow traffic into a DMZ but to not allow that traffic into the internal network without a previous connection initiated inside the internal network. Both of these are shown in Figures 8-2 and 8-3.

Reflexive ACLs can be defined only with extended named IP ACLs. They cannot be defined with numbered, standard named IP ACLs or with other protocol ACLs. Reflexive ACLs can be used in conjunction with other standard and static extended IP ACLs. The syntax for configuring a reflexive ACL is as follows:

```
rout(config)# ip access-list extended {access-list-number | access-list-name}
router(config-ext-nacl)# [sequence-number] permit protocol source source-wildcard
               destination destination-wildcard reflect name
```

Example 8-3 demonstrates, by using Figure 8-2, the process of permitting all TCP traffic outbound and inbound TCP traffic that was initiated from inside the network.

```
router(config)# ip access-list extended outgoing
router(config-ext-nacl)# permit tcp any any reflect tcp-traffic
router(config)# ip access-list extended incoming
router(config-ext-nacl)# evaluate tcp-traffic
router(config)# interface Serial0/0
```

Figure 8-2 Outbound Reflexive Diagram

Example 8-3 Sample Configuration for an Outbound Reflexive ACL
router(config-if)# ip address 192.168.100.1 255.255.255.0
router(config-if)# ip access-group incoming in
router(config-if)# ip accesss-group outgoing out

Example 8-4 demonstrates, by using Figure 8-3, the process of permitting all TCP traffic inbound and outbound TCP traffic that was initiated from inside the network.

![Inbound Reflexive Diagram](image-url)

Figure 8-3 Inbound Reflexive Diagram

Example 8-4 Sample Configuration for an Inbound Reflexive ACL

router(config)# ip access-list extended incoming
router(config-ext-nacl)# permit tcp any any reflect tcp-traffic
router(config)# ip access-list extended outgoing
router(config-ext-nacl)# evaluate tcp-traffic
router(config)# interface FastEthernet0/0
router(config-if)# ip address 172.16.1.1 255.255.255.0
router(config-if)# ip access-group incoming in
router(config-if)# ip accesss-group outgoing out

Time-Based ACLs

Cisco IOS Software Release 12.0.1.T introduced time-based ACLs. Although similar to extended IP ACLs in function, they allow access control based on time. To implement time-based ACLs, a time range is created that defines specific times of the day and week. The time range is identified by a name and then referenced by a function. Therefore, the time restrictions are imposed on the function itself. The time range relies on the router’s system
clock. The router clock can be used solely, but the feature works best when Network Time Protocol (NTP) synchronization is used on the device.

Time-based ACL commands require the following syntax:

```
router(config)# time-range time-range-name
router(config-time-range)# periodic days-of-the-week hh:mm to [days-of-the-week] hh:mm
router(config-time-range)# absolute [start time date] [end time date]
```

and

```
router(config)# access-list access-list-number protocol source source-wildcard destination destination-wildcard [time-range time-range-name]
```

or

```
router(config)# ip access-list extended {access-list-number | access-list-name}
router(config-ext-nacl)# [sequence-number] permit protocol source source-wildcard destination destination-wildcard [time-range time-range-name]
```

or

```
router(config)# ip access-list extended {access-list-number | access-list-name}
router(config-ext-nacl)# [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [tos tos] [time-range time-range-name] [log]
```

Example 8-5 shows a Telnet connection permitted from the outside the network (172.16.1.0) to the inside of the network (192.168.1.0) on Monday, Tuesday, and Thursday during the hours of 7 a.m. through 6 p.m.

Example 8-5 Sample Configuration for Time-Range ACL

```
router(config)# interface FastEthernet0/0
router(config-if)# ip address 192.168.1.1 255.255.255.0
router(config)# interface FastEthernet0/1
router(config-if)# ip address 172.16.1.1 255.255.255.0
router(config-if)# ip access-group 101 in
router(config)# access-list 101 permit tcp 172.16.1.0 0.0.0.255 192.168.1.0 0.0.0.255 eq telnet time-range TelnetAccess
router(config)# time-range TelnetAccess
router(config-time-range)# periodic Monday Tuesday Thursday 7:00 to 18:00
```

Time ranges offer many possible benefits, including the following:

- The network administrator has more control over permitting or denying a user access to resources. These resources include an application (identified by an IP address/mask pair and a port number), policy routing, or an on-demand link (identified as interesting traffic to the dialer).
When provider access rates vary by time of day, it is possible to automatically reroute traffic cost-effectively.

Service providers can dynamically change a committed access rate (CAR) configuration to support the quality of service (QoS) service-level agreements (SLA) that are negotiated for certain times of day.

Network administrators can control logging messages. ACL entries can log traffic at certain times of the day but not constantly. Therefore, administrators can just deny access without analyzing the many logs generated during peak hours.

Policy-based routing and queuing functions are enhanced.

ACL Verification

There are a number of different `show` commands that can be used to verify ACL configuration.

To display the contents of all current access lists, enter the following command:

```
show access-list [access-list-number | access-list-name]
```

To display the contents of all current IP access lists, enter the following command:

```
show ip access-list [access-list-number | access-list-name]
```

Flexible Packet Matching

Flexible Packet Matching (FPM) was created to be a more thorough and customized packet filter option. FPM enables the user to configure match parameters based on arbitrary bits of a packet and arbitrary depths within the packet header and payload. This technique can be used to mitigate several different types of attack, including slow-path denial of service and zero-day virus and malware.

FPM is implemented using a filtering policy that is divided into four tasks:

- Loading of a Protocol Header Description File (PHDF)
- Defining a class map and a specific protocol stack chain (traffic class)
- Defining a service policy (traffic policy)
- Application of a service policy on a specific interface

FPM Restrictions

As with all technologies, a number of different restrictions must be known before attempting to configure FPM. The main restrictions for FPM include:

- FPM is stateless; it cannot keep track of traffic flows through the configured interface (for example, port numbers).
- FPM inspects only IPv4 unicast packets.
- FPM cannot classify packets with IP options.
FPM is not supported on tunnel or Multiprotocol Label Switching (MPLS) interfaces.

- FPM cannot be configured on FlexWAN cards.
- Noninitial fragments will not be matched by FPM.

Protocol Header Description File

With FPM, two different methods can be used to match specific traffic: the use of a Protocol Header Description File (PHDF) and/or the direct matching of traffic based on length and offset, or a mix of the two. A PHDF is used to define the various field names within a specific protocol. For example, the IP.phdf file has a field defined for each field in an IP header (that is, Version, Header Length, ToS, and so on), and TCP.phdf has a field defined for each field in the TCP header (that is, Source and Destination Port, Sequence Number, Acknowledgment Number, and so on). To take advantage of these field names, this file must first be loaded with the `load protocol` global configuration command. Loading a PHDF file also provides the ability to use the `match field` class map configuration command, which provides the ability to match based on this PHDF field information. Without loading the PHDF file, only the `match start` class map configuration command is supported, which provides the capability to match based on specific length and offset information. Both of these commands provide different methods for matching specific information within the packet and will be covered in more depth in the following sections. It is also possible for PHDFs to be custom written for other protocols; PHDFs are XML files and can be easily adapted for these purposes. The specific command syntax required to load the PHDF files is as follows:

```
router(config)# load protocol location:filename
```

Example 8-6 demonstrates the loading of both the IP and TCP PHDF files for use with the `match field` command.

Example 8-6 Sample Configuration for the load protocol Command

```
router(config)# load protocol system:fpm/phdf/ip.phdf
router(config)# load protocol system:fpm/phdf/tcp.phdf
```

Defining a Traffic Class

When creating a traffic class, its purpose is to define a number of criteria that are used to match specific traffic based on stateless packet classification. A simple example of this would be to match based on TCP traffic with a port number equal to 80 (web traffic). Of course, this type of example is simple and can be accomplished with common access list commands that are used more often for these types of matches. However, FPM provides the capability to not only match based on a specific criteria like a TCP port number but also based on a specific set of criteria, such as TCP port 80, with an IP packet length of less than 400 bytes, with a specific pattern 4 bytes long at offset 400. Now at first glance, why would someone need this capability? Well in the modern world, a number of threats exist, many of which are being created every day. Many of these are caught and prevented...
using tools such as intrusion protection systems (IPS); however, some attacks are so new that a signature is not yet available for the IPS. This is where the flexibility of FPM comes in handy. If an attack is occurring and a pattern is able to be distinguished, FPM can be used to surgically drop these attack packets inline without interruption of other uninfected traffic.

With FPM, two different methods can be used to configure traffic classes:

- Traffic can be classified using a Traffic Classification Definition File (TCDF).
- Traffic can be classified through the CLI using class maps.

