Contents at a Glance

Introduction xxvii
CHAPTER 1 Applying Environmental Reconnaissance Techniques 3
CHAPTER 2 Analyzing the Results of Network Reconnaissance 37
CHAPTER 3 Recommending and Implementing the Appropriate Response and Countermeasure 69
CHAPTER 4 Practices Used to Secure a Corporate Environment 95
CHAPTER 5 Implementing an Information Security Vulnerability Management Process 113
CHAPTER 6 Analyzing Scan Output and Identifying Common Vulnerabilities 141
CHAPTER 7 Identifying Incident Impact and Assembling a Forensic Toolkit 187
CHAPTER 8 The Incident Response Process 213
CHAPTER 9 Incident Recovery and Post-Incident Response 237
CHAPTER 10 Frameworks, Policies, Controls, and Procedures 251
CHAPTER 11 Remediating Security Issues Related to Identity and Access Management 301
CHAPTER 12 Security Architecture and Implementing Compensating Controls 343
CHAPTER 13 Application Security Best Practices 385
CHAPTER 14 Using Cybersecurity Tools and Technologies 403
CHAPTER 15 Final Preparation 453
APPENDIX A Answers to the “Do I Know This Already?” Quizzes and Review Questions 459
Glossary 491
Index 526
Table of Contents

Introduction xxvii

Chapter 1 Applying Environmental Reconnaissance Techniques 3

“Do I Know This Already?” Quiz 3

Foundation Topics 5

Procedures/Common Tasks 5

 - Topology Discovery 5
 - OS Fingerprinting 5
 - Service Discovery 6
 - Packet Capture 6
 - Log Review 6
 - Router/Firewall ACLs Review 6
 - E-mail Harvesting 7
 - Social Media Profiling 7
 - Social Engineering 8
 - DNS Harvesting 8
 - Phishing 11

Variables 11

 - Wireless vs. Wired 12
 - Virtual vs. Physical 13
 - Internal vs. External 14
 - On-premises vs. Cloud 15

Tools 16

 - Nmap 16
 - Host Scanning 19
 - Network Mapping 20
 - Netstat 21
 - Packet Analyzer 23
 - IDS/IPS 25
 - HIDS/NIDS 27
 - Firewall Rule-Based and Logs 27

 - **Firewall Types** 27
 - **Firewall Architecture** 29

Syslog 30

Vulnerability Scanner 30
Chapter 2 Analyzing the Results of Network Reconnaissance 37

“Do I Know This Already?” Quiz 37

Foundation Topics 40

Point-in-Time Data Analysis 40
 Packet Analysis 40
 Protocol Analysis 40
 Traffic Analysis 40
 NetFlow Analysis 41
 Wireless Analysis 43
 CSMA/CA 43

Data Correlation and Analytics 45
 Anomaly Analysis 45
 Trend Analysis 46
 Availability Analysis 46
 Heuristic Analysis 46
 Behavioral Analysis 47

Data Output 47
 Firewall Logs 47
 Packet Captures 49
 Nmap Scan Results 52
 Port Scans 52
 Event Logs 53
 Syslog 55
 IDS Report 56

Tools 57
 SIEM 57
 Packet Analyzer 59
 IDS 60
 Resource Monitoring Tool 61
 NetFlow Analyzer 61

Exam Preparation Tasks 62
Chapter 3 Recommending and Implementing the Appropriate Response and Countermeasure 69

“Do I Know This Already?” Quiz 69

Foundation Topics 72

Network Segmentation 72

LAN 72
Intranet 72
Extranet 72
DMZ 73
VLANs 73
System Isolation 75
Jump Box 76
Honeypot 77
Endpoint Security 77
Group Policies 78
ACLs 80
Sinkhole 81
Hardening 82

Mandatory Access Control (MAC) 82
Compensating Controls 83

Control Categories 83
Access Control Types 84
Administrative (Management) Controls 85
Logical (Technical) Controls 85
Physical Controls 85
Blocking Unused Ports/Services 86
Patching 86

Network Access Control 86
Quarantine/Remediation 88
Agent-Based vs. Agentless NAC 88
802.1x 88

Exam Preparation Tasks 90
Chapter 4 Practices Used to Secure a Corporate Environment 95

“Do I Know This Already?” Quiz 95

Foundation Topics 98

Penetration Testing 98

Rules of Engagement 100

Reverse Engineering 101

Isolation/Sandboxing 101

Hardware 103

Software/Malware 104

Training and Exercises 105

Risk Evaluation 106

Technical Impact and Likelihood 106

Technical Control Review 107

Operational Control Review 107

Exam Preparation Tasks 107

Review All Key Topics 108

Define Key Terms 108

Review Questions 108

Chapter 5 Implementing an Information Security Vulnerability Management Process 113

“Do I Know This Already?” Quiz 113

Foundation Topics 117

Identification of Requirements 117

Regulatory Environments 117

Corporate Policy 119

Data Classification 119

Asset Inventory 120

Establish Scanning Frequency 120

Risk Appetite 120

Regulatory Requirements 121

Technical Constraints 121

Workflow 121
Configure Tools to Perform Scans According to Specification 122

Determine Scanning Criteria 122

 Sensitivity Levels 122
 Vulnerability Feed 123
 Scope 123

 Credentialed vs. Non-credentialed 125
 Types of Data 126
 Server-Based vs. Agent-Based 126

Tool Updates/Plug-ins 128

SCAP 128

Permissions and Access 131

Execute Scanning 131

Generate Reports 132

 Automated vs. Manual Distribution 132

Remediation 133

 Prioritizing 133

 Criticality 134

 Difficulty of Implementation 134

 Communication/Change Control 134

 Sandboxing/Testing 134

Inhibitors to Remediation 134

 MOUs 134
 SLAs 135

 Organizational Governance 135
 Business Process Interruption 135
 Degrading Functionality 135

Ongoing Scanning and Continuous Monitoring 135

Exam Preparation Tasks 136

Review All Key Topics 136

Define Key Terms 136

Review Questions 137

Chapter 6 Analyzing Scan Output and Identifying Common Vulnerabilities 141

“Do I Know This Already?” Quiz 141

Foundation Topics 143
Analyzing Output Resulting from a Vulnerability Scan 143
Analyze Reports from a Vulnerability Scan 143
 Review and Interpret Scan Results 145
Validate Results and Correlate Other Data Points 147
Common Vulnerabilities Found in Targets Within an Organization 148
 Servers 148
 Web Servers 149
 Database Servers 160
 Endpoints 161
 Network Infrastructure 162
 Switches 163
 MAC Overflow 164
 ARP Poisoning 164
 VLANs 165
 Routers 168
 Network Appliances 169
 Virtual Infrastructure 169
 Virtual Hosts 169
 Virtual Networks 170
 Management Interface 171
 Mobile Devices 173
 Interconnected Networks 174
 Virtual Private Networks 175
 Industrial Control Systems/SCADA Devices 179
Exam Preparation Tasks 180
Review All Key Topics 181
Define Key Terms 182
Review Questions 182

Chapter 7 Identifying Incident Impact and Assembling a Forensic Toolkit 187
 “Do I Know This Already?” Quiz 187
Foundation Topics 189
Threat Classification 189
 Known Threats vs. Unknown Threats 190
 Zero Day 190
 Advanced Persistent Threat 191
Factors Contributing to Incident Severity and Prioritization 191
Scope of Impact 191
 Downtime and Recovery Time 191
 Data Integrity 193
 Economic 193
 System Process Criticality 193
Types of Data 194
 Personally Identifiable Information (PII) 194
 Personal Health Information (PHI) 195
 Payment Card Information 195
 Intellectual Property 197
 Corporate Confidential 199
Forensics Kit 201
 Digital Forensics Workstation 202
Forensic Investigation Suite 206
Exam Preparation Tasks 208
Review All Key Topics 208
Define Key Terms 208
Review Questions 209

Chapter 8 The Incident Response Process 213
“Do I Know This Already?” Quiz 213
Foundation Topics 216
Stakeholders 216
 HR 216
 Legal 217
 Marketing 217
 Management 217
Purpose of Communication Processes 217
 Limit Communication to Trusted Parties 218
 Disclosure Based on Regulatory/Legislative Requirements 218
 Prevent Inadvertent Release of Information 218
 Secure Method of Communication 218
Role-Based Responsibilities 218
 Technical 219
 Management 219
Law Enforcement 219
Retain Incident Response Provider 220
Using Common Symptoms to Select the Best Course of Action to Support Incident Response 220
Common Network-Related Symptoms 220
 Bandwidth Consumption 221
 Beaconing 221
 Irregular Peer-to-Peer Communication 222
 Rogue Devices on the Network 223
 Scan Sweeps 224
 Unusual Traffic Spikes 225
Common Host-Related Symptoms 225
 Processor Consumption 226
 Memory Consumption 227
 Drive Capacity Consumption 227
 Unauthorized Software 228
 Malicious Processes 229
 Unauthorized Changes 229
 Unauthorized Privileges 229
 Data Exfiltration 229
Common Application-Related Symptoms 230
 Anomalous Activity 230
 Introduction of New Accounts 231
 Unexpected Output 231
 Unexpected Outbound Communication 231
 Service Interruption 231
 Memory Overflows 231
Exam Preparation Tasks 232
Review All Key Topics 232
Define Key Terms 232
Review Questions 233

Chapter 9 Incident Recovery and Post-Incident Response 237
“Do I Know This Already?” Quiz 237
Foundation Topics 240
Containment Techniques 240
 Segmentation 240
 Isolation 240
 Removal 241
 Reverse Engineering 241
Eradication Techniques 242
 Sanitization 242
 Reconstruction/Reimage 242
 Secure Disposal 242
Validation 243
 Patching 243
 Permissions 244
 Scanning 244
 Verify Logging/Communication to Security Monitoring 244
Corrective Actions 245
 Lessons Learned Report 245
 Change Control Process 245
 Update Incident Response Plan 245
Incident Summary Report 246
Exam Preparation Tasks 246
Review All Key Topics 246
Define Key Terms 247
Review Questions 247

