About the Authors

Sam Halabi is one of the industry’s foremost experts in the Internet Service Provider line of business. Mr. Halabi was recently Vice President of Marketing at an IP networking startup and has spent many years at Cisco Systems where he led the IP Carrier Marketing effort. Mr. Halabi is an expert in complex routing protocols and has specialized in the design of large-scale IP networks.

An active member in the industry, Halabi serves as a board member of the Optical Internetworking Forum and a member of the MPLS Forum.

Danny McPherson is currently Director of Architecture, Office of the CTO, at Amber Networks. Formerly, he held technical leadership positions with four Internet service providers (Qwest, GTE Internetworking, Genuity, and internetMCI), where he was responsible for network and product architecture, routing design, peering, and other business- and policy-related issues. McPherson is an active contributor to the Internet Engineering Task Force (IETF), as well as several other standards bodies. He is an acknowledged expert in Internet architecture and routing protocols.

About the Technical Reviewers

Alexei Roudnev is currently a Software System Engineer for Genesys Labs/Alcatel group in, San Francisco, California. He worked for 10 years as a Network Engineer at Relcom Network, one of the creators of the Russian Internet, in Moscow, Russia. Alexei was also a UNIX based systems Software Developer in Moscow for 9 years.

Abha Ahuja is currently a Senior Network Engineer at Internap Network Services. She works on network design, architecture and operational issues. Previous to Internap, she worked at Merit Network, a leading network research institution where she worked on the Route Server Next Generation project, a nationwide deployment of routing servers at exchange points, and the Internet Performance Measurement and Analysis (IPMA) project. She continues to play an active role in the Internet community and pursues research interests including inter-domain routing behavior and protocols, network operations and performance statistics, and network security. She is a skilled network engineer, certified troublemaker and a classic Scorpio.
Dedications

Danny McPherson: To my wife, Heather, and my two daughters, Kortney and Ashli. You are my infrastructure.
Acknowledgments

This book would not have been possible without the help of many people whose comments and suggestions significantly improved the end result. First, we would like to thank Abha Ahuja, Shane Amante, Johnson Liu, Alvaro Retana, and Alexander Rudenev for their exceptional technical review of this manuscript. We would also like to explicitly acknowledge Henk Smit, Bruce Cole, Enke Chen, Srihari Ramachandra, Rex Fernando, Satinder Singh, and Ravi Chandra, as well as the entire Cisco “BGP Coders” group, and everyone else who provided any amount of input for the second edition. Also, we would like to acknowledge the overwhelming support and patience of Danny McPherson’s present employer, Amber Networks, and previous employer, Qwest Communications, both of which had a significant impact on the value of the content. Finally, we would like to thank Christopher Cleveland, Tracy Hughes, Marc Fowler, Gayle Johnson, and the rest of the Cisco Press folks for keeping us on track and getting the book published.
Contents at a Glance

Part I The Contemporary Internet
- Chapter 1 Evolution of the Internet
- Chapter 2 ISP Services and Characteristics
- Chapter 3 IP Addressing and Allocation Techniques

Part II Routing Protocol Basics
- Chapter 4 Interdomain Routing Basics
- Chapter 5 Border Gateway Protocol Version 4

Part III Effective Internet Routing Designs
- Chapter 6 Tuning BGP Capabilities
- Chapter 7 Redundancy, Symmetry, and Load Balancing
- Chapter 8 Controlling Routing Inside the Autonomous System
- Chapter 9 Controlling Large-Scale Autonomous Systems
- Chapter 10 Designing Stable Internets

Part IV Internet Routing Device Configuration
- Chapter 11 Configuring Basic BGP Functions and Attributes
- Chapter 12 Configuring Effective Internet Routing Policies

Part V Appendixes
- A BGP Command Reference
- B References for Further Study
- C BGP Outbound Route Filter (ORF)
- D Multiprotocol BGP (MBGP)
Contents

Part I The Contemporary Internet 3

Chapter 1 Evolution of the Internet 5

- Origins and Recent History of the Internet 5
 - From ARPANET to NSFNET 7
 - The Internet Today 8
 - NSFNET Solicitations 10

- Network Access Points 10
 - What Is a NAP? 11
 - NAP Manager Solicitation 11
 - Federal Internet eXchange 12
 - Commercial Internet eXchange 12
 - Current Physical Configurations at the NAP 13
 - An Alternative to NAPs: Direct Interconnections 14

- Routing Arbiter Project 14

- The Very High-Speed Backbone Network Service 18

- Transitioning the Regional Networks from the NSFNET 21

- NSF Solicits NIS Managers 22
 - Network Information Services 23
 - Creation of the InterNIC 23
 - Directory and Database Services 23
 - Registration Services 25
 - NIC Support Services 25

- Other Internet Registries 25
 - ARIN 26
 - RIPE NCC 26
 - APNIC 27

- Internet Routing Registries 27

- The Once and Future Internet 28
 - Next-Generation Internet Initiative 28
 - Internet2 30
 - Abilene 31

- Looking Ahead 32

- Frequently Asked Questions 34
References 35

Chapter 2 ISP Services and Characteristics 37

ISP Services 37
 Dedicated Internet Access 37
 Frame Relay and ATM Internet Access 38
 Dialup Services 39
 Digital Subscriber Line 40
 Cable Modems 41
 Dedicated Hosting Services 41
 Other ISP Services 42

ISP Service Pricing, Service-Level Agreements, and Technical Characteristics 42
 ISP Service Pricing 42
 Service-Level Agreements 43
 ISP Backbone Selection Criteria 43
 Demarcation Point 50

Looking Ahead 53

Frequently Asked Questions 54

Chapter 3 IP Addressing and Allocation Techniques 57

History of Internet Addressing 57
 Basic IP Addressing 57
 Basic IP Subnetting 60
 VLSMs 62

IP Address Space Depletion 65
 IP Address Allocation 66
 Classless Interdomain Routing 67
 Private Addressing and Network Address Translation 79
 IP Version 6 82

Looking Ahead 86

Frequently Asked Questions 87

References 89

Part II Routing Protocol Basics 91

Chapter 4 Interdomain Routing Basics 93

Overview of Routers and Routing 93
 Basic Routing Example 94

Routing Protocol Concepts 96
Distance Vector Routing Protocols 96
Link-State Routing Protocols 99

Segregating the World into Autonomous Systems 101
Static Routing, Default Routing, and Dynamic Routing 101
Autonomous Systems 102

Looking Ahead 107
Frequently Asked Questions 108
References 109

Chapter 5 Border Gateway Protocol Version 4 111

How BGP Works 112
BGP Message Header Format 115
BGP Neighbor Negotiation 116
Finite State Machine Perspective 118
NOTIFICATION Message 120
KEEPALIVE Message 122
UPDATE Message and Routing Information 122

BGP Capabilities Negotiation 127
Multiprotocol Extensions for BGP 128
TCP MD5 Signature Option 129

Looking Ahead 131
Frequently Asked Questions 132
References 133

Part III Effective Internet Routing Designs 135

Chapter 6 Chapter Tuning BGP Capabilities 137

Building Peer Sessions 137
Physical Versus Logical Connections 139
Obtaining an IP Address 140
Authenticating the BGP Session 140
BGP Continuity Inside an AS 141
Synchronization Within an AS 142

Sources of Routing Updates 144
Injecting Information Dynamically into BGP 144
Injecting Information Statically into BGP 147
ORIGIN of Routes 148
An Example of Static Versus Dynamic Routing: Mobile Networks 150
Chapter 10 Designing Stable Internets 287

Route Instabilities on the Internet 287
IGP Instability 287
Faulty Hardware 288
Software Problems 288
Insufficient CPU Power 288
Insufficient Memory 289
Network Upgrades and Routine Maintenance 289
Human Error 290
Link Congestion 290

BGP Stability Features 290
Controlling Route and Cache Invalidation 291
BGP Route Refresh 291
Route Dampening 292

Looking Ahead 296

Frequently Asked Questions 297

Part IV Internet Routing Device Configuration 299

Chapter 11 Configuring Basic BGP Functions and Attributes 301

Building Peering Sessions 301

Route Filtering and Attribute Manipulation 308
BGP Route Maps 308
Prefix Lists 310
Identifying and Filtering Routes Based on the NLRI 312
Identifying and Filtering Routes Based on the AS_PATH 315

Peer Groups 316

Sources of Routing Updates 318
Injecting Information Dynamically into BGP 318
Injecting Information Statically into BGP 325

Overlapping Protocols: Backdoors 326
BGP Attributes 328
 The NEXT_HOP Attribute 331
 The AS_PATH Attribute 332
 The LOCAL_PREF Attribute 335
 The MULTI_EXIT_DISC Attribute 337
 The COMMUNITY Attribute 340

BGP-4 Aggregation 342
 Aggregate Only, Suppressing the More-Specific 343
 Aggregate Plus More-Specific Routes 346
 Aggregate with a Subset of the More-Specific Routes 350
 Loss of Information Inside Aggregates 354
 Changing the Aggregate’s Attributes 357
 Forming the Aggregate Based on a Subset of Specific Routes 359

Looking Ahead 361

Chapter 12 Configuring Effective Internet Routing Policies 365

Redundancy, Symmetry, and Load Balancing 365
 Dynamically Learned Defaults 365
 Statically Set Defaults 367
 Multihoming to a Single Provider 370
 Multihoming to Different Providers 384
 Customers of the Same Provider with a Backup Link 388
 Customers of Different Providers with a Backup Link 391

Following Defaults Inside an AS 395
 BGP Policies Conflicting with the Internal Default 398

Policy Routing 411

Route Reflectors 415

Confederations 419

Controlling Route and Cache Invalidation 424
 BGP Soft Reconfiguration 425
 Outbound Soft Reconfiguration 425
 Inbound Soft Reconfiguration 425
 BGP Route Refresh 429

BGP Outbound Request Filter Capability 431

Route Dampening 432

Looking Ahead 435
Part V Appendixes 439

Appendix A BGP Command Reference 441

Appendix B References for Further Study 449

Interesting Organizations 449
Research and Education 449
Miscellaneous 449
Books 450
 TCP/IP-Related Sources 450
 Routing-Related Sources 450
Internet Request For Comments 450

Appendix C BGP Outbound Route Filter (ORF) 455
When to Use BGP ORF 455
Configuration 456
 Enabling the BGP ORF Capability as Send-Mode 456
 Enabling the BGP ORF Capability as Receive-Mode 456
 Ensuring Backward Compatibility of the Old Knobs 457
EXEC Commands 457
 Pushing Out A Prefix List and Receiving a Route Refresh from a Neighbor 457
 Displaying the Prefix List Received from a Neighbor 458
 Displaying Changes to the Neighbor BGP Table 458
Closing Remarks 458

Appendix D Multiprotocol BGP (MBGP) 461
The Motivation Behind the New Command-Line Interface 461
Organizing Command Groups in the New Configuration 462
activate 464
 Old Style 464
 AF Style 464
network 465
 Old Style 465
 AF Style 465
Peer Groups 465
 Old Style 466
 AF Style 466
Route Maps 466
Introduction

The Internet, an upstart academic experiment in the late 1960s, struggles with identity and success today. From the ARPANET to the NSFnet to ANYBODYSNET, the Internet is no longer owned by a single entity; it is owned by anybody who can afford to buy space on it. Tens of millions of users are seeking connectivity, and tens of thousands of companies are feeling left out if they do not tap into the Internet. This has put network designers and administrators under a lot of pressure to keep up with networking and connectivity needs. Understanding networking, and especially routing, has become a necessity.

