Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members of the professional technical community.

Reader feedback is a natural continuation of this process. If you have any comments on how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please be sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Corporate and Government Sales

Cisco Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales 1-800-382-3419 corpsales@pearsoneducation.com

For sales outside of the U.S., please contact:

International Sales 1-317-581-3793 international@pearsoneducation.com

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc. cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Publisher: Paul Boger
Manager, Global Certification: Erik Ullanderson
Associate Publisher: David Dusthimer
Business Operation Manager, Cisco Press: Anand Sundaram
Executive Editor: Brett Bartow
Technical Editors: David Morgan and Farai Tafa
Managing Editor: Sandra Schroeder
Copy Editor: Keith Cline
Development Editor: Andrew Cupp
Book Designer: Gary Adair
Senior Project Editor: Tonya Simpson
Publishing Coordinator: Vanessa Evans
Cover Designer: Sandra Schroeder
Indexer: Cheryl Lensen
Composition: Mark Shirar

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-9898
USA
www.cisco.com
Tel: 408 526-4000
Fax: 408 527-0600

Asia Pacific Headquarters
Cisco Systems, Inc.
188 Robinson Road
#7/401 Capital Tower
Singapore 068913
www.cisco.com
Tel: +65 6317 7777
Fax: +65 6317 7799

Europe Headquarters
Cisco Systems International BV
Haarlemmerweg 13-19
1181 CH Amsterdam
The Netherlands
www.europe.cisco.com
Tel: +31 2 800 020 0731
Fax: +31 2 381 7100
About the Authors

Anthony Bruno, CCIE No. 2738, is a senior principal consultant with BT with more than 20 years of experience in the internetworking field. Previously, he worked for International Network Services, Lucent Technologies, and as a captain in the U.S. Air Force. His other network certifications include CCDP, CCVP, CCSP, Cisco Data Center Network Infrastructure Specialist, Cisco Security Solutions & Design Specialist, JNCIS-ER, Project+, ITILv3 Foundation, and CWNA. He has consulted for many enterprise and service provider customers in the design, implementation, and optimization of large-scale data and IP telephony networks. Anthony leads architecture and design teams in building next-generation networks for his customers. He completed his Master of Science in Electrical Engineering at the University of Missouri–Rolla in 1994 and his Bachelor of Science in Electrical Engineering at the University of Puerto Rico–Mayaguez in 1990. He is also a part-time instructor for the University of Phoenix–Online, teaching networking courses.

Steve Jordan, CCIE No. 11293, is a senior consultant with Extropy with more than 15 years of experience in the internetworking field. Previously, he worked for General Datatelch in Houston, Texas. His other certifications include VMware VCP4 and Cisco DC specializations in Network Infrastructure, Storage, and Unified Computing Design. He specializes in data center architecture involving network, storage, compute, and virtualization technologies. He has extensive experience with large-scale data center environments and has designed and implemented network solutions in the financial, energy, retail, manufacturing, and telecommunications industries.

Steve was also the coauthor for the previous edition of the CCDA Exam Certification Guide, Third Edition.
About the Technical Reviewers

David Morgan is a senior technical consultant, technical trainer, and UC Practice Lead for General Datatech, a Cisco Gold Partner in Dallas, Texas. He has designed, deployed, and supported hundreds of communications systems, with enterprise implementations supporting as many as 120,000+ phones and 2000+ remote sites. He has more than 12 years of general networking experience. He also has experience supporting LAN, WAN, security, and voice technologies and Microsoft server technology, and IBM AS/400 systems. David lives in Arlington, Texas with his wife, Trisha, and two sons.

Farai Tafa, CCIE No. 14811, is a senior consultant with British Telecom with ten years of experience in the internetworking field. He holds CCIE certifications in the Routing and Switching and Service Provider tracks. His other certifications include the CCVP, JNCIA, JNCIS, and ITILv3 Foundation certifications. Prior to British Telecom, Farai had the privilege of working for industry powerhouses such as Google, Inc. and Cisco Systems, Inc. Farai has ten years of experience in the design, implementation, and support of enterprise and service provider routing and switching solutions, and Enterprise Cisco IP Telephony and Unified Wireless solutions.
Dedications

This book is dedicated to my wife, Yvonne Bruno, Ph.D., and to our daughters, Joanne and Dianne. Thanks for all of your support during the development of this book. Joanne, hopefully this book will help me pay for your computer engineering classes at Texas A&M!

—Anthony Bruno

This book is dedicated to my wife of 17 years, Dorin, and my three sons, Blake, Lance, and Miles, for their support during the development of this book. For Blake, Lance, and Miles, we can now play many more games! I also want to dedicate this book to both of my grandmothers, Frances Cross and Anna C. Smith, who recently passed. I miss you both very much!

—Steve Jordan

Acknowledgments

This book would not have been possible without the efforts of many dedicated people. Thanks to Andrew Cupp, development editor, for his guidance and special attention to detail. Thanks to Tonya Simpson, senior project editor, for her accuracy. Thanks to Brett Bartow, executive editor, for his vision. Thanks to all other Cisco Press team members who worked behind the scenes to make this a better book.

A special thanks my coauthor, Steve Jordan, for contributing five chapters. And a special thanks to the technical reviewers, David Morgan and Farai Tafa. Their technical advice and careful attention to detail made this book accurate.

—Anthony Bruno

This book would not be possible without all the great people who have assisted me. I would first like to thank Anthony Bruno for inviting me to assist him in this endeavor once more. Thanks to Brett Bartow, executive editor, for his guidance and support during the book development. Thanks again to Andrew Cupp, development editor, for supporting my schedule delays and keeping me on track.

Special thanks goes to the technical reviewers of this book, David Morgan and Farai Tafa, who provided wisdom and helped with keeping the book accurate.

Finally, thanks to all the managers and marketing people at Cisco Press who make all these books possible.

—Steve Jordan
Contents at a Glance

Introduction
xxx

Part I General Network Design
3

- **Chapter 1** Network Design Methodology
5
- **Chapter 2** Network Structure Models
37

Part II LAN and WAN Design
77

- **Chapter 3** Enterprise LAN Design
79
- **Chapter 4** Data Center Design
121
- **Chapter 5** Wireless LAN Design
153
- **Chapter 6** WAN Technologies
199
- **Chapter 7** WAN Design
227

Part III The Internet Protocol and Routing Protocols
263

- **Chapter 8** Internet Protocol Version 4
265
- **Chapter 9** Internet Protocol Version 6
305
- **Chapter 10** Routing Protocol Characteristics, RIP, and EIGRP
345
- **Chapter 11** OSPF, BGP, Route Manipulation, and IP Multicast
387

Part IV Security, Convergence, Network Management
443

- **Chapter 12** Managing Security
445
- **Chapter 13** Security Solutions
481
- **Chapter 14** Voice and Video Design
515
- **Chapter 15** Network Management Protocols
575

Part V Comprehensive Scenarios and Final Prep
597

- **Chapter 16** Comprehensive Scenarios
599
- **Chapter 17** Final Preparation
613
Part VI Appendixes 621

Appendix A Answers to the “Do I Know This Already?” Quizzes and Q&A Questions 623

Appendix B CCDA Exam Updates: Version 1.0 657

Appendix C OSI Model, TCP/IP Architecture, and Numeric Conversion 661

Glossary 677

Index 690

Elements Available on the CD

Appendix D Memory Tables

Appendix E Memory Tables Answer Key
Contents

Introduction xxxi

Part I General Network Design 3

Chapter 1 Network Design Methodology 5

“Do I Know This Already?” Quiz 5

Foundation Topics 8

Cisco Architectures for the Enterprise 8

Borderless Networks Architecture 9

Collaboration Architecture 9

Data Center/Virtualization Architecture 10

Prepare, Plan, Design, Implement, Operate, and Optimize Phases 11

Prepare Phase 13

Plan Phase 14

Design Phase 14

Implement Phase 14

Operate Phase 14

Optimize Phase 14

Summary of PPDIOO Phases 14

Design Methodology Under PPDIOO 15

Identifying Customer Design Requirements 15

Characterizing the Existing Network 17

Steps in Gathering Information 17

Network Audit Tools 18

Network Analysis Tools 22

Network Checklist 22

Designing the Network Topology and Solutions 23

Top-Down Approach 23

Pilot and Prototype Tests 24

Design Document 25

References and Recommended Reading 26

Exam Preparation Tasks 27

Review All Key Topics 27

Complete Tables and Lists from Memory 27

Define Key Terms 27

Q&A 28
Chapter 2 Network Structure Models 37

“Do I Know This Already?” Quiz 37

Foundation Topics 40
Hierarchical Network Models 40
 Benefits of the Hierarchical Model 40
 Hierarchical Network Design 41
 Core Layer 41
 Distribution Layer 42
 Access Layer 43
Hierarchical Model Examples 45
Cisco Enterprise Architecture Model 47
 Enterprise Campus Module 48
 Enterprise Edge Area 50
 E-Commerce Module 50
 Internet Connectivity Module 51
 VPN/Remote Access 52
 Enterprise WAN 53
Service Provider Edge Module 54
Remote Modules 55
 Enterprise Branch Module 56
 Enterprise Data Center Module 56
 Enterprise Teleworker Module 56
Borderless Network Services 58
High Availability Network Services 58
 Workstation-to-Router Redundancy and LAN
 High Availability Protocols 59
 ARP 59
 Explicit Configuration 59
 RDP 59
 RIP 59
 HSRP 60
 VRRP 61
 GLBP 61
Server Redundancy 61
Route Redundancy 62
Load Balancing 62
Increasing Availability 62
Link Media Redundancy 64
References and Recommended Reading 65
Exam Preparation Tasks 66
 Review All Key Topics 66
 Complete Tables and Lists from Memory 66
 Define Key Terms 66
 Q&A 66

Part II LAN and WAN Design 77

Chapter 3 Enterprise LAN Design 79
 “Do I Know This Already?” Quiz 79
Foundation Topics 82
 LAN Media 82
 Ethernet Design Rules 83
 100-Mbps Fast Ethernet Design Rules 84
 Gigabit Ethernet Design Rules 86
 1000BASE-LX Long-Wavelength Gigabit Ethernet 86
 1000BASE-SX Short-Wavelength Gigabit Ethernet 87
 1000BASE-CX Gigabit Ethernet over Coaxial Cable 87
 1000BASE-T Gigabit Ethernet over UTP 87
 10 Gigabit Ethernet Design Rules 88
 10GE Media Types 88
 EtherChannel 89
 Comparison of Campus Media 89
 LAN Hardware 89
 Repeaters 90
 Hubs 90
 Bridges 91
 Switches 91
 Routers 92
 Layer 3 Switches 93
 Campus LAN Design and Best Practices 94
 Best Practices for Hierarchical Layers 95
 Access Layer Best Practices 96
 Distribution Layer Best Practices 96
 Core Layer Best Practices 98
 Large-Building LANs 101
 Enterprise Campus LANs 102
 Edge Distribution 103
Medium-Size LANs 103
Small and Remote Site LANs 103
Server Farm Module 104
Server Connectivity Options 105
Enterprise Data Center Infrastructure 105
Campus LAN QoS Considerations 106
Multicast Traffic Considerations 108
CGMP 108
IGMP Snooping 109
References and Recommended Readings 109
Exam Preparation Tasks 110
Review All Key Topics 110
Complete Tables and Lists from Memory 110
Define Key Terms 110
Q&A 110

Chapter 4 Data Center Design 121
“Do I Know This Already?” Quiz 121
Foundation Topics 124
Enterprise DC Architectures 124
Data Center 3.0 Components 125
Data Center 3.0 Topology Components 127
Challenges in the DC 127
Data Center Facility Aspects 128
Data Center Space 130
Data Center Power 131
Data Center Cooling 132
Data Center Heat 133
Data Center Cabling 133
Enterprise DC Infrastructure 135
Defining the DC Access Layer 136
Defining the DC Aggregation Layer 138
Defining the DC Core Layer 139
Virtualization Overview 141
Challenges 141
Defining Virtualization and Benefits 141
Types of Virtualization 142
Virtualization Technologies 143
 VSS 143
 VRF 143
 vPC 143
 Device Contexts 144
 Server Virtualization 144
Network Virtualization Design Considerations 144
 Access Control 145
 Path Isolation 145
 Services Edge 145
References and Recommended Readings 145
Exam Preparation Tasks 147
 Review All Key Topics 147
 Complete Tables and Lists from Memory 148
 Define Key Terms 148
 Q&A 148

Chapter 5 Wireless LAN Design 153
“Do I Know This Already?” Quiz 153
Foundation Topics 155
Wireless LAN Technologies 155
 WLAN Standards 155
 ISM and UNII Frequencies 156
 Summary of WLAN Standards 157
 Service Set Identifier 157
 WLAN Layer 2 Access Method 157
 WLAN Security 157
 Unauthorized Access 158
 WLAN Security Design Approach 158
 IEEE 802.1X-2001 Port-Based Authentication 159
 Dynamic WEP Keys and LEAP 159
 Controlling WLAN Access to Servers 159
Cisco Unified Wireless Network 160
 Cisco UWN Architecture 160
 LWAPP 162
 CAPWAP 163
 Cisco Unified Wireless Network Split-MAC Architecture 163
Chapter 6 WAN Technologies 199

“Do I Know This Already?” Quiz 199

Foundation Topics 202
WAN Overview 202
 WAN Defined 202
 WAN Connection Modules 203
WAN Transport Technologies 204
 ISDN 205
 ISDN BRI Service 205
 ISDN PRI Service 205
 Digital Subscriber Line 206
 Cable 206
 Wireless 207
 Frame Relay 208
 Time-Division Multiplexing 209
 Metro Ethernet 209
 SONET/SDH 209
 Multiprotocol Label Switching 211
 Dark Fiber 211
 Dense Wavelength-Division Multiplexing 212
 Ordering WAN Technology and Contracts 212
WAN Design Methodology 213
 Response Time 214
 Throughput 214
 Reliability 215
 Bandwidth Considerations 215
 WAN Link Categories 216
 Optimizing Bandwidth Using QoS 217
 Queuing, Traffic Shaping, and Policing 217
 Classification 218
 Congestion Management 218
 Priority Queuing 218
 Custom Queuing 218
 Weighted Fair Queuing 218
 Class-Based Weighted Fair Queuing 218
 Low-Latency Queuing 219
 Traffic Shaping and Policing 219
Chapter 7 **WAN Design** 227

“Do I Know This Already?” Quiz 227

Foundation Topics 230

Traditional WAN Technologies 230
- Hub-and-Spoke Topology 230
- Full-Mesh Topology 231
- Partial-Mesh Topology 231

