31 Days Before Your CCNA Exam
Second Edition
Allan Johnson

A Day-By-Day Review Guide for the CCNA 640-802 Exam
31 Days Before Your CCNA Exam
Second Edition
Allan Johnson
31 Days Before Your CCNA Exam
A Day-by-Day Review Guide for the CCNA 640-802 Exam
Second Edition

Allan Johnson
Copyright® 2009 Cisco Systems, Inc.
Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photo-copying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America
Sixth Printing: March 2013

Library of Congress Cataloging-in-Publication Data
Johnson, Allan, 1962-
31 days before your CCNA exam : a day-by-day review guide for the CCNA
640-802 exam / Allan Johnson. -- 2nd ed.
p. cm.
Originally published: Indianapolis, IN : Cisco Press, c2007 under title: 31 days before your CCNA exam / Scott Bennett.
ISBN 978-1-58713-197-4 (pbk.)
1. Electronic data processing personnel--Certification. 2. Computer networks--Examinations--Study guides. I. Bennett, Scott, CCNA 31 days before your CCNA exam. II. Title. III. Title: Thirty one days before your CCNA exam.

TK5105.5.B443 2008
004.6--dc22

This book is part of the Cisco Networking Academy® Program series from Cisco Press. The products in this series support and complement the Cisco Networking Academy Program curriculum. If you are using this book outside the Networking Academy program, then you are not preparing with a Cisco trained and authorized Networking Academy provider.

For information on the Cisco Networking Academy Program or to locate a Networking Academy, please visit www.cisco.com/eda.
Warning and Disclaimer

This book is designed to provide information about exam topics for the Cisco Certified Network Associate (CCNA) Exam 640-802. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Corporate and Government Sales

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419 corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales international@pearsoned.com

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.
About the Author

Allan Johnson entered the academic world in 1999 after ten years as a business owner/operator to dedicate his efforts to his passion for teaching. He holds both an MBA and an M.Ed in Occupational Training and Development. He taught CCNA courses at the high school level for seven years and has taught both CCNA and CCNP courses at Del Mar College in Corpus Christi, Texas. In 2003, Allan began to commit much of his time and energy to the CCNA Instructional Support Team providing services to Networking Academy instructors worldwide and creating training materials. He now works full time for the Academy in Learning Systems Development.

About the Technical Reviewers

Rick Graziani teaches computer science and computer networking courses at Cabrillo College in Aptos, California. Rick has worked and taught in the computer networking and information technology field for almost 30 years. Prior to teaching, Rick worked in IT for various companies, including Santa Cruz Operation, Tandem Computers, and Lockheed Missiles and Space Corporation. He holds an M.A. in computer science and systems theory from California State University Monterey Bay. Rick also does consulting work for Cisco Systems and other companies. When Rick is not working, he is most likely surfing. Rick is an avid surfer who enjoys longboarding at his favorite Santa Cruz surf breaks.

Kenneth Stewart teaches computer science and computer networking courses at Flour Bluff High School and Delmar College in Corpus Christi, Texas. Kenneth has worked in the field for more than 18 years and taught for the past 11 years. Prior to teaching, Kenneth was a Nuclear, Biological, and Chemical Warfare Specialist in the 82nd Airborne Division at Ft. Bragg, North Carolina. He holds two degrees in computer science and is earning another in occupational career and technology development from Texas A&M Corpus Christi.

Dedication

For my wife, Becky. Without the sacrifices you made during the project, this work would not have come to fruition. Thank you providing me the comfort and resting place only you can give.
Acknowledgments

As the author of the widely successful first edition of this book, Scott Bennett entrusted me to carry on the mission. Thanks Scott, for allowing me to take over this project.

When I began to think of whom I would like to have as Technical Editors for this work, Rick Graziani and Kenneth Stewart immediately came to mind. Both are outstanding instructors and authors in the Cisco Network Academy community. Thankfully, when Mary Beth Ray contacted them, they were willing and able to do the arduous review work necessary to make sure you get a book that is both technically accurate and unambiguous.

Rick is a long-time technology instructor with a world-renowned reputation among both students and teachers of the CCNA and CCNP curricula. When I began to teach CCNA courses in 2000, it wasn’t long before I discovered Rick’s outstanding resources online. These are available to anyone who sends him an email requesting the password; just Google his name to find his website. Rick and I coauthored the *Routing Protocols and Concepts: CCNA Exploration Companion Guide*, so I know how he works. I knew he would do an outstanding job editing this material before you see it.

Kenneth Stewart often pulls double duty teaching CCNA courses part time at Del Mar College while maintaining a full load teaching various technology classes at Flour Bluff High School here in my hometown of Corpus Christi. In his spare time, he also likes to write books. His students compete on a national level, including networking, web authoring, and robotics. Ken’s excitement in the classroom is contagious, and his commitment to the integrity of the teaching materials he uses is unsurpassed. As the excellent coauthor of *Designing and Supporting Computer Networks: CCNA Discovery Learning Guide*, I knew Ken would serve you, the reader, admirably.

Thank you, Rick and Ken, for not only serving as technical editors to this effort, but for being my friends.

This book is a concise summary of the work of Cisco Press CCNA authors. Wendell Odom’s *CCNA Official Exam Certification Library*, Third Edition and Steve McQuerry’s *Authorized Self-Study Guide CCNA Preparation Library*, Seventh Edition were two of my main sources. The different approaches these two authors—both CCIEs—take toward the CCNA material gives the reader the breadth and the depth needed to master the CCNA exam topics.

The Cisco Network Academy authors for the Exploration series of Companion Guides take the reader deeper, past the CCNA exam topics, with the ultimate goal of not only preparing the student for CCNA certification, but for more advanced college-level technology courses and degrees, as well. Thank you to Mark Dye, Rick Graziani, Wayne Lewis, Rick McDonald, Antoon W. Rifi, and Bob Vachon for their excellent treatment of the material; it is reflected throughout this book.

Mary Beth Ray, executive editor, amazes me with her ability to juggle multiple projects at once, steering each from beginning to end. I can always count on her to make the tough decisions. Thank you, Mary Beth, for bringing this project to me.

This is my fourth project with Christopher Cleveland as development editor. His dedication to perfection pays dividends in countless, unseen ways. Thank you again, Chris, for providing me with much needed guidance and support. This book could not be a reality without your persistence.
Contents at a Glance

Introduction xxv

Part I: Networking Basics 1
Day 31: Network Devices, Components, and Diagrams 3
Day 30: Network Models and Applications 13
Day 29: Network Data Flow from End-to-End 21

Part II: Switching Concepts and Configuration 31
Day 28: Connecting Switches and Ethernet Technology 33
Day 27: Network Segmentation and Switching Concepts 43
Day 26: Basic Switch Configuration and Port Security 53
Day 25: Verifying and Troubleshooting Basic Switch Configurations 61
Day 24: Switching Technologies and VLAN Concepts 71
Day 23: VLAN and Trunking Configuration and Troubleshooting 87
Day 22: VTP and InterVLAN Routing Configuration and Troubleshooting 97

Part III: Addressing the Network 107
Day 21: IPv4 Address Subnetting 109
Day 20: Host Addressing, DHCP, and DNS 123
Day 19: Basic IPv6 Concepts 137

Part IV: Routing Concepts and Configuration 145
Day 18: Basic Routing Concepts 147
Day 17: Connecting and Booting Routers 161
Day 16: Basic Router Configuration and Verification 167
Day 15: Managing Cisco IOS and Configuration Files 179
Day 14: Static, Default, and RIP Routing 191
Day 13: EIGRP Routing 211
Day 12: OSPF Routing 227
Day 11: Troubleshooting Routing 245
Contents

Introduction xxv

Part I: Networking Basics 1

Day 31: Network Devices, Components, and Diagrams 3
 CCNA 640-802 Exam Topics 3
 Key Points 3
 Devices 3
 Switches 3
 Routers 5
 Media 5
 LANs and WANs 7
 Networking Icons 7
 Physical and Logical Topologies 8
 The Hierarchical Network Model 9
 The Enterprise Architecture 10
 Network Documentation 11
 Study Resources 12

Day 30: Network Models and Applications 13
 CCNA 640-802 Exam Topics 13
 Key Points 13
 The OSI and TCP/IP Models 13
 OSI Layers 14
 TCP/IP Layers and Protocols 15
 Protocol Data Units and Encapsulation 16
 Growth of Network-Based Applications 17
 Quality of Service 17
 Increased Network Usage 17
 The Impact of Voice and Video on the Network 18
 Study Resources 19

Day 29: Network Data Flow from End-to-End 21
 CCNA 640-802 Exam Topics 21
 Key Points 21
Part II: Switching Concepts and Configuration 31

Day 28: Connecting Switches and Ethernet Technology 33

CCNA 640-802 Exam Topics 33
Key Topics 33
Ethernet Overview 33
Legacy Ethernet Technologies 34
 CSMA/CD 35
 Legacy Ethernet Summary 35
Current Ethernet Technologies 36
UTP Cabling 36
Benefits of Using Switches 37
Ethernet Addressing 38
Ethernet Framing 39
The Role of the Physical Layer 40
Study Resources 41

Day 27: Network Segmentation and Switching Concepts 43

CCNA 640-802 Exam Topics 43
Key Topics 43
Evolution to Switching 43
Switching Logic 44
Collision and Broadcast Domains 45
Frame Forwarding 45
 Switch Forwarding Methods 45
 Symmetric and Asymmetric Switching 46
 Memory Buffering 46
 Layer 2 and Layer 3 Switching 46
Accessing and Navigating Cisco IOS 46
 Connecting to Cisco Devices 46
 CLI EXEC Sessions 47
 Using the Help Facility 48
 CLI Navigation and Editing Shortcuts 48
 Command History 49
 IOS Examination Commands 50
 Subconfiguration Modes 50
Storing and Erasing Configuration Files 51
Study Resources 52

Day 26: Basic Switch Configuration and Port Security 53
 CCNA 640-802 Exam Topics 53
 Key Topics 53
 Basic Switch Configuration Commands 53
 Configuring SSH Access 55
 Configuring Port Security 56
 Shutting Down and Securing Unused Interfaces 58
 Study Resources 59

Day 25: Verifying and Troubleshooting Basic Switch Configurations 61
 CCNA 640-802 Exam Topics 61
 Key Points 61
 Troubleshooting Methodology 61
 Verifying Network Connectivity 62
 Interface Status and the Switch Configuration 65
 Interface Status Codes 65
Day 20: Host Addressing, DHCP, and DNS 123

CCNA 640-802 Exam Topics 123
Key Topics 123
Addressing Devices 123
ARP 124
DNS 126
DHCP 127
Configuring on a Cisco Router as a DHCP Server 128
Network Layer Testing Tools 132
 Ping 132
Study Resources 134

Day 19: Basic IPv6 Concepts 137

CCNA 640-802 Exam Topics 137
Key Topics 137
Overview of IPv6 137
IPv6 Address Structure 139
 Conventions for Writing IPv6 Addresses 139
 Conventions for Writing IPv6 Prefixes 139
 IPv6 Global Unicast Address 140
 Reserved, Private, and Loopback Addresses 141
 The IPv6 Interface ID and EUI-64 Format 141
 IPv6 Address Management 142
Transitioning to IPv6 142
Study Resources 144

Part IV: Routing Concepts and Configuration 145

Day 18: Basic Routing Concepts 147

Key Topics 147
Packet Forwarding 147
 Path Determination and Switching Function Example 148
Routing Methods 149
Day 14: Static, Default, and RIP Routing 191

CCNA 640-802 Exam Topics 191

Key Topics 191

Static Route Configuration 191

Static Routes Using the “Next Hop” Parameter 193
Static Routes Using the Exit Interface Parameter 193
Default Static Routes 194