Some people are surprised when networks fail and melt down, but others are surprised when they don’t. This seems to be the case because there is so little useful information out there. Much of the information on routing that has been available to designers and administrators up until now is doubly frustrating: The information makes you think you know how to build your network—until you try, and find out that you don’t. The first edition of this book addressed real routing issues, using real scenarios, in a comprehensive and accessible way.

In addition to providing a thorough update to the original material, this edition introduces recent enhancements to the BGP protocol, discusses changes surrounding registration and allocation of Internet numbers, and provides additional information on research and educational networks.

Objectives

The purpose of this book is to make you an expert on integrating your network into the global Internet. By presenting practical addressing, routing, and connectivity issues both conceptually and in the context of practical scenarios, this book aims to foster your understanding of routing so that you can plan and implement major network designs in an objective and informed way. Whether you are a customer or a provider (or both) of Internet connectivity, this book anticipates and addresses the routing challenges facing your network.

Audience

This book is intended for any organization that might need to tap into the Internet. Whether you are becoming a service provider or are connecting to one, you will find all you need to integrate your network. The perspectives of network administrators, integrators, and architects are considered throughout this book. Even though this book addresses different levels of expertise, it progresses logically from the simplest to the most challenging concepts and problems, and its common denominator is straightforward, practical scenarios to which anyone can relate. No major background in routing or TCP/IP is required. Any basic or background knowledge needed to understand routing is developed as needed in text discussions, rather than assumed as part of the reader’s repertoire.

Organization

The book is organized into four parts:

- **Part I: The Contemporary Internet**—Chapters 1 through 3 cover essential introductory aspects of the contemporary Internet with respect to its structure, service providers, and addressing. Even if you are already familiar with the general structure of the Internet, you are encouraged to read the portions of Chapter 1 concerning Network Access Points, the Routing Arbiter Project, and Network Information Services. The pressures that precipitated these components of the Internet have continuing practical implications for routing design problems faced by administrators. Chapter 2 provides valuable criteria by which to evaluate Internet service providers. If you represent such a provider, or are already a customer of one, some of the information might be familiar to you already. Chapter 3 discusses classless interdomain rout-
ing (CIDR), VLSM (variable-length subnet masks), IPv6, and other aspects of Internet addressing.

- **Part II: Routing Protocol Basics**—Chapters 4 and 5 cover the basics: properties of link-state and distance vector routing protocols and why interdomain routing protocols are needed and how they work. These topics are covered both generally and in the specific context of BGP (Border Gateway Protocol)—the de facto standard interdomain routing protocol used in the Internet today. BGP’s particular capabilities and attributes are thoroughly introduced.

- **Part III: Effective Internet Routing Designs**—Chapters 6 through 10 delve into the practical, design-oriented applications of BGP. The BGP attributes introduced in Part II are shown in action, in a variety of representative network scenarios. BGP’s attributes are put to work in implementing design goals such as redundancy, symmetry, and load balancing. The challenges of making intradomain and interdomain routing work in harmony, managing growing or already-large systems, and maintaining stability are addressed.

- **Part IV: Internet Routing Device Configuration**—Chapters 11 and 12 contain numerous code examples of BGP’s attributes and of various routing policies. The code examples will make the most sense to you after you have read the earlier chapters, because many of them address multiple concepts and design goals. So that you can juxtapose textual discussions from earlier chapters with the code examples in Chapters 11 and 12, pointers called “Configuration Examples” appear in the earlier chapters. When you see one, you might want to fast-forward to the referenced page to see a configuration example of the attribute or policy being discussed.

Finally, several appendixes provide additional references for further reading, an up-to-date Cisco IOS™ BGP command reference, and information regarding IOS™ modifications intended to provide a more intuitive BGP command-line interface.

Approach

It is very hard to write about technical information in an accessible manner. Information that is stripped of too much technical detail loses its meaning, but complete and precise technical detail can overwhelm readers and obscure concepts. This book introduces technical detail gradually and in the context of practical scenarios whenever possible. The most heavily technical information—configuration examples in the Cisco IOS language—is withheld until the final two chapters of this book so that it is thoroughly grounded in the concepts and sample topologies that precede it.

Although your ultimate goal is to design and implement routing strategies, it is critical to grasp concepts and principles before applying them to your particular network. This book balances conceptual and practical perspectives by following a logical, gradual progression from general to specific, and from concepts to implementation. Even in chapters and sections that necessarily take a largely descriptive approach, hands-on interests are addressed through pointers to configuration examples, frequently asked questions, and scenario-based explanations.

The scenario-based approach is an especially important component of this book: it utilizes representative network topologies as a basis for illustrating almost every protocol attribute and routing policy discussed. Even though you might not see your exact network situation illustrated, the scenario is specific enough to facilitate learning by example, and general enough that you can extrapolate how the concepts illustrated apply to your situation.
Features and Text Conventions

This book works hard not to withhold protocol details and design-oriented information, while at the same time recognizing that building general and conceptual understanding necessarily comes first. Two features are included to help emphasize what is practical and design-oriented as underlying concepts are developed:

- Pointers to configuration examples—Located close to pertinent text discussions, these references point forward to places in Chapters 11 and 12 where related configuration examples can be found.
- Frequently Asked Questions—Located at the end of every chapter, these questions anticipate practical and design-oriented questions you might have, for your particular network, after having read the chapter.

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate optional elements.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([{ }]) indicate a required choice within n optional elements.
- Boldface indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).
- Italics indicates arguments for which you supply actual values.

Icons Used in This Book

[Diagram of various network devices and icons]
Throughout the book, you will see the following icons used for peripherals and other devices.
Throughout the book, you will see the following icons used for networks and network connections.

- **Line**: Ethernet
- **Line**: serial
- **Line**: switched serial
- **Frame Relay virtual circuit**
- **Token ring**
- **FDDI**
- **Network cloud**
This chapter covers the following key topics:

- **Overview of routers and routing** — Provides a brief consideration of basic routing and interior gateway protocols (IGPs) as a point of contrast for the next chapter’s more in-depth deliberation of exterior gateway protocols.

- **Routing protocol concepts** — This section provides an overview of the distance vector and link-state distributed routing algorithms.

- **Segregating the world into autonomous systems** — An autonomous system is a set of routers that shares the same routing policies. Various configurations for autonomous systems are possible, depending on how many exit points to outside networks are desired and whether the system should permit transit traffic.
Interdomain Routing Basics

The Internet is a conglomeration of autonomous systems that define the administrative authority and the routing policies of different organizations. Autonomous systems are made up of routers that run Interior Gateway Protocols (IGPs) such as Routing Information Protocol (RIP), Enhanced Interior Gateway Routing Protocol (EIGRP), Open Shortest Path First (OSPF), and Intermediate System-to-Intermediate System (IS-IS) within their boundaries and interconnect via an Exterior Gateway Protocol (EGP). The current Internet de facto standard EGP is the Border Gateway Protocol Version 4 (BGP-4), defined in RFC 17711.

Overview of Routers and Routing

Routers are devices that direct traffic between hosts. They build routing tables that contain collected information on all the best paths to all the destinations that they know how to reach. The steps for basic routing are as follows:

Step 1 Routers run programs referred to as routing protocols to both transmit and receive route information to and from other routers in the network.

Step 2 Routers use this information to populate routing tables that are associated with each particular routing protocol.

Step 3 Routers scan the routing tables from the different routing protocols (if more than one routing protocol is running) and select the best path(s) to each destination.

Step 4 Routers associate with that destination the next-hop device’s attached data link layer address and the local outgoing interface to be used when forwarding packets to the destination. Note that the next-hop device could be another router, or perhaps even the destination host.

Step 5 The next-hop device’s forwarding information (data link layer address plus outgoing interface) is placed in the router’s forwarding table.

Step 6 When a router receives a packet, the router examines the packet’s header to determine the destination address.
Step 7 The router consults the forwarding table to obtain the outgoing interface and next-hop address to reach the destination.

Step 8 The router performs any additional functions required (such as IP TTL decrement or manipulating IP TOS settings) and then forwards the packet on to the appropriate device.

Step 9 This continues until the destination host is reached. This behavior reflects the hop-by-hop routing paradigm that’s generally used in packet-switching networks.

EGPs, such as BGP, were introduced because IGPs do not scale well in networks that go beyond the enterprise level, with thousands of nodes and hundreds of thousands of routes. IGPs were never intended to be used for this purpose. This chapter touches on basic IGP functionality.

Basic Routing Example

Figure 4-1 describes three routers—RTA, RTB, and RTC—connecting three local area networks—192.10.1.0, 192.10.5.0, and 192.10.6.0—via serial links. Each serial link is represented by its own network number, which results in three additional networks, 192.10.2.0, 192.10.3.0, and 192.10.4.0. Each network has a metric associated with it, indicating the level of overhead (cost) of transmitting traffic on that particular link. The link between RTA and RTB, for example, has a cost of 2,000, much higher than the cost of 60 of the link between RTA and RTC. In practice, the link between RTA and RTB might be a 56 Kbps link with much larger delays than the T1 link between RTA and RTC and the T1 link between RTC and RTB combined.
Routers RTA, RTB, and RTC would exchange network information via some IGP and build their respective IP routing tables. Figure 4-1 shows examples of RTA’s IP routing table for two different scenarios; the routers are exchanging routing information via RIP in one scenario and OSPF in another.
As an example of how traffic is passed between end stations, if host 192.10.1.2 were trying to reach host 192.10.6.2, it would use its local manually installed default route to first send the traffic to RTA. RTA would look in its IP routing table for any network that matches this destination and would find that network 192.10.6.0 is reachable via next-hop 192.10.3.2 (RTC) on serial line 2 (S2). RTC would receive the traffic and would try to look for the destination in its IP routing table (not shown). RTC would discover that the host is directly connected to its Ethernet 0 interface (E0) and would send the traffic to 192.10.6.2.

In this example, the routing is the same whether RTA is using the RIP or OSPF scenario. RIP and OSPF, however, fall into different categories of IGP protocols—distance vector protocols and link-state protocols, respectively. For a different routing example in Figure 4-1, the results might be different depending on whether you are looking at the RIP or OSPF scenario. It is useful at this point to consider characteristics of both IGP protocol categories to see how protocols generally have evolved to meet increasingly sophisticated routing demands.

Routing Protocol Concepts

Generally speaking, most routing protocols used today are based on one of two types of distributed routing algorithms: link-state or distance vector. In the next few sections, we’ll discuss the different properties of distance vector and link-state routing algorithms.

Distance Vector Routing Protocols

Distance vector protocols are sometimes referred to as Bellman-Ford protocols, named after the person who invented the algorithm used for calculating the shortest paths and for the people who first described a distributed use of the algorithm. The term distance vector is derived from the fact that the protocol includes a vector (list) of distances (hop counts or other metrics) associated with each destination prefix routing message.

Distance vector routing protocols, such as Routing Information Protocol (RIP), utilize a distributed computation approach to calculating the route to each destination prefix. In other words, distance vector protocols require that each node separately calculate the best path (output link) to each destination prefix.

