

Working at a Small-to-Medium Business or ISP CCNA Discovery Learning Guide

Allan Reid
Jim Lorenz

Cisco Press

800 East 96th Street
Indianapolis, Indiana 46240 USA

Working at a Small-to-Medium Business or ISP CCNA Discovery Learning Guide

Allan Reid and Jim Lorenz

Copyright ${ }^{\circledR} 2008$ Cisco Systems, Inc.
Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America
First Printing April 2008
Library of Congress Cataloging-in-Publication Data
Reid, Allan.
Working at a small-to-medium business or ISP : CCNA discovery learning guide / Allan Reid, Jim Lorenz.
p. cm.

Includes index.
ISBN 978-1-58713-210-0 (pbk. w/cd)

1. Computer networks-Textbooks. 2. Computer networks-ManagementTextbooks. 3. Local area networks (Computer networks)-
Textbooks. 4. Business enterprises-Computer networks-
Textbooks. 5. Internet service providers-Textbooks. I.
Lorenz, Jim. II. Title.
TK5105.5.R4464 2008
004.6-dc22

2008015723
ISBN-13: 978-1-58713-210-0
ISBN-10: 1-58713-210-9

Publisher

Paul Boger
Associate Publisher Dave Dusthimer

Cisco Representative
Anthony Wolfenden
Cisco Press Program Manager Jeff Brady

Executive Editor
Mary Beth Ray
Managing Editor
Patrick Kanouse
Development Editor Dayna Isley

Senior Project Editor
Tonya Simpson
Copy Editor
Gayle Johnson
Technical Editors
Bernadette O'Brien, Elaine Horn, William Shurbert, Glenn Wright

Editorial Assistant
Vanessa Evans
Book Designer
Louisa Adair
Composition
Louisa Adair
Indexer
Tim Wright
Proofreader
Molly Proue

[^0]
Warning and Disclaimer

This book is designed to provide information about the Working at a Small-to-Medium Business or ISP CCNA Discovery course. Every effort has been made to make this book as complete and accurate as possible, but no warranty or fitness is implied.

The information is provided on an "as is" basis. The authors, Cisco Press, and Cisco Systems, Inc., shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the authors and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Corporate and Government Sales

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact U.S. Corporate and Government Sales 1-800-382-3419 corpsales @ pearsontechgroup.com.

For sales outside the United States, please contact International Sales international@pearsoned.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members of the professional technical community.

Reader feedback is a natural continuation of this process. If you have any comments about how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through e-mail at feedback@ciscopress.com. Please be sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

01110110	Americas Headquarters	Asia Pacific Headquarters	Europe Headquarters
	Cisco Systems, Inc.	Cisco Systems, Inc.	Cisco Systems International BV
	170 West Tasman Drive	168 Robinson Road	Haarlerbergpark
	San Jose, CA 95134-1706	\#28-01 Capital Tower	Haarlerbergweg 13-19
	USA	Singapore 068912	1101 CH Amsterdam
CISCO	www.cisco.com	www.cisco.com	The Netherlands
	Tel: 408 526-4000	Tel: +656317 7777	www-europe.cisco.com
	$800553-N E T S$ (6387)	Fax: +656317 7799	Tel: +310800 0200791
	Fax: 408 527-0883		Fax: +310203571100

[^1]
About the Authors

Allan Reid is the curriculum lead and a CCNA/CCNP instructor at the Centennial College CATC in Toronto, Canada. He is a professor in the Information and Communications Engineering Technology department and is an instructor and program supervisor for the School of Continuing Education at Centennial College. He has developed and taught networking courses for both private and public organizations and has been instrumental in developing and implementing numerous certificate, diploma, and degree programs in networking. Allan also is a curriculum developer for the Cisco Networking Academy. Outside his academic responsibilities, he has been active in the computer and networking fields for more than 25 years. Currently he is a principal in a company specializing in the design, management, and security of network solutions for small and medium-sized companies. Allan authored the first edition of WAN Technologies CCNA 4 Companion Guide (Cisco Press, ISBN 1-58713-172-2) and Using a Networker's Journal, which is a supplement to A Networker's Journal (Cisco Press, ISBN 1-58713-158-7). Most recently, he coauthored the CCNA Discovery online academy courses Networking for Home and Small Businesses and Introducing Routing and Switching in the Enterprise with Jim Lorenz.

Jim Lorenz is an instructor and curriculum developer for the Cisco Networking Academy. He has coauthored several Cisco Press titles, including Fundamentals of UNIX Companion Guide, Second Edition (ISBN 1-58713-140-4), Fundamentals of UNIX Lab Companion, Second Edition (ISBN 1-58713-139-0), and the third editions of the CCNA Lab Companions. He has more than 20 years of experience in information systems, ranging from programming and database administration to network design and project management. Jim has developed and taught computer and networking courses for numerous public and private institutions. As the Cisco academy manager at Chandler-Gilbert Community College in Arizona, he was instrumental in starting the Information Technology Institute (ITI) and developed a number of certificates and degree programs. Most recently, Jim coauthored the CCNA Discovery online academy courses Networking for Home and Small Businesses and Introducing Routing and Switching in the Enterprise with Allan Reid.

About the Technical Reviewers

Bernadette O'Brien has been teaching in the Cisco Networking Academy in Schenectady, New York since 1998. Schenectady High School is a Regional Academy for CCNA and is a CATC for Sponsored Curriculum, which Bernadette coordinates. Bernadette received her BS degree from SUNY Buffalo and her MS degree in curriculum and instruction from SUNY Albany. She is also CCNA and CCAI certified. Bernadette and her husband and two children live in a Victorian village very near the Adirondack Mountains in upstate New York. They enjoy rehabbing their 120-year-old Victorian house, skiing, and hiking.

Elaine Horn, CCAI, has been teaching in the Cisco Networking Academy since 1998 at TRECA (http://www.treca.org) in Marion, Ohio. TRECA is a CATC for CCNA, a regional academy for Sponsored and Emerging Technologies Curriculum, and a local academy for CCNA. She is currently teaching and supporting academies in Ohio, Kentucky, and Michigan. Elaine received her BS degree in education and an MA in mathematics education from The Ohio State University. She has also coordinated the Skills Ohio Internetworking Competition and worked with Cisco Press as a technical editor for Academy-related materials.

Bill Shurbert is a professor of information technology at New Hampshire Technical Institute in Concord, New Hampshire. He holds a bachelor's degree in technical management from Southern New Hampshire University. He enjoys teaching the Cisco CCNA, Wireless, and IT Essentials classes. In his off time, you can find Bill and Joanne, his wife of more than 25 years, sailing the waters of Lake Winnipesaukee.

Glenn Wright, CCNA, CCAI, is the codirector of the Cisco Academy Training Center (CATC) in Fort Worth, Texas. He has a bachelor's degree in business education from the University of North Texas and 22 years of experience in computer education. He has been involved in many aspects of the Cisco Networking Academy since 1999. He serves the Academy as an instructor and supports the Regional Academies in Texas, Louisiana, Oklahoma, Arkansas, North Carolina, South Carolina, Virginia, and Tennessee. Glenn has also worked with the Academy Quality Assurance Team, reviewing and editing Academy curriculum and assessment. He has developed and edited Packet Tracer activities for the Discovery curriculum. He has also worked with Cisco Press as a technical editor for Academyrelated materials.

Dedications

This book is dedicated to my children: Andrew, Philip, Amanda, Christopher, and Shaun. You are my inspiration, and you make it all worthwhile. Thank you for your patience and support. -Allan Reid

To the three most important people in my life: my wife, Mary, and my daughters, Jessica and Natasha. Thanks for your patience and support. -Jim Lorenz

Acknowledgments

We want to thank Mary Beth Ray, Dayna Isley, and Drew Cupp with Cisco Press for their help and guidance in putting this book together. We also want to thank the technical editors, Bernadette O'Brien, Elaine Horn, Bill Shurbert, and Glenn Wright. Their attention to detail and suggestions made a significant contribution to the accuracy and clarity of the content.

We would also like to acknowledge the entire CCNA Discovery development team from Cisco Systems for their hard work and dedication to making CCNA Discovery a reality.
Contents at a Glance
Introduction xxxii
Part I: Concepts
Chapter 1 The Internet and Its Uses 1
Chapter 2 Help Desk 19
Chapter 3 Planning a Network Upgrade 49
Chapter 4 Planning the Addressing Structure 73
Chapter 5 Configuring Network Devices 109
Chapter 6 Routing 173
Chapter 7 ISP Services 205
Chapter 8 ISP Responsibility 241
Chapter 9 Troubleshooting 285
Chapter 10 Putting It All Together 353
Part II: Labs
Chapter 1 Lab: The Internet and Its Uses 357
Chapter 2 Lab: Help Desk 367
Chapter 3 Lab: Planning a Network Upgrade 369
Chapter 4 Lab: Planning the Addressing Structure 373
Chapter 5 Lab: Configuring Network Devices 383
Chapter 6 Lab: Routing 487
Chapter 7 Lab: ISP Services 505
Chapter 8 Lab: ISP Responsibility 521
Chapter 9 Lab: Troubleshooting 589
Chapter 10 Capstone Project: Putting It All Together 679
Appendix A Check Your Understanding and Challenge Questions Answer Key 693
Appendix B Router Boot and Password Recovery Labs 709
Appendix C Lab Equipment Interfaces and Initial Configuration Restoration 721
Glossary 725
Index 739