RIP Concepts 197

RIPv1 Message Format 197
RIPv1 Operation 198
RIPv1 Configuration 198
RIPv1 Verification and Troubleshooting 199
Passive Interfaces 203
Automatic Summarization 204
Default Routing and RIPv1 206
RIPv2 Configuration 207
Disabling Autosummarization 208
RIPv2 Verification and Troubleshooting 208

Study Resources 209
Day 13: EIGRP Routing 211
CCNA 640-802 Exam Topics 211
Key Topics 211
EIGRP Operation 211
 EIGRP Message Format 212
 RTP and EIGRP Packet Types 212
 DUAL 214
 Administrative Distance 214
EIGRP Configuration 214
 The network Command 215
 Automatic Summarization 216
 Manual Summarization 217
 EIGRP Default Route 219
 Modifying the EIGRP Metric 219
 Modifying Hello Intervals and Hold Times 220
EIGRP Verification and Troubleshooting 221
Study Resources 226

Day 12: OSPF Routing 227
CCNA 640-802 Exam Topics 227
Key Topics 227
OSPF Operation 227
 OSPF Message Format 227
 OSPF Packet Types 228
 Neighbor Establishment 228
 Link-State Advertisements 229
 OSPF Network Types 230
 DR/BDR Election 230
 OSPF Algorithm 231
 Link-State Routing Process 232
OSPF Configuration 233
 The router ospf Command 234
 The network Command 234
Implementing a WLAN 261

Wireless LAN Implementation Checklist 262
Wireless Troubleshooting 264

Study Resources 264

Part VI: Basic Security Concepts and Configuration 265

Day 8: Mitigating Security Threats and Best Practices 267

CCNA 640-802 Exam Topics 267

Key Topics 267

The Importance of Security 267

Attacker Terminology 267
Thinking Like an Attacker 268
Balancing Security and Availability 269
Devising a Security Policy 269

Common Security Threats 270

Vulnerabilities 270
Threats to Physical Infrastructure 271
Threats to Networks 271
Types of Network Attacks 271

General Mitigation Techniques 273

Host and Server Security 273
Intrusion Detection and Prevention 273
Security Appliances and Applications 273

Maintaining Security 275

Study Resources 276

Part VII: ACL and NAT Concepts and Configuration 277

Day 7: ACL Concepts and Configurations 279

CCNA 640-802 Exam Topics 279

Key Topics 279

ACL Concepts 279

Defining an ACL 279
Processing Interface ACLs 279
Part VIII: WAN Concepts and Configuration

Day 4: WAN and VPN Technologies
 CCNA 640-802 Exam Topics

Key Topics

WAN Technology Concepts

WAN Connection Options

VPN Technology

Study Resources
Day 3: PPP Configuration and Troubleshooting 329
CCNA 640-802 Exam Topics 329
Key Topics 329
HDLC 329
 HDLC Encapsulation 329
 Configuring HDLC 330
 Verifying HDLC 331
PPP Concepts 331
 The PPP Frame Format 331
 PPP Link Control Protocol (LCP) 332
PPP Configuration and Verification 334
 Basic PPP 334
Study Resources 336

Day 2: Frame Relay Configuration and Troubleshooting 337
CCNA 640-802 Exam Topics 337
Key Topics 337
Frame Relay Concepts 337
 Frame Relay Components 338
 Frame Relay Topologies 339
 NBMA Limitations and Solutions 340
 Inverse ARP and LMI Concepts 341
 Inverse ARP and LMI Operation 342
Configuring and Verifying Frame Relay 343
 Full Mesh with One Subnet 344
 Partial Mesh with One Subnet per PVC 347
 Frame Relay Verification 348
Troubleshooting WAN Implementations 349
 Troubleshooting Layer 1 Problems 350
 Troubleshooting Layer 2 Problems 350
 Troubleshooting Layer 3 Problems 351
Study Resources 352
Day 1: CCNA Skills Review and Practice

Key Topics

CCNA Skills Practice

Introduction
Topology Diagram
Addressing Table
VLAN Configuration and Port Mappings
ISP Configuration
Task 1: Configure Frame Relay in a Hub-and-Spoke Topology
Task 2: Configure PPP with CHAP
Task 3: Configure Static and Dynamic NAT on HQ
Task 4: Configure Default Routing
Task 5: Configure Inter-VLAN Routing
Task 6: Configure and Optimize EIGRP Routing
Task 7: Configure VTP, Trunking, the VLAN Interface, and VLANs
Task 8: Assign VLANs and Configure Port Security
Task 9: Configure STP
Task 10: Configure DHCP
Task 11: Configure a Firewall ACL

CCNA Skills Practice (Answers)

Task 1: Configure Frame Relay in a Hub-and-Spoke Topology
Task 2: Configure PPP with CHAP
Task 3: Configure Static and Dynamic NAT on HQ
Task 4: Configure Default Routing
Task 5: Configure Inter-VLAN Routing
Task 6: Configure and Optimize EIGRP Routing
Task 7: Configure VTP, Trunking, the VLAN Interface, and VLANs
Task 8: Assign VLANs and Configure Port Security
Task 9: Configure STP
Task 10: Configure DHCP
Task 11: Configure a Firewall ACL

CCNA Skills Challenge

31 Days Before Your CCNA Exam
Part IX: Exam Day and Post-Exam Information 375

Exam Day 377
 What You Need for the Exam 377
 What You Should Receive After Completion 377
 Summary 378

Post-Exam Information 379
 Receiving Your Certificate 379
 Determining Career Options 379
 Examining Certification Options 380
 If You Failed the Exam 380
 Summary 380

Index 381
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in
the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual con-
 figuration examples and output (not general command syntax), boldface indicates commands
 that are manually input by the user (such as a `show` command).
Introduction

You are almost there! If you’re reading this Introduction, you’ve probably already spent a considerable amount of time and energy pursuing your CCNA certification. Regardless of how you got to this point in your travels through your CCNA studies, *31 Days Before Your CCNA Exam* most likely represents the last leg of your journey on your way to the destination: to become a Cisco Certified Network Associate. However if you are like me, you might be reading this book at the beginning of your studies. If such is the case, this book provides you with an excellent overview of the material you must now spend a great deal of time studying and practicing. I must warn you, though; unless you are extremely well versed in networking technologies and have considerable experience configuring and troubleshooting Cisco routers and switches, this book will not serve you well as the sole resource for CCNA exam preparation. Therefore, let me spend some time discussing my recommendations for study resources.

Study Resources

Cisco Press offers an abundance of CCNA-related books to serve as your primary source for learning how to install, configure, operate, and troubleshoot medium-size routed and switched networks. See the inside cover of this book for a quick list of my recommendations.

Foundational Resources

First on the list must be Wendell Odom’s *CCNA Official Exam Certification Library*, Third Edition (ISBN: 1587201836). If you do not buy any other books, buy this set of two. Wendell’s method of teaching, combined with his technical expertise and down-to-earth style, is unsurpassed in our industry. As you read through his books, you sense that he is sitting right there next to you walking you through the material. The practice exams and study materials on the CD in the back of the book are worth the price of the book. There is no better resource on the market for a CCNA candidate.

Next on the list must be Steve McQuerry’s *Authorized Self-Study Guide CCNA Preparation Library*, Seventh Edition (ISBN: 1587054647). These two books are indispensable to those students who take the two Cisco recommended training classes for CCNA preparation: Interconnecting Cisco Network Devices 1 (ICND1) and Interconnecting Cisco Network Devices 2 (ICND2). These courses, available through Cisco Training Partners in a variety of formats, are usually of a very short duration (1 to 6 weeks) and are geared toward the industry professional already working in the field of networking. Steve’s books serve the reader well as a concise, but thorough, treatment of the CCNA exam topics. His method and approach often differ from and complement Wendell’s approach. I recommend that you also refer to these books.
If you are a Cisco Networking Academy student, you are blessed with access to the online version of the CCNA curriculum and the wildly popular Packet Tracer network simulator. Although there are two versions of the CCNA curriculum—Discovery and Exploration—I chose to use the four CCNA Exploration courses in my daily review of the exam topics. The Exploration curriculum provides a comprehensive overview of networking, from fundamentals to advanced applications and services. The Exploration courses emphasize theoretical concepts and practical application, while providing opportunities for students to gain the skills and hands-on experience needed to design, install, operate, and maintain networks in small-to-medium businesses, as well as enterprise and service provider environments. In an Academy class, not only do you have access to Packet Tracer, but you have access to extensive, guided labs and real equipment on which to practice your CCNA skills. To learn more about CCNA Exploration and to find an Academy near you, visit http://www.cisco.com/web/learning/netacad/course_catalog/CCNAexploration.html.

However, if you are not an Academy student but would like to benefit from the extensive authoring done for these courses, you can buy any or all of the CCNA Exploration Companion Guides (CG) and Lab Study Guides (LSG) of the Academy’s popular online curriculum. Although you will not have access to the Packet Tracer network simulator software, you will have access to the tireless work of an outstanding team of Cisco Academy Instructors dedicated to providing students with comprehensive and engaging CCNA preparation course material. The titles and ISBNs for the CCNA Exploration CGs and LSGs are as follows:

You can find these books at www.ciscopress.com by clicking the CISCO NETWORKING ACADEMY link.

Supplemental Resources

In addition to the book you hold in your hands, I recommend two more supplemental resources to augment your final 31 days of review and preparation.

First, Eric Rivard and Jim Doherty are coauthors of *CCNA Flash Cards and Exam Practice Pack*, Third Edition (ISBN: 1587201909). The text portion of the book includes more than 700 flash cards that quickly review exam topics in bite-sized pieces. Also included are nearly 200 pages of quick-reference sheets designed for late-stage exam preparation. And the included CD features a test engine with more than 500 CCNA practice exam questions.

Second, Wendell Odom has put together an excellent collection of more than four hours of personal, visual instruction in one package, titled *CCNA Video Mentor*, Second Edition (ISBN: 1587201917). It contains a DVD with 20 videos and a lab manual. Wendell walks you through common Cisco router and switch configuration topics designed to develop and enhance your hands-on skills.

The Cisco Learning Network

Finally, if you have not done so already, you should now register with the Cisco Learning Network at http://cisco.hosted.jivesoftware.com/. Sponsored by Cisco, the Cisco Learning Network is a free social-learning network where IT professionals can engage in the common pursuit of enhancing
and advancing their IT careers. Here you will find many resources to help you prepare for your CCNA exam, as well as a community of like-minded people ready to answer your questions, help you with your struggles, and share in your triumphs.

So which resources should you buy? That question is largely up to how deep your pockets are or how much you like books. If you’re like me, you must have it all! I admit it. My bookcase is a testament to my Cisco “geekness.” But if you are on a budget, choose one of the foundational study resources and one of the supplemental resources, such as Wendell Odom’s certification library and Rivard/Doherty’s flash cards. Whatever you choose, you will be in good hands. Any or all of these authors will serve you well.

Goals and Methods

The main goal of this book is to provide you with a clear and succinct review of the CCNA objectives. Each day’s exam topics are grouped into a common conceptual framework that uses the following format:

- A title for the day that concisely states the overall topic
- A list of one or more CCNA 640-802 exam topics to be reviewed
- A Key Topics section to introduce the review material and quickly orient you to the day’s focus
- An extensive review section consisting of short paragraphs, lists, tables, examples, and graphics
- A Study Resources section to provide a quick reference for locating more in-depth treatment of the day’s topics

The book counts down starting with Day 31 and continues through exam day to provide post-test information. You will also find a calendar and checklist that you can tear out and use during your exam preparation inside the book.

Use the calendar to enter each actual date beside the countdown day and the exact day, time, and location of your CCNA exam. The calendar provides a visual for the time that you can dedicate to each CCNA exam topic.

The checklist highlights important tasks and deadlines leading up to your exam. Use it to help you map out your studies.