After selecting the best path, a router then sends distance vectors to its neighbors, notifying them of the reachability of each destination prefix and of the corresponding metrics associated with the path it has selected to reach the prefix. In parallel, its neighbors also calculate the best path to each available destination and then notify their neighbors of the available path (and associated metrics) they’ve selected to reach the destination. Upon the receipt of messages from neighbors detailing the destination and associated metrics that the neighbor has selected, the router might determine that a better path exists via an alternative neighbor. The router will again notify its neighbors of its selected paths (and associated
Routing Protocol Concepts

metrics) to reach each destination. This cycle continues until all the routers have converged upon a common understanding of the best paths to reach each destination prefix.

Initial specifications of distance vector routing protocols such as RIP Version 1 (RIP-1) had several drawbacks. For example, hop count was the only metric RIP-1 used to select a path. This imposed several limitations. Consider, for example, the RTA routing tables shown in Figure 4-1. One table represents routing information considered when using RIP, and the other when using OSPF. (OSPF is a link-state routing protocol that will be discussed in more detail in the following sections.)

When using RIP-1, RTA would select the direct link between RTA and RTB to reach network 192.10.5.0. RTA prefers this link because the direct path requires just one hop via the RTB path versus two hops via the RTC-RTB path. However, RTA has no knowledge that the RTA-RTB link is actually a very low-capacity, high-latency connection and that using the RTC-RTB path would provide a better level of service.

On the other hand, when using OSPF and metrics other than hop count alone for path selection, RTA will realize that the path to RTB via RTC (cost: 60 + 60 = 120; 2 hops) is actually more optimal than the direct path (cost: 2000; 1 hop).

Another issue with hop counts is the count to infinity restriction. Traditional distance vector protocols (for example, RIP-1) have a finite limit of hops, often 15, after which a route is considered unreachable. This would restrict the propagation of routing updates and would cause problems for large networks (those with more than 15 nodes in a given path). The reliance on hop counts is one deficiency of distance vector protocols, although newer distance vector protocols (that is, RIP-2 and EIGRP) are not constrained as such.

Another deficiency is the way that the routing information is exchanged. Traditional distance vector protocols work on the concept that routers exchange all the IP network numbers they can reach via periodic exchange of distance vector broadcasts—broadcasts that are sent when a “refresh timer” associated with the message exchange expires. Because of this, if the refresh timer expires and a fresh set of routing information is broadcast to your neighbors, the timer is reset, and no new information is sent until the timer expires again. Now, consider what would happen if a link or path became unavailable just after a refresh occurred. Propagation of the path failure would be suppressed until the refresh timer expired, thereby slowing convergence considerably.

Fortunately, newer distance vector protocols, such as EIGRP and RIP-2, introduce the concept of triggered updates. Triggered updates propagate failures as soon as they occur, speeding convergence considerably.

As you might have realized, in large networks, or even small networks with a large number of destination prefixes, periodic exchange of the routing table between neighbors might become very large and very difficult to maintain, contributing to slower convergence. Also, the amount of CPU and link overhead consumed by periodic advertisement of routing information can become quite large. Another property that newer distance vector protocols
have adopted is to introduce reliability to the transmission of the distance vectors between
neighbors, eliminating the need to periodically readvertise the entire routing table.

Convergence refers to the point in time at which the entire network becomes updated to the
fact that a particular route has appeared, disappeared, or changed. Traditional distance
vector protocols worked on the basis of periodic updates and hold-down timers: If a route
is not received in a certain amount of time, the route goes into a hold-down state and gets
aged out of the routing table. The hold-down and aging process translates into minutes in
convergence time before the whole network detects that a route has disappeared. The delay
between a route’s becoming unavailable and its aging out of the routing tables can result in
temporary forwarding loops or black holes.

Another issue in some distance vector protocols (for example, RIP) is that when an active
route disappears, but the same route reappears with a higher metric (presumably emanating
from another router, indicating a possible “good” alternative path), the route is still put into
a hold-down state. Thus, the amount of time for the entire network to converge is still
increased.

Another major drawback of first-generation distance vector protocols is their classful
nature and their lack of support for VLSM or CIDR. These distance vector protocols do not
exchange mask information in their routing updates and are therefore incapable of
supporting these technologies. In RIP-1, a router that receives a routing update on a certain
interface will apply to this update its locally defined subnet mask. IGRP does the same thing
as RIP-1 but falls back to Class A, B, and C network masks if a portion of the transmitted
network address does not match the local network address. This would lead to confusion
(in case the interface belongs to a network that is variably subnetted) and a
misinterpretation of the received routing update. Newer distance vector protocols, such as
RIP Version 2 (RIP-2) and EIGRP, overcome the aforementioned shortcomings.

Several modifications have been made that alleviate deficiencies associated with traditional
distance vector routing protocol behaviors. For example, RIP-2 and EIGRP support VLSM
and CIDR. Also, IGRP and EIGRP have the capability to factor in composite metrics used
to represent link characteristics along a path (such as bandwidth, utilization, delay, MTU,
and so forth), which allows them to calculate more optimal paths than using a hop count
alone.

The simplicity and maturity of distance vector protocols has led to their popularity. The
primary drawback of traditional implementation of distance vector protocols is slow
convergence, a property that can be a catalyst for introducing forwarding loops and/or
black-holing traffic during topological changes. However, newer distance vector
protocols—most notably, EIGRP—actually converge quite well.

This section wouldn’t be complete without mentioning that BGP falls into the distance
vector category. In addition to the standard distance vector properties, BGP employs an
additional mechanism referred to as the path vector, used to avoid the count to infinity
problem previously discussed. Essentially, the path vector contains a list of routing domains
(AS numbers) through which the route has traversed. If a domain receives a route for which its domain identifier is already listed in the path, the route is ignored. This path information provides a mechanism that allows routing loops to be pruned. It can also be used to apply domain-based policies. This path attribute, and many other path attributes, are discussed in detail in the following chapters.

Link-State Routing Protocols

Link-state routing protocols, such as Open Shortest Path First (OSPF)\(^4\) and Intermediate System-to-Intermediate System (IS-IS)\(^5\), utilize a replicated distributed database model and are considered to be more-complex routing protocols. Link-state protocols work on the basis that routers exchange information elements, called *link states*, which carry information about links and nodes in the routing domain. This means that routers running link-state protocols do not exchange routing tables as distance vector protocols do. Rather, they exchange information about adjacent neighbors and networks and include metric information associated with the connection.

One way to view link-state routing protocols is as a jigsaw puzzle. Each router in the network generates a piece of the puzzle (link state) that describes itself and where it connects to adjacent puzzle pieces. It also provides a list of the metrics corresponding to the connection with each piece of the puzzle. The local router’s piece of the puzzle is then reliably distributed throughout the network, router by router, via a flooding mechanism, until all nodes in the domain have received a copy of the puzzle piece. When distribution is complete, every router in the network has a copy of every piece of the puzzle and stores the puzzle pieces in what’s referred to as a *link-state database*. Each router then autonomously constructs the entire puzzle, the result of which is an identical copy of the entire puzzle on each router in the network.

Then, by applying the SPF (shortest path first) algorithm (most commonly, the Dijkstra Algorithm) to the puzzle, each router calculates a tree of shortest paths to each destination, placing itself at the root.

Following are some of the benefits that link-state protocols provide:

- **No hop count**—There are no limits on the number of hops a route can take. Link-state protocols work on the basis of link metrics rather than hop counts.

As an example of a link-state protocol’s reliance on metrics rather than hop count, turn again to the RTA routing tables shown in Figure 4-1. In the OSPF case, RTA has picked the optimal path to reach RTB by factoring in the cost of the links. Its routing table lists the next hop of 192.10.3.2 (RTC) to reach 192.10.5.0 (RTB). This is in contrast to the RIP scenario, which resulted in a suboptimal path.
• **Bandwidth representation**—Link bandwidth and delays may be (manually or dynamically) factored in when calculating the shortest path to a certain destination. This leads to better load balancing based on actual link cost rather than hop count.

• **Better convergence**—Link and node changes are immediately flooded into the domain via link-state updates. All routers in the domain will instantly update their routing tables (some similar to triggered updates).

• **Support for VLSM and CIDR**—Link-state protocols exchange mask information as part of the information elements that are flooded into the domain. As a result, networks with variable-length subnet masks can be easily identified.

• **Better hierarchy**—Whereas distance vector networks are flat networks, link-state protocols provide mechanisms to divide the domain into different levels or areas. This hierarchical approach better scopes network instabilities within areas.

Although link-state algorithms have traditionally provided better routing scalability, which allows them to be used in bigger and more complex topologies, they still should be restricted to interior routing. Link-state protocols by themselves cannot provide a global connectivity solution required for Internet interdomain routing. In very large networks and in case of route oscillation caused by link instabilities, link-state retransmission and recomputation will become too large for any single router to handle.

Although a more detailed discussion of IGPs is beyond the scope of this book, two excellent references that discuss the different link-state and distance vector routing protocols are *Interconnections, Second Edition: Bridges, Routers, Switches and Internetworking Protocols* by Radia Perlman and *OSPF: Anatomy of an Internet Routing Protocol* by John T. Moy.

Most large service providers today use link-state routing protocols for intra-AS routing, primarily because of its fast convergence capabilities. The two most common protocols deployed in this space are OSPF and IS-IS.

Many older service providers have selected IS-IS as their IGP, and some newer providers select OSPF or IS-IS. Initially, it might seem that older networks use IS-IS rather than OSPF because the U.S. Government required support of ISO CLNP by networks in order for the networks to be awarded federal contracts. (Note that IS-IS is capable of carrying both CLNP and IP Network layer information, while OSPF is capable of carrying only IP information.) However, Internet folklore suggests that the driving factor was that IS-IS implementations were much more stable than OSPF implementations when early providers were selecting which routing protocol to use. This stability obviously had a significant impact on which IGP service providers selected.

Today, both IS-IS and OSPF are widely deployed in ISP networks. The maturity and stability of IS-IS has resulted in its remaining deployed in large networks, as well as its being the IGP of choice for some more recently deployed networks.
Segregating the World into Autonomous Systems

Exterior routing protocols were created to control the expansion of routing tables and to provide a more structured view of the Internet by segregating routing domains into separate administrations, called autonomous systems (ASs), which each have their own independent routing policies and unique IGPs.

During the early days of the Internet, an exterior gateway protocol called EGP (not to be confused with Exterior Gateway Protocols in general) was used. The NSFNET used EGP to exchange reachability information between the backbone and the regional networks. Although the use of EGP was widely deployed, its topology restrictions and inefficiency in dealing with routing loops and setting routing policies created a need for a new and more robust protocol. Currently, BGP-4 is the de facto standard for interdomain routing in the Internet.

NOTE

Note that the primary difference between intra-AS and inter-AS routing is that intra-AS routing is usually optimized in accordance with the required technical demands, while inter-AS usually reflects political and business relationships between the networks and companies involved.

Static Routing, Default Routing, and Dynamic Routing

Before introducing and looking at the basic ways in which autonomous systems can be connected to ISPs, we need to establish some basic terminology and concepts of routing:

- **Static routing** refers to routes to destinations being listed manually, or statically, as the name implies, in the router. Network reachability in this case is not dependent on the existence and state of the network itself. Whether a destination is active or not, the static routes remain in the routing table, and traffic is still sent toward the specified destination.