Contents

Introduction xxxii
Part I: Concepts
Chapter 1 The Internet and Its Uses 1
Objectives 1
Key Terms 1
What Is the Internet? 2
The Internet and Standards 2
E-Commerce 2
Communications 2
Collaboration and Training 3
ISPs and ISP Services 4
Internet Service Providers 4
Delivering Internet Services to End Users 5
Dialup Access 5
DSL 5
Cable Modem 6
Satellite 6
Dedicated Bandwidth Options 6
Point of Presence 7
Internet Hierarchy 7
Tier 1 ISPs 9
Tier 2 ISPs 9
Tier 3 ISPs 9
Identifying the Structure of the Internet 9
ISP Connectivity 12
ISP Requirements 12
Roles and Responsibilities Within an ISP 14
Summary 15
Activities and Labs 16
Check Your Understanding 16
Challenge Questions and Activities 18
Chapter 2 Help Desk 19
Objectives 19
Key Terms 19
Help Desk Technicians 20
ISP Help Desk Organization 20
Roles of ISP Technicians 21
Interacting with Customers 22
OSI Model 24
Using the OSI Model 24
OSI Model Protocols and Technologies 27
Step 1: Upper Layers Create the Data 27
Step 2: Layer 4 Packages the Data for End-to-End Transport 27
Step 3: Layer 3 Adds the Network IP Address Information 28
Step 4: Layer 2 Adds the Data Link Layer Header and Trailer 28
Step 5: Layer 1 Converts the Data into Bits for Transmission 28
Troubleshooting Using the OSI Model 29
Bottom-Up Approach 30
Top-Down Approach 30
Divide-and-Conquer Approach 31
Help Desk Troubleshooting Example 31
ISP Troubleshooting 34
Help Desk Troubleshooting Scenarios 34
E-mail Issues 35
Host Configuration Issues 35
Customer Connectivity Issues 36
Creating and Using Help Desk Records 37
Customer Site Procedures 40
Summary 42
Activities and Labs 42
Check Your Understanding 43
Challenge Questions and Activities 47
Chapter 3 Planning a Network Upgrade 49
Objectives 49
Key Terms 49
Common Issues 50
Site Survey 50
Physical and Logical Topologies 52
Star Topologies 54
Mesh Topologies 54
Network Requirements Documentation 55
Planning the Network Upgrade 55
Network Upgrades 56
Phase 1: Requirements Gathering 56
Phase 2: Selection and Design 56
Phase 3: Implementation 56
Phase 4: Operation 56
Phase 5: Review and Evaluation 57
Physical Environment 57
Cabling Considerations 58
Structured Cable 60
Purchasing and Maintaining Equipment 61
Purchasing Equipment 61
Selecting Network Devices 63
Selecting LAN Devices 63
Speed and Types of Ports/Interfaces 63
Expandability 64
Manageability 64
Cost 64
Selecting Internetworking Devices 64
Connectivity 65
Features 65
Cost 65
Network Equipment Upgrades 66
Reliability and Availability 67
IP Addressing Plan 68
Summary 69
Activities and Labs 69
Check Your Understanding 70
Challenge Questions and Activities 72
Chapter 4 Planning the Addressing Structure 73
Objectives 73
Key Terms 73
IP Addressing in the LAN 74
Review of IP Addresses 74
Hierarchical Addressing 75
Classful Addressing 75
Subnetting Concepts 77
Classless Interdomain Routing (CIDR) 79
Subnetting a Network 82
Network Expansion Requirements 82
Proposed Solution 83
Classful Subnetting 85
Custom Subnet Masks 86
Communicating Between Subnets 90
IPv6 92
NAT and PAT 93
Basic Network Address Translation (NAT) 93
IP NAT Terms 95
Static and Dynamic NAT 97
Port-Based Network Address Translation 99
IP NAT Issues 102
Summary 103
Activities and Labs 103
Check Your Understanding 104
Challenge Questions and Activities 107
Chapter 5 Configuring Network Devices 109
Objectives 109
Key Terms 109
Initial ISR Configuration 110
Physical Setup of the ISR 112
Bootup Process 114
Startup Configuration File 114
Running Configuration File 115
In-Band and Out-of-Band Router Configuration 117
Out-of-Band Management 117
In-Band Management 117
Cisco IOS Programs 118
Configuring an ISR with SDM 120
SDM Express 121
Basic Configuration 121
LAN IP Address 122
DHCP 123
Configuring a Serial WAN Connection 124
Cisco SDM and SDM Express 126
Configuring Dynamic NAT Using Cisco SDM 127
Configuring a Router Using IOS CLI 128
Command-Line Interface and Modes 128
Using the Cisco IOS CLI 129
Using show Commands 132
Basic Configuration 137
Configuring an Interface 139
Configuring a Default Route 141
Configuring DHCP Services 141
Step 1: Create the DHCP Address Pool 142
Step 2: Specify the Network or Subnet 142
Step 3: Exclude IP Addresses 142
Step 4: Specify the Domain Name 142
Step 5: Specify the DNS Server IP Address 142
Step 6: Set the Default Gateway 143
Step 7: Set the Lease Duration 143
Step 8: Verify the Configuration 143
Configuring Static NAT Using Cisco IOS CLI 144
Backing Up a Cisco Router Configuration to a TFTP Server 146
Connecting the CPE to the ISP 148
Installing the CPE 148
Customer Connections over a WAN 151
Point-to-Point 151
Circuit-Switched 152
Packet-Switched 152
Choosing a WAN Connection 153
Configuring WAN Connections 154
Initial Cisco 2960 Switch Configuration 155
Standalone Switches 156
Power Up the Cisco 2960 Switch 159
Connecting the LAN Switch to the Router 161
CDP 164
Summary 167
Activities and Labs 168
Check Your Understanding 169
Challenge Questions and Activities 172
Chapter 6 Routing 173
Objectives 173
Key Terms 173
Enabling Routing Protocols 174
Routing Basics 174
Directly Connected Routes 178
Dynamically Updated Routes (Dynamic Routes) 178
Default Route 178
Static Routes 178
Routing Protocols 179
Common Interior Routing Protocols 182
RIP 183
EIGRP 184
Link-State Protocols: OSPF 185
Routing Within an Organization 187
Configure and Verify RIP 190
Exterior Routing Protocols 193
Autonomous Systems 193
Routing Between Autonomous Systems 195
Routing Across the Internet 196
Exterior Routing Protocols and the ISP 197
Configure and Verify BGP 199
Summary 201
Activities and Labs 201
Check Your Understanding 202
Chapter 7 ISP Services 205
Objectives 205
Key Terms 205
Introducing ISP Services 206
ISP Services 206
Reliability and Availability 207
Reliability 207
Availability 208
Protocols That Support ISP Services 208
Review of TCP/IP Protocols 208
Application Layer Protocols 210
Transport Layer Protocols 211
TCP and UDP 212
TCP 212
UDP 212
Differences Between TCP and UDP 214
Supporting Multiple Services 215
Domain Name Service 218
TCP/IP Hosts File 218
DNS 219
Resource Records and Domain Namespace 220
Domain Name Servers 220
Resolvers 220
DNS Name Resolution 221
Forward Lookup Zones 224
Reverse Lookup Zones 224
Primary Zones 225
Secondary Zones 225
Provisioning DNS Servers 225
Using ISP DNS Servers 225
Using Local DNS Servers 226
Services and Protocols 226
Supporting HTTP and HTTPS 227
Supporting FTP 229
Protocol Interpreter (PI) 229
Data Transfer Process (DTP) 229
Supporting SMTP, POP3, and IMAP 230
Simple Mail Transfer Protocol (SMTP) 231
Post Office Protocol Version 3 (POP3) 233
Internet Message Access Protocol (IMAP4) 234
Summary 236
Activities and Labs 236
Check Your Understanding 237
Challenge Questions and Activities 239
Chapter 8 ISP Responsibility 241
Objectives 241
Key Terms 241
ISP Security Considerations 242
ISP Security 242
Password Security 243
Extraneous Services 243
Patch Management 244
Application Security 244
User Rights 244
Security Scanning 244
Best Practices for Security 245
Data Encryption 247
Web Servers 248
E-mail Servers 248
Telnet Servers 248
FTP Servers 249
File Servers 249
Security Tools 249
Denial-of-Service Attacks 249
DoS 249
DDoS 249
DRDoS 250
Access Lists and Port Filtering 250
Port Filtering 250
Access Lists 251
Firewalls 251
IDS and IPS 253
IDS 254
IPS 255
Wireless Security 256
Changing Default Settings 257
Enabling Authentication 257
MAC Address Filtering 257
WEP 257
WPA 258
WPA2 258
Host Security 258
Known Attacks 259
Exploitable Services 260
Worms and Viruses 260
Back Doors and Trojans 260
Monitoring and Managing the ISP 261
Service-Level Agreements 261
Monitoring Network Link Performance 262
Device Management Using In-Band Tools 264
Telnet 264
Secure Shell (SSH) 264
Using SNMP and Syslog 265
SNMP 265
Syslog 267
Backups and Disaster Recovery 268
Causes of Data Loss 268
Hardware Failure 268
User Error 269
Theft 269
Malicious Activity 269
Operating System Failure 269
Backup Media 269
Tape Media 270
Optical Media 270
Hard Disk Media 270
Solid-State Media 271
Methods of File Backup 271
Normal (Full) 271
Differential 272
Incremental 273
Backup System Maintenance 273
Swap Media 273
Review Backup Logs 274
Perform Trial Restores 274
Perform Drive Maintenance 274
Backing Up and Restoring Cisco IOS Image Files 275
Using TFTP to Update the IOS Image 275
Using ROMmon to Recover the IOS Image 276
Best Practices for Disaster Recovery 277
Summary 280
Activities and Labs 281
Check Your Understanding 282
Chapter 9 Troubleshooting 285
Objectives 285
Troubleshooting Methodologies and Tools 286
The OSI Model and Troubleshooting 286
Troubleshooting Methodologies 289
Top-Down 289
Bottom-Up 289
Divide-and-Conquer 289
Troubleshooting Tools 290
Network Topologies 290
Software Troubleshooting Tools 291
Hardware Troubleshooting Tools 293
Troubleshooting Layer 1 and Layer 2 Issues 295
Layer 1 and 2 Problems 295
Troubleshooting Device Hardware and Boot Errors 298
Troubleshooting Cable and Device Port Errors 301
Excessive Noise 302
Excessive Collisions 303
Excessive Runt Frames 303
Late Collisions 303
Troubleshooting LAN Connectivity Issues 304
Troubleshooting WAN Connectivity Issues 305
Serial x Is Down, Line Protocol Is Down (DTE) 307
Serial x Is Up, Line Protocol Is Down (DTE) 307
Serial x Is Up, Line Protocol Is Down (DCE) 308
Serial x Is Up, Line Protocol Is Up (Looped) 308
Serial x Is Up, Line Protocol Is Down (Disabled) 308
Serial x Is Administratively Down, Line Protocol Is Down 309
Troubleshooting Layer 3 IP Addressing Issues 309
Review of Layer 3 Functionality and IP Addressing 310
IP Design and Configuration Issues 314
IP Address Planning and Allocation Issues 317
DHCP and NAT Issues 318
Troubleshooting Layer 3 Routing Issues 323
Layer 3 Routing Issues 323
Connected Route Problems 324
Static and Default Route Problems 324
Dynamic Route Problems 324
Dynamic Routing Errors 325
Troubleshooting Layer 4 and Upper Layer Issues 331
Layer 4 Traffic Filtering Errors 331
Troubleshooting Upper-Layer Problems 332
Step 1: Ping the Default Gateway 333
Step 2: Verify End-to-End Connectivity 333
Step 3: Verify Routing Configuration 334
Step 4: Verify NAT Operation 334
Step 5: Verify Firewall Filtering Rules 334
Using Telnet to Check Upper-Layer Connectivity 335
Preparing for Cisco Certification 336
Knowledge, Skills, and Abilities 336
Networking Knowledge, Skills, and Abilities 338
Making the Commitment 341
Creating a Plan 341
Practicing Test Taking 342
Visit the Testing Center 343
Format of the Examination 343
Summary 345
Activities and Labs 347
Check Your Understanding 348
Chapter 10 Putting It All Together 353
Summary Activity 353
Activities and Labs 353
Part II: Labs
Chapter 1 Lab: The Internet and Its Uses 357
Lab 1-1: Mapping ISP Connectivity Using traceroute (1.2.3) 357
Objectives 357
Background/Preparation 357
Task 1: Run the tracert Utility from a Host Computer 358
Task 2: Interpret tracert Outputs to Determine ISP Connectivity 359
Task 3: Map the Connectivity of Your ISP 361
Routes Traced Worksheet 363
Chapter 2 Lab: Help Desk 367
Chapter 3 Lab: Planning a Network Upgrade 369
Lab 3-1: Evaluating a Cabling Upgrade Plan (3.2.4) 369
Objectives 369
Background/Preparation 369
Task 1: Examine the Existing Floor Plan 369
Task 2: Evaluate the Plan for the New Floor Space 370
Task 3: Examine the Floor Space and Wiring Plan 370
Task 4: Reflection 371
Chapter 4 Lab: Planning the Addressing Structure 373
Lab 4-1: Subnetting a Network (4.1.5) 373
Objective 373
Background/Preparation 373
Task 1: Analyze the Network 375
Task 2: Calculate the Custom Subnet Mask 375
Task 3: Specify the Host IP Addresses 375
Task 4: Consider Other Subnetting Options 376
Task 5: Reflection 377
Lab 4-2: Determining PAT Translations (4.2.4) 378
Objectives 378
Background/Preparation 378
Task 1: Determine the IP Address of the Computer 379
Task 2: Determine the IP Addresses of the Gateway Router or ISR 379
Task 3: Display Baseline netstat Results 379
Task 4: Display Active Network Connections 380
Task 5: Determine Translated Addresses 380
Task 6: Reflection 381
Chapter 5 Lab: Configuring Network Devices 383
Lab 5-1: Powering Up an Integrated Services Router (5.1.3) 383
Objectives 383
Background/Preparation 383
Part 1: Initial Router Setup and Startup 384
Task 1: Position the Router and Connect the Ground Wire (Optional) 384
Task 2: Install the Compact Flash Memory Card (Optional) 385
Task 3: Connect the PC and Configure the Terminal Emulation Program 385
Task 4: Power Up the ISR 386
Task 5: Troubleshoot a Nonworking Router 387
Part 2: Displaying Router Information Using show Commands 387
Task 1: Display the Router Running Configuration 387
Task 2: Display the Router Startup Configuration 389
Task 3: Save the Running-Config to the Startup-Config 389
Task 4: Display the Router System Information Using the show version Command 390
Task 5: Reflection 392
Lab 5-2: Configuring an ISR with SDM Express (5.2.3) 393
Objectives 393
Background/Preparation 393
Task 1: Configure the PC to Connect to the Router, and Then Launch Cisco SDM 394
Task 2: Perform Initial Basic Configuration 396
Task 3: Configure the LAN IP Address 397
Task 4: Deselect the DHCP Server 398
Task 5: Configure the WAN Interface 398
Task 6: Enable the Firewall and Security Settings 401
Task 7: Review and Complete the Configuration 402
Task 8: Reflection 403
Lab 5-3: Configuring Dynamic NAT with SDM (5.2.4) 405
Objective 405
Background/Preparation 405
Task 1: Establish a Connection from the PC to the Router 406
Task 2: Configure SDM to Show Cisco IOS CLI Commands 407
Task 3: Launch the Basic NAT Wizard 407
Task 4: Select the WAN Interface for NAT 408
Task 5: Reflection 411
Lab 5-4: Configuring Basic Router Settings with the Cisco IOS CLI (5.3.5) 412
Objectives 412
Background/Preparation 412
Task 1: Configure Host IP Settings 413
Task 2: Log In to Each Router, and Configure a Hostname and Password 414
Task 3: Show the Router Running Configuration 415
Task 4: Configure the Serial Interface on R1 416
Task 5: Display Information About the Serial Interface on R1 417
Task 6: Configure the Serial Interface on R2 418
Task 7: Display Information About the Serial Interface on R2 418
Task 8: Verify That the Serial Connection Is Functioning 419
Task 9: Configure the FastEthernet Interface on R1 420
Task 10: Display Information About the FastEthernet Interface on R1 420
Task 11: Configure the FastEthernet Interface on R2 421
Task 12: Display Information About the FastEthernet Interface on R2 422
Task 13: Save the Configuration on Both Routers 423
Task 14: Check Both Router Configurations 423
Task 15: Verify That the FastEthernet Connection to Each Router Is Functioning 423
Task 16: Test Connectivity (Optional Challenge) 424
Lab 5-5: Configuring DHCP with SDM and the Cisco IOS CLI (5.3.7) 425
Objectives 425
Background/Preparation 425
Task 1: Configure Basic Router Settings Using IOS, and Configure PAT Using SDM 426
Task 2: Configure and Verify DHCP Using IOS 432
Task 3: Reflection 435
Lab 5-6: Configuring PAT with SDM and Static NAT Using Cisco IOS (5.3.8) 436
Objectives 436
Background/Preparation 436
Task 1: Configure Basic Router Settings Using IOS, and Configure PAT Using SDM 437
Task 2: Configure and Verify Static NAT Using IOS 444
Task 3: Reflection 446
Lab 5-7: Managing Router Configuration Files Using HyperTerminal (5.3.9a) 447
Objectives 447
Background/Preparation 447
Task 1: Configure Host IP Settings 448
Task 2: Log In to Router R1, and Configure the Basic Settings 449
Task 3: Display the R1 Router Configuration 449
Task 4: Save the Configuration on R1 450
Task 5: Start Capturing the Running Configuration File 450
Task 6: Stop Capturing the Configuration File 450
Task 7: Clean Up the Captured Configuration File 450
Task 8: Erase the Current Startup Configuration, and Restart the Router 454
Task 9: Reconfigure the R1 Router from the Saved Text File 455
Task 10: Modify the R1 Text File, and Use It to Configure the R2 Router 455
Task 11: Verify That the Network Is Functioning 456

Lab 5-8: Managing Router Configuration Files Using TFTP (5.3.9b)