Who Should Read This Book?

The audience for this book is anyone finishing preparation for taking the CCNA 640-802 exam. A secondary audience is anyone needing a refresher review of CCNA exam topics—possibly before attempting to recertify or sit for another certification to which the CCNA is a prerequisite.

Getting to Know the CCNA 640-802 Exam

For the current certifications, announced in June 2007, Cisco created the ICND1 (640-822) and ICND2 (640-816) exams, along with the CCNA (640-802) exam. To become CCNA certified, you can pass both the ICND1 and ICND2 exams, or just the CCNA exam. The CCNA exam covers all the topics on the ICND1 and ICND2 exams, giving you two options for gaining your CCNA certification. The two-exam path gives people with less experience a chance to study for a smaller set
of topics at one time. The one-exam option provides a more cost-effective certification path for those who want to prepare for all the topics at once. This book focuses exclusively on the one-exam path using the entire list of exam topics for the CCNA 640-802 exam.

Currently for the CCNA exam, you are allowed 90 minutes to answer 50–60 questions. Use the following steps to access a tutorial at home that demonstrates the exam environment before you go to take the exam:

Step 1 Visit http://www.vue.com/cisco.

Step 2 Look for a link to the certification tutorial. Currently, it can be found on the right side of the web page under the heading Related Links.

Step 3 Click the Certification tutorial link.

When you get to the testing center and check in, the proctor verifies your identity, gives you some general instructions, and then takes you into a quiet room containing a PC. When you’re at the PC, you have a few things to do before the timer starts on your exam. For instance, you can take the tutorial to get accustomed to the PC and the testing engine. Every time I sit for an exam, I go through the tutorial, even though I know how the test engine works. It helps me settle my nerves and get focused. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment.

When you start the exam, you are asked a series of questions. Each question is presented one at a time and must be answered before moving on to the next question. The exam engine does not let you go back and change your answer. The exam questions can be in one of the following formats:

- Multiple choice
- Fill-in-the-blank
- Drag-and-drop
- Testlet
- Simlet
- Simulation

The multiple-choice format requires that you point and click a circle or check box next to the correct answer or answers. Cisco traditionally tells you how many answers you need to choose, and the testing software prevents you from choosing too many or too few.

Fill-in-the-blank questions typically require you only to type numbers. However if words are requested, the case does not matter unless the answer is a command that is case sensitive (such as passwords and device names when configuring authentication).

Drag-and-drop questions require you to click and hold, move a button or icon to another area, and release the mouse button to place the object somewhere else—typically in a list. For some questions, to get the question correct, you might need to put a list of five things in the proper order.

Testlets contain one general scenario and several multiple-choice questions about the scenario. These are ideal if you are confident in your knowledge of the scenario’s content because you can leverage your strength over multiple questions.
A simlet is similar to a testlet in that you are given a scenario with several multiple-choice questions. However, a simlet uses a network simulator to allow you access to a simulation of the command line of Cisco IOS Software. You can then use `show` commands to examine a network’s current behavior and answer the question.

A simulation also uses a network simulator, but you are given a task to accomplish, such as implementing a network solution or troubleshooting an existing network implementation. You do this by configuring one or more routers and switches. The exam then grades the question based on the configuration you changed or added. A newer form of the simulation question is the GUI-based simulation, where a graphical interface like that found on a Linksys router or the Cisco Security Device Manager is simulated.

What Topics Are Covered on the CCNA Exam

The topics of the CCNA 640-802 exam focus on the following eight key categories:

- Describe how a network works.
- Configure, verify and troubleshoot a switch with VLANs and interswitch communications.
- Implement an IP addressing scheme and IP Services to meet network requirements in a medium-size enterprise branch office network.
- Configure, verify, and troubleshoot basic router operation and routing on Cisco devices.
- Explain and select the appropriate administrative tasks required for a WLAN.
- Identify security threats to a network and describe general methods to mitigate those threats.
- Implement, verify, and troubleshoot NAT and ACLs in a medium-size enterprise branch office network.
- Implement and verify WAN links.

Although Cisco outlines general exam topics, it is possible that not all topics will appear on the CCNA exam and that topics that are not specifically listed might appear on the exam. The exam topics provided by Cisco and included in this book are a general framework for exam preparation. Be sure to check the Cisco website for the latest exam topics.

Cisco Networking Academy Student Discount Voucher

If you are a Cisco Networking Academy student, you have the opportunity to earn a discount voucher to use when registering and paying for your exam with Pearson VUE. To receive the discount voucher, you must complete all four courses of the CCNA Exploration curriculum and receive a score of 75 percent or higher on your first attempt of the final exam for the final CCNA Exploration course, *Accessing the WAN*. The amount of the discount varies by region and testing center, but typically it has been as much as 50% off the full exam price. Log in to the Academy Connection and click Help at the top of the page to research more information on receiving a discount voucher.
Registering for the CCNA 640-802 Exam

If you are starting your 31 Days to Your CCNA today, register for the exam right now. In my testing experience, there is no better motivator than a scheduled test date staring me in the face. I’m willing to bet it’s the same for you. Don’t worry about unforeseen circumstances. You can cancel your exam registration for a full refund up to 24 hours before taking the exam. So if you’re ready, you should gather the following information in Table I-1 and register right now!

Table I-1 Personal Information for CCNA 640-802 Exam Registration

<table>
<thead>
<tr>
<th>Item</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal Name</td>
<td></td>
</tr>
<tr>
<td>Social Security or Passport Number</td>
<td></td>
</tr>
<tr>
<td>Cisco Certification ID or Test ID¹</td>
<td></td>
</tr>
<tr>
<td>Cisco Academy Username²</td>
<td></td>
</tr>
<tr>
<td>Cisco Academy ID Number²</td>
<td></td>
</tr>
<tr>
<td>Company Name</td>
<td></td>
</tr>
<tr>
<td>Valid Email Address</td>
<td></td>
</tr>
<tr>
<td>Voucher Number²</td>
<td></td>
</tr>
<tr>
<td>Method of Payment</td>
<td></td>
</tr>
</tbody>
</table>

¹Applies to exam candidates if you have previously taken a Cisco certification exam (such as the ICND1 exam)
²Applies to Cisco Networking Academy students only

To register for an exam, contact Pearson VUE via one of the following methods:

- **By phone**: In the United States and Canada call 1-800-829-6387, option 1, then option 4. Check the website for information regarding other countries.

The process and available test times will vary based on the local testing center you choose.

Remember, there is no better motivation for study than an actual test date. *Sign up today.*
Connecting Switches and Ethernet Technology

CCNA 640-802 Exam Topics

- Explain the technology and media access control method for Ethernet networks.
- Select the appropriate media, cables, ports, and connectors to connect switches to other network devices and hosts.

Key Topics

Ethernet has continued to evolve from the 10BASE2 flavor capable of speeds up to 185 Mbps to the newest 10GigE (10 Gigabit Ethernet) capable of speeds up to 10 Gbps. Since 1985, IEEE has continued to upgrade the 802.3 standards to provide faster speeds without changing the underlying frame structure. This feature, among others, has made Ethernet the choice for LAN implementations worldwide. Today we review Ethernet technologies and operation at both the data link and physical layer.

Ethernet Overview

802.3 is the IEEE standard for Ethernet, and both terms are commonly used interchangeably. The terms Ethernet and 802.3 both refer to a family of standards that together define the physical and data link layers of the definitive LAN technology. Figure 28-1 shows a comparison of Ethernet standards to the OSI model.

Figure 28-1 Ethernet Standards and the OSI Model
Ethernet separates the functions of the data link layer into two distinct sublayers:

- **Logical Link Control (LLC) sublayer**: Defined in the 802.2 standard.
- **Media Access Control (MAC) sublayer**: Defined in the 802.3 standard.

The LLC sublayer handles communication between the network layer and the MAC sublayer. In general, LLC provides a way to identify the protocol that is passed from the data link layer to the network layer. In this way, the fields of the MAC sublayer are not populated with protocol type information, as was the case in earlier Ethernet implementations.

The MAC sublayer has two primary responsibilities:

- **Data Encapsulation**: Includes frame assembly before transmission, frame parsing upon reception of a frame, data link layer MAC addressing, and error detection.
- **Media Access Control**: Because Ethernet is a shared media and all devices can transmit at any time, media access is controlled by a method called Carrier Sense Multiple Access with Collision Detection (CSMA/CD).

At the physical layer, Ethernet specifies and implements encoding and decoding schemes that enable frame bits to be carried as signals across both unshielded twisted-pair (UTP) copper cables and optical fiber cables. In early implementations, Ethernet used coaxial cabling.

Legacy Ethernet Technologies

Ethernet is best understood by first considering the two early Ethernet specifications—10BASE5 and 10BASE2. With these two specifications, the network engineer installs a series of coaxial cables connecting each device on the Ethernet network, as shown in Figure 28-2.

Figure 28-2 Ethernet Physical and Logical Bus Topology

The series of cables creates an electrical circuit, called a bus, which is shared among all devices on the Ethernet. When a computer wants to send some bits to another computer on the bus, it sends an electrical signal, and the electricity propagates to all devices on the Ethernet.

With the change of media to UTP and the introduction of the first hubs, Ethernet physical topologies migrated to a star as shown in Figure 28-3.

Regardless of the change in the physical topology from a bus to a star, hubs logically operate similar to a traditional bus topology and require the use of CSMA/CD.
CSMA/CD

Because Ethernet is a shared media where every device has the right to send at any time, it also defines a specification for how to ensure that only one device sends traffic at a time. The CSMA/CD algorithm defines how the Ethernet logical bus is accessed. CSMA/CD logic helps prevent collisions and also defines how to act when a collision does occur. The CSMA/CD algorithm works like this:

1. A device with a frame to send listens until the Ethernet is not busy.
2. When the Ethernet is not busy, the sender(s) begin(s) sending the frame.
3. The sender(s) listen(s) to make sure that no collision occurred.
4. If a collision occurs, the devices that had been sending a frame each send a jamming signal to ensure that all stations recognize the collision.
5. After the jamming is complete, each sender randomizes a timer and waits that long before trying to resend the collided frame.
6. When each random timer expires, the process starts again from the beginning.

When CSMA/CD is in effect, it also means that a device’s network interface card (NIC) is operating in half-duplex mode—either sending or receiving frames. CSMA/CD is disabled when a NIC autodetects that it can operate in—or is manually configured to operate in—full duplex mode. In full duplex mode, a NIC can send and receive simultaneously.

Legacy Ethernet Summary

Today, you might occasionally use LAN hubs, but you will more likely use switches instead of hubs. However, keep in mind the following key points about the history of Ethernet:

- The original Ethernet LANs created an electrical bus to which all devices connected.
- 10BASE2 and 10BASE5 repeaters extended the length of LANs by cleaning up the electrical signal and repeating it—a Layer 1 function—but without interpreting the meaning of the electrical signal.
- Hubs are repeaters that provide a centralized connection point for UTP cabling—but they still create a single electrical bus, shared by the various devices, just like 10BASE5 and 10BASE2.
- Because collisions could occur in any of these cases, Ethernet defines the CSMA/CD algorithm, which tells devices how to both avoid collisions and take action when collisions do occur.

