CompTIA® Security+
SY0-501 Cert Guide
Fourth Edition

David L. Prowse
The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screenshots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an “as is” basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.
Contents at a Glance

Introduction xxiv

CHAPTER 1 Introduction to Security 3

CHAPTER 2 Computer Systems Security Part I 19

CHAPTER 3 Computer Systems Security Part II 53

CHAPTER 4 OS Hardening and Virtualization 89

CHAPTER 5 Application Security 127

CHAPTER 6 Network Design Elements 173

CHAPTER 7 Networking Protocols and Threats 217

CHAPTER 8 Network Perimeter Security 255

CHAPTER 9 Securing Network Media and Devices 285

CHAPTER 10 Physical Security and Authentication Models 321

CHAPTER 11 Access Control Methods and Models 361

CHAPTER 12 Vulnerability and Risk Assessment 397

CHAPTER 13 Monitoring and Auditing 435

CHAPTER 14 Encryption and Hashing Concepts 477

CHAPTER 15 PKI and Encryption Protocols 521

CHAPTER 16 Redundancy and Disaster Recovery 547

CHAPTER 17 Social Engineering, User Education, and Facilities Security 583

CHAPTER 18 Policies and Procedures 613

CHAPTER 19 Taking the Real Exam 647

Practice Exam I: SY0-501 657

Glossary 719

Index 749

Elements Available Online

View Recommended Resources

Real-World Scenarios
Table of Contents

Introduction xxiv

Chapter 1 Introduction to Security 3
Foundation Topics 4
Security 101 4
The CIA of Computer Security 4
The Basics of Information Security 6
Think Like a Hacker 9
Threat Actor Types and Attributes 10
Chapter Review Activities 12
Review Key Topics 12
Define Key Terms 12
Review Questions 13
Answers and Explanations 15

Chapter 2 Computer Systems Security Part I 19
Foundation Topics 19
Malicious Software Types 19
Viruses 20
Worms 21
Trojan Horses 22
Ransomware 22
Spyware 23
Rootkits 24
Spam 25
Summary of Malware Threats 25
Delivery of Malware 26
Via Software, Messaging, and Media 26
Botnets and Zombies 28
Active Interception 28
Privilege Escalation 29
Backdoors 29
Logic Bombs 29
Preventing and Troubleshooting Malware 30
Preventing and Troubleshooting Viruses 31
Preventing and Troubleshooting Worms and Trojans 35
Preventing and Troubleshooting Spyware 35
Preventing and Troubleshooting Rootkits 38
Preventing and Troubleshooting Spam 38
You Can’t Save Every Computer from Malware! 40
Summary of Malware Prevention Techniques 40

Chapter Summary 41
Chapter Review Activities 42
Review Key Topics 42
Define Key Terms 42
Complete the Real-World Scenarios 43
Review Questions 43
Answers and Explanations 48

Chapter 3 Computer Systems Security Part II 53
Foundation Topics 53
Implementing Security Applications 53
Personal Software Firewalls 53
Host-Based Intrusion Detection Systems 55
Pop-Up Blockers 57
Data Loss Prevention Systems 59
Securing Computer Hardware and Peripherals 59
Securing the BIOS 60
Securing Storage Devices 62
Removable Storage 62
Network Attached Storage 63
Whole Disk Encryption 64
Hardware Security Modules 65
Securing Wireless Peripherals 66
Securing Mobile Devices 66
Malware 67
Botnet Activity 68
SIM Cloning and Carrier Unlocking 68
Chapter 4 OS Hardening and Virtualization 89

Foundation Topics 89

Hardening Operating Systems 89
 Removing Unnecessary Applications and Services 90
 Windows Update, Patches, and Hotfixes 97
 Patches and Hotfixes 99
 Patch Management 101
 Group Policies, Security Templates, and Configuration Baselines 102
 Hardening File Systems and Hard Drives 105

Virtualization Technology 109
 Types of Virtualization and Their Purposes 110
 Hypervisor 111
 Securing Virtual Machines 113

Chapter Summary 115

Chapter Review Activities 117
 Review Key Topics 117
 Define Key Terms 118
 Complete the Real-World Scenarios 118
 Review Questions 118
 Answers and Explanations 122

Chapter 5 Application Security 127

Foundation Topics 127

Securing the Browser 127
General Browser Security Procedures 129
Implement Policies 129
Train Your Users 133
Use a Proxy and Content Filter 133
Secure Against Malicious Code 135
Web Browser Concerns and Security Methods 135
Basic Browser Security 135
Cookies 136
LSOs 137
Add-ons 137
Advanced Browser Security 138
Securing Other Applications 140
Secure Programming 144
Software Development Life Cycle 145
Core SDLC and DevOps Principles 146
Programming Testing Methods 149
White-box and Black-box Testing 149
Compile-Time Errors Versus Runtime Errors 150
Input Validation 150
Static and Dynamic Code Analysis 151
Fuzz Testing 152
Programming Vulnerabilities and Attacks 152
Backdoors 153
Memory/Buffer Vulnerabilities 153
Arbitrary Code Execution/Remote Code Execution 155
XSS and XSRF 155
More Code Injection Examples 156
Directory Traversal 158
Zero Day Attack 158
Chapter Summary 160
Chapter Review Activities 161
Review Key Topics 161
Define Key Terms 162
Complete the Real-World Scenarios 162
Chapter 6 Network Design Elements 173

Foundation Topics 173

Network Design 173
 The OSI Model 173
 Network Devices 175
 Switch 175
 Bridge 178
 Router 178
 Network Address Translation, and Private Versus Public IP 180
 Network Zones and Interconnections 182
 LAN Versus WAN 182
 Internet 183
 Demilitarized Zone (DMZ) 183
 Intranets and Extranets 184
 Network Access Control (NAC) 185
 Subnetting 186
 Virtual Local Area Network (VLAN) 188
 Telephony 190
 Modems 190
 PBX Equipment 191
 VoIP 191
 Cloud Security and Server Defense 192
 Cloud Computing 192
 Cloud Security 195
 Server Defense 198
 File Servers 198
 Network Controllers 199
 E-mail Servers 199
 Web Servers 200
 FTP Server 202

Chapter Summary 203

Chapter Review Activities 205
Chapter 7 Networking Protocols and Threats 217
Foundation Topics 217
Ports and Protocols 217
Port Ranges, Inbound Versus Outbound, and Common Ports 217
Protocols That Can Cause Anxiety on the Exam 225
Malicious Attacks 226
DoS 226
DDoS 229
Sinkholes and Blackholes 230
Spoofing 231
Session Hijacking 232
Replay 234
Null Sessions 235
Transitive Access and Client-Side Attacks 236
DNS Poisoning and Other DNS Attacks 236
ARP Poisoning 238
Summary of Network Attacks 238
Chapter Summary 242
Chapter Review Activities 243
Review Key Topics 243
Define Key Terms 243
Complete the Real-World Scenarios 243
Review Questions 244
Answers and Explanations 250

Chapter 8 Network Perimeter Security 255
Foundation Topics 256
Firewalls and Network Security 256
Firewalls 256
Proxy Servers 263
Chapter 10 Physical Security and Authentication Models 321

Foundation Topics 322
Physical Security 322
 General Building and Server Room Security 323
 Door Access 324
 Biometric Readers 326
Authentication Models and Components 327
 Authentication Models 327
 Localized Authentication Technologies 329
 802.1X and EAP 330
 LDAP 333
 Kerberos and Mutual Authentication 334
 Remote Desktop Services 336
 Remote Authentication Technologies 337
Qualitative Risk Assessment 399
Quantitative Risk Assessment 400
Security Analysis Methodologies 402
Security Controls 404
Vulnerability Management 405
Penetration Testing 407
OVAL 408
Additional Vulnerabilities 409
Assessing Vulnerability with Security Tools 410
 Network Mapping 411
 Vulnerability Scanning 412
 Network Sniffing 415
 Password Analysis 417
Chapter Summary 420
Chapter Review Activities 421
 Review Key Topics 421
 Define Key Terms 422
 Complete the Real-World Scenarios 422
 Review Questions 422
 Answers and Explanations 428

Chapter 13 Monitoring and Auditing 435
Foundation Topics 435
Monitoring Methodologies 435
 Signature-Based Monitoring 435
 Anomaly-Based Monitoring 436
 Behavior-Based Monitoring 436
Using Tools to Monitor Systems and Networks 437
 Performance Baselining 438
 Protocol Analyzers 440
 Wireshark 441
 SNMP 443
 Analytical Tools 445
 Use Static and Dynamic Tools 447
Conducting Audits 448
 Auditing Files 448
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Hash Functions</td>
<td>498</td>
</tr>
<tr>
<td>MD5</td>
<td>498</td>
</tr>
<tr>
<td>SHA</td>
<td>498</td>
</tr>
<tr>
<td>RIPEMD and HMAC</td>
<td>499</td>
</tr>
<tr>
<td>LANMAN, NTLM, and NTLMv2</td>
<td>500</td>
</tr>
<tr>
<td>LANMAN</td>
<td>500</td>
</tr>
<tr>
<td>NTLM and NTLMv2</td>
<td>501</td>
</tr>
<tr>
<td>Hashing Attacks</td>
<td>502</td>
</tr>
<tr>
<td>Pass the Hash</td>
<td>502</td>
</tr>
<tr>
<td>Happy Birthday!</td>
<td>503</td>
</tr>
<tr>
<td>Additional Password Hashing Concepts</td>
<td>503</td>
</tr>
<tr>
<td>Chapter Summary</td>
<td>505</td>
</tr>
<tr>
<td>Chapter Review Activities</td>
<td>507</td>
</tr>
<tr>
<td>Review Key Topics</td>
<td>507</td>
</tr>
<tr>
<td>Define Key Terms</td>
<td>507</td>
</tr>
<tr>
<td>Complete the Real-World Scenarios</td>
<td>508</td>
</tr>
<tr>
<td>Review Questions</td>
<td>508</td>
</tr>
<tr>
<td>Answers and Explanations</td>
<td>515</td>
</tr>
<tr>
<td>Chapter 15 PKI and Encryption Protocols</td>
<td>521</td>
</tr>
<tr>
<td>Foundation Topics</td>
<td>521</td>
</tr>
<tr>
<td>Public Key Infrastructure</td>
<td>521</td>
</tr>
<tr>
<td>Certificates</td>
<td>522</td>
</tr>
<tr>
<td>SSL Certificate Types</td>
<td>522</td>
</tr>
<tr>
<td>Single-Sided and Dual-Sided Certificates</td>
<td>523</td>
</tr>
<tr>
<td>Certificate Chain of Trust</td>
<td>523</td>
</tr>
<tr>
<td>Certificate Formats</td>
<td>523</td>
</tr>
<tr>
<td>Certificate Authorities</td>
<td>525</td>
</tr>
<tr>
<td>Web of Trust</td>
<td>529</td>
</tr>
<tr>
<td>Security Protocols</td>
<td>529</td>
</tr>
<tr>
<td>S/MIME</td>
<td>530</td>
</tr>
<tr>
<td>SSL/TLS</td>
<td>531</td>
</tr>
<tr>
<td>SSH</td>
<td>532</td>
</tr>
<tr>
<td>PPTP, L2TP, and IPsec</td>
<td>533</td>
</tr>
<tr>
<td>PPTP</td>
<td>533</td>
</tr>
</tbody>
</table>
About the Author

David L. Prowse is an author, technologist, and technical trainer. He has penned a dozen books for Pearson Education, including the well-received CompTIA A+ Exam Cram. He also develops video content, including the CompTIA A+ LiveLessons video course. Over the past two decades he has taught CompTIA A+, Network+, and Security+ certification courses, both in the classroom and via the Internet. David has 20 years of experience in the IT field and loves to share that experience with his readers, watchers, and students.

He runs the website www.davidlprowse.com in support of his books and videos.
Acknowledgments

It takes a lot of amazing people to publish a book. Special thanks go to Eleanor Bru, Chris Crayton, Michelle Newcomb, and all the other people at Pearson (and beyond) who helped make this book a reality. I appreciate everything you do!
About the Technical Reviewer

Chris Crayton (MCSE) is an author, technical consultant, and trainer. In the past, he has worked as a computer technology and networking instructor, information security director, network administrator, network engineer, and PC specialist. Chris has authored several print and online books on PC repair, CompTIA A+, CompTIA Security+, and Microsoft Windows. He has also served as technical editor and content contributor on numerous technical titles for several leading publishing companies. Chris holds numerous industry certifications, has been recognized with many professional teaching awards, and has served as a state-level SkillsUSA competition judge.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com

Mail: Pearson IT Certification
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Register your copy of CompTIA Security+ SY0-501 Cert Guide at www.pearsonitcertification.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to www.pearsonitcertification.com/register and log in or create an account.* Enter the product ISBN 9780789758996 and click Submit. When the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Introduction

Welcome to the CompTIA Security+ SY0-501 Cert Guide. The CompTIA Security+ Certification is widely accepted as the first security certification you should attempt to attain in your information technology (IT) career. The CompTIA Security+ Certification is designed to be a vendor-neutral exam that measures your knowledge of industry-standard technologies and methodologies. It acts as a great stepping stone to other vendor-specific certifications and careers. I developed this book to be something you can study from for the exam and keep on your bookshelf for later use as a security resource.

I’d like to note that it’s unfeasible to cover all security concepts in depth in a single book. However, the Security+ exam objectives are looking for a basic level of computer, networking, and organizational security knowledge. Keep this in mind while reading through this text, and remember that the main goal of this text is to help you pass the Security+ exam, not to be the master of all security. Not just yet at least!

Good luck as you prepare to take the CompTIA Security+ exam. As you read through this book, you will be building an impenetrable castle of knowledge, culminating in hands-on familiarity and the know-how to pass the exam.

IMPORTANT NOTE The first thing you should do before you start reading Chapter 1, “Introduction to Security,” is check my website for errata and updated information, and mark those new items in the book. Go to www.davidlprowse.com and then the Security+ section. On my site you will also find videos, bonus test questions, and other additional content. And, of course, you can contact me directly at my website to ask me questions about the book.

Goals and Methods

The number one goal of this book is to help you pass the SY0-501 version of the CompTIA Security+ Certification Exam. To that effect, I have filled this book and practice exams with more than 600 questions/answers and explanations in total, including three 80-question practice exams. One of the exams is printed at the end of the book, and all exams are located in Pearson Test Prep practice test software in a custom test environment. These tests are geared to check your knowledge and ready you for the real exam.

The CompTIA Security+ Certification exam involves familiarity with computer security theory and hands-on know-how. To aid you in mastering and understanding the Security+ Certification objectives, this book uses the following methods:
■ **Opening topics list:** This defines the topics to be covered in the chapter.

■ **Topical coverage:** The heart of the chapter. Explains the topics from a theory-based standpoint, as well as from a hands-on perspective. This includes in-depth descriptions, tables, and figures that are geared to build your knowledge so that you can pass the exam. The chapters are broken down into two to three topics each.

■ **Key Topics:** The Key Topic icons indicate important figures, tables, and lists of information that you should know for the exam. They are interspersed throughout the chapter and are listed in table format at the end of the chapter.

■ **Key Terms:** Key terms without definitions are listed at the end of each chapter. See whether you can define them, and then check your work against the complete key term definitions in the glossary.

■ **Real-World Scenarios:** Included in the supplemental online material are real-world scenarios for each chapter. These offer the reader insightful questions and problems to solve. The questions are often open-ended, and can have several different solutions. The online material gives one or more possible solutions and then points to video-based solutions and simulation exercises online to further reinforce the concepts. Refer to these real-world scenarios at the end of each chapter.

■ **Review Questions:** These quizzes, and answers with explanations, are meant to gauge your knowledge of the subjects. If an answer to a question doesn’t come readily to you, be sure to review that portion of the chapter. The review questions are also available online.

■ **Practice Exams:** There is one practice exam printed at the end of the book, and additional exams included in the Pearson Test Prep practice test software. These test your knowledge and skills in a realistic testing environment. Take these after you have read through the entire book. Master one, then move on to the next. Take any available bonus exams last.

Another goal of this book is to offer support for you, the reader. Again, if you have questions or suggestions, please contact me through my website: www.davidlprowse.com. I try my best to answer your queries as soon as possible.

Who Should Read This Book?

This book is for anyone who wants to start or advance a career in computer security. Readers of this book can range from persons taking a Security+ course to individuals already in the field who want to keep their skills sharp, or perhaps retain their job due to a company policy mandating they take the Security+ exam. Some information
assurance professionals who work for the Department of Defense or have privileged access to DoD systems are required to become Security+ certified as per DoD directive 8570.1.

This book is also designed for people who plan on taking additional security-related certifications after the CompTIA Security+ exam. The book is designed in such a way to offer an easy transition to future certification studies.

Although not a prerequisite, it is recommended that CompTIA Security+ candidates have at least two years of IT administration experience with an emphasis on security. The CompTIA Network+ certification is also recommended as a prerequisite. Before you begin your Security+ studies, it is expected that you understand computer topics such as how to install operating systems and applications, and networking topics such as how to configure IP, what a VLAN is, and so on. The focus of this book is to show how to secure these technologies and protect against possible exploits and attacks. Generally, for people looking to enter the IT field, the CompTIA Security+ certification is attained after the A+ and Network+ certifications.

CompTIA Security+ Exam Topics

If you haven’t downloaded the Security+ certification exam objectives, do it now from CompTIA’s website: https://certification.comptia.org/. Save the PDF file and print it out as well. It’s a big document—review it carefully. Use the exam objectives list and acronyms list to aid in your studies while you use this book.

The following two tables are excerpts from the exam objectives document. Table I-1 lists the CompTIA Security+ domains and each domain’s percentage of the exam.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Exam Topic</th>
<th>% of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Threats, Attacks and Vulnerabilities</td>
<td>21%</td>
</tr>
<tr>
<td>2.0</td>
<td>Technologies and Tools</td>
<td>22%</td>
</tr>
<tr>
<td>3.0</td>
<td>Architecture and Design</td>
<td>15%</td>
</tr>
<tr>
<td>4.0</td>
<td>Identity and Access Management</td>
<td>16%</td>
</tr>
<tr>
<td>5.0</td>
<td>Risk Management</td>
<td>14%</td>
</tr>
<tr>
<td>6.0</td>
<td>Cryptography and PKI</td>
<td>12%</td>
</tr>
</tbody>
</table>

The Security+ domains are then further broken down into individual objectives. To achieve better flow and to present the topics in more of a building-block approach, I rearranged the concepts defined in the objectives. This approach is designed especially for people who are new to the computer security field.
Table I-2 lists the CompTIA Security+ exam objectives and their related chapters in this book. It does not list the bullets and sub-bullets for each objective.

NOTE Chapter 19 gives strategies for taking the exam and therefore does not map to any specific objectives.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Chapter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Given a scenario, analyze indicators of compromise and determine the type of malware.</td>
<td>2, 13</td>
</tr>
<tr>
<td>1.2 Compare and contrast types of attacks.</td>
<td>7, 9, 14, 17</td>
</tr>
<tr>
<td>1.3 Explain threat actor types and attributes.</td>
<td>1, 17</td>
</tr>
<tr>
<td>1.4 Explain penetration testing concepts.</td>
<td>12</td>
</tr>
<tr>
<td>1.5 Explain vulnerability scanning concepts.</td>
<td>12</td>
</tr>
<tr>
<td>1.6 Explain the impact associated with types of vulnerabilities.</td>
<td>5, 12</td>
</tr>
<tr>
<td>2.1 Install and configure network components, both hardware- and software-based, to support organizational security.</td>
<td>6, 8, 10, 13, 15</td>
</tr>
<tr>
<td>2.2 Given a scenario, use appropriate software tools to assess the security posture of an organization.</td>
<td>13, 14, 18</td>
</tr>
<tr>
<td>2.3 Given a scenario, troubleshoot common security issues.</td>
<td>10, 11, 17</td>
</tr>
<tr>
<td>2.4 Given a scenario, analyze and interpret output from security technologies.</td>
<td>3, 4, 8</td>
</tr>
<tr>
<td>2.5 Given a scenario, deploy mobile devices securely.</td>
<td>3, 6, 9</td>
</tr>
<tr>
<td>2.6 Given a scenario, implement secure protocols.</td>
<td>6, 7, 13</td>
</tr>
<tr>
<td>3.1 Explain use cases and purpose for frameworks, best practices and secure configuration guides.</td>
<td>12, 18</td>
</tr>
<tr>
<td>3.2 Given a scenario, implement secure network architecture concepts.</td>
<td>6, 7, 9, 10, 13</td>
</tr>
<tr>
<td>3.3 Given a scenario, implement secure systems design.</td>
<td>3, 4</td>
</tr>
<tr>
<td>3.4 Explain the importance of secure staging deployment concepts.</td>
<td>5, 12</td>
</tr>
<tr>
<td>3.5 Explain the security implications of embedded systems.</td>
<td>3, 4, 18</td>
</tr>
<tr>
<td>3.6 Summarize secure application development and deployment concepts.</td>
<td>5</td>
</tr>
<tr>
<td>3.7 Summarize cloud and virtualization concepts.</td>
<td>4, 6</td>
</tr>
<tr>
<td>3.8 Explain how resiliency and automation strategies reduce risk.</td>
<td>12, 16</td>
</tr>
<tr>
<td>3.9 Explain the importance of physical security controls.</td>
<td>10</td>
</tr>
<tr>
<td>Objective</td>
<td>Chapter(s)</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>4.1 Compare and contrast identity and access management concepts.</td>
<td>10</td>
</tr>
<tr>
<td>4.2 Given a scenario, install and configure identity and access services.</td>
<td>10</td>
</tr>
<tr>
<td>4.3 Given a scenario, implement identity and access management controls.</td>
<td>10, 11</td>
</tr>
<tr>
<td>4.4 Given a scenario, differentiate common account management practices.</td>
<td>11</td>
</tr>
<tr>
<td>5.1 Explain the importance of policies, plans and procedures related to organizational security.</td>
<td>18</td>
</tr>
<tr>
<td>5.2 Summarize business impact analysis concepts.</td>
<td>16</td>
</tr>
<tr>
<td>5.3 Explain risk management processes and concepts.</td>
<td>12, 18</td>
</tr>
<tr>
<td>5.4 Given a scenario, follow incident response procedures.</td>
<td>18</td>
</tr>
<tr>
<td>5.5 Summarize basic concepts of forensics.</td>
<td>18</td>
</tr>
<tr>
<td>5.6 Explain disaster recovery and continuity of operation concepts.</td>
<td>16</td>
</tr>
<tr>
<td>5.7 Compare and contrast various types of controls.</td>
<td>1, 12</td>
</tr>
<tr>
<td>5.8 Given a scenario, carry out data security and privacy practices.</td>
<td>18</td>
</tr>
<tr>
<td>6.1 Compare and contrast basic concepts of cryptography.</td>
<td>14</td>
</tr>
<tr>
<td>6.2 Explain cryptography algorithms and their basic characteristics.</td>
<td>14</td>
</tr>
<tr>
<td>6.3 Given a scenario, install and configure wireless security settings.</td>
<td>9, 10</td>
</tr>
<tr>
<td>6.4 Given a scenario, implement public key infrastructure.</td>
<td>15</td>
</tr>
</tbody>
</table>

Companion Website

Register this book to get access to the Pearson Test Prep practice test software and other study materials plus additional bonus content. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam. Be sure to check the box that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow these steps:

1. Go to www.pearsonitcertification.com/register and log in or create a new account.

2. On your Account page, tap or click the Registered Products tab, and then tap or click the Register Another Product link.

4. Answer the challenge question as proof of book ownership.
5. Tap or click the **Access Bonus Content** link for this book to go to the page where your downloadable content is available.

Please note that many of our companion content files can be very large, especially image and video files.

If you are unable to locate the files for this title by following the preceding steps, please visit http://www.pearsonitcertification.com/contact and select the “Site Problems/Comments” option. Our customer service representatives will assist you.

Pearson Test Prep Practice Test Software

As noted previously, this book comes complete with the Pearson Test Prep practice test software containing three full exams. These practice tests are available to you either online or as an offline Windows application. To access the practice exams that were developed with this book, please see the instructions in the card inserted in the sleeve in the back of the book. This card includes a unique access code that enables you to activate your exams in the Pearson Test Prep software.

NOTE The cardboard sleeve in the back of this book includes a piece of paper. The paper lists the activation code for the practice exams associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time-use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Accessing the Pearson Test Prep Software Online

The online version of this software can be used on any device with a browser and connectivity to the Internet including desktop machines, tablets, and smartphones. To start using your practice exams online, simply follow these steps:

1. Go to www.PearsonTestPrep.com and select **Pearson IT Certification** as your product group.
2. Enter your email/password for your account. If you do not have an account on PearsonITCertification.com or CiscoPress.com, you will need to establish one by going to PearsonITCertification.com/join.
3. On the My Products tab, tap or click the **Activate New Product** button.
4. Enter this book’s activation code and click Activate.

5. The product will now be listed on your My Products tab. Tap or click the Exams button to launch the exam settings screen and start your exam.

Accessing the Pearson Test Prep Software Offline

If you wish to study offline, you can download and install the Windows version of the Pearson Test Prep software. There is a download link for this software on the book’s companion website, or you can just enter this link in your browser:

http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip

To access the book’s companion website and the software, simply follow these steps:

2. Respond to the challenge questions.

3. Go to your account page and select the Registered Products tab.

4. Click the Access Bonus Content link under the product listing.

5. Click the Install Pearson Test Prep Desktop Version link under the Practice Exams section of the page to download the software.