Objectives 457
Background/Preparation 457
Task 1: Build the Network and Verify Connectivity 458
Task 2: Use TFTP to Save a Cisco IOS Configuration 459
Task 3: Use TFTP to Restore a Cisco IOS Configuration 464
Task 4: Reflection 465
Lab 5-9: Planning a WAN Upgrade (5.4.3) 466
Objective 466
Background/Preparation 466
Task 1: Identify the Business Requirements for the WAN Upgrade 466
Task 2: List Available WAN Options for the Business 467
Task 3: Identify the Best WAN Connection Option for the Business 467
Task 4: Group Discussion 467
WAN Upgrade Proposal 468
Lab 5-10: Powering Up a Switch (5.5.2) 470
Objectives 470
Background/Preparation 470
Task 1: Position and Ground the Switch (Optional) 470
Task 2: Connect the Computer to the Switch 470
Task 3: Configure the PC Terminal Emulation Program 471
Task 4: Power Up the Switch 471
Task 5: Troubleshoot a Nonworking Switch 473
Task 6: Reflection 473
Lab 5-11: Configuring the Cisco 2960 Switch (5.5.4) 474
Objectives 474
Background/Preparation 474
Task 1: Connect the Hosts to the Switch, and Configure Them 475
Task 2: Connect the Router to the Switch, and Configure the Router 475
Task 3: Perform an Initial Configuration on the Switch 476
Task 4: Configure the Management Interface on VLAN 1 476
Task 5: Verify Configuration of the Switch 477
Task 6: Verify Connectivity Using ping and Telnet 478
Task 7: Determine Which MAC Addresses the Switch Has Learned 480
Task 8: Configure Basic Port Security 481
Task 9: Connect a Different PC to the Secure Switch Port 483
Alternative Task 9: Change the MAC Address of H2 (Optional) 484
Task 10: Reactivate the Port 485
Task 11: Set Speed and Duplex Options for a Port 485
Task 12: Exit the Switch 486
Task 13: Reflection 486
Chapter 6 Lab: Routing 487
Lab 6-1: Creating a Network Diagram from Routing Tables (6.1.2) 487
Objectives 487
Background/Preparation 487
Task 1: Examine the Routing Table Entries for Router R1 487
Task 2: Examine the Routing Table Entries for Router R2 488
Task 3: Document Router Interfaces and IP Addresses 489
Task 4: Create a Network Topology Diagram 489
Task 5: Reflection 490
Lab 6-2: Configuring and Verifying RIP (6.1.5) 491
Objective 491
Background/Preparation 491
Task 1: Build the Network and Configure the Routers 492
Task 2: Configure the Hosts with the Proper IP Address, Subnet Mask, and Default Gateway 492
Task 3: Check the Routing Table Entries 492
Task 4: Test End-to-end Connectivity 493
Task 5: Configure the Routing Protocol of the Routers 493
Task 6: Show the Routing Tables for Each Router 494
Task 7: Test End-to-end Connectivity 495
Task 8: Use debug to Observe RIP Communications 496
Task 9: Reflection 497
Lab 6-3: Configuring BGP with Default Routing (6.2.4) 498
Objectives 498
Background/Preparation 498
Task 1: Configure Basic Information on Each Router 499
Task 2: Configure the Default and Static Routes 500
Task 3: Configure BGP on Both ISP Routers 500
Task 4: View the Routing Tables 501
Task 5: Verify Connectivity 503
Task 6: View BGP Information on the ISP Routers 503
Task 7: Reflection 503
Chapter 7 Lab: ISP Services 505
Lab 7-1: Editing the HOSTS File in Windows (7.3.1) 505
Objective 505
Background/Preparation 505
Task 1: Locate the HOSTS File in Windows 505
Task 2: Edit the HOSTS File 506
Task 3: Test the New Name Mapping 507
Task 4: Reflection 507Lab 7-2: Examining Cached DNS Information on a Windows DNS Server(7.3.3) 508
Objective 508
Background/Preparation 508
Task 1: Use the Windows Server DNS Administrative Tool 508
Task 2: Perform a DNS Lookup 510
Task 3: Examine the Cached DNS Entries 510
Task 4: Reflection 511
Lab 7-3: Creating Primary and Secondary Forward Lookup Zones (7.3.3) 512
Objective 512
Background/Preparation 512
Task 1: Create a Primary Forward Lookup Zone on Windows 512
Task 2: Add a Host Record to the Primary Forward Lookup Zone 515
Task 3: Create a Secondary Forward Lookup Zone 517
Task 4: Reflection 519
Chapter 8 Labs: ISP Responsibility 521
Lab 8-1: Securing Local Data and Transmitted Data (8.1.3) 521
Objectives 521
Background/Preparation 521
Part 1: Securing Local Data 521
Task 1: Secure Bob's Files Folder 521
Task 2: Test Joe's Access to Bob's Files 525
Part 2: Identifying a Secure Communication Channel When Transmitting Data over the Internet 525
Task 1: Identify a Secure Web Page 526
Task 2: Examine Secure Access to an Untrusted Source Warning 528
Lab 8-2: Planning for Access Control Lists and Port Filters (8.2.1) 529
Objective 529
Background/Preparation 529
Task 1: Restrict Client A to One Subnet 529
Task 2: Restrict Client B Access to Server A, But Allow Access to Server B andthe Internet 530
Task 3: Allow Only Client A to Access the Routers Using Only SSH 530
Lab 8-3: Researching Anti-X Software Products (8.2.5) 532
Objective 532
Background/Preparation 532
Task 1: Identify Three Products 532
Task 2: Compare Pricing 532
Lab 8-4: Interpreting a Service-Level Agreement (8.3.1) 533
Objectives 533
Background/Preparation 533
Task 1: Review Typical Customer Needs 533
Task 2: Analyze a Sample SLA and Identify Its Key Components 534
I. General Terms of the Service-Level Agreement 536
II. Warranty and Liability 536
III. Services Provided to [Client] 536
IV. System Availability 537
V. System Monitoring 537
VI. System Notifications 537
VII. Change Management Process 537
VIII. Penalties for Service Outages 540
IX. ISP Facilities Policies 540
X. Billing 540
XI. Signatures 540
Appendix 1: Services and Pricing 540
Appendix 2: System Requests Contact Lists 541
Lab 8-5: Conducting a Network Capture with Wireshark (8.3.2) 542
Objectives 542
Background/Preparation 542
Task 1: Install and Launch Wireshark 542
Task 2: Select an Interface to Use for Capturing Packets (Optional) 543
Task 3: Start a Network Capture 543
Task 4: Analyze Web Traffic Information (Optional) 543
Task 5: Filter a Network Capture 544
Task 6: Reflection 545
Lab 8-6: Managing Remote Network Devices with Telnet (8.3.3a) 546
Objectives 546
Background/Preparation 546
Task 1: Build the Network and Verify Connectivity 547
Task 2: Establish a Telnet Session from a Host Computer 548
Task 3: Perform Basic Telnet Operations Between Two Routers 549
Task 4: Perform Telnet Operations Between Multiple Routers 552
Task 5: Experiment with Multiple Linked Telnet Sessions 553
Task 6: Reflection 554
Lab 8-7: Configuring a Remote Router Using SSH (8.3.3b) 555
Objectives 555
Background/Preparation 555
Task 1: Configure the ISR to Accept SSH Connections Using SDM 557
Task 2: Configure SSH on a Non-SDM Router (Optional) 559
Task 3: Configure the SSH Client, and Connect the PC to the ISR 560
Task 4: Check the Configuration of the Cisco 1841 ISR 562
Task 5: Log Out of the Cisco 1841 ISR 562
Task 6: Reflection 562
Lab 8-8: Planning a Backup Solution (8.4.2) 563
Objective 563
Background/Preparation 563
Task 1: Choose the Media and Backup Hardware 563
Task 2: Design a Backup Plan and Procedure 564
Lab 8-9: Managing Cisco IOS Images with TFTP (8.4.3a) 565
Objectives 565
Background/Preparation 565
Task 1: Build the Network and Verify Connectivity 566
Task 2: Collect Information About the Router Memory and IOS Image 567
Task 3: Use TFTP to Save the Cisco IOS Image 569
Task 4: Use TFTP to Update a Cisco IOS Image 573
Task 5: Reflection 574
Lab 8-10: Managing Cisco IOS Images with ROMmon and TFTP (8.4.3b) 575
Objectives 575
Background/Preparation 575
Task 1: Build the Network and Verify Connectivity 576
Task 2: Collect Information About the Router Memory and IOS Image 577
Task 3: Use TFTP to Save the Current Cisco IOS Image 578
Task 4: Consider IOS Restoration Options 582
Task 5: Working in ROMmon Mode 582
Task 6: Use ROMmon and tftpdnld to Restore an IOS Image (Optional) 585
Task 7: Reflection 588
Chapter 9 Lab: Troubleshooting 589
Lab 9-1: Organizing CCENT Objectives by OSI Layer (9.1.1) 589
Objectives 589
Background/Preparation 589
Task 1: Access the CCENT Exam Web Page 589
Task 2: Review the OSI Model Layers 592
Task 3: Reflection 596
Lab 9-2: Using Wireshark to Observe the TCP Three-Way Handshake (9.1.3) 597
Objectives 597
Background/Preparation 597
Task 1: Prepare Wireshark to Capture Packets 597
Task 2: Generate and Analyze Captured Packets 598
Task 3: Reflection 603
Lab 9-3: Identifying Cabling and Media Errors (9.2.3) 604
Objectives 604
Background/Preparation 604
Task 1: Review Ethernet Device Cabling 605
Task 2: Build the Network and Configure Devices 606
Task 3: Verify Cabling and Interface Link LEDs 606
Task 4: Verify Interface Status and Connectivity 607
Task 5: Observe the Effects of Using Different Cable 610
Task 7: Reflection 614
Lab 9-4: Troubleshooting LAN Connectivity (9.2.4) 615
Objectives 615
Background/Preparation 615
Task 1: Build the Network and Configure Devices 616

Task 2: Verify Cabling, Interface LEDs, and Link Speed 617
Task 3: Verify Switch Interface Information 618
Task 4: Change Duplex Settings 619
Task 5: Change Speed Settings 620
Task 6: Set Both Duplex and Speed Settings 621
Task 7: Check Settings and Characteristics of Neighboring Devices and Interfaces 622
Task 8: Change Router Duplex Settings 623
Task 9: Reflection 623
Lab 9-5: Troubleshooting WAN Connectivity (9.2.5) 624
Objectives 624
Background/Preparation 624
Task 1: Build the Network and Configure Devices 625
Task 2: Verify Cabling and Interface LEDs 625
Task 3: Verify Router Interface Status and Connectivity 626
Task 4: Change the Clock Rate 628
Task 5: Remove the Serial Cable and Observe the Effects 630
Task 6: Change the Encapsulation Type 632
Task 7: Reflection 636
Lab 9-6: Designing an IP Subnetting Scheme for Growth (9.3.3) 637 Objectives 637
Background/Preparation 637
Task 1: Analyze the Network Topology for Subnetting Requirements 637
Task 2: Develop the Subnet Scheme 638
Task 3: Document Network Device and Host Interfaces 639
Task 4: Reflection 640
Lab 9-7: Correcting RIPv2 Routing Problems (9.4.2) 641
Objectives 641
Background/Preparation 641
Task 1: Build the Network and Configure Devices 643
Task 2: Load Routers with the Supplied Scripts 643
Task 3: Troubleshoot the BRANCH1 Router 646
Task 4: Troubleshoot HQ 650
Task 5: Troubleshoot BRANCH2 651
Task 6: Remove Auto-Summary 654
Task 7: Reflection 655
Task 8: Documentation 655
Lab 9-8: Using Telnet and SSH to Access Networking Devices (9.5.3) 656
Objectives 656
Background/Preparation 656
Part 1. Working with Telnet to Verify Device Configurations and Connectivity 658
Task 1: Build the Network and Verify Network Layer Connectivity 658
Task 2: Establish a Telnet Session from a Host Computer 659
Task 3: Perform Basic Telnet Operations Between the Routers 660
Task 4: Perform Telnet Operations Between Multiple Routers 661
Task 5: Remove the vty Password from R3 662
Part 2. Working with SSH to Verify Device Configurations and Connectivity 663
Task 1: Configure SSH on Router R2 664
Task 2: Log In to R2 Using the R1 CLI SSH Client 666
Task 3: Reflection 667
Lab 9-9: Identifying Necessary Knowledge, Skills, and Abilities (9.6.2) 668
Objectives 668
Background/Preparation 668
Task 1: Review the Definitions for KSAs 668
Task 2: Review an Existing Lab 669
Task 3: Identify the Knowledge, Skills, and Abilities Required for the Lab 670
Lab 9-10: Exploring the CCNA Prep Center (9.6.5) 671
Objectives 671
Background/Preparation 671
Task 1: Identify the Tools and Resources Available 671
Task 2: Explore the Cisco CCNA Prep Center Website 672
Task 3: Explore the Exam Study Area and Take Practice Exams 675
Task 4: Reflection 676
Chapter 10 Capstone Project: Putting It All Together 679
Objectives 679
Background/Preparation 679
Part A: Review the Existing Network and Customer Work Order 681
Part B: Develop the Subnet Scheme 682
Task 1: Determine the Number of Hosts and Subnets 682
Task 2: Calculate the Custom Subnet Mask 682
Task 3: Identify Subnet and Host IP Addresses 682
Part C: Document Network Device Interfaces and Physical Topology 683
Task 1: Document the Cisco 1841 Router Interfaces and Host IP Addresses 683
Task 2: Document the Linksys Interfaces and Host IP Addresses 684
Task 3: Diagram the Upgraded Network 684
Part D: Configure Devices, and Verify Default Settings 685
Task 1: Verify the Default Settings for the Cisco 1841 Customer Router 685
Task 2: Configure the Cisco 1841 Customer Router 685
Task 3: Verify Default Settings for the Linksys, and Set the SSID 687
Task 4: Verify Default Settings for the Cisco 2960 Switch 687
Task 5: Verify That Host PCs Are DHCP Clients 687
Part E: Connect Network Devices, and Verify Connectivity 688
Task 1: Connect the Network Devices 688
Task 2: Verify Device Configurations and Network Connectivity 689
Part F: Configure Port Security for the Switch 690
Task 1: Display the MAC Address Table Entry for the Port to Which the WiredHost Is Connected 690
Task 2: Clear the Dynamically Learned MAC Address Entry 691
Task 3: Shut Down the Port, Configure It as an Access Port, and Then Issue thePort Security Commands691
Task 4: Ping from the Wired Host to the AnyCompanyX Router Default Gateway 691
Task 5: Display the Port Security Using the show port-security interfaceCommand692
Task 6: Remove the Wired Host Cable from the Switch Port and Connect the Cable from Another PC 692
Task 7: Reconnect the Original Host to Its Port and Restore the Port 692
Appendix A Check Your Understanding and Challenge Questions Answer Key 693
Chapter 1 693
Check Your Understanding 693
Challenge Questions and Activities 694
Chapter 2 694
Check Your Understanding 694
Challenge Questions and Activities 696
Chapter 3 696
Check Your Understanding 696
Challenge Questions and Activities 697
Chapter 4 698
Check Your Understanding 698
Challenge Questions and Activities 700
Chapter 5 701
Check Your Understanding 701
Challenge Questions and Activities 702
Chapter 6 702
Check Your Understanding 702
Chapter 7 704
Check Your Understanding 704
Challenge Questions and Activities 705
Chapter 8 705
Check Your Understanding 705
Chapter 9 707
Check Your Understanding 707
Appendix B Router Boot and Password Recovery Labs 709
Lab B-1: Using the boot system Command 710
Task 1: \log in to the Router 710
Task 2: Enter Privileged EXEC Mode 710
Task 3: Save the Existing running-config to the startup-config 711
Task 4: Configure the Router and View the Running Configuration File 711
Task 5: Show Information About the Backup Configuration File 711
Task 6: Display the IOS Version and Other Important Information 711
Task 7: Create the Statements to Perform the Following Functions 712
Task 8: Show Information About the Flash Memory Device 712
Task 9: Specify a Fallback Boot Sequence 713
Lab B-2: Troubleshooting Configuration Register Boot Problems 714
Task 1: \log in to the Router 714
Task 2: Configure the Router Name and Configuration Register Setting 715
Task 3: Save the Existing running-config to the startup-config 715
Task 4: Restart the Router 715
Task 5: View the Running Configuration File 715
Task 6: Reload the Saved Configuration 715
Task 7: Display the IOS Version and Other Important Information 716
Task 8: Change the Configuration Register to Load the Startup Configuration File from NVRAM, Save, and Reload the Router 716
Task 9: Verify the Configuration Register Setting and Log Out of the Router 716
Lab B-3: Password Recovery Procedures 717
Task 1: Attempt to Log in to the Router 718
Task 2: Document the Current Configuration Register Setting 718
Task 3: Enter ROM Monitor Mode 718
Task 4: Examine the ROM Monitor Mode Help 718
Task 5: Change the Configuration Register Setting to Boot Without Loading the Configuration File 719
Task 6: Restart the Router 719
Task 7: Enter Privileged EXEC Mode and Change the Password 719
Task 8: Verify the New Password and Configuration 719
Appendix C Lab Equipment Interfaces and Initial Configuration Restoration 721
Router Interface Summary 721
Erasing and Reloading the Router 722
Erasing and Reloading the Switch 722
SDM Router Basic IOS Configuration 724
Glossary 725
Index 739

Icons Used in This Book

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- Boldface indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that the user enters (such as a show command).
- Italic indicates arguments for which you supply actual values.
- Vertical bars (I) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces (\{ \}) indicate a required choice.
- Braces within brackets ([\{ \}]) indicate a required choice within an optional element.