- **Default routing** refers to a “last resort” outlet. Traffic to destinations that is unknown to the router is sent to that default outlet. Default routing is the easiest form of routing for a domain connected to a single exit point.

- **Dynamic routing** refers to routes being learned via an interior or exterior routing protocol. Network reachability is dependent on the existence and state of the network. If a destination is down, the route disappears from the routing table, and traffic is not sent toward that destination.

These three routing approaches are possibilities for all the AS configurations considered in forthcoming sections, but usually there is an optimal approach. Thus, in illustrating different autonomous systems, this chapter considers whether static, dynamic, default, or some combination of these is optimal. This chapter also considers whether interior or
exterior routing protocols are appropriate. However, a more detailed exploration of routing choices for different AS topologies will not be discussed until Chapter 6, “Tuning BGP Capabilities.”

Always remember that static and default routing are not your enemy. The most stable (but sometimes less flexible) configurations are based on static routing. Many people feel that they are not technologically up to date just because they are not running dynamic routing. Trying to force dynamic routing on situations that do not require it is a waste of bandwidth, effort, and money. Recall the KISS principle introduced in the preceding chapter!

Autonomous Systems

An *autonomous system* (AS) is a set of routers that has a single routing policy, that run under a single technical administration, and that commonly utilizes a single IGP (the AS could also be a collection of IGPs working together to provide interior routing). To the outside world, the entire AS is viewed as a single entity. Each AS has an identifying number, which is assigned to it by an Internet Registry, or a service provider in the instance of private ASs. Routing information between ASs is exchanged via an exterior gateway protocol such as BGP-4, as illustrated in Figure 4-2.

![Figure 4-2](image)

What we have gained by segregating the world into administrations is the capability to have one large network (in the sense that the Internet could have been one huge OSPF or IS-IS network) divided into smaller and more manageable networks. These networks, represented as ASs, can now implement their own set of rules and policies that will uniquely distinguish their networks and associated service offerings from other networks. Each AS can now run its own set of IGPs, independent of IGPs in other ASs.
The next few sections discuss potential network configurations with stub (single-homed) networks, multihomed nontransit networks, and multihomed transit networks.

Stub AS

An AS is considered stub when it reaches networks outside its domain via a single exit point. These ASs are also referred to as *single-homed* with respect to other providers. Figure 4-3 illustrates a single-homed or stub AS.

Figure 4-3 Single-Homed (Stub) AS

A single-homed AS does not really have to learn Internet routes from its provider. Because there is a single way out, all traffic can default to the provider. When using this configuration, the provider can use different methods to advertise the customer’s routes to other networks.

One possibility is for the provider to list the customer’s subnets as static entries in its router. The provider would then advertise these static entries toward the Internet via BGP. This method would scale very well if the customer’s routes can be represented by a small set of aggregate routes. When the customer has too many noncontiguous subnets, listing all these subnets via static routes becomes inefficient.

Alternatively, the provider can employ IGPs for advertising the customer’s networks. An IGP can be used between the customer and provider for the customer to advertise its routes. This has all the benefits of dynamic routing where network information and changes are dynamically sent to the provider. This is very uncommon, however, primarily because it doesn’t scale well because customer link instability can result in IGP instabilities.

The third method by which the ISP can learn and advertise the customer’s routes is to use BGP between the customer and the provider. In the stub AS situation, it is hard to get a registered AS number from an IRR because the customer’s routing policies are an extension of the policies of a single provider.
NOTE

RFC 1930\(^9\) provides a set of guidelines for the creation, selection, and registration of autonomous system numbers.

Instead, the provider can give the customer an AS number from the private pool of ASs (65412-65535), assuming that the provider’s routing policies have provisioned support for using private AS space with customers, as described in RFC 2270\(^{10}\).

Quite a few combinations of protocols can be used between the ISP and the customer. Figure 4-4 illustrates some of the possible configurations, using just stub ASs as an example. (The meaning of EBGP and IBGP will be discussed in upcoming sections.) Providers might extend customer routers to their POPs, or providers might extend their routers to the customer’s network. Note that not every situation requires that a customer run BGP with its provider, as mentioned earlier.

Figure 4-4 *Stub ASs: Sample Protocol Implementation Variations*
Multihomed Nontransit AS

An AS is multihomed if it has more than one exit point to the outside world. An AS can be multihomed to a single provider or multiple providers. A nontransit AS does not allow transit traffic to go through it. Transit traffic is any traffic that has a source and destination outside the AS. Figure 4-5 illustrates an AS (AS1) that is nontransit and multihomed to two providers, ISP1 and ISP2.

Figure 4-5 Multihomed Nontransit AS Example

A nontransit AS would only advertise its own routes and would not propagate routes that it learned from other ASs. This ensures that traffic for any destination that does not belong to the AS would not be directed to the AS. In Figure 4-5, AS1 learns about routes n3 and n4 via ISP1 and routes n5 and n6 via ISP2. AS1 advertises only its local routes (n1,n2). It does not pass to ISP2 the routes it learned from ISP1 or to ISP1 the routes it learned from ISP2. This way, AS1 does not open itself to outside traffic, such as ISP1 trying to reach n5 or n6 and ISP2 trying to reach n3 and n4 via AS1. Of course, ISP1 or ISP2 can force its traffic to be directed to AS1 via default or static routing. As a precaution against this, AS1 could filter any traffic coming toward it with a destination not belonging to AS1.

Multihomed nontransit ASs do not really need to run BGP with their providers, although it is recommended and most of the time is required by the provider. As you will see later in this book, running BGP-4 with the providers has many advantages as far as controlling route propagation and filtering.
Multihomed Transit AS

A multihomed transit AS has more than one connection to the outside world and can still be used for transit traffic by other ASs (see Figure 4-6). Transit traffic (relative to the multihomed AS) is any traffic that has an origin and destination that does not belong to the local AS.

Although BGP-4 is an exterior gateway protocol, it can still be used inside an AS as a pipe to exchange BGP updates. BGP connections between routers inside an autonomous system are referred to as Internal BGP (IBGP), whereas BGP connections between routers in separate autonomous systems are referred to as External BGP (EBGP). Routers that are running IBGP are called transit routers when they carry the transit traffic going through the AS.

A transit AS would advertise to one AS routes that it learned from another AS. This way, the transit AS would open itself to traffic that does not belong to it. Multihomed transit ASs are advised to use BGP-4 for their connections to other ASs and to shield their internal nontransit routers from Internet routes. Not all routers inside a domain need to run BGP; internal nontransit routers could run default routing to the BGP routers, which alleviates the number of routes the internal nontransit routers must carry. In most large service provider networks, however, all routers usually carry a full set of BGP routes internally.

Figure 4-6 illustrates a multihomed transit autonomous system, AS1, connected to two different providers, ISP1 and ISP2. AS1 learns routes n3, n4, n5, and n6 from both ISP1 and ISP2 and in turn advertises all that it learns, including its local routes, to ISP1 and ISP2. In this case, ISP1 could use AS1 as a transit AS to reach networks n5 and n6, and ISP2 could use AS1 to reach networks n3 and n4.
Looking Ahead

The Border Gateway Protocol has defined the basis of routing architectures in the Internet. The segregation of networks into autonomous systems has logically defined the administrative and political borders between organizations. Interior Gateway Protocols can now run independently of each other, but networks can still interconnect via BGP to provide global routing.

Chapter 5, “Border Gateway Protocol Version 4,” is an overview of how BGP-4 operates, including detailed discussions of its message header formats.
Frequently Asked Questions

Q — What is the difference between a domain and an autonomous system?

A — Both terms are used to indicate a collection of routers. The domain notation is usually used to indicate a collection of routers running the same routing protocol, such as a RIP domain or an OSPF domain. The AS represents one or more domains under a single administration that have a unified routing policy with other ASs.

Q — My company is connected to an ISP via RIP. Should I use BGP instead?

A — If you are thinking of connecting to multiple providers in the near future, you should start discussing the option of using BGP with your provider. If your traffic needs do not require multiple provider connectivity, you should be okay with what you have.

Q — I have a single IGP connection to a provider. I am thinking of connecting to the same provider in a different location. Can I connect via an IGP, or should I use BGP?

A — This depends on the provider. Some providers will let you connect via IGP in multiple locations; others prefer that you use BGP. Practically speaking, when you use BGP, you will be in better control of your traffic, as you will see in the following chapters.

Q — I thought that BGP is to be used between ASs. I am a bit confused about using BGP inside the AS.

A — Think of BGP inside the AS (IBGP) as a tunnel through which routing information flows. If your AS is a transit AS, IBGP will shield all your internal nontransit routers from the potentially overwhelming number of external routing updates. On the other hand, even if you are not a transit AS, you will realize as this book progresses that IBGP will give you better control in choosing exit and entrance points for your traffic.

Q — You talk about BGP-4, but is anybody still using BGP-1, -2, or -3? What about EGP?

A — BGP-4 is the de facto interdomain routing protocol used on the Internet. EGP and BGP-1, 2, and 3 are obsolete. BGP-4’s support of CIDR, incremental updates, and better filtering and policy-setting capabilities have prompted everybody to shift gears into using this new protocol.

Q — I’m planning to install a second connection to my current Internet service provider. Should I get an AS number from my RIR?

A — Getting an AS number is indeed an option, although you might first see if your provider has provisions in place to support the use of private ASs for customers multihomed to a single provider. In addition, you should check with your RIR to ensure that it will allocate AS numbers to networks connected to only a single provider.
References

Numerics

0/0 (default route), 205
dynamically learned, 206
statically learned, 206–210
100x testbed, 29
1000x testbed, 29