Current Ethernet Technologies

Refer back to Figure 28-1 and notice the different 802.3 standards. Each new physical layer standard from the IEEE requires many differences at the physical layer. However, each of these physical layer standards uses the same 802.3 header, and each uses the upper LLC sublayer as well. Table 28-1 lists today’s most commonly used IEEE Ethernet physical layer standards.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Speed</th>
<th>Alternative Name</th>
<th>Name of IEEE Standard</th>
<th>Cable Type, Maximum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>10 Mbps</td>
<td>10BASE-T</td>
<td>IEEE 802.3</td>
<td>Copper, 100 m</td>
</tr>
<tr>
<td>Fast Ethernet</td>
<td>100 Mbps</td>
<td>100BASE-TX</td>
<td>IEEE 802.3u</td>
<td>Copper, 100 m</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1000 Mbps</td>
<td>1000BASE-LX, 1000BASE-SX</td>
<td>IEEE 802.3z</td>
<td>Fiber, 550 m (SX) 5 km (LX)</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1000 Mbps</td>
<td>1000BASE-T</td>
<td>IEEE 802.3ab</td>
<td>Copper, 100 m</td>
</tr>
<tr>
<td>10GigE (Gigabit Ethernet)</td>
<td>10 Gbps</td>
<td>10GBASE-SR, 10GBASE-LR</td>
<td>IEEE 802.3ae</td>
<td>Fiber, up to 300 m (SR), up to 25 km (LR)</td>
</tr>
<tr>
<td>10GigE (Gigabit Ethernet)</td>
<td>10 Gbps</td>
<td>10GBASE-T</td>
<td>IEEE 802.3an</td>
<td>Copper, 100 m</td>
</tr>
</tbody>
</table>

UTP Cabling

The three most common Ethernet standards used today—10BASE-T (Ethernet), 100BASE-TX (Fast Ethernet, or FE), and 1000BASE-T (Gigabit Ethernet, or GE)—use UTP cabling. Some key differences exist, particularly with the number of wire pairs needed in each case and in the type (category) of cabling.

The UTP cabling used by popular Ethernet standards include either two or four pairs of wires. The cable ends typically use an RJ-45 connector. The RJ-45 connector has eight specific physical locations into which the eight wires in the cable can be inserted, called pin positions or, simply, pins.

The Telecommunications Industry Association (TIA) and the Electronics Industry Alliance (EIA) define standards for UTP cabling, color coding for wires, and standard pinouts on the cables. Figure 28-4 shows two TIA/EIA pinout standards, with the color coding and pair numbers listed.
For the exam, you should be well prepared to choose which type of cable (straight-through or crossover) is needed in each part of the network. In short, devices on opposite ends of a cable that use the same pair of pins to transmit need a crossover cable. Devices that use an opposite pair of pins to transmit need a straight-through cable. Table 28-2 lists typical devices and the pin pairs they use, assuming that they use 10BASE-T and 100BASE-TX.

Table 28-2 10BASE-T and 100BASE-TX Pin Pairs Used

<table>
<thead>
<tr>
<th>Devices That Transmit on 1,2 and Receive on 3,6</th>
<th>Devices That Transmit on 3,6 and Receive on 1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC NICs</td>
<td>Hubs</td>
</tr>
<tr>
<td>Routers</td>
<td>Switches</td>
</tr>
<tr>
<td>Wireless Access Point (Ethernet interface)</td>
<td>N/A</td>
</tr>
<tr>
<td>Networked printers (printers that connect directly to the LAN)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1000BASE-T requires four wire pairs because Gigabit Ethernet transmits and receives on each of the four wire pairs simultaneously.

However, Gigabit Ethernet does have a concept of straight-through and crossover cables, with a minor difference in the crossover cables. The pinouts for a straight-through cable are the same—pin 1 to pin 1, pin 2 to pin 2, and so on. The crossover cable crosses the same two-wire pair as the crossover cable for the other types of Ethernet—the pair at pins 1,2 and 3,6—as well as crossing the two other pairs (the pair at pins 4,5 with the pair at pins 7,8).

Benefits of Using Switches

A collision domain is a set of devices whose frames could collide. All devices on a 10BASE2, 10BASE5, or any network using a hub risk collisions between the frames that they send, so all devices on one of these types of Ethernet networks are in the same collision domain and use CSMA/CD to detect and resolve collisions.

LAN switches significantly reduce, or even eliminate, the number of collisions on a LAN. Unlike hubs, switches do not create a single shared bus. Instead, switches do the following:
Switches interpret the bits in the received frame so that they can typically send the frame out the one required port, rather than all other ports.

If a switch needs to forward multiple frames out the same port, the switch buffers the frames in memory, sending one at a time, thereby avoiding collisions.

In addition, switches with only one device cabled to each port of the switch allow the use of full-duplex operation. Full-duplex means that the NIC can send and receive concurrently, effectively doubling the bandwidth of a 100 Mbps link to 200 Mbps—100 Mbps for sending and 100 Mbps for receiving.

These seemingly simple switch features provide significant performance improvements as compared with using hubs. In particular:

- If only one device is cabled to each port of a switch, no collisions can occur.
- Devices connected to one switch port do not share their bandwidth with devices connected to another switch port. Each has its own separate bandwidth, meaning that a switch with 100 Mbps ports has 100 Mbps of bandwidth per port.

Ethernet Addressing

The IEEE defines the format and assignment of LAN addresses. To ensure a unique MAC address, the first half of the address identifies the manufacturer of the card. This code is called the organizationally unique identifier (OUI). Each manufacturer assigns a MAC address with its own OUI as the first half of the address. The second half of the address is assigned by the manufacturer and is never used on another card or network interface with the same OUI. Figure 28-5 shows the structure of a unicast Ethernet address.

![Structure of Unicast Ethernet Address](image)

Ethernet also has group addresses, which identify more than one NIC or network interface. The IEEE defines two general categories of group addresses for Ethernet:

- **Broadcast addresses:** The broadcast address implies that all devices on the LAN should process the frame and has a value of FFFF.FFFF.FFFF.

- **Multicast addresses:** Multicast addresses are used to allow a subset of devices on a LAN to communicate. When IP multicasts over an Ethernet, the multicast MAC addresses used by IP follow this format: 0100.5exx.xxxx, where any value can be used in the last half of the address.
Ethernet Framing

The physical layer helps you get a string of bits from one device to another. The framing of the bits allows the receiving device to interpret the bits. The term framing refers to the definition of the fields assumed to be in the data that is received. Framing defines the meaning of the bits transmitted and received over a network.

The framing used for Ethernet has changed a couple of times over the years. Each iteration of Ethernet is shown in Figure 28-6, with the current version shown at the bottom.

Figure 28-6 Ethernet Frame Formats

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Length in Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>7</td>
<td>Synchronization</td>
</tr>
<tr>
<td>Destination</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Data and Pad</td>
<td>46 – 1500</td>
<td></td>
</tr>
<tr>
<td>FCS</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

The fields in the last version shown in Figure 28-6 are explained further in Table 28-3.

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Length in Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>7</td>
<td>Synchronization</td>
</tr>
<tr>
<td>Start Frame Delimiter (SFD)</td>
<td>1</td>
<td>Signifies that the next byte begins the Destination MAC field</td>
</tr>
<tr>
<td>Destination MAC address</td>
<td>6</td>
<td>Identifies the intended recipient of this frame</td>
</tr>
<tr>
<td>Source MAC address</td>
<td>6</td>
<td>Identifies the sender of this frame</td>
</tr>
<tr>
<td>Length</td>
<td>2</td>
<td>Defines the length of the data field of the frame (either length or type is present, but not both)</td>
</tr>
<tr>
<td>Type</td>
<td>2</td>
<td>Defines the type of protocol listed inside the frame (either length or type is present, but not both)</td>
</tr>
<tr>
<td>Data and Pad</td>
<td>46 – 1500</td>
<td>Holds data from a higher layer, typically a Layer 3 PDU (generic), and often an IP packet</td>
</tr>
<tr>
<td>Frame Check Sequence (FCS)</td>
<td>4</td>
<td>Provides a method for the receiving NIC to determine whether the frame experienced transmission errors</td>
</tr>
</tbody>
</table>
The Role of the Physical Layer

We have already discussed the most popular cabling used in LANs—UTP. But to fully understand the operation of the network, you should know some additional basic concepts of the physical layer.

The OSI physical layer accepts a complete frame from the data link layer and encodes it as a series of signals that are transmitted onto the local media.

The delivery of frames across the local media requires the following physical layer elements:

- The physical media and associated connectors
- A representation of bits on the media
- Encoding of data and control information
- Transmitter and receiver circuitry on the network devices

There are three basic forms of network media on which data is represented:

- Copper cable
- Fiber
- Wireless (IEEE 802.11)

Bits are represented on the medium by changing one or more of the following characteristics of a signal:

- Amplitude
- Frequency
- Phase

The nature of the actual signals representing the bits on the media will depend on the signaling method in use. Some methods may use one attribute of a signal to represent a single 0 and use another attribute of a signal to represent a single 1. The actual signaling method and its detailed operation are not important to your CCNA exam preparation.
Study Resources

For today’s exam topics, refer to the following resources for more study.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Chapter</th>
<th>Topic</th>
<th>Where to Find It</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundational Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCNA Exploration</td>
<td>Chapter 8, “OSI Physical Layer”</td>
<td>All topics within the chapter</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>Online Curriculum: Network Fundamentals</td>
<td>Chapter 9, “Ethernet”</td>
<td>Overview of Ethernet</td>
<td>Section 9.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethernet—Communication through the LAN</td>
<td>Section 9.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Ethernet Frame</td>
<td>Section 9.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethernet Media Access Control</td>
<td>Section 9.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethernet Physical Layer</td>
<td>Section 9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Address Resolution Protocol (ARP)</td>
<td>Section 9.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Making LAN Connections</td>
<td>Section 10.2.2</td>
</tr>
<tr>
<td></td>
<td>Chapter 10, “Planning and Cabling Networks”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCNA Exploration</td>
<td>Chapter 2, “Basic Switch Concepts and Configuration”</td>
<td>Key Elements of Ethernet/ 802.3 Networks</td>
<td>Section 2.2.1</td>
</tr>
<tr>
<td>Online Curriculum: LAN Switching and Wireless</td>
<td>Chapter 8, “OSI Physical Layer”</td>
<td>All topics within the chapter</td>
<td>pp. 279–306</td>
</tr>
<tr>
<td></td>
<td>Chapter 9, “Ethernet”</td>
<td>Overview of Ethernet</td>
<td>pp. 315–320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethernet: Communication through the LAN</td>
<td>pp. 320–324</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Ethernet Frame</td>
<td>pp. 324–334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethernet MAC</td>
<td>pp. 334–342</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethernet Physical Layer</td>
<td>pp. 342–347</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Address Resolution Protocol (ARP)</td>
<td>pp. 355–361</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Making LAN Connections</td>
<td>pp. 380–384</td>
</tr>
<tr>
<td></td>
<td>Chapter 10, “Planning and Cabling Networks”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCNA Exploration</td>
<td>Chapter 2, “Basic Switch Concepts and Configuration”</td>
<td>Key Elements of Ethernet/ 802.3 Networks</td>
<td>pp. 46–52</td>
</tr>
<tr>
<td>Network Fundamentals Companion Guide</td>
<td>Chapter 3, “Fundamentals of LANs”</td>
<td>All topics within the chapter</td>
<td>pp. 45–69</td>
</tr>
<tr>
<td>ICND1 Official Exam Certification Guide</td>
<td>Chapter 1, “Building a Simple Network”</td>
<td>Understanding Ethernet</td>
<td>pp. 104–115</td>
</tr>
<tr>
<td></td>
<td>Chapter 2, “Ethernet LANs”</td>
<td>Connecting to an Ethernet LAN</td>
<td>pp. 115–124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Understanding the Challenges of Shared LANs</td>
<td>pp. 139–144</td>
</tr>
<tr>
<td>Supplemental Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICND1 Authorized Self-Study Guide</td>
<td>ICND1, Section 3</td>
<td>Understanding Ethernet</td>
<td>pp. 70–84</td>
</tr>
<tr>
<td>CCNA Flash Cards and Exam Practice Pack</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Symbols

3DES (Triple DES), 323
10BASE-T, 37
100BASE-TX, 37
802.00i (WPA2), 258
802.11g, 255
802.3. See Ethernet
1000BASE-T, 37

