Foreword

Cisco certification Self-Study Guides are excellent self-study resources for networking professionals to maintain and increase internetworking skills, and to prepare for Cisco Career Certification exams. Cisco Career Certifications are recognized worldwide, and provide valuable, measurable rewards to networking professionals and their employers.

Cisco Press exam certification guides and preparation materials offer exceptional (and flexible) access to the knowledge and information required to stay current in one’s field of expertise, or to gain new skills. Whether used to increase internetworking skills or as a supplement to a formal certification preparation course, these materials offer networking professionals the information and knowledge required to perform on-the-job tasks proficiently.

Developed in conjunction with the Cisco certifications and training team, Cisco Press books are the only self-study books authorized by Cisco, and offer students a series of exam practice tools and resource materials to help ensure that learners fully grasp the concepts and information presented.

Additional authorized Cisco instructor-led courses, e-learning, labs, and simulations are available exclusively from Cisco Learning Solutions Partners worldwide. To learn more, visit http://www.cisco.com/go/training.

I hope you find this guide to be an essential part of your exam preparation and professional development, and a valuable addition to your personal library.

Drew Rosen
Manager, Learning & Development
Learning@Cisco
January 2009

Introduction

Network security is a complex and growing area of IT. As the premier provider of network security devices, Cisco Systems is committed to supporting this growing segment of the industry.

This book teaches you how to design, configure, maintain, and audit network security. It focuses on using Cisco IOS routers for protecting the network by capitalizing on its advanced features as a perimeter router, as a firewall, as an intrusion prevention system, and as a VPN device. By the end of this book, you will be able to select and implement the appropriate Cisco IOS services required to build flexible and secure networks. This book also introduces you to the concept of endpoint security.

This book provides you with the knowledge necessary to pass your CCNA Security certification because it provides in-depth information to help you prepare for the IINS exam. It also starts you on the path toward attaining your Cisco Certified Security Professional (CCSP) certification.

The commands and configuration examples presented in this book are based on Cisco IOS Releases 12.3.
Goals and Methods

The most important and somewhat obvious goal of this book is to help you pass the IINS exam (640-553). In fact, if the primary objective of this book were different, the book’s title would be misleading; however, the methods used in this book to help you pass the CCNA Security exam are designed to also make you much more knowledgeable about how to do your job.

Although this book has more than enough questions to help you prepare for the actual exam, the method in which they are used is not to simply make you memorize as many questions and answers as you possibly can. One key methodology used in this book is to help you discover the exam topics that you need to review in more depth, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. So, this book does not try to help you pass by memorization, but helps you truly learn and understand the topics. The CCNA Security exam (640-553) is just one of the foundation topics in the CCSP certification, and the knowledge contained within is vitally important to consider yourself a truly skilled security specialist. This book would do you a disservice if it didn't attempt to help you learn the material. To that end, the book will help you pass the CCNA Security exam by using the following methods:

- Helping you discover which test topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Providing practice questions on the topics

Who Should Read This Book?

This book is not designed to be a general security topics book, although it can be used for that purpose. This book is intended to tremendously increase your chances of passing the CCNA Security exam. Although other objectives can be achieved from using this book, the book is written with two goals in mind: to improve your knowledge of Cisco IOS security and to help you pass the CCNA Security exam.

So why should you want to pass the CCNA Security exam? Because it is one of the milestones toward getting the CCSP certification; no small feat in itself. What would getting the CCSP mean to you? A raise, a promotion, recognition? How about to enhance your resumé? To demonstrate that you are serious about continuing the learning process and that you are not content to rest on your laurels? To have a chance of working in one of the most thrilling and fastest growing sectors of IT, network security? To please your reseller-employer, who needs more certified employees for a higher discount from Cisco? Or one of many other reasons.

Strategies for Exam Preparation

The strategy you use for CCNA Security might be slightly different from strategies used by other readers, mainly based on the skills, knowledge, and experience you already have
obtained. For instance, if you have attended the IINS course, you might take a different approach than someone who learned firewalls via on-the-job training.

How This Book Is Organized

Although this book could be read cover to cover, it is designed to be flexible and allow you to move between chapters. However, if you do intend to read every chapter, the order in the book is an excellent sequence to use. Chapters 1 to 7 cover the following topics:

- **Chapter 1, “Introduction to Network Security Principles”:** This chapter discusses how to develop a comprehensive network security policy to counter threats against information security. It also teaches you about possible threats and how to describe and implement the process of developing a security policy.

- **Chapter 2, “Perimeter Security”:** This chapter discusses the concept of perimeter security and covers more precisely the physical installation of and administrative access to Cisco routers, the use of Cisco Security Device Manager (SDM), the use of Cisco routers to perform authentication, authorization, and accounting (AAA), the secure implementation of the management and reporting features of syslog, Simple Network Management Protocol (SNMP), Secure Shell (SSH), Network Time Protocol (NTP), and it examines how to secure a Cisco router with the Security Audit and One-Step Lockdown features of Cisco SDM.

- **Chapter 3, “Network Security Using Cisco IOS Firewalls”:** This chapter teaches you how to configure firewall features, including access control lists (ACL) and Cisco IOS zone-based policy firewalls to perform basic security operations on a network. It explains the operations of the different types of firewall technologies and especially the technology used by Cisco routers and Cisco security appliances. The chapter provides thorough explanations on how to create static packet filters using ACLs and how to configure a Cisco IOS zone-based policy firewall.

- **Chapter 4, “Fundamentals of Cryptography”:** This chapter introduces the concepts of cryptography and covers encryption, hashing, and digital signatures and how these techniques provide confidentiality, integrity, authenticity, and nonrepudiation. You will learn about algorithms, symmetric and asymmetrical encryption, digital signatures, and Public Key Infrastructure (PKI).

- **Chapter 5, “Site-to-Site VPNs”:** This chapter introduces the concepts of site-to-site virtual private networks (VPN) using Cisco IOS. It covers topics such as concepts, technologies, and terms that IP Security (IPsec) VPNs use, Site-to-site IPsec VPN configuration using the command-line interface (CLI), and using Cisco SDM.

- **Chapter 6, “Network Security Using Cisco IOS IPS”:** This chapter describes the functions and operations of intrusion detection systems (IDS) and intrusion prevention systems (IPS). It explains the underlying IDS and IPS technology embedded in the Cisco host- and network-based IDS and IPS solutions. Through this chapter, you will learn to configure Cisco IOS IPS using Cisco SDM.
Chapter 7, “LAN, SAN, Voice, and Endpoint Security Overview”: This chapter focuses on several additional aspects of network security: LANs, storage-area networks (SAN), voice, and endpoints. This chapter emphasizes Layer 2 and host security to provide much more comprehensive coverage of the important issues involved in securing an enterprise. In this chapter, you learn about current endpoint protection methods, risks, and countermeasures for SANs security and for IP telephony. You will also read about how to protect your network against Layer 2 attacks.
Intrusion detection system (IDS) and intrusion prevention system (IPS) solutions form an integral part of a robust network defense solution. Maintaining secure network services is a key requirement of a profitable IP-based business. Using Cisco products and technologies as examples, this chapter defines IDS and IPS and how these systems work.

Introducing IDS and IPS

IDS and IPS work together to provide a network security solution. An IDS captures packets in real time, processes them, and can respond to threats, but works on copies of data traffic to detect suspicious activity by using signatures. This is called promiscuous mode. In the process of detecting malicious traffic, an IDS allows some malicious traffic to pass before the IDS can respond to protect the network. An IDS analyzes a copy of the monitored traffic rather than the actual forwarded packet. The advantage of operating on a copy of the traffic is that the IDS does not affect the packet flow of the forwarded traffic. The disadvantage of operating on a copy of the traffic is that the IDS cannot stop malicious traffic from single-packet attacks from reaching the target system before the IDS can apply a response to stop the attack. An IDS often requires assistance from other networking devices, such as routers and firewalls, to respond to an attack.

An IPS works inline in the data stream to provide protection from malicious attacks in real time. This is called inline mode. Unlike an IDS, an IPS does not allow packets to enter the trusted side of the network. An IPS monitors traffic at Layer 3 and Layer 4 to ensure that their headers, states, and so on are those specified in the protocol suite. However, the IPS sensor analyzes at Layer 2 to Layer 7 the payload of the packets for more sophisticated embedded attacks that might include malicious data. This deeper analysis lets the IPS identify, stop, and block attacks that would normally pass through a traditional firewall device. When a packet comes in through an interface on an IPS, that packet is not sent to the outbound or trusted interface until the packet has been determined to be clean. An IPS builds upon previous IDS technology; Cisco IPS platforms use a blend of detection technologies, including profile-based intrusion detection, signature-based intrusion detection, and protocol analysis intrusion detection.

The key to differentiating an IDS from an IPS is that an IPS responds immediately and does not allow any malicious traffic to pass, whereas an IDS allows malicious traffic to pass before it can respond.
IDS and IPS technologies share several characteristics:

IDS and IPS technologies are deployed as sensors. An IDS or an IPS sensor can be any of the following devices:

- A router configured with Cisco IOS IPS Software
- An appliance specifically designed to provide dedicated IDS or IPS services
- A network module installed in an adaptive security appliance, switch, or router

IDS and IPS technologies typically monitor for malicious activities in two spots:

- Malicious activity is monitored at the network to detect attacks against a network, including attacks against hosts and devices, using network IDS and network IPS.
- Malicious activity is monitored on a host to detect attacks that are launched from or on target machines, using host intrusion prevention system (HIPS). Host-based attacks are detected by reading security event logs, checking for changes to critical system files, and checking system registries for malicious entries.

IDS and IPS technologies generally use yes, signatures to detect patterns of misuse in network traffic, although other technologies will be introduced later in this chapter. A signature is a set of rules that an IDS or IPS uses to detect typical intrusive activity. Signatures are usually chosen from a broad cross section of intrusion detection signatures, and can detect severe breaches of security, common network attacks, and information gathering.

IDS and IPS technologies look for the following general patterns of misuse:

- **Atomic pattern**: In an atomic pattern, an attempt is made to access a specific port on a specific host, and malicious content is contained in a single packet. An IDS is particularly vulnerable to an atomic attack because until it finds the attack, malicious single packets are being allowed into the network. An IPS prevents these packets from entering at all.

- **Composite pattern**: A composite pattern is a sequence of operations distributed across multiple hosts over an arbitrary period of time.

Note: Note that sensors, even inline, might not be completely successful at drop packets of an attack. It is possible that an attack be on its way, if only partially, before even an inline sensor starts dropping packets matching a composite pattern signature. The drop action is much more effective for atomic signatures because the sensor makes a single packet match.
Figure 6-1 shows a sensor deployed in IDS mode and a sensor deployed in IPS mode.

The following are the steps that occur when an attack is launched in an environment monitored by an IDS:

Step 1. An attack is launched on a network that has a sensor deployed in IDS mode.

Step 2. The switch sends copies of all packets to the IDS sensor (configured in promiscuous mode, which is explained later in this section) to analyze the packets. At the same time, the target machine experiences the malicious attack.

Step 3. The IDS sensor, using a signature, matches the malicious traffic to the signature.

Step 4. The IDS sensor sends the switch a command to deny access to the malicious traffic.

Step 5. The IDS sends an alarm to a management console for logging and other management purposes.

The following are the steps that occur when an attack is launched in an environment monitored by an IPS:
Key Topic

Promiscuous Versus Inline Mode

A sensor can be deployed either in promiscuous mode or inline mode. In promiscuous mode, the sensor receives a copy of the data for analysis, while the original traffic still makes its way to its ultimate destination. By contrast, a sensor working inline analyzes the traffic live and therefore can actively block the packets before they reach their destination.

It is worth mentioning that Cisco appliances, such as the Cisco ASA AIP SSM (discussed later in the section, “Cisco ASA AIP SSM”), although advertised as IPS device, can work either in promiscuous mode or in inline mode.

Key Topic

Management Console

The term *management console*, used in this chapter and seen in Figure 6-1, requires some explanation. A management console is a separate workstation equipped with software to configure, monitor, and report on events. The section, “Monitoring IOS IPS,” introduces some of Cisco’s IPS management solutions.

Table 6-1 lists some of the advantages and limitations of deploying an IDS platform in promiscuous mode.

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deploying the IDS sensor does not have any impact on the network (latency, jitter, and so on).</td>
<td>IDS sensor response actions cannot stop the trigger packet and are not guaranteed to stop a connection. IDS response actions are typically better at stopping an attacker more than a specific attack itself.</td>
</tr>
<tr>
<td>The IDS sensor is not inline and, therefore, a sensor failure cannot affect network functionality.</td>
<td>IDS sensor response actions are less helpful in stopping email viruses and automated attackers such as worms.</td>
</tr>
</tbody>
</table>
Table 6-1 Advantages and Limitations of Deploying an IDS in Promiscuous Mode

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overrunning the IDS sensor with data does not affect network traffic; however, it does affect the capability of the IDS to analyze the data.</td>
<td>Users deploying IDS sensor response actions must have a well thought-out security policy combined with a good operational understanding of their IDS deployments. Users must spend time to correctly tune IDS sensors to achieve expected levels of intrusion detection.</td>
</tr>
<tr>
<td></td>
<td>Being out of band (OOB), IDS sensors are more vulnerable to network evasion techniques, which are the process of totally concealing an attack.</td>
</tr>
</tbody>
</table>

Table 6-2 lists some of the advantages and limitations of deploying an IPS platform in inline mode.

Table 6-2 Advantages and Limitations of Deploying an IPS in Inline Mode

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can configure an IPS sensor to perform a packet drop that can stop the trigger packet, the packets in a connection, or packets from a source IP address.</td>
<td>An IPS sensor must be inline and, therefore, IPS sensor errors or failure can have a negative effect on network traffic.</td>
</tr>
<tr>
<td>Being inline, an IPS sensor can use stream normalization techniques to reduce or eliminate many of the network evasion capabilities that exist.</td>
<td>Overrunning IPS sensor capabilities with too much traffic does negatively affect the performance of the network.</td>
</tr>
<tr>
<td></td>
<td>Users deploying IPS sensor response actions must have a well thought-out security policy combined with a good operational understanding of their IPS deployments.</td>
</tr>
<tr>
<td></td>
<td>An IPS sensor will affect network timing because of latency, jitter, and so on. An IPS sensor must be appropriately sized and implemented so that time-sensitive applications, such as VoIP, are not negatively affected.</td>
</tr>
</tbody>
</table>

Traffic normalization includes techniques such as fragmentation reassembly to check the validity of the transmission.
Table 6-3 summarizes some of the advantages and limitations of an IDS in promiscuous mode and an IPS in inline mode explained earlier.

Table 6-3 Summary of Advantages and Limitations of IDS and IPS Modes

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDS (Promiscuous Mode)</td>
<td></td>
</tr>
<tr>
<td>No impact on network (latency,</td>
<td>Response action cannot stop trigger packets</td>
</tr>
<tr>
<td>jitter)</td>
<td>Correct tuning required for response actions</td>
</tr>
<tr>
<td>No network impact if there is a</td>
<td>Must have a well-thought out security policy</td>
</tr>
<tr>
<td>sensor failure</td>
<td>More vulnerable to network evasion techniques</td>
</tr>
<tr>
<td>No network impact if there is a</td>
<td></td>
</tr>
<tr>
<td>sensor overload</td>
<td></td>
</tr>
<tr>
<td>IPS (Inline Mode)</td>
<td></td>
</tr>
<tr>
<td>Stops trigger packets</td>
<td>Sensor issues might affect network traffic</td>
</tr>
<tr>
<td>Can use stream normalization</td>
<td>Sensor overloading impacts the network</td>
</tr>
<tr>
<td>techniques</td>
<td>Must have a well-thought out security policy</td>
</tr>
<tr>
<td></td>
<td>Some impact on network (latency, jitter)</td>
</tr>
</tbody>
</table>

Types of IDS and IPS Systems

Table 6-4 summarizes the advantages and limitations of the various types of IDS and IPS sensors available.
Table 6-4 Types of IDS and IPS Sensors

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Based</td>
<td>Easy configuration</td>
<td>No detection of unknown signatures</td>
</tr>
<tr>
<td></td>
<td>Fewer false positives</td>
<td>Initially a lot of false positives</td>
</tr>
<tr>
<td></td>
<td>Good signature design</td>
<td>Signatures must be created, updated, and tuned</td>
</tr>
<tr>
<td>Policy Based</td>
<td>Simple and reliable</td>
<td>Generic output</td>
</tr>
<tr>
<td></td>
<td>Customized policies</td>
<td>Policy must be created</td>
</tr>
<tr>
<td></td>
<td>Can detect unknown attacks</td>
<td></td>
</tr>
<tr>
<td>Anomaly Based</td>
<td>Easy configuration</td>
<td>Difficult to profile typical activity in large networks</td>
</tr>
<tr>
<td></td>
<td>Can detect unknown attacks</td>
<td>Traffic profile must be constant</td>
</tr>
<tr>
<td>Honeypot Based</td>
<td>Window to view attacks</td>
<td>Dedicated honeypot server</td>
</tr>
<tr>
<td></td>
<td>Distract and confuse attackers</td>
<td>Honeypot server must not be trusted</td>
</tr>
<tr>
<td></td>
<td>Slow down and avert attacks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collect information about attack</td>
<td></td>
</tr>
</tbody>
</table>

- **False negative**: Occurs when the IDS/IPS fails to report an actual intrusive action.
- **False positive**: Occurs when the IDS/IPS classifies an action as anomalous when in fact it is a legitimate action. These terms and others are discussed at length in the upcoming section “Signature Alarms.”
- **Honeypot**: A system deployed to entice a hacker to attack it and therefore track the hacker’s maneuvers and technique.