6. Once the software finishes downloading, unzip all the files on your computer.

7. Double-click the application file to start the installation, and follow the onscreen instructions to complete the registration.

8. Once the installation is complete, launch the application and click the Activate Exam button on the My Products tab.

9. Click the Activate a Product button in the Activate Product Wizard.

10. Enter the unique access code found on the card in the sleeve in the back of your book and click the Activate button.

11. Click Next and then the Finish button to download the exam data to your application.

12. You can now start using the practice exams by selecting the product and clicking the Open Exam button to open the exam settings screen.
Note that the offline and online versions will synch together, so saved exams and grade results recorded on one version will be available to you on the other as well.

Customizing Your Exams

Once you are in the exam settings screen, you can choose to take exams in one of three modes:

- **Study Mode**
- **Practice Exam Mode**
- **Flash Card Mode**

Study Mode allows you to fully customize your exams and review answers as you are taking the exam. This is typically the mode you would use first to assess your knowledge and identify information gaps. Practice Exam Mode locks certain customization options, as it is presenting a realistic exam experience. Use this mode when you are preparing to test your exam readiness. Flash Card Mode strips out the answers and presents you with only the question stem. This mode is great for late-stage preparation when you really want to challenge yourself to provide answers without the benefit of seeing multiple-choice options. This mode will not provide the detailed score reports that the other two modes will, so it should not be used if you are trying to identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions. You can choose to take exams that cover all of the chapters or you can narrow your selection to just a single chapter or the chapters that make up specific parts in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, simply deselect all the chapters then select only those on which you wish to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. The exam printed in the book is available to you as well as two additional exams of unique questions. You can have the test engine serve up exams from all banks or just from one individual bank by selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam settings screen, such as the time of the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple-answer questions, or whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.
Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software, it will check to see if there are any updates to your exam data and automatically download any changes that were made since the last time you used the software. This requires that you are connected to the Internet at the time you launch the software.

Sometimes, due to many factors, the exam data may not fully download when you activate your exam. If you find that figures or exhibits are missing, you may need to manually update your exams.

To update a particular exam you have already activated and downloaded, simply select the **Tools** tab and click the **Update Products** button. Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Pearson Test Prep exam engine software, Windows desktop version, simply select the **Tools** tab and click the **Update Application** button. This will ensure you are running the latest version of the software engine.

Premium Edition eBook and Practice Tests

This book also includes an exclusive offer for 70 percent off the Premium Edition eBook and Practice Tests edition of this title. Please see the coupon code included with the cardboard sleeve for information on how to purchase the Premium Edition.
This chapter covers the following subjects:

- **Firewalls and Network Security**: In this section, you find out about one of the most important strategic pieces in your network security design—the firewall. Then we discuss other network security concepts such as packet filtering, access control lists, proxy servers, and honeypots.

- **NIDS Versus NIPS**: This section delves into the characteristics, advantages, disadvantages, and differences of network intrusion detection systems and network intrusion prevention systems.

This chapter is all about the network border, also known as the network perimeter. This should be a network security administrator’s primary focus when it comes to securing the network because it contains the entrances that many attackers attempt to use.
Network Perimeter Security

Allow me to analogize for a few moments. I’ve said it before; as you read this book, you are building yourself an impenetrable castle of knowledge, culminating in hands-on familiarity and the know-how to pass the exam. But we can use the castle analogy for your network as well. Imagine a big stone castle with tall walls, an expanse of clear land around the castle, or perhaps a moat surrounding it (with alligators, of course), and one or more drawbridges. The tall walls are meant to keep the average person out, sort of like a firewall in a computer network—not perfect, but necessary. The open area around the castle makes it difficult for people to sneak up on your castle; they would quickly be detected, just like malicious packets detected by a network intrusion detection system. Or better yet, if you had a moat, people trying to cross it would have a difficult time, would be easy targets for your bowmen, and would probably be gobbled up by your pet alligators. This would represent a network intrusion prevention system, which not only detects threats, but also eliminates those threats to the network.

The drawbridge, or drawbridges, could be seen as network ports open to the network. As drawbridges are part of the castle wall, so network ports are part of the firewall. You, as the network security administrator, have the ability and the right to close these ports at any time. At the risk of taking this analogy even further, you might decide to set traps for people; like a pool of quicksand that has an open netted bag of pyrite suspended above it, or maybe a false entry to the castle that, after a long corridor, is walled off on the inside, ultimately trapping the unwary. In a network environment, these would be known as honeypots. Of course, every once in a while, legitimate traffic needs to enter and exit your network, too! To do this in a more secure fashion, you can set up proxy servers to act as go-betweens for the computers inside your network and the servers they talk to on the Internet: kind of like a sentry in the tower of the castle that would relay an outsider’s messages to someone inside the castle.

The network perimeter is less tangible in an actual network environment (thus the previous use of superfluous metaphor). Networking devices are commonly located in a single server room or data center, or perhaps are located in a hybrid
of in-house and cloud-based locations. Either way, they can be difficult to visualize. To better envision your network, one of the best tips I can give you is to map out your network on paper, or create network documentation using programs such as Microsoft Visio and by utilizing network mapping tools (more on these tools in Chapter 12, “Vulnerability and Risk Assessment”).

So, before we end up playing Dungeons & Dragons, let’s talk about one of the most important parts of your strategic defense—the firewall.

Foundation Topics

Firewalls and Network Security

Nowadays, firewalls are everywhere. Businesses large and small use them, and many households have simpler versions of these protective devices as well. You need to be aware of several types of firewalls, and you definitely want to spend some time configuring hardware and software firewalls. There are many free software-based firewalls and firmware-based emulators that you can download. A quick search on the Internet will give you several options.

The firewall is there to protect the entire network, but other tools are often implemented as well; for example, proxy servers that help protect users and computers by keeping them anonymous; honeypots meant to attract hackers, crackers, and other types of attackers into a false computer or network; and data loss prevention (DLP) devices to keep confidential data from leaving the network. But by far, the most important element in your network will be the firewall, so let’s begin with that.

Firewalls

In Chapter 3, “Computer Systems Security Part II,” we discussed personal firewalls—you remember, the kind installed to an individual computer. Now let’s broaden the scope of your knowledge with network-based firewalls. Network-based firewalls are primarily used to section off and protect one network from another. They are a primary line of defense and are extremely important in network security. There are several types of firewalls; some run as software on server computers, some as standalone dedicated appliances, and some work as just one function of many on a single device. They are commonly represented as a sort of “brick wall” between a LAN and the Internet, as shown in Figure 8-1.
Just as a firewall in a physical building is there to slow the spread of a fire and contain it until the fire department arrives, a firewall in a computer network is there to keep fire at bay in the form of malicious attacks. Often, a firewall (or the device the firewall resides on) has NAT in operation as well. In Figure 8-1, note that the firewall has a local address of 172.29.250.200; this connects it to the LAN. It also has an Internet address of 65.43.18.1, enabling connectivity for the entire LAN to the Internet, while hiding the LAN IP addresses. By default, the IP address 65.43.18.1 is completely shielded. This means that all inbound ports are effectively closed and will not enable incoming traffic, unless a LAN computer initiates a session with another system on the Internet. However, a good security administrator always checks this to make sure; first, by accessing the firewall’s firmware (or software application, as the case may be) and verifying that the firewall is on, and next by scanning the firewall with third-party applications such as Nmap (https://nmap.org) or with a web-based port scanning utility, as was shown in a Chapter 7 Real-world Scenario. If any ports are open, or unshielded, they should be dealt with immediately. Then the firewall should be rescanned for vulnerabilities. You can find more information on port scanning and vulnerability assessments in Chapter 12.

Important point: Firewalls should be used only as they were intended. The company firewall should not handle any other extraneous services—for example, acting as a web server or SMTP server. By using a firewall as it was intended, its vulnerability is reduced.
Generally, a firewall inspects traffic that passes through it and permits or denies that traffic based on rules set by an administrator. These rules are stored within access control lists (ACLs). In regards to firewalls, an ACL is a set of rules that applies to a list of network names, IP addresses, and port numbers. These rules can be configured to control inbound and outbound traffic. This is a bit different than ACLs with respect to operating systems, which we cover in Chapter 11, “Access Control Methods and Models,” but the same basic principles apply: Basically, one entity is granted or denied permission to another entity. If you decide that a specific type of traffic should be granted access to your network, you would explicitly allow that traffic as a rule within an ACL. If on the other hand you decide that a specific type of traffic should not be granted access, you would explicitly deny that traffic within an ACL. And finally, if a type of network traffic is not defined in the firewall’s rule set, it should be stopped by default. This is the concept of implicit deny and is usually a default rule found in a firewall’s ACL. It is often added automatically to the end of a firewall’s rule set (ACLs) and is also known as “block all.”

Firewall rules should be specific. Here’s an example of a firewall rule:

deny TCP any any port 53

This rule can be used to restrict DNS zone transfers (as they run on top of TCP and use port 53), but other DNS traffic will still function properly. The rule is specific; it gives the transport layer protocol to be filtered, and the exact port, and also states that it applies to any computer’s IP address on the inbound and outbound side. Be careful with firewall rules and ACLs; they need to be written very cautiously so as not to filter required traffic.

NOTE Traffic can also be passed to other computers and servers, or to specific ports. For a quick tutorial on setting up virtual servers and port forwarding on a typical SOHO router/firewall, see the following link: http://www.davidlprowse.com/articles/?p=916.

A lot of today’s firewalls have two types of firewall technologies built into them: SPI and NAT. However, you also should be aware of a couple other types of firewall methodologies:

- **Packet filtering:** Inspects each packet passing through the firewall and accepts or rejects it based on rules. However, there are two types: stateless packet inspection and stateful packet inspection (also known as SPI or a stateful firewall). A stateless packet filter, also known as pure packet filtering, does not
retain memory of packets that have passed through the firewall; due to this, a stateless packet filter can be vulnerable to IP spoofing attacks. But a firewall running stateful packet inspection is normally not vulnerable to this because it keeps track of the state of network connections by examining the header in each packet. It can distinguish between legitimate and illegitimate packets. This function operates at the network layer of the OSI model.

- **NAT filtering:** Also known as NAT endpoint filtering, filters traffic according to ports (TCP or UDP). This can be done in three ways: by way of basic endpoint connections, by matching incoming traffic to the corresponding outbound IP address connection, or by matching incoming traffic to the corresponding IP address and port.

- **Application-level gateway (ALG):** Applies security mechanisms to specific applications, such as FTP or BitTorrent. It supports address and port translation and checks whether the type of application traffic is allowed. For example, your company might allow FTP traffic through the firewall, but might decide to disable Telnet traffic (probably a wise choice). The ALG checks each type of packet coming in and discards Telnet packets. Although this adds a powerful layer of security, the price is that it is resource-intensive, which could lead to performance degradation.

- **Circuit-level gateway:** Works at the session layer of the OSI model, and applies security mechanisms when a TCP or UDP connection is established; it acts as a go-between for the transport and application layers in TCP/IP. After the connection has been made, packets can flow between the hosts without further checking. Circuit-level gateways hide information about the private network, but they do not filter individual packets.

A firewall can be set up in several different physical configurations. For example, in Chapter 6, “Network Design Elements,” we discussed implementing a DMZ. This could be done in a back-to-back configuration (two firewalls surrounding the DMZ), as shown in Figure 8-2, or as a 3-leg perimeter configuration.
Generally, there will be one firewall with the network and all devices and computers residing “behind” it. By the way, if a device is “behind” the firewall, it is also considered to be “after” the firewall, and if the device is “in front of” the firewall, it is also known as being “before” the firewall. Think of the firewall as the drawbridge of a castle. When you are trying to gain admittance to the castle, the drawbridge will probably be closed. You would be in front of the drawbridge, and the people inside the castle would be behind the drawbridge. This is a basic analogy but should help you to understand the whole “in front of” and “behind” business as it relates to data attempting to enter the network and devices that reside on your network.

Logging is also important when it comes to a firewall. Firewall logs should be the first thing you check when an intrusion has been detected. You should know how to access the logs and how to read them. For example, Figure 8-3 shows two screen captures: The first displays the Internet sessions on a basic SOHO router/firewall, and the second shows log events such as blocked packets. Look at the blocked Gnutella packet that is pointed out. I know it is a Gnutella packet because the inbound port on my firewall that the external computer is trying to connect to shows as port 6346; this associates with Gnutella. Gnutella is an older P2P file-sharing network. None of the computers on this particular network use or are in any way connected to the Gnutella service. These external computers are just random clients of the Gnutella P2P network trying to connect to anyone possible.
It’s good that these packets have been blocked, but maybe you don’t want the IP address shown (24.253.3.20) to have any capability to connect to your network at all. To eliminate that IP, you could add it to an inbound filter or to an ACL.

So far, we have discussed host-based firewalls (in Chapter 3) and, just now, network-based firewalls. However, both of these firewalls can also fall into the category of **application firewall**. If either type runs protocols that operate on the application layer of the OSI model, then it can be classified as an application firewall. That means that it can control the traffic associated with specific applications. This is
something a stateful network firewall cannot do, as this function operates at the application layer of the OSI model. Many host-based firewalls fall into this category, but when it comes to network-based firewalls, it varies. A basic SOHO router with built-in firewalling capabilities would usually not fall into the application firewall category. However, more advanced network appliances from companies such as Barracuda, Citrix, Fortinet, and Smoothwall do fall into this category. This means that they allow for more in-depth monitoring of the network by controlling the input, output, and access to applications and services all the way up through the application layer of the OSI model. These appliances might also be referred to as network-based application layer firewalls. Now that’s a mouthful—just be ready for multiple terms used by companies and technicians.

Going a step further, some of the aforementioned network appliances have tools that are designed to specifically protect HTTP sessions from XSS attacks and SQL injection. These types of tools are known as web application firewalls. WAFs can help to protect the servers in your environment.

NOTE A firewall appliance needs more than one network adapter so that it can connect to more than one network; this is known as a multihomed connection. It might be dual-homed (two adapters), or perhaps it has more, maybe three network adapters, in case you want to implement a DMZ or another perimeter security technique.

Firewalls are often considered to be all-in-one devices, but actually they provide specific functionality as discussed in this section. Still, it is common to hear people refer to a firewall when they are really talking about another technology, or even another device. For example, many SOHO users have an all-in-one multifunction network device. This device has four ports for wired connections, plus a wireless antenna; it connects all the computers to the Internet, and finally has a firewall built-in. Because some users consider this to be simply a firewall, you should teach them about the benefits of disabling SSID broadcasting, and enabling MAC filtering. By disabling Service Set Identifier (SSID) broadcasting, the average user cannot connect wirelessly to the device. An attacker knows how to bypass this, but it is an important element of security that you should implement after all trusted computers have been connected wirelessly. MAC filtering denies access to any computer that does not have one of the MAC addresses you list, another powerful tool that we will cover more in Chapter 9, “Securing Network Media and Devices.”

To make matters a bit more confusing, a firewall can also act as, or in combination with, a proxy server, which we discuss in the following section.
Proxy Servers

A proxy server acts as an intermediary for clients, usually located on a LAN, and the servers that they want to access, usually located on the Internet. By definition, proxy means go-between, or mediator, acting as such a mediator in between a private network and a public network. The proxy server evaluates requests from clients and, if they meet certain criteria, forwards them to the appropriate server. There are several types of proxies, including a couple you should know for the exam:

- **IP proxy**: Secures a network by keeping machines behind it anonymous; it does this through the use of NAT. For example, a basic four-port router can act as an IP proxy for the clients on the LAN it protects. An IP proxy can be the victim of many of the network attacks mentioned in Chapter 6, especially DoS attacks. Regardless of whether the IP proxy is an appliance or a computer, it should be updated regularly, and its log files should be monitored periodically and audited according to organization policies.

- **Caching proxy**: Attempts to serve client requests without actually contacting the remote server. Although there are FTP and SMTP proxies, among others, the most common caching proxy is the **HTTP proxy**, also known as a web proxy, which caches web pages from servers on the Internet for a set amount of time. Examples of caching proxies include WinGate (for Windows systems) and Squid (commonly used on Linux-based systems). An example of a caching proxy is illustrated in Figure 8-4. For example, let’s say a co-worker of yours (Client A) accessed www.google.com, and that she was the first person to do so on the network. This client request will go through the HTTP proxy and be redirected to Google’s web server. As the data for Google’s home page comes in, the HTTP proxy will store or cache that information. When another person on your network (Client B) makes a subsequent request for www.google.com, the bulk of that information will come from the HTTP proxy instead of from Google’s web server. This is done to save bandwidth on the company’s Internet connection and to increase the speed at which client requests are carried out. Most HTTP proxies check websites to verify that nothing has changed since the last request. Because information changes quickly on the Internet, a time limit of 24 hours is common for storing cached information before it is deleted.

Web browsers make use of a **proxy auto-configuration (PAC)** file, which defines how the browser can automatically choose a proxy server. The file itself and the embedded JavaScript function pose a security risk in that the file can be exploited and modified, ultimately redirecting the user to unwanted (and potentially malicious) websites. Consider disabling PAC files and auto-configuration in general within client web browsers.
Other types of proxies are available to apply policies, block undesirable websites, audit employee usage, and scan for malware. One device or computer might do all these things or just one or two. It depends on the software used or appliance installed. Reverse proxies can also be implemented to protect a DMZ server’s identity or to provide authentication and other secure tasks. This is done when users on the Internet are accessing server resources on your network. Generally, a proxy server has more than one network adapter so that it can connect to the various networks it is acting as a mediator for. Each of the network adapters in a proxy should be periodically monitored for improper traffic and for possible network attacks and other vulnerabilities. A proxy server might be the same device as a firewall, or it could be separate. Because of this, a multitude of network configurations are possible. Proxy servers, especially HTTP proxies, can be used maliciously to record traffic sent through them; because most of the traffic is sent in unencrypted form, this could be a security risk. A possible mitigation for this is to chain multiple proxies together in an attempt to confuse any onlookers and potential attackers.

Most often, a proxy server is implemented as a forward proxy. This means that clients looking for websites, or files via an FTP connection, pass their requests through to the proxy. However, there is also a reverse proxy, where multiple HTTP or FTP servers use a proxy server and send out content to one or more clients. These HTTP and FTP servers could be located in a server farm or similar grouping, and the reverse proxy might also undertake the role of load balancer in this situation. A reverse proxy can act as another layer of defense for an organization’s FTP or HTTP servers. An application proxy might be used as a reverse proxy; for example, Microsoft’s Web Application Proxy, which enables remote users to connect to the organization’s internal network to access multiple servers. These are often multipurpose by design, allowing for HTTP, FTP, e-mail, and other types of data.
connections. However, it could be that you have a single application stored on several servers. Those servers can work together utilizing clustering technology. The clustering might be controlled by the servers themselves or, more commonly, a load balancer can be installed in front of the servers that distributes the network load among them. That load balancer in effect acts as a reverse proxy.

Regardless of the type of proxy used, it will often modify the requests of the “client computer,” whatever that client is, providing for a level of anonymity. But in some cases, you might need a proxy that does not modify requests. This is known as a transparent proxy. While it allows for increased efficiency, there is less protection for the client system.

Another example of a proxy in action is Internet content filtering. An Internet content filter, or simply a content filter, is usually applied as software at the application layer and can filter out various types of Internet activities such as websites accessed, e-mail, instant messaging, and more. It often functions as a content inspection device, and disallows access to inappropriate web material (estimated to be a big percentage of the Internet!) or websites that take up far too much of an organization’s Internet bandwidth. Internet content filters can be installed on individual clients, but by far the more efficient implementation is as an individual proxy that acts as a mediator between all the clients and the Internet. These proxy versions of content filters secure the network in two ways: one, by forbidding access to potentially malicious websites, and two, by blocking access to objectionable material that employees might feel is offensive. It can also act as a URL filter; even if employees inadvertently type an incorrect URL, they can rest assured that any objectionable material will not show up on their display.

Internet filtering appliances analyze just about all the data that comes through them, including Internet content, URLs, HTML tags, metadata, and security certificates such as the kind you would automatically receive when going to a secure site that starts with https. (However, revoked certificates and certificate revocation lists, or CRLs, will not be filtered because they are only published periodically. More on certificates and CRLs is provided in Chapter 15, “PKI and Encryption Protocols.”) Some of these appliances are even capable of malware inspection. Another similar appliance is the web security gateway. Web security gateways (such as Forcepoint, previously known as Websense) act as go-between devices that scan for viruses, filter content, and act as data loss prevention (DLP) devices. This type of content inspection/content filtering is accomplished by actively monitoring the users’ data streams in search of malicious code, bad behavior, or confidential data that should not be leaked outside the network.

As you can see, many, many options for security devices are available for your network, and many vendors offer them. Based on price, you can purchase all kinds of devices, from ones that do an individual task, to ones that are combinations of
everything we spoke about so far, which are also known as *all-in-one security appliances* or unified threat management (UTM) devices (discussed in the upcoming “NIDS Versus NIPS” section).

NOTE Proxies, content filters, and web security gateways are examples of servers that probably face the Internet directly. These “Internet-facing servers” require security controls before they are installed. The two most important security controls are to keep the application up to date, and to review and apply vendor-provided hardening documentation. Remember to do these things before putting the proxy server (or other Internet-facing servers) in a live environment.

Honeypots and Honeynets

Honeypots and honeynets attract and trap potential attackers to counteract any attempts at unauthorized access of the network. This isolates the potential attacker in a monitored area and contains dummy resources that look to be of value to the perpetrator. While an attacker is trapped in one of these, their methods can be studied and analyzed, and the results of those analyses can be applied to the general security of the functional network.

A honeypot is generally a single computer but could also be a file, group of files, or an area of unused IP address space, whereas a honeynet is one or more computers, servers, or an area of a network; a honeynet is used when a single honeypot is not sufficient. Either way, the individual computer, or group of servers, will usually not house any important company information. Various analysis tools are implemented to study the attacker; these tools, along with a centralized group of honeypots (or a honeynet), are known collectively as a honeyfarm.

One example of a honeypot in action is the spam honeypot. Spam e-mail is one of the worst banes known to a network administrator; a spam honeypot can lure spammers in, enabling the network administrators to study the spammers’ techniques and habits, thus allowing the network admins to better protect their actual e-mail servers, SMTP relays, SMTP proxies, and so on, over the long term. It might ultimately keep the spammers away from the real e-mail addresses, because the spammers are occupied elsewhere. Some of the information gained by studying spammers is often shared with other network admins or organizations’ websites dedicated to reducing spam. A spam honeypot could be as simple as a single e-mail address or as complex as an entire e-mail domain with multiple SMTP servers.

Of course, as with any technology that studies attackers, honeypots also bear risks to the legitimate network. The honeypot or honeynet should be carefully firewalled off from the legitimate network to ensure that the attacker can’t break through.
Often, honeypots and honeynets are used as part of a more complex solution known as a network intrusion detection system, discussed following a short review of data loss prevention.

Data Loss Prevention (DLP)

We mentioned DLP in Chapter 3. Let’s discuss it briefly now as it relates to networks. **Data loss prevention (DLP)** systems are designed to protect data by way of content inspection. They are meant to stop the leakage of confidential data, often concentrating on communications. As such, they are also referred to as data leak prevention (DLP) devices, information leak prevention (ILP) devices, and extrusion prevention systems. Regardless, they are intended to be used to keep data from leaking past a computer system or network and into unwanted hands.

In network-based DLP, systems deal with data in motion and are usually located on the perimeter of the network. If data is classified in an organization’s policy as confidential and not to be read by outsiders, the DLP system detects it and prevents it from leaving the network. Network-based DLP systems can be hardware-based or software-based. An example of a network-based DLP system would be one that detects and prevents the transfer of confidential e-mail information outside the network. Organizations such as Check Point offer DLP solutions, and there are some free open source applications as well. Going further, there are cloud-based DLP solutions available. But it all depends on where you store your data. If you store some or all of your data on the cloud, or if you have a large bring your own device (BYOD) or choose your own device (CYOD) population, then cloud-based DLP becomes an important part of your security strategy. Because the data—and the security of that data—is now external from the company, planning becomes even more vital. Some key elements of the security mindset include: 1) planning for the mitigation of security risks; 2) adequate understanding of the cloud-based provider, where and how data is stored, and their service-level agreement (SLA); 3) in-depth analysis of code and the types of data that will be stored in the cloud; and 4) strong authentication, auditing, and logging. If all this is planned for and implemented properly, it can build the organization’s confidence in the cloud, which can lead to a smoother transition, and ultimately reduce risk. However, all this becomes a bigger conversation: We’ll talk more about general mindsets when dealing with cloud-based companies in Chapter 16, “Redundancy and Disaster Recovery,” and Chapter 18, “Policies and Procedures.”

As for DLP, the monitoring of possible leaked information could become a privacy concern. Before implementing a system of this nature, it is important to review your organization’s privacy policies. Leaks can still occur due to poor implementation of DLP systems, so it is essential to plan what type of DLP solution your organization needs, exactly how it will be installed, and how it will be monitored.
NIDS Versus NIPS

It's not a battle royale, but you should be able to differentiate between a network intrusion detection system (NIDS) and a network intrusion prevention system (NIPS) for the exam. Previously, in Chapter 4, “OS Hardening and Virtualization,” we discussed host-based intrusion detection systems (or HIDSs). Although a great many attacks can hamper an individual computer, just as many network attacks could possibly take down a server, switch, router, or even an entire network. Network-based IDSs were developed to detect these malicious network attacks, and network-based IPSs were developed in an attempt to prevent them.