A

access attacks, 272
access control lists. See ACLs
access layer switches, 4
acknowledgment (ACK) packets, EIGRP, 213
ACLs (access control lists), 279
adding comments to named or numbered ACLs, 287-288
complex ACLs, 288
configuring extended named ACLs, 284-285
deny FTP from subnets, 285
deny only Telnet from subnets, 285-286
configuring named ACLs, 286-287
configuring standard numbered ACLs, 282
deny a specific host, 283
deny a specific subnet, 283-284
deny Telnet access to routers, 284
permit specific network, 282-283

defining, 279
design guidelines, 281-282
extended ACLs, 280
identification, 281
interface processing, 279-280
standard ACLs, 280
troubleshooting, 291
denied protocols, 292-293
host has no connectivity, 291-292
Telnet is allowed #1, 293
Telnet is allowed #2, 294
Telnet is allowed #3, 294-295
types of, 280-281
verifying, 289-290

AD (administrative distance), 153-154
ad hoc mode, wireless operations, 254
adding comments to named or numbered ACLs, 287-288
Address Resolution Protocol (ARP), 16, 148
addresses
broadcast addresses, 38
Ethernet, 38
IPv4, 109
classes of addresses, 110-111
header formats, 109-110
subnet masks, 111-112
IPv6
conventions for writing, 139
loopback addresses, 141
managing, 142
private addresses, 141
reserved addresses, 141
link-local addresses, 141
multicast addresses, 38
private IP addressing, 119-120
public IP addressing, 119-120
site-local addresses, 141
static addresses, 123
subnet addresses, summarizing, 118-119

addressing devices, 123
addressing schemes, 354
EIGRP, 215
OSPF, 233-234
RIPv1, 198
administrative distance (AD), 153-154
EIGRP, 214
Advanced Encryption Standard (AES), 323
advertisement request message, VTP, 78
AES (Advanced Encryption Standard), 323
AH (Authentication Header), 325
algorithms, OSPF, 231-232
analog dialup, circuit-switched connections (WAN), 314-315
ANDing, 112
antivirus software, 273
application layer (TCP/IP), 21
applications, network-based
applications, 17
 impact of voice and video, 18
 increased network usage, 17
 QoS (quality of service), 17
ARP (Address Resolution Protocol), 16,
 124-126, 148
Frame Relay, 339
AS (autonomous system), 150
assigning VLANs, 358, 369-370
to interfaces, 89
asymmetric switching, 46
ATM, packet-switched connections
 (WAN), 317
attacker terminology, 267-268
attackers, thinking like, 268-269
authentication
 PPP, LCP, 333
 VPNs, 325
 wireless security, 257
Authentication Header (AH), 325
auto-cost reference-bandwidth, 236
automatic summarization
 EIGRP, 216-217
 RIPv1, 204-205
autonomous system (AS), 150
autosummarization, disabling in
 RIPv2, 208
availability, balancing with security, 269

B
backing up IOS images, 184
backup DR (BDR), 230
backward explicitly congestion notification (BECN), Frame Relay, 339
balancing security and availability, 269
bandwidth command, 220, 236
Basic Rate Interface (BRI), 315
basic router configuration, 167-174
BDR (backup designated router), 230
BECN (backward explicit congestion notification), Frame Relay, 339
BID (bridge ID), configuring, 82-84
binary values, subnet masks, 112
black hats, 268
black hole VLAN, 73
boot system command, 186
bootup process, routers, 162-163
BRI (Basic Rate Interface), 315
broadband wireless, Internet connections
 (WAN), 319
broadcast addresses, 38
 subnetting, 114
broadcast domains, 45
broadcast storms, STP, 78
broadcasts, 43

cable modems, Internet connections
 (WAN), 318
cables
crossover cables, 6, 164-165
 straight-through cables, 6, 165
calculating Dijkstra algorithm (link-state routing protocols), 157-158
carrier protocols, 323
CDP, troubleshooting tools, 68-69
central office (CO), WAN, 309
channel service unit (CSU), 310
CHAP, configuring PPP, 335, 356, 362
cHDLC (Cisco HDLC), 329
CIR (committed information rate),
 Frame Relay, 339
circuit-switched connections, WAN, 314
 analog dialup, 314-315
 ISDN, 315-316
Cisco devices, configuring, 47
Cisco Enterprise Architecture, 10
Cisco HDLC (cHDLC), 329
Cisco Interim Solution, 258
Cisco IOS (Internetwork Operating System), 46. See also IOS
 CLI EXEC sessions, 47
 CLI navigation and shortcuts, 48
 command history, 49-50
 connecting to Cisco devices, 46-47
 examination commands, 50
 file naming conventions, 182-183
 help facility, 48
 storing and erasing configuration files, 51
 subconfiguration modes, 50
Cisco IOS Integrated File System.

See IFS

Cisco IOS OSPF cost values, 236
classes of addresses, IPv4 addressing, 110-111
classful routing protocols, 151-152
classifying dynamic routing protocols, 150
classful routing protocols, 151-152
classless routing protocols, 152
distance vector routing protocols, 150-151
eGP, 150
IGP, 150
link-state routing protocols, 151
classless routing protocols, 152
CLI (command-line interface), 162, 261
 navigation and shortcuts, 48-49
CLI EXEC sessions, Cisco IOS, 47
clock rate command, 350
CO (central office), WAN, 309
codes, interface status codes, 65, 171
 LAN switches, 65-66
collision domains, 45
command history, Cisco IOS, 49-50
command syntax help, 48
command-line interface (CLI), 162, 261
commands
 auto-cost reference-bandwidth, 236
 bandwidth, 236
 EIGRP, 220
 boot system, 186
 clock rate, 350
 command history buffer commands, 49-50
 configure terminal, 50
 copy, 51
 managing configuration files, 182
 copy run start, 182
 debug eigrp fsm, 224
 debug frame-relay lmi, 348
 debug ip nat, 305
 debug ip rip, 247
 debug ppp authentication, 351
default-information originate, 206, 238
dir, 180
dynamic auto, 91
dynamic desirable, 91
enable password, 55
enable password password, 169
enable secret, 55
encapsulation ppp, 334
erase startup-config, 51
examination commands, Cisco IOS, 50
frame-relay interface-dlci, 348
interface range command, 55
ip helper-address, 131
ip ospf cost, 236
ip ospf priority interface, 237
ip route, static routes, 191
ipconfig/release, 131
ipconfig/renew, 131
for managing configuration files, IFS, 182
 network, 215-216, 234-235
 no auto-summary, 208, 216
 no debug ip rip, 248
 no keepalives, 351
 no service dhcp, 129
 no shutdown, 58, 104
 passive-interface, disabling updates, 203
 ping, 11, 62, 132-133
 ppp authentication chap, 335
 ppp authentication pap, 335
 range, 89
 redistribute static, 219
 router ospf, 234
 show access-lists, 289
 show cdp, 68
 show cdp interface, 69
 show cdp neighbors detail, 69
 show controllers, 350
 show file systems, 179-181
 show flash, 185
 show frame-relay map, 348
 show frame-relay pvc, 348
 show interface status, 67
 show interfaces, 66, 172-174, 351
 show interfaces serial, 349
 show interfaces status, 66
 show ip eigrp interfaces, 248
 show ip eigrp neighbors, 245, 249
 show ip interface, 290
 show ip interface brief, 11, 170, 239
 show ip nat statistics, 304
 show ip nat translations, 304
 show ip ospf, 241
 show ip ospf interface, 242-243
 show ip ospf interface brief, 248
 show ip ospf neighbor, 240, 249
 show ip ospf neighbor commands, 245
 show ip protocols, 153, 239-240, 245, 248
 RIPv1, 200
show ip route, 11, 152, 170, 199, 239, 245
RIPv1, 200
show port-security, 57
show port-security interface, 57, 94
show run, 304
show running-config, 170, 290
show spanning-tree, 83
show version, 162-163
show vlan brief, 88-90
show vtp status, 98
spanning-tree mode rapid-pvst, 84
spanning-tree portfast default, 84
switch configuration commands, 53-54
switchport mode access, 103
switchport mode dynamic desirable, 75
switchport mode trunk, 75
switchport mode trunk dynamic auto, 75
switchport nonegotiate, 75, 103
switchport port-security violation, 56
telnet, 11
tftpdnld, 187
traceroute, 133-134, 175, 246
undebug all, 248
username, 335
vtp pruning, 98
vtp version 2, 98
write erase, 51
xmodem, 187

comments, adding to named or numbered ACLs, 287-288

committed information rate (CIR),
Frame Relay, 339

complex ACLs, 288

components
of Frame Relay, 338-339
of routers, internal components, 161-162
for teleworker connectivity, 7
of VPNs, 322
of WAN, 309

configuration files
Cisco IOS, 51
commands for managing, 182

configurations, ISP, 355-356

configure terminal command, 50

configuring
ACLs
extended numbered ACLs, 284-286
named ACLs, 286-287
standard numbered ACLs, 282-284
Cisco devices, 47
default routing, 357, 364
DHCP, 359, 371-372
dynamic NAT, 301-302
EIGRP, 214-215
automatic summarization, 216-217
default routes, 219
manual summarization, 217-218
modifying EIGRP metrics, 219-220
modifying hello intervals and hold times, 220-221
network command, 215-216
EIGRP routing, 357, 365-366
firewall ACLs, 359, 372-373
Frame Relay, 343-344
full mesh with one subnet, 344-347
hub-and-spoke topology, 356, 360-362
partial mesh with one subnet per PVC, 347-348
HDLC, 330
inter-VLAN routing, 103-105, 357, 364-365
NAT, 356, 362-363
NAT overload, 303
OSPF, 233
controlling DR/BDR election, 237-238
modifying Hello intervals and hold times, 238-239
modifying metrics, 236-237
network command, 234-235
redistributing default routes, 238
router ID, 235-236
router ospf command, 234
port security, 56-58, 358, 369-370
PPP, 334
CHAP, 335, 356, 362
PAP, 335-336
RIPv1, 198-199
RIPv2, 207-208
disabling autosummarization, 208
routers, as DHCP servers, 128-132
RSTP, 84
SSH access, 55-56
static NAT, 301
static routes, 191-193
default static routes, 194-197
with “Next Hop” parameter, 193
with exit interface parameter, 193-194
STP, 82, 358, 370-371
BID (bridge ID), 82-84
PortFast, 84
trunking, 91-93
VLANs, 88-91, 357, 367-369
VTP, 97-100
Windows PC to use DHCP, 123
Connecting Cisco IOS to Cisco devices, 46-47
connection establishment, TCP/IP, 25
connection-oriented systems, WAN, 313
connectionless protocols, 26
connectionless systems, WAN, 313
connections
routers, 164-165
verifying network connectivity, 62-65, 175-176
WAN
circuit-switched connections, 314-316
dedicated connections, 314
Internet connections, 317-319
packet-switched connections, 315-317
WAN link options, 319-320
conventions
for writing IPv6 addresses, 139
for writing IPv6 prefixes, 139-140
converging with link-state protocols, link-
state routing protocols, 158
copy command, 51, 182
copy run start command, 182
core layer switches, 4
CPE (Customer Premises Equipment), 309
CPU, 161
crackers, 268
crossover cables, 6, 164-165
CSMA/CA (carrier sense multiple access
with collision avoidance), 256-257
CSMA/CD (carrier sense multiple access
with collision detection), 34-35
CSU (channel service unit), 310
Customer Premises Equipment (CPE), 309
cut-through switching, 46
Data Encryption Standard (DES), 323
data service unit (DSU), 310
Data Terminal Equipment (DTE), 309, 337
data VLAN, 72
data-link connection identifier (DLCI),
Frame Relay, 338
data-link protocols, WAN, 312
DBD (database description) packets,
OSPF, 228
DCE (Data Communications Equipment),
309, 337
DDoS (distributed denial-of-service)
attacks, 272
debug eigrp fsm, 224
debug frame-relay lmi, 348
debug ip nat command, 305
debug ip rip commands, 247
debug ppp authentication, 351
dedicated connections, WAN, 314
default file systems, 180
default routes
EIGRP, 219
redistributing in OSPF, 238
RIPv1, 206-207
default routing, configuring, 357, 364
default static routes, configuring, 194-197
default VLAN, 72
default-information originate command,
206, 238
demarcation point, WAN, 309
denial-of-service (DoS) attacks, 272
deny any statements, 279
DES (Data Encryption Standard), 323
design guidelines, ACLs, 281-282
designated router (DR), 230-231
device hardening, 273
devices, 3
Cisco devices, configuring, 47
connecting Cisco IOS to Cisco devices,
46-47
hubs, 3
switches. See switches
of WAN, 310
DHCP (Dynamic Host Configuration Protocol), 15, 127
 configuring, 359, 371-372
 configuring Windows PC to use, 123
 verifying operations, 130
DHCP servers, configuring routers as, 128-132
DHCPv6, 142
Dijkstra algorithm, calculating, 157-158
dir command, 180
Direct Sequence Spread Spectrum (DSSS), 255
disabling
 autosummarization, RIPv2, 208
 updates, passive-interface command, 203
discontiguous networks, 246-247
distance vector routing protocols, 150-151
distance vectors, EIGRP versus, 211
distributed DoS attacks, 272
distribution layer switches, 4
DLCI (data-link connection identifier), Frame Relay, 338
DNS (Domain Name System), 15, 126-127
documentation for networks, 11
domains
 broadcast domains, 45
 collision domains, 45
 top-level domains, 126
DoS (denial-of-service) attacks, 272
DR (designated router), 230-231
DR/BDR election, OSPF controlling, 237-238
DSL, Internet connections (WAN), 317-318
DSSS (Direct Sequence Spread Spectrum), 255
DSU (data service unit), 310
DTE (Data Terminal Equipment), 309, 337
DTP (Dynamic Trunking Protocol), 75
DUAL, EIGRP, 214
dual stacking, IPv6, 143
duplexes, switches, 66-67
dynamic 6to4 tunnels, 143
dynamic auto, 91
dynamic desirable, 91
Dynamic Host Configuration Protocol (DHCP), 15
dynamic NAT, 299-302
dynamic routing, 191
 static routing versus, 149
dynamic routing metrics, 152-153
dynamic routing protocols, classifying, 150
 classful routing protocols, 151-152
 classless routing protocols, 152
 distance vector routing protocols, 150-151
 EGP, 150
 IGP, 150
 link-state routing protocols, 151
Dynamic Trunking Protocol (DTP), 75