When using a TCDF, a file must be created and then loaded. The TCDF file uses XML and is rather simple to create. TCDFs offer a method of implementing the same matching criteria as the CLI commands, but allow them to be repetitively used over a number of different devices without the hassle of manually adding commands on each device. The steps used to create the match criteria are the same as when using the CLI. These specific steps will be covered in the text that follows in CLI terms, and specific examples will be included showing the correct TCD format. Use of a TCDF requires the `load classification` command to load the TCDF file on the device. The command syntax required for this command is as follows:

```
router(config)# load classification location:filename
```

Because CLI configuration is the most commonly understood method of configuration, this type of configuration will be covered in depth. The first thing that must be configured with the CLI is a class map; this is done using the `class-map` command. This command is well known because it is used for many other tasks within IOS and is configured similarly. Two class map types are used with FPM:

- **Stack**: Specifies the specific protocol stacks that will be used to match (for example, IP, TCP, UDP) and can be only used with the `match-all` keyword.
- **Access control**: Matches specific patterns within the traffic of interest.

The command syntax required to create these class maps is as follows:

CLI:

```
router(config)# class-map type [stack | access-control] [match-all | match-any] class-map-name
```

TCDF:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<tcdf>
    <class name="class-name" type="stack | access-control" match="any | all"></class>
</tcdf>
```

The second part of this process is configuring specific match criteria; to do this, the `match start` and the `match field` commands are used. As stated earlier, the `match field` command only works after a PHDF has been loaded. The `match field` command is used to match based on the PHDF fields loaded. The `match start` command is used to match a
specific pattern based on a specific offset and length and whether to begin inspection at the beginning of the Layer 3 packet header or at the beginning of the Layer 2 frame header. The command syntax for these commands is as follows:

CLI:

```
router(config-cmap)# match field protocol protocol-field [eq | neq | gt | lt | range range] value next next-protocol
```

```
router(config-cmap)# match start [l2-start | l3-start] offset offset size size [eq | neq | gt | lt | range range] value
```

TCDF:

```
<?xml version="1.0" encoding="UTF-8"?>
<tcdf>
...<match>
  <[eq | neq | gt | lt] field="field-name" value="value"/></[eq | neq | gt | lt]>
  <range field="field-name" from="beginning-value" to="ending-value"/>
</match>
...</tcdf>
```

To wrap up all the different commands required for a traffic class, Example 8-7 shows a sample configuration. In this example, two different separate class maps are being created:

- **tcp-class:** This class map is configured to match the IP protocol header field when it is equal to 0x6 (TCP) and tells FPM that the next protocol to be analyzed will be TCP.

- **sample-match:** This class map is configured to match traffic that has a TCP destination port that is equal to 0x50 (80) *and* has the contents “0x1234” at offset 200 in the IP packet.

Example 8-7 Sample Traffic Class Configuration

CLI:

```
router(config)# class-map type stack match-all tcp-class
router(config-cmap)# match field ip protocol eq 0x6 next tcp
```

```
router(config)# class-map type access-control match-all sample-match
router(config-cmap)# match field tcp dest-port eq 0x50
router(config-cmap)# match start l3-start offset 200 size 2 eq 0x1234
```

TCDF:

```
<?xml version="1.0" encoding="UTF-8"?>
<tcdf>
  <class name="tcp-class" type="stack" match="all">
```

Sans titre
Defining a Traffic Policy

The next step is to configure what to do with the traffic that was matched with the class map; this is done through the creation of a traffic policy. The policy must use one (or more) of the configured traffic classes to match specific traffic and then configure what to do with this traffic after it is found.

The first part required for the configuration of a traffic policy is the creation of a policy map using the `policy-map` command; the command syntax for this command is as follows:

CLI:

```
router(config)# policy-map type access-control policy-map-name
```

TCDF:

```
<tcdf>
...
<policy name="policy-name"></policy>
...
</tcdf>
```

The second part of the process is specifying a traffic class that is configured using the `class` command; the command syntax for this command is as follows:

CLI:

```
router(config-pmap)# class class-name
```

TCDF:

```
<tcdf>
...
<class name="policy-name"></class>
...
</tcdf>
```
The final part of the process is configuring what action will be taken should a match occur; the command syntax for this command is as follows:

CLI:

```
router(config-pmap-c)# drop
```

TCDF:

```xml
<?xml version='1.0' encoding='UTF-8'?>
<tcdf>
  ...
  <action>Drop</action>
  ...
</tcdf>
```

An additional part can be added to a traffic policy by nesting policies. To take advantage of this functionality, the `service-policy` command is used, and the syntax is as follows:

CLI:

```
router(config-pmap-c)# service-policy policy-map-name
```

TCDF:

```xml
<?xml version='1.0' encoding='UTF-8'?>
<tcdf>
  ...
  <action>service-policy policy-map-name</action>
  ...
</tcdf>
```

There also seems to be a caveat when utilizing nesting policies with a TCDF file: The action tag will only allow a policy map name of up to 16 characters, which is not true when configuring nesting using only the CLI.

To wrap up the different commands required for a traffic policy, Example 8-8 shows a sample configuration. In this example, two different policy maps are created. One of these policy maps is then configured to nest inside the other. This traffic policy would be processed like this:

Step 1. Within the tcp-policy policy map, all traffic that is matched with the class map tcp-class will be sent to the tcp-policy-nest policy. (This would include all TCP traffic.)

Step 2. Within the tcp-policy-nest policy map, all traffic matching the class map sample-match would be dropped. (This would include traffic with a TCP destination port 0x50 (80) *and* has the contents “0x1234” at offset 200 in the IP packet.)
Example 8-8 Sample Traffic Policy Configuration

CLI:

```
router(config)# policy-map type access-control tcp-policy-nest
router(config-pmap)# class sample-match
router(config-pmap-c)# drop

router(config)# policy-map type access-control tcp-policy
router(config-pmap)# class tcp-class
router(config-pmap-c)# service-policy tcp-policy-nest
```

TCDF:

```
<?xml version="1.0" encoding="UTF-8"?>
<tcdf>
...
<policy type="access-control" name="tcp-policy-nest">
  <class name="sample-match"></class>
  <action>Drop</action>
</policy>

<policy type="access-control" name="tcp-policy">
  <class name="tcp-class"></class>
  <action>service-policy tcp-policy-nest</action>
</policy>
...
</tcdf>
```

Application of a Traffic Policy

The final step in this process is the application of the traffic policy on a specific interface. This application can be configured in either an incoming (input) or an outgoing (output) direction. The `service-policy type access-control` command is used to apply a specific traffic policy to an interface; the syntax for this command is as follows:

```
router(config-if)# service-policy type access-control [input | output] policy-map-name
```

Example 8-9 shows the application of the tcp policy policy map onto the FastEthernet0/0 interface.

Example 8-9 Sample Traffic Policy Application Configuration

CLI:

```
router(config)# interface FastEthernet0/0
router(config-if)# service-policy type access-control input tcp-policy
```
FPM Verification

Many different show commands can be used to verify FPM configuration.

To show which specific PHDFs are loaded and which fields are supported, enter the following command:

```
show protocols phdf phdf-name
```

To display the current traffic classes configured and matching criteria, enter the following command:

```
show class-map type [stack | access-control]
```

To display the current traffic policies, enter the following command:

```
show policy-map type access-control {interface interface}
```

Flexible NetFlow

As the name suggests, Flexible NetFlow is a more flexible version of NetFlow that allows additional options that make it superior to the original in many ways. These additional benefits include:

- Scalable, aggregatable high-capacity flow information
- Enhanced flow structure focused on additional security-monitoring capabilities
- Flexible key and nonkey field configuration
- NetFlow Version 9 export format (flexible structure)
- Comprehensive IP and BGP accounting

Both NetFlow and Flexible NetFlow work by identifying and recording flow information. A flow is a group of packets that have the same key fields. With the original version of NetFlow, these key fields were static and included: source and destination IP addresses, source and destination ports, protocol, interface, and class of service (CoS). Along with this key field information, nonkey fields, including the number of packets and number of total bytes, were also recorded. Flexible NetFlow allows these key and nonkey fields to be customizable and thus can be used in a large number of ways, depending on the specific information that is being sought.

So, the next question is “What can Flexible NetFlow be used for?” There are a number of things, from traffic accounting to capacity planning to security monitoring. This includes the ability to track slow-path and normal denial of service attacks and attack attempts. The following is a list (per Cisco) of typical Flexible NetFlow uses:

- Network monitoring
- Application monitoring and profiling
- User monitoring and profiling
- Network planning and analysis
- Security analysis
- Billing and accounting
- Data warehousing and data mining

Components
A couple of main components must be understood to configure Flexible NetFlow, as outlined in Table 8-3.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetFlow records</td>
<td>As information is collected by NetFlow, flows are defined by the configured key and nonkey fields. When there is a unique match of key fields, the matching traffic information will be recorded in a cache as a NetFlow record. As additional matching traffic occurs, the record is updated with this additional information (for example, byte counts increase if the field is configured). With Flexible NetFlow, there are predefined and user-defined record layout possibilities.</td>
</tr>
<tr>
<td>Flow monitors</td>
<td>Flow monitors are attached to interfaces and perform the network-monitoring tasks. The flow monitor is configured with a specific record format, an optional flow exporter, and a cache.</td>
</tr>
<tr>
<td>Flow exporters</td>
<td>A flow exporter’s job is rather self explanatory: It exports data from the NetFlow cache to a remote system. With Flexible NetFlow, this is typically done using the NetFlow Data Export Format, V9.</td>
</tr>
<tr>
<td>Flow samplers</td>
<td>A flow sampler reduces the load on the network device. By default, NetFlow records flows based on all the traffic in a specific direction (or both if configured). Because this can constitute a large amount of traffic on busy devices, the concept of a flow sampler was created. A flow sampler is configured to change the number of packet captures from all packets to a sampled number of packets based on configuration (for example, every other packet—50%).</td>
</tr>
</tbody>
</table>

NetFlow Records
The first thing that must be covered with NetFlow records is key and nonkey fields and the difference between them. The difference is rather simple: A key field is used to identify a specific flow, whereas a nonkey field is simply recorded as part of an already identified flow. This difference is important when utilizing the user-defined options available with Flexible NetFlow.

Now with the original NetFlow, the key and nonkey fields were static and provided no flexibility. Flexible NetFlow resolved this by allowing user-defined record structures. However, because original NetFlow has an established configuration base, it was important
to include backward compatibility. Table 8-4 displays the NetFlow Original/NetFlow IPv4 Original Input record format, and Table 8-5 displays the NetFlow IPv4 Original Output record format; both of the tables include key/nonkey field information.

Table 8-4 NetFlow Original/NetFlow IPv4 Original Input Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Key or Nonkey</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP ToS</td>
<td>Key</td>
<td>Value of the IP ToS field</td>
</tr>
<tr>
<td>IP Protocol</td>
<td>Key</td>
<td>Value of the IP Protocol field</td>
</tr>
<tr>
<td>IP Source Address</td>
<td>Key</td>
<td>—</td>
</tr>
<tr>
<td>IP Destination Address</td>
<td>Key</td>
<td>—</td>
</tr>
<tr>
<td>Transport Source Port</td>
<td>Key</td>
<td>Transport layer source port</td>
</tr>
<tr>
<td>Transport Destination Port</td>
<td>Key</td>
<td>Transport layer destination port</td>
</tr>
<tr>
<td>Interface Input</td>
<td>Key</td>
<td>Receiving interface</td>
</tr>
<tr>
<td>Flow Sampler ID</td>
<td>Key</td>
<td>ID of the flow sampler (if used)</td>
</tr>
<tr>
<td>IP Source AS</td>
<td>Nonkey</td>
<td>Source Autonomous System Number</td>
</tr>
<tr>
<td>IP Destination AS</td>
<td>Nonkey</td>
<td>Destination Autonomous System Number</td>
</tr>
<tr>
<td>IP Next Hop Address</td>
<td>Nonkey</td>
<td>Next-hop IP address</td>
</tr>
<tr>
<td>IP Source Mask</td>
<td>Nonkey</td>
<td>—</td>
</tr>
<tr>
<td>IP Destination Mask</td>
<td>Nonkey</td>
<td>—</td>
</tr>
<tr>
<td>TCP Flags</td>
<td>Nonkey</td>
<td>Value of the TCP Flag field</td>
</tr>
<tr>
<td>Interface Output</td>
<td>Nonkey</td>
<td>Transmitting Interface</td>
</tr>
<tr>
<td>Counter Bytes</td>
<td>Nonkey</td>
<td>—</td>
</tr>
<tr>
<td>Counter Packets</td>
<td>Nonkey</td>
<td>—</td>
</tr>
<tr>
<td>Time Stamp System Uptime First</td>
<td>Nonkey</td>
<td>System uptime, when the first packet was switched</td>
</tr>
<tr>
<td>Time Stamp System Uptime Last</td>
<td>Nonkey</td>
<td>System uptime, when the last packet was switched</td>
</tr>
</tbody>
</table>

Table 8-5 NetFlow IPv4 Original Output Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Key or Nonkey</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP ToS</td>
<td>Key</td>
<td>Value of the IP ToS field</td>
</tr>
<tr>
<td>IP Protocol</td>
<td>Key</td>
<td>Value of the IP Protocol field</td>
</tr>
</tbody>
</table>
Table 8-5 NetFlow IPv4 Original Output Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Key or Nonkey</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Source Address</td>
<td>Key</td>
<td>—</td>
</tr>
<tr>
<td>IP Destination Address</td>
<td>Key</td>
<td>—</td>
</tr>
<tr>
<td>Transport Source Port</td>
<td>Key</td>
<td>Transport layer source port</td>
</tr>
<tr>
<td>Transport Destination Port</td>
<td>Key</td>
<td>Transport layer destination port</td>
</tr>
<tr>
<td>Interface Output</td>
<td>Key</td>
<td>Transmitting interface</td>
</tr>
<tr>
<td>Flow Sampler ID</td>
<td>Key</td>
<td>ID of the flow sampler (if used)</td>
</tr>
<tr>
<td>IP Source AS</td>
<td>Nonkey</td>
<td>Source Autonomous System Number</td>
</tr>
<tr>
<td>IP Destination AS</td>
<td>Nonkey</td>
<td>Destination Autonomous System Number</td>
</tr>
<tr>
<td>IP Next Hop Address</td>
<td>Nonkey</td>
<td>Next-hop IP address</td>
</tr>
<tr>
<td>IP Source Mask</td>
<td>Nonkey</td>
<td>—</td>
</tr>
<tr>
<td>IP Destination Mask</td>
<td>Nonkey</td>
<td>—</td>
</tr>
<tr>
<td>TCP Flags</td>
<td>Nonkey</td>
<td>Value of the TCP Flag field</td>
</tr>
<tr>
<td>Interface Input</td>
<td>Nonkey</td>
<td>Receiving interface</td>
</tr>
<tr>
<td>Counter Bytes</td>
<td>Nonkey</td>
<td>—</td>
</tr>
<tr>
<td>Counter Packets</td>
<td>Nonkey</td>
<td>—</td>
</tr>
<tr>
<td>Time Stamp System Uptime First</td>
<td>Nonkey</td>
<td>System uptime, when the first packet was switched</td>
</tr>
<tr>
<td>Time Stamp System Uptime Last</td>
<td>Nonkey</td>
<td>System uptime, when the last packet was switched</td>
</tr>
</tbody>
</table>

As can be seen, a large amount of information was recorded in this original format. Flexible NetFlow provides the capability to pare down these fields to only those needed. To use only specific fields, a user-defined record format would be defined. The command syntax required to create this record format is as follows:

```plaintext
router(config)# flow record flow-record-name
```

To specify key fields:

```plaintext
router(config-flow-record)# match [ipv4 | ipv6 | datalink | routing | flow | interface] options
```

To specify nonkey fields:

```plaintext
router(config-flow-record)# collect [counter | ipv4 | ipv6 | datalink | routing | flow | interface | timestamp] options
```
Example 8-10 shows the commands that would be required to identify flows by the source and destination IP addresses and TCP source and destination port information and to record the packet and byte counts for each flow.

Example 8-10 Sample Flow Record Configuration

```
router(config)# flow record test-record-name
router(config-flow-record)# match ipv4 source address
router(config-flow-record)# match ipv4 destination address
router(config-flow-record)# match transport tcp source-port
router(config-flow-record)# match transport tcp destination-port
router(config-flow-record)# collect counter packets
router(config-flow-record)# collect counter bytes
```

Flow Monitors

The flow monitors attach to an interface where the traffic information is captured, either in an incoming (input) or outgoing (output) direction. However, before the flow monitor is assigned to an interface, it must be configured. The flow monitor requires that at least a NetFlow record format is configured to operate. At this point, a flow exporter can also be configured; this is covered in the next section. Also note that the support for IPv6 records was added in Release 12.3(20)T. The command syntax required for flow monitor configuration is as follows:

```
router(config)# flow monitor flow-monitor-name

router(config-flow-monitor)# record [flow-record-name | netflow | netflow-original] {ipv4 | ipv6} {original-input | original-output}
```

Example 8-11 shows the configuration of the test monitor name flow monitor with a custom flow record named test-record-name.

Example 8-11 Sample Flow Monitor Configuration

```
router(config)# flow monitor test-monitor-name
router(config-flow-monitor)# record test-record-name
```

Flow Exporter

A flow exporter is used to take the inactive (default = 15 seconds) or long-active (default = 30 minutes) records and export them to a remote system for analysis and/or storage. The command syntax required for flow exporter configuration is as follows:

```
router(config)# flow exporter flow-exporter-name

router(config-flow-exporter)# destination [hostname | ip-address]
router(config-flow-exporter)# transport udp port
```
Example 8-12 shows the configuration of a flow exporter named test-exporter-name with a destination address of 192.168.1.1 using UDP port 1234. This example then shows the flow exporter being applied to a flow monitor.

Example 8-12 Sample Flow Exporter Configuration