Chapter 10 Frameworks, Policies, Controls, and Procedures 251

“Do I Know This Already?” Quiz 251
Foundation Topics 254
Regulatory Compliance 254
Frameworks 258
 National Institute of Standards and Technology (NIST) 258
 Framework for Improving Critical Infrastructure Cybersecurity 259
 ISO 260
 Control Objectives for Information and Related Technology (COBIT) 263
 Sherwood Applied Business Security Architecture (SABSA) 265
 The Open Group Architecture Framework (TOGAF) 265
 Information Technology Infrastructure Library (ITIL) 267
Policies 268
 Password Policy 268
 Acceptable Use Policy (AUP) 271
 Data Ownership Policy 272
 Data Retention Policy 272
 Account Management Policy 273
 Data Classification Policy 274
 Sensitivity and Criticality 275
 Commercial Business Classifications 276
 Military and Government Classifications 276
Controls 277
 Control Selection Based on Criteria 278
 Handling Risk 278
 Organizationally Defined Parameters 281
 Access Control Types 282
Procedures 284
 Continuous Monitoring 284
 Evidence Production 285
 Patching 285
 Compensating Control Development 286
 Control Testing Procedures 286
 Manage Exceptions 287
 Remediation Plans 287
Verifications and Quality Control 288
 Audits 288
 Evaluations 290
 Assessments 290
 Maturity Model 291
 CMMI 291
 Certification 291
 NIACAP 292
 ISO/IEC 27001 292
 ISO/IEC 27002 294
Exam Preparation Tasks 294
Review All Key Topics 294
Define Key Terms 295

Review Questions 296

Chapter 11 Remediating Security Issues Related to Identity and Access Management 301

“Do I Know This Already?” Quiz 301

Foundation Topics 304

Security Issues Associated with Context-Based Authentication 304

- Time 304
- Location 304
- Frequency 305
- Behavioral 305

Security Issues Associated with Identities 305

- Personnel 306
 - Employment Candidate Screening 306
 - Employment Agreement and Policies 308
 - Periodic Review 308
 - Proper Credential Management 308
 - Creating Accountability 309
 - Maintaining a Secure Provisioning Life Cycle 309

Endpoints 310

- Social Engineering Threats 310
- Malicious Software 311
- Rogue Endpoints 311
- Rogue Access Points 312

Servers 312

Services 313

Roles 315

Applications 316

- IAM Software 316
- Applications as Identities 317
- OAuth 318
- OpenSSL 319

Security Issues Associated with Identity Repositories 319

Directory Services 319

- LDAP 319
- Active Directory (AD) 320
Authentication Logs 351
Event Logs 352
Defense in Depth 353
Personnel 354
 Training 354
 Dual Control 355
 Separation of Duties 355
 Split Knowledge 355
 Third Party/Consultants 355
 Cross-Training/Mandatory Vacations 356
 Succession Planning 356
Processes 356
 Continual Improvement 356
 Scheduled Reviews/Retirement of Processes 357
Technologies 358
 Automated Reporting 358
 Security Appliances 358
 Security Suites 359
 Outsourcing 360
 Cryptography 362
Other Security Concepts 373
 Network Design 374
Exam Preparation Tasks 379
 Review All Key Topics 379
 Define Key Terms 380
 Review Questions 380

Chapter 13 Application Security Best Practices 385
 “Do I Know This Already?” Quiz 385
Foundation Topics 387
 Best Practices During Software Development 387
 Plan/Initiate Project 387
 Gather Requirements (Security Requirements Definition) 388
 Design 388
 Develop 389
Test/Validate 389
Security Testing Phases 390
 Static Code Analysis 390
 Web App Vulnerability Scanning 391
 Fuzzing 391
 Use Interception Proxy to Crawl Application 392
Manual Peer Reviews 393
User Acceptance Testing 393
Stress Test Application 393
Security Regression Testing 394
Input Validation 394
Release/Maintain 395
Certify/Accredit 395
Change Management and Configuration Management/ Replacement 395
Secure Coding Best Practices 396
 OWASP 396
 SANS 396
 Center for Internet Security 397
 System Design Recommendations 397
 Benchmarks 398
Exam Preparation Tasks 398
Review All Key Topics 398
Define Key Terms 399
Review Questions 399

Chapter 14 Using Cybersecurity Tools and Technologies 403
 “Do I Know This Already?” Quiz 403
Foundation Topics 405
Preventative Tools 405
 IPS 405
 IDS 405
 Sourcefire 405
 Snort 406
 Bro 407
HIPS 408
Firewall 408
 Firewall Architecture 410
 Cisco 415
 Palo Alto 415
 Check Point 415
Antivirus 415
Anti-malware 416
 Anti-spyware 416
 Cloud Antivirus Services 417
EMET 418
Web Proxy 418
 Web Application Firewall 418
 ModSecurity 420
 NAXSI 420
 Imperva 421
Collective Tools 421
SIEM 421
 ArcSight 421
 QRadar 422
 Splunk 422
 AlienVault/OSSIM 422
 Kiwi Syslog 423
Network Scanning 423
 Nmap 423
Vulnerability Scanning 423
 Qualys 425
 Nessus 425
 OpenVAS 426
 Nexpose 426
 Nikto 427
 Microsoft Baseline Security Analyzer 427
Packet Capture 428
 Wireshark 428
 tcpdump 429
Network General 429

Aircrack-ng 429

Command Line/IP Utilities 430

Netstat 430
ping 431
tracert/traceroute 432
ipconfig/ifconfig 433
nslookup/dig 434
Sysinternals 435
OpenSSL 436

IDS/HIDS 436

Analytical Tools 436

Vulnerability Scanning 437

Monitoring Tools 437

MRTG 437
Nagios 438
SolarWinds 438
Cacti 439
NetFlow Analyzer 439

Interception Proxy 439

Burp Suite 440
Zap 440
Vega 440

Exploit Tools 440

Interception Proxy 440
Exploit Framework 441
Metasploit 441
Nexpose 442
Fuzzers 442

Untidy/Peach Fuzzer 442
Microsoft SDL File/Regex Fuzzer 442

Forensics Tools 443

Forensic Suites 443
EnCase 444
FTK 444
Chapter 15 Final Preparation 453

Tools for Final Preparation 453

Pearson Test Prep Practice Test Software and Questions on the Website 453

Accessing the Pearson Test Prep Software Online 454

Accessing the Pearson Test Prep Practice Test Software Offline 454

Customizing Your Exams 455

Updating Your Exams 456

Premium Edition 456

Chapter-Ending Review Tools 457

Suggested Plan for Final Review/Study 457

Summary 457

Appendix A Answers to the “Do I Know This Already?” Quizzes and Review Questions 459

Glossary 491

Index 526
About the Author

Troy McMillan is a product developer and technical editor for Kaplan IT as well as a full-time trainer. He became a professional trainer 16 years ago, teaching Cisco, Microsoft, CompTIA, and wireless classes. He has written or contributed to more than a dozen projects, including the following recent ones:

- Contributing subject matter expert for CCNA Cisco Certified Network Associate Certification Exam Preparation Guide (Kaplan)
- Author of CISSP Cert Guide (Pearson)
- Prep test question writer for CCNA Wireless 640-722 (Cisco Press)
- Author of CASP Cert Guide (Pearson)

Troy has also appeared in the following training videos for OnCourse Learning: Security+; Network+; Microsoft 70-410, 411, and 412 exam prep; ICND1; and ICND2.

He delivers CISSP training classes for CyberVista, authorized online training provider for (ISC)².

Troy now creates certification practice tests and study guides for the Transcender and Self-Test brands. He lives in Pfafftown, North Carolina, with his wife, Heike.
Dedication

I dedicate this book to my wife, Heike, who has supported me every time I've reinvented myself.
Acknowledgments

I must thank everyone on the Pearson team for all of their help in making this book better than it would have been without their help. That includes Michelle Newcomb, Eleanor Bru, Chris Crayton, and Robin Abernathy.
About the Technical Reviewers

Chris Crayton, MCSE, is an author, a technical consultant, and a trainer. He has worked as a computer technology and networking instructor, information security director, network administrator, network engineer, and PC specialist. Chris has authored several print and online books on PC repair, CompTIA A+, CompTIA Security+, and Microsoft Windows. He has also served as technical editor and content contributor on numerous technical titles for several leading publishing companies. He holds numerous industry certifications, has been recognized with many professional teaching awards, and has served as a state-level SkillsUSA competition judge.

Robin M. Abernathy has been working in the IT certification preparation industry at Kaplan IT Certification Preparation, the owners of the Transcender and Self Test brands, for more than a decade. Robin has written and edited certification preparation materials for many (ISC)², Microsoft, CompTIA, PMI, Cisco, and ITIL certifications and holds multiple IT certifications from these vendors.

Robin provides training on computer hardware and software, networking, security, and project management. Over the past couple years, she has ventured into the traditional publishing industry, technical editing several publications and coauthoring Pearson’s CISSP Cert Guide and CASP Cert Guide. She presents at technical conferences and hosts webinars on IT certification topics.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can e-mail or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and e-mail address. We will carefully review your comments and share them with the author and editors who worked on the book.

E-mail: feedback@pearsonitcertification.com

Mail: Pearson IT Certification
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Register your copy of CompTIA Cybersecurity Analyst (CSA+) Cert Guide at www.pearsonitcertification.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to www.pearsonitcertification.com/register and log in or create an account*. Enter the product ISBN 9780789756954 and click Submit. When the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Becoming a CompTIA Certified IT Professional is Easy

It’s also the best way to reach greater professional opportunities and rewards.

Why Get CompTIA Certified?

Growing Demand
Labor estimates predict some technology fields will experience growth of over 20% by the year 2020.* CompTIA certification qualifies the skills required to join this workforce.

Higher Salaries
IT professionals with certifications on their resume command better jobs, earn higher salaries and have more doors open to new multi-industry opportunities.

Verified Strengths
91% of hiring managers indicate CompTIA certifications are valuable in validating IT expertise, making certification the best way to demonstrate your competency and knowledge to employers.**

Universal Skills
CompTIA certifications are vendor neutral—which means that certified professionals can proficiently work with an extensive variety of hardware and software found in most organizations.

Learn more: Certification.Comptia.org/networkplus

* Source: CompTIA 9th Annual Information Security Trends study: 500 U.S. IT and Business Executives Responsible for Security
** Source: CompTIA Employer Perceptions of IT Training and Certification
*** Source: 2013 IT Skills and Salary Report by CompTIA Authorized Partner

© 2014 CompTIA Properties, LLC, used under license by CompTIA Certifications, LLC. All rights reserved. All certification programs and education related to such programs are operated exclusively by CompTIA Certifications, LLC. CompTIA is a registered trademark of CompTIA Properties, LLC in the U.S. and internationally. Other brands and company names mentioned herein may be trademark or service marks of CompTIA Properties, LLC or their respective owners. Reproduction or dissemination prohibited without written consent of CompTIA Properties, LLC. Printed in the U.S. 06/15/2014
Introduction

CompTIA CSA+ bridges the skills gap between CompTIA Security+ and CompTIA Advanced Security Practitioner (CASP). Building on CSA+, IT professionals can pursue CASP to prove their mastery of the hands-on cybersecurity skills required at the 5- to 10-year experience level. Earn the CSA+ certification to grow your career within the CompTIA recommended cybersecurity career pathway.