NIDS

A network intrusion detection system (NIDS) by definition is a type of IDS that attempts to detect malicious network activities, for example, port scans and DoS attacks, by constantly monitoring network traffic. It can also be instrumental in rogue machine detection, including rogue desktops, laptops, and mobile devices, as well as rogue access points, DHCP servers, and network sniffers. Examples of NIDS solutions include open-source products such as Snort (https://www.snort.org/), Bro (https://www.bro.org/), and many other commercial hardware and software-based products. A NIDS should be situated at the entrance or gateway to your network. It is not a firewall but should be used with a firewall. Because the NIDS inspects every packet that traverses your network, it needs to be fast; basically, the slower the NIDS, the slower the network. So, the solution itself, the computer/device it is installed on, and the network connections of that computer/device all need to be planned out accordingly to ensure that the NIDS does not cause network performance degradation.

Figure 8-5 illustrates how a NIDS might be implemented on a network. Often it is placed in front of a firewall. The NIDS detects attacks and anomalies and alerts the administrator if they occur, whereas the firewall does its best to prevent those attacks from entering the network. However, a NIDS could be placed behind the firewall, or you might have multiple NIDS points strategically placed around the network. If the NIDS is placed in front of the firewall, it generates a lot more administrator alerts, but these can usually be whittled down within the firmware or software of the device running the NIDS. Regardless of where the NIDS is located, a network administrator should monitor traffic from time to time; to do so, the computer, server, or appliance that has the NIDS installed should have a network adapter configured to work in promiscuous mode. This passes all traffic to the CPU, not just the frames addressed to it.
The beauty of a NIDS is that you might get away with one or two NIDS points on the network, and do away with some or all the HIDS installed on individual computers, effectively lowering the bottom line while still doing a decent job of mitigating risk. A couple of disadvantages of a NIDS, aside from possible network performance issues, are that it might not be able to read encrypted packets of information and will not detect problems that occur on an individual computer. Therefore, to secure a network and its hosts, many organizations implement a mixture of NIDS and HIDS. If a NIDS is placed in front of the firewall, it is subject to attack; therefore, it should be monitored and updated regularly. Some NIDS solutions will auto-update. Finally, the biggest disadvantage of a NIDS is that it is passive, meaning it only detects attacks; to protect against, or prevent, these attacks, you need something active, you need a NIPS.

NIPS

A network intrusion prevention system (NIPS) is designed to inspect traffic and, based on its configuration or security policy, either remove, detain, or redirect malicious traffic that it becomes aware of. The NIPS (as well as the NIDS) is considered to be an application-aware device, meaning it can divine different types of packets, define what application they are based on, and ultimately permit or disallow that traffic on the network. More and more companies are offering NIPS solutions in addition to, or instead of, NIDS solutions. Examples of NIPS solutions include Check Point security appliances (https://www.checkpoint.com), and the aforementioned Snort, which is actually a NIDS/NIPS software package that should be installed on a dual-homed or multihomed server. Not only can a NIPS go above and beyond a NIDS by removing or redirecting malicious traffic, it can also redirect a recognized attacker to a single computer known as a padded cell, which contains no information of value and has no way out.

Like a NIDS, a NIPS should sit inline on the network, often in front of the firewall, although it could be placed elsewhere, depending on the network segment it protects and the network architecture. Whereas many NIPS solutions have two
connections only and are known as perimeter solutions, other NIPS appliances have up to 16 ports enabling many points of detection on the network—these would be known as network “core” devices. Regardless of the solution you select, as packets pass through the device, they are inspected for possible attacks. These devices need to be accurate and updated often (hopefully automatically) to avoid the misidentification of legitimate traffic, or worse, the misidentification of attacks. If the NIPS blocks legitimate traffic, it would be known as a false positive, and effectively could deny service to legitimate customers, creating a self-inflicted denial-of-service of sorts.

If the IPS does not have a particular attack’s signature in its database, and lets that attack through thinking it is legitimate traffic, it is known as a false negative, also bad for obvious reasons! Many IPS systems can monitor for attack signatures and anomalies. More information on signatures can be found in Chapter 4 and Chapter 13, “Monitoring and Auditing.” Another type of error that can occur with NIDS and NIPS is a subversion error; this is when the NIDS/NIPS has been altered by an attacker to allow for false negatives, ultimately leading to attacks creeping into the network. This can be deadly because the NIDS/NIPS often is the first point of resistance in the network. To protect against this, some devices have the capability to hide or mask their IP address. They might also come with an internal firewall. It is also important to select an IPS solution that has a secure channel for the management console interface.

One advantage of newer NIPS solutions is that some of them can act as protocol analyzers by reading encrypted traffic and stopping encrypted attacks. In general, the beauty of a NIPS compared to a host-based IPS (HIPS) is that it can protect non-computer-based network devices such as switches, routers, and firewalls. However, the NIPS is considered a single point of failure because it sits inline on the network. Due to this, some organizations opt to install a bypass switch, which also enables the NIPS to be taken offline when maintenance needs to be done.

A vital NIPS consideration is whether to implement a fail-close or fail-open policy—in essence, deciding what will happen if the NIPS fails. Fail-close means that all data transfer is stopped, while fail-open means that data transfer (including potential attacks) are passed through. Let’s consider an example. Say that the NIPS was protecting an individual server (or router), and had a certain level of control over that system. Now let’s say that the NIPS failed. In a fail-close scenario, it would disconnect the system that it is protecting, stopping all data transfer. This is unacceptable to some organizations that require near 100 percent uptime. These organizations are willing to accept additional risk, and therefore are more receptive to a fail-open scenario. However, in this case, if the NIPS fails, it continues to pass all traffic to the “protected” system, which could include possible attacks. Sometimes, fail-open scenarios are necessary. In these cases, defense in depth is the
best strategy. For instance, you might opt to have a firewall filter the bulk of traffic coming into the network, but have the IPS filter only specific traffic, reducing the chances of IPS failure. This layered approach can offer greater security with less chance of attacks passing through, but often comes with increased cost and administration.

Summary of NIDS Versus NIPS

Table 8-1 summarizes NIDS versus NIPS.

<table>
<thead>
<tr>
<th>Type of System</th>
<th>Summary</th>
<th>Disadvantage/Advantage</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIDS</td>
<td>Detects malicious network activities</td>
<td>Pro: Only a limited number of NIDSs are necessary on a network.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con: Only detects malicious activities.</td>
<td>Snort</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bro IDS</td>
</tr>
<tr>
<td>NIPS</td>
<td>Detects, removes, detains, and redirects traffic</td>
<td>Pro: Detects and mitigates malicious activity.</td>
<td>Check Point Systems solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pro: Can act as a protocol analyzer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con: Uses more resources.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con: Possibility of false positives and false negatives.</td>
<td></td>
</tr>
</tbody>
</table>

The Protocol Analyzer’s Role in NIDS and NIPS

You might be familiar already with protocol analyzers such as Wireshark (previously Ethereal) or Network Monitor. These are loaded on a computer and are controlled by the user in a GUI environment; they capture packets, enabling the user to analyze them and view their contents. However, some NIDS/NIPS solutions are considered to be full protocol analyzers with no user intervention required. The protocol analyzer is built into the NIDS/NIPS appliance. It decodes application layer protocols, such as HTTP, FTP, or SMTP, and forwards the results to the IDS or IPS analysis engine. Then the analysis engine studies the information for anomalous or behavioral exploits. This type of analysis can block many exploits based on a single signature. This is superior to basic signature pattern recognition (without protocol analysis), because with signature-based IDS/IPS solutions, many signatures have to be constantly downloaded and stored in the device’s database, and they don’t enable dynamic understanding of new attacks. However, as with any powerful analysis, like protocol analysis, a premium is placed on processing power, and the price of these types of IDS/IPS solutions will undoubtedly be higher.
NOTE There are also wireless versions of IDS: WIDS and WIPS. They monitor the radio spectrum for unauthorized access and rogue access points. However, these names might be incorporated into the concept of NIDS and NIPS by some organizations. Regardless, be sure to use an IDS (or IPS) for your wired and wireless connections!

Unified Threat Management

A relatively newer concept, unified threat management (UTM) is the culmination of everything we discussed in this chapter so far. As early as the year 2000, it was realized that the firewall was no longer enough to protect an organization’s network. Other devices and technologies such as NIDS/NIPS systems, content filters, anti-malware gateways, data leak prevention, and virtual private networks were added to the network in order to better protect it. However, with all these extra devices and technologies come added cost and more administration. And so, UTM providers simplify the whole situation by offering all-in-one devices that combine the various levels of defense into one solution. The all-in-one device might also be referred to as a next-generation firewall (NGFW). Companies such as Cisco, Fortinet, and Sophos (to name a few) offer UTM and NGFW solutions; often this is a single device that sits last on the network before the Internet connection. They usually come with a straightforward web-based GUI, which is good news for the beleaguered security administrator who might be burning the midnight oil researching the latest attacks and prevention methods. There’s a caveat to all this, and it is a common theme in network security: a single point of defense is a single point of failure. Get past the UTM, and your job as an attacker is done. Secondary and backup UTM devices, as well as server-based HIDSs, strike a balance and create a certain level of defense in depth, while still retaining a level of simplicity. Another consideration is that UTMs should be quick. If they are to take the place of several other devices, then their data processing and traffic flow requirements will be steep. The smart network administrator/security administrator will consider a device that exceeds their current needs and then some.

It was important to discuss each of the tools and technologies separately in this chapter so that you understand how to work with each. But keep in mind that many of these technologies are consolidated into a single solution, a trend that will likely continue as we move forward.
Chapter Summary

Well, it goes without saying that there are many potential attackers who would “storm the castle.” The question presents itself: Have you performed your due diligence in securing your computer networking kingdom?

If you answered yes, then it most likely means you have implemented some kind of unified threat management solution; one that includes a firewall, content filter, anti-malware technology, IDS/IPS, and possibly other network security technologies. This collaborative effort makes for a strong network perimeter. The firewall is at the frontlines, whether it is part of a UTM or running as a separate device. Its importance can’t be stressed enough, and you can’t just implement a firewall; it has to be configured properly with your organization’s policies in mind. ACLs, stateful packet inspection, and network address translation should be employed to solidify your firewall solution.

If you answered no, then prepare ye for more metaphorical expression. Remember that enemy forces are everywhere. They are lying in wait just outside your network, and they can even reside within your network—for example, the malicious insider, that dragon who has usurped the mountain and is perhaps in control of your precious treasure...your data. Analogies aside, this is all clear and present danger—it is real, and should be enough to convince you to take strong measures to protect your network.

Often, the act of securing the network can also provide increased efficiency and productivity. For example, a proxy server can act to filter content, and can provide anonymity, but also saves time and bandwidth for commonly accessed data. A honeypot can trap an attacker, thus securing the network, but the secondary result is that network bandwidth is not gobbled up by the powerful attacker. However, the same act can have the opposite effect. For example, a NIDS that is installed to detect anomalies in packets can slow down the network if it is not a powerful enough model. For increased efficiency (and lower all-around cost), consider an all-in-one device such as a UTM, which includes functionality such as firewalls, IDS/IPS, AV, VPN, and DLP. Just make sure it has the core processing and memory required to keep up with the amount of data that will flow through your network.

If you can find the right balance of security and performance while employing your network security solution, it will be analogous to your network donning the aegis, acting as a powerful shield against network attacks from within and without.
Chapter Review Activities

Use the features in this section to study and review the topics in this chapter.

Review Key Topics

Review the most important topics in the chapter, noted with the Key Topic icon in the outer margin of the page. Table 8-2 lists a reference of these key topics and the page number on which each is found.

Table 8-2 Key Topics for Chapter 8

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 8-1</td>
<td>Diagram of a basic firewall</td>
<td>257</td>
</tr>
<tr>
<td>Bulleted list</td>
<td>Types of firewalls</td>
<td>258</td>
</tr>
<tr>
<td>Figure 8-2</td>
<td>Back-to-back firewall/DMZ configuration</td>
<td>260</td>
</tr>
<tr>
<td>Bulleted list</td>
<td>Types of proxies</td>
<td>263</td>
</tr>
<tr>
<td>Figure 8-4</td>
<td>Illustration of an HTTP proxy in action</td>
<td>264</td>
</tr>
<tr>
<td>Figure 8-5</td>
<td>Illustration of NIDS placement in a network</td>
<td>269</td>
</tr>
<tr>
<td>Table 8-1</td>
<td>Summary of NIDS versus NIPS</td>
<td>271</td>
</tr>
</tbody>
</table>

Define Key Terms

Define the following key terms from this chapter, and check your answers in the glossary:

- network perimeter
- access control list
- explicit allow
- explicit deny
- implicit deny
- packet filtering
- stateful packet inspection
- application-level gateway
- circuit-level gateway
- application firewall
- web application firewall
- proxy server
- IP proxy
- HTTP proxy (web proxy)
- proxy auto-configuration (PAC)
- Internet content filter
- web security gateway
- honeypot
- honeynet
- data loss prevention (DLP)
- network intrusion detection system (NIDS)
- promiscuous mode
- network intrusion prevention system (NIPS)
- false positive
- false negative
- unified threat management (UTM)

Complete the Real-World Scenarios

Complete the Real-World Scenarios found on the companion website (www.pearsonitcertification.com/title/9780789758996). You will find a PDF containing the scenario and questions, and also supporting videos and simulations.
Review Questions

Answer the following review questions. Check your answers with the correct answers that follow.

1. Which tool would you use if you want to view the contents of a packet?
 A. TDR
 B. Port scanner
 C. Protocol analyzer
 D. Loopback adapter

2. The honeypot concept is enticing to administrators because
 A. It enables them to observe attacks.
 B. It traps an attacker in a network.
 C. It bounces attacks back at the attacker.
 D. It traps a person physically between two locked doors.

3. James has detected an intrusion in his company network. What should he check first?
 A. DNS logs
 B. Firewall logs
 C. The Event Viewer
 D. Performance logs

4. Which of the following devices should you employ to protect your network? (Select the best answer.)
 A. Protocol analyzer
 B. Firewall
 C. DMZ
 D. Proxy server

5. Which device’s log file will show access control lists and who was allowed access and who wasn’t?
 A. Firewall
 B. Smartphone
 C. Performance Monitor
 D. IP proxy
6. Where are software firewalls usually located?
 A. On routers
 B. On servers
 C. On clients
 D. On every computer

7. Where is the optimal place to have a proxy server?
 A. In between two private networks
 B. In between a private network and a public network
 C. In between two public networks
 D. On all of the servers

8. A coworker has installed an SMTP server on the company firewall. What security principle does this violate?
 A. Chain of custody
 B. Use of a device as it was intended
 C. Man trap
 D. Use of multifunction network devices

9. You are working on a server and are busy implementing a network intrusion detection system on the network. You need to monitor the network traffic from the server. What mode should you configure the network adapter to work in?
 A. Half-duplex mode
 B. Full-duplex mode
 C. Auto-configuration mode
 D. Promiscuous mode

10. Which of the following displays a single public IP address to the Internet while hiding a group of internal private IP addresses?
 A. HTTP proxy
 B. Protocol analyzer
 C. IP proxy
 D. SMTP proxy
 E. PAC
11. If your ISP blocks objectionable material, what device would you guess has been implemented?
 A. Proxy server
 B. Firewall
 C. Internet content filter
 D. NIDS

12. Of the following, which is a collection of servers that was set up to attract attackers?
 A. DMZ
 B. Honeypot
 C. Honeynet
 D. VLAN

13. Which of the following will detect malicious packets and discard them?
 A. Proxy server
 B. NIDS
 C. NIPS
 D. PAT

14. Which of the following will an Internet filtering appliance analyze? (Select the three best answers.)
 A. Content
 B. Certificates
 C. Certificate revocation lists
 D. URLs

15. Which of the following devices would detect but not react to suspicious behavior on the network? (Select the most accurate answer.)
 A. NIPS
 B. Firewall
 C. NIDS
 D. HIDS
 E. UTM
16. One of the programmers in your organization complains that he can no longer transfer files to the FTP server. You check the network firewall and see that the proper FTP ports are open. What should you check next?
 A. ACLs
 B. NIDS
 C. AV definitions
 D. FTP permissions

17. Which of the following is likely to be the last rule contained within the ACLs of a firewall?
 A. Time of day restrictions
 B. Explicit allow
 C. IP allow any
 D. Implicit deny

18. Which of the following best describes an IPS?
 A. A system that identifies attacks
 B. A system that stops attacks in progress
 C. A system that is designed to attract and trap attackers
 D. A system that logs attacks for later analysis

19. What is a device doing when it actively monitors data streams for malicious code?
 A. Content inspection
 B. URL filtering
 C. Load balancing
 D. NAT

20. Allowing or denying traffic based on ports, protocols, addresses, or direction of data is an example of what?
 A. Port security
 B. Content inspection
 C. Firewall rules
 D. Honeynet
21. Which of the following should a security administrator implement to limit web-based traffic that is based on the country of origin? (Select the three best answers.)
 A. AV software
 B. Proxy server
 C. Spam filter
 D. Load balancer
 E. Firewall
 F. URL filter
 G. NIDS

22. You have implemented a technology that enables you to review logs from computers located on the Internet. The information gathered is used to find out about new malware attacks. What have you implemented?
 A. Honeynet
 B. Protocol analyzer
 C. Firewall
 D. Proxy

23. Which of the following is a layer 7 device used to prevent specific types of HTML tags from passing through to the client computer?
 A. Router
 B. Firewall
 C. Content filter
 D. NIDS

24. Your boss has asked you to implement a solution that will monitor users and limit their access to external websites. Which of the following is the best solution?
 A. NIDS
 B. Proxy server
 C. Block all traffic on port 80
 D. Honeypot
25. Which of the following firewall rules only denies DNS zone transfers?

 A. deny IP any any
 B. deny TCP any any port 53
 C. deny UDP any any port 53
 D. deny all dns packets

Answers and Explanations

1. C. A protocol analyzer has the capability to “drill” down through a packet and show the contents of that packet as they correspond to the OSI model. A TDR is a time-domain reflectometer, a tool used to locate faults in cabling. (I threw that one in for fun. It is a Network+ level concept, so you security people should know it!) A port scanner identifies open network ports on a computer or device; we’ll discuss that more in Chapters 12 and 13. A loopback adapter is a device that can test a switch port or network adapter (depending on how it is used).

2. A. By creating a honeypot, the administrator can monitor attacks without sustaining damage to a server or other computer. Don’t confuse this with a honeynet (answer B), which is meant to attract and trap malicious attackers in an entirely false network. Answer C is not something that an administrator would normally do, and answer D is defining a man trap.

3. B. If there was an intrusion, James should check the firewall logs first. DNS logs in the Event Viewer and the performance logs will most likely not show intrusions to the company network. The best place to look first is the firewall logs.

4. B. Install a firewall to protect the network. Protocol analyzers do not help to protect a network but are valuable as vulnerability assessment and monitoring tools. Although a DMZ and a proxy server could possibly help to protect a portion of the network to a certain extent, the best answer is firewall.

5. A. A firewall contains one or more access control lists (ACLs) defining who is enabled to access the network. The firewall can also show attempts at access and whether they succeeded or failed. A smartphone might list who called or e-mailed, but as of the writing of this book does not use ACLs. Performance Monitor analyzes the performance of a computer, and an IP proxy deals with network address translation, hiding many private IP addresses behind one public address. Although the function of an IP proxy is often built into a firewall, the best answer would be firewall.
6. **C.** Software-based firewalls, such as Windows Firewall, are normally running on the client computers. Although a software-based firewall could also be run on a server, it is not as common. Also, a SOHO router might have a built-in firewall, but not all routers have firewalls.

7. **B.** Proxy servers should normally be between the private network and the public network. This way they can act as a go-between for all the computers located on the private network. This applies especially to IP proxy servers but might also include HTTP proxy servers.

8. **B.** SMTP servers should not be installed on a company firewall. This is not the intention of a firewall device. The SMTP server should most likely be installed within a DMZ.

9. **D.** To monitor the implementation of NIDS on the network, you should configure the network adapter to work in promiscuous mode; this forces the network adapter to pass all the traffic it receives to the processor, not just the frames that were addressed to that particular network adapter. The other three answers have to do with duplexing—whether the network adapter can send and receive simultaneously.

10. **C.** An IP proxy displays a single public IP address to the Internet while hiding a group of internal private IP addresses. It sends data back and forth between the IP addresses by using network address translation (NAT). This functionality is usually built into SOHO routers and is one of the main functions of those routers. HTTP proxies store commonly accessed Internet information. Protocol analyzers enable the capture and viewing of network data. SMTP proxies act as a go-between for e-mail. PAC stands for proxy auto-config, a file built into web browsers that allows the browser to automatically connect to a proxy server.

11. **C.** An Internet content filter, usually implemented as content-control software, can block objectionable material before it ever gets to the user. This is common in schools, government agencies, and many companies.

12. **C.** A honeynet is a collection of servers set up to attract attackers. A honeypot is usually one computer or one server that has the same purpose. A DMZ is the demilitarized zone that is in between the LAN and the Internet. A VLAN is a virtual LAN.

13. **C.** A NIPS, or network intrusion prevention system, detects and discards malicious packets. A NIDS only detects them and alerts the administrator. A proxy server acts as a go-between for clients sending data to systems on the Internet. PAT is port-based address translation.
14. **A, B, and D.** Internet filtering appliances will analyze content, certificates, and URLs. However, certificate revocation lists will most likely not be analyzed. Remember that CRLs are published only periodically.

15. **C.** A NIDS, or network intrusion detection system, will detect suspicious behavior but most likely will not react to it. To prevent it and react to it, you would want a NIPS. Firewalls block certain types of traffic but by default do not check for suspicious behavior. HIDS is the host-based version of an IDS; it checks only the local computer, not the network. A UTM is an all-inclusive security product that will probably include an IDS or IPS—but you don’t know which, so you can’t assume that a UTM will function in the same manner as a NIDS.

16. **A.** Access control lists can stop specific network traffic (such as FTP transfers) even if the appropriate ports are open. A NIDS will detect traffic and report on it but not prevent it. Antivirus definitions have no bearing on this scenario. If the programmer was able to connect to the FTP server, the password should not be an issue. FTP permissions might be an issue, but since you are working in the firewall, you should check the ACL first; then later you can check on the FTP permissions, passwords, and so on.

17. **D.** Implicit deny (block all) is often the last rule in a firewall; it is added automatically by the firewall, not by the user. Any rules that allow traffic will be before the implicit deny/block all on the list. Time of day restrictions will probably be stored elsewhere but otherwise would be before the implicit deny as well.

18. **B.** An IPS (intrusion prevention system) is a system that prevents or stops attacks in progress. A system that only identifies attacks would be an IDS. A system designed to attract and trap attackers would be a honeypot. A system that logs attacks would also be an IDS or one of several other devices or servers.

19. **A.** A device that is actively monitoring data streams for malicious code is inspecting the content. URL filtering is the inspection of the URL only (for example, https://www.comptia.org). Load balancing is the act of dividing up workload between multiple computers; we’ll discuss that more in Chapter 16, “Redundancy and Disaster Recovery.” NAT is network address translation, which is often accomplished by a firewall or IP proxy.

20. **C.** Firewall rules (ACLs) are generated to allow or deny traffic. They can be based on ports, protocols, IP addresses, or which way the data is headed. Port security deals more with switches and the restriction of MAC addresses that
are allowed to access particular physical ports. Content inspection is the filtering of web content, checking for inappropriate or malicious material. A honeynet is a group of computers or other systems designed to attract and trap an attacker.

21. **B, E, and F.** The security administrator should implement a proxy server, a firewall, and/or a URL filter. These can all act as tools to reduce or limit the amount of traffic based on a specific country. AV software checks for, and quarantines, malware. Spam filters will reduce the amount of spam that an e-mail address or entire e-mail server receives. A load balancer spreads out the network load to various switches, routers, and servers. A NIDS is used to detect anomalies in network traffic.

22. **A.** A honeynet has been employed. This is a group of computers on the Internet, or on a DMZ (and sometimes on the LAN), that is used to trap attackers and analyze their attack methods, whether they are network attacks or malware attempts. A protocol analyzer captures packets on a specific computer in order to analyze them but doesn’t capture logs per se. A firewall is used to block network attacks but not malware. A proxy is used to cache websites and act as a filter for clients.

23. **C.** A content filter is an application layer (layer 7) device that is used to prevent undesired HTML tags, URLs, certificates, and so on, from passing through to the client computers. A router is used to connect IP networks. A firewall blocks network attacks. A NIDS is used to detect anomalous traffic.

24. **B.** You should implement a proxy server. This can limit access to specific websites, and monitor who goes to which websites. Also, it can often filter various HTML and website content. A NIDS is used to report potentially unwanted data traffic that is found on the network. Blocking all traffic on port 80 is something you would accomplish at a firewall, but that would stop all users from accessing any websites that use inbound port 80 (the great majority of them!). A honeypot is a group of computers used to lure attackers in and trap them for later analysis.