A

Abilene, 31
academic research projects
Abilene, 31
ARPANET, 5–6
NSFNET, 7–8
decommissioned, 8–9
solicitations, 10
RA, 14–15, 17–18
responsibilities, 16
routing engineering team, 17
vBNS, 18–21
Acceptable Usage Policy (NSF), 10
access, network
CPE, 50–51
router collocation, 52
speed limitations, 45
access lists
extended, 309
standard, 310
activate command, 464
Active state, BGP neighbor negotiation, 119
adding entries to prefix lists, 311
addresses, IPv6, 82
FP, 82–83
local-use, 85–86
provider-based unicast, 84
Adj-RIBs-In, 155
Adj-RIBs-Out, 155
administration, IP numbers, 26
administrative distance, 150–152
ADSL (Asymmetric DSL), 40
Advanced Network Services. See ANS
advertise maps, 360
advertisements
0/0 (dynamic defaults), 205
dynamically learned, 206
forcing, 102
statically learned, 206–210
aggregate routes, 75–76
BGP, 113–114
customer routes
nontransit ASs, 105
stub ASs, 103–104
transit ASs, 106–107
dynamic, 144–145
leaks, 145–147
on static routes, 254–255
feasible routes, 129
static, 147–148
AFs
CLI, 461–462
commands, 462
upgrading to new-style, 472
configuring
aggregation, 469–470
redistribution, 468
route maps, 466–467
route reflectors, 469
peer groups, 465–466
aggregate address command, 441
aggregation, 69–70, 177–178, 192–195
advertising, 75
AS_SET option, attribute maps, 357–359
attributes, modifying, 196–197
bit buckets, 72–73
black holes, 73–75
preventing, 76
configuring, 469–470
forming, 359–361
leaking routes, 346–350
loss of information, 196
troubleshooting, 354–357
multi-homing, 71, 74–78
single-homing, 71, 74
suppressing routes, 343–346
AGGREGATOR attribute (BGP), 170–171
agreements
router collocation, 52
SLAs, 43
traffic exchange agreements, 49
allocating
AS numbers, 280–281
IP addresses, 66
IP numbers, 26
IPv6 addresses, 83
ANS (Advanced Network and Services), 7
applications, development of (NGI), 30
applying BGP attributes, 328–331
AS_PATH, 332–335
community, 340–342
local preference, 335–337
MED, 337–340
NEXT_HOP, 331–332
area command, 304
ARIN (American Registry for Internet Numbers), 26, 66
AS numbers, allocating, 280–281
ARPA (Advanced Research Projects Agency), 5
AUP, 7
progression of architecture, 6
AS_PATH attribute, 162–163, 178–180, 332–335
manipulating, 178–180, 227
route filtering, 184, 315–316
stripping private AS number, 176–177
AS_SEQUENCE option, 162
AS_SET option
attribute maps, 357–360
route aggregation, 178
ASs (Autonomous Systems), 27, 101–103
backup routing
links, 231–235
routing loops, 244–250
confederations, 271–272, 419–424
comparing to route reflection, 275
design considerations, 274
disadvantages, 273–274
external routes, 274
route exchange, 274
connections
redundancy, 203–206
symmetry, 210
default routes
conflicts with BGP policies, 244–252
injecting, 395–398
DMZs, 174–175
full-mesh environments, peering, 262–263
hops, 49
IGPs
conflicting BGP policies, 398–411
injecting BGP routes, 241–242
logical connections, 140
multihomed transit, 106
non-BGP default routes, injecting, 242–244
path list, 272
routing policy implementation, 234–235
path trees, 111–112
peering sessions
building, 301–308
groups, configuring, 316–317
groups, restrictions, 318
policy routing, 252
 for combined source/destination traffic, 253–254
 for source traffic, 252–253
 path lists, 234–235
primary routing, routing loops, 244–250
private, 175–177, 334–335
route dampening, 294
route reflection, 261–262
 avoiding loops, 268
 naming conventions, 264–265
 peer groups, 269–271
 redundancy, 265
 topology models, 266–268
routing loops, 250–252
segmenting, 275–276
 confederations, 283
 EBGP mesh, 279–281
 IBGP mesh, 277–279
 private AS numbers, 281–283
stub, 103–104
symmetry, 203
transit traffic, 105
assessing route dampening penalties, 293
assigning process IDs, 303
asymmetry. See symmetry
AT&T, InterNIC directory/database services, 24
ATM (Asynchronous Transfer Mode), 38–39
ATOMIC_AGGREGATE attribute (BGP), 170
attribute maps, 357–359
attributes (BGP), 125–126, 160–161, 328–330
 AGGREGATOR, 170–171
 AS_PATH, 162–163, 332–335
 manipulating, 178–180
 route filtering, 315–316
 stripping private AS number, 176–177
 ATOMIC_AGGREGATE, 170
 COMMUNITY, 171–172, 340–342
 LOCAL_PREF, 168–169, 335–337
loss of aggregate information, 196
manipulating, 180–185, 187–190
MP_REACH_NLRI, 129
MP_UNREACH_NLRI, 129
MULTI_EXIT_DISC (MED), 166–168, 337–340
NEXT_HOP, 163–165, 331–332
ORIGIN, 148–149, 162
 preserving for reflected routes, 267–268
AUP (Acceptable Usage Policy), 7
 authenticating BGP sessions, 140–141
auto-summary command, 441
automatic load balancing, 218–220, 379–381
avoiding
 black holes, 76
 loops during route reflection, 268
B

backbone
 ISPs, 43
 bottlenecks, 44–45
 demarcation points, 50–52
 distance to destination, 49
 physical connections, 44
 traffic exchange agreements, 49–50
 NSFNET, 7–8
 NSPs, 9
 POPs, 9
 vBNS, 18–21
backdoor command, 326
backdoor routes, 150–152, 326–327
backup links, 231–235
multihoming
 multiple providers, 391–395
 single provider, 388–390
backup routers, routing loops, 250–252
backwards compatibility
 MBGP, 128–129
 ORF, 457
bandwidth
 access speeds, 45
 cable modems, 41
Bellman-Ford protocols. See distance vector routing protocols
best routes
 propagating through route reflector, 264–265
 selection process, 158–159
 count-to-infinity, 97
 distance vector routing protocols, 96
best-exit routing, 167, 217
BGP (Border Gateway Protocol)
 aggregation, 344–346
 suppressing routes, 343
AS path tree, 112
AS_PATH attribute, 332–335
 manipulating, 227
 route filtering, 315–316
attributes, 160–161, 328–331
 AGGREGATOR, 170–171
 AS_PATH, 162–163, 178–180
 ATOMIC_AGGREGATE, 170
 COMMUNITY, 171–172, 340–342
 local preference, 168–169
 loss of aggregate information, 196
 manipulating, 180–185, 187–190
 MULTI_EXIT_DISC (MED), 166–168, 337–340
 NEXT_HOP, 163–165
ORIGIN, 162
authentication, 140–141
commands (table), 470–472
COMMUNITY attribute, 340–342
confederations, 271–272
 design considerations, 274
 disadvantages, 273–274
 route exchange, 274
connections
 closing, 113
 maintaining, 114
 decision process, 158–159
distance parameter, static default route configuration, 209
dynamic advertisements, 144–145
 leaks, 145–147
example routing environment, 156–158
Input Policy Engine, 155
KEEPALIVE message, 122
local preference attribute, configuring multiple static routes, 208
LOCAL_PREF attribute, 335–337
messages
 header format, 115–116
 MP_REACH_NLRI attribute, 129
 MP_UNREACH_NLRI attribute, 129
Multipath, load balancing, 378–384
multiprotocol extentions, 128–129
neighbor negotiation, 116–117
 Active state, 119
 Connect state, 119
 Established state, 120
 FSM, 118, 120
 Idle state, 119
 OpenConfirm state, 120
 OpenSent state, 119
neighbors, 112
NEXT_HOP attribute, 331–332
NOTIFICATION message, 120–121
OPEN messages, fields, 116–117
ORF, 431, 455
 backward compatibility, 457
 receive mode, 456
 send mode, 456
 when to use, 455–456
ORIGIN attribute, 148–149, 160, 162
Output Policy Engine, 156
path vector, 98–99
peer groups, 190
 building, 137–138, 301–308
 configuring, 316–317
 predefined, 318
 restrictions, 318
policy routing, conflicts with IGP default routes, 244–252
RIBs, 154–155
route dampening, 292–296, 432–435
 inside AS, 294
 outside AS, 294–296
 parameters, 293
 penalties, 292–293
route maps, 308–310
route reflection, 261–262
 avoiding loops, 268
 peer groups, 269–271
topology models, 266–268
Route Refresh, 291–292, 429–430
routing
 interaction with non-BGP routers, 241–244
 process overview, 152–153
updates, 113–114
running between customer and provider, 103–104
segmentation, 276
 EBGP mesh topologies, 279–281
 IBGP mesh topologies, 277–279
sessions, resetting, 308
soft reconfiguration, 291, 425
 inbound, 426–429
speakers, 112
static route injection, 147–148
suppress maps, 351–353
trees, 111
unsuppress maps, 354

UPDATE messages, PATH attribute, 122–127
withdrawn routes, 123–124
See also MBGP
bog always-compare-med command, 441
bog bestpath as-path ignore command, 441
bog bestpath med-confed command, 441
bog bestpath missing-as-worst command, 442
bog client-to-client reflection command, 442
bog cluster-id command, 442
bog confederation identifier command, 442
bog confederation peers command, 442
bog dampening command, 442
bog default local-preference command, 442
bog deterministic med command, 442
bog fast-external-fallback command, 442
BGP Identifier field (OPEN messages), 117
bog log-neighbor-changes command, 442
BGP-4, Capabilities Negotiation, 127–128
BGP-4+, See MBGP
bill consolidation, ISPs, 43
bit buckets, 72–73
black holes, 73, 75–76
bottlenecks, ISPs, 44–45
broadcasts, distance vector, 97
building
 aggregates, 359–361
 BGP peering sessions, 137–138, 301–308
 regular expressions, 188–190

C

cable modems, 41
caching source/destination IP addresses, 257
calculating shortest paths, 99
Capabilities (BGP)
 Negotiation, 127–128
 ORF, 431
 Route Refresh, 429–430
charts, converting CIDR to dotted decimal notation, 305

CIDR (classless interdomain routing), 65–69, 123, 192–195
 aggregation, 69–71
 bit buckets, 72–73
 black holes, 73, 75–76
 multi-homing, 71, 74–78
 single-homing, 71, 74

conversion chart, 305

longest match routing, 71–72

CIX (Commercial Internet eXchange), 8, 11–12

classful IP addressing, 58
 Class A, 59
 Class B, 59
 Class C, 59–60
 allocation, 66
 Class D addressing, 60
 Class E addressing, 60
 natural masks, 61
 subnetting, 60–62
 VLSM, 62–64

clear ip bgp command, 442

commands
 activate, 464
 aggregate-address, 441
 area, 304
 auto-summary, 441
 backdoor, 326
 BGP (table), 470–472
 bgp always-compare-med, 441
 bgp bestpath as-path ignore, 441
 bgp bestpath med-confed, 441
 bgp bestpath missing-as-worst, 442
 interface type, 303
 inverse mask, 304
 ip classless, 304
 ip subnet-zero, 303
 match, 309
 maximum-paths, 220
 MBGP, 462
 neighbor, 304
 network, 303, 323, 465
 no auto-summary, 304
 no synchronization, 304
 passive-interface type number, 320
 redistribute, 320
 remote-as, 304
 router configuration
 router process, 303
 set, 309
 update-source interface, 304