```
router(config)# flow exporter test-exporter-name
router(config-flow-exporter)# destination 192.168.1.1
router(config-flow-exporter)# transport udp 1234

router(config-flow-monitor)# exporter test-exporter-name
```

Flow Sampler
A flow sampler, as stated previously, is used when the amount of processing is either too much for the device to handle or is simply higher than acceptable. Two modes of sampling can be utilized:

- **Deterministic:** When using the deterministic mode, traffic is sampled at a configured interval; this mode requires less overhead than random mode. Deterministic mode is recommended when traffic patterns are random in nature.

- **Random:** When using random mode, traffic is sampled randomly; this mode should be used to eliminate any potential monitoring bias and to counter any user attempting to avoid monitoring.

The command syntax required for flow sampler configuration is shown as follows:

```
router(config)# sampler sampler-name
router(config-sampler)# mode {deterministic | random} 1 out-of window-size
```

Example 8-13 shows the configuration of a flow sampler named test-sampler with deterministic sampling with a window size of 2.

Example 8-13 Sample Flow Sampler Configuration

```
router(config)# sampler test-sampler
router(config-sampler)# mode deterministic 1 out-of 2
```

Application of a Flow Monitor
The final step in this process is the application of the flow monitor on a specific interface. This application can be configured in either an incoming (input) or an outgoing (output) direction. The `ip flow-monitor` command is used to apply a specific flow monitor to an interface; the syntax for this command is as follows:

```
router(config-if)# ip flow monitor flow-monitor-name {sampler sampler-name} [multicast | unicast] [input | output]
```
Example 8-14 shows the application of a flow monitor named test-monitor-name onto the FastEthernet0/0 interface using the flow sampler named test-sampler on input traffic.

Example 8-14 Sample Flow Monitor Application Configuration

```
router(config)# interface FastEthernet0/0
router(config-if)# ip flow monitor test-monitor-name sampler test-sampler input
```

Flexible NetFlow Verification

Many different `show` commands can be used to verify Flexible NetFlow configuration. To verify flow monitor configuration, enter the following command:

```
show flow monitor
```

To verify that a flow monitor is enabled on an interface, enter the following command:

```
show flow interface interface
```

To verify flow exporter configuration, enter the following commands:

```
show flow exporter
show running-config flow exporter flow-exporter-name
```

To view the NetFlow cache, enter the following command:

```
show flow monitor name flow-monitor-name cache format [csv | record | table]
```

To view flow sampler configuration, enter the following command:

```
show sampler
```

Additional Flexible NetFlow Information

A lot more information is available at Cisco.com that was not possible to fit into this book. To gain access to this information, go to www.cisco.com/en/US/docs/ios/fnetflow/configuration/guide/12_4t/fnf_12_4t_book.pdf.

Unicast Reverse Path Forwarding (Unicast RPF)

On modern networks, one of the most common attack types involves the forging or spoofing of IP source addresses. The configuration of ACLs for this purpose on large networks can be very cumbersome and hard to maintain. In an attempt to develop a technology to deal with these issues, Unicast Reverse Path Forwarding (URPF) was developed. Unicast RPF provides a source validation step to packet handling; it does this by verifying the source information of a packet to information contained within the Cisco Express Forwarding (CEF) Forwarding Information Base (FIB). The CEF FIB is a table that contains
packet-switching information that mirrors that of the routing table; this is used by the device to increase the speed of packets being forwarding through the device. Because Unicast RPF relies on CEF’s FIB, CEF must be configured on the device before Unicast RPF is configured.

Unicast RPF operates in one of two modes:

- **Strict (normal):** When in strict mode, Unicast RPF verifies that the source address is in the FIB and that the source address was received on the best return route interface as determined by CEF. This operation, while thorough, can also be troublesome if routing is multihomed. This is because the best return path might not be the same as the receiving interface; because of this, strict Unicast RPF is limited to single-homed connections. Unicast RPF will also work in situations where there are multiple equal-metric best paths available; this includes Enhanced IGRP (EIGRP) configurations where metric variance is configured. The recommended applications for strict Unicast RPF include (a) where only single connections are available to enter/exit the network, including the edge of a network, or (b) where single-homed customer connections connect into the core network because this would meet the single-homed requirement.

- **Loose:** Loose mode verifies only that the source address exists within the FIB and not the interface. Loose mode allows additional flexibility to implement Unicast RPF in locations where multihoming is common, including within a network.

Another important thing to understand about Unicast RPF is that it only works on incoming (input) interfaces. So, if a single-homed connection existed between the network and an ISP, RPF would be configured to monitor traffic coming from the ISP only. The use of Unicast RPF also increases the performance of the device over using traditional ACL methods of spoofing protection; this is because, unlike ACLs, Unicast RPF operates at CEF forwarding rates. When configuring Unicast RPF on interfaces over 1 Mbps, this processing difference is important.

Unicast RPF Configuration

The first thing that must be configured before starting Unicast RPF configuration is to enable the use of CEF. The `ip cef distributed` command enables the use of CEF; the syntax for this command is as follows:

```
ip cef {distributed}
```
The next part requires enabling Unicast RPF on the incoming interface. The `ip verify unicast source reachable-via` command is used to enable the use of Unicast RPF on an interface; the syntax for this command is as follows:

```
ip verify unicast source reachable-via [rx | any] {access-list}
```

The use of the `rx` or `any` keyword determines which mode that Unicast RPF will operate in; `rx` is used for strict mode and `any` is used for loose mode. An access list can also be specified with this command; its purpose is to determine whether the traffic will be dropped (default behavior - deny) or forwarded (permit). It is important to understand that this access list is not considered unless the packet fails the Unicast RPF check.

Unicast RPF Verification

A few commands can be used to verify the operation of Unicast RPF.

To verify that Unicast RPF is operational, enter the following command:

```
show cef interface interface
```

To verify global Unicast RPF packet count, enter the following command:

```
show ip traffic
```

To verify the number of interface Unicast RPF packet drops (verification drops)/forwards (suppressed verification drops), enter the following command:

```
show ip interface interface
```
Exam Preparation

As mentioned in the section, “How to Use This Book,” in the Introduction, you have several choices for exam preparation: the exercises here, the memory tables in Appendix D, the final exam preparation chapter, and the exam simulation questions on the CD-ROM. The following questions present a bigger challenge than the exam itself because they use an open-ended question format. By using this more difficult format, you exercise your memory better and prove your conceptual and factual knowledge of this chapter. You can find the answers to these questions in Appendix A, “Answers to the DIKTA Quizzes and Fill in the Blanks Questions.”

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topics icon in the margin of the page. Table 8-6 lists a reference of these key topics and the page numbers on which each is found.

Table 8-6 Key Topics

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 8-1</td>
<td>High-level overview of how an ACL is processed by a router</td>
<td>188</td>
</tr>
<tr>
<td>List</td>
<td>ACL types</td>
<td>189</td>
</tr>
<tr>
<td>Table 8-2</td>
<td>Protocols and their corresponding number identification for an ACL</td>
<td>190</td>
</tr>
<tr>
<td>List</td>
<td>FPM restrictions</td>
<td>196</td>
</tr>
<tr>
<td>List</td>
<td>FPM class-map types</td>
<td>198</td>
</tr>
<tr>
<td>Table 8-3</td>
<td>Flexible NetFlow components</td>
<td>204</td>
</tr>
<tr>
<td>Table 8-4</td>
<td>NetFlow original/NetFlow IPv4 original input format</td>
<td>205</td>
</tr>
<tr>
<td>Table 8-5</td>
<td>NetFlow IPv4 original output format</td>
<td>205</td>
</tr>
<tr>
<td>List</td>
<td>Flow sampling modes</td>
<td>208</td>
</tr>
<tr>
<td>List</td>
<td>Unicast RPF modes</td>
<td>210</td>
</tr>
</tbody>
</table>

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the CD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix D, “Memory Table Answers,” also on the CD, includes completed tables and lists to check your work.
Define Key Terms

Define the following key terms from this chapter, and check your answers in the Glossary:

access control list (ACL), stateless

Use Command Reference to Check Your Memory

Table 8-7 lists the important commands from this chapter. To test your memory, cover the right side of the table with a piece of paper, read the description on the left side, and then see how much of the command you can remember.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command Syntax</th>
</tr>
</thead>
</table>
| Create a standard access list | `access-list access-list-number {permit | deny | host | source source-wildcard | any | [log]` or `ip access-list standard {access-list-number | access-list-name}`
| | `permit {host | source source-wildcard | any} [log]` |
| Create an extended access list| `access-list access-list-number [dynamic dynamic-name [timeout minutes]] [deny | permit] protocol source source-wildcard destination destination-wildcard [precedence precedence] [tos tos] [log | log-input] [time-range time-range-name]` or `ip access-list extended {access-list-number | access-list-name}`
| | `[sequence-number] [deny | permit] protocol source source-wildcard destination destination-wildcard [option option-value] [precedence precedence] [tos tos] [time-range time-range-name] [log]` |
| Assign an access list to an interface | `ip access-group number {in | out}` |
| Create a reflexive access list| `ip access-list extended {access-list-number | access-list-name}`
<p>| | <code>[sequence-number] [deny | permit] protocol source source-wildcard destination destination-wildcard reflect name</code> and <code>evaluate</code> |</p>
<table>
<thead>
<tr>
<th>Task</th>
<th>Command Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a time-based access list</td>
<td>time-range time-range-name</td>
</tr>
<tr>
<td></td>
<td>periodic days-of-the-week hh:mm to [days-of-the-week] hh:mm</td>
</tr>
<tr>
<td></td>
<td>absolute [start time date] [end time date]</td>
</tr>
<tr>
<td></td>
<td>access-list access-list-number protocol source source-wildcard destination destination-wildcard [time-range time-range-name]</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>ip access-list extended [access-list-number</td>
</tr>
<tr>
<td></td>
<td>[sequence-number] [deny</td>
</tr>
<tr>
<td>Load a specific PHDF file</td>
<td>load protocol location:filename</td>
</tr>
<tr>
<td>Load a specific TCDF file</td>
<td>load classification location:filename</td>
</tr>
<tr>
<td>Create an FPM class map</td>
<td>class-map type [stack</td>
</tr>
<tr>
<td>Match specific traffic to classify within</td>
<td>match field protocol protocol-field [eq</td>
</tr>
<tr>
<td>a class map</td>
<td>match start</td>
</tr>
<tr>
<td>Create an FPM policy map</td>
<td>policy-map type access-control policy-map-name</td>
</tr>
<tr>
<td>Associate a class map with a policy map</td>
<td>class class-name</td>
</tr>
<tr>
<td>Specify a policy map action</td>
<td>drop</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>service-policy policy-map-name</td>
</tr>
<tr>
<td>Assign a policy map to an interface</td>
<td>service-policy type access-control [input</td>
</tr>
<tr>
<td>Create a user-defined NetFlow flow</td>
<td>flow record flow-record-name</td>
</tr>
<tr>
<td>record format</td>
<td>match [ipv4</td>
</tr>
<tr>
<td>Specify NetFlow key fields</td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>Command Syntax</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>Specify NetFlow nonkey fields</td>
<td>`collect [counter</td>
</tr>
<tr>
<td>Configure a NetFlow flow monitor</td>
<td><code>flow monitor flow-monitor-name</code></td>
</tr>
<tr>
<td>Specify a NetFlow record format</td>
<td>`record [flow-record-name</td>
</tr>
<tr>
<td>Configure a NetFlow flow exporter</td>
<td><code>flow exporter flow-exporter-name</code></td>
</tr>
<tr>
<td>Specify a NetFlow flow exporter server</td>
<td>`destination [hostname</td>
</tr>
<tr>
<td>Specify a NetFlow flow exporter server port</td>
<td><code>transport udp port</code></td>
</tr>
<tr>
<td>Configure a NetFlow flow exporter with a flow monitor</td>
<td><code>exporter flow-exporter-name</code></td>
</tr>
<tr>
<td>Configure a NetFlow flow sampler</td>
<td><code>sampler sampler-name</code></td>
</tr>
<tr>
<td>Specify a NetFlow flow sampler mode</td>
<td>`mode [deterministic</td>
</tr>
<tr>
<td>Associate a NetFlow flow monitor with an interface</td>
<td>`ip flow monitor flow-monitor-name [sampler sampler-name] [input</td>
</tr>
<tr>
<td>Enable CEF</td>
<td><code>ip cef [distributed]</code></td>
</tr>
<tr>
<td>Configure Unicast RPF on a specific interface</td>
<td>`ip verify unicast source reachable-via [rx</td>
</tr>
<tr>
<td>Display the contents of all current access lists</td>
<td>`show access-list [access-list-number</td>
</tr>
<tr>
<td>Display the contents of all current IP access lists</td>
<td>`show ip access-list [access-list-number</td>
</tr>
<tr>
<td>Display which specific PHDFs are loaded and which fields are supported</td>
<td><code>show protocols phdf phdf-name</code></td>
</tr>
<tr>
<td>Display the current traffic classes configured and their matching criteria</td>
<td>`show class-map type [stack</td>
</tr>
<tr>
<td>Display the current traffic policies</td>
<td><code>show policy-map type access-control [interface interface]</code></td>
</tr>
<tr>
<td>Display NetFlow flow monitor configuration</td>
<td><code>show flow monitor</code></td>
</tr>
<tr>
<td>Display NetFlow flow monitor interface configuration</td>
<td><code>show flow interface interface</code></td>
</tr>
</tbody>
</table>
Table 8-7 Command Reference

<table>
<thead>
<tr>
<th>Task</th>
<th>Command Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display NetFlow flow exporter configuration</td>
<td>show flow exporter</td>
</tr>
<tr>
<td>Display NetFlow cache</td>
<td>show flow monitor name flow-monitor-name cache format [csv</td>
</tr>
<tr>
<td>Display NetFlow sampler configuration</td>
<td>show sampler</td>
</tr>
<tr>
<td>Display Unicast RPF status</td>
<td>show cef interface interface</td>
</tr>
<tr>
<td>Display global Unicast RPF packet count</td>
<td>show ip traffic</td>
</tr>
<tr>
<td>Display the number of interface Unicast RPF packet drops</td>
<td>show ip interface interface</td>
</tr>
</tbody>
</table>

Fill in the Blanks

1. There is a(n) _____ at the end of each access list.
2. An extended access list can use the number ranges of _____ and _____.
3. The wildcard mask that would be used with a subnet mask of 255.255.255.192 would be _____.