25. **B.** The firewall rule listed that only denies DNS zone transfers is `deny TCP any any port 53`. As mentioned in Chapter 7, “Networking Protocols and Threats,” DNS uses port 53, and DNS zone transfers specifically use TCP. This rule will apply to any computer’s IP address initiating zone transfers on the inbound and outbound sides. If you configured the rule for UDP, other desired DNS functionality would be lost. Denying IP in general would have additional unwanted results. When creating a firewall rule (or ACL), you need to be very specific so that you do not filter out desired traffic.
Index

Numbers

3-leg perimeter DMZ (Demilitarized Zones), 183
3DES (Data Encryption Standard), 486, 489
10 tape rotation backup scheme, 565
802.1X, 344
 authentication procedure, 331
 connection components, 331
 EAP, 330-332

A

AAA (Accounting, Authentication, Authorization)
 accounting, 6, 221
 authentication, 5-7, 327
 captive portals, 337
 CHAP, 338-339, 345
 cloud security, 195
 context-aware authentication, 328
 deauthentication attacks: See Wi-Fi, disassociation attacks
 definition, 321
 Diameter port associations, 221
 EAP, 330-332
 extranets, 185
 HMAC, 499
 identification, 321
 inherence factors, 322
 intranets, 185
 Kerberos, 220, 334-336, 344
 knowledge factors, 322
 LDAP, 333, 344
 LEAP, 332
 localized authentication, 329-337, 344
 MFA, 327
 MS-CHAP, 338
 multifactor authentication, 337, 589
 mutual authentication, 334
 networks, 72
 nonces, 235
 PAM, Kerberos, 336
 PEAP, 330-332
 physical security, 321
 possession factors, 322
 RADIUS, 221, 343-345
 reduced sign-ons, 328
 remote authentication, 337-345
 Remote Desktop Services, 336-337
 servers, 72, 331
 SSO, 328-329
 TACACS+, 220, 343-345
 web of trust, 529
 authorization, 5
 biometric readers, 326-327, 345
 definition, 321
 Diameter port associations, 221
 FIM, 328
 fingerprint readers/scanners, 326
 RADIUS port associations, 221

ABAC (Attribute-Based Access Control), 365-366
accepting
 cookies, 136
 risk, 398
access (unauthorized), 6
access control
 ABAC, 365-366
 ACL, permissions, 371
 Administrator accounts, 378
 Bell-LaPadula, 364
 Biba, 364
 CAPTCHA, 383
 centralized access control, 366
 Clark-Wilson, 364
 Ctrl+Alt+Del at logon, 379
 DAC, 361-365
 DACL, 372
 decentralized access control, 366
 files/folders
 copying, 376
 moving, 376
 groups, 371
 guest accounts, 378
 implicit deny, 366
 job rotation, 368
 least privilege, 367
 MAC, 366
 data labeling, 363
 lattice-based access control, 364
 rule-based access control, 364
 mobile devices, 75
 passwords, 376-378
permissions
 ACL, 371
 DACL, 372
 inheritance, 374-375
 Linux file permissions, 373
 NTFS permissions, 372, 376
 privilege creep, 374
 propagating, 375
 SACL, 372
 user access recertification, 374
policies
 Account Lockout Threshold Policy, 382
 Default Domain Policy, 379
 passwords, 379-383
 RBAC, 364-366
 SACL, 372
 separation of duties, 368
 UAC, 383-384
 users, 369
 access recertification, 374
 Account Expiration dates, 370
 ADUC, 369
 multiple user accounts, 371
 passwords, 376-377
 time-of-day restrictions, 370
 usernames, 376-377
Account Expiration dates, 370
Account Lockout Threshold Policy, 382
accounting
 AAA, 6
 Diameter, port associations with, 221
 RADIUS, port associations with, 221
ACK packets
 SYN floods, 227
 TCP/IP hijacking, 232
ACL (Access Control Lists)
 DACL, 372
 firewall rules, 258
 permissions, 371
 routers, 179
 SACL, 372
active interception, malware delivery, 28
active reconnaissance (security analysis), 403
ActiveX controls, 137
acts (legislative policies), 616-617
ad blocking, browser security, 135
ad filtering, 58
ad hoc networks, WAP, 299-300
adapters (network)
 multiple network adapters, 559
 redundancy planning, 558-559
adaptive frequency hopping, 306
add-ons
 ActiveX controls, 137
 malicious add-ons, 138
 managing, 138
addresses (email), preventing/
 troubleshooting spam, 40
administration
 account passwords, 378
 centrally administered management systems, 92
 CVE, 200-201
 guest accounts, passwords, 378
 HIDS, 57
 offboarding, 76
 onboarding, 76
 removable media controls, 63
 rootkits, 24
 Alureon rootkits, 26
 definition of, 26
 Evil Maid Attack, 26
 preventing/troubleshooting, 41
 security plans, 7
administration interface (WAP), 295-296
ADUC (Active Directory Users and
 Computers), 369
adware, 23
AES (Advanced Encryption Standard), 64,
 298, 482, 487-489
agents, SNMP, 444
aggregation switches, 177
agile model (SDLC), 146
agreements, copies of (DRP), 570
AH (Authentication Headers), IPsec, 534
air gaps, 600-601
aisles (HVAC), facilities security, 597
ALE (Annualized Loss Expectancy),
 quantitative risk assessment, 400-401
alerts, performance baselining, 440
ALG (Application-Level Gateways), 259
algorithms
 3DES, 486, 489
 AES, 482, 487-489
 asymmetric algorithms, 483
 Diffie-Hellman key exchange, 491
 RSA, 490
 Blowfish, 489
 CBC, 482
ciphers, 480
 DEA, 486
defining, 480
 DES, 486, 489
 ECC, 492-493
 ECDHE, 492
genetic algorithms, 496
 HMAC, 499
 IDEA, 486
 MD5, 498
password hashing
 birthday attacks, 503
 key stretching, 504
 LANMAN hashing, 500-501
 NTLM hashing, 501-502
 NTLMv2 hashing, 502
 pass the hash attacks, 502-503
RC
 RC4, 488-489
 RC5, 489
 RC6, 489
RIPEMD, 499
RSA, 490
SHA, 498-499
symmetric algorithms, 481-482
3DES, 486
AES, 487-489
Blowfish, 489
DEA, 486
DES, 486, 489
IDEA, 486
RC, 488-489
Threefish, 489
Twofish, 489

All-in-one security appliances, 266
Altered host files, 237, 241
Alternative controls. See compensating controls
Alureon rootkits, 24-26
Always-on VPN (Virtual Private Network), 342
Analytical monitoring tools
 Computer Management, 445
 Keyloggers, 447
 Net file command, 446
 Netstat command, 446
 Openfiles command, 445
Static and dynamic analytical tools, 447
Analyzing
data, incident response procedures, 631
passwords, 417-420
protocols, 415
Risk, IT security frameworks, 635
Security, active/passive reconnaissance, 402-403
Anymal IP Scanner, 414
Anomaly-based monitoring, 436-437
ANT sensors (HVAC), facilities security, 598
Anti-malware
 Software, 8
 Updates, 108

Anti-spyware, 35-37
Antivirus software
 Preventing/troubleshooting
 Trojans, 35
 Viruses, 31, 34
 Worms, 35
 Safe Mode, 34
Anycast IPv6 addresses, 181
AP (Access Points)
 Bluetooth AP, 306
 Evil twins, 297
 Isolating, WAP, 303
 Rogue AP, 296
WAP, wireless network security
 Ad hoc networks, 299-300
 Administration interface, 295-296
 AP isolation, 303
 Brute-force attacks, 299, 305
 Encryption, 297-299, 303
 Evil twins, 297
 Firewalls, 302
 MAC filtering, 302
 Placement of, 300
 PSK, 298
 Rogue AP, 296
 SSID, 296
 VPN, 300
 Wireless point-to-multipoint layout, 301
 WLAN controllers, 303
 WPS, 299
WLAN AP, 306
Apache servers, 201
Application-aware devices, 269
Application layer (OSI model), 174
Applications (Apps)
 Arbitrary code execution, 155
 Back office applications, securing, 143
 Backdoor attacks, 22, 29, 153, 159
 Backdoors, 288-289
backward compatibility, 91
blacklisting, 73, 92
buffer overflows, 153, 159
code injections, 156-159
cornerstone, 112
directory traversals, 158-159
DLL injections, 158
encryption, 71, 78
Excel, securing, 143
firewalls, 261
geotagging, 74
HTTPS connection, 71-72
immutable systems, 146
input validation, 150-151
integer overflows, 154
key management, 72
LDAP injections, 157
logs, 452
memory leaks, 154
MMS attacks, 73
mobile apps, security, 143
network authentication, 72
NoSQL injections, 157
null pointer dereferences, 154
OS hardening, 90-92
Outlook, securing, 143
patch management, 142
privileged escalation, 287-288
programming
 ASLR, 155
 authenticity, 148
 CIA Triad, 146
 code checking, 148
 code signing, 148
 DevOps, 146-148
 error-handling, 148
 integrity, 148
 minimizing attack surface area, 147
 obfuscation, 148
passwords, 147
patches, 148
permissions, 147
principle of defense in depth, 147
principle of least privilege, 147
quality assurance policies, 147
SDLC, 145-148
secure code review, 146
secure coding concepts, 144
testing methods, 149-152
threat modeling, 147
trusting user input, 147
vulnerabilities/attacks, 153-159
proxies, 264
RCE, 155, 159
removing, 90-91
security
 back office applications, 143
 DevOps, 146-148
 encryption, 71, 78
 Excel, 143
 firewalls, 261
 mobile apps, 143
 network authentication, 72
 Outlook, 143
 patch management, 142
 policy implementation, 140
 SDLC, 145-148
 secure coding concepts, 144
 server authentication, 72
 UAC, 140
 Word, 143
server authentication, 72
service ports, 219
SMS attacks, 73
SQL injections, 156
transitive trust, 72
uninstalling, preventing/troubleshooting
spyware, 36
unnecessary applications, removing, 90-91
user input, 147
whitelisting, 73, 92
Word, securing, 143
XML injections, 157
XSRF, 156, 159
XSS, 156, 159
zero day attacks, 158-159

APT (Advanced Persistent Threats), 11, 22
arbitrary code execution, 155
archive.org, 202
armored viruses, 21
ARO (Annualized Rate of Occurrence), quantitative risk assessment, 400-401
ARP poisoning, 238, 241
ARP spoofing, 177
ASLR (Address Space Layout Randomization), 155
assessing
impact, 399
risk
definition, 397-398
impact assessment, 399
qualitative risk management, 399, 402
qualitative risk mitigation, 400
quantitative risk management, 400-402
residual risk, 398
risk acceptance, 398
risk avoidance, 398
risk management, 397-399
risk reduction, 398
risk registers, 399
risk transference, 398
security analysis, 402-403
security controls, 404-405
vulnerabilities, 406, 410
defining vulnerabilities, 396
general vulnerabilities/basic prevention methods table, 409-410

IT security frameworks, 635
managing vulnerabilities, 405-410
network mapping, 411-412
network sniffers, 415-417
OVAL, 408-409
password analysis, 417-420
penetration testing, 407-408
vulnerability scanning, 412-414

asymmetric algorithms, 483
Diffie-Hellman key exchange, 491
RSA, 490
attack guards, 227
attack surface, reducing, 94, 147
attack vectors, malware delivery, 26
attacks/vulnerabilities, programming
arbitrary code execution, 155
backdoor attacks, 22, 29, 153, 159
buffer overflows, 153, 159
code injections, 156-159
directory traversals, 158-159
DLL injections, 158
integer overflows, 154
LDAP injections, 157
memory leaks, 154
NoSQL injections, 157
null pointer dereferences, 154
RCE, 155, 159
SQL injections, 156
XML injections, 157
XSRF, 156, 159
XSS, 156, 159
zero day attacks, 158-159

attestation, BIOS, 62

auditing
audit trails, 451
computer security audits, 448
files, 448-450
independent security auditors, 448
logging
application logs, 452
audit trails, 451
DFS Replication logs, 452
DNS Server logs, 452
file maintenance/security, 455-457
firewall logs, 453
Syslog, 454-455
system logs, 452
viewing security events, 450
manual auditing, 448
monitoring and, 434
SIEM, 460
system security settings, 457-460
AUP (Acceptable Use Policies), 618, 622
authentication, 7, 327
AAA, 5
captive portals, 337
CHAP, 345
MS-CHAP, 338
EAP authentication, 338-339
cloud security, 195
context-aware authentication, 328
deauthentication attacks. See Wi-Fi,
deauthentication attacks
definition, 321
Diameter, port associations with, 221
EAP
EAP-EAP-FAST, 332
EAP-MD5, 332
EAP-TLS, 332
EAP-TTLS, 332
LEAP, 332
PEAP, 330-332
eXtreme, 185
HMAC, 499
identification, 321
inherence factors, 322
intranets, 185
Kerberos, 220, 334-336, 344
knowledge factors, 322
LDAP, 333-344
LEAP, 332
localized authentication, 329
802.1X, 330-332, 344
Kerberos, 334-336, 344
LDAP, 333, 344
mutual authentication, 334
Remote Desktop Services, 336-337
MFA, 327
MS-CHAP, 338
multifactor authentication, 337, 589
mutual authentication, 334
networks, 72
nonces, 235
PAM, Kerberos, 336
PEAP, 330-332
physical security, 321
possession factors, 322
RADIUS
port associations with, 221
RADIUS federation, 343-345
reduced sign-ons, 328
remote authentication
RADIUS, 343-345
RAS, 337-340, 344
TACACS+, 343-345
VPN, 340-342
Remote Desktop Services, 336-337
servers, 72, 331
SSO, 328-329
TACACS+, 220, 343-345
web of trust, 529
authenticators (802.1X), 331
authentication, programming security, 148
authorization
AAA, 5
biometric readers, 326-327, 345
definition, 321
Diameter, port associations with, 221
FIM, 328
fingerprint readers/scanners, 326
RADIUS, port associations with, 221
automated monitoring, 435
automated systems, war-dialing, 587
automatically updating browsers, 128
automating cyber-crime. See crimeware
availability
CIA triad, 5, 146
VoIP, 191
avoiding risk, 398
awareness training, 7, 621-622
B
back office applications, securing, 143
Back Orifice backdoor attacks, 22, 29
back-to-back firewall/DMZ configurations, 259
back-to-back perimeter networks, 184
backdoors
backdoor attacks, 22, 29, 153, 159
malware delivery, 29
RAT, 29
wired network/device security, 288-289
backups, 8
battery backups, 552
data, 557
10 tape rotation backup scheme, 565
differential data backups, 563-565
disaster recovery, 562-566
full data backups, 563
grandfather-father-son backup scheme, 565
incremental data backups, 563-564
snapshot backups, 566
Towers of Hanoi backup scheme, 566
disaster recovery
data backups, 562-566
drills/exercises, 570
DRP, 569-570
fire, 567
flood, 568
loss of building, 568
power loss (long-term), 568
theft/malicious attacks, 568
generators
considerations for selecting, 554
types of, 553
hard disks, 107
redundancy planning
backup generators, 553-554
battery backups, 552
data, 555-558
employees, 562
fail-closed, 549
fail-open, 549
failover redundancy, 548
networks, 558-561
power supplies, 549-551
single points of failure, 547-548
standby generators, 553
succession planning, 562
websites, 561
unsavable computers, malware, 40
backward compatibility, 91
badware, 37
baiting, social engineering attacks, 589-591
banner grabbing, 414
baselining, 105
alerts, 440
baseline reporting, 438
Performance Monitor, 439
standard loads, 438
System Monitor, 440
battery backups, 552
battery-inverter generators, 554
BCC (Blind Carbon Copy), preventing/
troubleshooting spam, 40
BCP (Business Continuity Plans), 569
behavior-based monitoring, 436-437
Bell-LaPadula access control model, 364
BER (Basic Encoding Rules) format, certificates, 524
BIA (Business Impact Analysis), BCP, 569
Biba access control model, 364
biometric readers, physical security, 326-327, 345
BIOS (Basic Input/Output System)
 attestation, 62
 boot order, 61
 external ports, disabling, 61
 flashing, 60
 measured boot option, 62
 passwords, 60
 root of trust, 62
 secure boot option, 61
 updates, 108
birthday attacks, 503
bit torrents, malware delivery, 27
BitLocker, disk encryption, 64-65
black book phone number encryption, 477-480
black-box testing, 149
black hats, 9
Blackhole exploit kits, 27
blackhole lists, 230
blackholes, 230
blacklists
 applications, 92
 OS hardening, 92
 preventing/troubleshooting spam, 40
blackouts (power supplies), 550
blind hijacking, 233
block ciphers, 482, 489
blocking cookies, 136
Blowfish, 489
blue hats, 10

bluetooth
 adaptive frequency hopping, 306
 AP, 306
 bluejacking, 69, 306
 bluesnarfing, 69, 306-307
 frequency hopping, 306
 NFC, 306
boot order, BIOS, 61
boot sector viruses, 20, 34
botnets
 malware delivery, 28
 mobile devices, 68, 77
 ZeroAccess botnet, 28
bots, 22
BPA (Business Partner Agreements), 623-624
bridges, 178
broadcast storms, 441
brownouts (power supplies), 550
browsers
 automatically updating, 128
 choosing, 127-128
 company requirements, 128
 functionality, 129
 HTTP connections, 71
 HTTPS connections, 71-72
 MITB attacks, 233-234, 240
 OS, determining, 128
 PAC files, 263
 pop-up blockers, 53, 57-59
 preventing/troubleshooting spyware, 35
 recommendations, 127-128
 security, 129
 ad-blocking, 135
 add-ons, 137-138
 advanced security settings, 138-139
 content filtering, 133-134
 cookies, 136-137
 LSO, 137
mobile devices, 135
passwords, 139
policy implementation, 129, 131
pop-up blocking, 135
proxy servers, 133-134
security zones, 135
temporary files, 138
updates, 135
user training, 133
updates, 128, 135
vulnerabilities/fixes, 128
brute-force attacks
password cracking, 419
WAP, 299, 305
buffer overflows, 153, 159
buildings
loss of (disaster recovery), 568
security
fire suppression, 594-596
HVAC, 597-600
shielding, 598-600
vehicles, 600-601
butt sets, wiretapping, 293
BYOD (Bring Your Own Device), mobile
device security, 74-78

C

CA (Certificate Authorities)
chain of trust, 528
CRL, 527
CSR, 525
horizontal organization, 528
key escrow, 528
key recovery agents, 528
mapping certificates, 527
pinning certificates, 526-527
revoking certificates
CRL, 527
OCSP, 528
social engineering and, 527
validating certificates, 525
verifying certificates with RA, 527
VeriSign certificates, 72, 525
web of trust, 529
cable loops, switches, 177
cabling
c coaxial cabling, 290-292
data emanation, 292-294
fiber-optic cabling, 290, 294
interference
crosstalk, 291-292
EMI, 290
RFI, 291
PDS, 295
STP cabling, 292, 599
twisted-pair cabling, 290
crosstalk, 291-292
wiretapping, 293
UTP cabling, 292
wired network/device security, 290-295
wiretapping, 293-294
wiring closets, 294
CAC (Common Access Cards). See smart
cards
caching proxies, 263-264
Caesar Cipher, 478
Cain & Abel, password cracking, 417-418
California SB 1386, 617
CallManager, privilege escalation, 288
CAM (Content Addressable Memory)
tables, MAC flooding, 176
Camtasia 9, 91
Camtasia Studio 8, 91
CAN (Controller Area Networks), vehicles
and facilities security, 600
CAPTCHA (Completely Automated Public
Turing test to tell Computers and
Humans Apart), 383
captive portals, 337

capturing
network traffic, incident response procedures, 631
packets, 415, 440
screenshots, incident response procedures, 631
system images, incident response procedures, 630
video, incident response procedures, 631
cardkey systems, 324
carrier unlocking, mobile devices, 69
CASB (Cloud Access Security Brokers), 197
CBC (Cipher Block Chaining), 482
CBC-MAC (Cipher Block Chaining Message Authentication Code) protocol, 298
CCI (Co-Channel Interference). See crosstalk
CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol), 298
CCTV (Closed-Circuit Television), 323
cell phones. See mobile devices
cellular networks, 308
centralized access control, 366
centrally administered management systems, 92
CER (Canonical Encoding Rules) format, certificates, 524
CER (Crossover Error Rates), biometric readers, 326
certificates
digital certificates
CA, 525
chain of trust, 523, 528
CRL, 527
CSR, 525
key escrow, 528
key recovery agents, 528
mapping, 527
pinning, 526-527
PKI, 522-525, 528
revoking, 527-528
validation, 525
verifying with RA, 527
VeriSign certificates, 72, 525
web of trust, 529
post-certification process, 655
public key cryptography, 484
chain of custody (evidence collection), 629
change management policies, 619, 622
CHAP (Challenge-Handshake Authentication Protocol), 345
MS-CHAP, 338
PPTP and, 533
RAS authentication, 338-339
session theft, 232
cheat sheets, exam preparation, 649-650
checkpoints, VM disk files, 114
Christmas Tree attacks, 228
chromatic dispersion, 294
CIA triad, 4
availability, 5
confidentiality, 5
integrity, 5
secure code review, 146
CIDR (Classless Interdomain Routing), 187
cipher locks, 324
ciphers
cipher algorithms as, 480
block ciphers, 482, 489
Caesar Cipher, 478
defining, 480
RC
RC4, 488-489
RC5, 489
RC6, 489
stream ciphers, 482
 one-time pads, 493-494
 RC4, 488-489

 Vernam ciphers. See one-time pads

circuit-level gateways, 259
Cisco routers, 178
Clark-Wilson access control model, 364
clean desk policy, 592
clearing (data removal), 626
clear-text passwords, 443
CLI (Command-Line Interface), closing
 open ports, 224
clickjacking, 233
client-side attacks, 236
closets (wiring), 294
cloud computing
 community clouds, 194
 CSP, 194
definition, 192
 DLP systems, 59
 hybrid clouds, 194
 IaaS, 193
 MaaS, 194
 P2P networks and, 198
 PaaS, 193
 private clouds, 194
 public clouds, 194
 SaaS, 193
 SECAaaS, 193
security
 authentication, 195
 CASB, 197
 data access security, 196
 encryption, 196
 passwords, 195
 programming standardization, 196
server defense
 email servers, 199-200
 file servers, 198-199

FTP servers, 202-203
network controllers, 199
web servers, 200-202

 services, 197
 social media and, 197
 XaaS, 194
clusters, 561
 cluster tips, 626
data remanence, 626
 failover clusters, 560
 load-balancing clusters, 560
coaxial cabling, 290-292
code checking, programming security, 148
code injections, 159
 DLL injections, 158
 LDAP injections, 157
 NoSQL injections, 157
 SQL injections, 156
 XML injections, 157
 XSRF, 156
 XSS, 156
code signing, programming security, 148
coding
 ASLR, 155
 authenticity, 148
 CIA triad, 146
code checking, 148
code signing, 148
 DevOps, 146-148
 error-handling, 148
 integrity, 148
 minimizing attack surface area, 147
 obfuscation, 148
 passwords, 147
 patches, 148
 permissions, 147
 principle of defense in depth, 147
 principle of least privilege, 147
 quality assurance policies, 147
SDLC

- agile model, 146
- principles of, 146-148
- V-shaped model, 145
- waterfall model, 145

secure code review, 146
secure coding concepts, 144
testing methods

- black-box testing, 149
- compile-time errors, 150
- dynamic code analysis, 152
- fuzz testing, 152
- gray-box testing, 149
- input validation, 150-151
- penetration tests, 149
- runtime errors, 150
- sandboxes, 149
- SEH, 150
- static code analysis, 151-152
- stress testing, 149
- white-box testing, 149

threat modeling, 147
trusting user input, 147
vulnerabilities/attacks

- arbitrary code execution, 155
- backdoor attacks, 22, 29, 153, 159
- buffer overflows, 153, 159
- code injections, 156-159
- directory traversals, 158-159
- DLL injections, 158
- integer overflows, 154
- LDAP injections, 157
- memory leaks, 154
- NoSQL injections, 157
- null pointer dereferences, 154
- RCE, 155, 159
- SQL injections, 156
- XML injections, 157
- XSRF, 156, 159
- XSS, 156, 159
- zero day attacks, 158-159
cold and hot aisles (HVAC), facilities security, 597
cold sites, 561
collecting/preserving evidence (incident response procedures), 629, 632-633
collisions, MD5, 498
command-line scripting, network attacks, 235
community clouds, 194
company policies
data sensitivity

- classifying data, 615
- DHE, 616
- legislative policies, 616-617
equipment recycling/donation policies, ISA, 625
example of, 614-615
personal security policies, 617

- AUP, 618, 622
- awareness training, 621-622
- change management policies, 619, 622
- due care policies, 621-623
- due diligence, infrastructure security, 621-623
due process policies, 621-623
mandatory vacations, 620-622
offboarding, 620
onboarding, 620, 623
privacy policies, 618
separation of duties/job rotation policies, 619, 622
user education, 621-622
vendor policies, 623