The sections that follow describe these IDS and IPS sensors in more detail.

Signature-Based IDS/IPS Systems

A signature-based IDS or IPS sensor looks for specific, predefined patterns (signatures) in network traffic. It compares the network traffic to a database of known attacks, and triggers an alarm or prevents communication if a match is found. The signature can be based on a single packet or a sequence of packets. New attacks that do not match a signature do not result in detection. For this reason, the signature database needs to be constantly updated.
Note: Protocol analysis-based intrusion detection relies on signature-based intrusion detection where the signature performs a check to ensure that the date unit header, flags, payload, and so on respect the protocol.

Signature-based pattern matching is an approach that is rigid but simple to employ. In most cases, the pattern is matched against only if the suspect packet is associated with a particular service or, more precisely, destined to and from a particular port. This matching technique helps to lessen the amount of inspection done on every packet. However, it makes it more difficult for systems to deal with protocols that do not reside on well-defined ports, such as Trojan horses and their associated traffic, which can move at will.

At the initial stage of incorporating signature-based IDS or IPS, before the signatures are tuned, there can be many false positives (traffic generating an alert which is no threat for the network). After the system is tuned and adjusted to the specific network parameters, there will be fewer false positives than with the policy-based approach.

Policy-Based IDS/IPS Systems

In policy-based systems, the IDS or IPS sensor is preconfigured based on the network security policy. You must create the policies used in a policy-based IDS or IPS. Any traffic detected outside the policy will generate an alarm or will be dropped. Creating a security policy requires detailed knowledge of the network traffic and is a time-consuming task.

Policy-based signatures use an algorithm to determine whether an alarm should be fired. Often, policy-based signature algorithms are statistical evaluations of the traffic flow. For example, in a policy-based signature used to detect a port sweep, the algorithm issues an alarm when the threshold number of unique ports is scanned on a particular machine.

Policy-based signature algorithms can be designed to analyze only specific types of packets (for example, SYN packets, where the SYN bit is turned on during the handshaking process at the beginning of the session).

The policy itself might require tuning. For example, you might have to adjust the threshold level of certain types of traffic so that the policy conforms to the utilization patterns on the network that it is monitoring. Policies can be used to look for very complex relationships.

Anomaly-Based IDS/IPS Systems

Anomaly-based or profile-based signatures typically look for network traffic that deviates from what is seen “normally.” The biggest issue with this methodology is that you first must define what normal is. If during the learning phase your network is the victim of an attack and you fail to identify it, the anomaly-based IPS systems will interpret that malicious traffic as normal, and no alarm will be triggered next time this same attack takes place. Some systems have hard-coded definitions of normal traffic patterns and, in this case, could be considered heuristic-based systems.

Other systems are built to learn normal traffic behavior; however, the challenge with these systems is eliminating the possibility of improperly classifying abnormal behavior as normal. Also, if the traffic pattern being learned is assumed normal, the system must contend with how to differentiate between allowable deviations, and those deviations
that are not allowed or that represent attack-based traffic. Normal network traffic can be
difficult to define.

The technique used by anomaly-based IDS/IPS systems is also referred as network behav-
ior analysis or heuristics analysis.

Honeypot-Based IDS/IPS Systems

Honeypot systems use a dummy server to attract attacks. The purpose of the honeypot
approach is to distract attacks away from real network devices. By staging different types
of vulnerabilities in the honeypot server, you can analyze incoming types of attacks and
malicious traffic patterns. You can use this analysis to tune your sensor signatures to de-
tect new types of malicious network traffic.

Honeypot systems are used in production environments, typically by large organizations
that come across as interesting targets for hackers, such as financial enterprises, govern-
mental agencies, and so on. Also, antivirus and other security vendors tend to use them
for research.

Tip: Many security experts preach the use of honeypots as an early-warning system to
be deployed with your IDS/IPS system, not in lieu of. Honeyd is an example of a popular
open-source honeypot software. Although honeypots are often found as dedicated servers,
it is possible to set up virtual honeypots using VMWare or Virtual PC. Keep in mind that
should the honeypot be successfully hacked and used as a launching platform for an attack
on a third party, the honeypot’s owner could incur downstream liability.

IPS Actions

When an IPS sensor detects malicious activity, it can choose from any or all the following
actions:

- **Deny attacker inline:** This action terminates the current packet and future packets
 from this attacker address for a specified period of time. The sensor maintains a list
 of the attackers currently being denied by the system. You can remove entries from
 the list or wait for the timer to expire. The timer is a sliding timer for each entry.
 Therefore, if attacker A is currently being denied, but issues another attack, the timer
 for attacker A is reset, and attacker A remains on the denied attacker list until the
 timer expires. If the denied attacker list is at capacity and cannot add a new entry, the
 packet is still denied.

- **Deny connection inline:** This action terminates the current packet and future pack-
 ets on this TCP flow. This is also referred to as deny flow.

- **Deny packet inline:** This action terminates the packet.

- **Log attacker packets:** This action starts IP logging on packets that contain the at-
 tacker address and sends an alert. This action causes an alert to be written to the
event store, which is local to the IOS router, even if the produce-alert action is not selected. Produce alert is discussed later in a bullet.

- **Log pair packets:** This action starts IP logging on packets that contain the attacker and victim address pair. This action causes an alert to be written to the event store, even if the produce-alert action is not selected.

- **Log victim packets:** This action starts IP logging on packets that contain the victim address and sends an alert. This action causes an alert to be written to the event store, even if the produce-alert action is not selected.

- **Produce alert:** This action writes the event to the event store as an alert.

- **Produce verbose alert:** This action includes an encoded dump of the offending packet in the alert. This action causes an alert to be written to the event store, even if the produce-alert action is not selected.

- **Request block connection:** This action sends a request to a blocking device to block this connection.

- **Request block host:** This action sends a request to a blocking device to block this attacker host.

- **Request SNMP trap:** This action sends a request to the notification application component of the sensor to perform Simple Network Management Protocol (SNMP) notification. This action causes an alert to be written to the event store, even if produce-alert action is not selected.

- **Reset TCP connection:** This action sends TCP resets to hijack and terminate the TCP flow.

Note: IP logging and verbose alert traces use a common capture file writing code called libpcap. This is the same format used by the famous packet-capture tool Wireshark (formerly Ethereal); by Snort, a famous freeware IDS; by NMAP, a well-known fingerprinting tool; and by Kismet, a famous wireless sniffing tool.

You can use the reset TCP connection action in conjunction with deny-packet and deny-flow actions. However, deny-packet and deny-connection actions do not automatically cause TCP reset actions to occur.

Event Monitoring and Management

Event monitoring and management can be divided into the following two needs:

- The need for real-time event monitoring and management

- The need to perform analysis based on archived information (reporting)

These functions can be handled by a single server, or the functions can be placed on separate servers to scale the deployment. The number of sensors that should forward alarms to a single IPS management console is a function of the aggregate number of alarms per second that are generated by those sensors.
Experience with customer networks has shown that the number of sensors reporting to a single IPS management console should be limited to 25 or fewer. These customers use a mixture of default signature profiles and tuned signatures. The number of alarms generated by each sensor is determined by how sensitively the sensor is tuned; the more sensitive the tuning, the fewer the alarms that are generated, and the larger the number of sensors that can report to a single IPS management console.

Note: Obviously with the evolution of technology, the limit of 25 sensors reporting to a single IPS management console is constantly being pushed. Check with your vendor for the latest information.

It is essential to tune out false positives to maximize the scalability of the network IPS deployment. Sensors that are expected to generate a large number of alarms, such as those sitting outside the corporate firewall, should log in to a separate IPS management console, because the number of false alarms raised dramatically increases the noise-to-signal ratio and makes it difficult to identify otherwise valid events.

- False positives happen when the IDS/IPS mistakenly takes legitimate traffic for an attack.
- False negatives happen when the IDS/IPS sensor misses an attack.

When implementing multiple IPS management consoles, implement either separate monitoring domains or a hierarchical monitoring structure.
Cisco IPS Management Software

You can use the command-line interface (CLI) to configure an IPS solution, but it is simpler to use a graphical user interface (GUI)-based device manager. The following describes the Cisco device management software available to help you manage an IPS solution.

Cisco Router and Security Device Manager

Cisco Security Device Manager (SDM), shown in Figure 6-2, is a web-based device management tool for Cisco routers that can improve the productivity of network managers, simplify router deployments, and help troubleshoot complex network and virtual private network (VPN) connectivity issues. Cisco SDM supports a wide range of Cisco IOS Software releases and is available free on Cisco router models from the Cisco 850 Series Integrated Services Router to the Cisco 7301 Router.

![Cisco Router and Security Device Manager](image)

Figure 6-2 Cisco Router and Security Device Manager

Cisco Security Monitoring, Analysis, and Response System

Cisco Security Monitoring, Analysis, and Response System (MARS), shown in Figure 6-3, is an appliance-based, all-inclusive solution that enables network and security administrators to monitor, identify, isolate, and counter security threats. This family of high-performance appliances enables organizations to more effectively use their network and security resources.
Cisco Security MARS can monitor security events and information from a wide variety of sources, including third-party devices and hosts. With its correlation engine, vector analysis, and hotspot identification, Cisco Security MARS can identify anomalous behavior and security threats, and recommend precision removal of those elements, which leads to rapid threat mitigation. In addition, Cisco Security MARS incorporates a comprehensive reporting engine that provides easy access to information for compliance reporting.

Cisco IDS Event Viewer

Cisco IDS Event Viewer (IEV), referred to also as Cisco IPS Event Viewer, is a Java-based application that enables you to view and manage alarms for up to five sensors. With Cisco IEV, you can connect to and view alarms in real time or in imported log files. You can configure filters and views to help you manage the alarms. You can also import and export event data for further analysis.

Cisco IEV offers a no-cost monitoring solution for small-scale IPS deployments. Monitoring up to five individual IPS devices, Cisco IEV is easy to set up and use, and provides the user with the following:

- Support for Cisco IPS Sensor Software Version 5.x through Security Device Event Exchange (SDEE) compatibility
- Customizable reporting
- Visibility into applied response actions and threat rating

Note: Cisco IEV is being phased out and replaced by Cisco IPS Express manager (http://tinyurl.com/5td7f2).

Cisco Security Manager

Cisco Security Manager is a powerful, but very easy-to-use solution, to centrally provision all aspects of device configurations and security policies for Cisco firewalls, VPNs, and IPS. The solution is effective for managing even small networks that consist of fewer than 10 devices, but also scales to efficiently manage large-scale networks that are composed of thousands of devices. Scalability is achieved through intelligent policy-based management techniques that can simplify administration.
Features of CSM include the following:

- Auto update for Cisco IOS Release 12.4(11)T2 or later
- Custom signature templates
- Signature wizards to create and update signatures

Cisco IPS Device Manager

Cisco IPS Device Manager (IDM) is a web-based configuration tool for network IPS appliances. It is shipped at no additional cost with the Cisco IPS Sensor Software. Cisco IDM implements a web-based GUI.

Note: In May 2008, Cisco announced the release of a new product called Cisco IPS Manager Express. The new Cisco IPS Manager Express (IME), shown in Figure 6-4, is a powerful yet easy-to-use all-in-one IPS management application for up to five IPS sensors. Cisco IME can be used to provision, monitor, troubleshoot, and provide reports for IPS 4200 series sensors, ASA 5500 IPS solution, AIM-IPS on ISRs, and IDSM2 on Catalyst 6500s. To have access to all the capabilities of Cisco IME, it has to be used with sensors running Cisco IPS Software 6.1. With IPS Software Versions 5.1 or 6.0, or IOS IPS, you can use IME to monitor and provide reports only, with limited dashboard support. Some of the features of Cisco IPS Manager Express are a customizable dashboard, powerful monitoring with real-time and historical viewing, integrated policy provisioning with risk rating, a flexible reporting tool, RSS feed integration, email notification, 75 events per second, and up to five IPS sensors.

![Cisco IPS Manager Express](image-url)
Host and Network IPS

IPS technology can be network based and host based. There are advantages and limitations to HIPS compared with network-based IPS. In many cases, the technologies are thought to be complementary.

Host-Based IPS

HIPS audits host log files, host file systems, and resources. A significant advantage of HIPS is that it can monitor operating system processes and protect critical system resources, including files that may exist only on that specific host. HIPS can combine the best features of antivirus, behavioral analysis, signature filters, network firewalls, and application firewalls in one package. Note that the Cisco HIPS solution, Cisco Security Agent (CSA), is signature-free that reduces the maintenance required to be performed on that software.

A simple form of HIPS enables system logging and log analysis on the host. However, this approach can be extremely labor intensive. When implementing HIPS, the CSA software should be installed on each host to monitor all activity performed on, and against, the host. CSA performs the intrusion detection analysis and protects the host.

A Cisco HIPS deployment using CSA provides proactive security by controlling access to system resources. This approach avoids the race to update defenses to keep up with the latest exploit, and protects hosts even on day zero of a new attack. For example, the Nimda and SQL Slammer worms did millions of dollars of damage to enterprises on the first day of their appearance, before updates were even available; however, a network protected with a CSA stopped these attacks without any updates by identifying their behavior as malicious.

Host-based IPS operates by detecting attacks that occur on a host on which it is installed. HIPS works by intercepting operating system and application calls, securing the operating system and application configurations, validating incoming service requests, and analyzing local log files for after-the-fact suspicious activity.

More precisely, HIPS functions according to the following steps, as shown in Figure 6-5:

Step 1. An application calls for system resources.

![Figure 6-5](HIPS Operations Steps)
Step 2. HIPS checks the call against the policy.

Step 3. Requests are allowed or denied.

HIPS uses rules that are based on a combination of known attack characteristics and a detailed knowledge of the operating system and specific applications running on the host. These rules enable HIPS to determine abnormal or out-of-bound activity and, therefore, prevent the host from executing commands that do not fit the correct behavior of the operating system or application.

HIPS improves the security of hosts and servers by using rules that control operating system and network stack behavior. Processor control limits activity such as buffer overflows, Registry updates, writes to the system directory, and the launching of installation programs. Regulation of network traffic can help ensure that the host does not participate in accepting or initiating FTP sessions, can rate-limit when a denial-of-service (DoS) attack is detected, or can keep the network stack from participating in a DoS attack.

The topology in Figure 6-6 shows a typical Cisco HIPS deployment. CSA is installed on publicly accessible servers, corporate mail servers, application servers, and on user desktops. CSA reports events to a central console server that is located inside the corporate firewall. CSA is managed from a central management console.

![Figure 6-6](image)

Figure 6-6 *HIPS deployment*

The advantages and limitations of HIPS are as follows:

- **Advantages of HIPS:** The success or failure of an attack can be readily determined. A network IPS sends an alarm upon the presence of intrusive activity but cannot always ascertain the success or failure of such an attack. HIPS does not have to worry about fragmentation attacks or variable Time to Live (TTL) attacks because the host stack takes care of these issues. If the network traffic stream is encrypted, HIPS has access to the traffic in unencrypted form.
Limitations of HIPS:

- **HIPS does not provide a complete network picture:** Because HIPS examines information only at the local host level, HIPS has difficulty constructing an accurate network picture or coordinating the events happening across the entire network.
- **HIPS has a requirement to support multiple operating systems:** HIPS needs to run on every system in the network. This requires verifying support for all the different operating systems used in your network.

Network-Based IPS

Network IPS involves the deployment of monitoring devices, or sensors, throughout the network to capture and analyze the traffic. Sensors detect malicious and unauthorized activity in real time and can take action when required. Sensors are deployed at designated network points that enable security managers to monitor network activity while it is occurring, regardless of the location of the attack target.

Network IPS sensors are usually tuned for intrusion prevention analysis. The underlying operating system of the platform on which the IPS software is mounted is stripped of unnecessary network services, and essential services are secured (that is, hardened). The hardware includes the following components:

- **Network interface card (NIC):** Network IPS must be able to connect to any network (Ethernet, Fast Ethernet, Gigabit Ethernet).
- **Processor:** Intrusion prevention requires CPU power to perform intrusion detection analysis and pattern matching.
- **Memory:** Intrusion detection analysis is memory intensive. Memory directly affects the capability of a network IPS to efficiently and accurately detect an attack.

Network IPS gives security managers real-time security insight into their networks regardless of network growth. Additional hosts can be added to protected networks without needing more sensors. When new networks are added, additional sensors are easy to deploy. Additional sensors are required only when their rated traffic capacity is exceeded, when their performance does not meet current needs, or when a revision in security policy or network design requires additional sensors to help enforce security boundaries.