Introduction

The Cisco Networking Academy is a comprehensive e-learning program that delivers information technology skills to students around the world. The Cisco CCNA Discovery curriculum consists of four courses that provide a comprehensive overview of networking, from fundamentals to advanced applications and services. The curriculum emphasizes real-world practical application while providing opportunities for you to gain the skills and hands-on experience needed to design, install, operate, and maintain networks in small to medium-sized businesses, as well as enterprise and Internet service provider environments. The Working at a Small-to-Medium Business or ISP course is the second course in the curriculum.

This book is the official supplemental textbook for the second course in v4.1 of the CCNA Discovery online curriculum of the Networking Academy. As a textbook, this book provides a ready reference to explain the same networking concepts, technologies, protocols, and devices as the online curriculum. In addition, it contains all the interactive activities, Packet Tracer activities, and hands-on labs from the online curriculum as well as bonus activities.

This book emphasizes key topics, terms, and activities and provides many alternative explanations and examples as compared with the course. You can use the online curriculum as directed by your instructor and then also use this book's study tools to help solidify your understanding of all the topics. In addition, this book includes the following:

- Expanded coverage of CCENT/CCNA exam material
- Additional key glossary terms
- Bonus labs
- Additional Check Your Understanding and Challenge questions
- Interactive activities and Packet Tracer activities on the CD-ROM

Goals of This Book

First and foremost, by providing a fresh, complementary perspective on the online content, this book helps you learn all the required materials of the second course in the Networking Academy CCNA Discovery curriculum. As a secondary goal, individuals who do not always have Internet access can use this text as a mobile replacement for the online curriculum. In those cases, you can read the appropriate sections of this book, as directed by your instructor, and learn the topics that appear in the online curriculum. Another secondary goal of this book is to serve as your offline study material to help prepare you for the CCENT and CCNA exams.

Audience for This Book

This book's main audience is anyone taking the second CCNA Discovery course of the Networking Academy curriculum. Many Networking Academies use this textbook as a required tool in the course. Other Networking Academies recommend the Learning Guides as an additional source of study and practice materials.

Book Features

This book's educational features focus on supporting topic coverage, readability, and practice of the course material to facilitate your full understanding of the course material.

Topic Coverage

The following features give you a thorough overview of the topics covered in each chapter so that you can make constructive use of your study time:

- Objectives: Listed at the beginning of each chapter, the objectives reference the core concepts covered in the chapter. The objectives match the objectives stated in the corresponding chapters of the online curriculum. The question format in the Learning Guide encourages you to think about finding the answers as you read the chapter.
- "How-to" feature: When this book covers a set of steps that you need to perform for certain tasks, the text lists the steps as a how-to list. When you are studying, this icon helps you easily find this feature as you skim through the book.
- Notes, tips, cautions, and warnings: These are short sidebars that point out interesting facts, time-saving methods, and important safety issues.
- Chapter summaries: At the end of each chapter is a summary of the chapter's key concepts. It provides a synopsis of the chapter and serves as a study aid.

Readability

The authors have compiled, edited, and in some cases rewritten the material so that it has a more conversational tone that follows a consistent and accessible reading level. In addition, the following features have been updated to assist your understanding of the networking vocabulary:

- Key terms: Each chapter begins with a list of key terms, along with a page-number reference from the chapter. The terms are listed in the order in which they are explained in the chapter. This handy reference allows you to find a term, flip to the page where it appears, and see the term used in context. The glossary defines all the key terms.
- Glossary: This book contains an all-new glossary with more than 260 computer and networking terms.

Practice

Practice makes perfect. This new Learning Guide offers you ample opportunities to put what you learn into practice. You will find the following features valuable and effective in reinforcing the instruction you receive:

- Check Your Understanding questions and answer key: Updated review questions are presented at the end of each chapter as a self-assessment tool. These questions match the style of questions that you see in the online course. Appendix A, "Check Your Understanding and Challenge Questions Answer Key," provides answers for all the questions and explains each answer.
- (New) Challenge questions and activities: Additional—and more challenging—review questions and activities are presented at the end of the chapters. These questions are purposefully designed to be similar to the more complex styles of questions you might see on the CCNA exam. This section might also include activities to help prepare you for the exams. Appendix A provides the answers.
- Packet Tracer activities: Interspersed throughout the chapters you'll find many activities to perform with the Cisco Packet Tracer tool. Packet Tracer allows you to create a network, visualize how packets flow in the network, and use basic testing tools to determine whether the network would work. When you see this icon, you can use Packet Tracer with the listed file to perform a task suggested in this book. The activity files are available on this book's CD-ROM; the Packet Tracer software, however, is available through the Academy Connection website. Ask your instructor for access to Packet Tracer.
- Interactive activities: These activities provide an interactive learning experience to reinforce the material presented in the chapter.
- Labs: This book contains all the hands-on labs from the curriculum plus additional labs for further practice. Part I includes references to the hands-on labs, as denoted by the lab icon, and Part II of the book contains each lab in full. You may perform each lab when you see its reference in the chapter, or you can wait until you have completed the chapter.

A Word About the Packet Tracer Software and Activities

Packet Tracer is a self-paced, visual, interactive teaching and learning tool developed by Cisco. Lab activities are an important part of networking education. However, lab equipment can be a scarce resource. Packet Tracer provides a visual simulation of equipment and network processes to offset the challenge of limited equipment. You can spend as much time as you like completing standard lab exercises using Packet Tracer, and you have the option to work from home. Although Packet Tracer is not a substitute for real equipment, it allows you to practice using a command-line interface. This "e-doing" capability is a fundamental component of learning how to configure routers and switches from the command line.
Packet Tracer v4.x is available only to Cisco Networking Academies through the Academy Connection website. Ask your instructor for access to Packet Tracer.

A Word About the Discovery Server CD

The CCNA Discovery series of courses is designed to provide a hands-on learning approach to networking. Many of the CCNA Discovery labs are based on Internet services. Because it is not always possible to allow students to access these services on a live network, the Discovery Server has been developed to provide them.

The Discovery Server CD is a bootable CD that transforms a regular PC into a Linux server running several preconfigured services for use with CCNA Discovery labs. Your instructor can download the CD files, burn a CD, and show you how to use the server. Hands-on labs that make use of the Discovery server are identified within the labs themselves.

After it is booted, the server provides many services to clients:

- Domain Name System
- Web services
- FTP
- TFTP
- Telnet
- SSH
- DHCP
- Streaming video

How This Book Is Organized

This book covers the major topics in the same sequence as the online curriculum for the CCNA Discovery Working at a Small-to-Medium Business or ISP course. The online curriculum has nine chapters for this course, so this book has 10 chapters with the same names and numbers as the online course chapters.

To make it easier to use this book as a companion to the course, the major topic headings in each chapter match (with just a few exceptions) the major sections of the online course chapters. However, the Learning Guide presents many topics in a slightly different order under each major heading. Additionally, the book occasionally uses different examples than the course. As a result, you get more detailed explanations, a second set of examples, and different sequences of individual topics, all to aid the learning process. This new design, based on research into the needs of the Networking Academies, helps typical students lock in their understanding of all the course topics.

Chapters and Topics

Part I of this book has 10 chapters:

- Chapter 1, "The Internet and Its Uses," discusses the Internet-how it is evolving and how businesses and individuals make use of it. The importance of the ISP and standards in the continuing growth of the Internet is emphasized. This chapter focuses on the Internet infrastructure, including POPs, IXPs, and the types of devices ISPs use to provide services.
- Chapter 2, "Help Desk," introduces the help desk and the various roles of help desk and installation technicians. It also describes the levels of support provided by these personnel. This chapter reviews the seven layers of the OSI model as they relate to help desk support and their use in troubleshooting network issues. Common tools and diagnostic procedures used by help desk technicians are examined, as well as on-site procedures used to resolve issues.
- Chapter 3, "Planning a Network Upgrade," emphasizes the importance of proper planning when performing a network upgrade, including the use of a site survey, and it describes the steps involved in performing one. An overview of structured cabling is provided, along with the factors you must consider when upgrading LAN and internetworking devices.
- Chapter 4, "Planning the Addressing Structure," describes how IP addressing is implemented in the LAN and compares classful and classless networks and subnets. This chapter explains the process for subnetting a network to allow for efficient use of available IP addresses. In addition, it describes how Network Address Translation (NAT) and Port Address Translation (PAT) are used in modern-day networks.
- Chapter 5, "Configuring Network Devices," introduces the ISR and the methods available for configuring an ISR using both in-band and out-of-band techniques. This chapter introduces SDM and IOS commands and discusses how each is used to configure a Cisco device. The purpose and relationship of the device startup configuration and the running configuration are explained. In addition, Cisco Discovery Protocol (CDP) is introduced. Finally, the types of WAN connections available are discussed and compared in terms of cost and speed.
- Chapter 6, "Routing," describes the purpose and function of dynamic routing and compares the characteristics of different types of routes. The main interior gateway protocols and their key features are introduced, as is the configuration process for RIPv2 dynamic routing, using Cisco IOS. In addition, exterior gateway routing protocols, such as BGP, are introduced, as are the steps required to configure BGP.
- Chapter 7, "ISP Services," builds on network services introduced in the first CCNA Discovery course. It describes them in greater detail as they relate to those provided by an ISP. It describes the most common application layer protocols, such as HTTP, FTP, SMTP, IMAP, and POP3, as well as secure versions where they exist. This chapter also compares the UDP and TCP protocols and the types of traffic for which they are best suited. It also provides additional information on the Domain Name System (DNS) and how it functions.
- Chapter 8, "ISP Responsibility," describes ISP security policies and procedures and the tools used in implementing security at the ISP. This chapter describes the monitoring and managing of the ISP, as well as the responsibilities of the ISP with regard to maintenance and recovery.
- Chapter 9, "Troubleshooting," provides a review of Chapters 1 through 8, with a focus on identifying and correcting network problems using the OSI model as a basis. This chapter also provides guidance in preparing for the CCENT certification exam.
- In Chapter 10, "Putting It All Together," you use what you have learned about computer hardware and software, wired and wireless networking components, protocols and applications, and techniques for securing a network to plan and implement a technical solution for a small business.
Part II of this book includes the labs that correspond to each chapter.
This book also includes the following:
- Appendix A, "Check Your Understanding and Challenge Questions Answer Key," provides the answers to the Check Your Understanding questions that you find at the end of each chapter. It also includes answers for the Challenge questions and activities that conclude most chapters.
- Appendix B, "Router Boot and Password Recovery Labs," provides several additional labs to help you learn how to control the router bootup process and troubleshoot configuration register boot problems. Password recovery procedures are also included.
- Appendix C, "Lab Equipment Interfaces and Initial Configuration Restoration," provides a table listing the proper interface designations for various routers. Procedures are included for erasing and restoring routers and switches to clear previous configurations. In addition, the steps necessary to restore an SDM router are provided.
- The glossary provides a compiled list of all the key terms that appear throughout this book, plus additional computer and networking terms.

About the CD-ROM

The CD-ROM included with this book provides many useful tools and information to support your education:

- Packet Tracer activity files: These files allow you to work through the Packet Tracer activities referenced throughout the book, as indicated by the Packet Tracer activity icon.
- Interactive activities: The CD-ROM contains the interactive activities referenced throughout the book.
- CCENT Study Guides: Referenced throughout Chapter 9, "Troubleshooting," the six Study Guides and one Preparation Guide provide you with a method to prepare to obtain your CCENT certification by organizing your review of the topics covered on the ICND1 exam.
- Taking Notes: This section includes a .txt file of the chapter objectives to serve as a general outline of the key topics of which you need to take note. The practice of taking clear, consistent notes is an important skill not only for learning and studying the material but also for on-thejob success. Also included in this section is "A Guide to Using a Networker's Journal." It's a PDF booklet providing important insights into the value of using a professional journal, how to organize a journal, and some best practices for what, and what not, to take note of in your journal.
- IT Career Information: This section includes a Student Guide to applying the toolkit approach to your career development. Learn more about entering the world of information technology as a career by reading two informational chapters excerpted from The IT Career Builder's Toolkit: "Defining Yourself: Aptitudes and Desires" and "Making Yourself Indispensable."
- Lifelong Learning in Networking: As you embark on a technology career, you will notice that it is ever-changing and evolving. This career path provides new and exciting opportunities to learn new technologies and their applications. Cisco Press is one of the key resources to plug into on your quest for knowledge. This section of the CD-ROM provides an orientation to the information available to you and gives you tips on how to tap into these resources for lifelong learning.

This page intentionally left blank

PART I

Concepts

Chapter 1 The Internet and Its Uses page 1
Chapter 2 Help Desk page 19
Chapter 3 Planning a Network Upgrade page 49
Chapter 4 Planning the Addressing Structure page 73
Chapter 5 Configuring Network Devices page 109
Chapter 6 Routing page 173
Chapter 7 ISP Services page 205
Chapter 8 ISP Responsibility page 241
Chapter 9 Troubleshooting page 285
Chapter 10 Putting It All Together page 353

This page intentionally left blank

CHAPTER 3

Planning a Network Upgrade

Objectives

After completing this chapter, you should be able to answer the following questions:

- Why is proper planning necessary when you perform a network upgrade?
- What is a site survey, and why is it necessary?
- What is structured cabling?
- What factors must you consider when upgrading LAN and internetworking devices?
- What steps are involved in performing a site survey?

Key Terms

This chapter uses the following key terms. You can find the definitions in the glossary.
site survey 50
SWOT 55
failure domain 64
Cisco IOS 65
Integrated Services Router (ISR) 65
Fault tolerance 68

As businesses grow and evolve, they may outgrow their existing network and require a network upgrade. To help ensure a smooth transition, a careful look at both the current network and the new network requirements is necessary. This will help determine what new equipment and configurations are necessary to ensure that the new network fully supports both the current and future needs of the company or organization.

Part II of this book includes the corresponding labs for this chapter.

Common Issues

When a small company grows rapidly, the original network that supported the company often cannot keep pace with the expansion. Employees at the company may not realize how important it is to properly plan for network upgrades. In many cases, the business may just add various network hardware devices, of varying quality, from different manufacturers, and different network connection technologies, to connect new users. Often this causes a degradation in the quality of the network as each new user or device is added. If this continues, at some point the network is unable to properly support the types and level of network traffic that the users generate. Only when the network starts to fail do most small businesses look for help to redesign the network. An ISP or managed service provider may be called in to provide advice and to install and maintain the network upgrade.