- BPA, 623-624
- ISA, 624
- MoU, 624
- SLA, 623-624
compatibility (backward), 91
compensating controls, 405
compile-time errors, 150
compliance
 GRC, 617
 licensing compliance violations, 632
CompTIA exams
 exam preparation checklist, 647-650
 grading scale, 647
 post-certification process, 655
 registration, 650
 taking exams, 651-654
Computer Management, 445
computers
 maintaining, 108-109
 security audits, 448
confidence tricks (cons), social engineering, 588
confidential information, classifying (data sensitivity), 615
confidentiality (CIA triad), 5, 146
configuration baselines, 105
configuring
 managing configurations, 102
 PAC files, 263
 routers, secure configurations, 178
conserving hard disk space, 91
console (WAP). See administration interface
consolidating services, 144
contacts, DRP, 569
cointainerization (applications), 112
containment phase (incident response procedures), 628
content filtering, 58
 browsers, 133-134
 Internet, 265
 routers, 179
context-aware authentication, 328
contingency planning. See BCP; ITCP contracts
 BPA, 623-624
 ISA, 624
 MoU, 624
 SLA, 623-624
cookies
 accepting/blocking, 136
 definition of, 136
 Flash cookies. See LSO
 persistent cookies, 136
 privacy alerts, 136
 session hijacking, 137
 session theft, 232
 tracking cookies, 137
 XSS, 137
COOP (Continuity of Operations Plan). See BCP
COPE (Corporate Owned, Personally Enabled) mobile devices, security, 74
copying files/folders, 376
corrective controls, 405
cracking passwords, 417-420
crashes. See system failure
crimeware, 27. See also malware
critical systems/data, hierarchical lists of (DRP), 570
critical updates, 98
CRL (Certificate Revocation Lists), 527
cross-site scripting. See XSS
crosstalk, cabling, 291-292
cryptanalysis attacks (password cracking method), 419
cryptography. See also encryption
 asymmetric key algorithms, 483
 black book phone number encryption, 477-480
 Caesar Cipher, 478
ciphers
 algorithms as, 480
 block ciphers, 482, 489
<table>
<thead>
<tr>
<th>Term</th>
<th>Page/612.0x792.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>defining, data encryption</td>
<td>476</td>
</tr>
<tr>
<td>ECC, ECDHE</td>
<td>484-493</td>
</tr>
<tr>
<td>stream ciphers</td>
<td>482</td>
</tr>
<tr>
<td>hash functions</td>
<td>477</td>
</tr>
<tr>
<td>HMAC, MD5, RIPEMD, SHA</td>
<td>498-499</td>
</tr>
<tr>
<td>keys</td>
<td>480-481</td>
</tr>
<tr>
<td>DEK, KEK, PKI</td>
<td>488-528</td>
</tr>
<tr>
<td>symmetric key algorithms</td>
<td>481-482</td>
</tr>
<tr>
<td>quantum cryptography</td>
<td>493</td>
</tr>
<tr>
<td>steganography</td>
<td>485</td>
</tr>
<tr>
<td>CryptoLocker</td>
<td>23, 26</td>
</tr>
<tr>
<td>DAC (Discretionary Access Control)</td>
<td>361-365</td>
</tr>
<tr>
<td>DACL (Discretionary Access Control Lists)</td>
<td>372</td>
</tr>
<tr>
<td>damage/loss control</td>
<td>630</td>
</tr>
<tr>
<td>Darkleech</td>
<td>201</td>
</tr>
<tr>
<td>data access security</td>
<td>196</td>
</tr>
<tr>
<td>data analysis</td>
<td>631</td>
</tr>
<tr>
<td>data at rest</td>
<td>477</td>
</tr>
<tr>
<td>data backups</td>
<td>8, 557</td>
</tr>
<tr>
<td>10 tape rotation backup scheme</td>
<td>565</td>
</tr>
<tr>
<td>differential data backups</td>
<td>563-565</td>
</tr>
<tr>
<td>disaster recovery</td>
<td>562</td>
</tr>
<tr>
<td>10 tape rotation backup scheme</td>
<td>565</td>
</tr>
<tr>
<td>differential data backups</td>
<td>563-565</td>
</tr>
<tr>
<td>full data backups</td>
<td>563</td>
</tr>
<tr>
<td>grandfather-father-son backup scheme</td>
<td>565</td>
</tr>
<tr>
<td>incremental data backups</td>
<td>563-564</td>
</tr>
<tr>
<td>snapshot backups</td>
<td>566</td>
</tr>
<tr>
<td>Towers of Hanoi backup scheme</td>
<td>566</td>
</tr>
<tr>
<td>full data backups</td>
<td>563</td>
</tr>
<tr>
<td>Towers of Hanoi backup scheme</td>
<td>566</td>
</tr>
<tr>
<td>data centers, mantraps</td>
<td>589</td>
</tr>
<tr>
<td>data disclosure acts</td>
<td>616-617</td>
</tr>
<tr>
<td>data emanation</td>
<td>292-294</td>
</tr>
<tr>
<td>data encryption</td>
<td>8, 476</td>
</tr>
<tr>
<td>3DES, AES, Blowfish, CBC</td>
<td>486, 489</td>
</tr>
<tr>
<td>asymmetric algorithms</td>
<td>483</td>
</tr>
<tr>
<td>cyber-crime, automating</td>
<td>200-201</td>
</tr>
<tr>
<td>cyber-criminals</td>
<td>11</td>
</tr>
<tr>
<td>CYOD (Choose Your Own Device)</td>
<td>mobile device security</td>
</tr>
</tbody>
</table>
ciphers
 algorithms as, 480
 block ciphers, 482, 489
 defining, 480
 stream ciphers, 482

cryptography
 black book phone number encryption, 477-480
 Caesar Cipher, 478
 defining, 477, 480
 hash functions, 498-499
 quantum cryptography, 493

data at rest, defining, 477

data in transit, defining, 477

data in use, defining, 477

DEA, 486
defining, 480
DES, 486, 489
Diffie-Hellman key exchange, 484, 491-492
ECB, block ciphers, 482
ECC, 492-493
ECDH-E, 492
IDEA, 486

keys
 defining, 480-481
 DEK, 488
 Diffie-Hellman key exchange, 484, 491
 KEK, 488
 key stretching, 504
 managing, 484-485
 MEK, 488
 PKI, 521-528
 private key cryptography, 481
 public key cryptography, 481-484
one-time pads, 493-494
password hashing
 birthday attacks, 503
 key stretching, 504
 LANMAN hashing, 500-501
 NTLM hashing, 501-502

PGP, 494-495

PKI
 CA, 525-528
 certificates, 522-524, 528
defining, 521
IPsec, 534-535
L2TP, 534
PPTP, 533
S/MIME, 530-531
SSH, 532-533
SSL/TLS, 531-532

PRNG, 495
RC
 RC4, 488-489
 RC5, 489
 RC6, 489
RSA, 490
steganography, defining, 485
symmetric algorithms, 481-482
Threexfish, 489
Twoxfish, 489
web of trust, 529
data exfiltration, 378
data handling (DHE), sensitive data, 616
data in transit, defining, 477
data in use, defining, 477
data labeling, MAC, 363
Data Link layer (OSI model), 174
data redundancy, RAID
 RAID 0, 555
 RAID 0+1, 556
 RAID 1, 556-557
 RAID 5, 556-557
 RAID 6, 556-558
 RAID 10, 556
data remanence, 8, 626
data removal, 8
clearing, 626
destroying storage media (physical data removal), 627
purging, 626
data sensitivity
classifying data, 615
data handling (DHE), 616
legislative policies, 616-617

data storage segmentation, mobile devices, 75
data validation. See input validation
databases (relational)
normalization, 157
RDBMS, 156-157
DDoS (Distributed Denial-of-Service) attacks, 229-230, 240
DEA (Data Encryption Algorithm), 486
deauthentication attacks (Wi-Fi).
See disassociation attacks (Wi-Fi)
decentralized access control, 366
default accounts, wired network/device security, 286
Default Domain Policy, 379
defense in depth, 9, 147
defragmenting hard disks, 107
DEK (Data Encryption Keys), 488
deleting data
clearing, 626
destroying storage media (physical data removal), 627
purging, 626
delivery systems (malware)
active interception, 28
attack vectors, 26
backdoors, 29
bit torrents, 27
botnets, 28
Easter eggs, 30
email, 26
exploit kits, 27
FTP servers, 26
instant messaging, 26
keyloggers, 27
logic bombs, 29
media-based delivery, 27
memory cards, 27
optical discs, 27
P2P networks, 27
privilege escalation, 29
smartphones, 27
software, 26
threat vectors, 26
time bombs, 29
typosquatting, 27
URL hijacking, 27
USB flash drives, 27
user error, 27
websites, 27
zip files, 26
zombies, 28
DER (Distinguished Encoding Rules) format, certificates, 524
DES (Data Encryption Standard), 486, 489
designing networks
back-to-back perimeter networks, 184
bridges, 178
cellular networks, 308
cloud computing
community clouds, 194
CSP, 194
definition, 192
hybrid clouds, 194
IaaS, 193
Maas, 194
PaaS, 193
P2P networks and, 198
SaaS, 194
private clouds, 194
public clouds, 194
SaaS, 193
designing network

SECaaS, 193
security, 195-203
services, 197
social media and, 197
XaaS, 194

CSU, 179

DMZ
3-leg perimeter DMZ, 183
back-to-back perimeter networks, 184
documenting network design, 309
DSU, 179
extranets, 184-185
firewalls, back-to-back perimeter networks, 184
Internet, 183
intranets, 184-185
IP addresses, ports and, 222
LAN
routers, 178
VLAN, 188-189
WAN versus, 182
modems, 190-191
NAC, 185-186

NAT
firewall effect, 180
IPv4 addresses, 180-182
IPv6 addresses, 181-182
private IPv4 addresses, 180
private IPv6 addresses, 181-182
public IPv4 addresses, 180
static NAT, 180
OSI model, 173
layers of, 174
TCP/IP model versus, 175
PAT, IPv4 addresses, 180
PBX equipment, 191
ports
application service ports, 219
associated protocols table, 219-221
closing open ports, 224
dynamic ports, 218
FTP servers, 223
inbound ports, 219
IP addresses and, 222
outbound ports, 219
port zero security, 224
private ports, 218
ranges, 218
registered ports, 218
scanning for open ports, 223
TCP, 217-221
TCP reset attacks, 225
UDP, 217-221
unnecessary ports, 224
well-known ports, 218

protocols and port associations
associated protocols table, 219-221
Diameter, 221
DNS, 220
FCIP, 221
FTP, 219, 225
HTTP, 220
IMAP, 220
iSCSI, 221
Kerberos, 220
L2TP, 221
LDAP, 221
Ms-sql-s, 221
NetBIOS, 220
NNTP, 220
POP3, 220
PPTP, 221
RADIUS, 221
RDP, 221
RPC, 220
RTP, 222
SMB, 221
SMTP, 220
SNMP, 220
SNMPTRAP, 220
SSH, 219
Syslog, 221
TACACS+, 220
Telnet, 220
TFTP, 220

routers
ACL, 179
Cisco routers, 178
content filtering, 179
firewalls, 178
IPS, 179
secure configurations, 178
secure VPN connectivity, 179
SOHO routers, 178-179

SATCOM, 308

subnetting, 186-187

switches, 175
aggregation switches, 177
ARP spoofing, 177
DHCP starvation attacks, 177
fail-open mode, 176
looping, 177
MAC flooding, 176, 189
MAC spoofing, 176-177
physical tampering, 177
port security, 176-177
STP, 177

TCP/IP model versus OSI model, 175
telephony
modems, 190-191
PBX equipment, 191
VoIP, 191

VLAN, 188-189
VoIP, 191
VPN, WAP, 300

WAN
LAN versus, 183
routers, 178

wired network/device security, 285
backdoors, 288-289
cabling, 290-295
default accounts, 286
network attacks, 289
passwords, 286-287
privilege escalation, 287-288
remote ports, 289
Telnet, 289

wireless network security
Bluetooth, 306-307
cellular networks, 308
documenting network design, 309
geofences, 308
GPS, 308
NFC, 306-307
RFID, 307
SATCOM, 308
third-party wireless adapter connections, 296
VPN, 300
WAP, 295-305
wireless protocols, 298
wireless transmission vulnerabilities, 304-305

destroying storage media (data removal), 627
detecting rootkits, 24
detective controls, 405
device drivers, updates, 99
DevOps, 146-148

DFS (Distributed File System) Replication logs, 452

DHCP snooping, 177
DHCP starvation attacks, 177
DHE (Data-Handling Electronics), sensitive data, 616

DHTML (Dynamic HTML), hover ads, 59
Diameter, port associations with, 221
dictionary attacks (password cracking method), 419
differential data backups, 563-565
Diffie-Hellman key exchange, 484, 491-492
digital certificates
CA, 525
CRL, 527
CSR, 525
key escrow, 528
key recovery agents, 528
mapping, 527
pinning, 526-527
PKI
BER format, 524
CA, 525
CER format, 524
chain of trust, 523, 528
DER format, 524
dual-sided certificates, 523
DV certificates, 522
EV certificates, 522
multidomain certificates, 523
OV certificates, 522
P12/PFX format, 524
PEM format, 524
SAN field, 523
single-sided certificates, 523
wildcard certificates, 523
X.509 standard, 522
revoking
CRL, 527
OCSP, 528
validation, 525
verifying with RA, 527
VeriSign certificates, 72, 525
web of trust, 529
digital signatures, public key cryptography, 484
directory traversals, 158-159
disabling
default accounts, 286
external ports, 61
guest accounts, 286
hardware, virtualization, 115
LSO, 137
services, 95-97
SSID broadcasting, 262
disassociation attacks (Wi-Fi), 305
disaster recovery
data backups, 562
10 tape rotation backup scheme, 565
differential data backups, 563-565
full data backups, 563
grandfather-father-son backup scheme, 565
incremental data backups, 563-564
snapshot backups, 566
Towers of Hanoi backup scheme, 566
drills/exercises, 570
DRP
agreements, copies of, 570
BCP, 569
contacts, 569
critical systems/data, hierarchical lists of, 570
drills/exercises, 570
impact determination, 569
fire, 567
flood, 568
loss of building, 568
power loss (long-term), 568
theft/malicious attacks, 568
disaster-tolerant disk systems, RAID, 558
disk duplexing, 556
disk encryption
BitLocker, 64-65
FDE, 64
SED, 64
diversion theft, social engineering attacks, 586, 590

DLL injections, 158

DLP (Data Loss Prevention), 59, 267

DMZ (Demilitarized Zones)
3-leg perimeter DMZ, 183
back-to-back configurations, 259
back-to-back perimeter networks, 184
firewalls, 259

DNS (Domain Name Servers)
amplification attacks, 230, 240
blackholes, 230
domain name kiting, 238, 241
logs, 452
pharming, 237
poisoning, 236, 241
port associations with, 220
sinkholes, 230
unauthorized zone transfers, 237, 241
zone transfers, 258

DNSBL (DNS Blackhole Lists), 230
documentation (file network), 309
domain controllers
IE domain controller-managed policies, 131-132
KDC, tickets, 334
domains
Default Domain Policy, 379
name kiting, 238, 241
donating/recycling equipment policies, 625
door access, physical security
cardkey systems, 324
cipher locks, 324
mantraps, 326
proximity sensors, 325
security tokens, 325
smart cards, 325

DoS (Denial-of-Service) attacks
flood attacks, 226
DyFuCA (Internet Optimizer), 26
dynamic and static analytical monitoring tools, 447
dynamic code analysis, 152
dynamic ports, 218

E

EAP (Extensible Authentication Protocol), 330-332
Easter eggs, malware delivery, 30
eavesdropping, social engineering attacks, 588-590
ECB (Electronic Codebook), block ciphers, 482
ECC (Elliptic Curve Cryptography), 492-493
ECDHE (Elliptic Curve Diffie-Hellman Ephemeral), 492
educating users, 591-593, 621-622
elite hackers, 10

email
address links, preventing/troubleshooting spam, 40
BCC, preventing/troubleshooting spam, 40
blacklists, preventing/troubleshooting spam, 40
identity theft emails, 26
lottery scam emails, 26
malware delivery, 26
open mail relays, preventing/troubleshooting spam, 39
S/MIME, 530-531
spam, 25
definition of, 26
preventing/troubleshooting, 41
spam honeypots, 266
SSL/TLS, 531-532
whitelists, preventing/troubleshooting spam, 40

email servers, security, 199-200
emergency response detail (incident response procedures), 629
EMI (Electromagnetic Interference), cabling, 290
EMP (Electromagnetic Pulses), 599

employees
awareness training, 621-622
clean desk policy, 592
educating, 591-593, 621-622
first responders (incident response procedures), 629
offboarding, 620
onboarding, 620, 623
personal security policies, 617
AUP, 618, 622
awareness training, 621-622
change management policies, 619, 622
due care policies, 621-623
due diligence, infrastructure security, 621-623
due process policies, 621-623
mandatory vacations, 620-622
offboarding, 620
onboarding, 620, 623
privacy policies, 618
separation of duties/job rotation policies, 619, 622
user education, 621-622

PII, 616-617, 622
succession planning, 562
vacations, 620-622
vetting, 592

emulators, 111

encryption, 8, 476
3DES, 486, 489
AES, 64, 487, 482, 489
applications (apps), 71, 78
asymmetric key algorithms, 483
Blowfish, 489
CBC, 482
ciphers
 algorithms as, 480
 block ciphers, 482, 489
 defining, 480
 stream ciphers, 482
cloud security, 196
cryptography
 black book phone number encryption, 477-480
 Caesar Cipher, 478
 defining, 477, 480
 hash functions, 498-499
 quantum cryptography, 493
data at rest, defining, 477
data in transit, defining, 477
data in use, defining, 477
DEA, 486
defining, 480
DES, 486, 489
Diffie-Hellman key exchange, 484, 491-492
ECB, block ciphers, 482
ECC, 492-493
ECDHE, 492
encrypted viruses, 20
FTP servers, 202
full device encryption, mobile devices, 70
hard drives
 BitLocker, 64-65
 FDE, 64
 SED, 64
IDEA, 486
keys
 defining, 480-481
 DEK, 488
 Diffie-Hellman key exchange, 484, 491
 KEK, 488
 key stretching, 504
 managing, 484-485
MEK, 488
PKI, 521-528
 private key cryptography, 481
 public key cryptography, 481-484
mobile devices, 67
one-time pads, 493-494
password hashing, 500
 birthday attacks, 503
 key stretching, 504
 LANMAN hashing, 500-501
 NTLM hashing, 501-502
 NTLMv2 hashing, 502
 pass the hash attacks, 502-503
PGP, 494-495
PKI
 CA, 525-528
 certificates, 522-524, 528-530
 defining, 521
 IPsec, 534-535
 L2TP, 534
 PPTP, 533
 S/MIME, 531
 SSH, 532-533
 SSL/TLS, 531-532
PRNG, 495
RC
 RCA, 488-489
 RC5, 489
 RC6, 489
RSA, 490
 steganography, defining, 485
 symmetric key algorithms, 481-482
 Threefish, 489
 Twofish, 489
USB devices, 63
viruses, preventing/troubleshooting, 33
WAP, 297-299, 303
web of trust, 529
whole disk encryption, 108
end-of-chapter questions, exam preparation, 648
endpoint DLP systems, 59
equation, 414
ephemeral mode
 Diffie-Hellman key exchange, 492
 ECDHE, 492
equipment recycling/donation policies, 625
eradication phase (incident response procedures), 628
ERP (Enterprise Resource Planning), IT security frameworks, 635
error-handling
 compile-time errors, 150
 programming security, 148
 runtime errors, 150
 SEH, 150
escrow, certificate keys, 528
ESP (Encapsulating Security Payloads), IPsec, 535
Ethernet
 ARP poisoning, 238, 241
 FCoE, 221
 NAS, 63-64
Ethernet switching. See switches
ethical hackers, 9
EV (Extended Validation) certificates, 522
events (security)
 audit trails, 451
 failure to see events in security logs, 450
 incidents versus, 627
 SIEM, 460
evidence, collecting/preserving (incident response procedures), 629, 632-633
Evil Maid Attacks, 26
evil twins, WAP, 297
exams
 preparing for
 exam preparation checklist, 647-650
 grading scale, 647
post-certification process, 655
taking exams, 651-654
registering for, 650
Excel (MS), securing, 143
exception-handling, SEH, 150
expenses/man hours, tracking (incident response procedures), 632
explicit allow firewall rule (ACL), 258
explicit deny firewall rule (ACL), 258
exploit kits, malware delivery, 27
exposing sensitive data, 151
external ports, disabling, 61
extranets, 184-185
F
F2F (Friend-to-Friend) networks, 198
facilities
 loss of (disaster recovery), 568
 security
 fire suppression, 594-596
 HVAC, 597-600
 shielding, 598-600
 vehicles, 600-601
fail-closed, redundancy planning, 549
fail-open, redundancy planning, 549
fail-open mode, switches, 176
failover clusters, 560
failover redundancy, 548
failure-resistant disk systems, RAID, 557
failure-tolerant disk systems, RAID, 558
failures
 single points of (redundancy planning), 547-548
 system failure, 6
false acceptances, biometric readers, 326, 345
false negatives
 IDS, 56
 IPS, 270
false positives
IDS, 56
NIPS, 270
false rejection, biometric readers, 326, 345
Faraday cages, 292, 303, 599
fault tolerance, 557
FCIP (Fiber Channel over IP), port associations with, 221
FCoE (Fibre Channel over Ethernet), 221
FDE (Full Disk Encryption), 64
FEXT (Far End Crosstalk), 292
fiber-optic cabling, 290, 294
file servers, security, 198-199
file systems, OS hardening, 105-106
fileless malware, 24
files/folders
auditing, 448-450
copying, 376
IT folder
advanced security settings, 459-460
permissions, 458
log file maintenance/security, 455-457
moving, 376
net file command, analytical monitoring, 446
openfiles command, analytical monitoring, 445
filters
ad filtering, 58
content filters, 58, 179
Internet content filtering, 265
NAT filtering, 259
packet filtering, 258
Spam filters, 38
stateless packet filters, spoofing attacks, 259
web security gateways, 265
FIM (Federated Identity Management), 328
final network documentation, 309
fingerprint readers/scanners, physical security, 326
fingerprinting, 403
fire
disaster recovery, 567
suppression
fire extinguishers, 594-595
special hazard protection systems, 596
sprinkler systems, 595-596
FireFox, secure connections, 525
firewalls
back-to-back perimeter networks, 184
closing open ports, 224
firewall effect, NAT, 180
flood guards, 227
IPFW, 54
iptables, 54
logs, 453
network perimeter security
ACL firewall rules, 258
ALG, 259
application firewalls, 261
back-to-back firewall/DMZ configurations, 259
basic implementation diagram, 256
circuit-level gateways, 259
firewall logs, 260
multihomed connections, 262
NAT filtering, 259
packet filtering, 258
SOHO router/firewall Internet sessions, 260
SPI, 258
web application firewalls, 262
NGFW, 532
personal firewalls, 53
IPFW, 54
iptables, 54
PF, 54
firewalls

SOHO router/firewall configuration, 55
Windows Firewall, 54
ZoneAlarm, 54
PF, 54
routers, 178
SOHO routers, 178
spam firewalls, 38
updates, 108
WAP, 302
Windows Firewall, 31, 54
ZoneAlarm, 54
first responders (incident response procedures), 629
FIT (Failure In Time), quantitative risk assessment, 402
Flash
cookies. See LSO
malicious add-ons, 138
pop-up ads, 59
flash drives, encryption, 63
Flash Player Settings Manager, disabling LSO, 137
flashing, BIOS, 60
flood attacks
Fraggle, 227, 239
MAC flooding, 176, 189
ping floods, 226, 239
Smurf attacks, 226, 239
SYN floods, 227, 239
UDP flood attacks, 227
Xmas attacks, 228
flood guards, 227
floods, disaster recovery, 568
Fluke, 417
folders/files
auditing, 448-450
copying, 376
IT folder
advanced security settings, 459-460
permissions, 458
log file maintenance/security, 455-457
moving, 376
net file command, analytical monitoring, 446
openfiles command, analytical monitoring, 445
forensics, incident response procedures
data analysis, 631
licensing reviews, 632
network traffic, 631
OOV, 630-631
screenshots, 631
system images, 630
tracking man hours/expenses, 632
video, 631
witness statements, 631
fork bombs, 229
forward proxies, 264
Fraggle, 227, 239
frequency hopping, 306
FTP (File Transfer Protocol), 225
port associations with, 219
servers
malware delivery, 26
ports and, 223
protocol analysis, 443
security, 202-203
FTPS (FTP Secure), 225
full data backups, 563
full device encryption, mobile devices, 70
fuzz testing, 152
G
gas-engine generators, 553
Gates, Bill, 588
gateways
ALG, 259
circuit-level gateways, 259
web security gateways, 265
generators

backup generators
 considerations for selecting, 554
 types of, 553
battery-inverter generators, 554
fuel sources, 554
gas-powered generators, 553
permanently installed generators, 553
portable generators, 553
power output, 554
standby generators, 553
starting, 554
uptime, 554

genetic algorithms, 496
geofences, 308
geotagging, 74, 308
GinMaster Trojan, 67
glass-box testing. See white-box testing
GLB (Gramm-Leach-Bliley) act, 617
Gnutella, firewall logs, 260
Google, name change hoax, 588
GPG (GNU Privacy Guard) and PGP, 495
GPMC (Group Policy Management Console), 133
GPS (Global Positioning Systems)
 geofences, 308
 geotagging, 74, 308
 mobile devices, 70
 wireless network security, 308
GPT rootkits, preventing/troubleshooting, 38
grading scale, CompTIA exams, 647
grandfather-father-son backup scheme, 565
gray-box testing, 149
gray hats, 10
grayware, 23
GRC (Governance, Risk and Compliance), 617

GRE (Generic Routing Encapsulation), 342

Group Policies
 GPMC, 133
 Import Policy From window (Windows Server), 104
 Local Group Policy Editor, 103
 OS hardening, 102-104
groups, access control, 371
guessing (password cracking method), 418
guest accounts, disabling, 286