Figure 6-7 shows a typical network IPS deployment. The key difference between this network IPS deployment example and the previous HIPS deployment example is that there is no CSA software on the various platforms. In this topology, the network IPS sensors are deployed at network entry points that protect critical network segments. The network segments have internal and external corporate resources. The sensors report to a central management and monitoring server that is located inside the corporate firewall.

The advantages and limitations of network IPS are as follows:

- **Advantages of network IPS:** A network-based monitoring system has the benefit of easily seeing attacks that are occurring across the entire network. Seeing the attacks against the entire network gives a clear indication of the extent to which the network is being attacked. Furthermore, because the monitoring system is examining...
Figure 6-7 Network-Based IPS Deployment

only traffic from the network, it does not have to support every type of operating system that is used on the network.

■ Limitations of network IPS: Encryption of the network traffic stream can essentially blind network IPS. Reconstructing fragmented traffic can also be a difficult
problem to solve. Possibly the biggest drawback to network-based monitoring is that as networks become larger (with respect to bandwidth), it becomes more difficult to place network IPS at a single location in the network and successfully capture all the traffic. Eliminating this problem requires the use of more sensors throughout the network. However, this solution increases costs.

Caution: It is recommended that applications responsible for the management of security, such as syslog servers, IPS alarms, and so on be separated from the main corporate network by a firewall, in essence creating a network management network. Figure 6-8 shows the details of the Enterprise Campus architecture as envisioned by the Cisco SAFE Blueprint. For more information, visit http://www.cisco.com.

Comparing HIPS and Network IPS

Table 6-5 compares the advantages and limitations of HIPS and network IPS.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPS</td>
<td>Network IPS</td>
</tr>
<tr>
<td>Is host specific</td>
<td>Cost-effective</td>
</tr>
<tr>
<td>Protects host after decryption</td>
<td>Not visible on the network</td>
</tr>
<tr>
<td>Provides application-level encryption protection</td>
<td>Operating system independent</td>
</tr>
<tr>
<td>Operating system dependent</td>
<td>Lower-level network events not seen</td>
</tr>
<tr>
<td>Lower-level network events not seen</td>
<td>Host is visible to attackers</td>
</tr>
<tr>
<td>Cannot examine encrypted traffic</td>
<td>Does not know whether an attack was successful</td>
</tr>
</tbody>
</table>

A host-based monitoring system examines information at the local host or operating system. Network-based monitoring systems examine packets that are traveling through the network for known signs of intrusive activity. As you move down the feature list toward network IPS, the features describe network-based monitoring features; application-level encryption protection is a HIPS feature, whereas DoS prevention is a network IPS feature.

Note: Network-based monitoring systems do not assess the success or failure of the actual attacks. They only indicate the presence of intrusive activity. That is where Cisco MARS can be useful. Different sensors might report an intrusion; however, if all those sensors send their individual alarms to a Cisco MARS appliance, it could perform correlation analysis on those different alarms and discover that they are all part, let’s say, of a common attack.
Figure 6-8 Enterprise Campus Topology with Its Management Module
Introducing Cisco IPS Appliances

Cisco IPS solutions run on a variety of devices, either as standalone sensors or as a module inserted into another appliance. The following is a brief description of the available Cisco IPS appliances. Each appliance is introduced further later in this section:

- **Cisco Adaptive Security Appliance Advanced Inspection and Prevention Security Services Module (ASA AIP SSM):** The Cisco ASA AIP SSM uses advanced inspection and prevention technology to provide high-performance security services, such as intrusion prevention services and advanced anti-x services, defined as antivirus and antispyware. The Cisco ASA AIP SSM products include a Cisco ASA AIP SSM-10 module with a 1-GB memory, a Cisco ASA SSM AIP-20 module with a 2-GB memory, and a Cisco ASA SSM AIP-40 module.

- **Cisco IPS 4200 series sensors:** Cisco IPS 4200 series sensors offer significant protection to your network by helping to detect, classify, and stop threats, including worms, spyware and adware, network viruses, and application abuse. Using Cisco IPS Sensor Software Version 5.1, the Cisco IPS solution combines inline intrusion prevention services with innovative technologies that improve accuracy. As a result, more threats can be stopped without the risk of dropping legitimate network traffic. Cisco IPS Sensor Software includes enhanced detection capabilities and improved scalability, resiliency, and so forth.

- **Cisco Catalyst 6500 Series Intrusion Detection System Services Module (IDSM-2):** The Catalyst 6500 Series IDSM-2 is part of the Cisco IPS solution. It works in combination with the other components to efficiently protect your data infrastructure. With the increased complexity of security threats, achieving efficient network intrusion security solutions is critical to maintaining a high level of protection. Vigilant protection ensures business continuity and minimizes the effect of costly intrusions.

- **Cisco IPS Advanced Integration Module (AIM):** Cisco offers a variety of IPS solutions; the Cisco IPS AIM for the Cisco 1841 Integrated Services Router and the Cisco 2800 and 3800 Series Integrated Services Routers is made for small and medium-sized business (SMB) and branch-office environments. Cisco IPS Sensor Software running on the Cisco IPS AIM provides advanced, enterprise-class IPS functions and meets the ever-increasing security needs of branch offices. The Cisco IPS AIM can scale in performance to match branch office WAN bandwidth requirements today and in the future, because IPS functionality is run on its dedicated CPU, thus not hogging the router CPU. At the same time, the integration of IPS onto a Cisco Integrated Services Router keeps the solution cost low and effective for business of all sizes.

Cisco IPS 4200 Series Sensors

The Cisco IPS 4200 series sensors, shown in Figure 6-9, are market-leading dedicated appliances for intrusion detection and prevention, with the highest performance and lowest false alarm rates of the industry. The Cisco IPS 4200 series sensors are focused on pro-
Detecting network devices, services, and applications. They are capable of detecting sophisticated attacks such as the following:

- Network attacks
- Application attacks
- DoS attacks
- Fragmented attacks
- Whisker (deprecated in favor of Nikto) attacks using IDS-evasive techniques

Cisco ASA AIP SSM

The Cisco ASA AIP SSM, shown in Figure 6-10, provides the intrusion detection and prevention security feature set for the Cisco 5500 series adaptive security appliances. It runs the same Cisco IPS Sensor Software Version 6.0 or later software image as the sensor appliances and, therefore, provides the same security features as the sensor appliance.
The Cisco ASA AIP SSM is available in three models:

- The Cisco ASA AIP SSM-10
- The Cisco ASA AIP SSM-20
- The ASA AIP SSM-40

The Cisco ASA AIP SSM-20 has a faster processor and more memory than the Cisco ASA AIP SSM-10. The Cisco ASA AIP SSM-40 works only in the Cisco ASA 5520 and 5540 and has a maximum throughput of 650 Mb/s.

Tip: Although Cisco markets the AIP SSM as “full-featured intrusion prevention services,” it is worth noting that the sensor can operate as an IDS or IPS device. As shown in Figure 6-11, the AIP SSM can be configured in either IDS mode (promiscuous) or in IPS mode (inline).

![Diagram](image)

Figure 6-11 Modes of Operation for Cisco ASA AIP SSM

Cisco Catalyst 6500 Series IDSM-2

The Cisco Catalyst 6500 Series IDSM-2, shown in Figure 6-12, provides full-featured intrusion protection in the core network fabric device. The Cisco Catalyst 6500 Series IDSM-2 is specifically designed to address switched environments by integrating the IDS...
functionality directly into the switch. The Cisco Catalyst 6500 Series IDSM-2 runs the same software image as the sensor appliances and can be configured to perform intrusion prevention.

Figure 6-12 Cisco Catalyst 6500 Series ISDM-2 Module

Cisco IPS AIM

The Cisco IPS AIM for the Cisco 1841 and Cisco 2800 and 3800 Series Integrated Services Routers, shown in Figure 6-13, is an internal security service module that provides dedicated CPU and memory to offload inline and promiscuous intrusion prevention processing. The AIM runs the Cisco IPS Sensor Software Version 6.0 to provide feature parity with Cisco IPS 4200 series sensors and Cisco ASA 5500 series adaptive security appliances.

Figure 6-13 Cisco IPS AIM
By integrating IPS and branch-office routing, Cisco Integrated Services Routers can secure remote branch networks from threats originating from the Internet and reduce the WAN link overload from infected hosts at the branch. The integration of IPS into the branch-office router provides numerous important customer benefits:

- **Physical space savings:** The Cisco IPS AIM occupies the internal AIM slot on the router motherboard and can possibly saves space in the wiring closet.

- **Inline and promiscuous modes:** Both inline and promiscuous IPS inspection modes are supported. Inline mode places the IPS module in the packet path and can be configured to drop violated packets.

- **Common management tool for Cisco IPS solution:** Cisco Security Manager supports Cisco IPS AIM, with the same management tool used on Cisco IPS 4200 series sensors, enabling you to use one centralized management system for both appliance and router sensors.

- **Flexibility in monitoring interfaces:** The Cisco IPS AIM connects directly to the router backplane and can monitor packets coming in and going out of any router interface, including T1, T3, DSL, ATM, Fast Ethernet, and Gigabit Ethernet.

- **In-band management:** An internal Gigabit Ethernet port is used for in-band management of the Cisco IPS AIM CLI and for the web-based management application, Cisco IDM. Access to the IPS AIM can be done through the router console port or through the Secure Shell (SSH) protocol to any Layer 3 interface. No physical management port is required.

- **Simple power and cable management:** Cisco IPS AIM takes advantage of the power options of the router, including DC power and redundant power.

- **Dedicated processor to maximize performance:** Cisco IPS AIM has its own CPU and DRAM for all IPS functions. It offloads the router CPU from processor-intensive tasks, such as deep packet inspection from the host router.

- **Performance:** The Cisco IPS AIM can monitor up to 45 Mb/s of traffic and is suitable for T1, E1, and up to T3 environments.

- **Security in depth:** The Cisco IPS AIM interoperates with security and WAN optimization features such as VPN, firewall, Network Address Translation (NAT), Web Cache Control Protocol (WCCP), and Cisco Wide Area Application Services, and all common Cisco IOS Software functions.

Note: Cisco IOS IPS and the Cisco IPS AIM cannot be used together. Cisco IOS IPS must be disabled when the AIM IPS is installed. Cisco IOS IPS is discussed in the next section of this chapter.
Signatures and Signature Engines

A signature is a set of rules that an IDS and an IPS use to detect typical intrusive activity, such as DoS attacks. You can easily install signatures using IDS and IPS management software such as Cisco IDM. Sensors enable you to modify existing signatures and define new ones.

As sensors scan network packets, they use signatures to detect known attacks and respond with predefined actions. A malicious packet flow has a specific type of activity and signature, and an IDS or IPS sensor examines the data flow using many different signatures. When an IDS or IPS sensor matches a signature with a data flow, the sensor takes action, such as logging the event or sending an alarm to IDS or IPS management software, such as the Cisco SDM.

Signature-based intrusion detection can produce false positives because certain normal network activity can be misinterpreted as malicious activity. For example, some network applications or operating systems may send out numerous Internet Control Message Protocol (ICMP) messages, which a signature-based detection system might interpret as an attempt by an attacker to map out a network segment. You can minimize false positives by tuning your sensors. You can tune built-in signatures (tuned signatures) by adjusting the many signature parameters.

Examining Signature Micro-Engines

A signature micro-engine is a component of an IDS and IPS sensor that supports a group of signatures that are in a common category. Each engine is customized for the protocol and fields that it is designed to inspect and defines a set of legal parameters that have allowable ranges or sets of values. The signature micro-engines look for malicious activity in a specific protocol. Signatures can be defined for any of the supported signature micro-engines using the parameters offered by the supporting micro-engine. Packets are scanned by the micro-engines that understand the protocols contained in the packet.

Cisco signature micro-engines implement parallel scanning. All the signatures in a given signature micro-engine are scanned in parallel fashion, rather than serially. Each signature micro-engine extracts values from the packet and passes portions of the packet to the regular expression engine. The regular expression engine can search for multiple patterns at the same time (in parallel). Parallel scanning increases efficiency and results in higher throughput.

When IDS (promiscuous mode) or IPS (inline mode) is enabled, a signature micro-engine is loaded (or built) on to the router. When a signature micro-engine is built, the router may need to compile the regular expression found in a signature. Compiling a regular expression requires more memory than the final storage of the regular expression. Be sure to determine the final memory requirements of the finished signature before loading and merging signatures.
A regular expression is a systematic way to specify a search for a pattern in a series of bytes. As an example, a regular expression to be used to prevent data containing .exe or .com or .bat from crossing the firewall could look like this: ".*\[(Ee][Xx][Ee][Cc][Oo][Mm][Bb][Aa][Tt]\]."

Table 6-6 summarizes the types of signature engines available in Cisco IOS Release 12.4(6)T. Table 6-7 provides more details on signature engines.

Table 6-6 Summary of Supported Signature Engines

<table>
<thead>
<tr>
<th>Signature Engine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic</td>
<td>Signatures that examine simple packets, such as ICMP and UDP</td>
</tr>
<tr>
<td>Service</td>
<td>Signatures that examine the many services that are attacked</td>
</tr>
<tr>
<td>String</td>
<td>Signatures that use regular expression-based patterns to detect intrusions</td>
</tr>
<tr>
<td>Multi-string</td>
<td>Supports flexible pattern matching and supports Trend Labs signatures</td>
</tr>
<tr>
<td>Other</td>
<td>Internal engine to handle miscellaneous signatures</td>
</tr>
</tbody>
</table>

Table 6-7 Details on Signature Micro-Engines

<table>
<thead>
<tr>
<th>Signature Micro-Engine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOMIC.IP</td>
<td>Provides simple Layer 3 IP alarms</td>
</tr>
<tr>
<td>ATOMIC.ICMP</td>
<td>Provides simple ICMP alarms based on these parameters: type, code, sequence, and ID</td>
</tr>
<tr>
<td>ATOMIC.IPOPTIONS</td>
<td>Provides simple alarms based on the decoding of Layer 3 options</td>
</tr>
<tr>
<td>ATOMIC.UDP</td>
<td>Provides simple UDP packet alarms based on these parameters: port, direction, and data length</td>
</tr>
<tr>
<td>ATOMIC.TCP</td>
<td>Provides simple TCP packet alarms based on these parameters: port, destination, and flags</td>
</tr>
<tr>
<td>SERVICE.DNS</td>
<td>Analyzes the Domain Name System (DNS) service</td>
</tr>
</tbody>
</table>
Table 6-7 Details on Signature Micro-Engines

<table>
<thead>
<tr>
<th>Signature Micro-Engine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE.RPC</td>
<td>Analyzes the remote procedure call (RPC) service</td>
</tr>
<tr>
<td>SERVICE.SMTP</td>
<td>Inspects Simple Mail Transfer Protocol (SMTP)</td>
</tr>
<tr>
<td>SERVICE.HTTP</td>
<td>Provides HTTP protocol decode-based string engine; includes anti-evasive URL de-obfuscation</td>
</tr>
<tr>
<td>SERVICE.FTP</td>
<td>Provides FTP service special decode alarms</td>
</tr>
<tr>
<td>STRING.TCP</td>
<td>Offers TCP regular expression-based pattern inspection engine services</td>
</tr>
<tr>
<td>STRING.UDP</td>
<td>Offers UDP regular expression-based pattern inspection engine services</td>
</tr>
<tr>
<td>STRING.ICMP</td>
<td>Provides ICMP regular expression-based pattern inspection engine services</td>
</tr>
<tr>
<td>MULTI-STRING</td>
<td>Supports flexible pattern matching and supports Trend Labs signatures</td>
</tr>
<tr>
<td>Other</td>
<td>Provides internal engine to handle miscellaneous signatures</td>
</tr>
</tbody>
</table>

Note: It is recommended that you run Cisco IOS Release 12.4(11)T or later when using Cisco IOS IPS.

Note: Cisco IOS IPS and the Cisco IPS AIM cannot be used together. Cisco IOS IPS must be disabled when the AIM IPS is installed. Cisco IOS IPS is an IPS application that provides inspection capabilities for traffic flowing through the router. Although it is included in the Cisco IOS Advanced Security feature set, it uses the router CPU and shared memory pool to perform the inspection. Cisco IOS IPS also runs a subset of IPS signatures. The Cisco AIM IPS, discussed earlier in this chapter, runs with a dedicated CPU and memory, offloading all processing of IPS signatures from the router CPU. It can load a full signature set and provide enhanced IPS features not available on Cisco IOS IPS.

Signature Alarms

The capability of IDS and IPS sensors to accurately detect an attack or a policy violation and generate an alarm is critical to the functionality of the sensors. Attacks can generate the following types of alarms:

- False positive: A false positive is an alarm triggered by normal traffic or a benign action. Consider this scenario: A signature exists that generates alarms if the enable
password of any network devices is entered incorrectly. A network administrator attempts to log in to a Cisco router but enters the wrong password. The IDS cannot distinguish between a rogue user and the network administrator, and it generates an alarm.

- **False negative:** A false negative occurs when a signature is not fired when offending traffic is detected. Offending traffic ranges from someone sending confidential documents outside of the corporate network to attacks against corporate web servers. False negatives are bugs in the IDS and IPS software and should be reported. A false negative should be considered a software bug only if the IDS and IPS have a signature that has been designed to detect the offending traffic.