Remote-Access Network Design 232

VPN Network Design 232

Enterprise VPN vs. Service Provider VPN 233

Enterprise VPNs 234

Service Provider Offerings 234

Enterprise Managed VPN: IPsec 234

IPsec Direct Encapsulation 234

Cisco Easy VPN 235

Generic Routing Encapsulation 236

IPsec DMVPN 236

IPsec Virtual Tunnel Interface Design 237

Layer 2 Tunneling Protocol Version 3 237

Service Provider Managed Offerings 237

Metro Ethernet 237

Virtual Private LAN Services 238

MPLS 238

MPLS Layer 3 Design Overview 239

VPN Benefits 239

WAN Backup Design 240

Load-Balancing Guidelines 240

WAN Backup over the Internet 241
Chapter 9 **Internet Protocol Version 6** 305

“Do I Know This Already?” Quiz 305

Foundation Topics 308
Introduction to IPv6 308
IPv6 Header 309
IPv6 Address Representation 311
 IPv4-Compatible IPv6 Addresses 312
 IPv6 Prefix Representation 312
IPv6 Address Scope Types and Address Allocations 313
 IPv6 Address Allocations 313
 IPv6 Unicast Address 314
Global Unicast Addresses 314
Link-Local Addresses 315
Unique Local IPv6 Address 315
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Aggregatable IPv6 Address</td>
<td>316</td>
</tr>
<tr>
<td>IPv4-Compatible IPv6 Address</td>
<td>316</td>
</tr>
<tr>
<td>IPv6 Anycast Addresses</td>
<td>316</td>
</tr>
<tr>
<td>IPv6 Multicast Addresses</td>
<td>317</td>
</tr>
<tr>
<td>IPv6 Mechanisms</td>
<td>320</td>
</tr>
<tr>
<td>ICMPv6</td>
<td>320</td>
</tr>
<tr>
<td>IPv6 Neighbor Discovery Protocol</td>
<td>320</td>
</tr>
<tr>
<td>IPv6 Name Resolution</td>
<td>321</td>
</tr>
<tr>
<td>Path MTU Discovery</td>
<td>322</td>
</tr>
<tr>
<td>IPv6 Address-Assignment Strategies</td>
<td>322</td>
</tr>
<tr>
<td>Link-Local Address (Stateless Autoconfiguration)</td>
<td>322</td>
</tr>
<tr>
<td>Autoconfiguration of Globally Unique IP address</td>
<td>323</td>
</tr>
<tr>
<td>DHCPv6</td>
<td>324</td>
</tr>
<tr>
<td>IPv6 Security</td>
<td>324</td>
</tr>
<tr>
<td>IPv6 Routing Protocols</td>
<td>325</td>
</tr>
<tr>
<td>RIPng</td>
<td>325</td>
</tr>
<tr>
<td>EIGRP for IPv6</td>
<td>325</td>
</tr>
<tr>
<td>OSPFv3</td>
<td>325</td>
</tr>
<tr>
<td>IS-IS for IPv6</td>
<td>325</td>
</tr>
<tr>
<td>BGP4 Multiprotocol Extensions (MP-BGP) for IPv6</td>
<td>326</td>
</tr>
<tr>
<td>IPv4 to IPv6 Transition Mechanisms and Deployment Models</td>
<td>326</td>
</tr>
<tr>
<td>Dual-Stack Mechanism</td>
<td>326</td>
</tr>
<tr>
<td>IPv6 over IPv4 Tunnels</td>
<td>326</td>
</tr>
<tr>
<td>Protocol Translation Mechanisms</td>
<td>328</td>
</tr>
<tr>
<td>IPv6 Deployment Models</td>
<td>329</td>
</tr>
<tr>
<td>Dual-Stack Model</td>
<td>329</td>
</tr>
<tr>
<td>Hybrid Model</td>
<td>330</td>
</tr>
<tr>
<td>Service Block Model</td>
<td>330</td>
</tr>
<tr>
<td>IPv6 Deployment Model Comparison</td>
<td>332</td>
</tr>
<tr>
<td>IPv6 Comparison with IPv4</td>
<td>333</td>
</tr>
<tr>
<td>References and Recommended Readings</td>
<td>334</td>
</tr>
<tr>
<td>Exam Preparation Tasks</td>
<td>336</td>
</tr>
<tr>
<td>Review All Key Topics</td>
<td>336</td>
</tr>
<tr>
<td>Complete Tables and Lists from Memory</td>
<td>337</td>
</tr>
<tr>
<td>Define Key Terms</td>
<td>337</td>
</tr>
<tr>
<td>Q&A</td>
<td>337</td>
</tr>
</tbody>
</table>
Chapter 10 Routing Protocol Characteristics, RIP, and EIGRP 345

“Do I Know This Already?” Quiz 345

Foundation Topics 348
Routing Protocol Characteristics 348
 Static Versus Dynamic Route Assignment 348
 Interior Versus Exterior Routing Protocols 350
Distance-Vector Routing Protocols 351
 EIGRP 351
Link-State Routing Protocols 352
 Distance-Vector Routing Protocols Versus Link-State Protocols 352
Hierarchical Versus Flat Routing Protocols 353
Classless Versus Classful Routing Protocols 353
 IPv4 Versus IPv6 Routing Protocols 354
Administrative Distance 355
Routing Protocol Metrics and Loop Prevention 356
 Hop Count 356
 Bandwidth 357
 Cost 358
 Load 358
 Delay 359
 Reliability 359
Maximum Transmission Unit 360
 Routing Loop-Prevention Schemes 360
 Split Horizon 360
 Poison Reverse 361
 Counting to Infinity 361
Triggered Updates 361
 Summarization 361
RIPv2 and RIPng 362
 Authentication 362
 MD5 Authentication 362
RIPv2 Routing Database 362
RIPv2 Message Format 363
RIPv2 Timers 364
RIPv2 Design 364
RIPv2 Summary 364
RIPng 365
Chapter 14 Voice and Video Design 515

“Do I Know This Already?” Quiz 515

Foundation Topics 518

Traditional Voice Architectures 518
 PBX and PSTN Switches 518
 Local Loop and Trunks 519
 Ports 520
 Major Analog and Digital Signaling Types 521
 Loop-Start Signaling 522
 Ground-Start Signaling 522
 E&M Signaling 523
 CAS and CCS Signaling 524
 PSTN Numbering Plan 526
 Other PSTN Services 527
 Centrex Services 528
 Voice Mail 528
 Database Services 528
 IVR 528
 ACD 528
 Voice Engineering Terminology 528
 Grade of Service 528
 Erlangs 528
 Centum Call Second 529
 Busy Hour 529
 Busy-Hour Traffic 529
 Blocking Probability 530
 Call Detail Records 530

Converged Multiservice Networks 530
 VoIP 531
 IPT Components 532
 Design Goals of IP Telephony 534
 IPT Deployment Models 535
 Single-Site Deployment 535
 Multisite WAN with Centralized Call Processing Model 536
 Multisite WAN with Distributed Call Processing Model 536
 Unified CallManager Express Deployments 537
 Video Deployment Considerations 537
 Codecs 539
Activating Other Exams 615
Premium Edition 615
The Cisco Learning Network 615
Memory Tables 615
Chapter-Ending Review Tools 616
Suggested Plan for Final Review/Study 616
Subnetting Practice 616
Using the Exam Engine 617
Summary 618

Part VI Appendixes 621

Appendix A Answers to the “Do I Know This Already?” Quizzes and Q&A Questions 623

Appendix B CCDA Exam Updates: Version 1.0 657

Appendix C OSI Model, TCP/IP Architecture, and Numeric Conversion 661

Glossary 677
Index 690

Elements Available on the CD

Appendix D Memory Tables

Appendix E Memory Tables Answer Key
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Bold** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), bold indicates commands that are manually input by the user (such as a `show` command).
- Italic indicates arguments for which you supply actual values.
- Vertical bars (`|`) separate alternative, mutually exclusive elements.
- Square brackets (`[]`) indicate an optional element.
- Braces (`{ }`) indicate a required choice.
- Braces within brackets (`{{ }}`) indicate a required choice within an optional element.
Introduction

So, you have worked on Cisco devices for a while, designing networks for your customers, and now you want to get certified? There are several good reasons to do so. The Cisco certification program allows network analysts and engineers to demonstrate their competence in different areas and levels of networking. The prestige and respect that come with a Cisco certification will definitely help you in your career. Your clients, peers, and superiors will recognize you as an expert in networking.

Cisco Certified Design Associate (CCDA) is the associate-level certification that represents knowledge of the design of Cisco internetwork infrastructure. The CCDA demonstrates skills required to design routed and switched networks, LANs, and WANs. The CCDA also has knowledge of campus designs, data centers, network security, IP telephony, and wireless LANs.

Although it is not required, Cisco suggests taking the DESGN 2.1 course before you take the CCDA exam. For more information about the various levels of certification, career tracks, and Cisco exams, go to the Cisco Certifications page at www.cisco.com/web/learning/le3/learning_career_certifications_and_learning_paths_home.html.

Our goal with this book is to help you pass the 640-864 CCDA exam. This is done by assessment on and coverage of all the exam topics published by Cisco. Reviewing tables and practicing test questions will help you practice your knowledge on all subject areas.

About the 640-864 CCDA Exam

The CCDA exam measures your ability to design networks that meet certain requirements for performance, security, capacity, and scalability. The exam focuses on small- to medium-sized networks. The candidate should have at least one year of experience in the design of small- to medium-sized networks using Cisco products. A CCDA candidate should understand internetworking technologies, including, Cisco's enterprise network architecture, IPv4 subnets, IPv6 addressing and protocols, routing, switching, WAN technologies, LAN protocols, security, IP telephony, and network management. The new exam adds topics such as borderless networks, data centers design, and updates on IPv6, voice and video design, wireless LANs, WAN technologies, and security.

The test to obtain CCDA certification is called Designing for Cisco Internetwork Solutions (DESGN) Exam #640-864. It is a computer-based test that has 65 questions and a 90-minute time limit. Because all exam information is managed by Cisco Systems and is therefore subject to change, candidates should continually monitor the Cisco Systems site for course and exam updates at www.cisco.com/web/learning/le3/learning_career_certifications_and_learning_paths_home.html.

You can take the exam at Pearson VUE testing centers. You can register with VUE at www.vue.com/cisco/. The CCDA certification is valid for three years. To recertify, you can pass a current CCDA test, pass a CCIE exam, or pass any 642 or Cisco Specialist exam.
640-864 CCDA Exam Topics

Table I-1 lists the topics of the 640-864 CCDA exam and indicates the part in the book where they are covered.

Table I-1 640-864 CCDA Exam Topics

<table>
<thead>
<tr>
<th>Exam Topic</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe the Methodology Used to Design a Network</td>
<td></td>
</tr>
<tr>
<td>Describe developing business trends</td>
<td>I</td>
</tr>
<tr>
<td>Identify network requirements to support the organization</td>
<td>I</td>
</tr>
<tr>
<td>Describe the tools/process to characterize an existing network</td>
<td>I</td>
</tr>
<tr>
<td>Describe the top down approach to network design</td>
<td>I</td>
</tr>
<tr>
<td>Describe network management protocols and features</td>
<td>IV</td>
</tr>
<tr>
<td>Describe Network Structure and Modularity</td>
<td></td>
</tr>
<tr>
<td>Describe the network hierarchy</td>
<td>I</td>
</tr>
<tr>
<td>Describe the modular approach in network design</td>
<td>I</td>
</tr>
<tr>
<td>Describe network architecture for the enterprise</td>
<td>II</td>
</tr>
<tr>
<td>Design Basic Enterprise Campus Networks</td>
<td></td>
</tr>
<tr>
<td>Describe Campus Design considerations</td>
<td>II</td>
</tr>
<tr>
<td>Design the enterprise campus network</td>
<td>II</td>
</tr>
<tr>
<td>Design the enterprise data center</td>
<td>II</td>
</tr>
<tr>
<td>Describe enterprise network virtualization tools</td>
<td>II</td>
</tr>
<tr>
<td>Design Enterprise Edge and Remote Network Modules</td>
<td></td>
</tr>
<tr>
<td>Describe the enterprise edge, branch, and teleworker design characteristics</td>
<td>II</td>
</tr>
<tr>
<td>Describe physical and logical WAN connectivity</td>
<td>II</td>
</tr>
<tr>
<td>Design the branch office WAN solutions</td>
<td>II</td>
</tr>
<tr>
<td>Describe access network solutions for a remote worker</td>
<td>II</td>
</tr>
<tr>
<td>Design the WAN to support selected redundancy methodologies</td>
<td>II</td>
</tr>
<tr>
<td>Identify design considerations for a remote data center</td>
<td>II</td>
</tr>
<tr>
<td>Design IP Addressing and Routing Protocols</td>
<td></td>
</tr>
<tr>
<td>Describe IPv4 addressing</td>
<td>III</td>
</tr>
<tr>
<td>Describe IPv6 addressing</td>
<td>III</td>
</tr>
<tr>
<td>Identify Routing Protocol Considerations in an Enterprise Network</td>
<td>III</td>
</tr>
<tr>
<td>Design a routing protocol deployment</td>
<td>III</td>
</tr>
</tbody>
</table>
About the CCDA 640-864 Official Cert Guide

This book maps to the topic areas of the 640-864 CCDA exam and uses a number of features to help you understand the topics and prepare for the exam.

Objectives and Methods

This book uses several key methodologies to help you discover the exam topics on which you need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. So, this book does not try to help you pass the exams only by memorization, but by truly learning and understanding the topics. This book is designed to help you pass the CCDA exam by using the following methods:

■ Helping you discover which exam topics you have not mastered
■ Providing explanations and information to fill in your knowledge gaps
■ Supplying exercises that enhance your ability to recall and deduce the answers to test questions
■ Providing practice exercises on the topics and the testing process via test questions on the CD

Book Features

To help you customize your study time using this book, the core chapters have several features that help you make the best use of your time:

■ “Do I Know This Already?” quiz: Each chapter begins with a quiz that helps you determine how much time you need to spend studying that chapter.
■ Foundation Topics: These are the core sections of each chapter. They explain the concepts for the topics in that chapter.
Exam Preparation Tasks: After the “Foundation Topics” section of each chapter, the “Exam Preparation Tasks” section lists a series of study activities that you should do at the end of the chapter. Each chapter includes the activities that make the most sense for studying the topics in that chapter:

- Review All the Key Topics: The Key Topic icon appears next to the most important items in the “Foundation Topics” section of the chapter. The Review All the Key Topics activity lists the key topics from the chapter, along with their page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic, so you should review these.

- Complete the Tables and Lists from Memory: To help you memorize some lists of facts, many of the more important lists and tables from the chapter are included in a document on the CD. This document lists only partial information, allowing you to complete the table or list.

- Define Key Terms: Although the exam may be unlikely to ask a question such as “Define this term,” the CCDA exams do require that you learn and know a lot of networking terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the glossary at the end of the book.

- CD-based practice exam: The companion CD contains the Pearson Cert Practice Test engine that allows you to take practice exam questions. Use these to prepare with a sample exam and to pinpoint topics where you need more study.

How This Book Is Organized

This book contains 16 core chapters—Chapters 1 through 16. Chapter 17 includes some preparation tips and suggestions for how to approach the exam. Each core chapter covers a subset of the topics on the CCDA exam. The core chapters are organized into parts. They cover the following topics:

Part I: General Network Design

- Chapter 1: Network Design Methodology covers Cisco architectures for the enterprise network, the Prepare, Plan, Design, Implement, Operate, and Optimize (PPDIOO) methodology, and the process of completing a network design.

- Chapter 2: Network Structure Models covers hierarchical network models, the Cisco Enterprise Architecture model, and high-availability network services.

Part II: LAN and WAN Design

- Chapter 3: Enterprise LAN Design covers LAN media, campus LAN design and models, and best practices for campus networks.

- Chapter 4: Data Center Design covers enterprise data center design fundamentals, technology trends, data center challenges, and virtualization technologies.
Chapter 5: Wireless LAN Design covers technologies and design options used for wireless LANs.

Chapter 6: WAN Technologies examines technologies, design methodologies, and requirements for the enterprise WANs.

Chapter 7: WAN Design covers WAN design for the Enterprise WAN and enterprise branch, including remote-access and virtual private network (VPN) architectures.

Part III: The Internet Protocol and Routing Protocols

Chapter 8: Internet Protocol Version 4 covers the header, addressing, subnet design, and protocols used by IPv4.

Chapter 9: Internet Protocol Version 6 covers the header, addressing, design, and protocols used by IPv6.

Part IV: Security, Convergence, Network Management

Chapter 12: Managing Security examines security management, security policy, threats, risks, security compliance, and trust and identity management.

Chapter 13: Security Solutions covers Cisco SAFE architecture, security technologies, and design options for securing the enterprise.

Chapter 14: Voice and Video Design reviews traditional voice architectures, integrated multiservice networks, Cisco's IPT architecture, video deployment considerations, and IPT design.

Part V: Comprehensive Scenarios and Final Prep

Chapter 16: Comprehensive Scenarios provides network case studies for further comprehensive study.

Chapter 17: Final Preparation identifies tools for final exam preparation and helps you develop an effective study plan. It contains tips on how to best use the CD material to study.

Part VI: Appendixes

Appendix A: Answers to “Do I Know This Already?” Quizzes and Q&A Questions includes the answers to all the questions from Chapters 1 through 15.
Appendix B: CCDA Exam Updates: Version 1.0 provides instructions for finding updates to the exam and this book when and if they occur.

Appendix C: OSI Model, TCP/IP Architecture, and Numeric Conversion reviews the Open Systems Interconnection (OSI) reference model to give you a better understanding of internetworking. It reviews the TCP/IP architecture and also reviews the techniques to convert between decimal, binary, and hexadecimal numbers. Although there might not be a specific question on the exam about converting a binary number to decimal, you need to know how to do so to do problems on the test.

Appendix D: Memory Tables (a CD-only appendix) contains the key tables and lists from each chapter, with some of the contents removed. You can print this appendix and, as a memory exercise, complete the tables and lists. The goal is to help you memorize facts that can be useful on the exams. This appendix is available in PDF format on the CD; it is not in the printed book.

Appendix E: Memory Tables Answer Key (a CD-only appendix) contains the answer key for the memory tables in Appendix D. This appendix is available in PDF format on the CD; it is not in the printed book.
This page intentionally left blank
CCDA exam topics covered in this part:

- Describe developing business trends
- Identify network requirements to support the organization
- Describe the tools/process to characterize an existing network
- Describe the top-down approach to network design
- Describe the network hierarchy
- Describe the modular approach in network design
- Describe network architecture for the enterprise
This chapter covers the following subjects:

- Enterprise DC Architectures
- Challenges in the DC
- Enterprise DC Infrastructure
- Virtualization Overview
- Virtualization Technologies
- Network Virtualization Design Considerations
This chapter covers enterprise data center design fundamentals, technology trends, and challenges facing the data center. General data center architecture, components, and design considerations are examined, but detailed data center design is not covered.