H

hackers. See also threat actors
 black hats, 9
 blue hats, 10
 elite hackers, 10
 ethical hackers, 9
 gray hats, 10
 thinking like a hacker, 9
 white hats, 9
Hackers, 361
hacktivists, 11
Hanoi backup scheme, Towers of, 566
happy birthday attacks, 503
hard disks
 backups, 107
 conserving disk space, 91
data removal
 clearing, 626
 destroying storage media (physical data removal), 627
 purging, 626
defragmenting, 107
drive lock passwords, 61
encryption
 BitLocker, 64-65
 FDE, 64
SED, 64
whole disk encryption, 108
fault tolerance, 557
maintaining, 109
OS hardening, 106-108
restore points, 107
hardening OS, 89
applications
backward compatibility, 91
blacklisting, 92
removing, 90-91
whitelisting, 92
attack surface, reducing, 94
baselining, 105
centrally administered management systems, 92
configuration management, 102
file systems, 105-106
Group Policies, 102-104
hard disks, 91, 106-108
hotfixes, 99-100
least functionality, 90
Linux, starting/stopping services, 95-97
macOS/OS X, starting/stopping services, 96-97
messaging, 90
patches, 99-102
remote control programs, 90
Remote Desktop Connection, 90
Remote Desktop Services, 93
security templates, 103-104
services
disabling, 95-97
Remote Desktop Services, 93
removing, 90-91
TOS, 97
updates, 98-99
whitelisting applications, 92
Windows
Programs and Features window, 91
starting/stopping services, 95-97
Windows Update, 98-99
Windows XP, 94
hashing
defining, 496-497
hash functions
cryptographic hash functions, 498-499
defining, 497
HMAC, 499
MD5, 498
one-way function, 498
password hashing
birthday attacks, 503
key stretching, 504
LANMAN hashing, 500-501
NTLM hashing, 501-502
NTLMv2 hashing, 502
pass the hash attacks, 502-503
process of, 497
RIPEMD, 499
SHA, 498-499
system images, incident response procedures, 630
HAVA (Help America Vote Act of 2002), 617
hazard protection systems, 596
headers
AH, IPsec, 534
manipulation, 441
heuristic analysis, 437
HIDS (Host-based Intrusion Detection Systems), 53-55
Trend Micro OSSEC, 56
Tripwire, 57
Verisys, 57
IDS (Intrusion Detection Systems) 777

hierarchical CA organization, 528
hierarchical lists of critical systems/data, DRP, 570
high availability, RAID arrays, 63
high-energy EMP (Electromagnetic Pulses), 599
hijacking sessions, XSS, 137
HIPAA (Health Insurance Portability and Accountability Act), 616
HIPS (Host Intrusion Prevention Systems), 270
HMAC (Hash-based Message Authentication Code), 499
hoaxes, social engineering attacks, 587, 590
honeynets, 266
honeypots, 266
horizontal privilege escalation, 288
host files, DNS servers, 237, 241
hosted hypervisors, 112
HOSTS files, preventing/troubleshooting spyware, 37
hot and cold aisles (HVAC), facilities security, 597
hot sites, 561
hotfixes, OS hardening, 99-100
hover ads (DHTML), 59
HSM (Hardware Security Modules), 65-66
HTTP (Hypertext Transfer Protocol)
connections, 71
port associations with, 220
proxies. See proxy servers
response packets, header manipulation, 441
HTTPS (HTTP Secure), 71-72, 532
HVAC (Heating, Ventilation, Air Conditioning), facilities security, 597
ANT sensors, 598
SCADA, 598-600
shielding, 599
hybrid clouds, 194
Hyper-V, 114
hypervisors, 111-112

IA (Information Assurance). See risk, assessment; risk, management
IaaS (Infrastructure as a Service), 193
ICMP flood attacks. See ping floods
IDEA (International Data Encryption Algorithm), 486
identification
authentication schemes, 321
biometric readers, 326-327, 345
cardkey systems, 324
definition, 321
FIM, 328
fingerprint readers/scanners, 326
identity proofing, 322
identity theft emails, 26
photo ID, 324
security tokens, 325
smart cards, 325
verifying. See authentication
identification phase (incident response procedures), 628
IDF (Intermediate Distribution Frame) rooms, wire closets, 294
IDPS (Intrusion Detection and Prevention Systems), 57
IDS (Intrusion Detection Systems)
false negatives, 56
false positives, 56
HIDS, 53-55
Trend Micro OSSEC, 56
Tripwire, 57
Verisys, 57
NIDS, 55
placement within networks, 269
promiscuous mode, 268
protocol analyzers, 271
signature-based detection, 56
statistical anomaly detection, 56
WIDS, 272
IE (Internet Explorer)
 domain controller-managed policies, 131-132
 Internet Explorer Maintenance Security, 130-131
 security settings, 130
IF-THEN statements, genetic algorithms, 496
imaging
 OOV, 630-631
 systems, 109, 630
IMAP (Internet Message Access Protocol),
 port associations with, 220
immutable systems, 146
impact analysis (business), BCP, 569
impact assessment, 399
impact determination, DRP, 569
implicit deny (access control), 366
implicit deny firewall rule (ACL), 258
Import Policy From window (Windows Server), 104
in-band management, 444
inbound ports, 219
incident management, 627
incident response procedures
 chain of custody (evidence collection), 629
 collecting/preserving evidence, 629, 632-633
 containment phase, 628
 damage/loss control, 630
 emergency response detail, 629
 eradication phase, 628
 events versus incidents, 627
 forensics
 data analysis, 631
 licensing reviews, 632
 network traffic, 631
 OOV, 630-631
 screenshots, 631
 system images, 630
 tracking man hours/expenses, 632
 video, 631
 witness statements, 631
 identification phase, 628
 initial incident management process, 629
 lessons learned phase, 628
 need-to-know, 633
 preparation phase, 628
 recovery phase, 628
 incremental data backups, 563-564
information security
 anti-malware, 8, 108
 authentication, 7
 backups, 8
 data removal, 8
 defense in depth, 9
 encryption, 8
 malware, 6
 security plans, 7
 social engineering, 6
 system failure, 6
 unauthorized access, 6
 user awareness, 7
infrastructure security, due diligence, 621-623
inherence factors (authentication), 322
inheritance (permissions), 374-375
initial incident management process
 (incident response procedures), 629
input validation, 150-151
installing, 36
instant messaging
 malware delivery, 26
 OS hardening, 90
 spim, 25
integer overflows, 154
integrity (CIA triad), 5, 146-148
interference
 cabling
 crosstalk, 291-292

EMI, 290
RFI, 291
surveys, 302

internal information, classifying (data sensitivity), 615

Internet
 content filtering, 265
 messaging, 73
 network design, 183

Internet Explorer
 Internet Optimizer, 23-26
 Maintenance Security, 130-131

Internet protocol suite. See TCP/IP
intranets, 184-185

IP addresses
 ports and, 222
 spoofing attacks, 231

IP proxies, 263
IP spoofing attacks, 179
IPFW (IP Firewall), 54

IPS (Intrusion Prevention Systems), 57
 false negatives, 270
 HIPS, 270
 NIPS, 268-269
 false positives, 270
 protocol analyzers, 271
 routers, 179
 WIPS, 272

IPsec (Internet Protocol Security)
 AH, 534
 ESP, 535
 SA, 534
 transport mode, 535
 tunneling mode, 535

iptables, 54

IPv4
 addresses, 180-182
 firewall effect, 180
IPv6 addresses, 181-182
IronKey, 63

ISA (Interconnection Security Agreements), 624

iSCSI (Internet Small Computer Systems Interface), port associations with, 221
ISP (Internet Service Providers), redundancy planning, 559

ISSO (Information Systems Security Officers), disaster recovery planning, 570

IT folder
 advanced security settings, 459-460
 permissions, 458

IT security frameworks
 ERP, 635
 reference frameworks, 634
 risk analysis, 635
 vulnerability assessments, 635

ITCP (IT Contingency Planning), 569

IV attacks, 304

J - K

jailbreaking, 135. See also privilege, escalation
 DRM, 288
 mobile devices, 75

jamming surveys, 302

job rotation
 access control, 368
 separation of duties policies, 619, 622

KDC (Key Distribution Center), tickets, 334

KEK (Key Encryption Keys), 488
Kerberos, 334-336, 344, 482, 502
 LDAP injections, 199
 Microsoft Security Bulletins, 199
port associations with, 220
vulnerabilities, 199
keyloggers, 27, 447
keys
certificate keys, 528
cryptography
asymmetric key algorithms, 483
defining, 480-481
DEK, 488
Diffie-Hellman key exchange, 484, 491-492
KEK, 488
key stretching, 504
managing, 484-485
MEK, 488
PKI, 521-535
private key cryptography, 481, 490
public key cryptography, 481-484, 490-493
QKD, 493
symmetric algorithms, 481-482
web of trust, 529
managing, 72, 484-485
Knoppix, 35-37
knowledge factors (authentication), 322

L

L2TP (Layer 2 Tunneling Protocol), 534
port associations with, 221
VPN connections, 340-342
LAN (Local Area Networks)
bridges, 178
broadcast storms, 441
routers, 178
split tunneling, 342
VLAN, 188
MAC flooding, 189
VLAN hopping, 189
WAN versus, 182
LANMAN hashing, 500-501
LDAP (Lightweight Directory Access Protocol), 333-344
injections, 157, 199
port associations with, 221
LEAP (Lightweight Extensible Authentication Protocol), 332
least functionality, 90
least privilege
access control, 367
principle of, 147
legislative policies, 616-617
lessons learned phase (incident response procedures), 628
licensing
compliance violations, 632
reviewing, incident response procedures, 632
linemans handsets. See butt sets
links (email), preventing/troubleshooting spam, 40
Linux
file permissions, 373
netstat command, analytical monitoring, 447
OS hardening, starting/stopping services, 95-97
patch management, 102
SELinux, 57
System Monitor, 440
tcpdump packet analyzer, 443
virus prevention/troubleshooting tools, 35
vulnerability scanning, 414
LM hashes. See LANMAN hashing
load-balancing clusters, 560
Local Group Policy
browser security, 129
LANMAN hashing, 501
Local Group Policy Editor, 103
localized authentication, 329
802.1X, 344
authentication procedure, 331
connection components, 331
EAP, 330-332
Kerberos, 334-336, 344
LDAP, 333, 344
mutual authentication, 334
Remote Desktop Services, 336-337
locking systems, vehicles and facilities security, 601
lockout programs, mobile devices, 70
logic bombs, malware delivery, 29
logins
Ctrl+Alt+Del at logon, 379
SSO, 328-329
logs
application logs, 452
audit trails, 451
DFS Replication logs, 452
DNS Server logs, 452
file maintenance/security, 455-457
firewall logs, 260, 453
network traffic logs, incident response procedures, 631
non-repudiation, 450
security events, failure to see events, 450
Syslog, 454-455
system logs, 452
long-term power loss, disaster recovery, 568
looping switches, 177
loss/damage control (incident response procedures), 630
loss of building, disaster recovery, 568
lottery scam emails, 26
Love Bug viruses, 25
LSO (Locally Shared Objects), 137

M

MaaS (Monitoring as a Service), 194
MAC (Mandatory Access Control), 366
data labeling, 363
filtering, WAP, 302
flooding, 176, 189
lattice-based access control, 364
rule-based access control, 364
spoofing, 176-177, 305
macOS/OS X
OS hardening, starting/stopping services, 96-97
patches, 101-102
macro viruses, 20
maintenance
computers, 108-109
hard disks, 109
Internet Explorer Maintenance Security, 130-131
malicious add-ons, 138
malicious attacks/theft, disaster recovery, 568
malicious insiders, social engineering attacks, 585, 590
malvertising, 23
malware, 6, 19. See also crimeware
adware, 23
anti-malware
software, 8
updates, 108
APT, 22
badware, 37
delivery systems
active interception, 28
attack vectors, 26
backdoors, 29
bit torrents, 27
botnets, 28
Easter eggs, 30
email, 26
exploit kits, 27
FTP servers, 26
instant messaging, 26
keyloggers, 27
logic bombs, 29
media-based delivery, 27
memory cards, 27
optical discs, 27
P2P networks, 27
privilege escalation, 29
smartphones, 27
software, 26
threat vectors, 26
time bombs, 29
typosquatting, 27
URL hijacking, 27
USB flash drives, 27
user error, 27
websites, 27
zip files, 26
zombies, 28

grayware, 23
malvertising, 23
mobile devices, 67, 77
non-malware, 24
ransomware, 22

CryptoLocker, 23, 26
definition of, 26
preventing/troubleshooting, 35

rootkits
Alureon rootkits, 24-26
definition of, 26
detecting, 24
Evil Maid Attacks, 26
preventing/troubleshooting, 38, 41

spam, 25
definition of, 26
filters, 38
firewalls, 38
identity theft emails, 26
lottery scam emails, 26
preventing/troubleshooting, 38-41

spim, 25
spyware, 23-24
definition of, 26
Internet Optimizer, 26
preventing/troubleshooting, 35-37, 41
symptoms of, 36
tracking cookies, 137

Trojans
definition of, 25
GinMaster Trojan, 67
MITB attacks, 233-234, 240
PlugX Trojans, 25
preventing/troubleshooting, 35, 41
RAT, 22, 29
time bombs, 29
ZeroAccess botnet, 28

unsavable computers, 40

viruses
armored viruses, 21
boot sector viruses, 20, 34
definition of, 25
encrypted viruses, 20
Love Bug virus, 25
macro viruses, 20
metamorphic viruses, 21
multipartite viruses, 21
polymorphic viruses, 20
preventing/troubleshooting, 31-35, 41
program viruses, 20
stealth viruses, 21
symptoms of, 33-34
virus hoaxes, 21

worms
definition of, 25
Nimda, 21
Nimda worm, 25
preventing/troubleshooting, 35, 41

man hours/expenses, tracking (incident response procedures), 632
management controls, 404
managing
add-ons, 138
application patches, 142
change management policies, 619, 622
configurations, 102
group policies, GPMC, 133
in-band management, 444
incidents, 627
keys (cryptography), 484-485
out-of-band management, 444
patches, 101-102
risk, 397-399
vulnerabilities
general vulnerabilities/basic prevention
methods table, 409-410
OVAL, 408-409
penetration testing, 407-408
process of, 405-406
Mandatory Security Policy. See MAC
mandatory vacations, 620-622
mantraps
multifactor authentication, 589
physical security, 326
manual auditing, 448
manual monitoring, 435
many-to-one mapping (certificates), 527
mapping
certificates, 527
networks, 411-412
MBR (Master Boot Records) rootkits, preventing/troubleshooting, 38
MBSA (Microsoft Baseline Security Analyzer), 101
MD5 (Message-Digest algorithm 5), 498
MDF (Main Distribution Frame) rooms, wire closets, 294
MDM (Mobile Device Management), 75
measured boot option, BIOS, 62
media gateways, 191
media-based malware delivery, 27
MEK (Master Encryption Keys), 488
memory
ASLR, 155
buffer overflows, 153, 159
CAM tables, MAC flooding, 176
integer overflows, 154
memory leaks, 154
null pointer dereferences, 154
RDBMS, stored procedures, 156-157
memory cards, malware delivery, 27
messaging (instant)
malware delivery, 26
MMS attacks, 73
OS hardening, 90
SMS attacks, 73
spim, 25
metamorphic viruses, 21
MFA (Multifactor Authentication), 327
Microsoft domains, KDC tickets, 334
Microsoft Edge, policy settings, 130
Microsoft Security Bulletins, Kerberos vulnerabilities, 199
minimizing attack surface, 94, 147
mirroring ports, 442
MITB (Man-in-the-Browser) attacks, 233-234, 240
mitigating risk, 400
MITM (Man-in-the-Middle) attacks, 28, 233, 240
mobile apps, security, 143
mobile devices, 66
access control, 75
application security, 78
application blacklisting, 73
application whitelisting, 73
geotagging, 74
HTTPS connections, 71-72
key management, 72
MMS attacks, 73
server/network authentication, 72
SMS attacks, 73
transitive trust, 72
bluejacking, 69
bluesnarfing, 69
botnets, 68, 77
browser security, 135
BYOD, 74-78
carrier unlocking, 69
COPE, 74
crosstalk, 291
CYOD, 74
encryption, 67
full device encryption, 70
GPS tracking, 70, 74
jailbreaking, 75, 135
lockout programs, 70
malware, 67, 77
MDM, 75
offboarding, 76
onboarding, 76
passwords, 67, 71
rooting, 75, 135
sanitizing, 70
screen locks, 71
sideloading, 75
SIM cloning, 68, 77
social engineering attacks, 68
storage segmentation, 75
theft of, 70-71, 77
wireless attacks, 69-70, 77
modems
network design, 190-191
war-dialing, 190
monitoring
analytical monitoring tools
 Computer Management, 445
 keyloggers, 447
 net file command, 446
 netstat command, 446
 openfiles command, 445
 static and dynamic analytical tools, 447
anomaly-based monitoring, 436-437
auditing and, 434
automated monitoring, 435
behavior-based monitoring, 436-437
manual monitoring, 435
performance baselining
 alerts, 440
 baseline reporting, 438
 Performance Monitor, 439
 standard loads, 438
 System Monitor, 440
protocol analyzers
 broadcast storms, 441
 network adapters, 440
 packet capturing, 440
 TCP/IP handshakes, 441
 Wireshark, 441-442
session monitoring, Computer Management, 445
signature-based monitoring, 435-437
SNMP, 443-445
motion detectors, physical security, 323
MoU (Memorandums of Understanding), 624
moving files/folders, 376
MPLS (Multiprotocol Label Switching), 342
MS-CHAP (Microsoft-Challenge Handshake Authentication Protocol), RAS authentication, 338
Ms-sql-s, port associations with, 221
MTBF (Mean Time Between Failures), quantitative risk assessment, 401-402
MTTF (Mean Time To Failure), quantitative risk assessment, 402
MTTR (Mean Time To Repair), quantitative risk assessment, 402
multicast IPv6 addresses, 181
multidomain certificates, 523
multifactor authentication, 337, 589
multihomed connections, 262
multipartite viruses, 21
multiple user accounts, 371
mutual authentication, 334

N

NAC (Network Access Control), 185-186
NAS (Network Attached Storage), 63
NAT (Network Address Translation), 180
filtering, 259
firewall effect, 180
IPv4 addresses, 180-182
IPv6 addresses, 181-182
static NAT, 180
native hypervisors, 112
NCAS (National Cyber Awareness System), mobile device security, 67
Ncat, 414
need-to-know (incident response procedures), 633
Nessus, 414
net file command, analytical monitoring, 446
NetBIOS, port associations with, 220
NetBus, 22
Netcat, 414-415
netstat command, analytical monitoring, 446
network controllers, security, 199
Network layer (OSI model), 174
networks
adapters, 440, 558-559
attacks
ARP poisoning, 238, 241
blackholes, 230
client-side attacks, 236
command-line scripting and, 235
DDoS attacks, 229-230, 240
DNS servers, 236-238, 241
DoS attacks, 226-229, 239
t null sessions, 235, 241
phishing attacks, 231
replay attacks, 234-235, 241
session hijacking, 232-234, 240
sinkholes, 230
spoofing attacks, 231-232, 240
transitive access, 236, 241
wired network/device security, 289
authentication, 72
back-to-back perimeter networks, 184
bridges, 178
cellular networks, 308
cloud computing
community clouds, 194
CSP, 194
definition, 192
hybrid clouds, 194
IaaS, 193
MaaS, 194
P2P networks and, 198
PaaS, 193
private clouds, 194
public clouds, 194
SaaS, 193
SECaaS, 193
security, 195-203
services, 197
social media and, 197
XaaS, 194
connections, redundancy planning, 558
CSU, 179
DLP systems, 59
DMZ
- 3-leg perimeter DMZ, 183
 - back-to-back perimeter networks, 184
documenting network design, 309
DSU, 179
enumerators, 414
extranets, 184-185
firewalls, back-to-back perimeter networks, 184
Internet, 183
intranets, 184-185
IP addresses and ports, 222
LAN
- routers, 178
 - VLAN, 188-189
 - WAN versus, 182
mapping, 411-412
modems, 190-191
NAC, 185-186
NAS, 63
NAT
- firewall effect, 180
 - IPv4 addresses, 180-182
 - IPv6 addresses, 181-182
 - private IPv4 addresses, 180
 - private IPv6 addresses, 181-182
 - public IPv4 addresses, 180
 - static NAT, 180
OSI model, 173
 - layers of, 174
 - TCP/IP model versus, 175
PAT, IPv4 addresses, 180
PBX equipment, 191
perimeter security, 254-255
 - DLP, 267
 - firewalls, 256-262
 - HIPS, 270
 - honeynets, 266
 - honeypots, 266
 - NIDS, 268-271
NIPS, 268-271
 - proxy servers, 263-265
 - SSID broadcasting, disabling, 262
UTM, 272
 - web security gateways, 265
WIDS, 272
WIPS, 272
ports
 - application service ports, 219
 - associated protocols table, 219-221
 - closing open ports, 224
 - dynamic ports, 218
 - FTP servers, 223
 - inbound ports, 219
 - IP addresses and, 222
 - outbound ports, 219
 - port zero security, 224
 - private ports, 218
 - protocol associations, 219-221
 - ranges, 218
 - registered ports, 218
 - scanning for open ports, 223
 - TCP, 217-221, 225
 - UDP, 217-221
 - unnecessary ports, 224
 - well-known ports, 218
protocols and port associations
 - associated protocols table, 219-221
 - Diameter, 221
 - DNS, 220
 - FCIP, 221
 - FTP, 219, 225
 - HTTP, 220
 - IMAP, 220
 - iSCSI, 221
 - Kerberos, 220
 - L2TP, 221
 - LDAP, 221
 - MS-sql-s, 221
NetBIOS, 220
NNTP, 220
POP3, 220
PPTP, 221
RADIUS, 221
RDP, 221
RPC, 220
RTP, 222
SMB, 221
SMTP, 220
SNMP, 220
SNMPTRAP, 220
SSH, 219
Syslog, 221
TACACS+, 220
Telnet, 220
TFTP, 220

redundancy planning
ISP, 559
network adapters, 558-559
network connections, 558
servers, 560-561
switches, 559

routers
ACL, 179
Cisco routers, 178
content filtering, 179
firewalls, 178
IPS, 179
secure configurations, 178
secure VPN connectivity, 179
SOHO routers, 178-179

SAN, NAS, 64
SATCOM, 308

security, 254-255
air gaps, 600-601
dLP, 267
firewalls, 256-262
HIPS, 270

honeynets, 266
honeypots, 266
NIDS, 268-271
NIPS, 268-271
proxy servers, 263-265
SSID broadcasting, disabling, 262
UTM, 272
web security gateways, 265
WIDS, 272
WIPS, 272

sniffers, 415-417
subnetting, 186-187
switches, 175
aggregation switches, 177
ARP spoofing, 177
DHCP starvation attacks, 177
fail-open mode, 176
looping, 177
MAC flooding, 176, 189
MAC spoofing, 176-177
physical tampering, 177
port security, 176-177
STP, 177

TCP/IP model versus OSI model, 175
telephony
modems, 190-191
PBX equipment, 191
VoIP, 191

traffic, incident response procedures, 631
transitive trust, 72
VLAN, 188-189
VoIP, 191
VPN, WAP, 300
WAN
LAN versus, 183
routers, 178

wired network/device security, 285
backdoors, 288-289
cabling, 290-295
default accounts, 286
network attacks, 289
passwords, 286-287
pride escalation, 287-288
remote ports, 289
Telnet, 289
wireless network security
Bluetooth, 306-307
cellular networks, 308
documenting network design, 309
geofences, 308
GPS, 308
NFC, 306-307
RFID, 307
SATCOM, 308
third-party wireless adapter connections, 296
VPN, 300
WAP, 295-305
wireless protocols, 298
wireless transmission vulnerabilities, 304-305
NEXT (Near End Crosstalk), 292
NFC (Near Field Communication), 306-307
NGFW (Next Generation Firewalls), 532
NIDS (Network Intrusion Detection Systems), 55
placement within networks, 269
promiscuous mode, 268
protocol analyzers, 271
Nimda worm, 21, 25
NIPS (Network Intrusion Prevention Systems), 268-269
false positives, 270
protocol analyzers, 271
NIST penetration testing, 408
Nmap, 413
NMS (Network Management System), SNMP, 444
NNTP (File Transfer Protocol), port associations with, 220
non-promiscuous mode, network adapters, 440
non-repudiation, 6, 450
nonces, 235, 504
normalization, relational databases, 157
NoSQL injections, 157
NTFS (NT File System) permissions, 372, 376
NTLM hashing, 501-502
NTLMv2 hashing, 502
null pointer dereferences, 154
null sessions, 235, 241

obfuscation, programming security, 148
OCSP (Online Certificate Status Protocol), 528
offboarding, 76, 620
on-demand VPN (Virtual Private Networks), 535
onboarding, 76, 620, 623
one-time pads, 493-494
one-to-one mapping, 180, 527
one-way functions, hashes as, 498
OOV (Order of Volatility)
 imaging media, 630-631
 incident response procedures, 630-631
open mail relays, preventing/troubleshooting spam, 39
open ports
 closing, 224
 scanning for, 223
openfiles command, analytical monitoring, 445
operational controls, 404
optical discs, malware delivery, 27
Orange Book, 361, 364
organizational policies

data sensitivity
 classifying data, 615
 DHE, 616
legislative policies, 616-617
example of, 614-615
personal security policies, 617
 AUP, 618, 622
 awareness training, 621-622
 change management policies, 619, 622
due care policies, 621-623
due diligence, infrastructure security, 621-623
due process policies, 621-623
 equipment recycling/donation policies, 625
 mandatory vacations, 620-622
offboarding, 620
onboarding, 620, 623
privacy policies, 618
 separation of duties/job rotation policies, 619, 622
user education, 621-622
 vendor policies, 623-624

organized crime, 11
organizing CA horizontally, 528
OS
 fingerprinting, 403
hardening, 89
 backward compatibility of applications, 91
 baselining, 105
blacklisting applications, 92
centrally administered management systems, 92
 configuration management, 102
disabling services, 95-97
file systems, 105-106
 Group Policies, 102-104
hard disk space, conserving, 91
hard disks, 106-108
 hotfixes, 99-100
 least functionality, 90-91
 Linux, starting/stoping services, 95-97
 macOS/OS X, starting/stoping services, 96-97
 messaging, 90
 patches, 99-102
 reducing attack surface, 94
 remote control programs, 90
 Remote Desktop Connection, 90
 Remote Desktop Services, 93
 removing applications, 90-91
 removing services, 90-91
 security templates, 103-104
 TOS, 97
 updates, 98-99
 whitelisting applications, 92
 Windows, starting/stoping services, 95-97
 Windows Programs and Features window, 91
 Windows Update, 98-99
 Windows XP, 94
 privilege escalation, 287-288
 updates, 108
OS GUI, closing open ports, 224
OS X
 OS hardening, starting/stoping services, 96-97
 patch management, 102
 patches, 101-102
OSI (Open Systems Interconnection)
 model, network design, 173
 layers of, 174
 TCP/IP model versus, 175
OSINT (Open Source Intelligence), social engineering, 584
OSSEC, 56
OSSTMM (Open Source Security Testing Methodology Manual), penetration testing, 408
out-of-band management, 444
outbound ports, 219
Outlook, securing, 143
OV (Organizational Validation) certificates, 522
OVAL (Open Vulnerability and Assessment Language), 408-409