E
E1 (External Type 1), 240
E2 (External Type 2), 240
EAP (Extensible Authentication Protocol), 264
EGP (Exterior Gateway Protocols), 150
EIA (Electronics Industry Alliance), 36
EIA/TIA-232, 311
EIA/TIA-449/530, 311
EIA/TIA-612/613, 311
EIGRP (Enhanced Interior Gateway Routing Protocol), 211
 addressing schemes, 215
 administrative distance, 214
 configuring, 214-215
 automatic summarization, 216-217
 default routes, 219
 manual summarization, 217-218
 modifying EIGRP metrics, 219-220
 modifying hello intervals and hold times, 220-221
 network command, 215-216
 distance vectors versus, 211
 DUAl, 214
 dynamic routing metrics, 153
 message formats, 212
 neighbor requirements, 249
 packet types, 212-213
 troubleshooting, 248
 verifying
 with show ip eigrp neighbors, 222-224
 with show ip protocols, 222
EIGRP routing, configuring, 357, 365-366
Electrical threats, 271
Electronics Industry Alliance (EIA), 36
Eliminating routing loops, 155-156
Employees, wireless security risks, 257
Enable password command, 55
Enable password password command, 169
Enable secret command, 55
Encapsulating protocols, 323
Encapsulating Security Payload (ESP), 325
Encapsulation, 322
HDLC, 329-330
OSI models, 16
Encapsulation ppp command, 334
Encapsulation process, 16
Encoding channels, wireless encoding channels, 255
Encryption, 257, 322
Encryption algorithms, VPNs, 323
Enhanced Interior Gateway Routing Protocol. See EIGRP
Enterprise Architecture, 10
Enterprise Branch Architecture, 10
Enterprise Campus Architecture, 10
Enterprise Data Center Architecture, 10
Enterprise Edge Architecture, 10
Enterprise Teleworker Architecture, 10
Environmental threats, 271
Erase startup-config command, 51
Erasing configuration files, Cisco IOS, 51
Error detection, LCP, 332
Error recovery, TCP/IP, 24
ESP (Encapsulating Security Payload), 325
Establishing VPN connections, 322
Authentication, 325
Encryption algorithms, 323
Hashes, 324-325
IPsec Security Protocols, 325
Tunneling, 323
Ethernet, 16
Addresses, 38
Current Ethernet technologies, 36
Framing, 39
Gigabit Ethernet, 37
Legacy Ethernet technologies, 34-36
CSMA/CD, 35
Overview, 33-34
Physical layer, role of, 40
Switches, 37-38
UTP cabling, 36-37
EtherType field, 74
EUI-64 format, IPv6, 141-142
Examinations
Exam day information, 377
Post-exam information
Career options, 379-380
Receiving your certificate, 379
Retesting, 380
Examination commands, Cisco IOS, 50
Exit interface parameter, configuring static routes, 193-194
Extended ACLs, 280
Extended numbered ACLs, configuring, 284
deny FTP from subnets, 285
deny only Telnet from subnets, 285-286
Extensible Authentication Protocol (EAP), 264
Exterior Gateway Protocols (EGP), 150
External threats, 271
External Type 1 (E1), 240
External Type 2 (E2), 240
F
FC (Feasibility Condition), 223
FCC (Federal Communications Commission), 253-254
FD (Feasible Distance), 223
Feasible Successor (FS), 223
FECN (forward explicit congestion notification), Frame Relay, 339
FHSS (Frequency Hopping Spread Spectrum), 255
File naming conventions, IOS, 182-183
File systems, default file systems, 180
File Transfer Protocol (FTP), 15
Firewall ACLs, configuring, 359, 372-373
Firewalls, 273
Flash memory, 162
Flow control, TCP/IP, 25
forward explicit congestion notification (FECN), Frame Relay, 339
forwarding, frame forwarding, 45
asymmetric switching, 46
Layer 2 switching, 46
Layer 3 switching, 46
memory buffering, 46
switch forwarding methods, 45
symmetric switching, 46
FRAD (Frame Relay Access Devices), 337
frame format, PPP, 331-332
frame forwarding, 45-46
Frame Relay, 16, 337
backward explicit congestion notification (BECN), 339
committed information rate (CIR), 339
components of, 338-339
configuring, 344
full mesh with one subnet, 344-347
hub-and-spoke topology, 356, 360-362
partial mesh with one subnet per PVC, 347-348
configuring and verifying, 343
data-link connection identifier (DLCI), 338
DCE, 337
DTE, 337
forward explicit congestion notification (FECN), 339
Inverse Address Resolution Protocol (ARP), 339
Inverse ARP, 341-343
LMI, 341-343
local access rate, 338
Local Management Interface (LMI), 339
NBMA (nonbroadcast multi-access), 340
packet-switched connections, WAN, 317
permanent virtual circuit (PVC), 338
switched virtual circuit (SVC), 338
topologies, 339
verifying, 348
virtual circuit (VC), 338
Frame Relay Access Devices (FRAD), 337
frame-relay interface-dlci command, 348
framing, Ethernet, 39
Frequency Hopping Spread Spectrum (FHSS), 255
FS (Feasible Successor), 223
FTP (File Transfer Protocol), 15
full-mesh topology, Frame Relay, 339
G
Gigabit Ethernet, 37
global unicast addresses, IPv6, 140-141
GUI (graphical user interface), 162, 261
H
hackers, 257, 267
hardware threats, 271
hashes, VPNs, 324-325
HDLC
configuring, 330
encapsulation, 329-330
verifying, 331
HDLC (High-Level Data Link Control), 329
header formats, IPv4 addressing, 109-110
hello intervals and hold times
modifying (EIGRP), 220-221
modifying (OSPF), 238-239
Hello packets
EIGRP, 213
OSPF, 228
neighbor adjacency, 228-229
help facilities, Cisco IOS, 48
hierarchical network models, 9
High-Level Data Link Control (HDLC), 329
HIPS (host-based intrusion prevention), 273
history of commands, Cisco IOS, 49-50
HMAC (hashed message authentication code), 324-325
hold-down timers, preventing routing loops, 155
host and server security, mitigation techniques, 273
host ranges, subnetting, 114
host-based intrusion prevention (HIPS), 273
HTTP (Hypertext Transfer Protocol), 15
HTTP request, 21
HTTP response, 21
hub-and-spoke configuration, Frame Relay, 340
hub-and-spoke topology, Frame Relay (configuring), 356, 360-362
hubs, 3
Hypertext Transfer Protocol (HTTP), 15

ICMP (Internet Control Message Protocol), 16, 147
identification, ACLs, 281
IDS (intrusion detection systems), 273
IEEE, 253
IETF (Internet Engineering Task Force), 137, 227
IFS (Integrated File System)
commands, 179-181
commands for managing configuration files, 182
URL prefixes for specifying file locations, 181
IGP (Interior Gateway Protocols), 150
comparison summary, 154
images, IOS images, 183
backing up, 184
recovering with TFTP servers, 186-187
recovering with Xmodem, 187-188
restoring, 185-186
IMAP (Internet Message Access Protocol), 15
implementing WLAN, 261
checklist for implementing, 262-264
infrastructure mode, wireless operations, 254
inside global address, NAT, 297
inside local address, NAT, 297
Integrated File System. See IFS
Inter-Switch Link (ISL), 103
inter-VLAN routing
configuring, 103-105, 357, 364-365
troubleshooting, 105
verifying, 105
interface ID, IPv6, 141-142
interface processing, ACLs, 279-280
interface range command, 55
interface status codes, 65-66, 171
interfaces
assigning VLANs to, 89
passive interfaces, RIPv1, 203-204
routers, 164
unused interfaces, shutting down and securing, 58
up interfaces, layer 1 problems, 67
Interior Gateway Protocols. See IGP
internal threats, 271
Internet connections, WAN
broadband wireless, 319
cable modems, 318
DSL, 317-318
Metro Ethernet, 319
Internet Control Message Protocol (ICMP), 16, 147
Internet Engineering Task Force (IETF), 137
internet information queries, 271
Internet layer, TCP/IP, 26
Internet Message Access Protocol (IMAP), 15
Internet Protocol (IP), 16
Internetwork Operating System. See Cisco IOS
Intrasite Automatic Tunnel Addressing Protocol (ISATAP), 143
intrusion detection and prevention, mitigation techniques, 273
intrusion detection systems (IDS), 273
intrusion tools, wireless security, 257
Inverse Address Resolution Protocol (ARP), Frame Relay, 339
Inverse ARP, Frame Relay, 341-343
IOS (Internetwork Operating System), 162
file naming conventions, 182-183
IOS images
managing, 183
backing up, 184
restoring, 185-186
recovering with TFTP servers, 186-187
recovering with Xmodem, 187-188
IP (Internet Protocol), 16
IP addressing, 119-120
ip helper-address command, 131
IP multicast, 72
ip ospf cost command, 236
ip ospf priority interface command, 237
ip route command, static routes, 191
IP telephony, 72
ipconfig/release commands, 131
ipconfig/renew command, 131
IPsec Security Protocols, VPNs, 325
IPv4
addresses
 classes of addresses, 110-111
 header formats, 109-110
 subnet masks, 111-112
versus IPv6, 137
IPv6
addresses
 conventions for writing, 139
 global unicast addresses, 140-141
 link-local addresses, 141
 managing, 142
 private addresses, 141
 reserved addresses, 141
interface ID and EUI-64 format, 141-142
versus IPv4, 137
overview of, 137-138
prefixes, conventions for writing, 139-140
transitioning to, 142-143
ISATAP (Intrasite Automatic Tunnel Addressing Protocol), 143
ISDN, circuit-switched connections (WAN), 315-316
ISL (Inter-Switch Link), 103
ISP (Internet service provider), configurations, 355-356
ITU-R, 253