This chapter also provides an overview of virtualization, discusses the various virtualization technologies and network virtualization design considerations.

The CCDA candidate can expect plenty of questions related to data center fundamentals, challenges, architecture, and virtualization.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” helps you identify your strengths and deficiencies in this chapter’s topics.

The ten-question quiz, derived from the major sections in the “Foundation Topics” portion of the chapter, helps you determine how to spend your limited study time.

Table 4-1 outlines the major topics discussed in this chapter and the “Do I Know This Already?” quiz questions that correspond to those topics.

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions Covered in This Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise DC Overview</td>
<td>1, 2</td>
</tr>
<tr>
<td>Challenges in the DC</td>
<td>3, 4</td>
</tr>
<tr>
<td>Enterprise DC Infrastructure</td>
<td>5, 6</td>
</tr>
<tr>
<td>Virtualization Overview</td>
<td>7</td>
</tr>
<tr>
<td>Virtualization Technologies</td>
<td>8, 9</td>
</tr>
<tr>
<td>Network Virtualization Design Considerations</td>
<td>10</td>
</tr>
</tbody>
</table>
1. What are two methods for implementing unified fabric in the data center over 10Gigabit Ethernet?
 a. VSS
 b. FCoE
 c. iSCSI
 d. vPC

2. What best describes the characteristics of Data Center 3.0 architecture?
 a. Mainframes
 b. Consolidation/virtualization/automation
 c. Distributed client/server computing
 d. Decentralized computing

3. Which of the following data center facility aspects best corresponds with architectural and mechanical specifications?
 a. Space, load, and power capacity
 b. PCI, SOX, and HIPPA
 c. Operating temperature and humidity
 d. Site access, fire suppression, and security alarms

4. Which of the following uses the highest percentage of power within the overall data center power budget?
 a. Lighting
 b. Servers and storage
 c. Network devices
 d. Data center cooling

5. Which data center architecture layer provides Layer 2/Layer 3 physical port density for servers in the data center?
 a. Data center core
 b. Data center aggregation
 c. Data center access
 d. Data center distribution
6. Layer 4 security and application services including server load balancing, Secure Sockets Layer (SSL) offloading, firewalling, and intrusion prevention system (IPS) services are provided by the data center _________ layer?
 a. Access
 b. Routed
 c. Core
 d. Aggregation

7. Virtualization technologies allow a _________ device to share its resources by acting as multiple versions of itself?
 a. Software
 b. Virtual
 c. Logical
 d. Physical

8. Which of the following are examples of logical isolation techniques in which network segments share the same physical infrastructure? (Select all that apply.)
 a. VRF
 b. VLAN
 c. VSAN
 d. VSS

9. Which of the following are examples of technologies that employ device virtualization or the use of contexts? (Select all that apply.)
 a. VRF
 b. ASA
 c. VLAN
 d. ACE

10. What involves the creation of independent logical network paths over a shared network infrastructure?
 a. Access control
 b. Services edge
 c. Path isolation
 d. Device context
Foundation Topics

This chapter covers general enterprise data center considerations that you need to master for the CCDA exam. It starts with a discussion of the enterprise data center architecture and how we have evolved from Data Center 1.0 to Data Center 3.0. The section “Data Center 3.0 Components” covers the virtualization technologies and services that unify network, storage, compute, and virtualization platforms. The section “Data Center 3.0 Topology Components” shows how the virtualization technologies integrate with unified computing and the unified fabric.

The “Challenges in the Data Center” section describes the common server deployment challenges present in the data center. Major facility aspect issues involving rack space, power, cooling, and management are covered. Data center cabling is examined along with the data center cable considerations critical to the proper cable plant management.

Following that, the “Enterprise Data Center Infrastructure” section explores the Cisco multilayer architecture that is used for building out enterprise data centers to support blades servers, 1RU (rack unit) servers, and mainframes. Design aspects of the multilayer architecture involving data center access layer, aggregation layer, and core layer design considerations are also covered.

The chapter wraps up with several sections on virtualization. An overview of virtualization is covered along with key drivers that are pushing the adoption of virtualization in the data center. The section “Virtualization Technologies” compares the two main types of virtualization and provides several examples. Then the section “Network Virtualization Design Considerations” covers access control, path isolation, and services edge.

Enterprise DC Architectures

Over the past two decades, we have seen an evolution of data center “architectures”. With Data Center 1.0, data centers were centralized, using mainframes to process and store data. The users of Data Center 1.0 used terminals to access and perform their work on the mainframes. Mainframes are still prevalent in many data centers because of the overall benefits in terms of availability, resiliency, and service level agreements (SLA).

Figure 4-1 illustrates the evolution of data center architectures from Data Center 1.0 to Data Center 3.0.

Data Center 2.0 brought client/server and distributed computing into the mainstream data center. Business applications were installed on servers and were accessed by users with client software on their PCs. Application services were distributed because of high cost of WAN links and application performance. Also, the costs of mainframes were too costly to be used as an alternative for client/server computing.

Currently, we are moving away from Data Center 2.0 and toward Data Center 3.0, where consolidation and virtualization are the key components. The cost of communication equipment is lowering, and there is an increase in computing capacities, which is driving consolidation. Data Center 3.0 centralizes the computing infrastructure and is more cost effective when compared to the distributed approach. The newer architecture takes
advantage of virtualization, which results in a higher utilization of computing and network resources. In addition, the newer Data Center 3.0 architecture increases the overall return on investment (ROI) and lowers the total cost of ownership (TCO).

<table>
<thead>
<tr>
<th>Data Center 1.0</th>
<th>Data Center 2.0</th>
<th>Data Center 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainframe</td>
<td>Client-Server and Distributed Computing</td>
<td>Service-Oriented and Web 2.0-Based</td>
</tr>
</tbody>
</table>

The architectural components of Data Center 3.0 include virtualization technologies and services that unify network, storage, compute, and virtualization platforms. These technologies and network services enable incredible flexibility, visibility, and policy

Figure 4-1 *Cisco Data Center Architecture Evolution*

Data Center 3.0 Components

Figure 4-2 highlights the Cisco Data Center 3.0 components.

![Cisco Data Center 3.0 Architecture Framework](image)

Figure 4-2 *Cisco Data Center 3.0 Architecture Framework*
enforcement, which are critical for virtualized data centers. Here are the three main components of Cisco Data Center 3.0 architecture:

- **Virtualization**
 - Virtual local-area network (VLAN), virtual storage-area network (VSAN), and virtual device contexts (VDC) help to segment the LAN, SAN, and network devices instances.
 - Cisco Nexus 1000V virtual switch for VMware ESX and ESXi help to deliver visibility and policy control for virtual machines (VM).
 - Flexible networking options with support for all server form factors and vendors, including support for blade servers from Cisco, Dell, IBM, and HP with integrated Ethernet and Fibre Channel switches.

- **Unified fabric**
 - Fibre Channel over Ethernet (FCoE) and Internet Small Computer Systems Interface (iSCSI) are two methods for implementing unified fabric in the data center over 10 Gigabit Ethernet networks.
 - FCoE is supported on VMware ESX/ESXi vSphere 4.0 and later.
 - The Cisco Catalyst, Cisco Nexus, and Cisco MDS family of switches all support iSCSI. The Cisco Nexus 5000 support unified fabric lossless operation, which improves the performance of iSCSI traffic using 10 Gigabit Ethernet.
 - The Cisco Nexus family of switches was designed to support unified fabric. Currently, the Cisco Nexus 5000 and the Nexus 4000 supports data center bridging (DCB) and FCoE. However, there are future plans for the Cisco Nexus 7000 series and the Cisco MDS family of switches to support FCoE, as well.
 - Converged network adapters (CNA) run at 10GE and support FCoE. CNAs are available from both Emulex and QLogic. Additionally, a software stack is available for certain 10GE network interfaces from Intel.

- **Unified computing**
 - Cisco Unified Computing System (UCS) is an innovative next-generation data center platform that converges computing, network, storage, and virtualization together into one system.
 - Integrates lossless 10GE unified network fabric with x86 architecture-based servers.
 - Allows for Cisco Virtual Interface Card to virtualize your network interfaces on your server.
 - Offers Cisco VN-Link virtualization.
 - Supports Extended Memory Technology patented by Cisco.
 - Increases productivity with just-in-time provisioning using service profiles.
Data Center 3.0 Topology Components

Figure 4-3 shows the Cisco Data Center 3.0 topology.

At the top layer, we have virtual machines which are software entities that have hardware level abstraction capable of running a guest OS on top of a resource scheduler also known as a hypervisor.

Within the unified computing resources, the service profile defines the identity of the server. The identity contains many items such as memory, CPU, network cards, storage information, and boot image.

10 Gigabit Ethernet, FCoE, and Fibre Channel technologies provide the unified fabric and is supported on the Cisco Nexus 5000. FCoE is one of the key technologies that allow native Fibre Channel frames to be used on 10G Ethernet networks.

Virtualization technologies such as VLANs and VSANs provide for virtualized LAN and SAN connectivity by logically segmenting multiple LANs and SANs on the same physical equipment. Each VLAN and VSAN operates independently from one another.

At the lowest layer, we have virtualized hardware where storage devices can be virtualized into storage pools and network devices are virtualized using virtual device contexts (VDC).

Challenges in the DC

In the data center, server deployments are of great concern along with facilities and network equipment. Here are some of the challenges that must be dealt with when deploying servers:

- Power required
- Physical rack space usage
Limits to scale

Management (resources, firmware)

Server security

Virtualization support

Management effort required

Server growth is consistently rising which is requiring more power, which is driving the need for energy efficiency for most data center server deployments. Although rack servers are low cost and provide high performance, unfortunately they take up space and consume a lot of energy to operate. Because both rack space and power cost money, efficiency gains need to be considered in these areas.

Blade servers provide similar computing power when compared to rack mount servers, but require less space, power, and cabling. The chassis in most blade servers allows for shared power, Ethernet LAN, and Fibre Channel SAN connections, which reduce the number of cables needed.

With both rack-mounted servers and blade servers, server virtualization software provides for better utilization of hardware resources, which requires less physical hardware to deploy servers, which in turn increases efficiency. Server virtualization also enables server scalability because more rack and cabinet space is available to deploy new ESX hosts running additional virtual machines.

Server management is a key element for deploying servers, and there are solutions available from OEMs such as Integrated Lights Out (ILO) and VMware Infrastructure Client. These products ease the management of larger server deployments and provide for secure remote management capabilities.

Data Center Facility Aspects

Multiple facility considerations go into the design and planning for a new data center build out.

During the planning sessions, data center architectural and mechanical specifications help define the following:

- How much space will be available
- How much load the floor can support
- The power and cooling capacity that will be available
- The cabling plant that will be needed and how to manage it

The facility also needs to meet certain environmental conditions, and the data center equipment selections process dictates the operating temperatures and humidity levels that need to be maintained in the data center.
Another important consideration is physical security. Because the data center usually stores data that needs to be secured from third parties, access to the site needs to be well controlled. In addition, fire suppression and alarm systems should be in place to protect equipment and data from natural disasters and theft.

Because the data center facilities are limited in capacity, they need to be designed properly to allow for the best use of employee space for today and into the future.

Most companies must now adhere to regulatory compliance, including environmental requirements, and provide disaster recovery in some form to enable business continuity. Data centers need to provide an infrastructure that can recover network communications, data, and applications and provide high availability.

To build a reliable data center that maximizes the investment, the design needs to be considered early in the building development process. It is important to include team members in several area of expertise, including telecommunications, power, architectural, and heating, ventilating, and air conditioning (HVAC). Each team member needs to work together to ensure that the designed systems interoperate most effectively. The design of the data center needs to incorporate current requirements and support future growth.

Careful planning and close attention to design guidelines is crucial for the data center build out to be successful. Missing critical aspects of the design can cause the data center to be vulnerable to early obsolescence, which can impact data center availability and lead to a loss of revenue or increased cost to remediate.

Table 4-2 describes a number of data center facility considerations.

Table 4-2 Summary of Data Center Facility Considerations

<table>
<thead>
<tr>
<th>Data Center Facility Considerations</th>
<th>Description</th>
</tr>
</thead>
</table>
| Architectural and mechanical specifications | Space available
Load capacity
Power and cooling capacity
Cabling infrastructure |
| Environmental conditions | Operating temperature
Humidity level |
| Physical security | Access to the site
Fire suppression
Security Alarms |
| Capacity limits | Space for employees |
| Compliance and regulation | Payment Card Industry (PCI), Sarbanes-Oxley (SOX), and Health Insurance Portability and Accountability Act (HIPAA) |
Data Center Space

The space that the data center occupies makes up the physical footprint and helps answer many questions, including how to size the overall data center, where to position servers, how to make it flexible for future growth, and how to protect the valuable equipment inside.

The data center space element defines the number of racks for servers and telecommunications equipment that can be installed. The floor loading is affected by the rack weight after the racks are populated with equipment. Careful planning is needed to ensure that the floor loading is sufficient for current and future needs of the data center.

Selecting the proper size of the data center has a great influence on the cost, longevity, and flexibility of the data center. Although estimating the size of the data center is challenging, it is also critically important that it be done correctly.

Several factors need to be considered, including the following:

- The number of employees who will be supporting the data center
- The number of servers and the amount of storage gear and networking equipment that will be needed
- The space needed for non-infrastructure areas:
 - Shipping and receiving
 - Server and network staging
 - Storage rooms, break rooms, and bath rooms
 - Employee office space

Keep in mind that if the data center is undersized it will not sufficiently satisfy compute, storage, and network requirements and will negatively impact productivity and cause additional costs for expansion. On the flip side, a data center that is too spacious is a waste of capital and recurring operational expenses.

Right-size data center facilities consider the placement of infrastructure and equipment; and if properly planned, the data center can grow and support the organization into the future without costly upgrades or relocations.

Here are some other rack and cabinet space considerations to keep in mind:

- Weight of the rack and equipment
- Heat expelled from equipment
- Amount and type of power needed
 - Automatic transfer switch for equipment that has single power supplies
 - Uninterruptible power supplies (UPS)
 - Redundant power distribution units (PDU)
- Loading, which determines what and how many devices can be installed
Data Center Power

The power in the data center facility is used to power cooling devices, servers, storage equipment, the network, and some lighting equipment. Cooling down the data center requires the most power, next to servers and storage.

Because many variables make up actual power usage, determining power requirements for equipment in the data center can prove difficult. In server environments, the power usage depends on the computing load placed on the server. For example, if the server needs to work harder by processing more data, it has to draw more AC power from the power supply, which in turn creates more heat that needs to be cooled down.

The desired reliability drives the power requirements, which may include multiple power feeds from the power utility, UPS, redundant power circuits, and diesel generators. Depending on the options chosen, various levels of power redundancy can affect both capital and recurring operating expenses. Determining the right amount of power redundancy to meet the requirements takes careful planning to ensure success.

Estimating the power capacity needed involves collecting the requirements for all the current equipment, including the future requirements of the equipment for the data center. The complete power requirements must encompass the UPS, generators, HVAC, lighting, and all the network, server, and storage equipment.

Figure 4-4 shows an example of data center power usage.

![Data Center Power Usage Example](image)

The designed power system should include electrical components such as PDUs, circuit breaker panels, electrical conduits, and wiring necessary to support the desired amount of physical redundancy. The power system also needs to provide protection for utility power failures, power surges, and other electrical problems by addressing the power redundancy requirements in the design.

Here are some key points related to data center power:

- Defines the overall power capacity.
- Provides physical electrical infrastructure and addresses redundancy.
Power is consumed by the following:

- Cooling
- Servers
- Storage
- Network
- Conversion and lighting

Data Center Cooling

Devices in the data center produce variable amounts of heat depending on the device load. Heat overtime decreases the reliability of the data center devices. Cooling is used to control the temperature and humidity of the devices, and it is applied to zones, racks, or individual devices.

Environmental conditions need to be considered and measured by using probes to measure temperature changes, hot spots, and relative humidity.

A major issue with high-density computing is overheating. There are more hot spots, and therefore more heat overall is produced. The increase in heat and humidity threatens equipment life spans. Computing power and memory requirements demand more power and thus generate more heat output. Space-saving servers increase the server density possible in a rack, but keep in mind that density = heat. It might not be a big deal for one chassis at 3 kilowatt (kW), but with five or six servers per rack, the heat output increases to 20 kW. In addition, humidity levels can affect static electricity in the data center. So, it is recommended that relative humidity level be in the range of 40 percent to 55 percent. High levels of static electricity can cause damage to data center equipment.

Proper airflow is required to reduce the amount of heat generated by the high-density equipment. Sufficient cooling equipment must be available to produce acceptable temperatures within the data center. The cabinets and racks should be arranged in the data center with an alternating pattern of “cold” and “hot” aisles. The cold aisle should have equipment arranged face to face, and the hot aisle should have equipment arranged back to back. In the cold aisle, there should be perforated floor tiles drawing cold air from the floor into the face of the equipment. This cold air passes through the equipment and flushes out the back into the hot aisle. The hot aisle does not have any perforated tiles, and this design prevents the hot air from mixing with the cold air.