CompTIA CSA+ certification is designed to be a “vendor-neutral” exam that measures your knowledge of industry-standard technology.

Goals and Methods

The number-one goal of this book is a simple one: to help you pass the 2017 version of the CompTIA CSA+ certification exam CS0-001.

Because the CompTIA CSA+ certification exam stresses problem-solving abilities and reasoning more than memorization of terms and facts, our goal is to help you master and understand the required objectives for each exam.

To aid you in mastering and understanding the CSA+ certification objectives, this book uses the following methods:

■ The beginning of each chapter defines the topics to be covered in the chapter; it also lists the corresponding CompTIA CSA+ objectives.

■ The body of the chapter explains the topics from a hands-on and theory-based standpoint. This includes in-depth descriptions, tables, and figures that are geared toward building your knowledge so that you can pass the exam. The chapters are broken down into several topics each.

■ The key topics indicate important figures, tables, and lists of information that you should know for the exam. They are interspersed throughout the chapter and are listed in a table at the end of the chapter.

■ Key terms without definitions are listed at the end of each chapter. Write down the definition of each term and check your work against the complete key terms in the glossary.

Who Should Read This Book?

The CompTIA CSA+ examination is designed for IT security analysts, vulnerability analysts, and threat intelligence analysts. The exam certifies that a successful candidate has the knowledge and skills required to configure and use threat detection tools, perform data analysis, and interpret the results to identify vulnerabilities,
threats, and risks to an organization, with the end goal of securing and protecting applications and systems in an organization.

The recommended experience for taking the CompTIA CSA+ exam includes Network+, Security+, or equivalent knowledge as well as a minimum of three or four years of hands-on information security or related experience. While there is no required prerequisite, CSA+ is intended to follow CompTIA Security+ or equivalent experience and has a technical, hands-on focus.

This book is for you if you are attempting to attain a position in the cybersecurity field. It is also for you if you want to keep your skills sharp or perhaps retain your job due to a company policy that mandates that you update security skills.

This book is also for you if you want to acquire additional certifications beyond Security+. The book is designed to offer easy transition to future certification studies.

Strategies for Exam Preparation

Strategies for exam preparation vary depending on your existing skills, knowledge, and equipment available. Of course, the ideal exam preparation would consist of three or four years of hands-on security or related experience followed by rigorous study of the exam objectives.

After you have read through the book, have a look at the current exam objectives for the CompTIA CSA+ Certification Exams, listed at https://certification.comptia.org/certifications/cybersecurity-analyst#tab4. If there are any areas shown in the certification exam outline that you would still like to study, find those sections in the book and review them.

When you feel confident in your skills, attempt the practice exams found on the website that accompanies this book. As you work through the practice exam, note the areas where you lack confidence and review those concepts or configurations in the book. After you have reviewed those areas, work through the practice exam a second time and rate your skills. Keep in mind that the more you work through the practice exam, the more familiar the questions will become.

After you have worked through the practice exam a second time and feel confident in your skills, schedule the CompTIA CSA+ CS0-001 exam through Pearson Vue (www.vue.com). To prevent the information from evaporating out of your mind, you should typically take the exam within a week of when you consider yourself ready to take it.

The CompTIA CSA+ certification credential for those passing the certification exams is now valid for three years. To renew your certification without retaking the
To renew a CompTIA certification, you need to participate in continuing education (CE) activities and pay an annual maintenance fee of $50 (that is, $150 for three years). See https://certification.comptia.org/continuing-education/how-to-renew/ce-program-fees for fee details. To learn more about the certification renewal policy, see https://certification.comptia.org/continuing-education.

Table I-1 CSA+ Exam Topics

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Exam Topics</th>
<th>CompTIA CSA+ Exam Objectives Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1 Given a scenario, apply environmental reconnaissance techniques using appropriate tools and processes.</td>
<td>CS0-001 objective 1.1</td>
</tr>
<tr>
<td>2</td>
<td>1.2 Given a scenario, analyze the results of a network reconnaissance.</td>
<td>CS0-001 objective 1.2</td>
</tr>
<tr>
<td>3</td>
<td>1.3 Given a network-based threat, implement or recommend the appropriate response and countermeasure.</td>
<td>CS0-001 objective 1.3</td>
</tr>
<tr>
<td>4</td>
<td>1.4 Explain the purpose of practices used to secure a corporate environment.</td>
<td>CS0-001 objective 1.4</td>
</tr>
<tr>
<td>5</td>
<td>2.1 Given a scenario, implement an information security vulnerability management process.</td>
<td>CS0-001 objective 2.1</td>
</tr>
<tr>
<td>6</td>
<td>2.2 Given a scenario, analyze the output resulting from a vulnerability scan.</td>
<td>CS0-001 objective 2.2</td>
</tr>
<tr>
<td></td>
<td>2.3 Compare and contrast common vulnerabilities found in the following targets within an organization.</td>
<td>CS0-001 objective 2.3</td>
</tr>
<tr>
<td>7</td>
<td>3.1 Given a scenario, distinguish threat data or behavior to determine the impact of an incident.</td>
<td>CS0-001 objective 3.1</td>
</tr>
<tr>
<td></td>
<td>3.2 Given a scenario, prepare a toolkit and use appropriate forensics tools during an investigation.</td>
<td>CS0-001 objective 3.2</td>
</tr>
<tr>
<td>8</td>
<td>3.3 Explain the importance of communication during the incident response process.</td>
<td>CS0-001 objective 3.3</td>
</tr>
<tr>
<td></td>
<td>3.4 Given a scenario, analyze common symptoms to select the best course of action to support incident response.</td>
<td>CS0-001 objective 3.4</td>
</tr>
<tr>
<td>9</td>
<td>3.5 Summarize the incident recovery and post-incident response process.</td>
<td>CS0-001 objective 3.5</td>
</tr>
<tr>
<td>10</td>
<td>4.1 Explain the relationship between frameworks, common policies, controls, and procedures.</td>
<td>CS0-001 objective 4.1</td>
</tr>
<tr>
<td>11</td>
<td>4.2 Given a scenario, use data to recommend remediation of security issues related to identity and access management.</td>
<td>CS0-001 objective 4.2</td>
</tr>
</tbody>
</table>
Chapter Exam Topics CompTIA CSA+ Exam Objectives Covered

12 4.3 Given a scenario, review security architecture and make recommendations to implement compensating controls. CS0-001 objective 4.3

13 4.4 Given a scenario, use application security best practices while participating in the Software Development Life Cycle (SDLC). CS0-001 objective 4.4

14 4.5 Compare and contrast the general purpose and reasons for using various cybersecurity tools and technologies. CS0-001 objective 4.5

Book Features and Exam Preparation Methods

This book uses several key methodologies to help you discover the exam topics on which you need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. Therefore, this book does not try to help you pass the exams only by memorization but by truly learning and understanding the topics.

The book includes many features that provide different ways to study so you can be ready for the exam. If you understand a topic when you read it but do not study it any further, you probably will not be ready to pass the exam with confidence. The features included in this book give you tools that help you determine what you know, review what you know, better learn what you don’t know, and be well prepared for the exam. These tools include the following:

- “Do I Know This Already?” Quizzes: Each chapter begins with a quiz that helps you determine the amount of time you need to spend studying that chapter.

- Foundation Topics: These are the core sections of each chapter. They explain the protocols, concepts, and configuration for the topics in that chapter.

- Exam Preparation Tasks: The “Exam Preparation Tasks” section lists a series of study activities that should be done after reading the “Foundation Topics” section. Each chapter includes the activities that make the most sense for studying the topics in that chapter.

- Key Topics Review: The Key Topic icon appears next to the most important items in the “Foundation Topics” section of the chapter. The “Key Topics Review” section lists the key topics from the chapter and their page numbers. Although the contents of the entire chapter could be on the exam, you should
definitely know the information highlighted with Key Topic icons. Review these topics carefully.

- **Definition of Key Terms:** Although certification exams might be unlikely to ask a question such as “How do you define the term ____?” the CSA+ exam requires you to learn and know a lot of terminology. This section lists some of the most important terms from the chapter and asks you to write a short definition and compare your answer against the Glossary.

- **End-of-Chapter Review Questions:** The review questions help you confirm that you understand the content that you just covered.

Companion Website

Register this book to get access to the Pearson IT Certification test engine and other study materials plus additional bonus content. Check this site regularly for new and updated postings written by the author that provide further insight into the most troublesome topics on the exam. Be sure to check the box indicating that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow these steps:

1. Go to www.pearsonITcertification.com/register and log in or create a new account.
2. Enter the ISBN 9780789756954.
3. Answer the challenge question as proof of purchase.
4. Click the **Access Bonus Content** link in the Registered Products section of your account page to be taken to the page where your downloadable content is available.

Please note that many of our companion content files are very large, especially image and video files.

If you are unable to locate the files for this title by following these steps, please visit www.pearsonITcertification.com/contact and select the Site Problems/Comments option. Our customer service representatives will assist you.

Accessing the Pearson Test Prep Software and Questions

This book comes complete with the Pearson Test Prep practice test software, which includes several exams. These practice tests are available to you either online or as
an offline Windows application. To access the practice exams that were developed
to accompany this book, you need the unique access code printed on the card in the
sleeve in the back of your book.

Note The cardboard case in the back of this book includes a paper that lists the acti-
vation code for the practice exam associated with this book. Do not lose the activation
code. On the opposite side of the paper from the activation code is a unique, one-
time-use coupon code for the purchase of the Premium Edition eBook and Practice
Test.

Accessing the Pearson Test Prep Software Online

The online version of the Pearson Test Prep software can be used on any device
that has a browser and connectivity to the Internet, including desktop machines,
tables, and smart phones. To start using your practice exams online, simply follow
these steps:

2. Select Pearson IT Certification as your product group.
3. Enter the e-mail and password for your account. If you don’t have an account
 on PearsonITCertification.com or CiscoPress.com, you need to establish one
 by going to PearsonITCertification.com/join.
4. In the My Products tab, click the Activate New Product button.
5. Enter the access code printed on the insert card in the back of your book to
 activate your product. The product is now listed in your My Products page.
6. Click the Exams button to launch the exam settings screen and start your
 exam.

The online version of the Pearson Test Prep software is supported on the following
browsers:

- Chrome (Windows and Mac), version 40 and above
- Firefox (Windows and Mac), version 35 and above
- Safari (Mac), version 7
- Internet Explorer 10 and 11
- Microsoft Edge
- Opera
The online version of the Pearson Test Prep software is supported on the following devices:

- Desktop and laptop computers
- Tablets running on Android and iOS
- Smartphones with a minimum screen size of 4.7 inches

Accessing the Pearson Test Prep Software Offline

If you wish to study offline, you can download and install the Windows version of the Pearson Test Prep software. There is a download link for this software on the book’s companion website.