J–K–L
jitter, 18

LAN cabling, standards for, 6
LAN switches, 45
 interface status codes, 65-66
LANs (local-area networks), 7
Layer 1 problems, troubleshooting, 350
Layer 1 problems, up interfaces, 67
Layer 2 problems, troubleshooting, 350-351
Layer 2 switching, 46
Layer 3 problems, troubleshooting, 351-352
Layer 3 switching, 46
layers
 OSI models, 14-15
 TCP/IP models, 15-16
 troubleshooting with, 29
LCP (PPP Link Control Protocol), 332-333
legacy Ethernet technologies, 34-36
 CSMA/CD, 35
link-local addresses, 141
link-state advertisements (LSA), 228
link-state database (LSDB), building, 156-157
link-state protocols, converging with link-state routing protocols, 158
link-state routing process, OSPF, 232-233
link-state routing protocols, 151, 156
 calculating Dijkstra algorithms, 157-158
 convergence with link-state protocols, 158
 LSDB, building, 156-157
LLC (Logical Link Control) sublayer, 34
LMI (Local Management Interface)
 Frame Relay, 339-343
 local access rate, Frame Relay, 338
 local loop, 309
Local Management Interface (LMI), Frame Relay, 339
Logical Link Control (LLC) sublayer, 34
logical switching, 44-45
logical topologies, 9
loopback addresses, IPv6, 141
loopback configurations, OSPF, 235
looped link detection, LCP, 332
loss, 18
low delay, 18
LSA (link-state advertisements), 156, 228-229
LSack (link-state acknowledgment) packets, OSPF, 228
LSDB (link-state database), building, 156-157
LSR (link-state request) packets, OSPF, 228
LSU (link-state update) packets, OSPF, 228-229

M
MAC (Media Access Control) sublayer, 34
MAC addresses, switch forwarding, 45
MAC database instability, STP, 79
MAC sublayer, 34
maintaining security, 275-276
maintenance threats, 271
malicious code attacks, 272
man-in-the-middle attacks, 272
management VLAN, 73
managing
addresses, IPv6, 142
IOS images, 183
backing up, 184
restoring, 185-186

manual summarization, EIGRP, 217-218
MCT (manually configured tunnels), 143
media, 5-6
networking, 5
standards for LAN cabling, 6

Media Access Control (MAC) sublayer, 34
memory, 162
memory buffering, 46
message-of-the-day (MOTD), 169
messages
EIGRP, 212
OSPF, 227-228
RIPv1, 197
methodologies, troubleshooting, 61-62
metrics, dynamic routing metrics, 152-153
Metro Ethernet, Internet connections (WAN), 319
MIST (Multiple Instances of Spanning Tree), 82
mitigation techniques, 273
host and server security, 273
intrusion detection and prevention, 273
security appliances and applications, 273-274

models
network models, benefits of, 13
OSI models, 13
layers, 14-15
PDUs and encapsulation, 16
TCP/IP models, 13-16

modes of VTP, 77

modifying
EIGRP metrics, 219-220
Hello intervals and hold times
EIGRP, 220-221
OSPF, 238-239
OSPF metrics, 236-237
MOTD (message-of-the-day), 169
multicast addresses, 38
multilink PPP, LCP, 333
multiple frame transmission, STP, 79
Multiple Instances of Spanning Tree (MIST), 82
municipal Wi-Fi, 319
mutual authentication, wireless security, 257

N
named ACLs, configuring, 286-287
naming conventions, IOS, 182-183
NAT (Network Address Translation), 297
benefits of, 300
configuring, 356, 362-363
dynamic NAT, 299-302
example of PC1 sending traffic to Internet, 298-299
inside global address, 297
inside local address, 297
limitations of, 300
outside global address, 297
outside local address, 297
overloading, 300
static NAT, 299-301
troubleshooting, 304-305
verifying, 303-304
NAT overload, 299-300, 303
native VLAN, 73
navigation, CLI, 48-49
NBMA (nonbroadcast multi-access), Frame Relay, 340
NCPs (Network Control Protocols), 332
neighbor adjacency issues, troubleshooting, 248-250

neighbors, OSPF
Hello packets, 228-229
verifying, 240

network access layer, TCP/IP, 27-28
Network Address Translation. See NAT

network admission control, 274

network command, 215-216, 234-235
network connectivity, verifying, 62-65, 175-176

Network Control Protocols (NCPs), 332

network documentation, 11

network interface card (NIC), 261

network layer testing tools
ping, 132-133
traceroute, 133-134

network management, 72

network models, benefits of, 13

network statements, 209, 247

network usage, network-based applications, 17

network-based applications, 17-18

networking, media, 5

networking icons, 7

networks
discontiguous networks, 246-247
OSPF, 230
threats to, 271

networks attacks, types of, 271-272

“Next Hop” parameter, configuring static routes, 193

NIC (network interface card), 261

no auto-summary command, 208, 216

no debug ip rip, 248

no keepalives command, 351

no service dhcp command, 129

no shutdown command, 58, 104

nonbroadcast multi-access (NBMA), 340

normal data, 72

NVRAM (nonvolatile random-access memory), 162

O

OFDM (Orthogonal Frequency Division Multiplexing), 255
Open Shortest Path First. See OSPF
operating system patches, 273
organizationally unique identifier (OUI), 38

Orthogonal Frequency Division Multiplexing (OFDM), 255

OSI models, 13
OSI layers, 14-15
PDUs (protocol data units), 16

OSPF (Open Shortest Path First), 227
addressing schemes, 233-234
algorithms, 231-232
configuring, 233
controlling DR/BDR election, 237-238
modifying Hello intervals and hold times, 238-239
modifying metrics, 236-237
network command, 234-235
redistributing default routes, 238
router ID, 235-236
router ospf command, 234

DR/BDR election, 230-231
Hello packets, neighbor adjacency, 228-229
link-state routing process, 232-233
loopback configurations, 235
LSA packets, 229
LSU packets, 229
message format, 227-228
neighbor requirements, 249-250
network types, 230
packet types, 228
troubleshooting, 239-240, 248
verifying, 240-243

OUI (organizationally unique identifier), 38
outside global address, NAT, 297
outside local address, 297
overloading NAT, 299-300
P

packet capturing sniffers, 271
packet forwarding, 147
 path determination and switching function example, 148-149
packet-switched connections, WAN, 315
 ATM, 317
 Frame Relay, 317
 X.25, 315
packets
 EIGRP, 212-213
 OSPF, 228
 RTP, 212-213
PAP, configuring PPP, 335-336
parameters
 exit interface, configuring static routes, 193-194
 “Next Hop,” configuring static routes, 193
partial-mesh topology, Frame Relay, 339
passenger protocols, 323
passive interfaces, RIPv1, 203-204
passive-interface command, disabling updates, 203
password attacks, 272
passwords, recovering, 188
PAT (Port Address Translation), 299
path determination, packet forwarding, 148-149
PDUs (protocol data units), OSI models, 16
Per-VLAN Rapid Spanning Tree (PVRST), 82
permanent virtual circuit (PVC), Frame Relay, 338
personal firewalls, 273
phishers, 268
phreakers, 268
physical (MAC) addresses, ARP, 125
physical infrastructures, threats to, 271
physical layer
 Ethernet, 40
 WAN, 311
physical topologies, 8
ping, 11, 62, 132-133
 verifying network connectivity, 175
ping sweeps, 271
ping-of-death attacks, 272
Point-to-Point Protocol. See PPP
policies, developing security policies, 269-270
POP3 (Post Office Protocol), 15
Port Address Translation (PAT), 299
port mappings, VLAN, 355
port numbers, 23
port redirection, 272
port roles, RSTP and STP, 81
port scans, 271
port security, configuring, 56-58, 358, 370
port states, RSTP and STP, 81
port examination, post-exam information (receiving your certificate), 379
port-based memory, 46
PortFast, 84
ports, routers, 164
Post Office Protocol (POP3), 15
PPP (Point-to-Point Protocol), 329-330
 configuring, 334
 CHAP, 335
 PAP, 335-336
 with CHAP, 356, 362
 frame format, 331-332
 LCP (Link Control Protocol), 332-333
 ppp authentication chap command, 335
 ppp authentication pap command, 335
PPP Link Control Protocol. See LCP
prefixes
 IPv6, conventions for writing, 139-140
 URL prefixes for specifying file locations, 181
preshared key (PSK), 325
preventing routing loops, 155-156
PRI (Primary Rate Interface), 315
private addresses, IPv6, 141
private IP addressing, 119-120
privileged EXEC mode, 47
pruning, VTP, 78
PSK (preshared key), 325
PSTN (public switched telephone network), 310
public IP addressing, 119-120
PVC (permanent virtual circuit)
 Frame Relay, 338
 WAN, 313
PVRST (Per-VLAN Rapid Spanning Tree), 82

Q
QoS (Quality of Service), network-based applications, 17
quad-zero routes, 194
quartets, 139
query packets, EIGRP, 213

R
RAM, 161
range command, 89
Rapid Per-VLAN Spanning Tree (RPVST), 82
Rapid STP. See RSTP
reconnaissance attacks, 271
recovering
 IOS images
 with TFTP servers, 186-187
 with Xmodem, 187-188
 passwords, 188
redistribute static command, 219
redistributing default routes, OSPF, 238
reference bandwidth, 236
Reliable Transport Protocol. See RTP
remote-access VPNs, 321
reply packets, EIGRP, 213
reserved addresses, IPv6, 141
restoring IOS images, 185-186
RIP, 197
 routes, interpreting, 200
 troubleshooting, 247-248
RIPv2, 198
 configuring, 207-208
 verifying, 208-209
Rivest, Shamir, and Adleman (RSA), 323
rogue AP, wireless security risks, 257
ROM, 161
router ID, configuring OSPF, 235-236
router ospf command, 234
routers, 5
 AD (administrative distance), 153-154
 basic router configuration, 167-174
 bootup process, 162-163
 configuring as DHCP servers, 128-132
 connections, 164-165
 internal components of, 161-162
 ports and interfaces, 164
routes, tracing from Windows PC, 65
routing
 EIGRP. See EIGRP
 inter-VLAN routing, configuring and verifying, 103-105
 OSPF. See OSPF
 troubleshooting, 245
routing loop prevention, 155-156
routing methods, 149
 dynamic routing protocols, classifying, 150-152
 dynamic versus static routing, 149
RPVST (Rapid Per-VLAN Spanning Tree), 82
RSA (Rivest, Shamir, and Adleman), 323
RSTP (Rapid STP), 80-81
 configuring, 84
 port roles, 81
 port states, 81
RTP (Reliable Transport Protocol), 212
 packets, 212-213