Figure 4-5 illustrates the alternating pattern of cold and hot aisles along with airflow.

For equipment that does not exhaust heat to the rear, here are some other cooling techniques:

- Block unnecessary air escapes to increase airflow.
- Increase the height of the raised floor.
- Spread out equipment into unused racks.
- Use open racks rather than cabinets where security is not a concern.
Use cabinets with mesh fronts and backs.

Custom perforated tiles with larger openings.

Data Center Heat

Blade server deployments allow for more efficient use of space for servers, which is good, but there is also an increased amount of heat per server, which requires more cooling to maintain consistent temperatures.

The data center design must address the increased use of high density servers and the heat that they produce. During the data center design, considerations for cooling need to be taken into account for the proper sizing of the servers and the anticipated growth of the servers along with their corresponding heat output.

Here are some cooling solutions to address the increasing heat production:

- Increase the number of HVAC units.
- Increase the airflow through the devices.
- Increase the space between the racks and rows.
- Use alternative cooling technologies, such as water-cooled racks.

Data Center Cabling

The cabling in the data center is known as the passive infrastructure. Data center teams rely on a structured and well-organized cabling plant. Although the active electronics are crucial for keeping server, storage, and network devices up and running, the physical cabling infrastructure is what ties everything together. The cabling in the data center terminates connections between devices and governs how each device communicates with one another.

Cabling has several key characteristics, such as the physical connector, media type, and cable length. Copper and fiber-optic cables are commonly used today. Fiber-optic cabling allows for longer distances and is less prone to interference than copper cabling. The
two main types of optical fiber are single-mode and multi-mode. Copper cabling is widely available, costs less, and generally covers shorter distances (up to 100 meters, about 328 feet). Typical copper cabling found in the data center is CAT 5e/CAT 6 with RJ-45 connectors.

Keep in mind that the emerging 10GBASE-T standard requires CAT6A twisted-pair cabling to support distances up to 100 meters.

It is important for cabling to be easy to maintain, abundant and capable of supporting various media types and requirements for proper data center operations.

Cable management and simplicity is affected by the following:

- Media selection
- Number of connections
- Type of cable termination organizers
- Space for cables on horizontal and vertical cable trays

These considerations must be addressed during the data center facility design (for the server, storage, network, and all the associated technologies that are going to be implemented).

Figure 4-6 shows an example of cabling that is out of control.

![Image of poorly managed cabling](image)

Figure 4-6 Data Center Cabling the Wrong Way

Figure 4-7 shows the proper way to manage copper cabling.

The cabling infrastructure needs to avoid the following pitfalls:

- Inadequate cooling due to restricted airflow
- Outages due to accidental disconnect
- Unplanned dependencies resulting in more downtime
- Difficult troubleshooting options
For example, using under-floor cabling techniques, especially with a high number of power and data cables can restrict proper airflow. Another disadvantage with this approach is that cable changes require you to lift floor tiles, which changes the airflow and creates cooling inefficiencies.

One solution is a cable management system above the rack for server connectivity. Cables should be located in the front or rear of the rack to simplify cable connections. In most service provider environments, cabling is located in the front of the rack.

Enterprise DC Infrastructure

Today’s enterprise data center design follows the Cisco multilayer architecture, which includes DC core, DC aggregation, and DC access layers. This multitier model is the most common model used in the enterprise and it supports blade servers, single rack unit (1RU) servers, and mainframes.

Figure 4-8 provides a high-level overview of an enterprise data center infrastructure.

At the edge of the data center infrastructure is the access layer. The data center access layer needs to provide physical port density and both Layer 2 and Layer 3 services for flexible server connectivity options.

The data center aggregation layer ties the DC core and DC access layers together, which provides hierarchy for security and server farm services. Security services such as access control lists (ACL), firewalls, and intrusion prevention systems (IPS) should be implemented in the data center aggregation layer. In addition, server farm services such as content switching, caching, and Secure Sockets Layer (SSL) offloading should be deployed in the data center aggregation. Both the data center aggregation and core layers are commonly implemented in pairs for redundancy, to avoid single points of failure.
Defining the DC Access Layer

The data center access layer’s main purpose is to provide Layer 2 and Layer 3 physical port density for various servers in the data center. In addition, data center access layer switches provide high-performance, low-latency switching and can support a mix of oversubscription requirements. Both Layer 2 and Layer 3 access (also called routed access) designs are available, but most data center access layers are built using Layer 2 connectivity. The Layer 2 access design uses VLAN trunks upstream, which allows data center aggregation services to be shared across the same VLAN and across multiple switches. Other advantages of Layer 2 access are support for NIC teaming and server clustering that requires network connections to be Layer 2 adjacent or on the same VLAN with one another.

Figure 4-9 highlights the data center access layer in the overall enterprise architecture.

The Spanning Tree Protocol (STP) manages physical loops that are present in the Layer 2 design. Currently, the recommended STP mode is Rapid per-VLAN Spanning Tree Plus (RPVST+), which ensures a logical loop-free topology and fast convergence.
New routed access designs aim to contain Layer 2 locally to avoid the use of the STP. With routed access designs, the default gateway function needs to be provided because the access switch becomes the first-hop router in the network.

Designs with both Layer 2 and Layer 3 access provide flexibility for multiple server solutions to be supported, including 1RU servers and modular blade server chassis.

Here are some of the data center access layer benefits:

- Provides port density for server farms
- Supports single homed and dual homed servers
- Provides high-performance, low-latency Layer 2 switching
- Supports mix of oversubscription requirements
Defining the DC Aggregation Layer

The data center aggregation (distribution) layer aggregates Layer 2/Layer 3 links from the access layer and connects using upstream links to the data center core. Layer 3 connectivity is typically implemented between the data center aggregation and the data center core layers. The aggregation layer is a critical point for security and application services. The Layer 4 security and application services in the data center aggregation layer include server load balancing, SSL offloading, firewalling, and IPS services. These services maintain connection and session state for redundancy purposes and are commonly deployed in pairs using Cisco Catalyst 6500 service modules. This design reduces the total cost of ownership (TCO) and eases the management overhead by simplifying the number of devices that must be managed.

The highlighted section in Figure 4-10 illustrates the data center aggregation layer.
Depending on the requirements of the design, the boundary between Layer 2 and Layer 3 can be in the multilayer switches, firewalls, or content switching devices in the aggregation layer. Multiple aggregation layers can be built out to support separate network environments, such as production, test, and PCI infrastructure, each with its own security zone and application services. First-hop redundancy protocols Hot Standby Router Protocol (HRSP) and Gateway Load Balancing Protocol (GLBP) are commonly used in the aggregation layer. Many aggregation designs include positioning STP primary and secondary root bridges to help control the loop-free topology and support a larger STP processing load.

Here are some of the data center aggregation layer benefits:

- Aggregates traffic from DC access and connects to DC core.
- Supports advanced application and security services.
- Layer 4 services include firewall, server load balancing, SSL offload, and IPS.
- Large STP processing load.
- Highly flexible and scalable.

Defining the DC Core Layer

The data center core connects the campus core to the data center aggregation layer using high-speed Layer 3 links. The core is a centralized Layer 3 routing layer in which one or more data center aggregation layers connect. The data center networks are summarized, and the core injects the default route into data center aggregation. The data center core also needs to support IP multicast to provide connectivity to the growing use of IP multicast applications.

The data center core layer is a best practice component of larger data center networks. Smaller data centers may use a collapsed core design combining the aggregation layer and core layers together. However, if you are building a greenfield data center, it is recommended to implement a data center core in the beginning to avoid network downtime later. Table 4-3 shows some drivers to help you decide whether a data center core is appropriate for your design.

Table 4-3 Data Center Core Drivers

<table>
<thead>
<tr>
<th>Data Center Core Drivers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Gigabit Ethernet density</td>
<td>Are there enough 10GE ports to connect campus core to multiple data center aggregation layers?</td>
</tr>
<tr>
<td>Administrative domains and policies</td>
<td>Separate cores help to isolate campus distribution from DC aggregation for troubleshooting and quality of service/access control list (QoS/ACL) policies.</td>
</tr>
<tr>
<td>Future growth</td>
<td>The impact and downtime from implementing a core at a later date make it worthwhile to install sufficient core layers in the beginning.</td>
</tr>
</tbody>
</table>
The highlighted section in Figure 4-11 illustrates the data center core layer.

Figure 4-11 Data Center Core Layer

Here are some of the data center core characteristics:

- Low-latency switching
- Distributed forwarding architecture
- 10 Gigabit Ethernet
- Scalable IP multicast support
Virtualization Overview

As the demand for IT to do more with less while increasing efficiency has risen, virtualization has become a critical component in most enterprise networks. Virtualization technologies allow a physical device to share its resources by acting as multiple versions of itself. Other forms of virtualization can enable multiple physical devices to logically appear as one.

Virtualization is a critical component of the Cisco network architectures for the enterprise data center and is changing the way data centers are architected. The use of virtualization improves network efficiency, provides enhanced flexibility, and reduces operational expenses.

Challenges

Network designers face many challenges that are driving the need to deploy virtualization technologies in the network. Data centers are growing rapidly, and these challenges directly impact the profitability of the business.

Take a look at some of the key driving forces for virtualization adoption in Table 4-4.

<table>
<thead>
<tr>
<th>Virtualization Driving Forces</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational cost</td>
<td>Need to reduce rising cost of powering and cooling devices in the DC while getting more productivity</td>
</tr>
<tr>
<td>Reduce the number of physical devices</td>
<td>DC consolidation of assets performing individual tasks</td>
</tr>
<tr>
<td>Traffic isolation</td>
<td>Logical, separate user groups secured from other groups on the same network</td>
</tr>
<tr>
<td>Increased performance/price ratio</td>
<td>Eliminate underutilized hardware that exhibits poor performance/price ratio</td>
</tr>
</tbody>
</table>

Defining Virtualization and Benefits

Virtualization is an umbrella term used to represent several different technologies. Virtualization technologies share a common theme in their ability to abstract logical elements from hardware (applications or operating systems) or networks (LANs and SANs) and run them in a virtual state. Virtualization brings many benefits, from consolidation to increased efficiency.
Here are some of the common benefits achieved through virtualization techniques:

- Better use of computing resources, higher server densities, and simplified server migrations
- Provides flexibility for ease of management for adds, reassignments, or repurposing resources
- Separation of users groups on the same physical network, enabling traffic isolation
- Ability to provide per-department security policies
- Reduction in power and space required
- Increased uptime and reduced operational costs

Types of Virtualization

Enterprise networks consist of two main types of virtualization technologies groupings, called network virtualization and device virtualization:

- **Network virtualization** encompasses logical isolated network segments that share the same physical infrastructure. Each segment operates independently and is logically separate from the other segments. Each network segment appears with its own privacy, security, independent set of policies, QoS levels, and independent routing paths.

Here are some examples of network virtualization technologies:

- **VLAN**: Virtual local-area network
- **VSAN**: Virtual storage-area network
- **VRF**: Virtual routing and forwarding
- **VPN**: Virtual private network
- **vPC**: Virtual Port Channel

- **Device virtualization** allows for a single physical device to act like multiple copies of itself. Device virtualization enables many logical devices to run independently of each other on the same physical piece of hardware. The software creates virtual hardware that can function just like the physical network device. Another form of device virtualization entails using multiple physical devices to act as one logical unit.

Here are some examples of device virtualization technologies:

- Server virtualization: Virtual machines (VM)
- Cisco Application Control Engine (ACE) context
- Virtual Switching System (VSS)
- Cisco Adaptive Security Appliance (ASA) firewall context
- Virtual device contexts (VDC)
Virtualization Technologies

Virtualization is built from abstracting logical entities from pooled physical resources. The Cisco network architectures for the enterprise data center contains many forms of network and device virtualization technologies.

Figure 4-12 illustrates the many virtualization technologies in use today.

VSS

Virtual Switching System (VSS) is a network virtualization technology that allows two physical Cisco Catalyst 6500 series switches to act as a single logical virtual switch. The VSS increases operational efficiencies and scales bandwidth up to 1.4 Tbps. This technology is very similar to StackWise technology used with the Cisco Catalyst 3750 series product line, which enables switches stacked together to operate as one and use a single command-line interface (CLI) for management. However, VSS is limited to two physical chassis connected together.

VRF

Virtual routing and forwarding (VRF) is a routing virtualization technology that creates multiple logical Layer 3 routing and forwarding instances (route tables) that can function on the same physical router. In Multiprotocol Label Switching (MPLS) VPN environments, the use of VRF technology plays a major role by allowing multiple networks to coexist on the same MPLS network. The routing information is contained inside the VRF and is visible only to routers participating in the same VRF. Because the routing information with VRF is separated, duplicate IP addressing schemes can be used.

vPC

Virtual Port Channel (vPC) technology works by combining two Cisco Nexus 7000 series switches or two Cisco Nexus 5000 series switches with 10GE links, which are then represented to other switches as a single logical switch for port channeling purposes. With vPC, the spanning-tree topology appears loop-free, although multiple redundant paths are present in the physical topology.
Device Contexts

Device contexts enable a single physical network device to host multiple virtual network devices. Each device context is an independent configuration with its own policy, network interfaces, and management accounts. The virtualized contexts that run on a single network device operate similarly to standalone network devices. Most of the same features present on the physical device are also supported on the individual device contexts.

The following Cisco network devices support the use of device contexts:

- Cisco Nexus 7000 series switches (VDC)
- Cisco Adaptive Security Appliance (ASA) firewall
- Cisco Catalyst 6500 Firewall Services Module (FWSM)
- Cisco Application Control Engine Appliance
- Cisco Catalyst 6500 Application Control Engine Module
- Cisco Intrusion Prevention System (IPS)

Server Virtualization

The use of server virtualization has exploded onto the market over the past several years and can be found in most data center environments. Server virtualization is a software technique that abstracts server resources from the hardware to provide flexibility and to optimize the usage of the underlying hardware. As a result, many data center applications are no longer bound to bare-metal hardware resources.

The server virtualized hypervisor provides the foundation for the virtualized environment on the host. The hypervisor controls the hardware and physical resources that can be allocated to virtual machines running on the host. This makes the VMs unaware of the physical hardware, but they can use CPUs, memory, and network infrastructure as shared pools available through the virtualization process.

The following represents several server virtualization vendors and their associated products:

- VMware ESX Server
- Citrix XenServer
- Microsoft Hyper-V

Network Virtualization Design Considerations

Network solutions are needed to solve the challenges of sharing network resources but keeping users totally separate from one another. Although the users are separate, we still need to ensure that the network is highly available, secure, and can scale along with the business growth. Network virtualization offers solutions to these challenges and provides design considerations around access control, path isolation, and services edge.
Access Control

Access needs to be controlled to ensure that users and devices are identified and authorized for entry to their assigned network segment. Security at the access layer is critical for protecting the network from threats, both internal and external.

Path Isolation

Path isolation involves the creation of independent logical network paths over a shared network infrastructure. MPLS VPN is an example of path-isolation technique where devices are mapped to a VRF to access the correct set of network resources. Other segmentation options include VLANs and VSANs, which logically separate LANs and SANs. The main goal when segmenting the network is to improve the scalability, resiliency, and security services as with non-segmented networks.

Services Edge

The services edge refers to making network services available to the intended users, groups, and devices with an enforced centralized managed policy. Separate groups or devices occasionally need to share information that may be on different VLANs, each with corresponding group policies. For example, traffic from the sales VLAN might need to talk to the engineering VLAN, but it needs to go through the firewall to permit the traffic and might even be tied to certain hours of the day. In such cases, the network should have a central way to manage the policy and control access to the resources. An effective way to address policy enforcement is to use an FWSM in a Cisco Catalyst 6500 series switch providing firewall services for the data center.

Table 4-5 describes network virtualization considerations.

<table>
<thead>
<tr>
<th>Network Virtualization Consideration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access control</td>
<td>Ensures users and devices are recognized, classified, and authorized for entry to their assigned network segments</td>
</tr>
<tr>
<td>Path isolation</td>
<td>Provides independent logical traffic paths over shared network</td>
</tr>
<tr>
<td>Services edge</td>
<td>Ensures the right services are accessible the intended users, groups, or devices</td>
</tr>
</tbody>
</table>

References and Recommended Readings

Module 3 (Designing Basic Campus and Data Center Networks)—Designing for Cisco Internetwork Solution Course (DESGN) 2.1.