Previous users: If you have already installed the Pearson Test Prep software from another purchase, you do not need to install it again. Launch the Pearson Test Prep software from your Start menu. Click Activate Exam in the My Products or Tools tab and enter the activation key found in the sleeve in the back of your book to activate and download the free practice questions for this book.

New users: You need to install the Pearson Test Prep software on your Windows desktop. Follow the steps below to download, install, and activate your exams.

1. Click the **Install Pearson Test Prep Desktop Version** link under the Practice Exams section of the page to download the software.
2. Once the software finishes downloading, unzip all the files on your computer.
3. Double-click the application file to start the installation, and follow the on-screen instructions to complete the registration.
4. Once the installation is complete, launch the application and select **Activate Exam** button on the My Products tab.
5. Click the **Activate a Product** button in the Activate Product Wizard.
6. Enter the unique access code found on the card in the sleeve in the back of your book and click the **Activate** button.
7. Click **Next** and then the **Finish** button to download the exam data to your application.
8. You can now start using the practice exams by selecting the product and clicking the **Open Exam** button to open the exam settings screen.
Desktop version system requirements:

- Windows 10, Windows 8.1, Windows 7, or Windows Vista (SP2)
- Microsoft .NET Framework 4.5 Client
- Pentium class 1 GHz processor (or equivalent)
- 512 MB RAM
- 650 MB hard disk space plus 50 MB for each downloaded practice exam
- Access to the Internet to register and download exam databases

Assessing Exam Readiness

Exam candidates never really know whether they are adequately prepared for the exam until they have completed about 30% of the questions. At that point, if you are not prepared, it is too late. The best way to determine your readiness is to work through the “Do I Know This Already?” quizzes at the beginning of each chapter and review the foundation and key topics presented in each chapter. It is best to work your way through the entire book unless you can complete each subject without having to do any research or look up any answers.

Premium Edition

In addition to the free practice exams provided with your purchase, you can purchase one additional exam with expanded functionality directly from Pearson IT Certification. The Premium Edition eBook and Practice Test for this title contains an additional full practice exam as well as an eBook (in both PDF and ePub format). In addition, the Premium Edition title provides remediation for each question, directing you to the specific part of the eBook that relates to that question.

If you have purchased the print version of this title, you can purchase the Premium Edition at a deep discount. There is a coupon code in the cardboard sleeve that contains a one-time-use code as well as instructions for where to purchase the Premium Edition.
This chapter covers the following topics:

1.0 Threat Management

1.4 Explain the purpose of practices used to secure a corporate environment.

- **Penetration Testing**: Discusses the testing process and the rules of engagement.

- **Reverse Engineering**: Includes topics such as isolation and sandboxing, authenticity of hardware, and fingerprinting and decomposition of software and malware.

- **Training and Exercises**: Describes the functions of red, blue, and white teams.

- **Risk Evaluation**: Discusses the risk evaluation process both from technical and operational viewpoints.
CHAPTER 4

Practices Used to Secure a Corporate Environment

Securing a corporate environment is not a one-time endeavor. It should entail a set of processes that are embedded into day-to-day operations. Some of these processes, such as penetration testing, are designed to locate weaknesses before attackers do, while other processes, such as fingerprinting and decomposition, are important to understand because they are techniques that attackers use to thwart your best efforts at preventing the delivery of malware. This chapter discusses the process of penetration testing, the value of understanding how attackers use fingerprinting and decomposition, the importance of training and exercises, and the steps in the risk management process.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read the entire chapter. Table 4-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the quiz appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes and Review Questions.” If you miss no more than one of these self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks.”

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration Testing</td>
<td>1–3</td>
</tr>
<tr>
<td>Reverse Engineering</td>
<td>6</td>
</tr>
<tr>
<td>Training and Exercises</td>
<td>4, 5</td>
</tr>
<tr>
<td>Risk Evaluation</td>
<td>7</td>
</tr>
</tbody>
</table>
1. Which of the following is the first step in a pen test?
 a. Gather information about attack methods against the target system or device.
 b. Execute attacks against the target system or device to gain user and privileged access.
 c. Document information about the target system or device.
 d. Document the results of the penetration test.

2. In which type of tests is the testing team provided with limited knowledge of the network systems and device?
 a. Blind test
 b. Double-blind test
 c. Target test
 d. External test

3. Which of the following is also referred to as a closed, or black-box, test?
 a. Zero-knowledge test
 b. Partial-knowledge test
 c. Full-knowledge test
 d. Target test

4. Which of the following is not covered in the rules of engagement?
 a. Timing
 b. Scope
 c. Compensation
 d. Authorization

5. Which of the following acts as the network defense team?
 a. Blue team
 b. White team
 c. Purple team
 d. Red team
6. With which of the following can malware executable files be executed without allowing the files to interact with the local system?
 a. Sandboxing
 b. DMZ
 c. Trusted Foundry
 d. Decomposition

7. When performing qualitative risk evaluation, which of the following is considered in addition to the impact of the event?
 a. Attack vectors
 b. Likelihood
 c. Costs
 d. Frequency
Penetration Testing

A penetration test (often called a pen test) is designed to simulate an attack on a system, a network, or an application. Its value lies in its potential to discover security holes that may have gone unnoticed. It differs from a vulnerability test in that it attempts to exploit vulnerabilities rather than simply identify them. Nothing places the focus on a software bug like the exposure of critical data as a result of the bug.

In many cases, some of the valuable information that comes from these tests is the identification of single operations that, while benign on their own, create security problems when used in combination. These tests can be made more effective when utilized with a framework like Metasploit or CANVAS (discussed Chapter 14, “Using Cybersecurity Tools and Technologies”).

Penetration testing should be an operation that occurs at regular intervals, and its frequency should be determined by the sensitivity of the information on the network. An example of a pen test tool is Retina. Figure 4-1 shows Retina output from scanning a single device. In this output, you can see that the tool has identified eight serious problems (indicated by the upward-pointing arrows): weak encryption in Terminal Services, six weaknesses related to Oracle, and one weakness related to a virtualization product on the machine called Oracle VirtualBox.

Figure 4-1 Retina Output
The steps in performing a penetration test are as follows:

1. **Planning and preparation**
2. **Information gathering and analysis**
3. **Vulnerability detection**
4. **Penetration attempt**
5. **Analysis and reporting**
6. **Cleaning up**

Both internal and external tests should be performed. Internal tests occur from within the network, whereas external tests originate outside the network, targeting the servers and devices that are publicly visible.

Strategies for penetration testing are based on the testing objectives, as defined by the organization. The strategies that you should be familiar with include the following:

- **Blind test**: The testing team is provided with limited knowledge of the network systems and devices, using publicly available information. The organization’s security team knows that an attack is coming. This test requires more effort by the testing team, and the testing team must simulate an actual attack.

- **Double-blind test**: This test is like a blind test except the organization’s security team does not know that an attack is coming. Only a few individuals at the organization know about the attack, and they do not share this information with the security team. This test usually requires equal effort for both the testing team and the organization’s security team.

- **Target test**: Both the testing team and the organization’s security team are given maximum information about the network and the type of test that will occur. This is the easiest test to complete but does not provide a full picture of the organization’s security.

Penetration testing is also divided into categories based on the amount of information to be provided. The main categories that you should be familiar with include the following:

- **Zero-knowledge test**: The testing team is provided with no knowledge regarding the organization’s network. The testers can use any means at their disposal to obtain information about the organization’s network. This is also referred to as closed, or black-box, testing.
Partial-knowledge test: The testing team is provided with public knowledge regarding the organization’s network. Boundaries might be set for this type of test.

Full-knowledge test: The testing team is provided with all available knowledge regarding the organization’s network. This test is focused more on what attacks can be carried out.

Other penetration testing applications include Metasploit, Wireshark, CORE Impact, Nessus, Back Track, Cain & Abel, and John the Ripper. When selecting a penetration testing tool, you should first determine which systems you want to test. Then research the different tools to discover which of them can perform the tests that you want to perform for those systems. When you have a tool in mind, research the tool’s methodologies for testing. In addition, the correct individual needs to be selected to carry out the test. Remember that penetration tests should include manual methods as well as automated methods because relying on only one of these two does not result in a thorough result.

Rules of Engagement

The rules of engagement define how penetration testing should occur. These issues should be settled and agreed upon before any testing begins. The following are some of the key issues to be settled:

Timing: The timeline for the test must be established. The start and end times will be included in the scope of the project, but creating the timeline does not mean it cannot change as reality dictates; rather, it means that you have a framework to work from. This also includes the times of day the testing will occur.

Scope: The scope of the test includes the timeline and also includes a list of all devices that are included in the test, as well as a description of all testing methodologies to be used. The output of this process should be a set of documents that are provided to the tester that include the following:

- A network diagram depicting all network segments in scope for the test
- A data flow diagram
- A list of services and ports exposed at the perimeter
- Details of how authorized users access the network
- A list of all network segments that have been isolated from the test to reduce scope
- **Authorization:** Formal authorization should be given to the tester to perform the test, with written approval by upper management. Without this, the tester could be liable for attempting to compromise the network.

- **Exploitation:** Before the test occurs, it should be determined whether exploits will be attempted if vulnerable systems are found. This is intentionally included in some cases so the incident response plan can be tested.

- **Communication:** Another of the issues in the rules of engagement is how communications are to occur between the tester and the stakeholders as the process unfolds. While regular meetings should be scheduled, there also must be a line of communication established for times when issues arise and changes may need to be made.

- **Reporting:** The type of reports to be generated is determined during the establishment of the rules of engagement. This includes the timing of reports, the format, and the specific information to be included. While postponing of reports should be allowed, it should not be allowed to become chronic, and the rules of engagement may include both incentives and penalties for the timeliness of reports.

Reverse Engineering

Reverse engineering is a term that has been around for some time. Generically, it means taking something apart to discover how it works and perhaps to replicate it. In cybersecurity, it is used to analyze both hardware and software and for various other reasons, such as to do the following:

- Discover how malware functions
- Determine whether malware is present in software
- Locate software bugs
- Locate security problems in hardware

The following sections look at the role of reverse engineering in cybersecurity analysis.

Isolation/Sandboxing

You may be wondering what the concepts of isolation and sandboxing are doing in a section on reverse engineering. How can you analyze malware without suffering the effects of the malware? The answer is to place the malware where it is safe to probe it and play with it. This is done by isolating, or sandboxing, the malware. You can
use a sandbox to run a possibly malicious program in a safe environment so that it doesn’t infect the local system.

By using sandboxing tools, you can execute malware executable files without allowing the files to interact with the local system. Some sandboxing tools also allow you to analyze the characteristics of an executable. There are cases when this is not possible because malware can be specifically written to do different things if it detects that it’s being executed in a sandbox.