Before a network upgrade can be properly designed, an onsite technician is dispatched to perform a site survey to document the existing network structure. It is also necessary to investigate and document the physical layout of the premises to determine where new equipment can be installed.

Site Survey

A site survey can give the network designer a substantial amount of information and create a proper starting point for the project. It shows what is already on site and indicates what is needed. A sales representative may accompany the technician to the site to interview the customer as well. A proper site survey gathers as much information as possible about the current business and its projected growth. This information is gathered from different people in an attempt to accurately forecast the current and future network requirements. Table 3-1 lists the information sought in a site survey.

Table 3-1 Site Survey Information
Category Information Sought
Number of users and How many network users, printers, and servers will the network types of equipment support? To determine the number of network users the network must support, be sure to consider how many users will be added over the next 12 months, and how many network printers and network servers the network has to accommodate.

Projected growth
What is the expected growth in the company or organization? Will the company be hiring new employees who must be provided with access to network resources? Will a new branch office be opened that will require connectivity? A network is a long-term investment. Planning for future growth now can save a great deal of time, money, and frustration in the future.

Category	Information Sought
Current Internet connectivity	How does your business connect to the Internet? Does the ISP provide the equipment, or do you own it? Often with a high-speed Internet connection such as DSL or cable, the service provider owns the equipment needed to connect to the Internet (for example, a DSL router or cable modem). If the connectivity is upgraded, the equipment that provides the connectivity may also need to be upgraded or replaced.
Application requirements	What applications does the network need to support? Do you require services for applications such as IP telephony or videoconferencing? It is important to identify the needs of particular applications, especially voice and video. These applications may require additional network device configuration and new ISP services to support the necessary quality.
Existing network infrastructure and physical layout	How many networking devices are installed in your network? What functions do they perform? Understanding the existing number and types of networking equipment that are currently installed is critical to being able to plan for the upgrade. It is also necessary to document any configurations that are loaded on the existing devices.
New services required	Will any new services be required either now or in the future? Will the company be implementing VoIP or videoconferencing technology? Many services require special equipment or configurations to optimize their performance. Equipment and configurations must take into account the possibility of new services to protect the investment and optimize performance.
Security and privacy considerations	Do you currently have a firewall in place to protect your network? When a private network connects to the Internet, it opens physical links to more than 50,000 unknown networks and all their unknown users. Although this connectivity offers exciting opportunities for information sharing, it also creates threats to information not meant for sharing. Integrated Services Routers (ISR) incorporate firewall features along with other functionality.
Wireless requirements	Would you like a wired, wireless, or wired plus wireless local-area network (LAN)? How big is the area that the wireless LAN (WLAN) must cover? It is possible to connect computers, printers, and other devices to the network using a traditional wired network (10/100 switched Ethernet), a wireless-only network (802.11x), or a combination of wired and wireless networking. Each wireless access point that connects the wireless desktop and wireless laptop computers to the network has a given range. To estimate the number of access points that are required, you must know the required coverage area and the physical characteristics of the location that the wireless network must cover.

Table 3-1 Site Survey Information continued

Category	Information Sought
Reliability and uptime expectations	What is the real cost of downtime in the company or organization? How long an outage can the company tolerate before suffering serious financial or customer losses? Maintaining nearly 100% uptime requires complete redundancy in all equipment and services and is extremely expensive to implement. Networks must be designed to reflect the real need for uptime and system reliability. This level can be determined only through intensive investigation and discussions with all the business stakeholders.
Budget constraints	What is the budget for the network installation or upgrade? System performance, reliability, and scalability are all expensive to achieve. The project budget normally is the deciding factor as to what can and cannot be done. A complete cost-benefit analysis must be com- pleted to determine which features and services are the most critical and which could be put off to a later date.

It is a good idea to obtain a floor plan if possible. If a floor plan is not available, you can draw a diagram indicating the size and locations of all rooms. An inventory of existing network hardware and software is also useful to provide a baseline of requirements.
You should be prepared for anything when doing the site survey. Networks do not always meet local electrical, building, or safety codes or adhere to standards. Sometimes networks grow haphazardly over time and end up being a mixture of technologies and protocols. When doing a site survey, be careful not to offend the customer by expressing an opinion about the quality of the existing installed network.

When the technician visits the customer premises, he or she should do a thorough overview of the network and computer setup. There may be some obvious issues, such as unlabeled cables, poor physical security for network devices, lack of emergency power, or lack of an uninterruptible power supply (UPS) for critical devices. These conditions should be noted on the technician's report, as well as the other requirements gathered from the survey and the customer interview. These deficiencies in the current network should be addressed in the proposal for a network upgrade.

When the site survey is complete, it is important that the technician review the results with the customer to ensure that nothing is missed and that the report has no errors. A summary of the questions asked and the information gathered can greatly simplify the review process. If the information is accurate, the report provides an excellent basis for the new network design.

Physical and Logical Topologies

Both the physical and logical topologies of the existing network need to be documented. A technician gathers the information during the site survey to create both a physical and logical topology map of the network. A physical topology, as shown in Figure 3-1, is the actual physical location of cables, computers, and other peripherals. A logical topology, as shown in Figure 3-2, documents the path that data takes through a network and the location where network functions, such as routing, occur.

Figure 3-1 Physical Topology

Figure 3-2 Logical Topology

In a wired network, the physical topology map consists of the wiring closet, as well as the wiring to the individual end-user stations. In a wireless network, the physical topology consists of the wiring closet and any access points that may be installed. Because there are no wires, the physical topology contains the wireless signal coverage area.

The logical topology generally is the same for both a wired and wireless network. It includes the naming and Layer 3 addressing of end stations, router gateways, and other network devices, regardless of the physical location. It indicates the location of routing, network address translation, and firewall filtering.

Developing a logical topology requires understanding of the relationship between the devices and the network, regardless of the physical cabling layout. Several topological arrangements are possible. Examples include star, extended star, partial mesh, and full mesh topologies, as shown in Figure 3-3.

Figure 3-3 Common Topologies

Star Topologies

In a star topology, each device is connected via a single connection to a central point, which is typically a switch or a wireless access point. The advantage of a star topology is that if a single connecting device fails, only that device is affected. However, if the central device, such as the switch, fails, then all connecting devices lose connectivity.

An extended star is created when the central device in one star is connected to a central device of another star, such as when multiple switches are interconnected, or daisy-chained together.

Mesh Topologies

Most core layers in a network are wired in either a full mesh or a partial mesh topology. In a full mesh topology, every device has a connection to every other device. Although full mesh topologies provide the benefit of a fully redundant network, they can be difficult to wire and manage and are more costly.

A partial mesh topology is used for larger installations. In a partial mesh topology, each device is connected to at least two other devices. This arrangement creates sufficient redundancy, without the complexity of a full mesh.

Implementing redundant links through partial or full mesh topologies ensures that network devices can find alternative paths to send data in the event of a failure.

Network Requirements Documentation

Along with creating the topology maps for the existing network, it is necessary to obtain additional information about the hosts and networking devices that are currently installed in the network. Record this information on a brief inventory sheet. In addition to currently installed equipment, document any planned growth that the company anticipates in the near future. This information helps the network designer determine what new equipment is required and the best way to structure the network to support the anticipated growth.

The inventory sheet of all the devices installed on the network includes the following:

- Device name
- Date of purchase
- Warranty information
- Location
- Brand and model
- Operating system
- Logical addressing information
- Connection information
- Security information

Creating Network Diagrams (3.1.3)
In this activity, you create a logical diagram and inventory list for a network. Use file d2-313 on the CD-ROM that accompanies this book to perform this activity using Packet Tracer.

Planning the Network Upgrade

Extensive planning should go into a network upgrade. As with any project, a need is first identified, and then a plan outlines the upgrade process from beginning to end. A good project plan helps identify any strengths, weaknesses, opportunities, and threats. This is called a SWOT analysis. The plan should clearly define the tasks and the order in which tasks are completed.

Some common examples of good planning include

- Sports teams following game plans
- Builders following blueprints
- Ceremonies or meetings following agendas

Network Upgrades

A network that is a patchwork of devices strung together using a mixture of technologies and protocols usually indicates poor or no initial planning. These types of networks are susceptible to downtime and are extremely difficult to maintain and troubleshoot. Unfortunately, this type of network is often encountered as small businesses experience rapid, unexpected growth. Even larger organizations often experience unplanned growth in their networks when they acquire or merge with other organizations. Organizations that experience a controlled rate of growth can properly plan their network to avoid problems and give their users an acceptable level of service.

The planning of a network upgrade begins after the initial site survey and report are complete. It consists of five distinct phases:

- Phase 1: Requirements gathering
- Phase 2: Selection and design
- Phase 3: Implementation
- Phase 4: Operation
- Phase 5: Review and evaluation

The next sections describe each phase in greater detail.

Phase 1: Requirements Gathering

After all the information has been gathered from the customer and the site visit, the design team at the ISP analyzes the information to determine network requirements and then generates an analysis report. If insufficient information is available to properly determine the best network upgrade path to follow, this team may request additional information.

Phase 2: Selection and Design

When the analysis report is complete, devices and cabling are selected. The design team creates multiple designs and shares them with other members on the project. This allows team members to view the LAN from a documentation perspective and evaluate trade-offs in performance and cost. It is during this step that any weaknesses of the design can be identified and addressed. Also during this phase, prototypes are created and tested. A successful prototype is a good indicator of how the new network will operate.

Phase 3: Implementation

If the first two steps are done correctly, the implementation phase may be performed without incident. If tasks were overlooked in the earlier phases, they must be corrected during implementation. A good implementation schedule must allow time for unexpected events and also schedules events to keep disruption of the customer's business to a minimum. Staying in constant communication with the customer during the installation is critical to the project's success.

Phase 4: Operation

When the network implementation phase is complete, the network moves into a production environment. In this environment, the network is considered live and performs all the tasks it has been designed to accomplish. If all steps up to this point have been properly completed, very few unexpected incidents should occur when the network moves into the operation phase.

Phase 5: Review and Evaluation

After the network is operational, the design and implementation must be reviewed and evaluated against the original design objectives. This is usually done by members of the design team with assistance from the network staff. This evaluation includes costs, performance, and appropriateness for the environment. For this process, the following items are recommended:

- Compare the user experience with the goals in the documentation, and evaluate whether the design is right for the job.
- Compare the projected designs and costs with the actual deployment. This ensures that future projects will benefit from the lessons learned on this project.
- Monitor the operation, and record changes. This ensures that the system is always fully documented and accountable.

It is important that, at each phase, careful planning and review occur to ensure that the project goes smoothly and the installation is successful. Onsite technicians are often included in all phases of the upgrade, including planning. This allows them to gain a better understanding of the expectations and limitations of the network upgrade and to give the end users a much-improved level of service.

Activity 3-1: Network Planning Phases (3.2.1)

In this activity, you determine at which phase of the network planning process certain events occur. Use file d2ia-321 on the CD-ROM that accompanies this book to perform this interactive activity.

Physical Environment

Before selecting equipment and determining the design of the new network, the network designer must examine the existing network facilities and cabling. This is part of the initial site survey. The facilities include the physical environment, the telecommunication room, and the existing network wiring. A telecommunications room or wiring closet in a small, single-floor network is usually called the main distribution facility (MDF). Figure 3-4 shows a small office environment with a single MDF.

Figure 3-4 Main Distribution Facility

The MDF typically contains many of the network devices, such as switches or hubs, routers, access points, and so on. It is where all the network cable is concentrated in a single point. Many times, the MDF also contains the ISP's point of presence (POP), where the network connects to the Internet through a telecommunications service provider. Figure 3-5 shows the layout of a typical MDF. If additional wiring closets are required, these are called intermediate distribution facilities (IDF). IDFs typically are smaller than the MDF and connect to the MDF with backbone cabling.

Figure 3-5 Typical MDF Layout
Telecommunications Room Wiring Closet

Abstract

Tip ISO standards refer to MDFs and IDFs using different terminology. MDFs and IDFs are sometimes called wiring closets. Because normally one MDF distributes telecommunication services to all areas of the building, MDFs are also called building distributors. Most environments have one or more IDFs on each floor of a building, so the ISO calls IDFs floor distributors.

Many small businesses have no telecommunications room or closet. Network equipment may be located on a desk or other furniture, and wires could be just lying on the floor. This arrangement should be avoided. Network equipment must always be secure to protect data. Loose or improperly installed cables are prone to damage and also present a tripping hazard to employees. As a network grows, it is important to consider the telecommunications room as critical to the network's security and reliability.

Cabling Considerations

When the existing cabling is not up to specification for the new equipment, you must plan for and install new cable. The condition of the existing cabling can quickly be determined by a physical inspection of the network during the site visit. This inspection should reveal the type of cable installed as well as any issues, such as improper termination, that could degrade network performance. When planning the installation of network cabling, you must consider different physical areas, as shown in Figure 3-6:

- User work areas
- Telecommunications rooms
- Backbone area (vertical backbone cabling)
- Distribution area (horizontal cabling)

Figure 3-6 Cabling Areas

You have many different types of network cables to choose from; some are more common than others. Each type of cable is best suited to specific applications and environments. The most common type of LAN cable is unshielded twisted-pair (UTP). This cable is easy to install, is fairly inexpensive, and has a high bandwidth capability. For long backbone runs or runs between buildings, fiber-optic cable normally is installed. Coaxial cable is not typically used in LANs, but it is widely used in cable modem provider networks. Table 3-2 describes some of the more common types of network cables.

Table 3-2 Common Network Cables

Cable Type	Characteristics
Shielded twisted-pair (STP)	Usually Category 5, 5e, or 6 cable that has a foil shielding to protect from outside electromagnetic interference (EMI). The distance limitation is approximately 328 feet (100 meters).
Unshielded twisted-pair (UTP)	Usually Category 5, 5e, or 6 cable. It does not provide extra shielding from EMI, but it is inexpensive. Cable runs should avoid electrically noisy areas. The distance limitation is approximately 328 feet (100 meters).
Coaxial	Has a solid copper core with several protective layers, including polyvinyl chloride (PVC), braided wire shielding, and a plastic covering. The distance limitation of several miles (kilometers) depends on the purpose of the connection.
Fiber-optic cable	A medium that is not susceptible to EMI and that can transmit data faster and farther than copper. Depending on the type of fiber optics, distance limitations can be several miles (kilometers).

Several organizations provide LAN cabling specifications. The Telecommunications Industry Association (TIA) and the Electronic Industries Association (EIA) worked together to provide the TIA/EIA cable specifications for LANs. Two of the most common TIA/EIA cable specifications are the $568-\mathrm{A}$ and $568-\mathrm{B}$ standards. Both of these standards typically use the same Category 5 or 6 cable, but with a different termination color code.