- **True positive:** A true positive occurs when an IDS and IPS signature is correctly fired, and an alarm is generated, when offending traffic is detected. For example, consider a Unicode attack. Cisco IPS sensors have signatures that detect Unicode attacks against Microsoft Internet Information Services (IIS) web servers. If a Unicode attack is launched against Microsoft IIS web servers, the sensors detect the attack and generate an alarm.

- **True negative:** A true negative occurs when a signature is not fired when nonoffending traffic is captured and analyzed. In other words, the sensor does not fire an alarm when it captures and analyzes “normal” network traffic.

Table 6-8 provides a summary of the alarm types. To understand the terminology, think in terms of “Was the alarm triggered?” A positive means that the alarm was triggered and a negative means that the alarm was not triggered. Thus the expression *false alarm*, which is the same as *false positive* (positive because the alarm was triggered, but false because the intrusion did not happen or the intrusion was not detected by the sensor).

<table>
<thead>
<tr>
<th>Table 6-8</th>
<th>Alarm Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intrusion Occurred/Detected</td>
</tr>
<tr>
<td>Alarm was triggered</td>
<td>True positive</td>
</tr>
<tr>
<td>Alarm was not triggered</td>
<td>False negative</td>
</tr>
</tbody>
</table>

Alarms fire when specific parameters are met. You must balance the number of incorrect alarms that you can tolerate with the capability of the signature to detect actual intrusions. If you have too few alarms, you might be letting in more suspect packets, but network traffic will flow more quickly. If IPS systems use untuned signatures, they will produce many false positive alarms. You should consider the following factors when implementing alarms that a signature uses:

- The level assigned to the signature determines the alarm severity level.

- A Cisco IPS signature is assigned one of four severity levels:
- **Informational:** Activity that triggers the signature is not considered an immediate threat, but the information provided is useful information.
- **Low:** Abnormal network activity is detected that could be perceived as malicious, but an immediate threat is not likely.
- **Medium:** Abnormal network activity is detected that could be perceived as malicious, and an immediate threat is likely.
- **High:** Attacks used to gain access or cause a DoS attack are detected, and an immediate threat is extremely likely.

You can manually adjust the severity level that an alarm produces.

To minimize false positives, study your existing network traffic patterns and then tune your signatures to recognize intrusion patterns that are atypical (out of character) for your network traffic patterns. Do not base your signature tuning on traffic patterns that are based only on industry examples. Use an industry example as a starting point, determine what your own network traffic patterns are, and use them in your signature alarm tuning efforts.

Retiring Signatures

Router memory and resource constraints might prevent a router from loading all Cisco IOS IPS signatures. Therefore, it is recommended that you load only a selected set of signatures that are defined by the categories. Because the categories are applied in a “top-down” order, you should first retire all signatures, followed by “unretiring” specific categories. Retiring signatures enables the router to load information for all signatures, but the router will not build the parallel scanning data structure.

Retired signatures are not scanned by Cisco IOS IPS, so they will not fire alarms. If a signature is irrelevant to your network or if you want to save router memory, you should retire signatures, as appropriate. However, be aware that retiring and reinstating signatures are a CPU-intensive process. For more information about this topic, refer to http://www.cisco.com/en/US/docs/ios/12_4t/12_4t11/ips_v5.html.

IPS Best Practices

You should follow some configuration best practices to improve IPS efficiency when deploying IPS in your network.

When setting up a large deployment of sensors, automatically update signature packs rather than manually upgrading every sensor. Then security operations personnel have more time to analyze events. When new signature packs are available, download the new signature packs to a secure server within the management network.

Place the signature packs on a dedicated FTP server within the management network. If a signature update is not available, a custom signature can be created to detect and mitigate a specific attack. You should configure the FTP server to allow read-only access to the files within the directory on which the signature packs are placed only from the account that the sensors will use. The sensors can then be configured to automatically check the FTP server periodically, such as once a week on a certain day, to look for the new signa-
ture packs and to update the sensors. You can use an IPS to protect this server from attack by an outside party.

You should stagger the time of day when the sensors check the FTP server for new signature packs, perhaps through a predetermined change window. This prevents multiple sensors from overwhelming the FTP server by asking for the same file at the same time. The need to upgrade sensors with the latest signature packs must be balanced against the momentary downtime—and, therefore, the vulnerability to attack—incurred while upgrading them. Finally, the signature levels supported on the management console must remain synchronized with the signature packs on the sensors themselves.

You should group IPS sensors together under a few larger profiles. Every signature upgrade requires that all new signatures be appropriately tuned on every sensor. Tuning signatures for groups of sensors rather than for each sensor on the network significantly reduces configuration time. This administrative advantage must be balanced against the ability to finely tune sensor configuration by establishing a separate profile for each sensor.

Refer to the release notes of signatures to confirm that the new update will not overwrite the tuning you might have performed on a signature.

Figure 6-14 *Fail-Open or Fail-Close Approach*
A Great Debate: Fail-Close or Fail-Open?
This is a philosophical debate in which you need to get engaged in for your organization: Should the IPS sensor stop working, do you let the traffic go through or do you stop the traffic? The two opposing philosophies are represented in Figure 6-14, where the network administrator needs to decide whether the traffic will be allowed to flow into the demilitarized zone (DMZ) should the Cisco ASA AIPS SSM fail. It seems that the balance is tilting in favor of the “fail-open” approach with security experts, but each organization has to define and enforce their own policy in this topic.

Note: Readers interested in learning more about generic topics regarding IDS/IPS should consider visiting http://www.searchsecurity.com, more precisely the “Security School,” which offers free training modules on different security topics.

Configuring Cisco IOS IPS
Configuring Cisco IOS Intrusion Prevention System (IPS) is a core competency for a network security administrator. In this section, you will learn how to configure Cisco IOS IPS on routers using the Cisco Router and Security Device Manager (SDM). You will also discover that Cisco SDM makes it easy to configure and manage Cisco IOS IPS on routers and security devices.

Cisco IOS IPS Features
Cisco has implemented IPS functions into its Cisco IOS Software. Cisco IOS IPS uses technology from Cisco Intrusion Detection System (IDS) and IPS sensor product lines, including Cisco IPS 4200 series sensors, and Cisco Catalyst 6500 series Intrusion Detection System Services Module (IDSM). Cisco IOS IPS combines existing Cisco IDS and IPS product features with the following three intrusion detection techniques:

- **Profile-based intrusion detection:** Profile-based intrusion detection generates an alarm when activity on the network goes outside a defined profile. With anomaly detection, profiles are created for each user or user group on your system. These profiles are then used as a baseline to define normal user and network activity. A profile could be created to monitor web traffic.

- **Signature-based intrusion detection:** Signature-based intrusion detection is less prone to triggering a false alarm when detecting unauthorized activity. A signature is a set of rules pertaining to typical intrusion activity. Signature-based intrusion detection uses signatures that are based on values in IP, TCP, UDP, and ICMP headers. Network engineers research known attacks and vulnerabilities and then develop signatures to detect these attacks and vulnerabilities on the network. These attack signatures encompass specific traffic or activity that is based on known intrusive activity.

Cisco IOS IPS implements signatures that can look at every packet going through the network and generate alarms when necessary. A Cisco IOS IPS generates alarms when a specific pattern of traffic is matched or a signature is triggered. You can configure a Cisco IOS IPS to exclude signatures and modify signature parameters to work optimally in your network environment.
A pattern-matching approach searches for a fixed sequence of bytes in a single packet. Pattern matching is a rigid approach but is simple to employ. In most cases, the pattern is matched against a packet only if the suspect packet is associated with a particular service or, more precisely, destined to or from a particular port. For example, a signature might be based on a simple pattern-matching approach such as the following: If <the packet is IPv4 and TCP> and <the destination port is 2222> and <the payload contains the string “foo”> then <fire an alarm>.

- **Protocol analysis-based intrusion detection:** Protocol analysis-based intrusion detection is similar to signature-based intrusion detection, but it performs a more in-depth analysis of the protocols specified in the packets. A deeper analysis examines the payloads within TCP and UDP packets, which contain other protocols. For example, a protocol such as DNS is contained within TCP or UDP, which itself is contained within IP.

The first step of protocol analysis is to decode the packet IP header information and determine whether the payload contains TCP, UDP, or another protocol. For example, if the payload is TCP, some of the TCP header information within the IP payload is processed before the TCP payload is accessed (for example, DNS data). Similar actions are mapped for other protocols.

Protocol analysis requires that the IPS sensor knows how various protocols work so that it can more closely analyze the traffic of those protocols to look for suspicious or abnormal activity. For each protocol, the analysis is based not only on protocol standards, particularly the RFCs, but also on how things are implemented in the real world. Many implementations violate protocol standards. It is important that signatures reflect common and accepted practice rather than the RFC-specified ideal; otherwise, false results can be reported.

The following attributes describe the primary benefits of the Cisco IOS IPS solution:

- Cisco IOS IPS uses the underlying routing infrastructure to provide an additional layer of security with investment protection.

- Because Cisco IOS IPS is inline and is supported on a broad range of routing platforms, attacks can be effectively mitigated to deny malicious traffic from both inside and outside the network.

- When used in combination with Cisco IDS, Cisco IOS Firewall, virtual private network (VPN), and Network Admission Control (NAC) solutions, Cisco IOS IPS provides superior threat protection at all entry points to the network.

- Cisco IOS IPS is supported by easy and effective management tools, such as Cisco SDM, Cisco Security MARS, and Cisco Security Manager.

- Whether threats are targeted at endpoints, servers, or the network infrastructure, Cisco offers pervasive intrusion prevention solutions that are designed to integrate smoothly into the network infrastructure and to proactively protect vital resources.

- Cisco IOS IPS supports around 2000 attack signatures from the same signature database that is available for Cisco IPS appliances.

Table 6-9 describes the features of Cisco IOS IPS-based signatures.
Cisco IOS IPS allows you to manage intrusion prevention on routers that use Cisco IOS Software Release 12.3(8)T4 or later. Cisco IOS IPS monitors and prevents intrusions by comparing traffic against signatures of known threats and blocking the traffic when a threat is detected. Cisco SDM lets you control the application of Cisco IOS IPS on interfaces, import and edit signature files from Cisco.com, and configure the action that Cisco IOS IPS should take if a threat is detected.

The tasks associated with managing routers and security devices are displayed in a task pane on the left side of the Cisco SDM home page, as shown in Figure 6-15. Choose Configure > Intrusion Prevention to reveal the intrusion prevention options in Cisco SDM. You can use Cisco SDM to configure Cisco IOS IPS on routers and security devices.

Use the tabs at the top of the Intrusion Prevention System (IPS) window to navigate to the area you want to configure or monitor:

- **Create IPS**: This tab contains the IPS Rule wizard that you use to create a new Cisco IOS IPS rule.
- **Edit IPS**: This tab allows you to edit Cisco IOS IPS rules and apply or remove them from interfaces.
- **Security Dashboard**: This tab allows you to view the Top Threats table and deploy signatures associated with those threats.
- **IPS Migration**: If the router runs a Cisco IOS Software Release 12.4(11)T or later, you can use this tab to migrate Cisco IOS IPS configurations that were created using earlier releases of the Cisco IOS Software.

Table 6-9 Cisco IOS IPS Signature Features

<table>
<thead>
<tr>
<th>Cisco IOS IPS Signature Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular expression string pattern matching</td>
<td>Enables the creation of string patterns using regular expressions.</td>
</tr>
<tr>
<td>Response actions</td>
<td>Enables the sensor to take an action when the signature is triggered.</td>
</tr>
<tr>
<td>Alarm summarization</td>
<td>Enables the sensor to aggregate alarms. It does this to limit the number of times an alarm is sent when the signature is triggered.</td>
</tr>
<tr>
<td>Threshold configuration</td>
<td>Enables a signature to be tuned to perform optimally in a network.</td>
</tr>
<tr>
<td>Anti-evasive techniques</td>
<td>Enables a signature to defeat evasive techniques used by an attacker.</td>
</tr>
</tbody>
</table>

Configuring Cisco IOS IPS Using Cisco SDM

Cisco IOS IPS allows you to manage intrusion prevention on routers that use Cisco IOS Software Release 12.3(8)T4 or later. Cisco IOS IPS monitors and prevents intrusions by comparing traffic against signatures of known threats and blocking the traffic when a threat is detected. Cisco SDM lets you control the application of Cisco IOS IPS on interfaces, import and edit signature files from Cisco.com, and configure the action that Cisco IOS IPS should take if a threat is detected.

The tasks associated with managing routers and security devices are displayed in a task pane on the left side of the Cisco SDM home page, as shown in Figure 6-15. Choose Configure > Intrusion Prevention to reveal the intrusion prevention options in Cisco SDM. You can use Cisco SDM to configure Cisco IOS IPS on routers and security devices.

Use the tabs at the top of the Intrusion Prevention System (IPS) window to navigate to the area you want to configure or monitor:

- **Create IPS**: This tab contains the IPS Rule wizard that you use to create a new Cisco IOS IPS rule.
- **Edit IPS**: This tab allows you to edit Cisco IOS IPS rules and apply or remove them from interfaces.
- **Security Dashboard**: This tab allows you to view the Top Threats table and deploy signatures associated with those threats.
- **IPS Migration**: If the router runs a Cisco IOS Software Release 12.4(11)T or later, you can use this tab to migrate Cisco IOS IPS configurations that were created using earlier releases of the Cisco IOS Software.
Cisco SDM enables you to create a new rule on a Cisco router in two ways: manually through the Edit IPS tab or automatically using the IPS Rule Wizard. The Cisco IOS IPS Deployment Guide recommends using the IPS Rule Wizard. The wizard that is launched does more than just configure a rule; it performs all the Cisco IOS IPS configuration steps.

Follow these steps to configure Cisco IOS IPS on the router or security device using Cisco SDM:

Step 1. Choose Configure > Intrusion Prevention > Create IPS.

Step 2. Click the Launch IPS Rule Wizard button.

Step 3. Read the Welcome to the IPS Policies Wizard screen, and then click Next.

Step 4. Next, you must choose the interfaces on which you want to apply the Cisco IOS IPS rule by specifying whether the rule is to be applied to inbound traffic or outbound traffic, as shown in Figure 6-16. If you check both the Inbound and the Outbound check boxes, the rule applies to traffic flowing in both directions.

Step 5. From the Select Interfaces dialog window, choose the router interfaces to which you want to apply the IPS rule by checking either the Inbound check box, Outbound check box, or both, that is next to the desired interface.

Step 6. Click Next.

Step 7. Cisco IOS IPS examines traffic by comparing it against signatures contained in a signature file. The signature file can be located in router flash memory or on
Implementing Cisco IOS Network Security

Figure 6-16 IPS Wizard: Applying Cisco IOS IPS Rule to an Interface

a remote system that the router can reach. You can specify multiple signature file locations so that if the router is unable to contact the first location, it can attempt to contact other locations until it obtains a signature file.

Step 8. From the Signature File and Public Key dialog window, in the Signature File pane, click either the Specify the Signature File You Want to Use with the IOS IPS or Get the Latest Signature File from Cisco.com and Save to PC option and fill in the Signature File or Location text box as appropriate, as shown in Figure 6-17.
Note: The appropriate signature file will be in the form of an IOS IPS update package with the naming convention of IOS-Sxxx-CLI.pkg (where xxx is the number of the signature set).

Step 9. If you chose to download the latest signature file from Cisco.com, you will need to click Download when you are ready to download the signature file.

The Cisco IOS IPS signature file contains the default signature information present in each update to the file on Cisco.com. Any changes made to this configuration are saved in a delta file. For security, the delta file must be digitally signed. Follow these steps to place the public-key information in the Name and Key fields.

Step 10. Go to the following link to obtain the public key: http://www.cisco.com/pcgi-bin/tablebuild.pl/ios-v5sigup.

Step 11. Download the key to your PC.

Step 12. Open the key in a text editor and copy the text after the phrase named-key into the Name field. For example, if the line of text is “named-key realm-cisco.pub signature” copy “realm-cisco.pub signature” to the Name field.

Step 13. Copy the text between the phrase key-string and the word quit into the Key field. The following output shows what this text might look like:

```
30820122 300D0609 2A864886 F70D0101 01050003 82010F00 3082010A 02820101 00C19E93 A8AF124A D6CC7A24 5097A975 206BE3A2 06FBA13F 6F12CB5B 4E441F16 17E630D5 C02AC252 912BE27F 37FDD9C8 11FC7AF7 DCDD81D9 43CDABC3 6007D128 B199ABCB D34ED0F9 085FADC1 359C189E F30AF10A C0EF6B24 7E0764BF 3E53053E 5B2146A9 D7A5ED3 E0298AFC03 DED7A5B8 9479039D 20F30663 9AC64B93 C0112A35 FE3F0C87 89BCB7BB 994AE74C FA9E481D F65875D6 85EAF974 6D9CC8E3 F0B08B85 50437722 FFBE85B9 5E4189FF CC189CB9 69C46F9C A84DFBA5 7A0AF99E AD768C36 006CF498 07F88FF8 A3B3FB1F 9FB73CB5 55391E1D1 9693CCBB 551F78D2 892356AE 2F56D826 891BF3C 80CA4F4D 87B7CA3B BFF668E9 689782A5 CF31CB6E B4B094D3 F3020301 0001
```

Step 14. Click Next.
For Cisco IOS Release 12.4(11) or later, you can specify the following additional options:

- **Config location:** This information specifies where to store files that contain changes to the Cisco IOS IPS configuration. This information consists of the signature file and the delta file that is created when changes are made to the signature information, as shown in Figure 6-18.