commercialization of Internet, 28

community approach, routing policy implementation, 233–234

comparing
 EBGP and IBGP, 138
 inter-AS and intra-AS routing, 101
 route reflection
 physical and logical redundancy, 265
 with confederations, 275
standard and extended access lists, 309
static and dynamic injection, 150
static and policy routing, 252
confederations, 271–272
AS segmentation, 283
comparing to route reflections, 275
configuring, 419–424
design considerations, 274
disadvantages, 273–274
external routes, 274
Internet connectivity, 283
route exchange, 274
configuring
AFs
aggregation, 469–470
redistribution, 468
route reflectors, 469
confederations, 419–424
default routes
dynamic, 205–206
static, 206–210
MBGP, peer groups, 465–466
ORF
backward compatibility, 457
receive mode, 456
send mode, 456
peer groups, 316–318
prefix lists, 310–312
route dampening, 433–435
route filtering, prefixes, 311–312
route maps, 466–467
route reflectors, 415–419
static routers for dynamic routing, 254–255
congestion, effect on route stability, 290
Connect state, BGP neighbor negotiation, 119
connections
ASs, symmetry, 210
ATM, 38–39
BGP
Active state, 119
closing, 113
Connect state, 119
Established state, 120
Hold Timer, 117
Idle state, 119
maintaining, 114
OpenConfirm state, 120
OpenSent state, 119
withdrawn routes, 123
Frame Relay, 38–39
hops, 49
global connectivity, 79
link states, 99
logical, 139–140
oversubscription, 44
physical, 139
private connectivity, 79–80
reachability, verifying, 142–144
redundancy, 46–48, 203–204
default routes, 205–206
consolidated billing, ISP services, 43
content providers, 41
continuity of IGP, maintaining, 141–142
contracts
router collocation, 52
SLAs, 43
traffic exchange agreements, 49
controlling
BGP routes, 159
IGP expansion, 275–276
separating regions with EBGP, 279–281
separating regions with IBGP, 277–279
with confederations, 283
route dampening, 432–435
convergence, 98
 distance vector routing protocols, 98
 link-state routing protocols, 100
conversion chart, CIDR to dotted decimal notation, 305
count-to-infinity, 97
counters, Hold Timer, 117
CPE (customer premises equipment), 50–51
 circuit termination, 38
 collocation, 52
 pricing, 43
CPU processing, effect on route stability, 288–289
criteria, ISP backbone selection, 43
 bottlenecks, 44–45
 demarcation points, 50–52
 distance to destination, 49
 physical connections, 44
 traffic exchange agreements, 49–50
customer routes, advertising
 nontransit ASs, 105
 stub ASs, 103–104
 transit ASs, 106–107
decision process, best route selection, 158–159
dedicated hosting
 services, 41–42
 subscription ratios, 44
dedicated Internet access, 37–38
default routes, 101, 204–206
 conflicting BGP policies, 398–411
 dynamically learned, 205–206
 implementing, 365–367
 IGP, conflicts with BGP policies, 244–252
 injecting into AS, 242–244, 395–398
 statically learned, 206–210
 implementing, 367–370
default-information originate command, 443
default-metric command, 443
defining
 access lists, 309–310
 large and small networks, 276
deleting entries from prefix lists, 311
denying routes, 185
 suppress maps, 351–353
depleting IP addresses, 65
design goals
 confederations, 274
 load balancing, 210–212
 redundancy, 203–204
 default routes, 205–206
 scenarios, 212–213
 backup links, 231–235
 load balancing, 220–223
 multihoming, 213–218, 223–227
 private links, 228–231
 single-homing, 213
 symmetry, 210
devices
 CPE, 50–51
 circuit termination, 38
 collocation, 52
 pricing, 43
 routers, 93–94
dampening, 292–296
DARPA (Defense Advanced Research Projects Agency), 5
data exchange
 CIX, 12
 direct interconnections, 14
 FIX, 12
 NAPs, 10–12
 physical configuration, 13
Data field, NOTIFICATION messages, 121
databases
 InterNIC services, 23–24
 link-state, 99
DHCP (Dynamic Host Configuration Protocol), 80
dialup services, 39
 policy routing, 256
 remote access, 39
Dijkstra algorithm, 99
direct interconnections, 14
directory services
 InterNIC, 23–24
 WHOIS, 24
disabling synchronization, 144
displaying prefix lists, 458
distance bgp command, 443
distance parameter (BGP), default static route configuration, 209
distance to destination, hops, 49
distance vector routing protocols, 96
 best path selection, count-to-infinity, 97
 BGP path vector, 98–99
 convergence, 98
 first generation, 98
 reliability of routing tables, 98
 RIP, primary/backup routing, 247–248
 triggered updates, 97
distribute-list in command, 443
distribute-list out command, 443
DMZ (demilitarized zone), 174–175
do-not-care bits, 304
dotted decimal notation, 57
 conversion chart, 305
DSL (digital subscriber line), 40
dynamic load balancing, 221
dynamic redistribution, 322
dynamic routing, 101, 205–206
 advertisements, 144–145
 comparing to static routing, 150
 forcing, 102
 leaks, 145–147
 on statically configured routers, 254–255
 unstable routes, 147
dynamically learned defaults, implementing, 365–367

E

EBGP (External BGP), 106, 137
 comparing to IBGP, 138
 multihop, 139
 private AS numbers, 281–283
 routing loops, 250–252
education web sites, 449
EGPs (Exterior Gateway Protocols), 27
encoding technologies, DSL, 40
error code/subcode (NOTIFICATION messages), 121
Established state, BGP neighbor negotiation, 120
Europe, RIPE NCC, 26
examples
 BGP routing environment, 156–158
 routing, 95–96
exceptions, peer groups, 191
expansion of Internet, 8
extended access lists, 309

F

FAQs, 54, 132
faulty hardware, 288
faulty software, 288
FBGP, NEXT HOP attribute, 164
feasible routes (BGP), advertising, 129
fields
- BGP messages, 115–116
- OPEN messages, 116–117
- provider-based unicast addresses (IPv6), 84
- UPDATE messages, Withdrawn Routes, 124

filtering
- prefixes, 311–312
- routes, 180–185, 312–315
 - based on AS_PATH attribute, 315–316
 - inbound/outbound, 181–182
- Input Policy Engine, 155
- multiple character patterns, 188
- Output Policy Engine, 156
- redistributed, 322–323
- regular expressions, building, 188–190
- single character patterns, 187

firewalls, policy routing, 255
first generation distance vector protocols, 98
FIX (Federal Internet eXchange), 8, 11–12
flapping routes, 287
flushing dampened route histories, 295
forcing dynamic routing, 102
format, route maps, 308
forming route aggregates, 196, 359–361
FP (Format Prefix), 82–83
FSM (finite state machine), BGP neighbor negotiation, 118–120
full routing, 212–213
full-mesh topologies, 173
 - peering, 262–263
funding, NSFNet, 10

G
- gateway of last resort, 205
- geographic IP address allocation, 66–67
- global addresses, creating from private addresses, 81–82
- global connectivity, 79

goals
 - design
 - backup links, scenario, 231–235
 - confederations, 274
 - default routes, 205–206
 - load balancing, 210–212, 220–223
 - multihoming, scenario, 213–218, 223–227
 - private links, scenario, 228–231
 - redundancy, 203–204
 - single-homing, scenario, 213
 - symmetry, 210
- NGI, 29

H
- half-life parameter (route dampening), 293
- half-life time, 435
- hardware, faulty, 288
- HDSL (High bit-rate DSL), 40
- header format, BGP messages, 115–116
- hierarchical structure, link-state routing protocols, 100
- history entry parameter, route dampening, 293
- history of Internet, 5
- ARPANET
 - AUP, 7
 - progression of architecture, 6
- expansion, 8
- IP addressing, 57
- NSFNET, 7–8
Hold Timer field (OPEN messages), 117
hop counts, 49, 97
host addresses, 58
hosting services (ISPs), 41
subscription ratios, 44
hot-potato routing, 168
HPPC (High Performance Computing and Communications Program), 10
human error, effect on route stability, 290

IBGP (Internal BGP), 106, 137–138
attributes, preserving for reflected routes, 267–268
comparing to EBGP, 138
confederations, 271–272
design considerations, 274
disadvantages, 273–274
route exchange, 274
logical connections, 140
peering sessions
building, 301–308
reachability, 138
physical links, 246
routing loops, 250–252
identifying routes
based on AS_PATH, 184
based on NLRI, 182–183
Idle state, BGP neighbor negotiation, 119
IETF (Internet Engineering Task Force), RPSL, 17
IGPs (Interior Gateway Protocols), 241
conflicting BGP policies, 398–411
continuity, maintaining, 141–142
default routes
conflicts with BGP policies, 244–252
reaching BGP routers, 242
injecting BGP routes, 241–242
metric, manipulating, 246
primary/backup routing, routing loops, 244–250
reachability, verifying, 142–144
route flapping, 287–288
ill-behaved routes, 292
implementing
dynamically learned defaults, 365–367
multihoming, 370–378
redundancy, geographic influence, 204–205
routing policies
AS path manipulation approach, 234–235
community approach, 233–234
statically learned defaults, 367–370
inbound route filtering, 181–182
inbound soft reconfiguration, 425–429
inbound traffic
load balancing, 211–212
multihoming, 215
incremental configuration, prefix lists, 311–312
infrastructure (Internet)
expansion of, 8
NAPs, 10–11
managers, 11–12
physical configuration, 13
POPs, 9
post-NSFNET, 9
injecting routes into AS, 241–242
default routes, 242–244, 395–398
dynamic method, 144–145
comparing to static method, 150
leakage, 145–147
unstable routes, 147
static method, 147–148
Input Policy Engine, 155
instability
flapping routes, 287
Internet, causes of
faulty hardware, 288
faulty software, 288
human error, 290
IGP, 287–288
insufficient CPU, 288–289
insufficient memory, 289
link congestion, 290
performance improvements, 289–290
software, 288
NSFNET decommissioned, 8–9
registries, 25–28
InterNIC, 23
directory services, 23–24
NIC support services, 25
registration services, 25
interregional connectivity
direct interconnections, 14
NAPs, 10–11
managers, 11–12
physical configuration, 13
intra-AS routing, 101
inverse dotted decimal notation,
conversion chart, 305
inverse mask command, 304
IP addresses
aggregation, 69–71
allocating, 66
CIDR, 65–69, 123
longest match routing, 71–72
classful model, 58
Class A, 59
Class B, 59
Class C, 59–60
Class D, 60
Class E, 60
conversion chart, 305
history, 57
host addresses, 58
loopback addresses, 117
NAT, 81–82
netmasks, 60
network addresses, 58
prefixes, 69
 filtering, 311–312
routing loops, 72–73
source addresses, policy routing, 256
space depletion, 65
subnetting, 60–62
 DMZs, 174–175
 middle bits, 63
 VLSM, 62–64
supernets, 69
ip as-path access-list command, 443
ip bgp-community new-format command, 443
ip classless command, 304
ip community-list command, 443
IP number allocation, 26
IP prefix, 123
ip prefix-list command, 443
ip prefix-list description command, 443
ip prefix-list sequence-number command, 443
ip subnet-zero command, 303
IPMA (Internet Performance Measurement and Analysis), 18
IPv6, 82
 FP, 82–83
 local-use addresses, 85–86
 provider-based unicast addresses, 84
IRC (Inter-Regional Connectivity), 21–22
IRR (Internet Routing Registry), 16–17
IS-IS (Intermediate System-to-Intermediate System), 100
ISPs (Internet Service Providers), 9
 backbone selection, 43–44
 bottlenecks, 44–45
 demarcation points, 50–52
 distance to destination, 49–50
 physical connections, 44
 cable modems, 41
connections, redundancy, 46–48
content providers, 41
CPE, 50–51
customer routes, advertising
 nontransit ASs, 105
 stub ASs, 103–104
 transit ASs, 106–107
dedicated hosting services, 41–42
dedicated internet access, 37–38
dialup services, 39
DSL, 40
Frame Relay, 38–39
link utilization, 45
multihoming, 213–218
 to different providers, 223–227
oversubscription, 44–45
pricing, 42–43
route reflectors, 261–262
security, 42
selecting distance to destination, 49
services, 37
single-homing, 213
SLAs/SLGs, 43
traffic exchange agreements, 49–50