Three different types of UTP cables are commonly encountered in the network environment:

- Straight-through cables have the same pinout on both ends. They normally are used to connect dissimilar devices, such as a switch and a computer or a switch and a router.
- Crossover cables have the transmit pins on one end connected to the receive pins on the other end. This type of cable is used to connect like devices, such as two computers, two switches, or two routers. Crossover cables can also be used to connect a computer directly to a router interface.
- A console cable or a rollover cable has the pinouts on each end reversed. Normally it is used to connect the serial port of a computer to the console port of a router or switch to perform the initial configuration. Figure 3-7 shows typical uses of these cables.

Figure 3-7 Typical Uses of Cables

Another type of cable that is common in networks is a serial cable. A serial cable typically is used to connect the router to an Internet connection. This Internet connection may be to the phone company, the cable company, or a private ISP.

Structured Cable

When designing a structured cabling project, the first step is to obtain an accurate floor plan. The floor plan allows the technician to identify possible wiring closet locations, cable runs, and which electrical areas to avoid.

After the technician has identified and confirmed the locations of network devices, it is time to draw the network on the floor plan. Some of the more important items to document include the following:

- Patch cable: A short cable from the computer to the wall plate in the user work area.
- Horizontal cable: A cable from the wall plate to the IDF in the distribution area.
- Vertical cable: A cable from the IDF to the MDF in the organization's backbone area.
- Backbone cable: The part of a network that handles the major traffic.
- Location of wiring closet: An area to concentrate the end-user cable to the hub or switch.
- Cable management system: A series of trays and straps used to guide and protect cable runs.
- Cable labeling system: A proper labeling system or scheme that identifies cables.
- Electrical considerations: The premises should have adequate outlets to support the electrical requirements of the network equipment.

Figure 3-8 shows a telecommunications room and work area with both horizontal and vertical cabling.
Figure 3-8 Horizontal and Vertical Cabling

Lab 3-1: Evaluating a Cabling Upgrade Plan (3.2.4)
In this lab, you propose a cable upgrade plan to accommodate extra floor space acquired by a company. Refer to the hands-on lab in Part II of this book. You may perform this lab now or wait until the end of the chapter.

Purchasing and Maintaining Equipment

As the ISP team plans the network upgrade, issues arise related to purchasing new equipment, as well as maintaining new and existing equipment. Generally you have two options for the new equipment: managed service or in-house solutions. With a managed service solution, the equipment is obtained from the ISP through a lease or some other agreement. The ISP is responsible for updating and maintaining the equipment. With an in-house solution, the customer purchases the equipment and is responsible for updates, warranties, and maintaining the equipment.

Purchasing Equipment

When you purchase equipment, cost is always a major factor. A cost analysis of the purchase options must be conducted to provide a sound basis for the final purchase decision. Normally the customer conducts the cost analysis, but this may be done in conjunction with the ISP. Many other factors should be considered in addition to cost. Table 3-3 describes some of the factors you must consider when you're trying to decide if a managed or in-house solution is more appropriate.

Table 3-3 Managed Service or In-house Solution

	In-House	Managed Service
Considerations	Requires many decisions: Type of equipment Equipment location IT organization staffing Network design Maintenance requirements	Initial evaluation and choice of service provider Requirements definition Ongoing evaluation of service provider
Costs	Equipment purchasing or leasing IT organization staffing Training costs Multiple vendor costs and building Hardware repairs and upgrades Software release upgrades Telephone line changes Redundancy and reliability requirements	Single, predictable, monthly recurring bill Minimal up-front costs
Control and responsibility	You have most of the control and responsibility for managing and maintaining your network system	Delegate the level of network management to a qualified service provider based on your needs Keep your core business processes in-house Maintain control of the work flow in your organization Set service-level agreements (SLA) with a service provider
Reliability	You are responsible for keeping your network system available to employees, customers, and partners at all times	Service provider can guarantee availability up to 99.999% A 24-hour help desk is available for remote-access users Service provider management is transparent to the end users
End-user experience	Users are unaware of whether the network is managed by the companyor an external partner	Users are unaware of whether the network is managed by the company or an external partner

If the customer chooses the managed service, the SLA outlines the lease costs as well as other service costs. If the equipment is purchased outright, the customer should be aware of cost, warranty coverage, compatibility with existing equipment, and update and maintenance issues, all of which have an associated cost. This cost must be analyzed to determine the cost-effectiveness of any planned solution.

Selecting Network Devices

After the customer requirements have been analyzed, the design staff recommends the appropriate network devices to connect and support the new network functionality. Modern networks use a variety of devices for connectivity. Each device has certain capabilities to control the flow of data across a network. A general rule is that the higher the device is in the OSI model, the more intelligent it is. This means that a higher-level device can better analyze the data traffic and forward it based on information not available at lower layers. For example, a Layer 1 hub can only forward data out all ports, a Layer 2 switch can filter the data and only send it out the port connected to the destination based on MAC address, and a Layer 3 router can decide which traffic to forward or block based on the logical address.

As switches and routers evolve, the distinction between them becomes blurred. One simple distinction remains: LAN switches provide connectivity within an organization's LAN, whereas routers are needed to interconnect local networks or to form a wide-area network (WAN) environment.

In addition to switches and routers, other connectivity options are available for LANs. Wireless access points allow computers and other devices, such as handheld Internet Protocol (IP) phones, to wirelessly connect to the network or share broadband connectivity. Firewalls guard against network threats and provide application security, network control and containment, and secure connectivity technologies. ISRs combine the functionality of switches, routers, access points, and firewalls in the same networking device.

Selecting LAN Devices

Although both a hub and a switch can provide connectivity at the access layer of a network, switches should be chosen for connecting devices to a LAN. Switches generally are more expensive than hubs, but the enhanced performance makes them cost-effective. A hub generally is chosen as a networking device within a very small LAN, within a LAN that requires low throughput requirements, or when finances are limited. A hub may also be installed in a network when all network traffic is to be monitored. Hubs forward all traffic out all ports, whereas switches microsegment the network. Connecting a networkmonitoring device to a hub allows the monitoring device to see all network traffic on that segment. Some switches do provide the ability to monitor all network traffic through a special port, but this is not a universal feature.

When selecting a switch for a particular LAN, network designers need to consider a number of factors, including the following:

- Speed and types of ports/interfaces
- Expandability
- Manageability
- Cost

Speed and Types of Ports/Interfaces

Choosing Layer 2 devices that can accommodate increased speeds allows the network to evolve without your having to replace the central devices. It is a good idea to purchase the fastest ports available within the budgeted funds. A bit of extra money spent now can save a great deal of time and expense later, when it is time to upgrade the network again.

The same can be stated about the number and types of network ports. Network designers must carefully consider how many UTP and fiber ports are needed. It is important to estimate how many additional ports will be required to support network expansion in the future.

Expandability

Networking devices come in both fixed and modular physical configurations. Fixed configurations have a specific number and type of ports or interfaces and cannot be expanded. Modular devices have expansion slots that provide the flexibility to add new modules as requirements evolve. Most modular devices come with a basic number of fixed ports as well as expansion slots.

A typical use of an expansion slot is to add fiber-optic modules to a device that was originally configured with a number of fixed UTP ports. Modular switches can be a cost-effective approach to scaling LANs.

Manageability

A managed switch provides control over individual ports or over the switch as a whole. Typical controls include the ability to monitor operation and change the settings for a device. A managed device can be monitored for performance and security and typically provides enhancements to the monitoring and security features. For example, with a managed switch, ports can be turned on or off as required to control access. In addition, administrators can control which computers or devices are allowed to connect to a port.

Cost

The cost of a switch is determined by its capacity and features. The switch capacity includes the number and types of ports available and the overall throughput. Other factors that impact the cost are the switch's network management capabilities, embedded security technologies, and optional advanced switching technologies.

Using a simple cost-per-port calculation, it may appear initially that the best option is to deploy one large switch at a central location. However, this apparent cost savings may be offset by the expense from the longer cable lengths required to connect every device on the LAN to one central switch. Compare this option with the cost of deploying a number of smaller switches connected by a few long cables to a central switch.

Deploying a number of smaller devices instead of a single large device also has the benefit of reducing the size of the failure domain. A failure domain is the area of the network affected when a piece of networking equipment malfunctions or fails.

Exploring Different LAN Switch Options (3.3.3)

In this activity, you determine which types of interfaces are required to connect a new company switch to a router, Linksys wireless router, and hosts. Use file d2-333 on the CD-ROM that accompanies this book to perform this activity using Packet Tracer.

Selecting Internetworking Devices

After the LAN switches have been selected, it is time to determine which router is appropriate for the customer. A router is a Layer 3 device. It performs all tasks of devices in lower layers and selects the best route to the destination network based on Layer 3 information. Routers are the primary devices used to interconnect networks. Each port on a router connects to a different network and routes packets between the networks. Routers can break up broadcast domains and collision domains.

You must consider a number of factors when selecting a router. It is necessary to match the router's characteristics to the network's requirements. Factors for choosing a router include

- The type of connectivity required
- Features available
- Cost

Connectivity

Routers are used to interconnect networks that use different technologies. They can have both LAN and WAN interfaces. The router's LAN interfaces connect to the LAN medium. This medium typically is UTP cabling, but modules can be added to the router to allow the use of fiber-optic cable and other types of media. Depending on the series or model of router, there can be multiple interface types for connecting LAN and WAN cabling. It is important to anticipate an organization's future connectivity requirements and purchase a router that will serve the organization well into the future.

Features

It is necessary to match the router's characteristics to the network's requirements. After analysis, the business may need a router with specific features in addition to basic routing. Many routers provide features such as the following:

- Security
- Quality of service (QoS)
- Voice over IP (VoIP)
- Network Address Translation (NAT)
- Dynamic Host Configuration Protocol (DHCP)
- Wireless access
- Virtual private network (VPN)
- Intrusion detection

Most of these services are contained in the Cisco IOS that manages the router hardware and resources. Although normally these are software features, the hardware must be able to support the IOS required.

Cost

When you select internetwork devices, budget is an important consideration. Routers can be expensive. Additional modules, such as fiber optics, can increase the costs. To keep costs as low as possible, the medium used to connect to the router should be supported without the purchase of additional modules.

An Integrated Services Router (ISR) is a relatively new technology that combines multiple services into one device. Before the ISR, multiple devices were required to meet the needs of data, wired and wireless, voice and video, firewall, and VPN technologies. The ISR was designed with multiple services to accommodate the demands of small to medium-sized businesses and branch offices of large organizations. An ISR is designed for ease of use. It can quickly and easily enable end-to-end protection for users, applications, network endpoints, and wireless LANs. The cost of an ISR normally is less than if the individual devices are purchased separately.

Exploring Internetworking Devices (3.3.4)

In this activity, you determine and install the correct modules in the 1841 ISR to provide network connectivity. In addition, you select the correct cables to connect various network devices to the 1841 ISR. Use file d2-334 on the CD-ROM that accompanies this book to perform this activity using Packet Tracer.

Network Equipment Upgrades

Many small networks were initially built using a low-end integrated router to connect wireless and wired users. This type of device is designed to support small networks, usually consisting of a few wired hosts and possibly four or five wireless devices. When a small business outgrows the capabilities of its existing network devices, it must upgrade to more-capable devices. The devices used in this course and book are the Cisco 1841 ISR and the Cisco 2960 switch, as shown in Figure 3-9.

Figure 3-9 Cisco 1841 ISR and 2960 Switch

Cisco 1841 ISR

Cisco 2960 Switch

The Cisco 1841 ISR is designed to be a branch office or medium-sized business router. As an entrylevel multiservice router, it offers a number of different connectivity options. It is modular in design and can deliver multiple security services.

The Cisco Catalyst 2960 series Intelligent Ethernet switches are a family of fixed-configuration, standalone devices that provide Fast Ethernet and Gigabit Ethernet connectivity to the desktop. These switches can provide the high speeds and high-density switching capabilities that the smaller ISRs with integrated switching cannot. They are therefore a good option when upgrading networks built with either hubs or small ISR devices.

The Catalyst 2960 family of switches, shown in Figure 3-10, provides entry-level, enterprise-class, fixed-configuration switching that is optimized for access layer deployments. They provide both Fast Ethernet and Gigabit Ethernet to the desktop and are ideal for entry-level enterprise, mid-market, and branch-office environments. These compact switches often are deployed outside the wiring closet.

Figure 3-10 Cisco Catalyst 2960 Family of Switches

Reliability and Availability

Purchasing network devices and the installation of cabling for a network upgrade is only the beginning. Networks must be both reliable and available. Reliability is usually achieved by adding redundant components to the network, such as two routers instead of one. In this case, alternative data paths are created, so if one router experiences problems, the data can take an alternative route to arrive at the destination. For better reliability, all devices and connections should have complete redundancy. Unfortunately, this is extremely expensive in most environments. Therefore, the network design team must determine the level of redundancy to incorporate to achieve the necessary reliability. Figure 3-11 shows redundancy in a switched network.

Figure 3-11 Redundancy in a Switched Network

Availability is the amount of time the network is ready and able to deliver the necessary services. Any increase in reliability improves availability. Ensuring a higher level of availability requires not only redundancy but also equipment and software that have been engineered to provide this level of service. As an example of availability, telephone systems require "five 9 s " of uptime. This means that the telephone system must be available 99.999% of the time. Telephone systems cannot be down, or unavailable, more than $.001 \%$ of the time.
Fault tolerance systems typically are used to improve network reliability. Fault tolerance systems include devices such as UPSs, multiple AC power supplies, hot-swappable devices, and multiple interface cards. When one device fails, the redundant or backup system takes over to ensure minimal loss of reliability.

IP Addressing Plan

Planning for the network installation must include planning the logical addressing. Changing the Layer 3 IP addressing is a major issue when upgrading a network. If the network's structure is changed in the upgrade, the IP address scheme and network information may need to be altered to reflect the new structure.

When developing the addressing scheme, you must consider every device that requires an IP address, now and in the future. Some devices require addresses to carry out their functionality, and others only require an IP address to allow them to be accessed and configured across the network. Hosts and network devices that require an IP address include

- User computers
- Administrator computers
- Servers
- Other end devices such as printers, IP phones, and IP cameras
- Router LAN interfaces
- Router WAN (serial) interfaces
- Standalone switches
- Wireless access points

For example, if a new router is introduced to the network, new local networks, or subnets, are created. These new subnets need to have the proper IP address and subnet mask calculated. Sometimes, this means having to assign a totally new addressing scheme to the entire network.

After all the planning and design phases are complete, the upgrade proceeds to the implementation phase, in which the actual network installation begins.

Summary

Networks often experience unexpected growth and develop in a disorganized manner. When this happens, network performance degrades slowly with each new device added. At some point, the network no longer can support the traffic being generated by the users, so a network upgrade is required.

Whether the network upgrade is forced or planned, the upgrade process must be conducted in an organized manner. The upgrade plan must consider the strengths and weaknesses of and opportunities and threats posed by the network installation.