Table 4-5 Network Virtualization Design Considerations

Exam Preparation Tasks

Review All Key Topics

Review the most important topics in the chapter, noticed with the Key Topic icon in the outer margin of the page. Table 4-6 lists a reference of these key topics and the page numbers on which each is found.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Center 3.0 Components</td>
<td>Virtualization, Unified Fabric, and Unified Computing</td>
<td>126</td>
</tr>
<tr>
<td>Data Center 3.0 Topology Components</td>
<td>Virtualized servers, consolidated connectivity, and network devices</td>
<td>127</td>
</tr>
<tr>
<td>Challenges in the DC</td>
<td>Power, space, security, and management</td>
<td>127</td>
</tr>
<tr>
<td>Data Center Facility Aspects</td>
<td>Architectural and mechanical specifications, environmental conditions, physical security, capacities and compliance</td>
<td>129</td>
</tr>
<tr>
<td>Data Center Power</td>
<td>Cooling, server, storage, and network</td>
<td>131</td>
</tr>
<tr>
<td>Data Center Cabling</td>
<td>Controls the temperature and humidity of the devices</td>
<td>133</td>
</tr>
<tr>
<td>DC Access Layer</td>
<td>Provides Layer 2 and Layer 3 physical port density for devices</td>
<td>136</td>
</tr>
<tr>
<td>DC Aggregation Layer</td>
<td>Aggregates L2/L3 links from the access layer and connects using upstream links to the data center core</td>
<td>138</td>
</tr>
<tr>
<td>DC Core Layer</td>
<td>Centralized Layer 3 routing layer in which one or more data center aggregation layers connect</td>
<td>139</td>
</tr>
</tbody>
</table>
Table 4-6 Key Topics

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenges</td>
<td>Operational cost, traffic isolation, and increased performance/price ratio</td>
<td>141</td>
</tr>
<tr>
<td>Types of Virtualization</td>
<td>Network and device virtualization</td>
<td>142</td>
</tr>
<tr>
<td>Virtualization Technologies</td>
<td>VRF, vPC, and VSS</td>
<td>143</td>
</tr>
<tr>
<td>Device Contexts</td>
<td>VDC, ASA, and ACE</td>
<td>144</td>
</tr>
<tr>
<td>Services Edge</td>
<td>Secure network services available to users and groups with centralized managed policy</td>
<td>145</td>
</tr>
</tbody>
</table>

Complete Tables and Lists from Memory

Print a copy of Appendix D, “Memory Tables,” (found on the CD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix E, “Memory Tables Answer Key,” also on the CD, includes completed tables and lists to check your work.

Define Key Terms

Define the following key terms from this chapter, and check your answers in the glossary:

- Cisco Nexus 1000V
- Cisco Unified Computing System (UCS)
- Fibre Channel over Ethernet (FCoE)
- Internet Small Computer Systems Interface (iSCSI)
- data center space element
- power
- cabling
- data center access
- data center aggregation
- data center core
- virtualization technologies
- network virtualization
- device virtualization
- access control
- path isolation
- services edge

Q&A

The answers to these questions appear in Appendix A. For more practice with exam format questions, use the exam engine on the CD-ROM.

1. Which data center architecture was based on client/server and distributed computing?
 a. Data Center 1.0
 b. Data Center 2.0
 c. Data Center 3.0
 d. Data Center 4.0
2. What Cisco Nexus switch helps deliver visibility and policy control for virtual machines (VM)?
 a. Nexus 7000
 b. Nexus 4000
 c. Nexus 2000
 d. Nexus 1000V

3. Which of the following is a network adapter that can run at 10GE and support Fibre Channel over Ethernet (FCoE)?
 a. CNA
 b. VN-Link
 c. MDS
 d. NAS

4. What is an innovative next-generation data center platform that converges computing, network, storage, and virtualization all together into one system? (Select the best answer.)
 a. Cisco MDS
 b. Cisco Nexus 7000
 c. Cisco Nexus 5000
 d. Cisco UCS

5. Which of the following Cisco Nexus switches support virtual device contexts using (VDCs)?
 a. Cisco Nexus 7000
 b. Cisco Nexus 2000
 c. Cisco Nexus 5000
 d. Cisco Nexus 4000

6. What services option provides an effective way to address firewall policy enforcement in a Cisco Catalyst 6500 series switch?
 a. IPS
 b. FWSM
 c. Nexus 1000V
 d. VDCs
7. What has enabled applications to no longer be bound to bare metal hardware resources?
 a. Unified fabric
 b. Device virtualization
 c. Network virtualization
 d. Server virtualization

8. Which of the following supports network virtualization technology that allows two physical Cisco Catalyst 6500 series switches to act as a single logical virtual switch?
 a. VN-Link technology
 b. Unified fabric
 c. Virtual Switching System (VSS)
 d. Virtual routing and forwarding (VRF)

9. What enables the spanning-tree topology to appear loop-free although multiple redundant paths are present in the physical topology?
 a. vPC
 b. VRF
 c. VSS
 d. VDC

10. Which of the following are data center core layer characteristics? (Select all that apply.)
 a. 10GE
 b. High-latency switching
 c. Distributed forwarding architecture
 d. Service modules

11. Which data center layer provides advanced application and security services and has a large STP processing load?
 a. Data center access layer
 b. Data center aggregation layer
 c. Data center services layer
 d. Data center core layer
12. Which of the following are drivers for the data center core layer? (Select all that apply.)
 a. Future growth
 b. 10 Gigabit Ethernet density
 c. Services edge
 d. Administrative domains and policies

13. Benefits such as port density for server farms, high-performance low-latency Layer 2 switching, and a mix of oversubscription requirements belong to which data center layer?
 a. Core
 b. Distribution
 c. Access
 d. Aggregation

14. Cable management is affected by which of the following? (Select all that apply.)
 a. Alternative cooling technologies
 b. Number of connections
 c. Media selection
 d. Increase in the number of HVAC units

15. Which of the following best describes how “cold” and “hot” aisles should be arranged in the data center?
 a. Hot and cold aisles facing each other
 b. Alternating pattern of cold and hot aisles
 c. Nonalternating pattern of hot and cold aisles
 d. None of the above

16. Within the unified computing resources, what defines the identity of the server?
 a. Virtualization
 b. Unified fabric
 c. Services profile
 d. Virtual machines
Index

Numerics

10 Gigabit Ethernet design rules, 88
10BASE-2 Ethernet, 83
10BASE-5 Ethernet, 83
10BASE-T Ethernet, 83
100BASE-FX Fast Ethernet, 85
100BASE-T Ethernet, 83, 85-86
100BASE-T4 Fast Ethernet, 84-85
100BASE-TX Fast Ethernet, 84
100-Mbps Fast Ethernet design rules, 84-86
1000BASE-CX Gigabit Ethernet over coaxial cable, 87
1000BASE-LX long-wavelength Gigabit Ethernet, 86-87
1000BASE-SX short-wavelength Gigabit Ethernet, 87
1000BASE-T Gigabit Ethernet over UTP, 87

A

access control. See also unauthorized access
defined, 466
firewall ACLs, 487-488
identity and access control deployments, 489-490
in network virtualization design, 145
WLAN access control, 159-160

access layer in hierarchical network models, 43-44
campus LAN design best practices, 96
enterprise data center design, 136-137
access VPNs, 232
ACD, 528
address resolution protocol (ARP), 295
addressing
in IPv4, 275-295
assignment and name resolution, 290-295
classes, 276-278
NAT (Network Address Translation), 279-282
private addresses, 279
subnets, 282-290
types of, 278
in IPv6, 311-319
allocations, 313-314
anycast addresses, 316-317
assignment strategies, 322-324
global aggregatable addresses, 316
global unicast addresses, 314-315
IPv4-compatible IPv6 addresses, 312, 316
link-local addresses, 315
loopback addresses, 314
multicast addresses, 317-319
prefixes, 312-313, 319
representation of addresses, 311-313
unicast addresses, 314-316
unique local addresses, 315-316
addressing digit signaling (voice networks), 526
adjacencies in OSPFv2, 392-393
administrative distance, 355-356
aggregation layer. See distribution layer in hierarchical network models
aggregator attribute in BGP, 413
allocations of IPv6 addresses, 313-314
analog-to-digital signal conversion, 540
analyzing networks, tools for, 22
AND logical operation, 285
anycast addresses in IPv6, 316-317
AP controller equipment scaling, 171
AP modes in Cisco UWN, 164-166
application access, accelerating, 13
application layer (OSI model), 665
application layer (TCP/IP architecture), 666
application requirements in WAN design, 214
application types in campus LAN design, 94-95, 103
 architectures. See enterprise architectures
areas
in OSPFv2, 393
in OSPFv3, 401
ARP (address resolution protocol), 59, 295
assessment. See auditing networks, tools for
assigning
IPv4 addresses, 290-295
 BOOTO, 291
DHCP, 291-292
static versus dynamic assignment, 290-291
IPv6 addresses, 322-324
 DHCPv6, 324
globally unique addresses, 323
link-local addresses, 322-323
atomic aggregate attribute in BGP, 413
auditing networks, tools for, 18-21
authentication
identity and access control deployments, 489-490
IEEE 802.1X-2001 port-based authentication, 159
in RIPng, 365
in RIPv2, 362
router authentication in OSPFv2, 399
WLANs (wireless LANs), 167-169
Auto QoS in VoIP, 559
autoconfiguration. See stateless autoconfiguration
autonomous system external path types in OSPFv2, 397
autonomous system path attribute in BGP, 412
auto-RP, 429-430
availability. See network availability, increasing

B

backups in WAN design, 240-241. See also high availability network services balancing loads, 62
bandwidth comparisons in IPT design, 550-552
for routing protocols, 357
in WAN design, 215-216
Beauty Things Store scenario, 606-608
best practices
campus LAN design, 94-109
 access layer, 96
 application type network requirements, 103
 application types, 94-95
core layer, 98-99
distribution layer, 96-98
distribution, 103
tress design, 102-103
enterprise campus LAN design, 102-103
enterprise data center module, 105-106
large-building LAN design, 101-102
medium-size LANs, 103
multicast traffic considerations, 108-109
QoS considerations, 106-107
server connectivity options, 105
server farms, 104
small and remote site LANs, 103-104

IPT design, 560-561
BGP (Border Gateway Protocol), 404-416
administrative distance, 409
characteristics of, 415-416
confederations, 409
decision process, 414-415
eBGP, 406
iBGP, 406-407
neighbors, 405-406
path attributes, 410-413
route reflectors, 407-409
weight, 414
BGP4 multiprotocol extensions for IPv6, 326
BHT (busy-hour traffic), 529-530
Big Oil and Gas scenario, 604-606
binary numbers
 converting decimal to, 673-675
 converting hexadecimal to, 672-673
 converting to decimal, 673
 converting to hexadecimal, 672
decimal and hexadecimal equivalents of, 672
explained, 671
IP and MAC address representation, 671
subnet mask values for, 675
bit masks for subnet masks, 283
blade servers in data center design, 128
blocking probability, 530
BOOTP, 291
bootstrap routers, PIMv2 bootstrap routers, 430
Border Gateway Protocol. See BGP (Border Gateway Protocol)
borderless network architecture, 9, 58
bottom-up approach to network design, comparison with top-down approach, 24
branch LAN design, 184-186
 H-REAP, 184-185
 local MAC support, 184
 REAP, 184
 UDP ports used in, 186
branch WAN design. See enterprise branch architectures
bridges, enterprise LAN design, 91
bridging layer (OSI model), 663
BTUs, wattage conversion, 133
business agility, improving, 12
busy hour, 529
busy-hour traffic (BHT), 529-530

cabling
dark fiber cabling, 211-212
in data center design, 133-135
for WANs, 206-207
calculating voice bandwidth, 551-552
call detail records (CDR), 528, 530
call seconds, 529
CallManager Express deployment model for IP telephony networks, 537
campus LAN design. See also enterprise LAN design
 best practices, 94-109
 access layer, 96
 application type network requirements, 103
 application types, 94-95
 core layer, 98-99
 distribution layer, 96-98
 edge distribution, 103
 enterprise campus LAN design, 102-103
 enterprise data center module, 105-106
 large-building LAN design, 101-102
 medium-size LANs, 103
 multicast traffic considerations, 108-109
 QoS considerations, 106-107
 server connectivity options, 105
 server farms, 104
 small and remote site LANs, 103-104
 resources for information, 109
 for wireless LANs, 183-184
campus media comparison chart, 89
campus security, 502-503
CAPWAP (Control and Provisioning for Wireless Access Point), 163
CAS signaling, 524
case studies. See scenarios
Catalyst 6500 service modules, 500-502
CCDA exam updates, 657-658
CCS (Centum call second), 529
CCS signaling, 524
CDP (Cisco Discovery Protocol), 587
CDR (call detail records), 528, 530
cell-switched WANs, 230
Centrex services, 528
Centrex services, 528
Centum call second (CCS), 529
certificates, defined, 465
CGMP (Cisco Group Management Protocol), 108, 426-427
checklists, network checklist, 22-23
Cisco 860 ISRs in enterprise teleworker architectures, 254
Cisco 880 ISRs in enterprise teleworker architectures, 255
Cisco Discovery Protocol (CDP), 587
Cisco Easy VPN, 235
Cisco Enterprise Architecture model, 47-58
e-commerce submodule, 50-51
enterprise campus module, 48-50
enterprise edge area, 50-54
enterprise WAN submodule, 53-54
hierarchical layers, 44-45
Internet connectivity submodule, 51-52
remote modules, 55-57
resources for information, 65
service provider edge module, 54-55
VPN/remote access submodule, 52-53
Cisco Enterprise MAN/WAN architecture, 243
Cisco Group Management Protocol (CGMP), 108, 426-427
Cisco Identity-Based Network Services (IBNS), 489
Cisco IronPort ESA, 493-494
Cisco IronPort WSA, 494
Cisco NAC Appliance, 488
Cisco Radio Resource Management (RRM), 178-179
Cisco router/switch platform and software comparison, 247
Cisco SAFE (Security Architecture for the Enterprise), 484-486, 496
Cisco SCF (Security Control Framework), 486
Cisco security appliances, 499-500
Cisco UWN (Unified Wireless Network), 160-176
AP controller equipment scaling, 171
AP modes, 164-166
architectures, 160-161
authentication, 167-169
CAPWAP, 163
local MAC support, 164
LWAPP, 162
LWAPP discovery of WLC, 166-167
roaming, 173-176
split-MAC architecture, 163-164
WLC components, 169
WLC interface types, 169-171
class A addresses (IPv4), 277
class B addresses (IPv4), 277
class C addresses (IPv4), 277
class C networks, common bits within, 417
class D addresses (IPv4), 277
class E addresses (IPv4), 278
class-based weighted fair queueing in WAN design, 218-219
classes of IPv4 addresses, 276-278
classful routing protocols, classless routing protocols versus, 353-354
classification in WAN design, 218
classless routing protocols, classful routing protocols versus, 353-354
codecs, 539-541
analog-to-digital signal conversion, 540
standards, 540-541
collaboration architecture, 9-10
collision domains for 100BASE-T Ethernet, 85
commands for manual network auditing, 19-21
communications, layered communication example, 666-667
community attribute in BGP, 413
comprehensive scenarios. See scenarios
conferences in BGP, 409
confidentiality
 breaches, 455-456
 transmission confidentiality, 469
congestion management in WAN design, 218
connection modules for WANs, 203-204
connection security, 466-470
 data integrity, 469-470
 encryption, 466-467
 transmission confidentiality, 469
 VPN protocols, 467-469
continuous security, 461-462
contracts for WAN transport technologies, 212-213
Control and Provisioning for Wireless Access Point (CAPWAP), 163
converged multiservice networks. See IP telephony networks
converting
 binary to decimal numbers, 673
 binary to hexadecimal numbers, 672
 decimal to binary numbers, 673-675
 decimal to hexadecimal numbers, 668-670
 hexadecimal to binary numbers, 672-673
 hexadecimal to decimal numbers, 670
cooling in data center design, 132-133
core layer in hierarchical network models, 41-42
campus LAN design best practices, 98-99
campus LAN application types, 95, 103
enterprise data center design, 139-140
cost for routing protocols, 358
cost of ownership, lowering, 12
counting to infinity (routing protocol loop prevention), 361
country codes, list of, 526-527
cRTP in VoIP, 556
custom queueing in WAN design, 218
customer requirements
 for campus LAN application types, 95, 103
 identifying, 15-17
dark fiber cabling, 211-212
Data Center 3.0 components, 125-126
Data Center 3.0 topology components, 127
data center security, 503-504
data center/virtualization architecture, 10
data centers. See enterprise data center design; enterprise data center module
data integrity, 469-470
data link layer (OSI model), 663
decimal equivalents
 of binary numbers, 672
 of hexadecimal numbers, 668
decimal numbers
 converting binary to, 673
 converting hexadecimal to, 670
 converting to binary, 673-675
 converting to hexadecimal, 668-670
decision process in BGP, 414-415
default metric in route redistribution, 420-421
delay components in IP telephony networks, 552-554
delay for routing protocols, 359
denial of service (DoS) attacks, 450, 454-455
dense multicast distribution, sparse multicast distribution versus, 427-428
dense wavelength-division multiplexing (DWDM), 212
deploying servers. See server deployment challenges in data center design
deployment models of IP telephony networks, 535-537
 CallManager Express model, 537
 multisite WAN with centralized call processing model, 536
 multisite WAN with distributed call processing model, 536-537
 single-site deployment, 535-536
IPv4 to IPv6, 326-333
 comparison of, 332
 dual-stack deployment model, 329
 hybrid deployment model, 330
 service block deployment model, 330
design documents, 25-26
design goals of IP telephony networks, 534-535
design methodology in PPDIOO life cycle, 15. See also network design
design of IPv4 subnets, 283-284
Design phase (PPDIOO life cycle), 14
deterministic redundancy, dynamic redundancy versus, 176
device contexts in virtualization, 144
device virtualization, 142
DHCP, 291-292
 in VoIP, 542
DHCPv6, 324
digital subscriber line (DSL), 206
distance-vector routing protocols, 351-353
distribution layer in hierarchical network models, 42-43
campus LAN design best practices, 96-98
enterprise data center design, 138-139
distribution trees, 428
DMVPN, 236
DNS (Domain Name System), 292-294, 542
domains of trust, 463-464
DoS (denial of service) attacks, 450, 454-455
dotted-decimal format for subnet masks, 283
DRs in OSPFv2, 395-396
DSCP AF packet-drop precedence values in IPv4 headers, 273
DSCP and IP precedence values in IPv4 headers, 273
DSCP values in IPv4 headers, 274
DSL (digital subscriber line), 206
DTMF frequencies, 526
DUAL, EIGRP and, 368-369
dual-stack deployment model, IPv4 to IPv6, 329
dual-stack transitions, IPv4 to IPv6, 326
DVMRP, 430
DWDM (dense wavelength-division multiplexing), 212
dynamic IP addressing, 290-291
dynamic redundancy, deterministic redundancy versus, 176
dynamic routes, static routes versus, 348-350
dynamic WEP keys, 159