4. When assigning reflexive access lists to an interface, they are typically placed _____ on an interface facing away from the internal network or _____. on an interface facing toward the internal network.
5. Both PHDF and TCDF are formatted using _____.
6. When using FPM, traffic can be classified using _____ files or using the _____.
7. FPM is only able to inspect _____. unicast packets.
8. _____. fields are used by NetFlow to identify specific flows.
9. Unicast RPF can operate in _____. or _____. mode.
10. When configuring Unicast RPF, the first thing that must be configured is _____.
This page intentionally left blank
Index

Numerics

802.1x. See IEEE 802.1x

A

access attacks, 33-35
access mode (switchports), 68
accuracy of IPS sensors, 339-340
ACLs (access control lists), 187-196	dynamic assignments, configuring, 159-165
extended ACLs, 192
management ACLs, 253-254
reflexive ACLs, 193-194
standard ACLs, 189-192
time-based ACLs, 194-196
verifying, 196
adjusting EAPOL timers, 119-120
advanced IEEE 802.1x deployment, planning, 143-144
applications, security weaknesses, 28
applying
FPM traffic policies, 202
traffic policy, 225-226
architecture, SCF, 12-13
ARP spoofing, 67
ASR (attack severity rating), 348
attacks
access attacks, 33-35
control plane
mitigating, 43
routing protocol spoofing, 222
slow-path DoS attacks, 222
data plane attacks, mitigating, 44
DoS attacks, 35
management plane, 248
mitigating, 45
motivations for, 29-31
reconnaissance attacks, 31-33
routed data plane
slow-path DoS attacks, 186
traffic flooding, 187
routed data plane, IP spoofing, 186
switched data plane attacks, 60-67
ARP spoofing, 67
CAM flooding attacks, 61-63
DHCP starvation attacks, 66
IP spoofing, 67
MAC address spoofing, 63
STP spoofing attacks, 63-65
VLAN hopping attacks, 60-61
authentication
guest authentication, configuring
IEEE 802.1x, 119-120
IBNS, 94-96
IEEE 802.1x enhancements, 94-96
IEEE 802.1x

advanced deployment, planning, 143-144

basic deployment, planning, 112-114
deploying on Cisco IOS Software, 112-134

EAP-FAST, 105
EAP-MD5, 102
EAP-TLS, 104
EAP-TTLS, 104-105
LEAP, 103
PEAP, 102-103
troubleshooting, 134-135

periodic reauthentication, configuring on Cisco IOS Software, 118

routing protocols, 232-236

BGP, 236
EIGRP, 233-234
key chains, 232-233
OSPF, 234-236
RIPv2, 234

user and machine authentication, configuring supplicant, 153-158

authenticator (IEEE 802.1x)

Cisco Catalyst switches, configuring fail-open policies, 174-176
Cisco IOS Software, configuring on, 115-121
automatic archiving, 427-428

automatic failover, IPsec VPN technology, 486-488

AutoSecure, configuring, 263-265
availability, 8

B

basic IEEE 802.1x deployment, planning, 112-114
BGP (Border Gateway Protocol), authentication, 236
blueprints (Cisco SAFE), 14-15
BPDU Guard, configuring, 74-75
building blocks of Cisco DMVPN, 452

C

CAM flooding attacks, 61-63
CAs (certificate authorities), 416-417
OCSP, 419
Cisco AnyConnect client, configuring on SSL VPNs, 552-556
Cisco Catalyst switches

802.1x authenticator, configuring fail-open policies, 174-176
Cisco Supporting Management components, 50-52
NFP feature availability, 48-44
Cisco DMVPN, 451-475
building blocks, 452
configuring, 455-456
dynamic routing, configuring, 471-474
failure, mitigating, 490-494
hubs, configuring, 464-468
NHRP, configuring, 461-462
spokes, configuring, 468-471
spoke-to-spoke topology, 453-454
troubleshooting, 474-475
Cisco EZVPN
client, configuring, 580-582
PKI features, configuring, 585-586
planning deployment, 572-574
remote client functionality, configuring on Cisco ISR, 582-584
server, configuring, 575-580
troubleshooting, 587
Cisco IME (IPS Manager Express), monitoring events, 358-363
Cisco IOS Certificate Server, 51
Cisco IOS IPS (Intrusion Prevention System), 336-365
events, monitoring, 358-363
sensors
 accuracy of, 339-340
 ASR, 348
 ERR, 348
 platform, selecting, 340-341
 SFR, 349
 troubleshooting, 363-365
 TVR, 348-349
signature engines, 338-339
signature policies, configuring, 342-346
signatures, 337-340
tuning, 347-353
updating, 355-358
Cisco IOS Software
CLI, configuring views, 252
IEEE 802.1, deploying, 112-134
MAB, configuring, 165-168
PKI client, enrollment, 429-436
privileged EXEC mode, 248
router and PKI integration, configuring, 436-441
user EXEC mode, 248
web authentication, configuring, 168-172
Cisco IOS Software Certificate Server
automatic archiving, 427-428
certificate rollover, 427
configuring, 421-426
troubleshooting, 429
verifying, 421-426
Cisco IPS Manager Express, 52
Cisco ISR (Integrated Services Routers)
Cisco EZVPN remote client functionality, configuring, 582-584
Cisco Supporting Management components, 50-52
NFP feature availability, 49-50
Cisco Learning Network, 593
Cisco SAFE, 9-16
blueprints, 14-15
SCF, 9-12
 architecture, 12-13
 correlation action, 10-11
 device hardening, 11
 enforce action, 11-12
 identify action, 10
 isolate action, 11
 monitor action, 10
 NFP, 14
usage, 15-16
class maps
Layer 3/4 zone-based policy firewall, configuring, 302-304
Layer 7 zone-based policy firewall, configuring, 316
CLI views, configuring, 252
clientless access, configuring on SSL
VPNs, 556-563
commands, debug ip ips auto-update, 365
comparing IDS and IPS, 337
compatibility issues with IEEE 802.1x, resolving, 176-177
components of IEEE 802.1x, 96-97
confidentiality, 8
configuration weakness as network security vulnerability, 26-27
configuring
authentication, web authentication, 168-172
AutoSecure, 263-265
BPDU Guard, 74-75
Cisco DMVPN
dynamic routing, 471-474
hubs, 464-468
spokes, 468-471
Cisco EZVPN
client, 580-582
PKI features, 585-586
server, 575-580
Cisco IOS IPS, signature policies, 342-346
Cisco IOS Software Certificate Server, 421-426
Cisco IOS Software, MAB, 165-168
CPU thresholding, 261
CS ACS, EAP-FAST, 121-126
CSSC, 802.1x supplicant, 128-134
DAI, 77-79
DHCP snooping, 75-77
DVTIs, 403-406
dynamic VLAN/ACL assignments, 159-165
EAP-TLS on IBNS components, 145-153
fail-open policies (IEEE 802.1x), 174-176
GET VPNs, 508-509
group members, 515-520
high availability, 520-524
key servers, 509-515
IEEE 802.1x
on Cisco IOS Software, 115-121
guest authentication, 119-120
multiple hosts support, 172-173
user and machine authentication, 153-158
IP Source Guard, 79-80
Layer 3/4 zone-based policy firewall
PAM, 310-312
parameter maps, 304-306
policy maps, 306-308
zone pairs, 309-310
zones, 308-309
memory thresholding, 262
MPP, 262-263
NAT
dynamic NAT, 283-284
overlapping NAT, 287-289
PAT, 285-287
static NAT, 282-283
NHRP, 461-462
port security, 71-74
privilege levels, 250-251
PVLAN Edge, 82-83
PVLANs, 80-82
Root Guard, 74-75
SNMP, 256-261
SSH, 254-255
SSL VPNs, 541-546
Cisco AnyConnect client, 552-556
client authentication, 546-548
clientless access, 556-563
full tunneling capability, 549-552
static point-to-point VTI tunnels, 398-401
switchports, 67-71
VTI-based site-to-site VPNs
IKE peering, 393-397
input parameters, 392-393
control plane, 43
attacks
routing protocol spoofing, 222
slow-path DoS attacks, 222
security technologies
CoPP, 222-226
CPPr, 226-228
routing protocol authentication, 232-236
CoPP (Control Plane Policing), 222-226
traffic class, defining, 223-224
traffic policy
applying, 225-226
defining, 224-225
correlation action (Cisco SCF), 10-11
CPP (Cisco Configuration Professional), 50, 466
CPPr (Control Plane Protection), 226-228
port filtering, 228-230
queue-thresholding, 230-232
CPU thresholding, configuring, 261
crackers, 29
CRLs (certificate revocation lists), 418-419
cryptographic controls
selecting for remote access VPNs, 537-541
for site-to-site VPNs, selecting, 379-382
CS ACS (Cisco Secure Access Control Server), 50-51
EAP-FAST, configuring, 121-126
MAC address exception policies, configuring, 165-168
CSM (Cisco Security Manager), 50
CS-MARS (Cisco Security Monitoring, Analysis, and Response System), 51-52
CSSC (Cisco Secure Services Client)
802.1x supplicant, configuring, 128-134
machine authentication support, configuring, 157-158
curiosity as motivation for attacks, 30
D
DAI (Dynamic ARP Inspection), configuring, 77-79
data plane, 44.
DDoS (distributed DoS) attacks, 35
debug ip ips auto-update command, 365
Defense-in-Depth, 8
defining
traffic class (CoPP), 223-224
traffic policy, 224-225
deploying IEEE 802.1x on Cisco IOS Software, 112-134
deployment models, NFP, 45-47
device functionality planes, 42-45
data plane, 44
management plane, 45
attacks, 248
security technologies, 248-266
switched data plane, attacks, 60-67
device hardening, 11
DHCP snooping, configuring, 75-77
DHCP starvation attacks, 66