![Figure 6-18 IPS Wizard: Config Location and Category](image)

- **Signature category:** The basic signature category is appropriate for routers with less than 128 MB of flash memory, and the advanced signature category is appropriate for routers with more than 128 MB of flash memory.

Follow these steps to specify a location for storing the signature information and what signature category you would like the router to use:

Step 15. From the Config Location and Category window, in the Config Location section, click the ellipsis (...) button to the right of the Config Location field to display a dialog that allows you to specify a location. After you enter information in this dialog, Cisco SDM displays the path to the location in this field.

Step 16. Because router memory and resource constraints can prevent the use of all the available signatures, there are two categories of signatures: basic and advanced. In the Choose Category field, choose the category that will allow the Cisco IOS IPS to function efficiently on the router.
Step 17. Click Finish. The IPS Policies Wizard confirms configuration as follows:

IPS rule will be applied to the incoming traffic on the following interfaces.
FastEthernet0/0
FastEthernet0/1.3
FastEthernet0/1.4
Tunnel0
Signature File location:
 tftp://10.10.10.10/IOS-S314-CLI.pkg
Public Key:
 Name: realm-cisco.pub
 Key: 30820122 300D0609 2A864886 F70D0101
 01050003 82010F00 3082010A
 02820101
Config Location
 flash:/IPS/
Selected category of signatures:
 Basic

Figure 6-19 shows actual Wizard Summary windows
Configuring Cisco IOS IPS Using CLI

To use the command-line interface (CLI) to specify an IPS rule, use the `ip ips name name` command in global configuration mode as follows:

```
router(config)# ip ips name sdm_ips_rule
```

To specify the location of the IPS configuration, use the `ip ips config location location` global configuration command, as demonstrated here:

```
router(config)# ip ips config location flash:/ipsdir/retries 1
```

To specify the method of event notification, use the `ip ips notify` global configuration command. The following is an example of event notification sent using Security Device Event Exchange (SDEE), which is a standard developed to communicate an event generated by security devices:

```
router(config)# ip ips notify SDEE
```

Note: Examples in this section of the chapter dealing with Cisco IOS IPS CLI configuration assume that the signature files are already on the router.

To configure the router to support the default basic signature set use the `ip ips signature-category` global configuration command as follows:

```
Router(config)# ip ips signature-category
Router(config-ips-category)# category all
Router(config-ips-category-action)# retired true
Router(config-ips-category-action)# exit
Router(config-ips-category)# category ios_ips basic
Router(config-ips-category-action)# retired false
```

To apply an IPS rule to an interface, use the `ip ips ips_rule_name` command in interface configuration mode as demonstrated here:

```
router(config)# interface Serial0/0/0
router(config-if)# ip ips sdm_ips_rule in
```

Virtual Fragment Reassembly

Virtual Fragment Reassembly (VFR) enables the Cisco IOS Firewall to examine out-of-sequence fragments and reorder the packets into the order. It examines the number of fragments from a same single IP address. When VFR is enabled on a Cisco IOS Firewall, it creates the appropriate dynamic ACLs, thereby protecting the network from various fragmentation attacks. To enable VFR on an interface, use the `ip virtual-reassembly` command in interface configuration mode, as demonstrated here:

```
Router(config)# interface Serial0/0/0
Router(config-if)# ip virtual-reassembly
```

Example 6-1 provides a combined view of the commands shown in the preceding paragraphs.
Example 6-1 Cisco IOS IPS CLI Configuration

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip ips name sdm_ips_rule</td>
</tr>
<tr>
<td>Router(config)# ip ips config location flash:/ipsdir/ retries 1</td>
</tr>
<tr>
<td>Router(config)# ip ips notify SDEE</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>Router(config)# ip ips signature-category</td>
</tr>
<tr>
<td>Router(config-ips-category)# category all</td>
</tr>
<tr>
<td>Router(config-ips-category-action)# retired true</td>
</tr>
<tr>
<td>Router(config-ips-category-action)# exit</td>
</tr>
<tr>
<td>Router(config-ips-category)# category ios_ips basic</td>
</tr>
<tr>
<td>Router(config-ips-category-action)# retired false</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>Router(config)# interface Serial0/0/0</td>
</tr>
<tr>
<td>Router(config-if)# ip ips sdm_ips_rule in</td>
</tr>
<tr>
<td>Router(config-if)# ip virtual-reassembly</td>
</tr>
</tbody>
</table>

Configuring IPS Signatures

Cisco IOS IPS prevents intrusion by comparing traffic against the signatures of known attacks. Cisco IOS images that support Cisco IOS IPS have built-in signatures that the router can use, and you can import signatures for the router to use. Imported signatures are stored in a signature file.

IPS signatures are loaded as part of the procedure to create a Cisco IOS IPS rule using the IPS rule wizard. To view the configured Cisco IOS IPS signatures on the router, choose Configure > Intrusion Prevention > Edit IPS > Signatures > All Categories. Because signatures optimize your configuration, confirm that all the correct signatures are loaded on the router or security device. From this window, you can add customized signatures or import signatures that are downloaded from Cisco.com. You can also edit, delete, enable, and disable signatures.

Note: You can import signatures from the router only if the router has a DOS-based file system.

Note: Signature files are available from Cisco at http://www.cisco.com/cgi-bin/table-build.pl/ios-v5sigup-sdm. A Cisco.com login is required for this site.

The signature tree enables you to filter the signature list according to the type of signature that you want to view. To modify a signature, right-click the signature and choose an option from the pop-up menu, as shown in Figure 6-20. To change the severity of the signature, choose Set Severity To.
You can tune a signature configuration using Cisco SDM. To tune a signature, choose Configure > Intrusion Prevention > Edit IPS > Signatures > All Categories. A list of available signatures appears.

To modify a signature action, right-click the signature and choose Actions from the pop-up menu. The Assign Actions window appears, as shown in Figure 6-21, and displays the actions that can be taken upon a signature match. The available actions depend on the signature, but the following are the most common actions:

- **Deny Attacker Inline**: Create an ACL that denies all traffic from the IP address that is considered the source of the attack by the Cisco IOS IPS system.
- **Deny Connection Inline**: Drop the packet and all future packets from this TCP flow.
- **Deny Packet Inline**: Do not transmit this packet (inline only).
- **Produce Alert**: Generate an alarm message.
- **Reset TCP Connection**: Send TCP resets to terminate the TCP flow.

To access and configure signature parameters, choose the signature and then click the Edit button in the Cisco SDM Configure Signatures window, as shown in Figure 6-22.
Figure 6-21 Configuring Signature Actions

Figure 6-22 Preparing to Edit the Cisco IOS IDS Signatures
In the dialog box that results from clicking the **Edit** button in the Cisco SDM Configure Signatures window, shown in Figure 6-23, configure the signature parameters.

![Editing Signatures Using Cisco SDM](image)

Figure 6-23 Editing Signatures Using Cisco SDM

Different signatures will have different parameters that you can modify. The following are common fields.

- **Signature ID**: This field displays a unique numerical value that is assigned to this signature. This value allows Cisco IOS IPS to identify a particular signature.

- **SubSignature ID**: This field displays a unique numeric value that is assigned to this subsignature. A subsig ID identifies a more granular version of a broad signature.

- **Alert Severity**: This field displays the severity of the alert for this signature.
- **Sig Description:** This section includes the signature name, alert notes, user comments, alert traits, and release number.

- **Engine:** This section contains information about what engine the signature uses and characteristics about how the engine operates.

- **Event Counter:** This section displays the event count, the event count key, and whether an alert interval is to be specified. An alert interval allows you to define special handling for timed events.

- **Alert Frequency:** (Not shown in Figure 6-23.) This section has settings to define the frequency of the alert.

- **Status:** (Not shown in Figure 6-23) This section shows whether the signature is enabled and whether the signature is retired.

Monitoring IOS IPS

Figure 6-24 shows how you can use the Security Device Event Exchange (SDEE) protocol and a syslog-based approach to send Cisco IPS alerts. The sensor generates an alarm when an enabled signature is triggered. Alarms are stored on the sensor. A host can pull the alarms from the sensor using SDEE. Pulling alarms from a sensor allows multiple hosts to subscribe to the event “feed” to allow a host or hosts to subscribe on an as-needed basis.

![Support for SDEE and Syslog](image_url)

Figure 6-24 Support for SDEE and Syslog

The support for SDEE and syslog in the Cisco IOS IPS solution is as follows:

- Cisco IOS Software supports the SDEE protocol. When Cisco SDEE notification is enabled (by using the `ip ips notify sdee` command), by default 200 events can be stored in the event buffer, whose size can be increased to hold a maximum of 1000 events. When you disable Cisco SDEE notification, all stored events are lost. A new buffer is allocated when the notifications are reenabled.
SDEE uses a pull mechanism. That is, requests come from the network management application, and the IDS and IPS router responds.

SDEE becomes the standard format for all vendors to communicate events to a network management application.

You must also enable HTTP or HTTPS on the router, using the `ip http server` command, when you enable SDEE. The use of HTTPS ensures that data is secured as it traverses the network.

The Cisco IOS IPS router still sends IPS alerts via syslog.

When you use Cisco SDM, you can keep track of alarms that are common in SDEE system messages, including IPS signature alarms. The following is an example of an SDEE system alarm message:

```
%IPS-4-SIGNATURE:Sig:1107 Subsig:0 Sev:2 RFC1918 address [192.168.121.1:137 ->192.168.121.255:137]
```

The preceding alarm was triggered by the fact that a packet with a private addresses, as listed in RFC 1918, traversed the IPS sensor.

Note: For a complete list of the Cisco IOS IPS system messages, refer to the “Interpreting Cisco IPS System Messages” section in the *Cisco IOS Security Configuration Guide, Release 12.4* available at http://tinyurl.com/3ufo6j.

To view SDEE alarm messages in Cisco SDM, choose **Monitor > Logging > SDEE Message Log**, as shown in Figure 6-25.

![Figure 6-25](http://example.com/screenshot.png)
To view alarms generated by Cisco IOS IPS, choose **Monitor > Logging > Syslog**, as shown in Figure 6-26.

![Figure 6-26 Viewing a Syslog IPS Alarm](image)

Verifying IPS Operation

To verify the IPS configuration on the router, choose **Configure > Intrusion Prevention > Edit IPS**, as shown in Figure 6-27. The Edit IPS tab shows all the interfaces on the router and whether they are configured for Cisco IOS IPS. If **Enabled** appears in either the Inbound or the Outbound column, Cisco IOS IPS is enabled for that direction of traffic on that interface. If **Disabled** appears in either the Inbound or the Outbound column, Cisco IOS IPS is disabled for that direction on the interface.

Cisco IOS IPS cannot identify the contents of IP fragments when VFR is not enabled, and it cannot gather port information from the fragment to match it with a signature. Therefore, fragments can pass through the network without being examined or without a dynamic ACL being created on the Cisco IOS Firewall. You will remember that VFR enables the Cisco IOS Firewall to examine out-of-sequence fragments. VFR can create the dynamic ACLs necessary to protect against fragment attacks.

The VFR status field shows the status of VFR on an interface. If VFR is enabled on the interface, the column displays **On**. If VFR is disabled on the interface, the column displays **Off**.

The Edit IPS tab also contains buttons that enable you to configure and manage Cisco IOS IPS policies, security messages, signatures, and more.
Use the `show ip ips configuration` command to display additional configuration data that is not displayed with the `show running-config` command. Example 6-2 shows some sample output from the `show ip ips configuration` command.

Example 6-2 `show ip ips configuration` Command Output

```
Router# show ip ips configuration
IPS Signature File Configuration Status
    Configured Config Locations: flash:/ipsdir/
    Last signature default load time: 04:39:33 UTC Dec 14 2007
    Last signature delta load time: -none-
    Last event action (SEAP) load time: -none-

    General SEAP Config:
    Global Deny Timeout: 3600 seconds
    Global Overrides Status: Enabled
    Global Filters Status: Enabled

IPS Auto Update is not currently configured

IPS Syslog and SDEE Notification Status
    Event notification through syslog is enabled
    Event notification through SDEE is enabled

IPS Signature Status
    Total Active Signatures: 353
```
Total Inactive Signatures: 1783

IPS Packet Scanning and Interface Status
IPS Rule Configuration
 IPS name sdm_ips_rule
IPS fail closed is disabled
IPS deny-action ips-interface is false
Fastpath ips is enabled
Quick run mode is enabled
Interface Configuration
 Interface FastEthernet0/0
 Inbound IPS rule is sdm_ips_rule
 Outgoing IPS rule is not set
 Interface FastEthernet0/1
 Inbound IPS rule is sdm_ips_rule
 Outgoing IPS rule is not set

IPS Category CLI Configuration:
 Category all:
 Retire: True
 Category ios_ips basic:
 Retire: False
 Category ios_ips:
 Enable: True
 Category ios_ips advanced:
 Enable: True

Use the `show ip ips interface` command to display interface configuration data. Example 6-3 displays output from the `show ip ips interface` command, revealing that the inbound IPS audit rule `sdm_ips_rule` is applied to FastEthernet 0/0 and FastEthernet 0/1. There is no rule applied for outgoing traffic on either interface.

Example 6-3 show ip ips interface Command Output

```
Router# show ip ips interfaces
Interface Configuration
  Interface FastEthernet0/0
    Inbound IPS rule is sdm_ips_rule
    Outgoing IPS rule is not set
  Interface FastEthernet0/1
    Inbound IPS rule is sdm_ips_rule
    Outgoing IPS rule is not set
```

Use the `show ip ips all` command to display additional configuration data that is not displayed with the `show ip ips configuration` command.
In Example 6-4, the output from the show ip ips all command shows that syslog and SDEE notification is enabled, and that there are 693 active signatures and 1443 inactive signatures on the router.

Example 6-4 show ip ips all Command Output

```
Router# show ip ips all
IPS Signature File Configuration Status
   Configured Config Locations: flash:ipsstore/
   Last signature default load time: 00:25:35 UTC Dec 6 2007
   Last signature delta load time: -none-
   Last event action (SEAP) load time: -none-

   General SEAP Config:
   Global Deny Timeout: 3600 seconds
   Global Overrides Status: Enabled
   Global Filters Status: Enabled

IPS Auto Update is not currently configured

IPS Syslog and SDEE Notification Status
   Event notification through syslog is enabled
   Event notification through SDEE is enabled

IPS Signature Status
   Total Active Signatures: 693
   Total Inactive Signatures: 1443

IPS Packet Scanning and Interface Status
   IPS Rule Configuration
      IPS name myips
      IPS fail closed is disabled
      IPS deny-action ips-interface is false
      Fastpath ips is enabled
      Quick run mode is enabled
   Interface Configuration
      Interface FastEthernet0/1
         Inbound IPS rule is not set
         Outgoing IPS rule is myips

IPS Category CLI is not configured

IPS Category CLI is not configured
```
Summary

This chapter described how intrusion detection system (IDS) and intrusion prevention system (IPS) technology embedded in Cisco host- and network-based IDS and IPS solutions fight Internet worms and viruses in real time. More precisely, you have learned how

- A signature is a set of rules that an IDS and an IPS use to detect typical intrusive activity.
- To use Cisco SDM to configure Cisco IOS IPS on the router or security device, choose Configure > Intrusion Prevention > Create IPS in Cisco SDM and click the Launch IPS Rule Wizard button.
- Cisco IOS IPS combines existing Cisco IDS and IPS product features.
- To configure Cisco IOS IPS on the router or security device, click the Launch IPS Rule Wizard button in Cisco SDM.
- Cisco IOS IPS prevents intrusion by comparing traffic against the signatures of known attacks.
- Cisco IOS IPS alarms are communicated using SDEE and syslog.
- The command `show ip ips all` displays all the available IPS information.

References

For additional information, refer to these resources:

Review Questions

Use the questions here to review what you learned in this chapter. The correct answers are found in the Appendix, “Answers to Chapter Review Questions.”

1. Which two modes of IPS operations are currently available with Cisco IDS and IPS solutions? Select all that apply.
 - a. Out-of-band
 - b. Promiscuous
 - c. Multicasting
 - d. Inline

2. Which device cannot be an IDS or IPS sensor?
 - a. A Cisco router configured with IPS software
 - b. A Cisco VPN concentrator configured with IPS software
 - c. An appliance specifically designed to provide dedicated IDS or IPS services
 - d. A IDS/IPS network module installed in a Cisco ASA or in a switch or in a router

3. Which general patterns of misuse do IDS and IPS technologies look for? (Choose all that apply.)
 - a. Atomic pattern
 - b. Molecular pattern
 - c. Intrusive nonces
 - d. Composite pattern
 - e. Composition pattern

4. Which of the following is not a type of IDS or IPS sensor?
 - a. Signature based
 - b. Policy based
 - c. Transgression based
 - d. Anomaly based
 - e. Honeypot based

5. What are signature engines?
 - a. A set of rules that an IDS and an IPS use to detect typical intrusive activity
 - b. A full-feature intrusion prevention located in the core network fabric device
c. An internal security service module that provides dedicated CPU and memory to offload intrusion prevention processing.

d. A component of an IDS and IPS sensor that supports a group of signatures that are in a common category

6. Reorder the steps taken by a host-based IPS.
 a. HIPS checks the call against the policy.
 b. An application calls for system resources.
 c. Requests are allowed or denied.