E

E&M signaling, 523-524
E.164 standard, 526
eBGP, 406
echo cancellation, 555
e-commerce submodule in Cisco
 Enterprise Architecture model, 50-51
edge distribution, campus LAN design
 best practices, 103
EIGRP, 351-352, 367-375
 characteristics of, 375
 components of, 367
 design, 372
 DUAL and, 368-369
 for IPv4, 373
 for IPv6, 325, 373-374
 metrics, 370-371
 neighbor discovery and recovery, 368
 packet types, 371-372
 protocol-dependent modules, 368
 RTP and, 368
 timers, 369-370
email threats, IronPort ESA (Email
 Security Appliances), 493-494
encryption, 466-467
endpoint security, 502
enterprise architectures. See also Cisco
 Enterprise Architecture model
 benefits of, 10-11
 borderless network architecture, 9, 58
 business forces affecting, 8
 Cisco UWN (Unified Wireless
 Network), 160-161
 collaboration architecture, 9-10
 data center/virtualization architecture, 10, 124-127, 135-140
 access layer, 136-137
 core layer, 139-140
 Data Center 3.0 components, 125-126
 Data Center 3.0 topology
 components, 127
distribution layer, 138-139
technology forces affecting, 8
traditional voice architectures, 518-530
 ACD, 528
 blocking probability, 530
 busy hour, 529
 busy-hour traffic (BHT), 529-530
 call detail records (CDR), 528, 530
 Centrex services, 528
 Centum call second (CCS), 529
 Erlangs, 528-529
 grade of service (GoS), 528
 IVR systems, 528
 local loops and trunks, 519-520
 ports, 520-521
 PSTN, described, 518
 PSTN numbering plan, 526-527
 PSTN versus PBX switches, 518-519
 signaling types, 521-526
 voice mail, 528
types of, 9
enterprise branch architectures, 248-253
 design rules, 248
 ISR versus ISR G2 features, 249
 large branch design, 252-253
 medium branch design, 250-251
 profiles, 248-249
 small branch design, 250
enterprise branch module in Cisco
 Enterprise Architecture model, 56
enterprise campus LAN design, 102-103
enterprise campus module in Cisco
 Enterprise Architecture model, 48-50
enterprise data center design
 architectures, 124-127, 135-140
 access layer, 136-137
 core layer, 139-140
Data Center 3.0 components, 125-126
Data Center 3.0 topology components, 127
distribution layer, 138-139
resources for information, 145-146
server deployment challenges, 127-135
cabling, 133-135
cooling, 132-133
facilities, 128-129
power usage, 131-132
space allotment, 130
virtualization, 141-145
benefits of, 141-142
challenges, 141
design considerations, 144-145
technologies for, 143-144
types of, 142
enterprise data center module
campus LAN design best practices, 105-106
in Cisco Enterprise Architecture model, 56
enterprise edge area
in Cisco Enterprise Architecture model, 50-54
security for, 504-506
enterprise LAN design. See also campus LAN design; wireless LAN design
hardware, 89-94
bridges, 91
device comparison chart, 94
hubs, 90-91
Layer 3 switches, 93-94
repeaters, 90
routers, 92-93
switches, 91-92
LAN media, 82-89
10 Gigabit Ethernet design rules, 88
campus media comparison chart, 89
EtherChannel, 89
Ethernet design rules, 83
Fast Ethernet design rules, 84-86
Gigabit Ethernet design rules, 86-87
resources for information, 109
enterprise security, 502-506.
See also security
campus security, 502-503
data center security, 503-504
enterprise edge and WAN security, 504-506
enterprise teleworker architectures, 254-255
enterprise teleworker module in Cisco Enterprise Architecture model, 56-57
enterprise VPNs
Cisco Easy VPN, 235
DMVPN, 236
GRE (generic routing encapsulation), 236
IPsec, 234
IPsec direct encapsulation, 234-235
IPsec VTI, 237
L2TPv3, 237
service provider VPNs versus, 233-239
enterprise WAN architectures, 241-244
Cisco Enterprise MAN/WAN architecture, 243
comparison of, 243-244
enterprise WAN components, 245-247
enterprise WAN submodule in Cisco Enterprise Architecture model, 53-54
EoIP tunnels in wireless LAN design, 181
Erlangs, 528-529
EtherChannel, 89
Ethernet, benefits of handoffs at customer edge, 238
Ethernet design rules, 83
EU Data Protection Directive 95/46/EC, 449
exam engine, 617-618
exams
study plan, 616-618
study tools, 613-616
existing network, characterizing, 17-23
explicit configuration, 59
exterior routing protocols, interior routing protocols versus, 350-351
extranet VPNs, 233

facilities in data center design, 128-129
Falcon Communications scenarios, 608-610
Fast Ethernet design rules, 84-86
FCAPS (network management processes), 578
fields in IPv4 headers, 270-271
filtering routes, 421-422
firewall ACLs, 487-488
fixed delays in IP telephony networks, 552-553
flat routing protocols, hierarchical routing protocols versus, 353
fragmentation in IPv4 headers, 274-275
Frame Relay for WANs, 208-209
frequencies (WLANs), 156-157
full-mesh networks, 62
full-mesh topology in WAN design, 231

gatekeepers, scalability with, 545-546
generic routing encapsulation (GRE), 236
Gigabit Ethernet design rules, 86-87
GLBA (Gramm-Leach-Bliley Act), 449
GLBP, 61
global aggregatable addresses in IPv6, 316
global unicast addresses in IPv6, 314-315
globally unique addresses in IPv6, assigning, 323
GoS (grade of service), 528
grade of service (GoS), 528
Gramm-Leach-Bliley Act (GLBA), 449
GRE (generic routing encapsulation), 236
ground-start signaling, 522-523

H.264 standard in VoIP, 547
H.323 standard in VoIP, 544-547
hardware
enterprise LAN design, 89-94
 bridges, 91
 device comparison chart, 94
 hubs, 90-91
 Layer 3 switches, 93-94
 repeaters, 90
 routers, 92-93
 switches, 91-92
enterprise WAN design, 245-247
ISR G2 security hardware options, 499
headers
IPv4, 268-275
 fields, 270-271
 fragmentation, 274-275
protocol numbers, 270
ToS field, 271-274
IPv6, 309-311
Hello timers in OSPFv2, 392-393
hexadecimal equivalents of binary numbers, 672
hexadecimal format for subnet masks, 283
hexadecimal numbers
converting binary to, 672
converting decimal to, 668-670
converting to binary, 672-673
converting to decimal, 670
decimal equivalents of, 668
representation of, 668
hierarchical network models, 40-46
access layer, 43-44
campus LAN design best practices, 96
enterprise data center design, 136-137
benefits of, 40-41
Cisco Enterprise Architecture model hierarchical layers, 44-45
core layer, 41-42
campus LAN design best practices, 98-99
enterprise data center design, 139-140
distribution layer, 42-43
campus LAN design best practices, 96-98
enterprise data center design, 138-139
examples of, 45-46
resources for information, 65
route manipulation on, 422
hierarchical routing protocols, flat routing protocols versus, 353
high availability network services, 58-65
link media redundancy, 64-65
resources for information, 65
route redundancy, 62-63
server redundancy, 61-62
WAN design, 240-241
wireless LAN design, 176-178
workstation-to-router redundancy, 59-61
HIPAA (U.S. Health Insurance Portability and Accountability Act), 449
hop count, 356-357
host-to-host transport layer (TCP/IP architecture), 666
H-REAP in branch LAN design, 184-185
HSRP, 60-61
hub-and-spoke topology in WAN design, 230-231
hubs, 90-91
hybrid deployment model, IPv4 to IPv6, 330
hybrid REAP in branch LAN design, 184-185
iBGP, 406-407
ICMPv6, 320
identity, defined, 464
identity and access control deployments, 489-490
IEEE 802.1P networks, 556-557
IEEE 802.1X-2001 port-based authentication, 159
IEEE 802.3 networks, design rules, 83
IEEE 802.3ab-1999 networks, design rules, 86
IEEE 802.3ae networks, design rules, 88
IEEE 802.3u-1995 networks, design rules, 84-86
IEEE 802.3z-1998 networks, design rules, 86
IEEE 802.11 wireless LAN standards, 155-156
IEEE 802.11i networks, 158
IGMP (Internet Group Management Protocol), 108, 425-426
IGMP snooping, 109, 427
IGMPv1, 425
IGMPv2, 425-426
IGMPv3, 426
Implement phase (PPDIOO life cycle), 14
infrastructure protection, 471-472
infrastructures. See enterprise architectures
Integrated Services Digital Network (ISDN), 205-206
integrity
data integrity, 469-470
violations of, 455-456
interface types for WLC (wireless LAN controller), 169-171
interior routing protocols, exterior routing protocols versus, 350-351
Internet, WAN backup over, 241
Internet connectivity submodule in Cisco Enterprise Architecture model, 51-52
Internet Group Management Protocol (IGMP), 108, 425-426
Internet layer (TCP/IP architecture), 666
intracontroller roaming in Cisco UWN, 173
intranet VPNs, 233
intrusion prevention, 500
IOS security, 498
IP addresses, binary representation of, 671
IP DSCP values in IPv4 headers, 274
IP precedence bit values in IPv4 headers, 272
IP protocol numbers, 310
IP telephony networks, 530-549
codecs, 539-541
 analog-to-digital signal conversion, 540
 standards, 540-541
components of, 532-534
deployment models of, 535-537
 CallManager Express model, 537
 multisite WAN with centralized call processing model, 536
 multisite WAN with distributed call processing model, 536-537
 single-site deployment, 535-536
design considerations, 549-562
 bandwidth, 550-552
 best practices, 560-561
 delay components, 552-554
 echo cancellation, 555
 packet loss, 555
 QoS (quality of service) tools, 555-560
 service class recommendations, 561-562
 VAD, 550-551
design goals of, 534-535
resources for information, 562-563
subnets for, 288
video deployment, 537-539
VoIP (voice over IP), 531-532
VoIP control and transport protocols, 541-549
 DHCP, DNS, TFTP, 542
 H.264 standard, 547
702 IP telephony networks

- H.323 standard, 544-547
- MGCP, 544
- RTP and RTCP, 543
- SCCP, 542
- SIP, 548-549

IPsec, 234
IPsec direct encapsulation, 234-235
IPsec VTI, 237
IPT. See IP telephony networks

IPv4
addressing, 275-295

 - assignment and name resolution, 290-295
 - classes, 276-278
- NAT (Network Address Translation), 279-282
- private addresses, 279
- subnets, 282-290
- types of, 278

comparison with IPv6, 333-334
EIGRP, 373
header, 268-275

 - fields, 270-271
 - fragmentation, 274-275
 - protocol numbers, 270
 - ToS field, 271-274
IPv4 to IPv6 transition and deployment, 326-333

 - comparison of, 332
 - dual-stack deployment model, 329
 - dual-stack transitions, 326
 - hybrid deployment model, 330
IPv6 over IPv4 tunnels, 326-328
- protocol translation, 328-329
- service block deployment model, 330

multicast, 423-431
multicast addresses, 423-424

IPv6
addressing, 311-319
 - allocations, 313-314
 - anycast addresses, 316-317
 - assignment strategies, 322-324
 - global aggregatable addresses, 316
 - global unicast addresses, 314-315
IPv4-compatible IPv6 addresses, 312, 316
link-local addresses, 315
loopback addresses, 314
multicast addresses, 317-319
prefixes, 312-313, 319
representation of addresses, 311-313
unicast addresses, 314-316
unique local addresses, 315-316

benefits of, 308-309
comparison with IPv4, 333-334
EIGRP, 373-374
header, 309-311
ICMPv6, 320
IPv4 to IPv6 transition and deployment, 326-333

 - comparison of, 332
 - dual-stack deployment model, 329
 - dual-stack transitions, 326
 - hybrid deployment model, 330
IPv6 over IPv4 tunnels, 326-328
- protocol translation, 328-329
- service block deployment model, 330
multicast, 423-431
multicast addresses, 423-424

resources for information, 296
routing protocols, IPv6 routing protocols versus, 354

IPv4-compatible IPv6 addresses, 312, 316
multicast addresses, 423-424, 430-431
name resolution, 321-322
ND (Neighbor Discovery) protocol, 320-321
path MTU discovery, 322
resources for information, 334-335
routing protocols, 325-326, 354
security, 324
IronPort ESA (Email Security Appliances), 493-494
IronPort WSA (Web Security Appliances), 494
ISDN (Integrated Services Digital Network), 205-206
ISDN BRI service, 205, 524
ISDN PRI service, 205-206, 524
IS-IS for IPv6, 325
ISM frequencies, 156-157
ISR G2 security hardware options, 499
ISR versus ISR G2 features, 249
IVR systems, 528

J

joining PIM-SM, 429

K

keys (encryption), 467

L

L2TPv3 (Layer 2 Tunneling Protocol Version 3), 237
LAN high availability protocols, 59-61
ARP, 59
explicit configuration, 59
GLBP, 61
HSRP, 60-61
RDP, 59
RIP, 59-60
VRRP, 61
LAN media in enterprise LAN design, 82-89
10 Gigabit Ethernet design rules, 88
campus media comparison chart, 89
EtherChannel, 89
Ethernet design rules, 83
Fast Ethernet design rules, 84-86
Gigabit Ethernet design rules, 86-87
large branch design in enterprise branch architectures, 252-253
large-building LAN design, 101-102
Layer 2 access method in WLANs, 157
Layer 2 intercontroller roaming in Cisco UWN, 173-174
Layer 2 Tunneling Protocol Version 3 (L2TPv3), 237
Layer 3 intercontroller roaming in Cisco UWN, 174
Layer 3 switches, 93-94
Layer 3-to-Layer 2 mapping of multicast addresses, 424
layered communication example (TCP/IP architecture), 666-667
LEAP, 159
leased-line WANs, 230
legislation concerning security, 448-449
LFI in VoIP, 557
Lightweight Access Point Protocol (LWAPP), 162, 166-167
link characteristics in WAN design, 216-217
link efficiency in WAN design, 220
link media redundancy, 64-65
link-local addresses in IPv6, 315, 322-323
link-state routing protocols, 352-353
LLQ in VoIP, 557-559
load balancing, 62, 240
load for routing protocols, 358-359
local loops in voice networks, 519-520
local MAC support
 in branch LAN design, 184
 in Cisco UWN, 164
local preference attribute in BGP, 411
logical link sublayer (OSI model), 663
loop prevention for routing protocols, 360-361
loopback addresses, 288, 314
loop-start signaling, 522
low-latency queueing in WAN design, 219
LSA types
 in OSPFv2, 396-397
 in OSPFv3, 401-403
LWAPP (Lightweight Access Point Protocol), 162, 166-167

memory tables
 10 Gigabit Ethernet media types, 88
 accelerating access to applications and services, 13
 AND logical operation, 285
 AP modes, 166
 campus LAN application type requirements, 95, 103
 campus LAN application types, 95
 campus layer design best practices, 100
 campus media comparison chart, 89
 campus security, 502-503
 CAS and CCS signaling types, 524
 characterizing the network, 23
 Cisco Enterprise Architecture model enterprise modules, 58
 Cisco Enterprise Architecture model hierarchical layers, 44-45
 Cisco IOS integrated security, 498
 Cisco router/switch platform and software comparison, 247
 Cisco UWN (Unified Wireless Network) architecture, 161
 codec standards, 541
 collision domains for 100BASE-T Ethernet, 85
 common bits within Class C networks, 417
 continuous security steps, 462
 country codes, list of, 526-527
 data center core drivers, 139
 data center facility considerations, 129
 data center security, 504
 default administrative distances for IP routes, 355
 default EIGRP values for bandwidth and delay, 371
 design document contents, 25
 DHCP allocation mechanisms, 292