A network upgrade has five phases:

- Requirements gathering
- Equipment selection and network design
- Implementation
- Operation
- Review and evaluation

Documentation must include the physical and logical topology of the existing network, along with a complete inventory sheet of all equipment. This includes the location and layout of any telecommunications rooms as well as existing network wiring. Customer network requirements are gathered through surveys and interviews.

Cabling has four physical areas to consider: work areas, distribution area, telecommunications room, and backbone. Structured cabling projects deal with the placement of cables, the location of wiring closets, cable management, and electrical considerations.

When new equipment is used in a network upgrade, you have two purchase options: managed service and in-house. Both of these present many advantages and have serious limitations. The choice depends on the current business strengths and weaknesses.

Cost and expandability are two of the most important considerations when upgrading network devices. Generally, a device that functions at a higher OSI layer is considered a more intelligent device.

Activities and Labs

This summary outlines the activities and labs you can perform to help reinforce important concepts described in this chapter. You can find the activity and Packet Tracer files on the CD-ROM accompanying this book. The complete hands-on labs appear in Part II.

Interactive Activity on the CD:

Interactive Activity 3-1: Network Planning Phases (3.2.1)

Packet Tracer Activities on the CD:

Creating Network Diagrams (3.1.3)
Exploring Different LAN Switch Options (3.3.3)
Exploring Internetworking Devices (3.3.4)

Hands-on Lab in Part II of this book:

Lab 3-1: Evaluating a Cabling Upgrade Plan (3.2.4)

Check Your Understanding

Complete the review questions to check your understanding of the topics and concepts in this chapter. Answers are listed in Appendix A, "Check Your Understanding and Challenge Questions Answer Key."

1. What is the purpose of a site survey? (Select all that apply.)
A. To determine what network resources are currently in place.
B. To accurately forecast the current and future network requirements.
C. To repair any malfunctioning network equipment.
D. To ensure that all purchased networking equipment is still properly installed and functioning.
2. What should a site survey technician do if he or she finds nonstandard network installations during the survey process?
A. Report the condition to management to make sure that the previous contractor does not get rehired.
B. Inform management that they are in violation of standards and must pay you to correct the situation, or you will have to report them.
C. Ignore the situation, and proceed with the survey.
D. Report the condition to management, pointing out that this often happens when networks grow unexpectedly.
3. What should be done as a first step after the technician completes the site survey?
A. Use the information contained in the site survey documents to determine the customer's network requirements.
B. Review the site survey with the customer to make sure that nothing has been missed and everything is accurate.
C. Use the information contained in the site survey documents to determine how long the planned network upgrade will take.
D. Ask the technician to summarize the site survey documentation, summarizing only the important facts.
4. What should be contained on a logical topology diagram? (Select all that apply.)
A. Location of all networking devices
B. Physical location of cabling runs
C. IP address information of all devices
D. Device names
E. Location of wiring closets
5. What information should you record about devices when performing a network inventory?
(Select all that apply.)
A. Device name, brand, and model
B. Physical location
C. Operating system
D. Logical addressing information
E. Connection information
F. Security information
6. What is the correct sequence of steps when performing a network upgrade?
7. Review and evaluation
8. Implementation
9. Operation
10. Requirements gathering
11. Selection and design
A. $1,2,3,4,5$
B. $4,5,1,2,3$
C. $4,5,2,3,1$
D. $4,1,5,3,2$
E. $1,4,5,2,3$
12. What is the name of the location where all network cable is concentrated in a single point?
A. IDF
B. ISP
C. IXP
D. MDF
E. MFD
13. What type of cable typically is used to connect a workstation network interface card (NIC) to the wall outlet?
A. STP
B. UTP
C. Coaxial
D. Fiber-optic
14. Which of the following direct connections normally would require a crossover cable? (Select all that apply.)
A. A PC connected to another PC
B. A PC connected to a switch
C. A PC connected to a router
D. A switch connected to a router
E. A router connected to another router
15. What factors should you consider when selecting an internetworking device?

Challenge Questions and Activities

These questions require a deeper application of the concepts covered in this chapter. You can find the answers in Appendix A.

1. A small company is trying to decide if it should install and manage its own network solution or if it should invest in a managed solution from its local ISP. The company currently is having financial difficulties and does not have an internal IT department. What suggestion would you make, and why?
2. You have asked two new network technicians to recommend a switch for a new department within the company. The department will have 27 users and four networked printers. All devices currently connect at 100 Mbps . The first technician recommends a switch that has 48 10/100-Mbps ports. The second technician recommends a slightly more expensive switch that has 48 10/100/1000-Mbps ports and two fiber-optic uplink ports. Which technician has made the better recommendation, and why?

Symbols

\wedge (caret symbol), 131

A

AAA, 246
access lists, 251
active data connections, 230
address translation (NAT), troubleshooting, 321-323
administratively down interfaces, 315
ADSL (Asymmetric Digital Subscriber Line), 6
Anti-X software, 259
application layer, 25
OSI model, 286
protocols, 210
application security, 244
ASN (AS number), 193
assigning permissions, 245
attacks, 249-250
autonomous systems, 193-194
reachability, 196
routing between, 195
availability, 67, 208

B

back doors, 260
backing up Cisco router configuration files, 146-148
backup solutions
differential backups, 272
full backups, 271
hard disk media, 270
incremental backups, 273
maintenance, 273-275
optical media, 270
solid state media, 271
tape media, 270
bandwidth, 4
banners, configuring on Cisco routers, 137
baseline tools, 291
Basic Configuration window (SDM Express), 121
BGP (Border Gateway Protocol), 195, 199-200
boot errors, troubleshooting, 298-301
bootup process, Cisco ISR, 114
running configuration, 115-116
startup configuration, 114
troubleshooting, 116
bottom-up troubleshooting methodology, 30-34, 289
building distributors, 58

C

cable modems, 6
cable testers, 294
cables, 58, 60, 301
excessive collisions, troubleshooting, 303
excessive noise, troubleshooting, 302
excessive runt frames, troubleshooting, 303
late collisions, troubleshooting, 303
structured, 60-61
Catalyst 2960 switches. See Cisco Catalyst 2960 series switches
Catalyst switches. See Cisco Catalyst switches
CCENT exam, preparing for, 336-340
commitment, 341
creating a plan, 341-342
practicing test taking, 342-344
CDP (Cisco Discovery Protocol), configuring on Cisco
Catalyst switches, 164-166
certification exams, format of, 343
CIDR (Classless Interdomain Routing), 79-82
circuit-switched WAN connections, 152
Cisco Catalyst 2960 series switches, 66
CDP, configuring, 164-166
configuring, 156-160
connecting to router, 161-162
powering up, 159
switch port security, 162-164
Cisco Catalyst switches
LAN connectivity, troubleshooting, 304-305
LED lights, 157
switch port modes, 158-159
Cisco IOS Firewall software, 252
Cisco IOS Software
CLI
Cisco ISR, configuring, 118
commands, recalling, 131-132
global configuration mode, 129
help system, 129-130
router configuration submode, 129
routers, configuring, 128, 137-146
banners, 137
show commands, 132-136
image files
corrupt images, troubleshooting, 301
IP Base image, 111
recovering, 276-277
updating, 275
Cisco ISR (Integrated Services Router)
bootup process, 114
running configuration, 115-116
startup configuration, 114
troubleshooting, 116
configuring, 110
with CLI, 118
with SDM, 118-120
with SDM Express, 121-124
in-band management, 117
initial setup, 112-113
out-of-band management, 117

Cisco routers

configuration files, backing up, 146-148
connecting to Cisco Catalyst switches, 161-162
WAN connections, configuring PPP, 154-155
Cisco SDM (Security Device Manager), configuring
dynamic NAT, 127
Class A addresses, 76
Class B addresses, 77
Class C addresses, 77
classful addressing, 75-77
classful subnetting, 85-86
CLI (command-line interface), 128
help system, 129-130
commands, recalling, 131-132
routers, configuring, 128
show commands, 132-136
versus SDM, 119-120
CMTS (cable modem termination system), 13
collisions
effect on network performance, 296
troubleshooting, 303
commands
copy running-config startup config, 115
copy tftp flash, 275
debug ip rip, 193, 330
enable password, 137
enable secret, 137
ipconfig, 93
ping, 9
recalling, 131-132
router bgp, 199
service password encryption, 138
show, 132-133
show arp, 135
show flash, 300
show history, 131-132
show interfaces, 134-135, 329
show interfaces serial, 306-307
show ip dhep binding, 317
show ip interface, 329
show ip interfaces brief, 300-303
show ip nat translation, 322
show ip protocols, 192, 327
show ip route, 135, 175-177, 323, 330
show protocols, 136
show running-config, 328-329
show running-config interface, 304
show running-configuration, 138, 300
show startup-configuration, 300
show version, 115-116, 136, 299
tracert, 11-12
Windows, ipconfig /all, 318-320
committing to exam preparation, 341
communicating between subnets, 90-91
community strings, 266
comparing
CLI and SDM, 119-120
TCP/IP and OSI models, 211
UDP and TCP, 214
configuration files
backing up, 146-148
corrupt configuration files, troubleshooting, 301
configuring
BGP, 199-200
Cisco Catalyst 2960 switches, 156-160
CDP, 164-166
router connection, 161-162
switch port security, 162-164
Cisco ISR, 110
bootup process, 114-116
in-band management, 117
initial setup, 112-113
out-of-band management, 117
with CLI, 118
with SDM, 118-120
with SDM Express, 121-124
Cisco routers with CLI, 128, 137
banners, 137
console port, 138-139
default routes, 141
DHCP services, 141-144
interfaces, 139-140
static NAT, 144-146
dynamic NAT with Cisco SDM, 127
NAT, 321
RIP, 190-193
serial WAN connections
IP address, 125-126
serial line encapsulations, 124-125
static routes, 178-179
connecting CPE over WAN
connection type, selecting, 153-154
via circuit-switched connection, 152
via packet-switched connection, 152
via point-to-point connection, 151
connecting to Internet, 5-7
connection-oriented protocols, 212
connectivity
duplex mismatches, troubleshooting, 305
troubleshooting, 36, 304
verifying with ping command, 9
verifying with tracert command, 11-12
console port, configuring on Cisco routers, 138-139
context-sensitive help (CLI), 130
convergence, 180
copy running-config startup-config command, 115
copy tftp flash command, 275
corrupt Cisco IOS images, troubleshooting, 301
CPE (customer premises equipment)
connecting over WAN, 151
connection type, selecting, 153-154
via circuit-switched connection, 152
via packet-switched connection, 152
via point-to-point connection, 151
installing, 148-151
CSMA/CD (carrier sense multiple access/collision detect), 296
custom subnet masks, 86, 90
customer site troubleshooting procedures, 40-41

D

data encryption, 247-249
data link layer, 25
cables, troubleshooting, 301-303
OSI model, 287
troubleshooting, 295-298
DCE (data circuit-terminating equipment), 139
DDoS attacks, 249
debug ip rip command, 193, 330
decapsulation, 29
default routes, 178
configuring on Cisco routers, 141
troubleshooting, 324
devices
availability, 67
inventory sheets, 55
reliability, 67
routers, selecting, 64-65
switches, selecting, 63-64
upgrading, 66
DHCP (Dynamic Host Configuration Protocol)
configuring on Cisco routers, 141-144
troubleshooting, 318-320
DHCP window (SDM Express), 123-124
dialup access, 5
differential backups, 272
directly connected routes, 178
troubleshooting, 324
disabling privileged EXEC mode, 128
disaster recovery
backup solutions
differential backups, 272
full backups, 271
hard disk media, 270
incremental backups, 273
optical media, 270
solid-state media, 271
tape media, 270
best practices, 277-279
causes of data loss, 268-269
distance vector routing protocols, 180-182
RIP, configuring, 190-193
divide-and-conquer troubleshooting methodology, 289
DMM (digital multimeters), 294
DMZ (demilitarized zone), 252
DNS (Domain Name System), 218-219
domain name servers, 220
implementing
via ISPs, 225
via local DNS servers, 226
name resolution, 33, 221-224
forward lookup zones, 224
primary DNS zones, 225
reverse lookup zones, 224
secondary DNS zones, 225
resolvers, 220-221
resource records, 220
top-level domains, 221
verifying operation, 334
documenting
help desk calls, 37-39
network requirements, 55
domain name servers, 220
domain namespace, 220
DoS (denial-of-service) attacks, 249-250
DRDoS (distributed reflected denial-of-service) attacks, 250
DSL (Digital Subscriber Line), 5
DSLAM (DSL access multiplexer), 13
DTE (data terminal equipment), 139
DTP (Data Transfer Process) function of FTP, 229
DUAL (diffusing update algorithm), 185
duplex settings, displaying, 305
dynamic NAT, 97
configuring with Cisco SDM, 127
dynamic routes, 178
troubleshooting, 324-330

E

e-commerce, 2
EAP (Extensible Authentication Protocol), 257
EGPs (Exterior Gateway Protocols), 195
EIGRP (Enhanced IGRP), 184-185
e-mail, troubleshooting, 35
enable password command, 137
enable secret command, 137
encapsulation, 27, 213
encoding, 27
encryption, 247-249
end systems, 288
equipment, purchasing, 61-62
escalation, 21
evaluating network design and implementation, 57
exam
format of, 343
preparing for, 336-340
commitment, 341
creating a plan, 341-342
practicing test taking, 342-344
exterior routing protocols, autonomous systems, 193-196
external interfaces, 144

F-G

factual knowledge, importance of during exam preparation, 338
failure domains, 64
fault tolerance, 68
firewalls, 251, 253
five 9s, 208
Flash memory, displaying contents of, 300
floor distributors, 58
forward lookup zones, 224
frame headers, 28
FTP (File Transfer Protocol), 229
DTP function, 229
PI function, 229
full backups, 271
global configuration mode (CLI), 129

H

hard disk media, 270
hardware troubleshooting tools, 293-295
help desk technicians, 20
calls, documenting, 37, 39
connectivity issues, troubleshooting, 36
customer interaction, 22-24
customer site troubleshooting procedures, 40-41
e-mail issues, troubleshooting, 35
levels of customer support, 21
roles of, 21-22
help system, Cisco IOS CLI, 129-132
hierarchical addressing, 75, 314
HOB (high-order bits), 75
HOSTS file, 218-219
HTTP (HyperText Transfer Protocol)
proxy servers, 229
URLs, 227
HTTPS (Secure HTTP), 227-229
hubs, 288