S
satellite Internet, 319
scavenger class, 72
securing unused interfaces, 58
security, 267
 attacker terminology, 267-268
 balancing security and availability, 269
 common threats
 to networks, 271
 to physical infrastructures, 271
 vulnerabilities, 270
configuring, 369
developing security policies, 269-270
importance of, 267
maintaining, 275-276
mitigation techniques, 273-274
network attacks, 271-272
port security, configuring, 56-58
thinking like attackers, 268-269
wireless security risks, 257
wireless security standards, 258
security appliances and applications,
mitigation techniques, 273-274
security communications, 274
security violations, 57
service set identifier (SSID), 261
shared memory, 46
shortcuts, CLI, 48-49
show access-lists command, 289
show cdp commands, 68
show cdp interface command, 69
show controllers command, 350
show file systems command, 179-181
show flash command, 185
show frame-relay map command, 348
show frame-relay pvc command, 348
show interface status, 67
show interfaces, 66, 171-174
show interfaces command, 351
show interfaces serial command, 349
show interfaces status, 66
show ip eigrp interfaces, 248
show ip eigrp neighbors, 222-224, 245, 249
show ip interface brief, 11, 170, 239
show ip interface command, 290
show ip interface e0 command, 290
show ip nat statistics command, 304
show ip nat translations command, 304
show ip ospf command, 241
show ip ospf interface brief, 242-243, 248
show ip ospf neighbor, 240, 245, 249
show ip protocols, 153, 239-240, 245, 248

EIGRP, 221
RIPv1, 200

show ip route, 11, 152, 170, 199, 239, 245
RIPv1, 200
show port-security command, 57
show port-security interface command, 57
show portsecurity interface, 94
show run command, 304
show running-config command, 170, 290
show spanning-tree command, 83
show version command, 162-163
show vlan brief, 88-90
show vtp status command, 98
shutting down unused interfaces, 58
site-local addresses, 141
site-to-site VPNs, 320
SMTP (Simple Mail Transfer Protocol), 15
SNMP (Simple Network Management Protocol), 15
spammers, 268
Spanning Tree Protocol. See STP
spanning-tree mode rapid-pvst, 84
spanning-tree portfast default, 84
speed mismatches, switches, 66-67
split horizons, preventing routing loops, 155
SSH, configuring access, 55-56
SSID (service set identifier), 261
standard ACLs, 280
standard numbered ACLs,
configuring, 282
deny a specific host, 283
deny a specific subnet, 283-284
deny Telnet access to routers, 284
permit specific network, 282-283
star topology, Frame Relay, 340
stateless autoconfiguration, IPv6, 142
statements
deny any, 279
network, 247
static addresses, 123
static NAT, 299-301
static routes
configuring, 191-192
default static routes, 194-197
with exit interface parameter, 193-194
with “Next Hop” parameter, 193
static routing, dynamic routing versus, 149
store-and-forward switching, 46
storing configuration files, Cisco IOS, 51
STP (Spanning Tree Protocol), 79-80
broadcast storms, 78
configuring, 82, 358, 370-371
BID (bridge ID), 82-84
PortFast, 84
MAC database instability, 79
multiple frame transmission, 79
port roles, 81
troubleshooting, 84
straight-through cables, 6, 165
structured threats, 271
Structured Wireless-Aware Network (SWAN), 257
subconfiguration modes, Cisco IOS, 50
subnet addresses, summarizing, 118-119
subnet masks, IPv4 addresses, 111-112
subnet multipliers, 114
subnets, subsetting, 114
subnetting, 112-113
determining how many bits to borrow, 113
determining net subnet masks, 114
determining subnet multipliers, 114
examples, 114-116
listing subnets, host ranges and broadcast addresses, 114
VLSM. See VLSM
subset advertisement, VTP, 78
successor, EIGRP, 223
summarization
automatic summarization
EIGRP, 217
RIPv1, 204-205
manual summarization, EIGRP, 217-218
summary advertisement, VTP, 78
SVC (switched virtual circuit)
Frame Relay, 338
WAN, 313
SWAN (Structured Wireless-Aware Network), 257
switch configuration commands, 53-54
switch forwarding methods
based on MAC addresses, 45
frame forwarding, 45
switched virtual circuit (SVC), Frame Relay, 338
switches, 3, 37-38
access layer switches, 4
broadcast domains, 45
collision domains, 45
core layer switches, 4
distribution layer switches, 4
duplex and speed mismatches, 66-67
frame forwarding, 45-46
LAN switches, 45, 65-66
layer 1 problems on up interfaces, 67
VTP, 102
WAN switches, 310
switching
evolution to, 43-44
logical switching, 44-45
WAN, 312-313
switching function, packet forwarding, 148-149
switchport mode access, 103
switchport mode dynamic desirable command, 75
switchport mode trunk, 75
switchport mode trunk dynamic auto command, 75
switchport nonegotiate, 75, 103
switchport port-security violation command, 56
symmetric switching, 46
SYN flood attacks, 272

T

TCP (Transmission Control Protocol), 15
TCP header, 22
TCP/IP
application layer, 21
data encapsulation, 28
Internet layer, 26
layers, troubleshooting with, 29
network access layer, 27-28
transport layer, 21
connection establishment and termination, 25
error recovery, 24
flow control, 25
port numbers, 23
TCP header, 22
UDP, 26
TCP/IP models, 13-16
TCP/IP protocols, 15-16
TCP/IP stacks, testing on Windows PC, 63
Telecommunications Industry Association (TIA), 36
Telnet, 15, 176
telnet command, 11
Temporal Key Integrity Protocol (TKIP), 264
Teredo tunneling, IPv6, 143
termination, TCP/IP, 25
testing
 connectivity
 to default gateways on Windows PC, 63
 to destinations on Windows PC, 64
TCP/IP stacks on Windows PC, 63
TFTP servers, recovering IOS images, 186-187
tftpdnld command, 187
threat control, 274
threats
 to networks, 271-272
 to physical infrastructures, 271
 vulnerabilities, 270
TIA (Telecommunications Industry Association), 36
TKIP (Temporal Key Integrity Protocol), 264
tools for troubleshooting, CDP, 68-69
top-level domains, 126
topologies, 8, 339
traceroute, 133-134, 175, 246
tracert, 132-134
tracing routes from Windows PC, 65
traffic types, VLANs, 72
transitional to IPv6, 142-143
Transmission Control Protocol (TCP), 15
transport layer (TCP/IP), 21-22
 connection establishment and termination, 25
 error recovery, 24
 flow control, 25
 port numbers, 23
 TCP header, 22
 UDP, 26
Triple DES (3DES), 323
Trojan horses, 272
troubleshooting
 ACLs, 291
 denied protocols, 292-293
 host has no connectivity, 291-292
 Telnet is allowed #1, 293
 Telnet is allowed #2, 294
 Telnet is allowed #3, 294-295
EIGRP, 248
 inter-VLAN routing, 105
 with layers, 29
 methodology, 61-62
 NAT, 304-305
 neighbor adjacency issues, 248-250
 OSPF, 239-240, 248
 RIP, 247-248
 RIPv2, 208-209
 routing, 245
 STP, 84
 tools, CDP, 68-69
 trunking, 93-94
 VLAN, 93-94
 VLSM, 246
 VTP, 102-103
 WAN implementations, 349
 Layer 1 problems, 350
 Layer 2 problems, 350-351
 Layer 3 problems, 351-352
 WLAN, 264
trunking
 configuring, 91-93
 troubleshooting, 93-94
 verifying, 91-93
trunking VLANs, 74-75
trust exploitation, 272
tunneling, 322. See also encapsulation
 IPv6, 143
 Teredo tunneling, IPv6, 143
 VPNs, 323

UDP (User Datagram Protocol), 15
 TCP/IP, 26
undebug all, 248
unshielded twisted-pair (UTP), 164
unstructured threats, 271
up interfaces, layer 1 problems, 67
update packets, EIGRP, 213

U
URL prefixes for specifying file locations, IFS, 181
usage of networks, network-based applications, 17
User Datagram Protocol (UDP), 15
user EXEC mode, 47
username command, 335
UTP (unshielded twisted-pair), 164
UTP cabling, 36-37

V

V.35, 311
variable-length subnet masking. See VLSM
VC (virtual circuit), Frame Relay, 338
verifying
ACLs, 289-290
BID, 82-84
DHCP operations, 130
EIGRP
 show ip eigrp neighbors, 222-224
 show ip protocols, 221
Frame Relay, 343, 348
HDLC, 331
inter-VLAN routing configurations, 105
NAT, 303-304
network connectivity, 62-65
OSPF, 240-243
RIPv1, 199-202
RIPv2, 208-209
speed and duplex settings, 66-67
trunking, 91-93
VLAN, 88-91
VTP, 99-100
 synchronized databases, 101-102
VLAN configurations on VTP servers, 100-101
verifying network connectivity, 175-176
video, impact on network-based applications, 18
virtual circuit (VC), Frame Relay, 338
virtual private networks. See VPNs
viruses, 272
VLAN configurations and port mappings, 355
VLAN tag fields, 74
VLAN Trunking Protocol. See VTP

VLANs (virtual local-area networks)
 assigning, 358, 369-370
 to interfaces, 89
benefits of, 71-72
black hole VLAN, 73
configuring, 88-91, 357, 367-369
creating, 88
data VLAN, 72
default VLAN, 72
DTP (Dynamic Trunking Protocol), 75
management VLAN, 73
native VLAN, 73
overview, 71
traffic types, 72
troubleshooting, 93-94
trunking VLANs, 74-75
verification commands, 88-91
voice VLAN, 73-74
VLSM (variable-length subnet masking), 116-118, 246
troubleshooting, 246
voice, impact on network-based applications, 18
voice VLAN, 73-74
VoIP (voice over IP), 18
VPNs (virtual private networks), 320
 benefits of, 320
 components of, 322
 establishing connections, 322
 authentication, 325
 encryption algorithms, 323
 hashes, 324-325
 IPsec Security Protocols, 325
tunneling, 323
types of access, 320
 remote-access VPNs, 321
 site-to-site VPNs, 320
VTP (VLAN Trunking Protocol), 76-77, 97
 advertisement request message, 78
configuring, 97-100
 modes, 77
 pruning, 78
 subset advertisement, 78
 summary advertisement, 78
 switches, 102
troubleshooting, 102-103
 verifying, 99
 synchronized databases, 101-102
 VLAN on VTP servers, 100-101
VTP operation, 77-78
vtp pruning, 98
vtp version 2, 98
vulnerabilities, 270

W

WAN
components of, 309
connections, 165
circuit-switched connections, 314-316
dedicated connections, 314
Internet connections, 317-319
packet-switched connections, 315-317
WAN link options, 319-320
data-link protocols, 312
deVICES, 310
physical layer standards, 311
PVC, 313
SVC, 313
switching, 312-313
WAN implementations, troubleshooting, 349
Layer 1 problems, 350
Layer 2 problems, 350-351
Layer 3 problems, 351-352
WAN link options, 319-320
WAN switches, 310
WANs (wide-area networks), 7
war drivers, wireless security risks, 257
WEP (Wired Equivalent Privacy), 258, 261
white hats, 267
Wi-Fi Alliance, 253
Wi-Fi Protected Access (WPA), 258, 261
WiMAX (Worldwide Interoperability for Microwave Access), 319
windowing, 25
Windows PC
configuring to use DHCP, 123
testing
cnectivity to default gateways, 63
cnectivity to destinations, 64
TCP/IP stacks, 63
tracing routes, 65
Wired Equivalent Privacy (WEP), 258, 261
wireless access points, 261
wireless coverage areas, 256
wireless encoding channels, 255
wireless frequencies, 254
wireless LAN. See WLAN
wireless modes of operation, 254
wireless security risks, 257
wireless security standards, 258
wireless standards, 253
WLAN
implementing, 261
checklist for, 262-264
modes of operation, 254
speed and frequency reference, 256
standards for, 254
troubleshooting, 264
word help, 48
Worldwide Interoperability for Microwave Access (WiMAX), 319
worms, 272
WPA (Wi-Fi Protected Access), 258, 261
write erase command, 51

X–Y–Z
X.21, 311
X.25, packet-switched connections (WAN), 315
Xmodem, recovering IOS images, 187-188
xmodem command, 187