In many cases, sandboxing tools operate by sending a file to a special server that analyzes the file and sends you a report on it. Sometimes this is a free service, but in many instances it is not. Some examples of these services include the following:

- Sandboxie
- Akana
- Binary Guard True Bare Metal
- BitBlaze Malware Analysis Service
- Comodo Automated Analysis System and Valkyrie
- Deepviz Malware Analyzer
- Detux Sandbox (Linux binaries)

Another option for studying malware is to set up a sheep dip computer. This is a system that has been isolated from the other systems and is used for analyzing suspect files and messages for malware. You can take measures such as the following on a sheep dip system:

- Install port monitors to discover ports used by the malware.
- Install file monitors to discover what changes may be made to files.
- Install network monitors to identify what communications the malware may attempt.
- Install one or more antivirus programs to perform malware analysis.

Often these sheep dip systems are combined with antivirus sensor systems to which malicious traffic is reflected for analysis.

The safest way to perform reverse engineering and malware analysis is to prepare a test bed. Doing so involves the following steps:

Step 1. Install virtualization software on the host.

Step 2. Create a VM and install a guest operating system on the VM.
Step 3. Isolate the system from the network by ensuring that the NIC is set to “host” only mode.

Step 4. Disable shared folders and enable guest isolation on the VM.

Step 5. Copy the malware to the guest operating system.

Also, you need isolated network services for the VM, such as DNS. It may also be beneficial to install multiple operating systems in both patched and non-patched configurations. Finally, you can make use of virtualization snapshots and re-imaging tools to wipe and rebuild machines quickly.

Once the test bed is set up, you also need to install a number of other tools to use on the isolated VM, including the following:

- **Imaging tools:** You need these tools to take images for forensics and prosecution procedures. Examples include Safe Back Version 2.0 and DD (which is covered in Chapter 14).

- **File/data analysis tools:** You need these tools to perform static analysis of potential malware files. Examples include PE Studio and PEframe.

- **Registry/configuration tools:** You need these tools to help identify infected settings in the registry and to identify the last saved settings. Examples include Microsoft’s Sysinternals Autoruns and Silent Runners.vbs.

- **Sandbox tools:** You need these tools for manual malware analysis (listed earlier in this chapter, the “Isolation/Sandboxing” section)

- **Log analyzers:** You need these tools to extract log files. Examples include AWStats and Apache Log Viewer.

- **Network capture tools:** You need these tools to understand how the malware uses the network. Examples include Wireshark and Omnipeek.

While the use of virtual machines to investigate the effects of malware is quite common, you should know that some well-written malware can break out of a VM relatively easily, making this approach problematic.

Hardware

You must be concerned with the safety and the integrity of the hardware that you purchase. The following are some of the methods used to provide this assurance:

- **Source authenticity of hardware:** When purchasing hardware to support any network or security solution, a security professional must ensure that the hardware’s authenticity can be verified. Just as expensive consumer items such as
purses and watches can be counterfeited, so can network equipment. While the dangers with counterfeit consumer items are typically confined to a lack of authenticity and potentially lower quality, the dangers presented by counterfeit network gear can extend to the presence of backdoors in the software or firmware. Always purchase equipment directly from the manufacturer when possible, and when purchasing from resellers, use caution and insist on a certificate of authenticity. In any case where the price seems too good to be true, keep in mind that it may be an indication the gear is not authentic.

- **Trusted Foundry:** The Trusted Foundry program can help you exercise care in ensuring the authenticity and integrity of the components of hardware purchased from a vendor. This DoD program identifies “trusted vendors” and ensures a “trusted supply chain.” A trusted supply chain begins with trusted design and continues with trusted mask, foundry, packaging/assembly, and test services. It ensures that systems have access to leading-edge integrated circuits from secure, domestic sources. At the time of this writing, 77 vendors have been certified as trusted.

- **OEM documentation:** One of the ways you can reduce the likelihood of purchasing counterfeit equipment is to insist on the inclusion of verifiable original equipment manufacturer (OEM) documentation. In many cases, this paperwork includes anti-counterfeiting features. Make sure to use the vendor website to verify all the various identifying numbers in the documentation.

Software/Malware

Software of any type can be checked for integrity to ensure that it has not been altered since its release. Checking for integrity is one of the ways you can tell when a file has been corrupted (or perhaps replaced entirely) with malware. Two main methods are used in this process:

- **Fingerprinting/hashing:** Fingerprinting, or hashing, is the process of using a hashing algorithm to reduce a large document or file to a character string that can be used to verify the integrity of the file (that is, whether the file has changed in any way). To be useful, a hash value must have been computed at a time when the software or file was known to have integrity (for example, at release time). Then at any time thereafter, the software file can be checked for integrity by calculating a new hash value and comparing it to the value from the initial calculation. If the character strings do not match, a change has been made to the software.

 Fingerprinting/hashing has been used for some time to verify the integrity of software downloads from vendors. The vendor provides the hash value and specifies the hash algorithm, and the customer recalculates the hash value after
the download. If the result matches the value from the vendor, the customer knows the software has integrity and is safe.

Anti-malware products also use this process to identify malware. The problem is that malware creators know this, and so they are constantly making small changes to malicious code to enable the code to escape detection through the use of hashes or signatures. When they make a small change, anti-malware products can no longer identify the malware, and they won’t be able to until a new hash or signature is created by the anti-malware vendor. For this reason, some vendors are beginning to use “fuzzy” hashing, which looks for hash values that are similar but not exact matches.

- **Decomposition**: Decomposition is the process of breaking something down to discover how it works. When applied to software, it is the process of discovering how the software works, perhaps who created it, and, in some cases, how to prevent the software from performing malicious activity.

When used to assess malware, decomposition can be done two ways: statically and dynamically. When static or manual analysis is used, it takes hours per file and uses tools called disassemblers. Advanced expertise is required. Time is often wasted on repetitive sample unpacking and indicator extraction tasks.

With dynamic analysis tools, an automated static analysis engine is used to identify, de-archive, de-obfuscate, and unpack the underlying object structure. Then proactive threat indicators (PTI) are extracted from the unpacked files. A rules engine classifies the results to calculate the threat level and to route the extracted files for further analysis. Finally, the extracted files are repaired to enable further extraction or analysis with a sandbox, decompiler, or debugger. While the end result may be the same, these tools are much faster and require less skill than manual or static analysis.

Training and Exercises

Security analysts must practice responding to security events in order to react to them in the most organized and efficient manner. There are some well-established ways to approach this. This section looks at how teams of analysts, both employees and third-party contractors, can be organized and some well-established names for these teams.

Security posture is typically assessed by war game exercises in which one group attacks the network while another attempts to defend the network. These games typically have some implementation of the following teams:

- **Red team**: The Red team acts as the attacking force. It typically carries out penetration tests by following a well-established process of gathering
information about the network, scanning the network for vulnerabilities, and then attempting to take advantage of the vulnerabilities. The actions they can take are established ahead of time in the *rules of engagement*. Often these individuals are third-party contractors with no prior knowledge of the network. This helps them simulate attacks that are not inside jobs.

- **Blue team**: The Blue team acts as the network defense team, and the attempted attack by the Red team tests the Blue team’s ability to respond to the attack. It also serves as practice for a real attack. This includes accessing log data, using a SIEM, garnering intelligence information, and performing traffic and data flow analysis.

- **White team**: The White team is a group of technicians who referee the encounter between the Red team and the Blue team. Enforcing the rules of engagement might be one of the White team’s roles, along with monitoring the responses to the attack by the Blue team and making note of specific approaches employed by the Red team.

Risk Evaluation

Although penetration testing can identify vulnerabilities, it is not the recommended way to identify vulnerabilities. An organization should have a well-defined risk management process in place that includes the evaluation of risk that is present. When this process is carried out properly, *threat modeling* allows organizations to identify threats and potential attacks and implement the appropriate mitigations against these threats and attacks. These facets ensure that any security controls implemented are in balance with the operations of the organization. The three parts to this process are covered in the following sections.

Technical Impact and Likelihood

Once all assets have been identified and their value to the organization has been established, specific threats to each asset are identified. An attempt must be made to establish both the likelihood of the threat’s realization and the impact to the organization if it occurs. While both quantitative and qualitative risk assessments may be performed, when a qualitative assessment is conducted, the risks are placed into the following categories:

- High
- Medium
- Low
Typically, a risk assessment matrix, such as the one in Figure 4-2, is created. Subject experts grade all risks based on their likelihood and impact. This helps prioritize the application of resources to the most critical vulnerabilities.

<table>
<thead>
<tr>
<th>Probability</th>
<th>Impact</th>
<th>Trivial</th>
<th>Minor</th>
<th>Moderate</th>
<th>Major</th>
<th>Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rare</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Unlikely</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Likely</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Very Likely</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Figure 4-2 Risk Assessment Matrix

Technical Control Review

Technical controls are implemented with technology and include items such as firewalls, access lists, permissions on files and folders, and devices that identify and prevent threats. After it understands the threats, an organization needs to establish likelihoods and impacts, and it needs to select controls that, while addressing a threat, do not cost more than the cost of the realized threat. The review of these controls should be an ongoing process.

Operational Control Review

Operational controls are the policies, procedures, and work practices that either help prevent a threat or make the threat more likely. The review of these controls should be an ongoing process.

Exam Preparation Tasks

As mentioned in the section “Strategies for Exam Preparation” in the Introduction, you have a couple choices for exam preparation: the exercises here, Chapter 15, “Final Preparation,” and the practice exams in the Pearson IT Certification test engine.
Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topics icon in the outer margin of the page. Table 4-2 lists these key topics and the page number on which each is found.