IDF (intermediate distribution facility), $\mathbf{5 8}$
IDS (intrusion detection systems), 254-255
IGPs (Interior Gateway Protocols), 195
image files
corrupt images, troubleshooting, 301
IP Base image, 111
recovering, 276-277
updating, 275
IMAP4 (Internet Message Access Protocol), 234-235
implementing DNS
via ISPs, 225
via local DNS servers, 226
in-band management, 262
Cisco ISR, 117
SNMP, 265
Syslog, 267
Telnet, 264
incident management, 23
incremental backups, 273
inside global addresses, 95
inside local addresses, 95
installing CPE, 148-151
interfaces
administratively down, 315
configuring on Cisco routers, 139-140
troubleshooting, 301
interior routing protocols
EIGRP, 184-185
RIP, 183-184
configuring, 190-193
internal help desk technicians, 20
internal interfaces, 144
Internet, 2-3
internetworking devices, 111
inventory checklists, 150
inventory sheets, 55
IP addresses, 310-311
addressing scheme, developing, 68
assigning to serial WAN connection, 125-126
classful addressing, 75-77
DHCP, troubleshooting, 318-320
DNS resolution, 33
hierarchical addressing, 75, 314
IPv6, 92-93
NAT, 93-96
dynamic NAT, 97
static NAT, 98
troubleshooting, 321-323
PAT, 99-102
subnet masks, troubleshooting, 315-317
subnets, 312
overlapping, 314-315
subnetting, 77-78
CIDR, 79-82
classful, 85-86
communicating between subnets, 90-91
custom subnet masks, 86,90
network expansion requirements, 82-85 VLSM, 81
unavailable addresses, troubleshooting, 317-318
IP Base image, 111
ipconfig /all command (Windows), 318-320
ipconfig command, 93
IPS (intrusion prevention systems), 255-256
IPv6, 92-93
ISPs, 4, 197-198
backup solutions, maintenance, 273-275
connection methods
cable modem, 6
dialup access, 5

DSL, 5
Metro Ethernet, 7
satellite connection, 6
T1/E1, 7
T3/E3, 7
connectivity, requirements, 13
disaster recovery
backup media, 270
best practices, 277-279
data loss, causes of, 268-269
file backups, 271-275
solid-state media, 271
help desk technicians, 20
calls, documenting, 37-39
connectivity, troubleshooting, 36
customer interaction, 22-24
customer site troubleshooting procedures, 40-41
e-mail, troubleshooting, 35
levels of customer support, 21
roles of, 21-22
host security, 258-260
in-band management
SNMP, 265
Syslog, 267
Telnet, 264
IXPs, 7
link performance, monitoring, 262
POP, 7
roles and responsibilities, 14
security, 242-243
applications, 244
extraneous services, 243
passwords, 243
user rights, 244
wireless, 256-257
services, 206
application layer protocols, 210
availability, 208
reliability, 207
TCP/IP protocols, 208
transport layer protocols, 211-217
SLAs, 261
Tier 1, 9
Tier 2, 9
Tier 3, 9
ISR. See Cisco ISR
IXP (Internet Exchange Point), 7

J-K-L

knowledge bases, 292

LAN connectivity, 304-305
LAN IP Address window (SDM Express), 122
Layer 1, 301. See also physical layer troubleshooting, 295-298
Layer 2, 301. See also data link layer
devices, selecting, 63-64
troubleshooting, 295-298

Layer 3, 310. See also network layer
devices, selecting, 64-65
DHCP, troubleshooting, 318-320
IP addressing
overlapping subnets, troubleshooting, 314-315
subnet masks, troubleshooting, 315-317
unavailable addresses, troubleshooting, 317-318
NAT, troubleshooting, 321-323
routing, troubleshooting, 323-330
Layer 4, troubleshooting, 331-332
layers of OSI model, 25-26
decapsulation, 29
encapsulation, 27
LED indicators (Cisco routers), 157, 300
link performance, monitoring, 262
link state routing protocols, OSPF, 185, 187
local traffic, 198
logical networks, 291, 310
logical topologies, 52
lower layers, 25, 288
LSAs (link-state advertisements), 186

M

MAC address filtering, 257
malware, 242
managed services, 22
MBSA (Microsoft Baseline Security Analyzer), 244
MDF (main distribution facility), 57
media errors, troubleshooting, 302-303
Metro Ethernet, 7
monitoring ISP link performance, 262
in-band tools, 264-267
MTBF (mean time between failure), 207
MTTR (mean time to repair), 207
multiple service support at transport layer, 215-217

N

name resolution, DNS, 221-224
forward lookup zones, 224
primary zones, 225
reverse lookup zones, 224
secondary zones, 225
NAPs (Network Access Points), 7
NAT (Network Address Translation), 93-96
configuring, 321
dynamic NAT, 97
static NAT, 98
configuring on Cisco routers, 144-146
troubleshooting, 321-323
Nessus Vulnerability Scanner, 244
network documentation, 291
network layer, 25
OSI model, 287-288, 310-311
troubleshooting, 312
network management system tools, 292
network naming systems
DNS, 218-219
domain name servers, 220
implementing via ISPs, 225
implementing via local DNS servers, 226
name resolution, 221-225
resolvers, 220-221
resource records, 220
TCP/IP HOSTS file, 218-219
network prefix, 79
network support services, 14
network topologies
logical, 291
physical, 290
network upgrades, planning, 56-57
NOC (network operations center), 14
NVRAM (non-volatile random access memory), 114

0

open authentication, 257
operating systems
patching, 244
version, displaying, 299
optical media, 270
OSI model, 24, 286
as troubleshooting tool, 25, 29-30
bottom-up approach, 30-34
top-down approach, 30
corresponding TCP/IP model layers, 286
data link layer, troubleshooting, 295-298
decapsulation, 29
encapsulation, 27
encoding, 27
layers of, 25-26
lower layers, 288
network layer, 310-311
routing, troubleshooting, 323-330
troubleshooting, 312
physical layer, troubleshooting, 295-298
transport layer, troubleshooting, 331-332
upper layers, 288
troubleshooting, 332-336
OSPF (Open Shortest Path First), 185-187
out-of-band management, 262
Cisco ISR, 117
outside global address, 95
outside local address, 95
outsourcing, 21
overlapping subnets, troubleshooting, 314-315

P

packet-switched WAN connections, 152
packet trailers, 28
passive data connections, 230
passwords, 243
PAT (Port Address Translation), 99-102
patches, 244
permissions, assigning, 245
physical environment, documenting, 57
physical layer, 25
cables, troubleshooting, 301-303
OSI model, 287-288
troubleshooting, 295-298
physical topologies, 52, 290
PI (Protocol Interpreter) function of FTP, 229
ping command, 9
planning
for exam preparation, 341-342
network upgrades, 56-57
IP addressing, 68
point-to-point WAN connections, 151
POP (point of presence), 7
POP3 (Post Office Protocol version 3), 233
port filtering, 250
portable network analyzers, 295
ports, 215
duplex settings, displaying, 305
POST (power-on self test), 114
failures, troubleshooting, 301
powering up Cisco Catalyst 2960 switches, 159
PPP encapsulation, configuring, 154-155
practicing test taking, 342-344
preparing for CCENT exam, 336-340
commitment, 341
creating a plan, 341-342
factual knowledge, importance of, 338
practicing test taking, 342-344
presentation layer, 25, 286
primary DNS zones, 225
privileged EXEC mode, 128
problem-solving procedures, 29-30
protocol analyzers, 293
protocol stack, 26
proxy servers, 229
PSKs (preshared keys), 257
purchasing equipment, 61-62

Q-R

reachability, 196
recalling commands, 131-132
recovering Cisco IOS images, 276-277
redundancy, 208
reliability, 67
of ISP services, 207
required devices for ISP connectivity, 13
resolvers, 220-221
resource records, 220
reverse lookup zones, 224
RFCs (Requests For Comments), 3
RIP (Routing Information Protocol), 183-184
configuring, 190-193
roles within ISPs, 14, 21-22
ROMmon, recovering Cisco IOS image, 276-277
router bgp command, 199
router configuration submode (CLI), 129
routers, 128, 137
banners, configuring, 137
bootup, troubleshooting, 298-301
console port, 138-139
default routes, configuring, 141
DHCP services, configuring, 141-144
interfaces, configuring, 139-140
selecting, 63-65
static NAT, configuring, 144-146
routes, 174
default, 178
directly connected, 178
troubleshooting, 324
dynamic, 178
troubleshooting, 324-330
static, configuring, 178-179
troubleshooting, 323
routing protocols, 179
configuring, 190-193
distance vector, 180-182
EIGRP, 184-185
exterior routing protocols, autonomous systems, 193-195
link state, OSPF, 185-187
RIP, 183-184
routing table, 186
running configuration, 115-116
runt frames, troubleshooting, 303

S

satellite Internet connection, 6
scalability, 14
scanning, 244
SDM (Cisco Router and Security Device Manager)
Cisco ISR, configuring, 118-120
dynamic NAT, configuring, 127
versus CLI, 119-120
SDM Express, configuring Cisco ISR
Basic Configuration window, 121
DHCP window, 123-124
LAN IP Address window, 122
SDSL (Symmetric Digital Subscriber Line), 6
secondary DNS zones, 225
security
access lists, 251
attacks, 249-250
best practices, 245
AAA, 246
permissions, 245
data encryption, 247-249
firewalls, 251-253
host security, 258-260
IDS, 254-255
IPS, 255-256
port filtering, 250
scanning, 244
user rights, 244
wireless, 256-257
selecting
routers, 64-65
switches, 63-64
WAN connection type, 153-154
serial cables, 60
serial line encapsulations, 124-125
serial link problems
loops, troubleshooting, 308
troubleshooting, 307-309
serial WAN connections
configuring, 124
IP address, assigning, 125-126
serial line encapsulations, 124-125
service password encryption command, 138
session layer, 25
OSI model, 286
setting up Cisco ISR, 112-113
show arp command, 135
show commands, 132-133
show flash command, 300
show history command, 131-132
show interfaces command, 134-135, 329
show interfaces serial command, 306-307
show ip dhep binding command, 317
show ip interface brief command, 300
show ip interface command, 329
show ip interfaces brief command, 301-303
show ip nat translation command, 322
show ip protocols command, 192, 327
show ip route command, 135, 175-177, 323, 330
show protocols command, 136
show running-config command, 328-329
show running-config interface command, 304
show running-configuration command, 300
show running-configuration command, 138
show startup-configuration command, 300
show version command, 115-116, 136, 299
sign-off phase, 150
site surveys, documenting physical environment, 57
SLAs (service-level agreements), 22, 261
SMTP (Simple Mail Transfer Protocol), 231-233
SNMP (Simple Network Management Protocol), 265
sockets, 217
software troubleshooting tools, 291-293
solid-state media, 271
SPF (shortest path first) algorithm, 186
SPI (stateful packet inspection), 252
standards, Internet, 3
startup configuration, 114
static NAT, 98
configuring on Cisco routers, 144-146
static port security, 162
static routes
configuring, 178-179
troubleshooting, 324
structured cable, 60-61
subnet masks, 175
troubleshooting, 315-317
subnetting, 77-78, 312
CIDR, 79-82
classful, 85-86
communicating between subnets, 90-91
custom subnet masks, 86,90
network expansion requirements, 82-85
overlapping subnets, troubleshooting, 314-315
VLSM, 81
swap media, 273
switch port modes, 158-159
switch ports, 158-161
switches, selecting, 63-64
Syslog, 267

T

T1/E1 Internet connections, 7
T3/E3 Internet connections, 7
tape media, 270
TCP (Transport Control Protocol), 212
and UDP, 214
TCP/IP model, corresponding OSI model layers, 286. See
also TCP/IP protocols
TCP/IP protocols, 208
application layer, 210
FTP, 229
DTP function, 229
PI function, 229
HOSTS file, 218-219
HTTP, 227
proxy servers, 229
URLs, 227
IMAP4, 234-235
POP3, 233
SMTP, 231-233
transport layer, 211
multiple service support, 215-217
TCP, 212
UDP, 212-214
Telnet, 264
troubleshooting upper-layer problems, 335-336

TFTP servers, backing up Cisco router configuration files, 146-148
three-way handshakes, 213
Tier 1 ISPs, 9
Tier 2 ISPs, 9
Tier 3 ISPs, 9
top-down troubleshooting methodology, 30, 289
top-level domains, 221
topological database, 186
topology maps, creating, 52-54
tracert command, 11-12
traffic, 198
trailers, 28
transit traffic, 198
transport layer, 25
OSI model, 287-288
protocols, 211
multiple service support, 215-217
TCP, 212
UDP, 212-214
troubleshooting, 331-332
traps, 266
Trojans, 260
trouble tickets, 23
troubleshooting. See also troubleshooting tools
boot errors, 298-301
cables, 301-303
calls, documenting, 37-39
Cisco ISR bootup process, 116
connectivity issues, 36
customer site procedures, 40-41
data link layer, 295-298
divide-and-conquer methodology, 289
e-mail issues, 35
IP addressing, unavailable addresses, 317-318
LAN connectivity, 304
duplex mismatches, 305
Layer 3
DHCP, 318-320
NAT, 321-323
network layer, 312
OSI model as framework, 29-30
bottom-up approach, 30-34
top-down approach, 30
overlapping subnets, 314-315
physical layer, 295-298
routing, 323
directly connected routes, 324
dynamic routes, 324-330
subnet masks, 315, 317
transport layer problems, 331-332
upper-layer problems, 332-335
with Telnet, 335-336
WAN connectivity, 305
serial link problems, 307-309
troubleshooting tools
baseline tools, 291
cable testers, 294
digital multimeters, 294
knowledge bases, 292
logical network topologies, 291
network documentation, 291
network management system tools, 292
physical network topologies, 290
portable network analyzers, 295
protocol analyzers, 293
TSPs (telecommunications service providers), 124

U-V

UDP (User Datagram Protocol), 212-214
unavailable IP addresses, troubleshooting, 317-318
unrecognized interface modules, troubleshooting, 301
updating Cisco IOS image, 275
upgrading network devices, 66
cabling, 58-61
upper layers, 25
encoding, 27
OSI model, 288
troubleshooting, 332-335
with Telnet, 335-336
URLs, 227
user EXEC mode, 128
user rights, 244
viruses, 260
VLSM (variable length subnet masking), 79-81

W-X-Y-Z

WANs

connectivity, troubleshooting, 305
CPE, connecting to, 151
connection type, selecting, 153-154
via circuit-switched connection, 152
via packet-switched connection, 152
via point-to-point connection, 151
PPP encapsulation, configuring, 154-155
serial link problems, troubleshooting, 307-309
WEP (Wired Equivalent Privacy), 257
WireShark protocol analyzer, 262, 293
WLANs (wireless LANs), security, 256-257
worldwide enterprise routing, 188-190
worms, 260
WPA (WiFi Protected Access), 258

[^0]: This book is part of the Cisco Networking Academy ${ }^{\otimes}$ series from Cisco Press. The products in this series support and complement the Cisco Networking Academy curriculum. If you are using this book outside the Networking Academy, then you are not preparing with a Cisco trained and authorized Networking Academy provider.
 For more information on the Cisco Networking Academy or to locate a Networking Academy, please visit www.cisco.com/edu.

[^1]: Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