P

P2P networks
 cloud computing and, 198
 malware delivery, 27
P12/PFX (P12 Personal Information Exchange) format, certificates, 524
PaaS (Platform as a Service), 193
PAC (Proxy Auto-Configuration) files, 263
packets
 capturing, 415, 440
 filtering, 258
 headers
 manipulating, 441
 session theft, 232
 HTTP response packets, header manipulation, 441
 sniffers, 443
 SPI, 258
PAM (Pluggable Authentication Modules), Kerberos, 336
pass the hash attacks, 502-503
passive optical splitters, fiber-optic cabling, 294
passive reconnaissance (security analysis), 403
passwords, 376-377
 Administrator accounts, 378
 analyzing, 417-40
 BIOS, 60
 browser security, 139
 clear-text passwords, 443
 cloud security, 195
 complexity of, 381
 cracking, 417-420
 data exfiltration, 378
 default accounts, 286
 drive lock passwords, 61
 guest accounts, 378
 hashing
 birthday attacks, 503
 key stretching, 504
 LANMAN hashing, 500-501
 NTLM hashing, 501-502
 NTLMv2 hashing, 502
 pass the hash attacks, 502-503
 length of, 381
 mobile devices, 67, 71
 nonce, 504
 policies, 379-383
 programming security, 147
 strong passwords, 286-287
 wired network/device security, 286-287
PAT (Port Address Translation), IPv4 addresses, 180
patches
 managing, 101-102, 142
 OS hardening, 99-102
 programming security, 148
PayPal, VeriSign certificates, 525
PBX (Private Branch Exchange) equipment, network design, 191
Peap. See packets, capturing
PDS (Protected Distribution Systems), cabling, 295
PEAP (Protected Extensible Authentication Protocol), 330-332
PEM (Privacy-enhanced Electronic Mail) format, certificates, 524
penetration tests, 149, 407-408
people, succession planning, 562
performance baselining
alerts, 440
baseline reporting, 438
Performance Monitor, 439
standard loads, 438
System Monitor, 440
Performance Monitor, 439, 445
peripherals (wireless), 66
permanent DoS attacks, 229
permanently installed generators, 553
permissions
ACL, 371
DACL, 372
inheritance, 374-375
IT folder, 458
Linux file permissions, 373
NTFS permissions, 372, 376
privilege creep, 374
programming security, 147
propagating, 375
SACL, 372
user access recertification, 374
persistence (penetration testing), 407
persistent cookies, 136
personal firewalls, 53
IPFW, 54
iptables, 54
PF, 54
SOHO router/firewall configuration, 55
Windows Firewall, 54
ZoneAlarm, 54
personal security policies, 617
AUP, 618, 622
awareness training, 621-622
change management policies, 619, 622
due care policies, 621-623
due diligence, infrastructure security, 621-623
due process policies, 621-623
mandatory vacations, 620-622
offboarding, 620
onboarding, 620, 623
privacy policies, 618
separation of duties/job rotation policies, 619, 622
user education, 621-622
PF (Packet Filters), 54
PFS (Perfect Forward Secrecy), 492
PGP (Pretty Good Privacy), 494-495
pharming, 237
PHI (Protected Health Information), 616-617
phishing attacks, 231, 586, 590
phone number encryption, 477-480
phone phishing. See vishing
photo ID, 324
PHP scripts, exploit kits, 27
Physical layer (OSI model), 174
physical security, 7
authentication, 321
biometric readers, 326-327, 345
CCTV, 323
door access
cardkey systems, 324
cipher locks, 324
mantraps, 326
proximity sensors, 325
security tokens, 325
smart cards, 325
fingerprint readers/scanners, 326
mantraps, 589
motion detectors, 323
server rooms, 323
user safety, 324
video surveillance, 323
piggybacking, social engineering attacks, 589-591
PII (Personally Identifiable Information), 616-617, 622
ping floods, 226, 239
pinning certificates, 526-527
pivots (penetration testing), 407
PIV (Personal Identity Verification) cards.
See smart cards
PKI (Public Key Infrastructure)
CA
certificate mapping, 527
certificate pinning, 526-527
certificate validation, 525
certificate verification with RA, 527
chain of trust, 528
CRL, 527
CSR, 525
horizontal organization, 528
key escrow, 528
key recovery agents, 528
revoking certificates, 527-528
VeriSign certificates, 72, 525
web of trust, 529
certificates
BER format, 524
CA, 525
CER format, 524
chain of trust, 523, 528
DER format, 524
dual-sided certificates, 523
DV certificates, 522
EV certificates, 522
multidomain certificates, 523
OV certificates, 522
P12/PFX format, 524
PEM format, 524
SAN field, 523
single-sided certificates, 523
validation, 525
web of trust, 529
wildcard certificates, 523
X.509 standard, 522
defining, 521
IPsec
AH, 534
ESP, 535
SA, 534
transport mode, 535
tunneling mode, 535
L2TP, 534
PPTP, 533
S/MIME, 530-531
SSH, 532-533
SSL/TLS, 531-532
PlugX RAT, 22
PlugX Trojans, 25
PNAC (Port-based Network Access Control), 802.1X, 330
POD (Ping of Death), 228, 239
Poirot, Hercule, 435
policies
access control
Account Lockout Threshold Policy, 382
Default Domain Policy, 379
passwords, 379-383
Account Lockout Threshold Policy, 382
Default Domain Policy, 379
equipment recycling/donation policies, 625
legislative policies, 616-617
organizational policies
data sensitivity, 615-617
equipment recycling/donation policies, 625
example of, 614-615
personal security policies, 617-623
vendor policies, 623-624
passwords, 379-383
personal security policies, 617
AUP, 618, 622
awareness training, 621-622
power supplies, 793

due diligence, infrastructure security, 621-623

due process policies, 621-623
mandatory vacations, 620-622
offboarding, 620
onboarding, 620, 623
privacy policies, 618
separation of duties/job rotation policies, 619, 622
user education, 621-622

policy implementation, applications, 140

polymorphic viruses, 20
POP3, port associations with, 220
pop-under ads, 59
pop-up blockers, 53, 57-59, 135
portable generators, 553

ports
application service ports, 219
associated protocols table, 219-221
dynamic ports, 218
external ports, disabling, 61
FTP servers, 223
inbound ports, 219
IP addresses and, 222
miring, 442
NAC, 186
open ports
closing, 224
scanning for, 223
unnecessary ports, 224
outbound ports, 219
PAT, IPv4 addresses, 180
PNAC, 802.1X, 330
port zero security, 224
private ports, 218
registered ports, 218
remote ports, wired network/device security, 289
RTP and port associations, 222
scanning, 413
SNMP, 444
switch port security, 176-177
TCP, 217-221, 225
twisted-pair networks, wiretapping, 293
UDP, 217-221
well-known ports, 218
WinDump, 443

possession factors (authentication), 322
post-certification process, 655

power supplies
backup generators
 considerations for selecting, 554
 types of, 553
battery backups, 552
blackouts, 550
brownouts, 550
disaster recovery, 568
failures, 550
redundancy planning, 549-550
 backup generators, 553-554
 battery backups, 552
 standby generators, 553
 UPS, 551-552
sags, 550
spikes, 550
standby generators, 553
surges, 550
UPS, 551-552
PPTP (Point-to-Point Tunneling Protocol), 533
port associations with, 221
VPN connections, 340-342
practice exams, 649
pre-action sprinkler systems, 596
Premiere Pro, 91
preparation phase (incident response procedures), 628
preparing for exams
exam preparation checklist, 647-650
grading scale, 647
post-certification process, 655
taking exams, 651-654
Presentation layer (OSI model), 174
preserving evidence (incident response procedures), 629, 632-633
pretexting, social engineering attacks, 584, 590
preventing/troubleshooting
ransomware, 35
rootkits, 38, 41
spam, 38-41
spyware, 35-37, 41
Trojans, 35, 41
viruses, 41
antivirus software, 31, 34
encryption, 33
Linux-based tools, 35
Windows Firewall, 31
Windows Update, 31
worms, 35, 41
preventive controls, 404
principle of defense in depth, 147
principle of least privilege, 147
Privacy Act of 1974, 616-618
privacy policies, 618
private clouds, 194
private information, classifying (data sensitivity), 615
private IPv4 addresses, 180
private key cryptography, 481, 490
private ports, 218
privilege
creep, 374
de-escalation, 288
escalation. See also jailbreaking
horizontal privilege escalation, 288
malware delivery, 29
SOHO routers, 288
vertical privilege escalation, 288
wired network/device security, 287-288
principle of least privilege, 147
PRNG (Pseudorandom Number Generator), 495
Pro Tools, 91
procedures
incident response procedures, 627
chain of custody (evidence collection), 629
collecting/preserving evidence, 629, 632-633
containment phase, 628
damage/loss control, 630
emergency response detail, 629
eradication phase, 628
events versus incidents, 627
forensics, 630-632
identification phase, 628
initial incident management process, 629
lessons learned phase, 629
need-to-know, 633
preparation phase, 628
recovery phase, 628
witness statements, 631
policies versus, 613
process VM (Virtual Machines), 111
program viruses, 20
programming
ASLR, 155
protocols, port associations with 795

authentication, 148
CIA triad, 146
cloud security, 196
code checking, 148
code signing, 148
DevOps, 146-148
error-handling, 148
integrity, 148
minimizing attack surface area, 147
obfuscation, 148
passwords, 147
patches, 148
permissions, 147
principle of least privilege, 147
quality assurance policies, 147
SDLC
 agile model, 146
 principles of, 146-148
 V-shaped model, 145
 waterfall model, 145
secure code review, 146
secure coding concepts, definition of, 144
testing methods
 black-box testing, 149
 compile-time errors, 150
dynamic code analysis, 152
fuzz testing, 152
gray-box testing, 149
input validation, 150-151
penetration tests, 149
runtime errors, 150
sandboxes, 149
SEH, 150
static code analysis, 151-152
stress testing, 149
white-box testing, 149
threat modeling, 147
trusting user input, 147
vulnerabilities/attacks
 arbitrary code execution, 155
 backdoor attacks, 22, 29, 153, 159
 buffer overflows, 153, 159
code injections, 156-159
directory traversals, 158-159
DLL injections, 158
time overflows, 154
LDAP injections, 157
memory leaks, 154
null pointer dereferences, 154
RCE, 155, 159
SQL injections, 156
XML injections, 157
XSRF, 156, 159
XSS, 156, 159
zero day attacks, 158-159
Programs and Features window (Windows), OS hardening, 91
promiscuous mode
 network adapters, 440
NIDS, 268
propagating permissions, 375
proprietary information, classifying (data sensitivity), 615
protocol analyzers, 415
 broadcast storms, 441
 network adapters, 440
 NIDS, 271
 packet capturing, 440
 TCP/IP handshakes, 441
Wireshark, 441-442
protocols, port associations with
 associated protocols table, 219-221
 Diameter, 221
 DNS, 220
 FCIP, 221
 FTP, 219, 225
protocols, port associations with

HTTP, 220
IMAP, 220
iSCSI, 221
Kerberos, 220
L2TP, 221
LDAP, 221
MS-sql-s, 221
NetBIOS, 220
NNTP, 220
POP3, 220
PPTP, 221
RADIUS, 221
RDP, 221
RPC, 220
RTP, 222
SMB, 221
SMTP, 220
SNMP, 220
SNMPTRAP, 220
SSH, 219
Syslog, 221
TACACS+, 220
Telnet, 220
TFTP, 220
proximity sensors, physical security, 325
proxy servers, 133-134
application proxies, 264
caching proxies, 263-264
forward proxies, 264
HTTP proxies, 263
Internet content filtering, 265
IP proxies, 263
PAC files, 263
reverse proxies, 264
transparent proxies, 265
pseudocodes. See error-handling
PSK (Pre-Shared Keys), WAP, 298
public clouds, 194
public information, classifying (data sensitivity), 615
public IPv4 addresses, 180
public key cryptography, 481-483
certificates, 484
digital signatures, 484
ECC, 492-493
ECDHE, 492
RSA, 490
public networks, split tunneling, 342
punch blocks, wiretapping, 293
purging (data removal), 626

Q - R

QKD (Quantum Key Distribution), 493
qualitative risk assessment, 399, 402
quality assurance policies, 147
quantitative risk assessment, 400-402
quantum cryptography, 493
questions (end-of-chapter), exam preparation, 648

RA (Registration Authority), certificate verification, 527
race condition exploits, 408
RADIUS (Remote Authentication Dial-In User Service)
port associations with, 221
RADIUS federation, 343-345
RAID (Redundant Array of Independent Disks)
high availability, 63
RAID 0, 555
RAID 0+1, 556
RAID 1, 556-557
RAID 5, 556-557
RAID 6, 556-558
RAID 10, 556
rainbow tables, 419, 498
ransomware, 22
CryptoLocker, 23, 26
definition of, 26
preventing/troubleshooting, 35

RAS (Remote Access Service), 337, 340, 344
CHAP, 338-339
MS-CHAP, 338

RAT (Remote Access Trojans), 22, 29, 202-203

RBAC (Role-Based Access Control), 364-366

RC (Rivest Cipher)
RC4, 488-489
RC5, 489
RC6, 489

RCE (Remote Code Execution), 155, 159

RDBMS (Relatable Database Management System, 156-157

RDP (Remote Desktop Protocol), port associations with, 221

record time offset, 631

recovering certificate keys, 528

recovery phase (incident response procedures), 628

recycling/donating equipment policies, 625

Red Book, 362

Red Hat Enterprise, Kerberos and PAM, 336

Red October, 24

reduced sign-ons, 328

reducing risk, 398

redundancy planning
data, 555-558
employees, 562
fail-closed, 549
fail-open, 549
failover redundancy, 548

networks
ISP, 559

network adaptors, 558-559

network connections, 558

servers, 560-561

switches, 559

power supplies, 549-550

backup generators, 553-554

battery backups, 552

standby generators, 553

UPS, 551-552

RAID, 555-558
single points of failure, 547-548
succession planning, 562

websites, 561

reference frameworks (IT security), 634

registered ports, 218

registering for exams, 650

relational databases
normalization, 157

RDBMS, 156-157

remanence (data), 8

remote authentication
RADIUS, 343-345

RAS, 337, 340, 344

CHAP, 338-339

MS-CHAP, 338

TACACS+, 220, 343-345

VPN
always-on VPN, 342

GRE, 342

illustration of, 340

L2TP, 340-342

PPTP, 340-342

RRAS, 341

split tunneling, 342

VPN concentrators, 342

remote control programs, OS hardening, 90

Remote Desktop Connection, OS hardening, 90

Remote Desktop Services, 93, 336-337
remote ports, wired network/device security, 289
removable media controls, 63
temporary storage/media, 62-63
removing
applications, 90-91
data, 8
clearing, 626
destroying storage media (physical data removal), 627
purging, 626
services, 90-91
unnecessary applications/services, 90-91
replay attacks, 234-235, 241
residual risk, 398
restore points, hard disks, 107
reverse proxies, 264
revoking certificates
CRL, 527
OCSP, 528
RFI (Radio Frequency Interference), cabling, 291
RFID (Radio-Frequency Identification), 307
RIPEMD (RACE Integrity Primitives Evaluation Message Digest), 499
risk
analysis, IT security frameworks, 635
assessment
defining risk, 397-398
impact assessment, 399
qualitative risk assessment, 399, 402
qualitative risk mitigation, 400
quantitative risk assessment, 400-402
residual risk, 398
risk acceptance, 398
risk avoidance, 398
risk management, 397-399
risk reduction, 398
risk registers, 399
risk transference, 398
security analysis, 402-403
security controls, 404-405
vulnerability assessment, 396, 406, 410-420
vulnerability management, 405-410
GRC, 617
Rivest, Ron
MD5, 498
RC, 488-489
RSA, 490
RJ11 jacks, wiretapping, 293
RJ45 jacks, wiretapping, 293
RJ45 wall plates, wiretapping, 293
rogue AP (Access Points), 296
Ron’s Code. See RC
room security. See physical security
root of trust, 62
rooting, 75, 135
rootkits
Alureon rootkits, 24-26
definition of, 26
detecting, 24
Evil Maid Attacks, 26
preventing/troubleshooting, 38, 41
routers
ACL, 179
Cisco routers, 178
color filtering, 179
firewalls, 178
IPS, 179
secure configurations, 178
secure VPN connectivity, 179
SOHO firewall configuration, 55
SOHO routers
configuring, 55
default accounts, 286
firewalls, 178
firewalls and, 260
privilege escalation, 288
secure VPN connectivity, 179

WIC, 179
RPC (Remote Procedure Calls), port associations with, 220
RPO (Recovery Point Objective), BCP, 569
RRAS (Routing and Remote Access Service), VPN connections, 341
RSA (Rivest, Shamir, and Adleman), 490
RSA tokens. See security, tokens
RTBH (Remotely Triggered Blackholes), 230
RTO (Recovery Time Objective), BCP, 569
RTP (Real-time Transport Protocol) and ports, 222
runtime errors, 150

S

S/MIME (Secure/Multipurpose Internet Mail Extensions), 530-531
SA (Secure Associations), IPsec, 534
SaaS (Software as a Service), 193
SACL (System Access Control Lists), 372
Safe Mode
 antivirus software, 34
 spyware, preventing/troubleshooting, 37
sags (power supplies), 550
salting, cryptanalysis attacks, 419
SAN (Storage Area Networks), NAS, 64
SAN (Subject Alternative Name) field, certificates, 523
sandboxes, definition of, 149
sanitizing mobile devices (data removal), 70, 626
SATCOM (Satellite Communications), wireless network security, 308
SB 1386, 617
SCADA (Supervisory Control and Data Acquisition), HVAC (facilities security), 598, 600
scanning
 ports, 413
 vulnerabilities, 412-414
SCCM (System Center Configuration Manager), 102
scheduling incremental data backups, 563-564
Schneier, Bruce, 489
SCP (Secure Copy), 226
screen locks, mobile devices, 71
screenshots, incident response procedures, 631
script kiddies, 11
SCRM (Supply Chain Risk Management), 399
SDLC (Software Development Life Cycle)
 agile model, 146
 principles of, 146-148
 V-shaped model, 145
 waterfall model, 145
SECaaS (Security as a Service), 193
secret information, classifying (data sensitivity), 615
secure boot option, BIOS, 61
secure code review, 146
secure coding concepts, definition of, 144
secure VPN connectivity, routers, 179
security
 analysis, 402
 active reconnaissance, 403
 passive reconnaissance, 403
 controls
 compensating controls, 405
 corrective controls, 405
 detective controls, 405
 management controls, 404
 operational controls, 404
security

preventive controls, 404
technical controls, 404
events
audit trails, 451
failure to see events in security logs, 450
SIEM, 460
logs
application logs, 452
audit trails, 451
DFS Replication logs, 452
DNS Server logs, 452
file maintenance/security, 455-457
firewall logs, 453
non-repudiation, 450
security events, failure to see events, 450
Syslog, 454-455
system logs, 452
plans, 7
postures, baseline reporting, 438
protocols, 529
IPsec, 534-535
L2TP, 534
PPTP, 533
S/MIME, 530-531
SSH, 532-533
SSL/TLS, 531-532
templates, OS hardening, 103-104
tokens, 325
updates, 98
security zones, browsers, 135
SED (Self-Encrypting Drives), 64
segregation of duties, 405
SEH (Structured Exception Handling), 150
SELinux, 57
sensitive data
classifying, 615
data handling (DHE), 616
exposure of, 151
legislative policies, 616-617
separation of duties
access control, 368
job rotation policies, 619, 622
server clusters, 561
failover clusters, 560
load-balancing clusters, 560
server rooms
physical security, 323
mantraps, 589
servers
Apache servers
CVE listings, 201
Darkleech, 201
authentication, 72
authentication servers (802.1X), 331
back office applications, securing, 143
banner grabbing, 414
DNS servers
altered host files, 237, 241
DNS poisoning, 236, 241
domain name kiting, 238, 241
pharming, 237
unauthorized zone transfers, 237, 241
e-mail servers, security, 199-200
file servers, security, 198-199
FTP servers
ports and, 223
protocol analysis, 443
security, 202-203
key management, 72
network controllers, security, 199
proxy servers
application proxies, 264
caching proxies, 263-264
forward proxies, 264
HTTP proxies, 263
Internet content filtering, 265
IP proxies, 263
PAC files, 263
reverse proxies, 264
transparent proxies, 265
redundancy planning, clusters, 560-561
security
email servers, 199-200
file servers, 198-199
FTP servers, 202-203
network controllers, 199
web servers, 200-202
standard loads, 438
web servers, security, 200-202
Windows Server, network shares, 457
service packs, updates, 98
services
backward compatibility, 91
cloud computing, 197
consolidating, 144
disabling, 95-97
OS hardening, 90-97
Remote Desktop Services, 93
removing, 90-91
Session layer (OSI model), 174
sessions
hijacking
blind hijacking, 233
clickjacking, 233
MITB attacks, 233-234, 240
MITM attacks, 233, 240
session theft, 232, 240
TCP/IP hijacking, 232, 240
watering hole attacks, 234, 240
XSS, 137
monitoring, Computer Management, 445
theft of, 28
SFTP (Secure FTP), 225
SHA (Secure Hash Algorithm), 498-499
sharing risk, 398
shielding, facilities security, 598
Faraday cages, 599
HVAC shielding, 599
STP cabling, 599
TEMPEST, 599-600
shoulder surfing, social engineering
attacks, 588-590
SHTTP (Secure Hypertext Transfer Protocol Secure), 532
sideloading mobile devices, 75
SIEM (Security Information and Event Management), 460
signal emanation. See data emanation
signal jammers (wireless), 302
signatures
IDS signature-based detection, 56
public key cryptography, 484
signature-based monitoring, 435-437
SIM cloning, 68, 77
simulations/videos, exam preparation, 648
single points of failure, redundancy planning, 547-548
single-sided certificates, 523
sinkholes, 230
SLA (Service-Level Agreements), 623-624
SLE (Single Loss Expectancy), quantitative risk assessment, 400-401
smart cards, physical security, 325
smartphones, 66
access control, 75
application security, 78
application blacklisting, 73
application whitelisting, 73
geotagging, 74
HTTPS connections, 71-72
key management, 72
MMS attacks, 73
server/network authentication, 72
SMS attacks, 73
transitive trust, 72
bluejacking, 69
bluesnarfing, 69
smartphones