Table 4-2 Key Topics in Chapter 4

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step List</td>
<td>Steps in a penetration test</td>
<td>99</td>
</tr>
<tr>
<td>List</td>
<td>Strategies for pen testing</td>
<td>99</td>
</tr>
<tr>
<td>List</td>
<td>Pen test categories</td>
<td>99</td>
</tr>
<tr>
<td>List</td>
<td>Rules of engagement</td>
<td>100</td>
</tr>
<tr>
<td>List</td>
<td>Security teams</td>
<td>105</td>
</tr>
<tr>
<td>Figure 4-2</td>
<td>Risk assessment matrix</td>
<td>107</td>
</tr>
</tbody>
</table>

Define Key Terms

Define the following key terms from this chapter and check your answers against the glossary:

penetration testing, blind test, double-blind test, target test, zero-knowledge test, partial-knowledge test, full-knowledge test, rules of engagement, reverse engineering, isolation, sandboxing, sheep dip computer, imaging tools, file/data analysis tools, registry/configuration tools, sandbox tools, log analyzers, network capture tools, Trusted Foundry, fingerprinting/hashing, decomposition, Red team, Blue team, White team, risk evaluation, risk assessment matrix, technical control review, operational control review

Review Questions

1. Which of the following attempts to exploit vulnerabilities?
 a. Vulnerability test
 b. Pen test
 c. Risk assessment
 d. Port scan
2. Which of the following is the third step in a pen test?
 a. Analysis and reporting
 b. Vulnerability detection
 c. Penetration attempt
 d. Cleaning up

3. In which type of test are both the testing team and the organization’s security team given maximum information about the network and the type of test that will occur?
 a. Blind test
 b. Double-blind test
 c. Target test
 d. External test

4. In which of the following is the testing team provided with public knowledge regarding the organization’s network?
 a. Zero-knowledge test
 b. Partial-knowledge test
 c. Full-knowledge test
 d. Target test

5. Which of the following rules of engagement includes a list of all devices that are included in the test as well as a description of all testing methodologies to be used?
 a. Timing
 b. Scope
 c. Authorization
 d. Exploitation

6. Which of the following practices places malware where it is safe to probe it and play with it?
 a. Sandboxing
 b. Compartmentalizing
 c. Boundary enforcement
 d. File locks
7. Which of the following is a system that has been isolated from other systems and is used for analyzing suspect files and messages for malware?
 a. Sheep dip computer
 b. Virtual machine
 c. Sandbox
 d. Honeypot

8. Which of the following is a good example of exercising care in ensuring the authenticity and integrity of the components of hardware purchased from a vendor?
 a. Trusted Foundry program
 b. Fingerprinting
 c. Hashing
 d. Decomposition

9. Which of the following is the process of taking a large document or file and, with the use of a hashing algorithm, reducing the file to a character string that can be used to verify the integrity of the file?
 a. Hashing
 b. Decomposing
 c. Sandboxing
 d. Reverse engineering

10. Which of the following helps prioritize the application of resources to the most critical vulnerabilities?
 a. Access control matrix
 b. Risk assessment matrix
 c. PERT chart
 d. Gantt chart
Symbols

802.1x, 88-90
/? argument (netstat command), 22

A

-a argument (netstat command), 21-23
-a parameter
 ifconfig command, 434
 netstat command, 431
 ping command, 432
A records (DNS), 8
AAAA records (DNS), 8
AC (Access Complexity) vulnerabilities, 129
accepting risks, 278
access
 complexity (AC) vulnerabilities, 129
 context-based authentication, 304-305
 control lists. See ACLs
controls, 84-86
 NIST SP 800-53 control family, 259
 provisioning life cycle, 274
types, 282-284
defense-in-depth strategy, 354
cryptography. See cryptography
dual control, 355
network design, 374-376
network segmentation, 377
outsourcing, 360-362
personnel, 354-356
processes, 356-357
security devices, 358-359
security suites, 359
technologies, 358
exploits, 334
 impersonation, 334
 man-in-the-middle, 334
 privilege escalation, 335
 rootkits, 335-336
 session hijacking, 335
 XSS, 335
identities. See identities
NAC, 86-90
points. See APs
SSO
 identity propagation, 326-327
 OpenID, 331-332
 provisioning/deprovisioning, 333
 SAML, 330-331
 self-service password reset, 334
 Shibboleth, 332
 SPML, 329
 XACML, 327-329
system, viewing, 436
users, viewing, 436
vector (AV) vulnerabilities, 129
vulnerability scanning, 131
AccessChk tool, 436
AccessEnum tool, 436
Acceptable Use Policy (AUP), 271-272
accountability (personnel), 309
accounting data, 200
accounting information systems (AIS), 200
accounts
 lockout policies, 270
 maintenance, 149
 management policies, 273-274
 new application, 231
 provisioning/deprovisioning, 333
accreditation
 certification, compared, 291
 software development, 395
ACLs (access control lists), 80
 misconfigurations, 14
 packets, compared, 81
 routers, configuring, 80
 testing, 15
acquisitions, 200
action field (firewall logs), 349
actions
response, 147
Syslogs, 351
active vulnerability scanners (AVS), 31
AD (Active Directory), 78-79, 320
Adaptive Security Appliance (ASA), 415
addresses (e-mail), harvesting, 7
ADM (Architecture Development Method), 266
administrative controls, 84-85, 284
advanced persistent threats (APTs), 191
agentless log collection, 57
agents
log collection, 58
NAC, 88
vulnerability scanning tools, 126-127
aggregation, 161, 346
AHs (authentication headers), 177, 373
Aircrack-ng, 429-430
AIS (accounting information systems), 200
ALE (annual loss expectancy), 279
algorithms
asymmetric, 366-367
hybrid, 367-368
MD, 370
symmetric, 364-366
AlienVault, 422
Amazon Web Services (AWS), 362
analysis
anomaly, 45
availability, 46
behavioral, 47
cost-benefit, 280-281
data flow, 390
data output, 47
authentication logs, 351
event logs, 53-55
firewall logs, 47-49
IDS, 56-57, 60
NetFlow analyzer, 61
packet analyzer, 59-60
packet captures, 49-50
ping scanning, 52
port scanning, 52-53
resource monitoring, 61
SIEM, 57-58
Syslog, 55-56
heuristic, 46
lexical, 390
logs, 348
interception proxy, 439-440
monitoring, 437-439
vulnerability scanning, 437
traffic, 40-41
trend, 46
utilities (forensic investigation suites), 206
vulnerability scan output, 143
correlating with other data points, 147-148
reports, 143-147
reviewing, 145
wireless, 43-45
annual loss expectancy (ALE), 279
anomalous activity (applications), 230
anomaly analysis, 45
anomaly based IDS, 26
anti-malware software, 415-417
anti-spam software, 417
anti-spyware software, 416
AP (access point), 12, 312
rogue, 224, 312
wireless analysis, 45
WLANs, 12
Apple Pay, 196
applets, 162
applications
architecture domain (TOGAF), 266
firewalls, 409
IDS, 26
incident indicators, 230
anomalous activity, 230
memory overflows, 231
new accounts, 231
service interruptions, 231
unexpected outbound communication, 231
unexpected output, 231
logs, 53
proxies, 28
startup, viewing, 436
APTs (advanced persistent threats), 191
architecture (firewalls), 29-30
bastion hosts, 410
dual-homed, 411
multihomed, 412
screened host, 413
screened subnet, 414
Architecture Development Method (ADM), 266
ArcSight, 421
ARP poisoning, 164-165
ASA (Adaptive Security Appliance), 415
assessments, 122, 290
assets
criticality, 192
inventory, 120
assisted password resets, 270
asymmetric algorithms, 366-367
AT (awareness and training) NIST SP 800-53
control family, 259
attacks. See also threats
database servers, 160-161
dumpster diving, 311
deptpoints, 161-162
ICS, 179-180
identity theft, 311
interconnected networks, 174-175
man-in-the-middle, 178, 334
mobile devices, 173-174
network devices, 169
network infrastructure, 162
ARP poisoning, 164-165
MAC overflow, 164
routers, 168
switches, 163
VLANs, 165-168
pharming, 310
phishing, 310
SCADA, 179-180
shoulder surfing, 310
Stuxnet virus, 180
SYN flood, 48
virtualization, 13, 169
hosts, 169-170
management interfaces, 171-173
networks, 170
VM escape, 169
VPNs, 175-179
web servers
buffer overflows, 157-159
direct jacking, 152-153
CSRFs, 151-152
errors/exceptions, handling, 156
input validation, 154
insecure direct object references, 150
integer overflows, 159
maintenance books, 149
race conditions, 160
sensitive data storage, 156
session hijacking, 153
SQL injections, 155
time-of-check, 150
time-of-use, 150
XSS, 150-151
wireless, 12
zero day, 46, 190
AU (audit and accountability) NIST SP 800-53
control family, 259
audit logs (personnel accountability), 309
audits, 288-289
AUP (Acceptable Use Policy), 271-272
authentication
context-based, 304-305
cryptosystems, 362
headers (Ahs), 177, 373
Kerberos, 321
logs, analyzing, 351
password period, 269
servers, 88, 323
step-up, 304
vulnerabilities, 129
WPA/WPA2, 12
authenticators, 88, 323
authorization
cryptosystems, 363
Open (OAuth), 318
penetration testing, 101
automated distribution reports, 132
automated reporting, 358
Autoruns tool, 436
AV (Access Vector) vulnerabilities, 129
availability
analysis, 46
vulnerabilities, 130
avoiding risks, 278
AVS (active vulnerability scanners), 31
awareness and training (AT) NIST SP 800-53
control family, 259
AWS (Amazon Web Services), 362
B
-b argument (netstat command), 23
backdoors, 313
bandwidth consumption, 221
base vulnerabilities, 129
Basel II, 256
bastion hosts, 29, 410
beaconing, 221
behavioral analysis, 47
benchmarks (CIS), 398
blacklisting, 154
blind penetration testing, 99
block ciphers, 365-366
Blue team (training), 106
Bluetooth hacking gear, 224
Bro, 407
buffer overflows, 157-159, 312
Burp suite, 440
business architecture domain (TOGAF), 266
business process interruption, 135
BYOD (bring your own device) policies, 173