J-K

KDI (Knowledge and Distributed Intelligence) program, 30
KEEPALIVE messages
 BGP, 122
 steady state, 114
keys, BGP authentication, 140–141
KISS (Keep It Simple, Stupid) principle, 74

L

large networks, defining, 276
leaf networks, 70
leaking routes to AS, 346–349
 preventing, 145–147
learning process, stub ASs, 103–104
Length field, BGP messages, 115
limitations of access speeds, 45
link-local addresses, 85–86
link-state protocols
 convergence, 100
databases, 99
metrics, 99
 OSPF, primary/backup routing, 248–250
links
 congestion, effect on route stability, 290
oversubscription, 44
utilization, 45
load balancing, 203, 210–212
 automatic, 218–220
BGP Multipath, 378–384
design scenario, 220–223
dialup traffic, 256
dynamic, 221
 static, 221
Loc-RIB, 155
LOCAL_PREF attribute (BGP), 168–169,
 335–337
 multiple static routes, configuring, 208
private link configuration, 229–231
local-use addresses (IPv6), 85–86
logical connections, 139–140
logical mesh environments
 peering, 262–263
 redundancy, 265
longest match routing, 71–72
lookup, recursive, 207
loop-free topologies, BGP, 112
loopback addresses, 117
loopback interfaces, 140
loops (routing), 72–73
 IBGP/EBGP routing, 250–252
 primary/backup routing, 244–250
loss of aggregation attributes, 196

M

MA (multiaccess) media, NEXT_HOP
 behavior, 172–173
maintaining BGP connections, 114
maintenance (network), effect on route
 stability, 289–290
manipulating BGP attributes, 178–190
 AS path, 227
Marker field (BGP messages), 115–116
 masks, 61–62
 VLSM, 62–64
match as-path command, 444
match command, 309
match community-list command, 444
maximum-paths command, 220
MBGP (Multipath BGP), 128–129
 AFs
 aggregation, 469–470
 peer groups, 465–466
 redistribution, 468
 route maps, configuring, 466–467
 route reflectors, 469
 CLI, 461–462
 configuration guidelines, 462–464
 interdomain multicast routing, 129
MCI, vBNS, 18–21
MD5 Signature Option (TCP), 129–131
MED (MULTI_EXIT_DISC) attribute,
 166–168, 337–340
meltdown, 276
memory
 effect on route stability, 289
 soft reconfiguration, consumption, 291
Merit Network, Inc., 7–8
IPMA, 18
mesh topologies
 segmented ASs
 EBGP mesh, 279–281
 IBGP mesh, 277–279
 full-mesh environments, 173
 peering, 262–263
 partial-mesh topologies, 174
 route reflection, 269–271
messages, BGP
 header format, 115–116
 KEEPALIVE (BGP), 122
 MP_REACH_NLRI attribute, 129
 MP_UNREACH_NLRI attribute, 129
 NOTIFICATION (BGP), 120–121
 OPEN, fields, 116–117
 UPDATE (BGP), 122–123
 Path Attribute, 125–127
 Unfeasible Routes Length field, 124
See also attributes
metrics, 99
 IGP, manipulating, 246
middle bits, subnetting, 63
MILNET, 5
mobile networks, 150
Moy, John T., 100
MP_REACH_NLRI attribute, 129
MP_UNREACH_NLRI attribute, 129
MPLS (Multiprotocol Label Switching), 49
MTBF (mean time between failure), 48
MTTR (mean time to repair), 48
MULTI_EXIT_DISC (MED) attribute, 166–168, 337–340
multihoming, 71, 213–218, 370–378
 nontransit ASs, advertising
 customer routes, 105
 one customer to multiple providers, 384–388
 private links
 multiple providers, 391–395
 single provider, 388–390
scenario, 74–78
 to different providers, 223–227
 transit ASs, 106
multihop EBGP, 139
multiple character patterns, route filtering, 188
multiple static defaults, configuring, 208
multiprotocol extensions, BGP, 128–129
mutual redistribution, 146
My Autonomous System field
 (OPEN messages), 117

N
naming conventions, route reflection process components, 264–265
NANOG (North American Network Operators Group), 18
NAPs (network access points), 9–11
 direct interconnections, 14
 managers, 11–12
 physical configuration, 13
NAT (Network Address Translator), 81–82
 national providers, POPs, 9
National Science Foundation network.
 See NSFNET
natural masks, 61
NBMA (nonbroadcast multiaccess) media,
 NEXT_HOP behavior, 173–174
negotiation
 BGP neighbors, 116–117
 FSM, 118–120
neighbor advertisement-interval command, 444
neighbor command, 304
neighbor default-originate command, 444
neighbor description command, 444
neighbor distribute-list command, 444
neighbor ebgp-multihop command, 444
neighbor filter-list command, 444
neighbor maximum-prefix command, 444
neighbor next-hop-self command, 444
neighbor password command, 444
neighbor peer-group command, 444–445
neighbor prefix-list command, 445
neighbor remote-as command, 445
neighbor route-map command, 445
neighbor route-reflector-client command, 445
neighbor send-community command, 445
neighbor shutdown command, 445
neighbor soft-reconfiguration command, 445
neighbor timers command, 445
neighbor update-source command, 445
neighbor version command, 445
neighbor weight command, 446
neighbors, 112
 Capabilities Negotiation (BGP), 116–117, 127–128, 138
 FSM, 118–120
 logical connections, 139–140
 physical connections, 139–140
 reachability, verifying, 142–144
Netfind, 24
netmasks, 60
Network Address Translator. See NAT
network addresses, 58
network backdoor command, 446
network command, 303, 323 446, 465
 injecting routes into BGP, 145
network meltdown, 276
Network Solutions, Inc., registration services (InterNIC), 25
network weight command, 446
NEXT_HOP attribute (BGP), 163–165, 331–332
NGI (Next Generation Initiative), 28–30
testbeds, 29
NICs, support services, 25
NIS (Network Information Services) managers, 22–23
NLRI (Network Layer Reachability Information), 123
NMS (network management system), 16
no auto-summary command, 304
no synchronization command, 304
non-BGP routers, interaction with BGP routers, 241–244
North American Network Operators Group. See NANOG
NOTIFICATION errors (BGP), 113, 120–121
NREN (National Research and Education Network), 10, 23
NSF (National Science Foundation)
 Acceptable Usage Policy, 10
 NAPs, 11
 research funding, 10
 IPMA, 18
 vBNS, 18–21
NSFNET (National Science Foundation network)
 backbone, 7–8
decommissioned, 8–9
 NIS managers, 22–23
 regional connectivity, transition to Internet architecture, 21–22
NSPs (Network Service Providers), 9

O

octets, 57
OPEN messages (BGP), fields, 116–117
OpenConfirm state, BGP neighbor negotiation, 120
OpenSent state, BGP neighbor negotiation, 119
optional nontransitive attributes (BGP), 125–127
 NEXT_HOP, 166–168
Optional Parameter Length field (OPEN messages), 117
optional transitive attributes (BGP), 125–127
AGGREGATOR, 170–171
COMMUNITY, 171–172
ORF (Outbound Request Filter), 431
backward compatibility, 457
receive mode, 456
send mode, 456
when to use, 455–456
ORIGIN attribute (BGP), 148–149, 160,162
ORIGINATOR_ID attribute (BGP), 268
oscillating routes, suppressing, 295
OSPF (Open Shortest Path First), 100
primary/backup routing, routing loops, 248–250
outbound route filtering, 181–182
outbound soft reconfiguration, 425
outbound traffic
load balancing, 211–212
multihoming, 215
output, show ip bgp command, 361
Output Policy Engine, 156
oversubscription, 44–45

packets, KEEPALIVE, 114
parameters, route dampening, 293
configuration, 433–435
partial routing, 212–213
updates, 114
partial-mesh topologies, 174
route reflection, 269–271
participating agencies, NGI (Next Generation Initiative), 28
passive-interface type number command, 320
Path Attribute (UPDATE messages), 114, 123–127
path vector, 112
BGP, 98–99
peering, 15, 112
Capabilities Negotiation, 127–128
full-mesh environments, 262–263
groups, 190, 415–419
configuring, 316–318, 465–466
exceptions, 191
predefined, 318
restrictions, 318
RRs, 269–271
inbound/outbound route filters, 181–182
IBGP
confederations, 271–274
reachability, 138
negotiation, 116–118, 120
route reflectors, 261–262
route servers, 17
sessions, building, 137–138, 301–308
penalties, route dampening, 292–293
Perlman, Radia, 100
permitting routes, 185
physical connections, 139
between IBGP routers, 246
ISPs, 44
redundancy, route reflectors, 265
policies, RPSL, 17
policy routing, 252, 411–415
BGP, conflicts with IGP default routes, 244–252
dialup services, 256
dynamic routing, 254–255
firewalls, 255
for combined source/destination traffic, 253–254
for source traffic, 252–253
POP (points of presence), 9
See also NAPs
POTS (Plain Old Telephone System), DSL, 40
PRDB (Policy Routing Database), 17
predefined peer groups, 318
prefix lists, 310
 adding entries, 311
 displaying, 458
 incremental configuration, 311–312
 pushing out, 457
prefixes
 aggregates, 192–195, 177–178
 attributes, modifying, 196–197
 forming, 359–361
 loss of information, 196, 354–357
 suppressing routes, 343–346
 attributes, 160–161
 AGGREGATOR, 170–171
 AS_PATH, 162–163, 178–180
 ATOMIC AGGREGATE, 170
 COMMUNITY, 171–172
 local preference, 168–169
 MED, 166–168
 NEXT_HOP, 163–165
 ORIGIN, 162
 filtering, 311–312
 IP addresses, 69, 123
 IPv6, 82–83
 prepending, 162
 preserving IBGP attributes (RR), 267–268
 preventing
 black holes, 76
 leaks, 145–147
 pricing ISP services, 42–43
 primary/backup routing, troubleshooting
 routing loops, 244–250
 private addresses, translating to
 global addresses, 81–82
 private ASs, 175–177, 334–335
 numbering conventions, 281–283
 private links, 228–231
 as backup link, 231–233
 connectivity, 79–80
 multihoming
 multiple providers, 391–395
 single provider, 388–390
 process IDs, assigning, 303
 projects, academic research
 Abilene, 31
 ARPANET, 5–6
 NSFNET, 7–8
 decommissioned, 8–9
 solicitations, 10
 RA, 14–15, 17–18
 responsibilities, 16
 routing engineering team, 17
 vBNS, 18–21
 protocols, administrative distance, 150–152
 provider network
 POPs, 9
 unicast addresses (IPv6), 84
 provisioning redundant connections, 46–48
 purely dynamic advertisements, 144
 pushing out prefix lists, 457