7. Which of the following are advantages of a network-based IPS?
 a. Cost-effective
 b. Provides application-level encryption protection
 c. Is host specific
 d. Analyzes lower-level network events
 e. Not visible on the network

8. Which IPS card could integrate into a Cisco 1841?
 a. Cisco IDSM-2
 b. Cisco ASA AIP SSM
 c. Cisco IPS AIM
 d. Cisco IPS 4200 series sensor

9. What is an IPS signature?
 a. A message digest encrypted with the sender’s private key
 b. A set of rules used to detect typical intrusive activity
 c. A binary pattern specific to a virus
 d. An appliance that provides anti-x services

10. Compiling a regular expression found in a signature requires more memory than the final storage of the regular expression. True or False?
 a. True
 b. False
Index

3DES (Triple Data Encryption Standard), 312, 332–333, 384, 533
10 Commandments of Computer Ethics, 20
414 gang, 27

A

AAA, 144
 clients, creating for Cisco Secure ACS, 165–166
 configuring
 on Cisco routers, 145
 with Cisco SDM, 149–151
 local authentication
 configuring on Cisco routers, 146–147
 local database authentication, configuring on Cisco routers, 147–152
 router access modes, 147
 session information, displaying, 151–152
 TACACS+, troubleshooting, 182–185
 troubleshooting, 152–153
aaa accounting command, 180
aaa new-model command, 149
academic hackers, 27
acceptable risks, 79
access-class command, 260
account access request policies, 72
accounting, configuring on Cisco Secure ACS, 179–182
ACLs, 247–248, 251
 basic rules, 264–265
 best practices, 253
 common services, permitting, 276
 configuring with SDM, 266–269
 directional filtering, 265
 entry sequence numbering, 252–253
 extended IP, 251
 configuring with SDM, 270–272
 ICMP filtering, 275–276
 inbound, 250
 IP address spoofing mitigation, 273–274
 numbered extended IP ACLs, configuring, 260–262
 numbered IP, configuring, 257–259
 outbound, 249
 packet-filtering firewalls, 231–233
 router service traffic, permitting, 277
 routing updates, controlling, 272
 standard IP, 251
 statement ordering, 265
 Telnet traffic, filtering, 259
 verifying configuration, 263–264
 wildcard masking, 254
 for single IP address, 256
 for subnets, 254–255
acquisition and development phase of SDLC, 58–59
acquisition assessment policies, 72
active fingerprinting, 42
Adleman, Len, 348
administrative access to Cisco routers
configuring, 116
multiple privilege levels, 124–125
passwords
configuring, 117–119
passwords, 121
timers, 120–121
role-based CLI access, 126, 128–129
ROM monitor, 122–124
administrative laws, 19
administrative security controls, 15
advanced call routing, 524
advanced options, configuring on Cisco SDM, 142
advanced VoIP features, 524
advantages
of application inspection firewalls, 241
of application layer gateways, 235-237
of stateful packet-filtering firewalls, 238
adversaries, identifying, 25–26
AES (Advanced Encryption Standard), 312, 315, 333, 384, 533
availability in Cisco product line, 334
Rijndael cipher, 333
versus 3DES, 333
aggressive mode (IKE), 394
AH (Authentication Header), 387-388
alarms, 464–465
ALE (annualized loss expectancy), calculating, 77
analog line policies, 73
anomaly-based IDS/IPS sensors, 443
anomaly-based IDS/IPS systems, 444
antireplay protection, 383
application attacks
custom application attacks, 7
application encryption policies, 73
application inspection firewalls, 240-241
application layer gateways, 234
advantages of, 235-237
application servers, 526
application traffic rules for zone-based policy firewalls, 282
application-mode rootkits, 499
applications, buffer overflows, 496–500
Applied Cryptography (Schneier), 319
ARO (annualized rate of occurrence), calculating, 77
ASP (application server provider) policies, 73
assigning privilege levels on Cisco routers, 124
asymmetric encryption algorithms, 319–320, 346–347
asymmetric encryption algorithms

DH, 351–352
PKI, 352
CAAs, 360–361, 363–364
certificates, 355, 358
standards, 358–360
RSA, 348–350
atomic pattern, 438
attack response (Cisco Security Agent), 514–515
attacks
availability attacks, 49
botnets, 50
computer environment attacks, 55–56
DDoS attacks, 51
DoS attacks, 50
electrical power attacks, 54
ICMP flood/Smurf attacks, 53–54
TCP SYN flood attacks, 52–53
common attacks from last 20 years, 501
confidentiality attacks, 40
cover channels, 44
emanations capturing, 42–43
network sniffing, 42
overt channels, 43
pharming, 45
phishing, 44
ping sweeps, 42
port scanning, 41
defending against, best practices, 56
integrity attacks, 45
password attacks, 48
port redirection, 47
trust exploits, 46–47
IP spoofing attacks, 34
man-in-the-middle attacks, 38
sequence prediction, 36–37
source routing, 37–38
Layer 2, mitigating, 534–561
motivations for, 25, 28
phases of, 501
targeted, 6
audit policies, 72
AUPs (acceptable use policies), 70-72
Authenticated TLS (Transport Layer Security), 529
authentication, 347
IPsec VPNs, 385
auto secure command, 218
automatically forwarded email policies, 73
availability, 9
as network security requirement, 10–11
availability attacks, 49
botnets, 50
computer environment attacks, 55–56
DDoS attacks, 51
DoS attacks, 50
electrical power attacks, 54
ICMP flood/Smurf attacks, 53–54
TCP SYN flood attacks, 52–53
avalanche effect, 317, 335
avoiding wrong assumptions, 83–85
awareness versus training, 89–90

B

backdoor installation, 30
banner messages, configuring on Cisco routers, 134–135
Basic Firewall Wizard, configuring zone-based policy firewalls, 284–290
bastion hosts, 230
BERR (U.K. Department for Business Enterprise & Regulatory Reform), 6
best practices
 firewall documentation, 246
 for IP ACLs, 253
 for IPS, 466–467
BID (bridge ID), 540
birthday attacks, 316
blended threats, 91
blind attacks, 39
blind spoofing, 37
block ciphers, 320
block size, 320
botnets, 50
BPDU guard, preventing STP manipulation, 543
BPDUs (bridge protocol data units), 540
breaches in security, responses to, 18
broadcast storms, 539
brute-force attacks, 46–48, 315
buffer overflows, 496–498
 heap overflows, 497
 local root buffer overflows, 499
 Trojan horses, 500
 viruses, 500
 worms, 500
building site-to-site IPsec VPNs, 400
building Cisco SDN 93–95
 Cisco network management systems, 97
 Cisco portfolio integration, 99–100
 Cisco Secure Communications solution, 97
 Cisco Security Management Suite, 97
 Cisco Security Manager, 98
 Cisco Security MARS, 98
 Cisco Threat Control and Containment solution, 96
bumps in the wire, 241
business continuity planning, 66
business drivers for VoIP, 524

C

C-Series email security appliances (IronPort), 503-504
CA (certificate authority), 354
Caesar, Julius, 307
calculating quantitative risks, 76–80
call agents, 525
CAM table overflow attacks
 preventing, 545
CAs (certificate authorities), 360–364
 cross-certifying, 356
castles, early use of defense in depth, 33
casual crackers, 28
Catalyst switches
 LAN storm suppression, 558, 561
 Layer 2 attacks, mitigating
 RSPAN, 556–557
 SPAN, 555
 port security feature, configuring, 548–555
catastrophes, 68
CBAC (Context-Based Access Control), 280
CBC (Cipher Block Chaining) mode (DES), 329
CERT (Computer Emergency Response Team), 499
Certicom VPN client, 380
certificate classes, 355, 358
certificates, 354, 361–364
CFB (Cipher Feedback) mode (DES), 330
character mode, 147
chosen-plaintext attacks, 316
CIA triad, 8
 integrity, importance of verifying, 18
ciphers, 307, 312
 block ciphers, 320
 stream ciphers, 321
 transposition ciphers, 308
 Vigenère cipher, 307
ciphertext, 313
ciphertext-only attacks, 315
Cisco 800 series routers, 113
Cisco 1800 series routers, 114
Cisco 2800 series routers, 114
Cisco 3800 series routers, 114
Cisco AnyConnect VPN Client, 380
Cisco ASA 5500 series adaptive security appliances, 377–379
Cisco ASA AIP SSM, 457–458
Cisco ASDM (Adaptive Security Device Manager), 379
Cisco AutoSecure feature, 218–219
Cisco Catalyst 6500 Series IDSM-2, 457-459
Cisco Easy VPN, 378
Cisco IBNS, 155
Cisco IDS Event Viewer, 449
Cisco IME (IPS Manager Express), 450
Cisco IOS Firewalls, 242
 Cisco ASA 5500 series Adaptive Security Appliance, 245
 Cisco FWSM, 245
 Cisco PIX 500 series Security Appliance, 244
 security certifications, 243
Cisco IOS IPS
 configuring, 468–469
 with Cisco SDM, 470–474
 with CLI, 476
 monitoring, 481-483
 signatures, configuring, 477, 480
 verifying operation, 483-485
Cisco IOS Software
 resilient configuration feature, 129–130
 supported signature engines, 463–464
 VPN features, 378
Cisco IPSs, signature severity levels, 465
Cisco IPS 4200 series sensors, 457
Cisco IPS AIM (Advanced Integration Module), 457, 460–461
Cisco IPS Device Manager, 450
Cisco IPsec VPN SPA, 381
Cisco IronPort security appliances, 503
 C-series email security appliances, 503
 M-series appliance, 507
 S-series web security appliances, 504
 SenderBase, 503
Cisco ISRs (Integrated Services Routers), 461
 Cisco 800 series routers, 113
 Cisco 1800 series routers, 114
 Cisco 2800 series routers, 114
 Cisco 3800 series routers, 114
 features
 application intelligence, 115
 integrated security, 115
 mobility, 115
 unified network services, 115
 USB support, 116
Cisco NAA (NAC Appliance Agent), 509
Cisco NAC (Network Admission Control) Appliance, 155, 493, 509
Cisco NAC Framework, 507–508
Cisco NAM (NAC Appliance Manager), 509
Cisco NAS (NAC Appliance Server), 509
Cisco network management system, 97
Cisco PIX 500 series security appliances, 377
Cisco routers
AAA

configuring, 145–147

datasource list, 145

domain list, 145

exec authentication policy, configuring with Cisco SDM, 177

datasource list, 145

domain list, 145

local database authentication, configuring, 147, 149–152

login authentication policy, configuring with Cisco SDM, 174–176

network authorization policy, configuring with Cisco SDM, 177–178

troubleshooting, 152–153

lockdown, 215–217

log messages, 193

NTP, configuring with Cisco SDM, 207–208

SSH daemon operations, configuring, 200–204

syslog messaging, enabling, 193–195

TACACS+, configuring, 172–174

time and date features, configuring with Cisco SDM, 205–208

unnecessary services, disabling, 209–212

virtual logins, configuring enhanced support, 131–135

Cisco SDM, 136

AAA

configuring, 149–151

datasource list, 145

domain list, 145

exec authentication policy, configuring on Cisco routers, 177

datasource list, 145

domain list, 145

login authentication policy, configuring on Cisco routers, 174–176

network authorization policy, configuring on Cisco routers, 177–178

advanced options, configuring, 142

AutoSecure feature, 218–219

Cisco IOS IPS, configuring, 470–474

time and date features, configuring, 205–208

Cisco SDM (Security Device Manager), 448

time and date features, configuring on Cisco routers, 205–208

SNMP

community strings, configuring, 198

enabling, 198

trap receivers, configuring, 199–200

time features, configuring on Cisco routers, 205–208

Cisco SDM Express, 137–138

Cisco SDN (Self-Defending Network), 91, 494

building, 93–95

Cisco Secure Communications solution, 97

Cisco Security Management Suite, 97–98

Cisco Threat Control and Containment solution, 96

Cisco Secure ACS, 154–157

AAA

accounting configuration, 179–182
Cisco Secure ACS

clients, creating, 165–166
for external databases
configuring, 167–170
group setup, configuring, 170
installing for Windows, 162
navigation bar buttons, 163–165
Interface Configuration, 166
RADIUS support, 160
server configuration, 162
TACACS+ support, 160
user setup, configuring, 171
Windows requirements, 157–158
Cisco Secure ACS Express 5.0, 159
Cisco Secure ACS Solution Engine, 158
Cisco Secure ACS View 4.0, 159
Cisco Secure Communications solution, 97
Cisco Security Agent, 510
attack response, 514–515
interceptors, 512–514
Cisco Security Management Suite, 97
Cisco Security Manager, 98, 449
Cisco Security MARS, 98
Cisco Security Manager, 98, 449
Cisco Security MARS, 98
syslog messages, monitoring, 191-193
Cisco Security MARS (Security Monitoring, Analysis, and Response System), 448
Cisco Security Policy Builder, 71
Cisco Threat Control and Containment solution, 96
Cisco Unified Communications Manager), 527
Cisco VPN 3000 series concentrators, 377
Cisco VPN 3002 Hardware Client, 380
Cisco VPN product family, 376–381
Cisco VPN Software Client, 380
civil laws, 19
class maps, creating with SDM, 292
CLI (command-line interface),
configuring Cisco IOS IPS, 476
clientless mode (SSL VPN), 375
COBIT (Control Objectives for Information and related technology), 15
Code of Ethical Conduct, 21
cold sites, 68
Colossus, 307
commands
aaa accounting, 180
aaa new-model, 149
access-class, 260
auto secure, 218
commands, 127
crypto isakmp policy, 403
crypto ipsec transform-set, 407
crypto isakmp key, 405
debug aaa authentication, 153, 182–183
debug crypto isakmp, 432
debug tacacs events, 184–185
enable password, 119
enable view, 128
errdisable recovery cause, 551
ip access-group, 257
ip inspect, 280
ip virtual-reassembly, 476
logging buffered, 257
login authentication, 176
privilege, 124
secure boot-image, 129
service password-encryption, 119–120
show aaa sessions, 152
show crypto ipsec sa, 416
show crypto ipsec transform set, 415
show crypto isakmp policy, 415
show crypto map, 416
show flash, 138
show ip interfaces, 264
show ip ips all, 486
show ip ips configuration, 484
show ip ips interface, 485
show login, 133
show login failures, 134
show policy-map, 298
show port-security, 553-555
show privilege, 125
show running-config, 124, 402
show secure bootset, 130
show spanning-tree summary, 545
show-access lists, 263
spanning-tree guard root, 544
spanning-tree portfast bpduguard
default, 543
storm-control, 559–560
switchport port-security, 550
switchport port-security aging,
552–553
switchport port-security mac-address,
551–552
switchport port-security violation,
550–551
commands command, 127
common attacks from last 20 years, 501
Common Criteria, 243
common properties of firewalls, 228
common services, permitting with ACLs,
276
community string, configuring with
Cisco SDM, 198
community strings, 196
configuring
AAA with Cisco SDM, 149-151
ACLs
extended IP ACLs with SDM,
270–272
numbered extended IP ACLs,
260–262
numbered IP ACLs, 257–259
with SDM, 266–269
Cisco IOS IPS, 468–469
signatures, 477, 480
verifying configuration, 483-485
with SDM, 470–474
with CLI, 476
Cisco routers, 116
AAA, 145–152
configuration files, 129–130
enhances support for virtual
logins, 131–135

composite patterns, 438
compromised fabric stability, 521
computer environment attacks, 55–56
Computer Ethics Institute, 10
Commandments of Computer Ethics,
20
Computer Fraud and Abuse Act, 23
confidential data, 11–12
confidentiality, 8-9
confidentiality attacks, 40
covet channels, 44
emanations capturing, 42–43
network sniffing, 42
overt channels, 43
pharming, 45
phishing, 44
ping sweeps, 42
port scanning, 41
configuration change management, 186
configuration interceptor, 513