C
CA (security assessment and authorization) NIST SP 800-53 control family, 259
cables, 203
Cain & Abel password cracker, 446
CALEA (Communications Assistance to Law Enforcement Act) of 1994, 256
call lists, 206
cameras (forensics kits), 204
Capability Maturity Model Integration (CMMI), 291
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) passwords, 269
capturing packets, 428-430
Aircrack-ng, 429-430
environmental reconnaissance, 6
Network General, 429
output data, 49-50
tcpdump, 429
Wireshark, 428-429
carrier sense multiple access with collision avoidance (CSMA/CA), 43-45
categories
controls, 277-278
countermeasures, 83-84
input validation tools, 394
NIST SP 800-53 framework, 258-259
penetration testing, 99
CCE (Common Configuration Enumeration), 128
Cellebrite, 445
Center for Internet Security (CIS), 397-398
certification, 291
accreditation, compared, 291
ISO/IEC 27001, 292-293
ISO/IEC 27002, 294
NIACAP, 292
software development, 395
CFAA (Computer Fraud and Abuse Act), 255
chain of custody forms, 204
chain of custody tools (forensic investigation suites), 207
change control, 245
passwords, 270
reports, 132, 358
software development, 395
unauthorized changes as incident indicator, 229
vulnerabilities, 134
Check Point firewalls, 415
checksum method (cryptography), 368
CIA (confidentiality, integrity, and availability), 362
ciphers, 365-366
circuit-level proxies, 28, 409
cisco firewalls, 415
classifying
data, 274-277
threats, 189-190
clearing data, 243
click-jacking, 152-153
close-wait host connection, 22
closing host connection, 22
cloud
antivirus software, 417
environmental reconnaissance, 15-16
CM (configuration management) NIST SP 800-53 control family, 259
CMI (Copyright Management Information), 199
CMMI (Capability Maturity Model Integration), 291
CN (common name), 320
CNAME records (DNS), 8
COBIT (Control Objectives for Information and Related Technology) framework, 263-264
cognitive passwords, 269
collective tools, 421
command-line, 430-435
HIDS, 436
IDS, 436
network scanning, 423
packet capture, 428-430
SIEM, 421-423
vulnerability scanning, 423-427
combination passwords, 268
command-line collective tools, 430
Aircrack-ng, 429
ifconfig, 434
ipconfig, 433-434
netstat, 430-431
nslookup, 434-435
OpenSSL, 436
ping, 431-432
Sysinternals, 435-436
tracert, 432
commands
dd, 447
ifconfig, 434
ipconfig, 433-434
netstat, 21-23, 430-431
nslookup, 434-435
ping, 431-432
Sysinternals. See Sysinternals command
tcpdump, 429
tracert, 432
windump, 429
commercial business data classifications, 276
Common Configuration Enumeration (CCE), 128
common name (CN), 320
Common Platform Enumeration (CPE), 128
Common Vulnerabilities and Exposures (CVE), 128
Common Vulnerability Scoring System (CVSS), 128-130
Common Weakness Enumeration (CWE), 128
communication
irregular peer-to-peer, 222-223
penetration testing, 101
security monitoring, 244
stakeholders, 217-218
unexpected outbound, 231
vulnerability remediation, 134
Communications Assistance to Law Enforcement Act (CALEA) of 1994, 256
community state (ports), 377
compartmented security mode, 82
compensating countermeasures, 83-84, 277
access controls, 84-86
control categories, 83-84
complete regression testing, 394
Completely Automated Public Turing test to tell Computers and Humans (CAPTCHA) passwords, 269
compliance. See regulatory compliance
Computer Fraud and Abuse Act (CFAA), 255
Computer Security Act of 1987, 256
confidentiality
cryptosystems, 362
data, 119, 276
vulnerabilities, 130
confidentiality, integrity, and availability (CIA), 362
configuration management (CM) NIST SP 800-53 control family, 259
connections
devices, 431
hosts, 21-23
SSL, 178
VPNs, 176
containment techniques, 240-241
context-based authentication, 304-305
contingency planning (CP) NIST SP 800-53 control family, 259
continual improvement (processes), 356
continuous monitoring procedures, 284
control flow graph, 390
Control Objectives for Information and Related Technology (COBIT) framework, 263-264
controlled security mode, 83
cpy controls. See also countermeasures
access, 282-284
categories, 277-278
CIS, 397
compensative, 277
corrective, 277
detective, 277
deterrent, 277
developing, 286
directive, 277
handling risk, 278
operational, 107
preventive, 278
recovery, 278
selecting
 access controls, 282-284
 handling risk, 278
 organizationally defined parameters, 281
 qualitative risk analysis, 280
 quantitative risk analysis, 279
 safeguards, selecting, 280-281
 total risk vs. residual risk, 281
technical, 107
testing procedures, 286
copyright, 198
Copyright Management Information (CMI), 199

corporate confidential data, 199-201
corporate policy requirements, 119

corrective actions, 245
corrective controls, 277
corrective countermeasures, 83
cost-benefit analysis, 280-281
countermeasures
 access, 84-86
 ACLs, 80-81
 ARP poisoning, 165
 buffer overflow attacks, 157
 categories, 83-84
 click-jacking, 153
 cloud viruses, 417
 control selection
 access controls, 282-284
 handling risk, 280-281
 organizationally defined parameters, 281
 quantitative risk analysis, 280
 quantitative risk analysis, 279
 total risk vs. residual risk, 281
 controls
 categories, 277-278
 development, 286
 handling risk, 278
 testing procedures, 286
 CSRFs, 152
data remnants, 243
defined, 69
 endpoint
 security, 77-78
 vulnerabilities, 162
 group policies, 78-79
 hardening, 82
 compensating countermeasures, 83-86
 MAC, 82-83
 patching, 86
 unused ports/services, blocking, 86
 honeypots, 77
 integer overflow attacks, 160
 MAC overflow attacks, 164
 maintenance hooks, 149
 malware. See anti-malware software
 NAC, 86
 802.1x, 88-90
 access decisions, 87
 agents/agentless, 88
 limitations, 87
 quarantine/remediation, 88
 network segmentation, 72
 DMZs, 73
 extranet, 72
 intranet, 72
 jump boxes, 76-77
 LANs, 72
 system isolation, 75-76
 VLANs, 73-74
 race conditions, 160
 safeguard selection, 280-281
 sensitive data storage attacks, 157
 session hijacking, 153
 sinkholes, 81-82
 social engineering threats, 310
 spam, 417
 spyware, 416
 SQL injection attacks, 156
 time-of-check/time-of-use attacks, 150
 viruses, 415
 VLAN hopping, 166
 vulnerabilities, 167
 VM escape attacks, 170
 XSS, 151

CP (contingency planning)
NIST SP 800-53 control family, 259
CPE (Common Platform Enumeration), 128

cracking passwords, 445-446
credentials
 management (personnel), 308-309
 vulnerability scanning tools, 125
credit card data, 195-197
credit history, 307
CredSSP (Credential Security Support Provider), 326
crime tape (forensics kits), 204
criminal history checks, 306
criticality
assets, 120, 192
data, 275
levels, 192
resources, 192
system process, 193
cross-certification model (federations), 327
cross-site request forgeries (CSRFs), 151-152
cross-site scripting (XSS), 150-151, 335
cross-training personnel, 356
cryptography, 362
applying, 371
authentication, 362
authorization, 363
CIA, 362
confidentiality, 362
defense-in-depth strategy, 363-364
hashing functions, 369-371
integrity, 363
keys, 363-364
non-repudiation, 363
tools (forensic investigation suites), 207
transport encryption, 372-373
types, 364-368
asymmetric algorithms, 366-367
hybrid ciphers, 367-368
symmetric algorithms, 364-365
CSMA/CA (carrier sense multiple access with collision avoidance), 43-45
CSRFs (cross-site request forgeries), 151-152
customizing practice tests, 455-456
CVE (Common Vulnerabilities and Exposures), 128
CVSS (Common Vulnerability Scoring System), 128-130
CWE (Common Weakness Enumeration), 128
Cybersecurity framework, 259
D
DAI (dynamic ARP inspection), 165
DAP (Directory Access Protocol), 319
data
analysis. See data analysis
accounting, 200
aggregation, 346
architecture domain (TOGAF), 266
classification
policies, 274-277
requirements, 119-120
exfiltration, 229-230
flow analysis, 390
haven, 258
integrity, 193
loss prevention (DLP), 230
mining warehouses, 161
ownership policies, 272
remnants, 170, 243
retention policies, 272-273
sensitive, 156
transport encryption, 372-373
types, 194
 corporate confidential, 199-201
intellectual property, 197-199
payment card information, 195-197
PHI, 195
PII, 194
vulnerability scanning tools, 126
data analysis, 346
anomaly, 45
availability, 46
behavioral, 47
heuristic, 46
historical, 347
output, 47
event logs, 53-55
firewall logs, 47-49
IDS, 56-60
NetFlow analyzer, 61
packet analyzer, 59-60
packet captures, 49-50
ping scanning, 52
port scanning, 52-53
resource monitoring, 61
Syslog, 55-56
point-in-time, 40
NetFlow, 41-42
packet analysis, 40
protocol analysis, 40
traffic analysis, 40-41
wireless, 43-45
tools, 103
trends, 46, 346-347
Data Protection Directive (EU), 257
database server vulnerabilities, 160-161
DC (domain component), 320

dd command, 447
DDoS (distributed denial-of-service) attacks, 312
debugging malware, 241
decompling malware, 241
dedicated security mode, 82
defense-in-depth strategy, 354
network design, 374-377
network segmentation, 377
personnel, 354-356
processes, 356-357
technologies, 358
automated reporting, 358
cryptography. See cryptography
outsourcing, 360-362
security devices, 358-359
security suites, 359
degradning functionality, 135
delegation, 317
delete program tool, 436
demilitarized zones (DMZs), 29, 73
Deming cycle, 357
denial-of-service (DoS) attacks, 14, 312
deprovisioning federated identity systems, 333
designing
networks, 374-377
software, 388, 397-398
destination field (firewall logs), 349
destination (Syslogs), 351
destruction (data), 243
detective countermeasures, 83, 277
deterrent countermeasures, 84, 277
develop phase (SDLC), 389
developing software. See SDLC
devices
availability analysis, 46
connectivity, 431
defense-in-depth strategy, 358-359
disposing, 242
IP configurations, viewing, 433
mobile
forensic tools, 445
vulnerabilities, 173-174
network
design, 374-377
infrastructure, 162-168
vulnerabilities, 169
physical, 13
reconstructing, 242
removing, 241
rogue, 223-224
sanitization, 242
virtual. See virtualization
virtual infrastructure, 169-173
DHCP snooping, 165
digital forensics kits, 201-204
direct object references, 150
directive countermeasures, 84, 277
Directory Access Protocol (DAP), 319
directory services, 319-322
AD, 320
DNS, 322
LDAP, 319
SESAME, 321
disassembling malware, 241
discovery
scans, 122
services, 6
topology, 5
distributed denial-of-service (DDoS) attacks, 312
distribution (reports), 132
DLP (data loss prevention), 230
DMZs (demilitarized zones), 29, 73
DNS (Domain Name System), 322
records, 8-10
servers, testing, 434
DNSSEC (Domain Name System Security Extensions), 322
documentation
forensics kits, 204
OEM, 104
documents (security policies)
account management, 273-274
AUP, 271-272
data
classification, 274-277
ownership, 272
retention, 272-273
passwords, 268-271
domain component (DC), 320
Domain Name System. See DNS
Domain Name System Security Extensions (DNSSEC), 322
domains
COBIT, 263
TOGAF, 266
DoS (denial-of-service)
attacks, 14, 312
double blind penetration
testing, 99
double tagging VLANs, 167
downstream liability, 360
downtime, 191-192
drive adapters, 204
drive capacity consumption, 227
driving records, 307
DTP (Dynamic Trunking
Protocol), 166
dual control (personnel), 355
dual-homed firewalls, 29, 411
due care, 360
due diligence, 360
dumpster diving, 311
dynamic ARP inspection
(DAI), 165
Dynamic Trunking
Protocol (DTP), 166