MAC addresses, binary representation of, 671
MAC sublayer (OSI model), 663
Management Information Base (MIB), 580-581
masks. See subnets (IPv4)
maximum transmission unit (MTU), 360
MD5 authentication in RIPv2, 362
MED attribute in BGP, 412-413
media. See LAN media in enterprise LAN design
medium branch design in enterprise branch architectures, 250-251
medium-size LANs, campus LAN design best practices, 103
DHCP and DNS servers, 294
distance-vector versus link-state routing protocols, 352
DNS resource records, 294
domains of trust, 464
DoS (denial of service) attacks, managing, 454
DSCP AF packet-drop precedence values, 273
DSCP and IP precedence values in IPv4 headers, 273
DTMF frequencies, 526
EIGRP protocol characteristics, 375
enterprise architectures, benefits of, 10-11
enterprise edge security, 505
Ethernet handoffs at customer edge, benefits of, 238
H.264 video bandwidth, 547
H.323 protocols, 547
high-order bits of IPv4 address classes, 276
IGP and EGP protocol selection, 351
improving business agility, 12
increasing network availability, 12
IP address allocation for VoIP networks, 288
IP DSCP values, 274
IP precedence bit values, 272
IP protocol numbers, 310
IPT functional areas, 534
IPv4 address classes, 278
IPv4 address types, 278
IPv4 and IPv6 routing protocols, 354
IPv4 default network address masks, 282
IPv4 private address space, 279
IPv4 protocol numbers, 270
IPv6 address autoconfiguration scheme, 324
IPv6 address prefixes, 319
IPv6 address types, 319
IPv6 and IPv4 characteristics, 334
IPv6 deployment model comparison, 332
IPv6 deployment models, list of, 333
IPv6 mechanisms, 324-325
IPv6 prefix allocation, 314
IronPort WSA modes, 494
ISR versus ISR G2 features, 249
LAN device comparison chart, 94
link efficiency in WAN design, 220
lowering cost of ownership, 12
LSA header S2 S1 bits, 402
major LSA types, 396-397
major router types, 395
multicast addresses, 424
multicast scope assignments, 318
NAT concepts, 282
NetFlow output descriptions, 21
network delays, 554
network management elements, 578
network management protocol comparison, 589
network security life cycle, 457
network virtualization design considerations, 145
OSPF interface costs, 392
OSPFv3 LSA types, 402-403
packet loss sensitivities, 538
PPDIOO life cycle phases, 15
public versus private addresses (IPv4), 281
QoS considerations, 217
QoS scheme summary in IPT design, 560
redundancy models, 65
risk index calculation, 461
RMON1 groups, 584
RMON2 groups, 585
routing protocol characteristics, 356
routing protocols on hierarchical network infrastructure, 422
scalability constraints for Gigabit Ethernet networks, 86
scalability constraints for IEEE 802.3 networks, 83
security legislation, 449
security policy documents, 459
security risks, 453
security threats, 450
service class recommendations, 562
SNMP message types, 582
SNMP security levels, 583
subnet masks, 283
summarization of networks, 418
syslog message levels, 588
top-down approach to network design, 24
ToS field values, 272
UDP ports used by WLAN protocols, 186
video media application models, 538
virtualization key drivers, 141
VoIP bandwidth requirements, 550-551
VoIP protocols, 549
VPN protocols, 468-469
WAN application requirements, 214
WAN bandwidth comparisons, 215
WAN link characteristics, 216
WAN transport technology comparison, 205
WAN/MAN architecture comparison, 243
well-known IPv6 multicast addresses, 318-319, 431
wireless mesh components, 182
WLAN controller platforms, 167, 171
WLAN design considerations, 183
WLAN standards summary, 157
WLC components, 169
WLC interface types, 170-171
WLC redundancy, 178
message format
 in RIPv2, 363-364
message levels (syslog protocol), 588
message types (SNMP), 582
metrics
 default metric in route redistribution, 420-421
 in EIGRP, 370-371
 in OSPFv2, 391-392
 for routing protocols, 356-361

 \[bandwidth, 357 \]
 \[cost, 358 \]
 \[delay, 359 \]
 \[hop count, 356-357 \]
 \[load, 358-359 \]
 \[loop prevention, 360-361 \]
 \[MTU parameter, 360 \]
 \[reliability, 359 \]
Metro Ethernet, 209, 237-238
MGCP in VoIP, 544
MIB (Management Information Base), 580-581
mobility groups in Cisco UWN, 174-176
MPLS (multiprotocol label switching), 211, 238-239
MPLS Layer 3, 239
MPPP (Multilink Point-to-Point Protocol), 65
network design 707

MTU (maximum transmission unit), 360
multicast addresses, 423-424
 in IPv6, 317-319, 430-431
 Layer 3-to-Layer 2 mapping, 424
multicast distribution trees, 428
multicast traffic, 423-431
 campus LAN design best practices, 108-109
CGMP (Cisco Group Management Protocol), 426-427
DVMRP, 430
IGMP, 425-426
IGMP snooping, 427
PIM, 428-430
sparse versus dense, 427-428
Multilink Point-to-Point Protocol (MPPP), 65
multiprotocol label switching (MPLS), 211, 238-239
multiservice networks. See IP telephony networks
multisite WAN with centralized call processing deployment model for IP telephony networks, 536
multisite WAN with distributed call processing deployment model for IP telephony networks, 536-537

N

N+1 WLC redundancy, 176
N+N WLC redundancy, 177
N+N+1 WLC redundancy, 177
name resolution
 in IPv4, 290-295
 ARP, 295
 DNS, 292-294
 in IPv6, 321-322
NAT (Network Address Translation), 279-282
ND (Neighbor Discovery) protocol in IPv6, 320-321
neighbor discovery and recovery in EIGRP, 368
Neighbor Discovery (ND) protocol in IPv6, 320-321
neighbors in BGP, 405-406
NetFlow, 21, 585-587
Network Address Translation (NAT), 279-282
network analysis tools, 22
network architectures. See enterprise architectures
network audit tools, 18-21
network availability, increasing, 12, 62-63. See also DoS (denial of service) attacks
network checklist, 22-23
network delays. See delay components in IP telephony networks
network design. See also campus LAN design; enterprise LAN design; WAN design
borderless network architecture, 58
Cisco Enterprise Architecture model, 47-58
 e-commerce submodule, 50-51
 enterprise campus module, 48-50
 enterprise edge area, 50-54
 enterprise WAN submodule, 53-54
 Internet connectivity submodule, 51-52
 remote modules, 55-57
resources for information, 65
service provider edge module, 54-55
VPN/remote access submodule, 52-53
customer requirements, identifying, 15-17

design document, 25-26

enterprise architectures.
See enterprise architectures

eexisting network, characterizing, 17-23

hierarchical network models, 40-46

access layer, 43-44

benefits of, 40-41

Cisco Enterprise Architecture model hierarchical layers, 44-45

core layer, 41-42
distribution layer, 42-43
elements of, 45-46

examples of, 45-46

resources for information, 65

high availability network services, 58-65

link media redundancy, 64-65

resources for information, 65

route redundancy, 62-63

server redundancy, 61-62

workstation-to-router redundancy, 59-61

PPDIOO life cycle.
See PPDIOO life cycle

prototype and pilot tests, 24-25

resources for information, 26

security policies in, 462

top-down approach, 23-25

network devices, security integration with, 497-502

Catalyst 6500 service modules, 500-502

Cisco security appliances, 499-500

endpoint security, 502

intrusion prevention, 500

IOS security, 498

ISR G2 security hardware options, 499

network interface layer (TCP/IP architecture), 666

network layer (OSI model), 663-664

network life cycle. See PPDIOO life cycle

network management

CDP (Cisco Discovery Protocol), 587

comparison of protocols, 589

elements of, 578

FCAPS, 578

NetFlow, 585-587

resources for information, 589-590

RMON1, 583-584

RMON2, 584-585

SNMP (Simple Network Management Protocol), 579-583

components of, 579-580

MIB (Management Information Base), 580-581

SNMPv1, 581-582

SNMPv2, 582

SNMPv3, 582-583

syslog protocol, 588-589

network portion of address, determining, 285

network requirements.
See customer requirements

network security. See security

network virtualization, 142, 144-145

next-hop attribute in BGP, 411

nibbles, 672

NSSAs in OSPFv2, 398-399

numbering plan (PSTN), 526-527

O

octets, 672

Open Shortest Path First. See OSPFv2; OSPFv3
Open Systems Interconnection model. See OSI (Open Systems Interconnection) model

Operate phase (PPDIOO life cycle), 14
Optimize phase (PPDIOO life cycle), 14
optional attributes in BGP, 411
ordering WAN transport technologies, 212-213
origin attribute in BGP, 411-412
OSI (Open Systems Interconnection) model, 661-665
application layer, 665
data link layer, 663
layered communication example, 666-667
network layer, 663-664
physical layer, 662
presentation layer, 665
session layer, 664
TCP/IP architecture mapping to, 665
transport layer, 664
OSPFv2, 391-400
adjacencies and Hello timers, 392-393
areas, 393
autonomous system external path types, 397
characteristics of, 400
DRs, 395-396
LSA types, 396-397
metrics, 391-392
NSSAs, 398-399
route redistribution, 421
router authentication, 399
router types, 394-395
stub area types, 397-398
virtual links, 399
OSPFv3, 325, 400-404
areas and router types, 401
changes from OSPFv2, 400-401
characteristics of, 404
LSA types, 401-403
route redistribution, 421
outdoor wireless with wireless mesh design, 181-182
output descriptions in NetFlow, 21
overheating in data center design, 132-133

P

packet loss sensitivities, 538, 555
packet types in EIGRP, 371-372
packet-switched WANs, 230
partial-mesh networks, 63
partial-mesh topology in WAN design, 231-232
passwords, defined, 464
path attributes in BGP, 410-413
path isolation in network virtualization design, 145
path MTU discovery in IPv6, 322
Payment Card Industry Data Security Standard (PCI DSS), 449
PBR (policy-based routing), 416
PBX, PSTN switches versus, 518-519. See also voice networks
PCI DSS (Payment Card Industry Data Security Standard), 449
Pearland Hospital scenario, 599-604
Pearson Cert Practice Test engine, 617-618
phases in PPDIOO life cycle, 15
physical layer (OSI model), 662
physical security, 470-471
pilot network tests, 24-25
PIM, 428-430
PIM DR, 429
PIM-SM, 429
PIMv2 bootstrap routers, 430
Plan phase (PPDIOO life cycle), 14
platforms
for network security, 485-486
for security management, 495-496
poison reverse, 361
policies. See security policies
policing in WAN design, 219
policy-based routing (PBR), 416
port scanning tools, 450-451
ports in voice networks, 520-521
power usage in data center design, 131-132
PPDIOO life cycle, 11-15
accelerating access to applications and services, 13
benefits of, 11
design methodology, 15
Design phase, 14
Implement phase, 14
improving business agility, 12
increasing network availability, 12
lowering cost of ownership, 12
Operate phase, 14
Optimize phase, 14
phases in, 15
Plan phase, 14
Prepare phase, 13
in WAN design, 213
precedence bit values in IPv4 headers, 272
prefixes in IPv6 addresses, 312-314, 319
Prepare phase (PPDIOO life cycle), 13
presentation layer (OSI model), 665
priority queueing in WAN design, 218
private addresses (IPv4), 279-282
processing delay in IP telephony networks, 553
profiles, enterprise branch architectures, 248-249
propagation delay in IP telephony networks, 553
protocol numbers, IPv4 headers, 270
protocol translation, IPv4 to IPv6, 328-329
protocol-dependent modules in EIGRP, 368
protocols. See also routing protocols
VoIP control and transport protocols, 541-549
DHCP, DNS, TFTP, 542
H.264 standard, 547
H.323 standard, 544-547
MGCP, 544
RTP and RTCP, 543
SCCP, 542
SIP, 548-549
VPN protocols, 467-469
prototype network tests, 24-25
pruning PIM-SM, 429
PSTN. See also voice networks
call detail records (CDR), 528
Centrex services, 528
described, 518
numbering plan, 526-527
PBX switches versus, 518-519
voice mail, 528
public addresses (IPv4), private addresses (IPv4) versus, 280-282
Q
QoS (quality of service)
campus LAN design best practices, 106-107
in IPT design, 555-560
 Auto QoS, 559
 cRTP, 556
 IEEE 802.1P, 556-557
 LFI, 557
 LLQ, 557-559
 RSVP, 557
in WAN design, 217
Q.SIG signaling, 524-525