digitally signed software, 265-266
DoS (denial of service) attacks, 35
double tagging, 61
 mitigating, 70-71
DPI (Deep Packet Inspection), 298
DVTIs (dynamic VTIs), configuring, 403-406
dynamic auto mode (switchports), 68
dynamic desirable mode
 (switchports), 68
dynamic NAT, example of, 280-281
dynamic routing, configuring for Cisco DMVPN, 471-474
dynamic VLAN/ACL assignments
 configuring, 159-165
 verifying, 164-165

E

EAP (Extensible Authentication Protocol), 97-98
 message exchange, 99-100
EAP-FAST (EAP-Flexible Authentication via Secure Tunneling), 105
 configuring on CS ACS, 121-126
EAP-MD5 (EAP-Message Digest Algorithm 5), 102
 EAP-FAST authentication, 105
EAPOL (EAP over LAN), 98-99
 timers, adjusting, 119-120
EAP-TLS (EAP-Transport Layer Security), 104
 IBNS components, configuring, 145-153
EAP-TTLS (EAP-Tunnel Transport Layer Security), 104-105
EIGRP, authentication, 233-234
 elements of network security, 7
 enclosed CD, exam engine installation, 592-593
 enforce action (Cisco SCF), 11-12
 enrollment process, Cisco PKI client, 429-436
 enterprise networks, NFP deployment model, 45-46
ERR (event risk rating), 348
ESP (Encapsulating Security Payload), 378
 events (Cisco IOS IPS), monitoring, 358-363
exam, preparing for, 591-594
extended ACLs, 192

fail-open policies, configuring on Cisco Catalyst switch authenticators, 174-176
failed authentication policy (IEEE 802.1x), configuring, 119-120
failover modes, IPsec VPN technology, 484-485
firewalls, ZBPFW, 298-300
 Layer 3/4 zone-based policy firewall, configuring, 301-312
 Layer 7 zone-based policy firewall, configuring, 312-322
 zone pairs, 299-300
Flexible NetFlow, 203-209
 verifying, 209
FPM (Flexible Packet Matching), 196-203
 PHDF, 197
 traffic class, defining, 197-200
 traffic policy
 applying, 202
 defining, 200-202
 verifying, 203
GET VPNs (Cisco Group Encrypted Transport VPNs), 502-507
- group members, configuring, 515-520
- high availability, configuring, 520-524
- key management architecture, 505
- key servers, configuring, 509-515
- packet security services, 504-505
- rekeying methods, 505-507
- traffic encapsulation, 507
- traffic exchange, 504

GRE (Generic Routing and Encapsulation)
- configuring for hub-and-spoke networks, 459-460
- features, 456-457
- group members, configuring on GET VPNs, 515-520

guest authentication (IEEE 802.1x), configuring, 119-120

IBNS (Cisco Identity-Based Networking Service), 94-96
- EAP-TLS with 802.1x, configuring, 145-153
- IEEE 802.1x enhancements, 94-96
- web authentication, configuring, 168-172

identify action (Cisco SCF), 10

IDS (intrusion detection systems), 336

IEEE 802.1x, 94-105
- authentication
 - EAP-MD5, 102
 - EAP-TLS, 104
 - EAP-TTLS, 104-105
 - LEAP, 103
 - PEAP, 102-103
- authenticator, configuring on Cisco IOS Software, 115-121
- compatibility issues, resolving, 176-177
- components, 96-97
- deploying on Cisco IOS Software, 112-134
- EAP-TLS, configuring IBNS components, 145-153
- enhancements, 94-96
- internetworking, 97-101
 - EAP, 97-100
 - EAPOL, 98-99
- port authentication host modes, 101
- port states, 100-101
- multiple hosts support, configuring, 172-173
- supplicant
 - CSSC configuration, 128-134
 - user and machine authentication, configuring, 153-158
troubleshooting, 134-135
verifying functionality, 121
web authentication, configuring, 168-172
IKE (Internet Key Exchange), 377
 peering
 configuring for VTI-based site-to-site VPNs, 393-397
 troubleshooting, 397-398
PKI, configuring Cisco IOS router integration, 436-441
 policies, verifying, 396
ineffective security policies as network security vulnerability, 25-26
input parameters
 for PKI-enabled IPsec site-to-site VPNs, 421
 for VTI-based site-to-site VPNs, selecting, 392-393
inside global addresses, 279
inside interfaces (NAT), 279
inside local addresses, 279
installing exam engine, 592-593
integrity, 8
interfaces
 NAT, 279
 periodic authentication, configuring, 118
internetworking, 8
IP phones, resolving non-802.1x compatibility issues, 177
IP Source Guard, configuring, 79-80
IP spoofing, 67, 186
IPsec VPN technology, 376-378
 automatic failover using routing protocols, 486-488
 ESP, 378
 failover modes, 484-485
GRE
 configuring for hub-and-spoke networks, 459-460
 features, 456-457
IKE, 377
 phases, 377
 SAs, 377
 VTIs, 390-392
IPv4, NAT, 278-289
 isolate action (Cisco SCF), 11
J-K
 key chains, 232-233
 key management architecture, GET VPNs, 505
 key servers, configuring on GET VPNs, 509-515
L
 lack of understanding as motivation for attacks, 30
 LAN topology, selecting for site-to-site VPNs, 372-373
Layer 3/4 zone-based policy firewall
 class maps, configuring, 302-304
 PAM, configuring, 310-312
 parameter maps, configuring, 304-306
 policy maps, configuring, 306-308
 zone pairs, configuring, 309-310
 zones, configuring, 308-309
Layer 7 zone-based policy firewall, configuring, 312-322
class maps, 316
HTTP inspection, 318-322
parameter maps, 313-315
policy maps, 316-318
URL Filter, 313
LEAP (Cisco Lightweight EAP), 103
lifecycle model (Cisco SAFE), 15-16
limitations of NAT, 278

M
MAB (MAC Authentication Bypass), configuring, 165-168
MAC address spoofing, 63
machine authentication, configuring supplicant, 153-158
magic packets, 176
management ACLs, 253-254
management plane, 45
attacks, 248
security technologies, 248-266
 AutoSecure, 263-265
 CPU thresholding, 261
digitally signed software, 265-266
management ACLs, 253-254
memory thresholding, 262
MPP, 262-263
password management, 249-250
privileges, 250-251
RBAC, 251-253
SNMP, 256-261
SSH, 254-255
memory thresholding, configuring, 262
message exchange (EAP), 99-100
mGRE, NHRP integration, 461-462
misconfigured devices as network security vulnerability, 26-27
mitigating security threats
 control plane attacks, 43
data plane attacks, 44
double tagging, 70-71
management plane attacks, 45
monitor action (Cisco SCF), 10
monitoring Cisco IOS IPS events, 358-363
motivations of intruders, 29-31
MPP (Management Plane Protection), configuring, 262-263
multiple hosts support (IEEE 802.1x), configuring, 172-173

N
NAT (Network Address Translation), 278-289
dynamic NAT
 configuring, 283-284
 example, 280-281
interfaces, 279
limitations of, 278
overlapping NAT, configuring, 287-289
PAT
 configuring, 285-287
 example, 281-282
static NAT
 configuring, 282-283
 example, 280
network security
 Defense-in-Depth, 8
 elements of, 7
 threats to, 29
vulnerabilities, 24-29
 configuration weaknesses, 26-27
 ineffective security policies, 25-26
 self-imposed, 24-25
 technology weaknesses, 27-28
NFP (Network Foundation Protection), 14
deployment models, 45-47
feature availability
 for Catalyst switches, 48-49
 for Cisco ISRs, 49-50
NHRP (Next Hop Routing Protocol)
 configuring, 461-462
troubleshooting, 463-464
non-802.1x IP phones, resolving compatibility issues, 177

O

OCSP (Online Certificate Status Protocol), 419
operating systems
 as network security vulnerability, 27
 Windows OS machine authentication support, configuring, 156-157
OSPF (Open Shortest Path First),
 authentication, 234-236
outside global addresses, 279
outside interfaces (NAT), 279
outside local addresses, 279
overlapping NAT, configuring, 287-289

P

PAC (Protected Access Credentials), 121
packets
 DPI, 298
 EAP, 97-98
 EAPOL, 98-99
 FPM, 196-203
 PHDF, 197
 traffic class, defining, 197-200
 traffic policy, defining, 200-202
 verifying, 203
 magic packets, 176
PAM (Port to Application Mapping),
 configuring Layer 3/4 zone-based policy firewall, 310-312
 parameter maps, configuring Layer 7 zone-based policy firewall, 313-315
password management, 249-250
PAT (overloaded NAT)
 configuring, 285-287
 example of, 281-282
PEAP (Protected EAP), 102-103
periodic reauthentication, configuring on Cisco IOS Software, 118
PGP (Pretty Good Privacy), 414
phases of IPsec VPN technology, 377
PHDF (Protocol Header Description File), 197
phreakers, 29
PKI (public key infrastructure), 414-421
 CAs, 416-417
 Cisco IOS router integration, configuring, 436-441
 Cisco PKI client, enrollment process, 429-436
 configuring on Cisco EZVPN, 585-586
 CRLs, 418-419
 OCSP, 419
 trusted introducing, 414-416
 X.509 identity certificate, 417-418
planning
Cisco EZVPN deployment, 572-574
IEEE 802.1x deployment
 advanced deployment, 143-144
 basic deployment, 112-114
point-to-multipoint GRE tunnels, 457
point-to-point GRE tunnels, 457
policy maps
 Layer 3/4 zone-based policy firewall, configuring, 306-308
 Layer 7 zone-based policy firewall, configuring, 316-318
port authentication host modes
 (IEEE 802.1x), 101
port filtering, 228-230