commands command, 127
common attacks from last 20 years, 501
Common Criteria, 243
common properties of firewalls, 228
common services, permitting with ACLs,
276
community string, configuring with
Cisco SDM, 198
community strings, 196
comparing
Cisco NAC framework and Cisco NAC
Appliance, 507
TACACS+ and RADIUS, 160–161
for SSH daemon operations, 200–204
multiple privilege levels, 124–125
passwords, 117–121
role-based CLI access, 126, 128–129
ROM monitor, 122–124
TACACS+, 172–174
timers, 120–121
Cisco SDM
advanced options, 142
services, 137–138
Cisco Secure ACS
accounting, 179–182
for external databases, 167–170
group setup, 170
server configuration, 162
user authentication, 170
user setup, 171
Windows database, 169
firewalls, zone-based policy, 280–286, 289–295, 298
ISAKMP policies 404
port security, 549–555
site-to-site IPsec VPNs, 401–402
crypto ACLs, 409–411
crypto map entries, 411–413
ISAKMP policies, 402–405
PSKs, 406
transform sets, 407–408
verifying configuration, 414
with Cisco SDM, 418–430
confirming spanning tree state, 545
context transfer protocols, 236
controlling routing updates with ACLs, 272
Coppersmith, Don, 384
Counter Hack Reloaded, Second Edition, 496
covert channels, 41, 44
 crackers, 26
casual crackers, 28
CRC (cyclic redundancy check), 323
cribs, 316
criminal laws, 19
cross-certifying, 356
crypto ACLs
configuring, 409–410
symmetric peer crypto ACLs, configuring, 410–411
crypto ipsec transform-set command, 407
crypto isakmp key command, 405
crypto isakmp policy command, 403
crypto maps
applying to interfaces, 414
entries, configuring, 411–413
cryptoanalysis, 305, 314
birthday attacks, 316
brute-force attacks, 315
chosen-plaintext attacks, 316
ciphertext-only attacks, 315
cribs, 316
known-ciphertext attacks, 316
known-plaintext attacks, 315
meet-in-the-middle attacks, 316
cryptographic hashing, 322, 335–336
HMAC, 337-338
MD5, 340
SHA-1, 340–341
cryptography, 305
encryption
3DES, 332–333
AES, 333
algorithms, selecting, 321
block ciphers, 320
DES, 329
effective algorithm features, 317
key lengths, 328–329
stream ciphers, 321
symmetric algorithms, 318–319, 327–335
history of, 306
cryptology, 305
ciphers, 307
transposition ciphers, 308
block ciphers, 320
CSS (Content Scrambling System), 84
custodian of information, security controls, 14
administrative controls, 15
detective controls, 17
deterrent controls, 17
physical controls, 16–17
preventive controls, 17
technical controls, 15
custom applications, attacks on, 7
data classification, 11
criteria for classification, 12
information classification procedure, 13–14
private sector classification scheme, 11
roles involved, 14
security controls, 14
administrative controls, 15
detective controls, 17
deterrent controls, 17
data compromise, 521
data diddling, 45
data integrity, 45
as network security requirement, 9–10
importance of verifying, 18
data link layer, 534
database credentials coding policies, 73
DDoS attacks, 51
debug aaa authentication command, 153, 182–183
debug crypto isakmp command, 432
debug tacacs events command, 184–185
decapsulation, 371
decryption, 309, 314
defending against attacks
adversaries, identifying, 25–26
best practices, 56
defending against VoIP hacking
with endpoints, 533
with firewalls, 531
with servers, 533
with voice VLANs, 530
with VPNs, 532
defense in depth, 30, 231
early use of in castles, 33
enterprise firewalls, 33–34
recommended principles, 31–32
deny statements, 251
DES, 322, 384, 533
CBC mode, 329
ECB mode, 329
security guidelines, 331
stream cipher mode, 330
detective security controls, 17
deterrent security controls, 17

developing security policies
 end-user policies, 72
 governing policies, 71
 technical policies, 72–73
DH (Diffie-Hellman) key exchange, 351–352, 384
dial-in access policies, 73
DIAMETER protocol, 160
Diffie, Whitfield, 351
digital signatures, 341–342
 DSS, 345
 nonrepudiation, 342
 properties of, 342–344
diminishing returns, 81
direct attacks, 496
directional filtering, 265
disabling unnecessary services on Cisco routers, 209–212
disaster recovery, 67
 redundancy, 68
disasters, 68
displaying AAA session information, 151–152
disposition phase of SDLC, 60
diversity in depth, 231
Division Advisory Panel of the National Science Foundation Division of Network, Communications Research and Infrastructure, 21
DMVPN (Dynamic Multipoint Virtual Private Network), 376-378
DMZ, 113, 468
 screened subnet configuration, 230
document retention policies, 74
DoS attacks, 10, 49–50
double-tagging VLAN hopping attacks, mitigating, 537–538
dropped packets, 442
DSA (Digital Signature Algorithm), 345
DSS (Digital Signature Standard), 345
dual-operator principle, 61
DumpSec, 29
dumpster diving, 41
DVS (Dynamic Vectoring and Streaming), 504

eavesdropping, 529
ECB (Electronic Code Book) mode (DES), 329
ECDSA (Elliptic Curve Digital Signature Algorithm), 345
Economic Espionage Act of 1996, 23
education versus training, 90
egress filtering, 232
electrical power attacks, 54
electronic communication retention policies, 74
email policies, 73
emanations capturing, 41–43
employee records retention policies, 74
enable password command, 119
enable view command, 128
encapsulation, 371
encryption, 309, 314
 algorithms, selecting, 321
 application examples, 314
 asymmetric algorithms, 319–320, 346–347
 DH, 351–352
 PKI, 352, 355, 358–364
 RSA, 348–350
ciphers, 307, 312
 block ciphers, 320
 transposition ciphers, 308
digital signatures, 341, 344
 DSS, 345
 properties of, 342
effective algorithm features, 317
Layer 2, 314
stream ciphers, 321
symmetric algorithms, 318–319, 327
 3DES, 332–333
 AES, 333–334
 DES, 329–331
 key lengths, 328–329
RC algorithms, 335
Rijndael cipher, 333
SEAL, 334
 versus 3DES, 333
end-user policies, 72
endpoints
 hidden, 493
 VoIP hacking, defending against, 533
security strategy, 493, 515
Enigma machine, 307
enterprise firewalls, defense in depth principles, 33–34
entrapment, 21
entry sequence numbering for IP ACLs, 252–253
errdisable recovery cause command, 551
ESP (Encapsulating Security Payload), 388-390
 transport mode, 391
 tunnel mode, 391
ethics
 Computer Ethics Institute, 10
 Commandments of Computer Ethics, 20
 GASSP code of ethics, 21
 IAB code of ethics, 21
 ISC² code of ethics, 20
locale–specific considerations, 22–24
European Union Directive on Data Protection, 23
event management, 446–447
event monitoring, 446–447
evolution of hacking tools, 5
examples of encryption applications, 314
execution space interceptor, 513
exploits, 24
extended IP ACLs, 251
 configuring with SDM, 270–272
 numbered, configuring, 260–262
external network security threats, 4-8
external rules, 266
extranet policies, 73

F

fabric access security (SANs), 521–522
fail-close policies, 468
fail-open policies, 468
false negatives, 443, 465
false positives, 443, 464
FCIP (Fibre Channel over IP), 518
features of effective encryption algorithms, 317
Federal Rules of Civil Procedure, 14, 517
Fibre Channel, 517
 FCIP, 518
 VSANs, 519, 521
 WWNs, 518
file system interceptor, 512
filtering Telnet traffic, 259
financial retention policies, 74
fingerprinting, 41
firewalls, 227
application inspection firewalls, 240
 advantages of, 241
application layer gateways, 234
 advantages of, 235–237
best practice documents, 246
Cisco FWSM, 245
Cisco IOS Firewalls, 242
 Cisco ASA 5500 series Adaptive Security Appliance, 245
 Cisco PIX 500 series Security Appliance, 244
 security certifications, 243
common properties of, 228
treasure firewalls, defense in depth principles, 33–34
in layered defense scenario, 229–230
limitations of, 229
packet-filtering, 231–233
 ACLs, 247–248, 251, 254–256
 vty access, restricting, 259
stateful packet-filtering firewalls, 237–238
 advantages of, 238
 limitations of, 239–240
VoIP hacking, defending against, 531
zone-based policy, 278–280
 configuring, 280–298
FISMA (Federal Information Security Management Act), 23
footprint analysis, 29
FPM (Cisco Flexible Packet Matching), 7
fraud as threat to VoIP security, 529

G

G.711, 528
G.729, 528

GASSP code of ethics, 21
gatekeepers, 525
gateways, 525
GetMAC, 29
GLB (global load balancing), 68
GLBA (Gramm-Leach-Bliley Act), of 1999, 22
global web server policies, 72
governing policies, 71
GRE tunnels, 371
group setup, configuring in Cisco Secure ACS, 170
guidelines, 75

H

H.248, 526
H.323, 526
hackers, 26
 academic hackers, 27
 attack methodology, 28
 backdoor installation, 30
 privilege escalation, 29
 reconnaissance, 29
 first use of term, 27
 hobby hacking, 27
 motivations of, 25
hacking tools, evolution of, 5
hacktivists, 26
hard zoning, 522
hardening a system, 112, 494
hardware acceleration modules, 381
hashing, 322, 335–336
 HMAC, 337–338
 MD5, 340
 SHA-1, 340–341
 irreversibility of, 323
HBAs (host bus adapters), 518
heap overflows, 497
Hellman, Martin, 351
heuristics analysis, 445
hidden endpoints, 493
Hidden Endpoints: Mitigating the Threat of Non-Traditional Network Devices, 493
hierarchical PKI topologies, 356
high severity level activity, 466
HIPAA (Health Insurance Portability and Accountability Act of 1996), 22
HIPS (host-based intrusion prevention systems), 438, 451–452
Cisco Security Agent, 510
 attack response, 514–515
 interceptors, 512–514
 versus network IPS, 455
history of cryptography, 306
HMAC (Hash Method Authentication Code), 337–338
 MD5, 340, 385
 SHA-1, 340–341, 385
hobby hacking, 27
honeypot-based IDS/IPS sensors, 443
honeypot-based IDS/IPS systems, 445
honeypots, 443
host resource starvation attacks, 528
host-based attacks, 438
hot sites, 68
hybrid crackers, 48
IAB code of ethics, 21
ICMP filtering with ACLs, 275–276
ICMP flood/Smurf attacks, 53–54
identifying adversaries, 25–26
IDS (intrusion detection system), 437
alarms, 464–465
anomaly-based, 444
attack response, 439
event management, 446–447
event monitoring, 446–447
honeypot-based, 445
policy-based, 444
promiscuous mode, 440
sensors, 438
signature-based, 443
signatures, 438
 retiring, 466
 signature micro-engines, 462–464
 versus IPS, 437
IKE (Internet Key Exchange), 394
 aggressive mode, 394
 main mode, 394
 Phase 1, 395–398
 DH key exchange, 397
 ISAKMP policies, configuring, 403–405
 PSKs, configuring, 406
 Phase 2, 395–399
 policy sets, 396
 Quick mode, 394
implementation phase of SDLC, 59
in-band management, 187–190
 guidelines, 188–189
inbound ACLs, 248-250
indirect attacks, 496
information classification procedure, 13–14
information sensitivity policies, 72
informational severity level activity, 466
ingress filtering, 232
initiation phase of SDLC, 58
inline mode, 437, 440-441
installing Cisco Secure ACS for Windows, 162
integrated information systems, 524
integrity, 9
as network security requirement, 9–10
importance of verifying, 18
integrity attacks, 45
password attacks, 48
port redirection, 47
trust exploits, 46–47
interceptors (Cisco Security Agent), 512–514
Interface Configuration button (Cisco Secure ACS), 166
internal network security threats, 4
interprocess communications policies, 73
IOS Heap-Based Overflow Vulnerability in System Timers, 497
ip access-group command, 257
IP ACLs, entry sequence numbering, 252–253
ip inspect command, 280
IP phones, 525
IP spoofing attacks, 34
man-in-the-middle attacks, 38
mitigating with ACLs, 273–274
sequence prediction, 36–37
source routing, 37–38
IP telephony, 523
ip virtual-reassembly command, 476
IPS (intrusion prevention systems), 437
alarms, 464–465
anomaly-based, 444
attack response, 439
attack response actions, 445–446
best practices, 466-467
Cisco ASA AIP SSM, 457–458
Cisco IOS IPS
configuring, 468–476
monitoring, 481-483
signatures, configuring, 477, 480
verifying configuration, 483-485
Cisco IPS 4200 series sensors, 457
Cisco IPS AIM, 457–461
Cisco IPS management software
Cisco IDS Event Viewer, 449
Cisco IPS Device Manager, 450
Cisco SDM, 448
Cisco Security Manager, 449
Cisco Security MARS, 448
dropped packets, 442
event management, 446–447
event monitoring, 446–447
HIPS, 451–452
Cisco Security Agent, 510, 512–515
versus network IPS, 455
honeypot-based, 445
inline mode, 441
network-based, 453-455
policy-based, 444
sensors, 438
signature-based, 443
signatures, 438
retiring, 466
signature micro-engines, 462–464
versus IDS, 437
IPS Rule Wizard, 471
IPsec, 382
advantages of, 386
AH, 388
authentication, 385
Diffie-Hellman key exchange, 384
encryption algorithms, 384
ESP, 390-391
framework, selecting, 392
HMAC algorithms, 385
IKE, 394
 Phase 1, 395–398
 Phase 2, 395, 398–399
IronPort, 503
 C-series email security appliances, 503
DVS, 504
M-series appliance, 507
S-series web security appliances, 504
SenderBase, 503
irreversibility of hashing, 323
ISAKMP policies, configuring, 403–405
ISC² code of ethics, 20
iSCSI (Internet Small Computer Systems Interface), 518
ISDN line policies, 73
ISO 27002, 15
ITIL (IT Infrastructure Library), 15

J-K

Jefferson, Thomas, 307

key lengths
 for symmetric encryption algorithms, 328–329
 recommendations, 325-326
key management, 323
 key length recommendations, 325–326
 key spaces, 324
key spaces, 324
Keyed MD5, 337
Keyed SHA-1, 337
Kismet, 446
known-ciphertext attacks, 316
known-plaintext attacks, 315

L

LAN storm suppression, 558, 561
launching
 Cisco SDM, 139
 Cisco SDM Express, 138
laws, 19-20
 Computer Fraud and Abuse Act, 23
 Economic Espionage Act of, 1996, 23
 FISMA, 23
 GLBA, 22
 HIPAA, 22
 local-specific considerations, 22–24
 Privacy Act of 1971, 23
 Sarbanes-Oxley Act of 2002, 22
 Security and Freedom through Encryption Act, 22
Layer 2
 attack mitigation, 534
 CAM table overflow attacks, 545
 LAN storm suppression feature, 558, 561
 MAC address spoofing attacks, 547
 port security feature, 548–551, 553, 555
 RSPAN feature, 556–557
 SPAN feature, 555
 STP manipulation, 538, 540–545
 VLAN attacks, 535–538
 encryption, 314
layered defense scenario, role of firewalls, 229–230
least privilege concept, 85–86
limitations of firewalls, 229
 packet filtering firewalls, 233
 stateful packet-filtering firewalls, 239–240
local authentication, configuring on Cisco routers, 146–147
local database configuration, configuring AAA on Cisco routers, 147–152
local root buffer overflows, 499
locale-specific legal/ethical considerations, 22–24
locking down Cisco routers, 215-217
logging, syslog, 190–193
logging buffered command, 257
logical security, 16
login authentication command, 176
long-distance toll bypass, 524
low severity level activity, 466
LSRR (Loose Source and Route Record), 37
LUN masking, 518–519
LUNs (logical unit numbers), 518

M
M-series appliance (IronPort), 507
MAC address spoofing attacks, preventing, 547
MAC database instability, preventing, 539
macof program, 546
main mode (IKE), 394
man-in-the-middle attacks, 37–38
management access security, (SANs) 521
Management Center for Cisco Security Agent, 511
management console, 440
management service, vulnerabilities, 212
Maubourigne, Joseph, 308
MCU (multipoint control unit), 525
MD5, 337, 340
medium severity level activity, 466
meet-in-the-middle attacks, 316
method lists, 178
MGCP (Media Gateway Control Protocol), 526
Microsoft EPDump, 29
minimum password length, configuring on Cisco routers, 121
minimum requirements for network access policies, 73
mitigating
IP address spoofing with ACLs, 273–274
Layer 2 attacks, 534
CAM table overflow attacks, 545
LAN storm suppression feature, 558-561
MAC address spoofing attacks, 547
port security feature, 548–555
RSPAN feature, 556–557
SPAN feature, 555
STP manipulation, 538–545
VLAN attacks, 535–538
mobile devices, security policies for, 93
modding, 27
Monitor mode (Cisco SDM), 142
monitoring
Cisco IOS IPS, 481-483
logging with Cisco SDM, 195
syslog messages with Cisco Security MARS, 191-193
MOTD banners, configuring on Cisco routers, 134–135
motivations of hackers, 25
motives for attacks, 28
MPLS (Multiprotocol Label Switching), 378
MPR (Multidimension Pattern Recognition), 504
operations security 591

N

NAC Appliance, 509
NAC framework, 508
named ACLs, 252
navigating Cisco SDM interface, 139
navigation bar buttons (Cisco Secure ACS), 163–165
Netcat, 29
network access policies, 73
network behavior analysis, 445
network interceptor, 512
network IPS, versus HIPS, 455
network resource overload attacks, 528
network security objectives, 8–9
network security policies, 69
network security requirements, 8
availability, 10–11
confidentiality, 9
data integrity, 9–10
network security testing, 63
testing techniques, 64
testing tools, 64–65
network sniffing, 42
network-based IPS, 453-455
NIST (National Institute of Standards and Technology) website, 325, 340
Nmap, 65
nonblind spoofing, 37-39
nonces, 385
nondisasters, 68
nonrepudiation, 342
NTP (Network Time Protocol), 189, 206
configuring with Cisco SDM, 207–208
numbered ACLs, 252
configuring, 257–259
numbered extended IP ACLs, configuring, 260–262