botnets, 68, 77
browser security, 135
BYOD, 74-78
carrier unlocking, 69
COPE, 74
CYOD, 74
encryption, 67
full device encryption, 70
GPS tracking, 70, 74
jailbreaking, 75, 135
lockout programs, 70
malware, 27, 67, 77
MDM, 75
offboarding, 76
onboarding, 76
passwords, 67, 71
rooting, 75, 135
sanitizing, 70
screen locks, 71
sideloading, 75
SIM cloning, 68, 77
social engineering attacks, 68
storage segmentation, 75
theft of, 70-71, 77
wireless attacks, 69-70
SNMP (Simple Network Management Protocol), 220, 443-445
SNMP TRAP, port associations with, 220
social engineering attacks, 6
baiting, 589-591
CA and, 527
defidence tricks (cons), 588
diversion theft, 586, 590
dumpster diving, 588-590
eavesdropping, 588-590
hoaxes, 587, 590
malicious insiders, 585, 590
mobile devices, 68
OSINT, 584
phishing, 586, 590
piggybacking, 589-591
pretexing, 584, 590
shoulder surfing, 588-590
tailgating, 589-591
techniques/principles, 584
war-dialing, 587
watering hole attacks, 589-591
social media, cloud computing and, 197
software
anti-malware, 8, 108
antivirus software
Safe Mode, 34
Trojan prevention/troubleshooting, 35
virus prevention/troubleshooting, 31, 34
worm prevention/troubleshooting, 35
badware, 37
crimeware, 27
DevOps, 146-148
firewalls, 53
IPFW, 54
iptables, 54
PF, 54
SOHO router/firewall configuration, 55
snapshots
backups, 566
VM disk files, 114
Sniffers (Network), 415-417
Windows Firewall, 54
ZoneAlarm, 54
malware, 6, 19
adware, 23
anti-malware, 8, 108
APT, 22
attack vectors, 26
badware, 37
delivery of, 26-30
exploit kits, 27
greyware, 23
keyloggers, 27
malvertising, 23
non-malware, 24
ransomware, 22-23, 35
rootkits, 24-26, 38, 41
spam, 25, 38-41
spim, 25
spyware, 23-24, 35-37, 41
threat vectors, 26
Trojans, 22, 25, 29, 35, 41, 67
unsavable computers, 40
URL hijacking, 27
viruses, 20-21, 25, 31-35, 41
websites, 27
worms, 21, 25, 35, 41
ransomware, worms, 26
SLDC
agile model, 146
principles of, 146-148
V-shaped model, 145
waterfall model, 145
spyware, worms, 26
use case analysis, 634
SOHO (Small Office/Home Office) routers
configuring, 55
default accounts, 286
firewalls, 55, 178, 260
 privilege escalation, 288
secure VPN connectivity, 179
Solitaire, Easter Eggs, 30
SOX (Sarbanes-Oxley) act, 616-617
SPA (Security Posture Assessments), baseline reporting, 438
spam, 25
definition of, 26
filters, 38
firewalls, 38
honeypots, 266
identity theft emails, 26
lottery scam emails, 26
preventing/troubleshooting, 38-41
SPAN. See ports, mirroring
spear phishing, 586, 590
special hazard protection systems, 596
spectral analyzers, data emanations, 294
SPI (Stateful Packet Inspection), 258
spikes (power supplies), 550, 599
spim, 25
split tunneling, 342
spoofing attacks, 231-232, 240
ARP spoofing, 177
IP spoofing attacks, 179
MAC spoofing, 176-177
spoofed MAC addresses, 305
stateless packet filters, 259
switch spoofing, 189
sprinkler systems
pre-action sprinkler systems, 596
wet pipe sprinkler systems, 595
spyware, 23-24
definition of, 26
Internet Optimizer, 26
preventing/troubleshooting, 35-37, 41
symptoms of, 36
tracking cookies, 137
SQL injections, 156
SSH (Secure Shell), 219, 532-533
SSID (Service Set Identifiers)
 broadcasting, disabling, 262
 WAP, 296
SSL pinning. See digital certificates, pinning
SSL/TLS (Secure Sockets Layer/Transport Layer Security), 531-532
SSO (Single Sign-On), 328-329
standard loads, servers, 438
standby generators, 553
statements (witness), incident response procedures, 631
static and dynamic analytical monitoring tools, 447
static code analysis, 151-152
static NAT (Network Address Translation), 180
statistical anomaly detection (IDS), 56
stealth viruses, 21
steganography, defining, 485
storage, 62
 destroying storage media (data removal), 627
 DLP systems, 59
flash drives, 63
 hard drive encryption, 64-65
 HSM, 65-66
mobile devices, storage segmentation, 75
NAS, 63-64
removable storage/media, 62-63
USB devices, 63
stored procedures, 157
STP (Shielded Twisted-Pair) cabling, 292, 599
STP (Spanning Tree Protocol) switches, 177
stream ciphers, 482
 one-time pads, 493-494
 RC4, 488-489
stress testing, 149
stylometry and genetic algorithms, 496
subnetting, 186-187
SubSeven, 22
succession planning, 562
supplicants (802.1X), 331
surge protectors, 108
surges (power supplies), 550
surveys
 interference, 302
 jamming, 302
 wireless site surveys, 302
switches, 175
 aggregation switches, 177
 ARP spoofing, 177
 DHCP starvation attacks, 177
 fail-open mode, 176
 looping, 177
 MAC flooding, 176, 189
 MAC spoofing, 176-177
 physical tampering, 177
 port security, 176-177
 redundancy planning, 559
 STP, 177
 switch spoofing, 189
symmetric algorithms, 481
 3DES, 486
 AES, 487-489
 block ciphers, 482
 Blowfish, 489
 DEA, 486
 DES, 486, 489
 IDEA, 486
 RC, 488-489
 stream ciphers, 482
 Threefish, 489
 Twofish, 489
SYN floods, 227, 239
SYN packets, TCP/IP hijacking, 232
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog</td>
<td>221, 454-455</td>
</tr>
<tr>
<td>system failure</td>
<td>6</td>
</tr>
<tr>
<td>system files, OS hardening</td>
<td>107</td>
</tr>
<tr>
<td>system images</td>
<td>109, 630</td>
</tr>
<tr>
<td>system logs</td>
<td>452</td>
</tr>
<tr>
<td>System Monitor</td>
<td>440</td>
</tr>
<tr>
<td>system security, auditing</td>
<td>457-460</td>
</tr>
<tr>
<td>system VM (Virtual Machines)</td>
<td>111</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>tables (rainbow)</td>
<td>498</td>
</tr>
<tr>
<td>tablets</td>
<td>66</td>
</tr>
<tr>
<td>access control</td>
<td>75</td>
</tr>
<tr>
<td>application security</td>
<td>78</td>
</tr>
<tr>
<td>application blacklisting</td>
<td>73</td>
</tr>
<tr>
<td>application whitelisting</td>
<td>73</td>
</tr>
<tr>
<td>geotagging</td>
<td>74</td>
</tr>
<tr>
<td>HTTPS connections</td>
<td>71-72</td>
</tr>
<tr>
<td>key management</td>
<td>72</td>
</tr>
<tr>
<td>MMS attacks</td>
<td>73</td>
</tr>
<tr>
<td>server/network authentication</td>
<td>72</td>
</tr>
<tr>
<td>SMS attacks</td>
<td>73</td>
</tr>
<tr>
<td>transitive trust</td>
<td>72</td>
</tr>
<tr>
<td>bluejacking</td>
<td>69</td>
</tr>
<tr>
<td>bluesnarfing</td>
<td>69</td>
</tr>
<tr>
<td>botnets</td>
<td>68, 77</td>
</tr>
<tr>
<td>browser security</td>
<td>135</td>
</tr>
<tr>
<td>BYOD</td>
<td>74-78</td>
</tr>
<tr>
<td>COPE</td>
<td>74</td>
</tr>
<tr>
<td>CYOD</td>
<td>74</td>
</tr>
<tr>
<td>encryption</td>
<td>67</td>
</tr>
<tr>
<td>full device encryption</td>
<td>70</td>
</tr>
<tr>
<td>GPS tracking</td>
<td>70, 74</td>
</tr>
<tr>
<td>jailbreaking</td>
<td>75, 135</td>
</tr>
<tr>
<td>lockout programs</td>
<td>70</td>
</tr>
<tr>
<td>malware</td>
<td>67, 77</td>
</tr>
<tr>
<td>MDM</td>
<td>75</td>
</tr>
<tr>
<td>offboarding</td>
<td>76</td>
</tr>
<tr>
<td>onboarding</td>
<td>76</td>
</tr>
<tr>
<td>passwords</td>
<td>67, 71</td>
</tr>
<tr>
<td>rooting</td>
<td>75, 135</td>
</tr>
<tr>
<td>sanitizing</td>
<td>70</td>
</tr>
<tr>
<td>screen locks</td>
<td>71</td>
</tr>
<tr>
<td>sideloading</td>
<td>75</td>
</tr>
<tr>
<td>social engineering attacks</td>
<td>68</td>
</tr>
<tr>
<td>storage segmentation</td>
<td>75</td>
</tr>
<tr>
<td>theft of</td>
<td>70-71, 77</td>
</tr>
<tr>
<td>wireless attacks</td>
<td>69-70</td>
</tr>
<tr>
<td>TACACS+ (Terminal Access Controller Access-Control System Plus)</td>
<td>220, 343-345</td>
</tr>
<tr>
<td>tailgating, social engineering attacks</td>
<td>589-591</td>
</tr>
<tr>
<td>taking exams</td>
<td>651-654</td>
</tr>
<tr>
<td>TCP (Transmission Control Protocol)</td>
<td></td>
</tr>
<tr>
<td>ports</td>
<td>217-221</td>
</tr>
<tr>
<td>reset attacks</td>
<td>225</td>
</tr>
<tr>
<td>TCP/IP (Transmission Control Protocol/Internet Protocol)</td>
<td></td>
</tr>
<tr>
<td>fingerprinting</td>
<td>403</td>
</tr>
<tr>
<td>handshakes</td>
<td>441</td>
</tr>
<tr>
<td>hijacking</td>
<td>232, 240</td>
</tr>
<tr>
<td>network design, OSI model versus TCP/IP model</td>
<td>175</td>
</tr>
<tr>
<td>tcpdump packet analyzer</td>
<td>443</td>
</tr>
<tr>
<td>TCSEC (Trusted Computer System Evaluation Criteria)</td>
<td>361</td>
</tr>
<tr>
<td>teardrop attacks</td>
<td>229, 239</td>
</tr>
<tr>
<td>technical controls</td>
<td>404</td>
</tr>
<tr>
<td>technical security plans</td>
<td>7</td>
</tr>
<tr>
<td>telephony</td>
<td></td>
</tr>
<tr>
<td>modems</td>
<td>190-191</td>
</tr>
<tr>
<td>network design</td>
<td>190-191</td>
</tr>
<tr>
<td>VoIP</td>
<td>191</td>
</tr>
<tr>
<td>Telnet</td>
<td>415</td>
</tr>
<tr>
<td>port associations with, 220</td>
<td></td>
</tr>
<tr>
<td>remote network access</td>
<td>289</td>
</tr>
</tbody>
</table>
TEMPEST (Transient ElectroMagnetic Pulse Emanations Standard), 293, 599-600

templates (security), OS hardening, 103-104

temporary files
OS hardening, 106
securing, 138

testing
penetration testing, 407-408

testing programs
black-box testing, 149
compile-time errors, 150
dynamic code analysis, 152
fuzz testing, 152
grey-box testing, 149
input validation, 150-151
penetration tests, 149
runtime errors, 150
sandboxes, 149
SEH, 150
static code analysis, 151-152
stress testing, 149
white-box testing, 149

TFTP (Trivial File Transfer Protocol), port associations with, 220

theft
disaster recovery, 568
diversion theft, social engineering attacks, 586, 590
mobile devices, 70-71, 77

threat actors. See also hackers
APT, 11
cyber-criminals, 11
hactivists, 11
organized crime, 11
script kiddies, 11

threat modeling, 147

threat vectors, malware delivery, 26
Threelfish, 489
tickets (KDC), 334
time bombs, malware delivery, 29
time-of-day restrictions, user accounts, 370
TKIP (Temporal Key Integrity Protocol), 298

TOC (Time-of-Check) attacks, 408
top secret information, classifying (data sensitivity), 615
torrents (bit), malware delivery, 27
TOS (Trusted Operating Systems), 97
TOU (Time-of-Use) attacks, 408

Towers of Hanoi backup scheme, 566

tracking cookies, 137

training
awareness training, 7, 621-622
users, 7, 591-593

transferring risk, 398
transitive access, 236, 241
transitive trust, 72

transmitting malware
active interception, 28
attack vectors, 26
backdoors, 29
bit torrents, 27
botnets, 28
Easter eggs, 30
email, 26
exploit kits, 27
FTP servers, 26
instant messaging, 26
keyloggers, 27
logic bombs, 29
media-based delivery, 27
memory cards, 27
optical disks, 27
P2P networks, 27
privilege escalation, 29
smartphones, 27
software, 26
threat vectors, 26
time bombs, 29
typosquatting, 27
URL hijacking, 27
USB flash drives, 27
user error, 27
websites, 27
zip files, 26
zombies, 28

transparent proxies, 265
transparent testing. See white-box testing
Transport layer (OSI model), 174
transport mode, IPsec, 535
Trend Micro OSSEC, 56
Triple DES (Data Encryption Standard). See 3DES
Tripwire, 57
Trojans
definition of, 25
GinMaster Trojan, 67
MITB attacks, 233-234, 240
PlugX Trojans, 25
preventing/troubleshooting, 35, 41
RAT, 22, 29, 202-203
time bombs, 29
ZeroAccess botnet, 28

troubleshooting
ransomware, 35
rootkits, 38, 41
spam, 38-41
spyware, 35-37, 41
Trojans, 35, 41
viruses, 41
antivirus software, 31, 34
crypt, 33
Linux-based tools, 35
Windows Firewall, 31
Windows Update, 31
worms, 35, 41

trust
chain of (certificates), 523, 528
web of, 529

Trusted Network Interpretation standard, 362
trusting user input, 147
Trustworthy Computing principle, 30
tunneling mode, IPsec, 535
tunneling protocols
L2TP, 534
PPTP, 533
twisted-pair cabling, 290
crosstalk, 291-292
wiretapping, 293

Twofish, 489
typosquatting, 27
Tzu, Sun, 2

U

UAC (User Account Control), 140, 383-384
UAV (Unmanned Aerial Vehicles), facilities security, 601
UDP (User Datagram Protocol)
 flood attacks, 227
 ports, 217-221
UEFI (Unified Extensible Firmware Interface), updates, 108
UEFI/BIOS, malware and unsavable computers, 40
unauthorized access, 6
unauthorized zone transfers, DNS servers, 237, 241
unicast IPv6 addresses, 181
uninstalling. See also installing
 applications, 36, 90-91
 services, 90-91
Unix
tcpdump packet analyzer, 443
vulnerability scanning, 414
unnecessary applications/services, removing, 90-91
unsavable computers, malware, 40
updates
- anti-malware, 8, 108
- BIOS, 108
- browsers, 128, 135
- critical updates, 98
- driver updates, 99
- firewalls, 108
- OS hardening, 98-99, 108
- security updates, 98
- service packs, 98
- UEFI, 108
- virtualization, 115
- Windows Update
 - OS hardening, 98-99
 - preventing/troubleshooting viruses, 31
UPS (Uninterruptible Power Supplies), 108, 551-552
uptime (generators), 554
URI (Uniform Resource Identifiers), spoofing attacks, 231
URL (Uniform Resource Locators)
 - hijacking, 27
 - spoofing attacks, 231
US-CERT (U.S. Computer Emergency Readiness Team), mobile device security, 67
USB devices
 - encryption, 63
 - flash drives, malware delivery, 27
use case analysis, 634
users
 - access control
 - Account Expiration dates, 370
 - ADUC, 369
 - group access control, 371
 - multiple user accounts, 371
 - time-of-day restrictions, 370
 - access recertification, 374
 - Account Expiration dates, 370
 - ADUC, 369
 - applications, trusting user input, 147
 - authentication, 7
 - awareness training, 7, 621-622
 - clean desk policy, 592
 - educating, 591-593, 621-622
 - first responders (incident response procedures), 629
 - groups, access control, 371
 - malware delivery, 27
 - multiple user accounts, 371
 - offboarding, 620
 - onboarding, 620, 623
 - passwords, 376-377
 - personal security policies, 617
 - AUP, 618, 622
 - awareness training, 621-622
 - change management policies, 619, 622
 - due care policies, 621-623
 - due diligence, infrastructure security, 621-623
 - due process policies, 621-623
 - mandatory vacations, 620-622
 - offboarding, 620
 - onboarding, 620, 623
 - privacy policies, 618
 - separation of duties/job rotation policies, 619, 622
 - user education, 621-622
 - PII, 616-617, 622
 - privilege creep, 374
 - safety, 324
 - time-of-day restrictions, 370
 - training, 7, 591-593, 621-622
 - UAC, 140, 383-384
 - usernames, 376-377
 - vacations, 620-622
verifying identification. See authentication vetting, 592

UTM (Unified Threat Management), 272
UTP (Unshielded Twisted-Pair) cabling, 292

V

V-shaped model (SDLC), 145
V2 cards, SIM cloning, 69
vacations (mandatory), 620-622
validation
CA, 525
certificates, 525
DV certificates, 522
EV certificates, 522
identity validation, 322
input validation, 150-151
OV certificates, 522
vehicles, facilities security
air gaps, 600-601
CAN, 600
drones, 601
locking systems, 601
UAV, 601
Wi-Fi, 601
vendor policies
BPA, 623-624
ISA, 624
MoU, 624
SLA, 623-624
verifying
attestation, BIOS, 62
certificates with RA, 527
user identity. See authentication
VeriSign certificates, 72, 525
Verisys, 57
Vernam ciphers. See one-time pads
vertical privilege escalation, 288
vetting employees, 592

video
exam preparation, 648
incident response procedures, 631
record time offset, 631
video surveillance, physical security, 323
virtualization. See also VM (Virtual Machines)
application containerization, 112
definition of, 109
emulators, 111
hardware, disabling, 115
Hyper-V, 114
hypervisors, 111-112
network security, 115
updates, 115
virtual appliances, 111
virtual escape protection, 115
virtualization sprawl, 114
viruses
armored viruses, 21
boot sector viruses, 20, 34
definition of, 25
encrypted viruses, 20
Love Bug virus, 25
macro viruses, 20
metamorphic viruses, 21
multipartite viruses, 21
polymorphic viruses, 20
preventing/troubleshooting, 41
antivirus software, 31, 34
crypt, 33
Linux-based tools, 35
Windows Firewall, 31
Windows Update, 31
program viruses, 20
stealth viruses, 21
symptoms of, 33-34
virus hoaxes, 21
vishing, 586, 590
VLAN (Virtual Local Area Networks), 188
- MAC flooding, 189
- VLAN hopping, 189

VM (Virtual Machines), 110, 570
- disk files, 114
- monitoring, 115
- preventing/troubleshooting spyware, 36
- process VM, 111
- securing, 113-114
- security, 115
- system VM, 111
- virtualization sprawl, 114
- virtual machine escape, 113

VMM (Virtual Machine Manager).
See hypervisors

voice recognition software, 327

VoIP (Voice over Internet Protocol), network design, 191

VPN (Virtual Private Networks)
- always-on VPN, 342
- GRE, 342
- illustration of, 340
- L2TP, 340-342, 534
- on-demand VPN, 555
- PPTP, 340-342, 533
- RRAS, 341
- secure VPN connectivity, routers, 179
- split tunneling, 342
- VPN concentrators, 342
- WAP, 300

vulnerabilities
- assessing, 406, 410
 - definition of vulnerabilities, 396
 - IT security frameworks, 635
 - network mapping, 411-412
 - network sniffers, 415-417
 - password analysis, 417-420
 - vulnerability scanning, 412-414
- browsers, 128
- CVE, 200-201
- definition, 396
- managing
 - general vulnerabilities/basic prevention
 - methods table, 409-410
 - OVAL, 408-409
 - penetration testing, 407-408
 - process of, 405-406
- programming vulnerabilities/attacks
 - arbitrary code execution, 155
 - backdoor attacks, 22, 29, 153, 159
 - buffer overflows, 153, 159
 - code injections, 156-159
 - directory traversals, 158-159
 - DLL injections, 158
 - integer overflows, 154
 - LDAP injections, 157
 - memory leaks, 154
 - NoSQL injections, 157
 - null pointer dereferences, 154
 - RCE, 155, 159
 - SQL injections, 156
 - XML injections, 157
 - XSRF, 156, 159
 - XSS, 156, 159
 - zero day attacks, 158-159
- scanning, 412-414

WAN (Wide Area Networks)
- LAN versus, 183
- routers, 178

WAP (Wireless Access Points)
- ad hoc networks, 299-300
- administration interface, 295-296
- AP isolation, 303
- brute-force attacks, 299, 305
- encryption, 297-299, 303
evil twins, 297
firewalls, 302
MAC filtering, 302
placement of, 300
PSK, 298
rogue AP, 296
SSID, 296
VPN, 300
wireless network security, 295-305
wireless point-to-multipoint layouts, 301
WLAN controllers, 303
WPS, 299
war-chalking, 304
war-dialing, 190, 587
war-driving, 304
warm sites, 561
waterfall model (SDLC), 145
watering hole attacks, 234, 240, 589-591
web application firewalls, 262
web-based SSO (Single Sign-On), 329
web browsers
 automatically updating, 128
 choosing, 127-128
 company requirements, 128
 functionality, 129
 HTTP connections, 71
 HTTPS connections, 71-72
 MITB attacks, 233-234, 240
 OS, determining, 128
 PAC files, 263
 pop-up blockers, 53, 57-59
 preventing/troubleshooting spyware, 35
 recommendations, 127-128
security
 ad-blocking, 135
 add-ons, 137-138
 advanced security settings, 138-139
 content filtering, 133-134
 cookies, 136-137
 LSO, 137
 mobile devices, 135
 passwords, 139
 policy implementation, 129-131
 pop-up blocking, 135
 proxy servers, 133-134
 security zones, 135
 temporary files, 138
 updates, 135
 user training, 133
 updates, 128, 135
 vulnerabilities/fixes, 128
web of trust, defining, 529
web proxies. See proxy servers
web resources, exam preparation, 649
web security gateways, 265
web servers
 exploit kits, 27
 security, 200-202
web shells, FTP servers, 202-203
websites
 cold sites, 561
 exam preparation, 649
 hot sites, 561
 HTTP connections, 71
 HTTPS connections, 71-72
 input validation, 150-151
 malware delivery, 27
 pop-up blockers, 53, 57-59
 redundancy planning, 561
typosquatting, 27
URL hijacking, 27
warm sites, 561
WEP (Wired Equivalent Privacy) protocol, 298
wet pipe sprinkler systems, 595
whaling, 586, 590
white-box testing, 149
white hats, 9
whitelists

applications, 73, 92
OS hardening, 92
preventing/troubleshooting spam, 40
services, 92

whole disk encryption, 108
WIC (WAN Interface Cards), 179
WiDi (Wi-Fi Direct), 66
WIDS (Wireless Intrusion Detection Systems), 272

Wi-Fi, 77
bluejacking, 69
bluesnarfing, 69
disassociation attacks, 305
facilities security, 601
vehicle security, 601
vulnerabilities, 70

wildcard certificates, 523

Windows
analytical monitoring
 net file command, 446
 netstat command, 446
 openfiles command, 445
Computer Management, 445
Group Policies, accessing, 103-104
hotfixes, 100
OS hardening, starting/stopping services, 95-97
patch management, 101-102
Performance Monitor, 445

Windows 7, Internet Explorer Maintenance Security, 131

Windows 10
Internet Explorer Maintenance Security, 130-131
Local Group Policy, browser security, 129

Windows BitLocker, 63
Windows Defender, preventing/troubleshooting spyware, 35
Windows Firewall, 31, 54

Windows Programs and Features window, OS hardening, 91

Windows Server
domain controller-managed IE policies, 131-132
Import Policy From window, 104
network shares, 457
security templates, 104
Windows Update, 31, 98-99

Windows XP
OS hardening, 94
Solitaire, Easter eggs, 30

WinDump, 443

WinPcap
WinDump, 443
Wireshark installation, 441

WIPS (Wireless Intrusion Prevention Systems), 272

wired network/device security, 285
backdoors, 288-289
cabling
crostalk, 291-292
data emanation, 292-294
interference, 290-291
PDS, 295
wire closets, 294
wiretapping, 293-294
default accounts, 286
network attacks, 289
passwords, 286-287
privilege escalation, 287-288
remote ports, 289
Telnet, 289

wireless networks, 77
Bluetooth, 306
AP, 306
bluejacking, 69, 306
bluesnarfing, 69, 306-307
frequency hopping, 306
cellular networks, 308
documenting network design, 309
facilities security, 601
geofences, 308
GPS, 308
NFC, 306-307
RFID, 307
SATCOM, 308
third-party wireless adapter connections, 296
vehicle security, 601
vulnerabilities, 70

WAP
 ad hoc networks, 299-300
 administration interface, 295-296
 AP isolation, 303
 brute-force attacks, 299, 305
 encryption, 297-299, 303
 evil twins, 297
 firewalls, 302
 MAC filtering, 302
 placement of, 300
 PSK, 298
 rogue AP, 296
 SSID, 296
 VPN, 300
 wireless point-to-multipoint layouts, 301
 wireless site surveys, 302
 WLAN controllers, 303
 WPS, 299
 wireless protocols, 298
 wireless transmission vulnerabilities
 brute-force attacks, 305
 IV attacks, 304
 spoofed MAC addresses, 305
 war-chalking, 304
 war-driving, 304
 Wi-Fi disassociation attacks, 305
 wireless peripherals, 66
 wireless signal jammers, 302
 wireless site surveys, 302
 Wireshark, 415-417, 441-442
 wiretapping, 293-294
 wiring closets, 294
 witness statements, incident response procedures, 631
 WLAN (Wireless Local Area Networks)
 AP, 306
 bridges, 178
 WLAN controllers, WAP, 303
 Word (MS), securing, 143
 worms
 definition of, 25
 Nimda, 21
 Nimda worm, 25
 preventing/troubleshooting, 35, 41
 WPA (Wi-Fi Protected Access) protocol, 298
 WPA2 (Wi-Fi Protected Access version 2) protocol, 298
 WPS (Wi-Fi Protected Setup), WAP, 299
 wraps, integer overflows, 154
 WTLS (Wireless Transport Layer Security) protocol, 298-299
 WWN (World Wide Names), spoofing attacks, 232

X - Y - Z

X.509 standard, certificates and, 522
XaaS (Anything as a Service), 194
Xmas attacks, 228
XML injections, 157
XSOF (Cross-Site Request Forgery), 156, 159
XSS (Cross-Site Scripting), 137, 156, 159, 234
zero day attacks, 158-159
ZeroAccess botnet, 28
Zimmerman, Philip, 495
zip files, malware delivery, 26
zombies, malware delivery, 28
zone transfers, 237, 241, 258
ZoneAlarm, 54