port security, configuring, 71-74
PortFast, 74-75
ports (switches), configuring, 67-71
preparing for exam, 591-594
pride as motivation for attacks, 30
privileged EXEC mode, 248
privileges, 250-251
profit as motivation for attacks, 31
protocols, security weaknesses of, 27-28
PVLAN Edge, configuring, 82-83
PVLANs (private VLANs), configuring, 80-82
PXE (Preboot Execution Environment), resolving 802.1x compatibility issues, 177

Q-R

queue-thresholding, 230-232

RADIUS, configuring on Cisco IOS Software, 116-117
RBAC (Role-Based Access Control), 251-253
reconnaissance attacks, 31-33
redundancy, configuring on GET VPNs, 520-524
reflexive ACLs, 193-194
rekeying methods, GET VPNs, 505-507
remote access VPNs
 cryptographic controls, selecting, 537-541
 selecting, 533-536
SSL VPNs
 Cisco AnyConnect client, configuring, 552-556
 client authentication, configuring, 546-548
 clientless access, configuring, 556-563
 configuring, 541-546
 full tunneling capability, configuring, 549-552
 troubleshooting, 563-564
resolving IEEE 802.1x compatibility issues, 176-177
revenge as motivation for attacks, 30-31
RIPv2, authentication, 234
Root Guard, configuring, 74-75
routed data plane
 attacks
 IP spoofing, 186
 slow-path DoS attacks, 186
 traffic flooding, 187
 security technologies
 ACLs, 187-196
 Flexible NetFlow, 203-209
 FPM, 196-203
 Unicast RPF, 209-211
 routing protocol spoofing, 222
routing protocols
 authentication
 BGP, 236
 EIGRP, 233-234
key chains, 232-233
OSPF, 234-236
RIPv2, 234
IPsec VPN automatic failover, 486-488

S
SAs (security associations), 377
SCF (Cisco Security Control Framework), 9-12
architecture, 12-13
correlation action, 10-11
device hardening, 11
enforce action, 11-12
identify action, 10
isolate action, 11
monitor action, 10
NFP, 14
script kiddies, 29
SDEE (Security Device Event Exchange), Cisco IOS IPS event monitoring, 358-363
security technologies
control plane
CoPP, 222-226
CPPr, 226-228
routing protocol authentication, 232-236
management plane, 248-266
AutoSecure, 263-265
CPU thresholding, 261
digitally signed software, 265-266
management ACLs, 253-254
memory thresholding, 262
MPP, 262-263
password management, 249-250
privileges, 250-251
RBAC, 251-253
SNMP, 256-261
SSH, 254-255
routed data plane
ACLs, 187-196
Flexible NetFlow, 203-209
FPM, 196-203
Unicast RPF, 209-211
switched data plane
BPDU Guard, 74-75
DAI, 77-79
DHCP snooping, 75-77
IP Source Guard, 79-80
port configuration, 67-71
port security, 71-74
PortFast, 74-75
PVLAN Edge, 82-83
PVLANs, 80-82
Root Guard, 74-75
security zones (ZBPFW), 298-299
selecting
cryptographic controls, 379-382
LAN topology for site-to-site VPNs, 372-373
remote access VPNs, 533-536
cryptographic controls, 537-541
sensor platform, 340-341
WAN topology for site-to-site VPNs, 373-375
self-imposed vulnerabilities, 24-25
sensors
accuracy of, 339-340
ASR (attack severity rating), 348
ERR, 348
platform, selecting, 340-341
SFR (Signature Fidelity Rating), 349
troubleshooting, 363-365
TVR (Target Value Rating), 348-349
service provider deployment model (NFP), 47
SFR (Signature Fidelity Rating), 349
signature engines, 338-339
signature policies, verifying, 346-347
signature-based network IPS, 337-340
signatures
 policies, configuring on Cisco IOS IPS, 342-346
tuning on Cisco IOS IPS, 347-353
 updating, 355-358
site-to-site VPNs. See also IPsec VPN technology
cryptographic controls, selecting, 379-382
LAN topology, selecting, 372-373
PKI, 414-421
 CAs, 416-417
 CRLs, 418-419
 OCSP, 419
 trusted introducing, 414-416
 X.509 identity certificate, 417-418
WAN topology, selecting, 373-375
slow-path DoS attacks, 186, 222
SMB (small and medium businesses), NFP deployment model, 46-47
SNMP, configuring, 256-261
spoke-to-spoke topology (Cisco DMVPN), 453-454
spokes, configuring on Cisco DMVPN, 468-471
SSH (Secure Shell), configuring, 254-255
SSL VPNs
 Cisco AnyConnect client, configuring, 552-556
 client authentication, configuring, 546-548
 clientless access, configuring, 556-563
 configuring, 541-546
full tunneling capability, configuring, 549-552
troubleshooting, 563-564
standard ACLs, 189-192
static NAT
 configuring, 282-283
 example of, 280
static point-to-point VTI tunnels
 configuring, 398-401
 troubleshooting, 402
 verifying, 401
STP (Spanning Tree Protocol), spoofing attacks, 63-65
structured threats, 29
supplicant
 nonresponsive, troubleshooting, 135
 user and machine authentication
 deploying, 153-158
switch spoofing, 60-61
switched data plane
 attacks, 60-67
 ARP spoofing, 67
 CAM flooding attacks, 61-63
 DHCP starvation attacks, 66
 IP spoofing, 67
 MAC address spoofing, 63
 STP spoofing attacks, 63-65
 VLAN hopping attacks, 60-61
security technologies
 BPDU Guard, 74-75
 DAI, 77-79
 DHCP snooping, 75-77
 IP Source Guard, 79-80
 port configuration, 67-71
 port security, 71-74
 PortFast, 74-75
 PVLAN Edge, 82-83
 PVLANs, 80-82
 Root Guard, 74-75
technology weaknesses as network security vulnerability, 27-28
threats to network security, 29
time-based ACLs, 194-196
timers
 EAPOL, adjusting, 119-120
 PAT, configuring, 286-287
traffic class, defining, 197-200
traffic exchange, GET VPNs, 504
traffic flooding, 187
traffic policies, defining,
 200-202, 224-225
transform sets, 398
transparent firewall support (ZBPFW), 300
Trojan horses, 35
troubleshooting
 Cisco DMVPN, 474-475
 Cisco EZVPN, 587
 Cisco IOS IPS sensors, 363-365
 Cisco IOS Software Certificate Server, 429
 IEEE 802.1x, 121, 134-135
 IKE peering, 397-398
 NHRP, 463-464
 SSL VPNs, 563-564
 static point-to-point VTI tunnels, 402
trunk mode (switchports), 68
tuning Cisco IOS IPS signatures, 347-353
TVR (Target Value Rating), 348-349

Unicast RPF, 209-211
unresponsive supplicants, troubleshooting, 135
unstructured threats, 29
updating signatures, 355-358
usage, Cisco SAFE, 15-16
user EXEC mode, 248
verifying
 ACLs, 196
 Cisco IOS IPS signature policies, 346-347
 Cisco IOS Software Certificate Server, 421-426
dynamic VLAN/ACL assignments, 164-165
Flexible NetFlow, 209
FPM, 203
IEEE 802.1x functionality, 121, 134-135
IKE policies, 396
static point-to-point VTI tunnels, 401
Unicast RPF, 211
web authentication, 172
views, configuring, 252
viruses, 34
VLAN hopping attacks, 60-61
mitigating, 70-71
VLANs, dynamic assignments
 configuring, 159-165
 verifying, 164-165
VPNs
Cisco DMVPN, 451-475
 building blocks, 452
 configuring, 455-456
 dynamic routing, configuring, 471-474
 failure, mitigating, 490-494
 hubs, configuring, 464-468
 NHRP, configuring, 461-462
 spokes, configuring, 468-471
 spoke-to-spoke topology, 453-454
 troubleshooting, 474-475
Cisco EZVPN
 client, configuring, 580-582
 deployment, planning, 572-574
 PKI features, configuring, 585-586
 server, configuring, 575-580
 troubleshooting, 587
GET VPNs, 502-507
 group members, configuring, 515-520
 high availability, configuring, 520-524
 key management architecture, 505
 key servers, configuring, 509-515
 packet security services, 504-505
 rekeying methods, 505-507
 traffic encapsulation, 507
 traffic exchange, 504
remote access VPNs
 cryptographic controls, selecting, 537-541
 selecting, 533-536
 SSL VPNs, configuring, 541-564
site-to-site
 cryptographic controls, selecting, 379-382
 LAN topology, selecting, 372-373
 PKI, 414-421
 VTI-based site-to-site VPNs, 390-398
 WAN topology, selecting, 373-375
VTI-based site-to-site VPNs
 failure, mitigating, 488-489
 IKE peering
 configuring, 393-397
 troubleshooting, 397-398
 input parameters, 392-393
 VTIs, 390-392
VTIs
Cisco EZVPN, configuring server, 575-580
 DVTIs, configuring, 403-406
 static VPN tunnels
 configuring, 398-401
 troubleshooting, 402
 verifying, 401
vulnerabilities to network security, 24-29
 configuration weakness, 26-27
 ineffective security policies, 25-26
 self-imposed, 24-25
 technology weaknesses, 27-28

W
WAN topology, selecting for site-to-site VPNs, 373-375
web authentication
 configuring, 168-171
 verifying, 172
Windows OS, machine authentication support, 156-157
WOL (Wake-on-LAN), 176
worms, 34
X-Y-Z

X.509 identity certificates, 417-418

ZBPFW (Zone-Based Policy Firewall), 298-300
Layer 3/4 zone-based policy firewall, configuring, 301-312
 class maps, 302-304
 PAM, 310-312
 parameter maps, 304-306
 policy maps, 306-308
 zone pairs, 309-310
zones, 308-309
Layer 7 zone-based policy firewall, configuring, 312-322
 class maps, 316
 HTTP inspection, 318-322
 parameter maps, 313-315
 policy maps, 316-318
transparent firewall support, 300
zone pairs, 299-300
zones, 298-299

zone pairs, 299-300
 configuring Layer 3/4 zone-based policy firewall, 309-310
zones, 298-299