Q–R

RA (Routing Arbiter) project, 14, 18
 peering, 15
 responsibilities, 16
 route servers, 17
 routing engineering team, 17
 RS (route server), 16
RADB (Routing Arbiter Database), 16–17
reachability
 dynamic routing, 101
 IBGP peers, 138
 IGPs, verifying, 142–144
 NLRI, 123
receive mode (ORF), 456
receiving route refreshes, 457
recursive route lookup, 207
redistribute command, 320
redistribution, 181, 468
dynamic, 322
mutual redistribution, 146
route filtering, 322–323
redundancy, 203–204
backup links, 231–235
default routes, 205–206
dynamically learned, 205–206
statically learned, 206–210
implementing, geographic influence, 204–205
ISP connections, 46–48
multihoming
implementing, 370–378
one customer to multiple providers, 384–388
private links, 388–395
private links, 228–231
route reflectors, 265
routing overhead, limiting, 204
reflectors, 469
refresh timers, 97
regional connectivity
direct interconnections, 14
NAPs, 10–11
managers, 11–12
physical configuration, 13
transition to Internet architecture, 21–22
regional IP address allocation, 66–67
regional segmentation (AS)
EBGP mesh, 279–281
IBGP mesh, 277–279
registries (Internet), 25–28
regular expressions, 184
building, 188–190
reliability of distance vectors, 98
remote access, 39
remote-as command, 304
removing entries from prefix lists, 311
research and education web sites, 449
research projects, 10
Abilene, 31
ARPANET, 5–6
InterNIC
directory/database services, 23–24
NIC support services, 25
registration services, 25
NGI, 29
NSF solicitations, 10
NSFNET, 7–8
decommissioned, 8–9
RA, 14–18
responsibilities, 16
route servers, 17
routing engineering team, 17
vBNS, 18–21
resetting BGP sessions, 308
responsibilities
NAP managers, 11–12
RA project, 15–16
RRs, 27
restrictions of peer groups, 318
reuse limit parameter, route dampening, 293
RFC 1771, BGP route advertisement and storage, 154
RFC 1930, AS numbers, 104
RFC 2385, TCP MD5 Signature Option, 129–131
RIBs (Routing Information Bases), 154–155
RIP (Routing Information Protocol), primary/backup routing, routing loops, 247–248
RIPE NCC (Reseaux IP Europeens Network Coordination Center), 26
RIPE-181, transition to RPSL, 17
RIRs (Regional Internet Registries), 25, 28
APNIC, 27
ARIN, 26
AS numbers, allocating, 280–281
RIPE NCC, 26
ROAD (Routing and Addressing) working group, 65
route aggregation, 177–178, 192–195
 AS_SET option, attribute maps, 357–359
 attributes, modifying, 196–197
 leaking routes, 346–350
 loss of information, 196
 troubleshooting, 354–357
 suppressing routes, 343–346
route dampening, 147, 292–296, 432–435
 inside AS, 294
 outside AS, 294–296
parameters, 293
penalties, 292–293
route exchange within confederations, 274
route filtering, 180–185, 312–315
 access lists, 309–310
 based on AS_PATH attribute, 315–316
 inbound/outbound, 181–182
 multiple character patterns, 188
prefix lists
 displaying, 458
 incremental configuration, 311–312
 pushing out, 457
redistributed routes, 322–323
regular expressions, building, 188–190
single character patterns, 187
route flapping (IGP), 287–288
route maps
 BGP, 308–310
 configuring, 466–467
 policy routing, 413–415
See also suppress maps
route reflectors, 261–263
 clusters, 264–265
 comparing to confederations, 275
 configuring, 415–419, 469
 IGP continuity, maintaining, 141–142
 looping, 268
peer groups, 269–271
redundancy, 265
topology models, 266–268
Route Refresh, 291–292, 429–430
route refreshes, receiving, 457
route servers, 15, 17
router bgp command, 446
router configuration commands,
 maximum-paths, 220
router process command, 303
routing, 93–94
 aggregate routes, advertising, 75
 ASs, 102–103
 stub, 103–104
BGP
 attributes, 160–172, 178–180
 controlling, 159
 MP_UNREACH_NLRI attribute, 129
 neighbor negotiation, 116–117
 process overview, 152–153
 withdrawn routes, 124
black holes, 73
colocation, 52
classless, NLRI (BGP), 123
example, 95–96
filtering
 Input Policy Engine, 155
 Output Policy Engine, 156
flapping routes, 287
hops, 49
injecting routes
 BGP into IGP, 241–242
 dynamic method, 144–145
 static method, 147–148
instability, 147
leaks, 346–349
loops, 72–73, 398
 avoiding during RR, 268
 on backup routers, 250–252
 primary/backup routing, 244–250
 within confederations, 272
MPLS, 49
peers, 112
policies, implementing
 AS path manipulation approach, 234–235
 community approach, 233–234
redistribution, 468
updates, 113–114, 144
routing protocols
 administrative distance, 150–152
 distance vector, 96
 convergence, 98
 first generation, 98
 reliability of routing tables, 98
 triggered updates, 97
 link-state, 99–100
 convergence, 100
 metrics, 99
VLSM support, 64
routings tables (BGP), RIBs, 154–155
RPSL (Routing Policy Specification Language), 17
RRs (routing registries), 27
RS (route server), 16
RSng (Route Server Next Generation), 18
multihoming, 213–218
 to different providers, 223–227
private links, 228–231
single-homing, 213
SDSL (Symmetric DSL), 40
security
 authentication, BGP, 140–141
 firewalls, policy routing, 255
 hosting providers, 41
 ISPs, 42
segmentation, ASs, 275–276
 confederations, 283
 EBGP mesh topology, 279–281
 IBGP mesh topology, 277–279
private AS numbers, 281–283
selecting
 best paths, 158–159
 count-to-infinity, 97
 distance vector routing protocols, 96
 ISPs, 37
 backbone criteria, 43–45, 49
 demarcation points, 50–52
 distance to destination, 49
 traffic exchange agreements, 49–50
semidynamic advertisements, 144
 route instability, 147
send mode (ORF), 456
services
 ISPs, 37
 ATM connections, 38–39
 cable modems, 41
 CPE, 50–51
 dedicated hosting, 41–42
 dedicated Internet access, 37–38
dialup, 39
DSL, 40
Frame Relay connections, 38–39
pricing, 42–43
NIS, 23
scalloplity, IGP, 275–281, 283
SCCs (SuperComputer Centers), vBNS, 18–21
scenarios, 212–213
 backup links, 231–235
 load balancing, 220–223
sessions, BGP
 authentication, 140–141
 routing updates, 113–114
set as-path command, 446
set comm-list delete command, 446
set command, 309
set community command, 446
set dampening command, 446
set ip next-hop command, 446
set metric-type internal command, 446
set origin command, 446
set weight command, 446
shared secret keys, 140–141
show ip bgp cidr-only command, 447
show ip bgp command, 446
 output, 361
show ip bgp community command, 447
show ip bgp community-list command, 447
show ip bgp dampened-paths command, 447
show ip bgp filter-list command, 447
show ip bgp flap-statistics command, 447
show ip bgp inconsistent-as command, 447
show ip bgp neighbors command, 447
show ip bgp paths command, 447
show ip bgp peer-group command, 447
show ip bgp regexp command, 447
show ip bgp summary command, 447
show ip prefix-list command, 447
single character patterns, route filtering, 187
 learning process, 103–104
 scenario, 74
site-local-use addresses (IPv6), 85
sites (Web), ARIN, 66
SLAs (service-level agreements), 43
SLGs (service-level guarantees), 43
small networks, defining, 276
soft reconfiguration, 291, 425
 inbound, 428
software
 faulty, 288
 NMS, 16
solicitations
 for NIS managers, 22–23
 NSF, 10
source IP addresses, policy routing, 256
speakers (BGP), 112
 Capabilities Negotiation, 127–128
 prefix lists, pushing out, 457
 routing updates, 114
specifying aggregates, 196
speeds (Internet access), 37
SPF (shortest path first) algorithm, 99
spoofed segments, TCP MD5 Signature Option, 129–131
standard access lists, 309–310
static load balancing, 221
static route injection, 147–148
 comparing to dynamic injection, 150
static routing, 101, 138
 configuring for dynamic routing, 254–255
 policy routing, 252
 firewalls, 255
 for combined source/destination traffic, 253–254
 for source traffic, 252–253
See also policy routing
statically learned routes, 206–210
 defaults, implementing, 367–370
statistical multiplexing, 39
steady state, KEEPALIVE packets, 114
stripping private AS number from AS_PATH attribute, 176–177
sub-ASs, 70, 103
 confederations, 271–272, 419–424
 comparing to route reflection, 275
design considerations, 274
disadvantages, 273–274
external routes, 274
route exchange, 274
subnetting, 60–62
DMZs, 174–175
middle bits, 63
VLSM, 62–64
subscription ratios (ISPs), 44–45
supernetting, 69, 192–195
suppress limit parameter, route dampening, 293
suppress maps, 351–353
See also unsuppress maps
suppress route parameter, route dampening, 293
suppressing
flapping routes, 295
transit ASs, 315
symmetry, 203, 210, 212
synchronization, 143
disabling, 144
synchronization command, 447
topologies
full-mesh, 173
loop-free, 112
partial-mesh, 174
route reflection, 266–271
segmented ASs
EBGP mesh, 279–281
IBGP mesh, 277–279
traffic
dialup, policy routing, 256
directing to firewalls, 255–256
exchange agreements, 49–50
See also SLAs
load balancing, 203, 210–212
automatic, 218–220
BGP Multipath, 378–384
design scenario, 220–223
dynamic, 221
static, 221
policy routing, 252
source traffic, 252–253
source/destination traffic, 253–254
redundancy, 203–204
backup links, 231–235
default routes, 205–206
private links, 228–231
symmetry, 210
transit ASs, 106
suppressing, 315
traffic, 105
transit routers, 246
transition to Internet architecture, 21–22
translating private addresses to global addresses, 81–82
triggered updates, 97
troubleshooting
aggregation, loss of information, 354–357
routing loops
 IBGP/EBGP routing, 250–252
 primary/backup routing, 244–250
Type field, BGP messages, 116

U

UCAID
 Abilene, 31
 Internet2, 30
Unfeasible Routes Length field (UPDATE messages), 124
unreachable destinations, BGP, 123–124
 MP_UNREACH_NLRI attribute, 129
unstable routes, 147
unsuppress maps, 354
UPDATE messages (BGP), 113–114, 122–123, 152
 NLRI, 123
 Path Attribute, 125–127
 Unfeasible Routes Length field, 124
 withdrawn routes, 123–124
update-source interface command, 304
upgrades, effect on route stability, 289–290
utilization, ISP links, 45

V

variable-length subnet masks. See VLSMs
vBNS (very high-speed Backbone Network Service), 18–21
VDSL (Very high bit-rate DSL), 40
verifying IGP reachability, 142–144
Version field (OPEN messages), 116–117
version number, BGP routing table, 114–115
viewing prefix lists, 458
virtual interfaces, loopback, 140

VLSMs (variable-length subnet mask), 62–64
link-state protocols, 100
See also CIDR
vulnerabilities, MD5 algorithm, 131

W-X-Y-Z

web sites
 ARIN, 66
 research and education, 449
well-behaved routes, 292
well-known discretionary attributes (BGP), 125–127
 ATOMIC_AGGREGATE, 170
 local preference, 168–169
well-known mandatory attributes (BGP), 125–127
 AS_PATH, 162–163
 manipulating, 178–180
 NEXT_HOP, 163–165
 ORIGIN, 162
white pages, directory services, 24
WHOIS lookup service, 24
withdrawn routes, 123–124
 MP_UNREACH_NLRI attribute, 129

xDSSL, 40

zero subnet address space, 62