O

objectives for network security, 8–9
OFB (Output Feedback) mode (DES), 330
One-Step Lockdown feature, 215, 217
one-way functions, 323
OOB management, 187–188
guidelines, 188–189
operating system vulnerabilities, 494–495
operations and maintenance phase of SDLC, 59
operations security, 57
business continuity planning, 66
disaster recovery, 67
redundancy, 68
network security testing, 63
testing techniques, 64
testing tools, 64–65
principles of
change and configuration control, 62–63
rotation of duties, 61
separation of duties, 60
trusted recovery, 61–62
records retention policies, 74
SDLC 57
acquisition and development phase 58–59
disposition phase 60
implementation phase 59
initiation phase, 58
operations and maintenance phase, 59
ordering ACL statements, 265
out-of-bands attacks, 528
outbound ACLs, 248–249
overt channels, 41-43
owners of information, 14

P

packet filters, 230. See also ACLs; packet-filtering firewalls
packet mode, 147
packet sniffing, 40-42
packet voice networks, components of, 525
packet-filtering firewalls, 231–233; See also ACLs
ACLs 247–248, 251
common services, permitting, 276
ICMP filtering, 275–276
IP address spoofing mitigation, 273–274
numbered IP ACLs, configuring, 257–259
router service traffic, permitting, 277
routing updates, controlling, 272
verifying configuration, 263–264
wildcard masking, 254–256
limitations of, 233
stateful, 237–238
advantages of, 238
limitations of, 239–240
vty access, restricting, 259
parallel scanning, 462
paralyze phase of attacks, 501
passive fingerprinting, 42
password attacks, 45, 48
password policies, 72
pattern matching, signature-based, 444
penetrate phase of attacks, 501
Penetration Testing and Network Defense (Cisco Press, 2005), 496
perimeter routers, 113
permit statements, 251
persist phase of attacks, 501
personal communication device policies, 73
PFS (Perfect Forward Secrecy), 394, 399
pharming, 45
Phase 1 (IKE), 395
authenticate peer identity, 397–398
DH key exchange, 397
ISAKMP policies, configuring, 404–405
policy sets, 396
PSKs, configuring, 406
Phase 2 (IKE), 395, 398–399
phases of attacks, 501
phishing, 44
phreakers, 26
physical security controls, 16–17
ping sweeps, 42
PKCS (Public-Key Cryptography Standards), 359–360
PKI, 352
CAS, 360–364
certificate classes, 355, 358
hierarchical topologies, 356
standards, 358
PKCS, 359–360
plaintext, 42
policy maps, creating with SDM, 293
policy sets, 396
policy-based IDS/IPS systems, 443-444
port redirection, 47
requirements for network security 593

port scanning, 40–41
port security feature (Cisco Catalyst switches), 548
port security feature (Cisco Catalyst switches), configuring, 549–555
PortFast, preventing STP manipulation, 542
power attacks, 54
PPTP (Point-to-Point Tunneling Protocol), 371
preventive security controls, 17
principles
 of operations security
 change and configuration control, 62–63
 rotation of duties, 61
 separation of duties, 60
 trusted recovery, 61–62
of secure network design, 82
 adopting realistic assumptions, 82–85
 concept of simplicity, 86–87
 least privilege concept, 85–86
Privacy Act of 1974, 23
private sector data classification scheme, 11–12
privilege command, 124
privilege escalation, 29, 496
privilege switching, runas option
 (Windows XP), 495
privileges, least privilege concept, 85–86
probe phase of attacks, 501
procedures, 75
profile-based intrusion detection, 468
project security policies, 73
promiscuous mode, 437, 440
 advantage of, 440
propagate phase of attacks, 501
properties of digital signatures, 342–344
properties of effective cryptographic hash functions, 336
protecting against operating system vulnerabilities, 495
protocol analysis-based intrusion detection, 444, 469
protocol scanning, 65
proxy firewalls, 234
PSKs (pre-shared keys), 385
 configuring, 406
public data, 11
public-key algorithms, 319
Q
 qualitative risk analysis, 76
QualysGuard, 508
quantitative risk analysis, 76–80
quick mode (IKE), 394, 398
quiet period 131
R
 RADIUS, 160–161. See also TACACS+
RainbowCrack, 49
RC algorithms, 335
RC4, 309
reconnaissance, 29
redundancy and disaster recovery, 68
remote-access policies, 73
remote-access VPNs, 373–375
 clients, 380
requirements for network security, 8
 availability, 10–11
 confidentiality, 9
 data integrity, 9–10
residual risk, 81
resilient configuration feature (Cisco IOS Software), 129–130
responses to security breaches, 18
restricting vty access, 259
retiring signatures, 466
Rijndael cipher, 333
risk analysis, 76
quantitative, 76–80
risk assessment policies, 72
risk management, 80–81
risks, 24
Rivest, Ron, 340, 348
Rogaway, Phillip, 384
rogue trunks
mitigating VLAN hopping attacks, 536
roles for security policies, 75
root CA, 355
Root Guard, preventing STP manipulation, 544–545
rooting a system, 499
rootkits, 499
rotation of duties as operations security principle, 61
router access modes (AAA), 147
router and switch security policies, 74
router service traffic
permitting with ACLs, 277
router traffic rules for zone-based policy firewalls, 283–284
routers
security guidelines, 111–112
Telnet traffic, filtering, 259
routing updates, controlling with ACLs, 272
RPC (Remote Procedure Call) Dump, 29
RSA (Rivest Shamir Adleman) algorithm, 320, 348–350, 384-385
RSPAN (Remote Switched Port Analyzer), 556–557
RTCP (RTP Control Protocol), 527
RTP (Real-Time Transport Protocol), 527
Rules Summary window (SDM), 266
runas option (Windows XP), 495

S

S-series web security appliances (IronPort), 504
salami attacks, 45
SANs (storage area networks), 68, 516
fabric access security, 521–522
IP storage and transmission security, 522
management access security, 521
SCSIs, LUN masking, 518
SCSO communications model, 517
target access security, 521–522
transport technologies, 517
VSANs, 519-521
Sarbanes-Oxley Act of 2002, 22
SBU (sensitive but unclassified) data, 11
SCCP (Skinny Client Control Protocol), 527
Scherbius, Arthur, 307
Schneier, Bruce, 319
screened subnet configuration, 230
screening routers, 113
script kiddies, 26
SCSI (Small Computer System Interface), LUN masking, 518
SCSI communications model, 517
SDEE (Security Device Event Exchange), monitoring Cisco IOS IPS, 481
SDKs (software development kits), 29
SDLC (system design life cycle), 57
acquisition and development phase, 58–59
disposition phase, 60
implementation phase, 59
initiation phase, 58
operations and maintenance phase, 59
SDM (Security Device Manager)
ACLs, configuring, 266–269
Basic Firewall Wizard, configuring zone-based policy firewalls, 284–298
extended ACLs, configuring, 270–272
Rules Summary window, 266
SEAL (Software-Optimized Encryption Algorithm), 334, 384
secret data, 11
secure attention sequence, 494
secure boot-image command, 129
secure network design, principles of, 82
 adopting realistic assumptions, 82–85
 concept of simplicity, 86–87
 least privilege concept, 85–86
Security and Freedom through Encryption Act, 22
Security Audit feature, 212
Security Audit Wizard, 213–215
security awareness, 87–89
security guidelines for DES, 331
security levels, SNMPv3, 197–198
security models, 197
security policies, 69–70
 AUPs, 70
 end-user policies, 72
 governing policies, 71
 guidelines, 75
 procedures, 75
 reasons for, 70
risk analysis, quantitative, 76–80
risk management, 80–81
roles and responsibilities, 75
security awareness, 87–89
standards, 74
technical policies, 72–73
selecting encryption algorithms, 321
SenderBase, 503
sensitive data, 12
sensors, 438-440
 anomaly-based, 444
 honeypot-based, 445
 policy-based, 444
 signature-based, 443
SEP-E, 381
sequence prediction, 36–37
server security policies, 74
servers, defending against hacking with VPNs, 533
service password-encryption command, 119–120
session hijacking, 46
severity levels of Cisco IP signatures, 465
SHA-1 (Secure Hash Algorithm 1), 337, 340–341
Shamir, Adi, 348
show aaa sessions command, 152
show access-lists command, 263
show crypto ipsec sa command, 416
show crypto ipsec transform-set command, 415
show crypto isakmp policy command, 415
show crypto map command, 416
show flash command, 138
show ip interfaces command, 264
show ip ips all command, 486
show ip ips configuration command, 484
show ip ips interface command, 485
show login command, 133
show login failures command, 134
show policy-map command, 298
show port-security command, 553–555
show privilege command, 125
show running-config command, 124, 402
show secure bootset command, 130
show spanning-tree summary command, 545
signature-based IDS/IPS systems, 443
signature-based intrusion detection, 468
signature-based pattern matching, 444
signatures, 438
alarms, 464–465
Cisco IPS, severity levels, 465
configuring on Cisco IOS IPS, 477, 480
parallel scanning, 462
retiring, 466
signature micro-engines, 462–464
simplicity, 86–87
Singh, Simon, 306
SIP (Session Initiation Protocol), 526
vulnerabilities, 530
site-to-site IPsec VPNs
building, 400
configuring, 401–404, 418-430
crypto ACLs, configuring, 409–411
crypto map entries, configuring, 411–413
transform sets, configuring, 407–408
troubleshooting, 432
verifying configuration, 414
site-to-site VPNs, 373
Skoudis, Ed, 496
SLAs (service level agreements), 532
SLE (single loss expectancy)
calculating, 77
Smurf attacks, 53–54
SNMP (Simple Network Management Protocol), 188, 195
as security risk, 212
community strings, 196-198
enabling with Cisco SDM, 198
trap receivers, configuring with Cisco SDM, 199–200
SNMPv3
architecture, 197
security levels, 197–198
Snort, 446
SOAP, (Simple Object Access Protocol) 92
social engineering, 29, 41
SoD (separation of duties) as operations security principle, 60
soft zoning, 522
software, hardening, 494
application vulnerabilities, 496–500
operating system vulnerabilities, 494–495
SomarSoft DumpSec, 29
source code protection policies, 73
source routing, 37–38
spam
policies, 73
SPIT, 529
SPAN (Switched Port Analyzer), 555
spanning-tree guard root command, 544
spanning-tree portfast bpdu guard default command, 543
spear phishing, 45
SPIT (Spam over IP Telephony), 529
SQL Slammer worm, 93
SRST (Survivable Remote Site Telephony), 533
SRTP (Secure Real-Time Protocol), 527
SSH daemon operations, configuring on Cisco routers, 200–204
SSL (Secure Sockets Layer), 326
SSL VPNs, 326, 375
SSRR (Strict Source and Route Record), 37
ST&E (security test and evaluation), 63
Stacheldracht, 52
standard IP ACLs, 251
 configuring with SDM, 267–269
standards, 74
 PKI, 358–360
stateful packet-filtering firewalls, 237–238
 advantages of, 238
 limitations of, 239–240
statements, ACL, 251
 ordering, 265
static filters, 232
stealth firewalls, 241
steganography, 44, 306
Sternberg, David, 30
storm-control command, 559–560
STP (Spanning Tree Protocol)
 BPDUs, 540
 spanning tree state, confirming, 545
STP manipulation, preventing, 538–545
stream cipher mode (DES), 330
stream ciphers, 321
subnets, wildcard masking, 254–255
substitution ciphers, 307, 312
SuperScan Version 4, 65
switches, Layer 2 attack mitigation, 534
 CAM table overflow attacks, 545
 LAN storm suppression, 558, 561
MAC address spoofing attacks, 547
port security feature, 548–555
RSPAN feature, 556–557
SPAN feature, 555
STP manipulation, 538–545
VLAN attacks, 535–538
switchport port-security aging command, 552–553
switchport port-security command, 550
switchport port-security mac-address command, 551–552
switchport port-security violation command, 550–551
symmetric encryption, 318–319, 327
 3DES, 332–333
 AES
 availability in Cisco product line, 334
 DES
 CBC mode, 329
 ECB mode, 329
 security guidelines, 331
 stream cipher mode, 330
 key lengths, 328–329
 RC algorithms, 335
 Rijndael cipher, 333
 SEAL, 334
symmetric peer crypto ACLs, configuring, 410–411
SYN flooding, 52–53
syslog, 190
Cisco IOS IPS, monitoring, 481
 enabling on Cisco routers, 193-195
 monitoring with Cisco Security MARS, 191-193
system hardening, 494
T

TACACS+, 160
and RADIUS, 160–161
configuring on Cisco routers, 172-174
troubleshooting, 182–185
target access security (SANs), 521–522
targeted attacks, 6
TCP (Transmission Control Protocol)
sequence prediction, 36–37
three-way handshake, 35
TCP session hijacking, 39
TCP SYN flood attacks, 52–53
technical policies, 72–73
technical security controls, 15
telephone policies, 73
Telnet traffic, filtering, 259
TEMPEST, 42
The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptograph (Singh, 2000), 306
thin-client mode (SSL VPN), 375
Thompson, Ken, 27
threats, 24
blended threats, 91
to network security
external threats, 4-8
internal threats, 4
to VoIP security, 528-529
three-way handshake, 35
time and date features, configuring with Cisco SDM, 205–206, 208
TLS (Transport Layer Security), 326
toll fraud, 530
top secret data, 11
tort laws, 19

training
versus awareness, 89–90
versus education, 90
transform sets, configuring, 407–408
transport mode, 391
transport technologies, Fibre Channel
VSANs, 519-521
WWNs, 518
transposition ciphers, 308, 312
trap receivers, configuring with Cisco SDM, 199–200
Trojan horses, 500
troubleshooting
AAA, 152–153
site-to-site IPsec VPNs, 432
TACACS+, 182–185
true negatives, 465
true positives, 465
trunking, mitigating VLAN hopping attacks, 536
trust exploits, 45–47
trusted code, 494
trusted path, 494
trusted recovery as operations security principle, 61–62
trustworthiness of encryption algorithms, 322
tunnel mode, 391
tunneling, 371
Turing, Alan, 316
two–factor authentication, 32
two-man control principle, 61

U

U.S-E.U. Safe Harbor principles, 23
unclassified data, 11
VPNs, 599

unnecessary services, disabling on Cisco routers, 209–212
unsupported rules, 266
USA PATRIOT (Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism) Act, 23
user setup, configuring in Cisco Secure ACS, 171
user-mode rootkits, 499

V

V3PN (Voice and Video Enabled VPN), 378
verifying ACL configuration, 263–264
Cisco IOS IPS configuration, 483-485
data integrity, importance of, 18
site-to-site IPsec VPN configuration, 414
Vernam, Gilbert, 308
VFR (Virtual Fragment Reassembly), 476
videoconference stations, 526
Viginère cipher, 306-307
virtual logins, configuring enhanced support on Cisco routers, 131–135
viruses, 500
vishing, 529
VLAN attacks, mitigating, 535–538
VLANs, defending against VoIP hacking, 530
voice security, VoIP, 523
voice VLANs, defending against VoIP hacking, 530
VoIP, 523
business drivers, 524
hacking, defending against
with endpoints, 533
with firewalls, 531
with voice VLANs, 530
with VPNs, 532
packet voice network components, 525
protocols, 526, 528
SIP, vulnerabilities to, 530
threats to security, 528-529

VPNs, 371
benefits of, 373
Cisco IOS Software, supported features, 378
Cisco VPN product family, 376–380
hardware acceleration modules, 381
encryption, 371
IPsec, 382
advantages of, 386
AH, 388
authentication, 385
Diffie-Hellman key exchange, 384
encryption algorithms, 384
ESP, 390
framework, selecting, 392
HMAC algorithms, 385
IKE, 394–398
transport mode, 391
tunnel mode, 391
remote-access, 373-375
clients, 380
security policies, 73
site-to-site, 373
site-to-site IPsec
building, 400
configuring, 401–404, 418-430
troubleshooting, 432
VoIP hacking, defending against, 532
VSANs (virtual storage area networks), 519-521
vty access, restricting, 259
vulnerabilities, 24–25
 of SIP, 530
to network security, 93

W

WarGames (1983), 26
warm sites, 68
websites, NIST, 325
wildcard masking, 254
 for single IP address, 256
 for subnets, 254–255
Windows operating system, installing
 Cisco Secure ACS, 157–158, 162
Windows XP operating system, runas
 option, 495
wireless communications policies, 74
Wireshark, 446
wiretapping, 41
wizards,
 Cisco SDM, 141–142
 Security Audit Wizard, 213–215
worms, 500
 SQL Slammer worm, 93
wrong assumptions, avoiding, 83–85
WWNs (world wide names), 518

X-Y-Z

X.509, 358
X.509v3, 358
XOR operation, 313
zone pairs, creating with SDM, 294–295
zoned-based policy firewalls, 278-280
 configuring, 280–284
 with Basic Firewall Wizard,
 284–290
 with SDM, 290–298
zoning, 518, 522