R

rack servers in data center design, 128
radio management in wireless LAN design, 178-180
RF groups, 179
 RF site surveys, 179-180
RDP, 59
REAP in branch LAN design, 184
reconnaissance, 450
 port scanning tools, 450-451
 vulnerability scanning tools, 451-452
redistribution of routes, 419-421
 default metric, 420-421
 OSPF redistribution, 421
redundancy. See high availability network services
Regional Internet Registries (RIR), 276
reliability
 for routing protocols, 359
 in WAN design, 215
remote modules in Cisco Enterprise Architecture model, 55-57
remote-access network design, 232
repeaters
 100BASE-T Ethernet, 85-86
 enterprise LAN design, 90
requirements, application requirements in WAN design, 214
resource records (DNS), 294
Resource Reservation Protocol (RSVP) in VoIP, 557
resources for information
campus LAN design, 109
CCDA exam updates, 657-658
Cisco Enterprise Architecture model, 65
enterprise data center design, 145-146
enterprise LAN design, 109
hierarchical network models, 65
high availability network services, 65
IP telephony networks, 562-563
IPv4, 296
IPv6, 334-335
network design, 26
network management, 589-590
OSI (Open Systems Interconnection) model, 675
routing protocols, 375-376, 431-432
security, 473, 507
TCP/IP architecture, 675
voice networks, 562-563
WAN design, 255
WANs (wide area networks), 220
WLANs (wireless LANs), 186
response time in WAN design, 214
RF groups in wireless LAN design, 179
RF site surveys in wireless LAN design, 179-180
RIP, 59-60
RIPng, 325, 362, 365-367
 authentication, 365
 characteristics of, 366-367
design, 366
message format, 365-366
timers, 365
RIPv2, 362
 authentication, 362
 characteristics of, 364-365
 design, 364
 message format, 363-364
 routing database, 362
 timers, 364
RIR (Regional Internet Registries), 276
risk assessments, 459-460
risk index calculation, 460-461
risks to security, 453
RMON1, 583-584, 586-587
RMON2, 584-587
roaming in Cisco UWN, 173-176
route manipulation, 416-422
 filtering, 421-422
 on hierarchical network infrastructure, 422
PBR (policy-based routing), 416
redistribution, 419-421
 default metric, 420-421
 OSPF redistribution, 421
summarization, 416-419
route redundancy, 62-63
route reflectors in BGP, 407-409
routed hierarchical network designs, 45
router authentication in OSPFv2, 399
router types
 in OSPFv2, 394-395
 in OSPFv3, 401
routers in enterprise LAN design, 92-93
routing database in RIPv2, 362
routing protocols
 administrative distance, 355-356
 BGP, 404-416
 administrative distance, 409
 characteristics of, 415-416
 confederations, 409
decision process, 414-415
eBGP, 406
iBGP, 406-407
neighbors, 405-406
path attributes, 410-413
route reflectors, 407-409
weight, 414
classless versus classful routing protocols, 353-354
design characteristics of, 348, 356
distance-vector routing protocols, 351-353
EIGRP, 351-352, 367-375
 characteristics of, 375
 components of, 367
design, 372
DUAL and, 368-369
for IPv4, 373
for IPv6, 373-374
metrics, 370-371
neighbor discovery and recovery, 368
packet types, 371-372
protocol-dependent modules, 368
RTP and, 368
timers, 369-370
on hierarchical network infrastructure, 422
hierarchical versus flat routing protocols, 353
interior versus exterior protocols, 350-351
IPv4 versus IPv6 routing protocols, 354
in IPv6, 325-326
link-state routing protocols, 352-353
list of, 349-350
metrics, 356-361
 bandwidth, 357
 cost, 358
 delay, 359
 hop count, 356-357
 load, 358-359
 loop prevention, 360-361
 MTU parameter, 360
 reliability, 359
OSPFv2, 391-400
 adjacencies and Hello timers, 392-393
 areas, 393
 autonomous system external path types, 397
 characteristics of, 400
 DRs, 395-396
 LSA types, 396-397
 metrics, 391-392
 NSSAs, 398-399
 router authentication, 399
 router types, 394-395
 stub area types, 397-398
 virtual links, 399
OSPFv3, 400-404
 areas and router types, 401
 changes from OSPFv2, 400-401
 characteristics of, 404
 LSA types, 401-403
resources for information, 375-376, 431-432
RIPv2, 362
 authentication, 362
 characteristics of, 364-365
 design, 364
 message format, 363-364
 routing database, 362
 timers, 364
 static versus dynamic assignment, 348-350
RSVP (Resource Reservation Protocol)
in VoIP, 557
RTCP in VoIP, 543
RTP
 EIGRP and, 368
 in VoIP, 543
Sarbanes-Oxley (SOX), 449
scalability constraints
 for Gigabit Ethernet networks, 86
 for IEEE 802.3 networks, 83
scenarios
 Beauty Things Store, 606-608
 Big Oil and Gas, 604-606
 Falcon Communications, 608-610
 Pearland Hospital, 599-604
SCC in VoIP, 542
secure connectivity, 466-470
 data integrity, 469-470
 encryption, 466-467
 transmission confidentiality, 469
 VPN protocols, 467-469
security
Cisco SAFE (Security Architecture for the Enterprise), 484-486
Cisco SCF (Security Control Framework), 486
DoS (denial of service) attacks, 454-455
enterprise security, 502-506
campus security, 502-503
data center security, 503-504
enterprise edge and WAN security, 504-506
integration with network devices, 497-502
Catalyst 6500 service modules, 500-502
Cisco security appliances, 499-500
endpoint security, 502
intrusion prevention, 500
IOS security, 498
ISR G2 security hardware options, 499
integrity violations and confidentiality breaches, 455-456
in IPv6, 324
legislation concerning, 448-449
management solutions, 472, 495-496
network security life cycle, 457
overview, 448
platforms for, 485-486
port scanning tools, 450-451
resources for information, 473, 507
risks, 453
secure connectivity, 466-470
data integrity, 469-470
encryption, 466-467
transmission confidentiality, 469
VPN protocols, 467-469
security policies, 456-462
components of, 459
continuous security, 461-462
creating, 458
defined, 457-458
in network design, 462
purpose of, 458
risk assessments, 459-460
risk index calculation, 460-461
targets, 453-454
threat defense, 470-472
infrastructure protection, 471-472
physical security, 470-471
threat detection and mitigation, 490-494
threat types, 450
trust and identity management, 462-466
access control, 466
certificates, 465
domains of trust, 463-464
identity, defined, 464
passwords, 464
technologies for, 486-490
tokens, 464-465
trust, defined, 463
unauthorized access, 452-453
vulnerability scanning tools, 451-452
in WLANs, 157-160
security appliances, 499-500
Security Control Framework (SCF), 486
security levels (SNMP), 583
security policies, 456-462
components of, 459
continuous security, 461-462
creating, 458
defined, 457-458
in network design, 462
Spanning Tree Protocol (STP) 91

purpose of, 458
risk assessments, 459-460
risk index calculation, 460-461
serialization delay in IP telephony networks, 553
server connectivity options, campus LAN design best practices, 105
server deployment challenges in data center design, 127-135
cabling, 133-135
cooling, 132-133
facilities, 128-129
power usage, 131-132
space allotment, 130
server farms, campus LAN design best practices, 104
server redundancy, 61-62
server virtualization, 144
servers, WLAN access control, 159-160
service access, accelerating, 13
service block deployment model, IPv4 to IPv6, 330
service class recommendations in IPT design, 561-562
service provider edge module in Cisco Enterprise Architecture model, 54-55
service provider VPNs
enterprise VPNs versus, 233-239
Metro Ethernet, 237-238
MPLS, 238-239
MPLS Layer 3, 239
VPLS, 238
service set identifier (SSID), 157
services edge in network virtualization design, 145
session layer (OSI model), 664
shared distribution trees, 428
show version command, 20-21

signaling types in voice networks, 521-526
addressing digit signaling, 526
CAS and CCS signaling, 524
E&M signaling, 523-524
ground-start signaling, 522-523
ISDN PRI/BRI service, 524
loop-start signaling, 522
Q.SIG signaling, 524-525
SS7 signaling, 525
T1/E1 CAS signaling, 524
single-site deployment model for IP telephony networks, 535-536
SIP in VoIP, 548-549
small and remote site LANs, campus LAN design best practices, 103-104
small branch design in enterprise branch architectures, 250
SNMP (Simple Network Management Protocol), 579-583
components of, 579-580
MIB (Management Information Base), 580-581
NetFlow versus, 586-587
SNMPv1, 581-582
SNMPv2, 582
SNMPv3, 582-583
SNMPv1, 581-582
SNMPv2, 582
SNMPv3, 582-583
software, enterprise WAN design, 245-247
SONET/SDH, 209-210
source distribution trees, 428
SOX (Sarbanes-Oxley), 449
space allotment in data center design, 130
Spanning Tree Protocol (STP), 91
sparse multicast distribution, dense multicast distribution versus, 427-428
split horizon, 360
split-MAC architecture in Cisco UWN, 163-164
SS7 signaling, 525
SSID (service set identifier), 157
stateless autoconfiguration
 of globally unique IPv6 addresses, 323
 of link-local IPv6 addresses, 322-323
static IP addressing, 290-291
static routes, dynamic routes versus, 348-350
STP (Spanning Tree Protocol), 91
stub area types in OSPFv2, 397-398
study plan, 616-618
study tools, 613-616
subnet mask values for binary numbers, 675
subnets (IPv4), 282-290
 default network address masks, 282
 design, 283-284
 IP telephony networks, 288
 loopback addresses, 288
 network portion of address, determining, 285
 representation of, 283
 variable-length subnet masks (VLSM), 286-288
subnetting practice, 616-617
summarization in routing protocols, 361, 416-419
switched hierarchical network designs, 45
switches
 enterprise LAN design, 91-92
 PSTN versus PBX, 518-519
syslog protocol, 588-589

T
T1/E1 CAS signaling, 524
tables. See memory tables
targets of security threats, 453-454
TCP/IP architecture, 665-667
 application layer, 666
 host-to-host transport layer, 666
 Internet layer, 666
 layered communication example, 666-667
 network interface layer, 666
 OSI (Open Systems Interconnection) model mapping to, 665
TDM (time-division multiplexing), 209
teleworkers. See enterprise teleworker architectures
tests, prototype and pilot network tests, 24-25
TFTP in VoIP, 542
threats
 defense against, 470-472
 infrastructure protection, 471-472
 physical security, 470-471
 detection and mitigation, 490-494
types of, 450
throughput in WAN design, 214-215
time-division multiplexing (TDM), 209
timers
 in EIGRP, 369-370
 in OSPFv2, 392-393
 in RIPng, 365
 in RIPv2, 364
tokens, defined, 464-465
tools
 network analysis tools, 22
 network audit tools, 18-21
port scanning tools, 450-451
vulnerability scanning tools, 451-452

top-down approach to network design, 23-25

topologies
Data Center 3.0 topology components, 127
WAN design, 230-232
 - full-mesh topology, 231
 - hub-and-spoke topology, 230-231
 - partial-mesh topology, 231-232

ToS field in IPv4 headers, 271-274
DSCP AF packet-drop precedence values, 273
DSCP and IP precedence values, 273
IP DSCP values, 274
IP precedence bit values, 272
values, 272

totally stubby areas in OSPFv2, 398

traditional voice architectures, 518-530
ACD, 528
blocking probability, 530
busy hour, 529
busy-hour traffic (BHT), 529-530
call detail records (CDR), 528, 530
Centrex services, 528
Centum call second (CCS), 529
Erlangs, 528-529
grade of service (GoS), 528
IVR systems, 528
local loops and trunks, 519-520
ports, 520-521
PBX switches versus, 518-519

PSTN
 - described, 518
 - numbering plan, 526-527
 - PBX switches versus, 518-519

signaling types, 521-526
 - addressing digit signaling, 526
 - CAS and CCS signaling, 524
 - E&M signaling, 523-524
 - ground-start signaling, 522-523
 - ISDN PRI/BRI service, 524
 - loop-start signaling, 522
 - Q.SIG signaling, 524-525
 - SS7 signaling, 525
 - T1/E1 CAS signaling, 524

voice mail, 528

traffic shaping in WAN design, 219

transition mechanisms, IPv4 to IPv6, 326-333
 - dual-stack transitions, 326
 - IPv6 over IPv4 tunnels, 326-328
 - protocol translation, 328-329

transmission confidentiality, 469

transport layer (OSI model), 664

transport technologies for WANs, 204-213
 - cable, 206-207
 - comparison of, 205
 - dark fiber cabling, 211-212
 - DSL, 206
 - DWDM, 212
 - Frame Relay, 208-209
 - ISDN, 205-206
 - Metro Ethernet, 209
 - MPLS, 211
 - ordering, 212-213
 - SONET/SDH, 209-210
 - TDM, 209
 - wireless, 207-208

triggered updates, 361

trunks in voice networks, 519-520
trust
defined, 463
domains of, 463-464
trust and identity management, 462-466
access control, 466
certificates, 465
domains of trust, 463-464
identity, defined, 464
passwords, 464
technologies for, 486-490
tokens, 464-465
trust, defined, 463
tunneling, IPv6 over IPv4 tunnels, 326-328. See also VPNs (virtual private networks)

U
UDP ports, WLAN protocols and, 186
unauthorized access,
158, 450, 452-453.
See also access control
unicast addresses in IPv6, 314-316
unified computing as Data Center 3.0 component, 126
unified fabric as Data Center 3.0 component, 126
UNII frequencies, 156-157
unique local addresses in IPv6, 315-316
updates to CCDA exam, 657-658
U.S. Health Insurance Portability and Accountability Act (HIPAA), 449

V
VAD in IPT design, 550-551
variable delays in IP telephony networks, 553-554
variable-length subnet masks (VLSM), 286-288
video deployment over IP telephony networks, 537-539
virtual links in OSPFv2, 399
Virtual Port Channel (vPC), 143
Virtual Private LAN Services (VPLS), 238
virtual private networks. See VPNs (virtual private networks)
virtual routing and forwarding (VRF), 143
Virtual Switching System (VSS), 45-46, 98, 143
virtual tunnel interface (VTI), 237
virtualization, 141-145
benefits of, 141-142
challenges, 141
as Data Center 3.0 component, 126
design considerations, 144-145
technologies for, 143-144
types of, 142
VLSM (variable-length subnet masks), 286-288
voice bandwidth, calculating, 551-552
voice mail, 528
voice networks
IP telephony networks, 530-549
codes, 539-541
components of, 532-534
deployment models of, 535-537
design considerations, 549-562
design goals of, 534-535
video deployment, 537-539
VoIP (voice over IP), 531-532
VoIP control and transport protocols, 541-549
resources for information, 562-563
traditional voice architectures, 518-530
ACD, 528
blocking probability, 530
busy hour, 529
busy-hour traffic (BHT), 529-530
call detail records (CDR), 528, 530
Centrex services, 528
Centum call second (CCS), 529
Erlangs, 528-529
grade of service (GoS), 528
IVR systems, 528
local loops and trunks, 519-520
ports, 520-521
PSTN, described, 518
PSTN numbering plan, 526-527
PSTN versus PBX switches, 518-519
signaling types, 521-526
voice mail, 528
VoIP (voice over IP), 531-532
control and transport protocols, 541-549
DHCP, DNS, TFTP, 542
H.264 standard, 547
H.323 standard, 544-547
MGCP, 544
RTP and RTCP, 543
SCCP, 542
SIP, 548-549
vPC (Virtual Port Channel), 143
VPLS (Virtual Private LAN Services), 238
VPN/remote access submodule in Cisco Enterprise Architecture model, 52-53
VPNs (virtual private networks)
benefits of, 239
Cisco Easy VPN, 235
DMVPN, 236
enterprise VPN versus service provider VPN, 233-239
GRE (generic routing encapsulation), 236
IPsec, 234
IPsec direct encapsulation, 234-235
IPsec VTI, 237
L2TPv3, 237
Metro Ethernet, 237-238
MPLS, 238-239
MPLS Layer 3, 239
network design, 232-233
protocols, 467-469
VPLS, 238
VRF (virtual routing and forwarding), 143
VRRP, 61
VSS (Virtual Switching System), 45-46, 98, 143
vulnerability scanning tools, 451-452

W

WAN design, 202, 213-220
application requirements, 214
bandwidth comparisons, 215-216
class-based weighted fair queueing, 218-219
classification, 218
congestion management, 218
custom queueing, 218
enterprise branch architectures, 248-253
design rules, 248
ISR versus ISR G2 features, 249
large branch design, 252-253
medium branch design, 250-251
profiles, 248-249
small branch design, 250
enterprise teleworker architectures, 254-255
enterprise WAN architectures, 241-244
Cisco Enterprise MAN/WAN architecture, 243
comparison of, 243-244
enterprise WAN components, 245-247
link characteristics, 216-217
link efficiency, 220
low-latency queueing, 219
priority queueing, 218
QoS (quality of service), 217
redundancy, 240-241
reliability, 215
remote-access network design, 232
resources for information, 220, 255
response time, 214
throughput, 214-215
topologies, 230-232
 full-mesh topology, 231
 hub-and-spoke topology, 230-231
 partial-mesh topology, 231-232
traditional technologies for, 230-232
traffic shaping and policing, 219
VPNs (virtual private networks)
 benefits of, 239
 Cisco Easy VPN, 235
 DMVPN, 236
 enterprise VPN versus service provider VPN, 233-239
 GRE (generic routing encapsulation), 236
 IPsec, 234
 IPsec direct encapsulation, 234-235
 IPsec VTI, 237
 L2TPv3, 237
 Metro Ethernet, 237-238
 MPLS, 238-239
 MPLS Layer 3, 239
 network design, 232-233
 VPLS, 238
weighted fair queueing, 218
window size, 220

WANs (wide area networks).
 See also WAN design
connection modules, 203-204
defined, 202
enterprise WAN submodule in Cisco Enterprise Architecture model, 53-54
resources for information, 220
security for, 504-506
transport technologies, 204-213
cable, 206-207
comparison of, 205
dark fiber cabling, 211-212
DSL, 206
DWDM, 212
Frame Relay, 208-209
ISDN, 205-206
Metro Ethernet, 209
MPLS, 211
ordering, 212-213
SONET/SDH, 209-210
TDM, 209
wireless, 207-208
watts, BTU conversion, 133
Web sites, CCDA exam updates, 657
weight in BGP, 414
weighted fair queueing in WAN design, 218
well-known attributes in BGP, 410
well-known IPv6 multicast addresses, 318-319, 431
wide area networks. See WANs (wide area networks)
window size in WAN design, 220
wireless LAN design, 176-186
 branch LAN design, 184-186
 H-REAP, 184-185
 local MAC support, 184
REAP, 184
UDP ports used in, 186
campus LAN design, 183-184
EoIP tunnels, 181
outdoor wireless with wireless mesh
design, 181-182
radio management, 178-180
RF groups, 179
RF site surveys, 179-180
resources for information, 186
WLC redundancy design, 176-178
wireless LANs (WLANs). See WLANs
(wireless LANs)
wireless mesh for outdoor wireless,
181-182
wireless technologies for WANs,
207-208
WLANs (wireless LANs).
See also wireless LAN design
Cisco UWN (Unified Wireless
Network), 160-176
AP controller equipment
scaling, 171
AP modes, 164-166
architectures, 160-161
authentication, 167-169
CAPWAP, 163
local MAC support, 164
LWAPP, 162
LWAPP discovery of WLC,
166-167
roaming, 173-176
split-MAC architecture, 163-164
WLC components, 169
WLC interface types, 169-171
controller platforms, 167, 171
ISM and UNII frequencies, 156-157
Layer 2 access method, 157
resources for information, 186
security, 157-160
SSID (service set identifier), 157
standards, 155-157
WLC (wireless LAN controller)
components, 169
interface types, 169-171
LWAPP discovery of, 166-167
redundancy design, 176-178
workstation-to-router redundancy,
59-61
ARP, 59
explicit configuration, 59
GLBP, 61
HSRP, 60-61
RDP, 59
RIP, 59-60
VRRP, 61