Electronic Security
Directive (EU), 258
e-mail
 harvesting, 7
 pass-around reviews, 393
emanations, 313
EMET (Enhanced Mitiga-
tion Experience
Toolkit), 418
Employee Privacy Issues
and Expectation of
Privacy, 257
employment agreements/
policies, 308
employment candidate
screenings, 306-308
Encapsulating Security
Payload (ESP), 177, 373
EnCase Forensic, 444
encryption, 24
endpoints, 77-78
DLP, 230
SAs, 178
threats, 310-312
 malware, 311
 rogue access points, 312
 rogue endpoints, 311
 social engineering, 310-311
vulnerabilities, 161-162
Enhanced Mitigation Expe-
rience Toolkit (EMET),
418
environmental recon-
naissance
defined, 3
DNS harvesting, 8-10
e-mail harvesting, 7
logs, reviewing, 6
OS fingerprinting, 5
packet capture, 6
phishing, 11
routers, reviewing, 6
service discovery, 6
social engineering, 8
social media profiling, 7
tools, 16
firewalls, 27-30
HIDS, 27
host scanning, 19
IDS, 25-26
IPS, 26
netstat command, 21-23
network mapping, 20
NIDS, 27
packet analyzer, 23-24
port scanning, 16-19
syslog, 30
vulnerability scanners, 30-31
topology discovery, 5
variables, 11
cloud resources, 15-16
internal vs. external
resources, 14-15
on-premises resources, 15
physical devices, 13
virtualization, 13-14
wired networks, 12
wireless networks, 12
environmental vulner-
abilities, 129
Equal Employment Opportu-
nity Commission
(EEOC), 307
eradication techniques,
242-243
escalation
tools, 206
privileges, 335
ESP (Encapsulating
Security Payload), 177, 373
essential data, 275
established host con-
nection, 22
Ethernet II (packets), 50
EU (European Union) regulatory legislation, 257
evaluations, 290
event logs
analyzing, 352-353
output analysis, 53-55
evidence production procedures, 285
exceptions
management procedures, 287
vulnerability scans, identifying, 146
web servers handling, 156
executive reports, 132, 358
exploits, 441-442
identity and access management, 334
impersonation, 334
man-in-the-middle, 334
privilege escalation, 335
rootkits, 335-336
session hijacking, 335
XSS, 335
penetration testing, 101
tools, 440
exploit framework, 441-442
fuzzers, 442
interception proxy, 440
Extensible Access Control Markup Language (XACML), 327-329
external penetration testing, 99
external resources, 14-15
extranet, 72

F
-f argument (netstat command), 23
facility (Syslogs), 350
Fair Credit Reporting Act (FCRA), 306
false positives, 145
FCRA (Fair Credit Reporting Act), 306
Federal Information Security Management Act (FISMA), 256
Federal Intelligence Surveillance Act of 1978 (FISA), 255
Federal Privacy Act of 1974, 255
federations, 327
OpenID, 331-332
provisioning/deprovisioning, 333
SAML, 330-331
self-service password resets, 334
Shibboleth, 332
SPML, 329
XACML, 327-329
file analysis tools, 103
File Fuzzer, 442
file shares, viewing, 436
FIN scans, 17
fin-wait-1 host connection, 22
fin-wait-2 host connection, 22
final review plan, 457
fingerprinting
networks, 20
software, 104
firewall field (firewall logs), 349
firewalls, 408
architecture, 29-30
bastion hosts, 410
dual-homed, 411
multihomed, 412
screened host, 413
screened subnet, 414
Check Point, 415
Cisco, 415
DMZs, 29
dual-homed, 29
environmental reconnaissance, 27
kernel proxy, 29
logs
analyzing, 348-350
data, 47-49
multihomed, 29
next-generation, 375-377
packet-filtering, 27
Palo Alto, 415
placement, 409
proxy, 28
reviewing, 6
screened host, 30
screened subnet, 30
SOCKS, 28
stateful, 28
types, 27-29, 408
tree application (WAF), 418-419
FISA (Federal Intelligence Surveillance Act of 1978), 255
FISMA (Federal Information Security Management Act), 256
Flash Card mode (practice test), 455
“Forensic Examination of Digital Evidence: A Guide for Law Enforcement,” 204
Forensic Toolkit (FTK), 444
forensics
kits, 201
cables, 203
cameras, 204
crime tape, 204
documentation/forms, 204
drive adapters, 204
tamper-proof seals, 204
wiped removable media, 204
workstations, 202-203
write blockers, 203
suites, 206-207, 443-445
analysis utilities, 206
Cellebrite, 445
chain of custody, 207
cryptography utilities, 207
EnCase, 444
FTK, 444
bashing utilities, 207
Helix, 444
imaging utilities, 206
log viewer utilities, 207
mobile devices utilities, 207
OS/process analysis utilities, 207
password crackers, 207
Sysinternals, 444
tools
bashing, 445
imaging, 447
password cracking, 445-446
Framework for Improving Critical Infrastructure Cybersecurity, 259
frameworks, 258
COBIT, 263-264
exploit, 441-442
ISO/IEC 27000 Series, 260-263
ITIL, 267
NIST, 258-259
profiles (Cybersecurity framework), 260
SABSA, 265
TOGAF, 265-266
frequency
context-based authentication, 305
vulnerability scans, 120-121
FTK (Forensic Toolkit), 444
full-knowledge penetration tests, 100
functions
criticality levels, 192
hashing, 368-371
fuzzers, 442
fuzzing, 391-392
G
-g argument (netstat command), 23
gathering requirements phase (SDLC), 388
generation-based fuzzing, 392
GLBA (Gramm-Leach-Bliley Act of 1999), 118, 255
Google Wallet, 196
government data classifications, 119, 276-277
GPOs (group policy objects), 78
GPRS (General Packet Radio Service), 178
graphical passwords, 269
graphing traffic flows, 437
group policies, 78-79
guest vulnerabilities (virtualization), 13
H
-h argument (netstat command), 22
handling risk, 278
qualitative risk analysis, 280
quantitative risk analysis, 279
safeguards, selecting, 280-281
total risk vs. residual risk, 281
hardening systems, 82
compensating countermeasures, 83-84
control categories, 83-84
MAC, 82-83
patching, 86
unused ports/services, blocking, 86
hardware
authenticity, 103
OEM documentation, 104
safety/integrity, checking, 103-104
Trusted Foundry program, 104
harvesting
DNS records, 8-10
e-mail addresses, 7
hashing, 369-371
forensics, 445
integrity, 368
one-way, 369
process, 369
SHA, 371
tools, 207
Health Care and Education Reconciliation Act of 2010, 257
Health Insurance Portability and Accountability Act of 1996 (HIPAA), 118, 195, 254
Helix, 444
heuristic analysis, 46
heuristic based IDS, 26
HIDS (host intrusion detection system), 27, 436
HIPAA (Health Insurance Portability and Accountability Act), 118, 195, 254
HIPS (host-based IPS), 408
historical data analysis, 347
honeypots, 77
horizontal privilege escalation, 335
host-based IPS (HIPS), 408
hosts
application indicators, 230-231
bastion, 29, 410
connections
improper active, identifying, 22-23
states, identifying, 21-22
incident indicators, 225
data exfiltration, 229-230
drive capacity consumption, 227
malicious processes, 229
memory consumption, 227
processor consumption, 226
unauthorized changes, 229
unauthorized privileges, 229
unauthorized software, 228
scanning, 19
screened host firewalls, 413
Summary report, 143
virtual, 169-170
vulnerabilities, 13
HR departments, 216
HTTP (Hypertext Transfer Protocol), 372
HTTPS (Hypertext Transfer Protocol Secure), 372
human interfaces, 180
hybrid ciphers, 367-368
hypervisor attacks, 13, 171-173
-i argument (netstat command), 23
IA (identification and authentication) NIST SP 800-53 control family, 259
IAM (identity and access management), 316
ICMP sweeps, 225
ICS (industrial control system), 179-180
IDaaS (Identity as a Service), 316
identification and authentication (IA) NIST SP 800-53 control family, 259
identities, 305
applicants, 316-319
endpoints, 310-312
exploits, 334-336
federations. See federations management policies, 274
personnel, 306-309
propagation, 326-327
providers (IPs), 332
RBAC, 315-316
repositories, 319
directory services, 319-322
RADIUS, 323-324
TACACS+, 323-325
servers, 312-313
services, 313-315
identity and access management (IAM) software, 316
Identity as a Service (IDaaS), 316
identity theft, 311
Identity Theft Enforcement and Restitution Act, 255
ID-FF (Liberty Identity Federation Framework), 330
IDS (Intrusion Detection Systems), 25, 405-407
anomaly based, 26
as collective tool, 436
Bro, 407
environmental reconnaissance, 25-26
host-based, 27, 436
network-based. See NIDS output analysis, 56-57, 60
signature based, 25
Snort, 406
Sourcefire, 405
IEC (International Electrotechnical Commission), 260
ifconfig command, 434
IKE (Internet Key Exchange), 177
imaging tools, 103, 206, 447
impersonation, 334
Imperva, 421
implementation tiers (Cybersecurity framework), 260
important resources, 192
imprecise methods (DLP), 230
inadequate VM isolation attacks, 14
incident responses
forms, 206
NIST SP 800-53 control family, 259
provider responsibilities, 220
role-based responsibilities, 218-220
stakeholders, 216
communication, 217-218
HR departments, 216
legal departments, 217
management, 217
marketing departments, 217
teams, 216-217
incidents
application-related indicators, 230-231
classifications, 189-190
data types, 194
Corporate confidential, 199-201
intellectual property, 197-199
payment card information, 195-197
PHI, 195
PII, 194
forensics
kits, 201-204
suites, 206-207
host-related indicators, 225
data exfiltration, 229-230
drive capacity consumption, 227
malicious processes, 229
memory consumption, 227
processor consumption, 226
unauthorized changes, 229
unauthorized privileges, 229
unauthorized software, 228
network-related indicators, 220
bandwidth consumption, 221
beaconing, 221
irregular peer-to-peer communication, 222-223
rogue devices, 223-224
scan sweeps, 224
unusual traffic spikes, 225
response and recovery containment techniques, 240-241
corrective actions, 245
eradication techniques, 242-243
plans, 205, 245
summary report, 246
validation techniques, 243-244
scope, 191
data integrity, 193
downtime/recovery time, 191-192
economic impact, 193
system process criticality, 193
severity/prioritization, 191
industrial control system (ICS), 179
inference, 160
Information Technology Infrastructure Library (ITIL), 267
Infrastructure Mode wireless networks, 43
infrastructure vulnerabilities, 162
ARP poisoning, 164-165
MAC overflow, 164
routers, 168
switches, 163
virtualization, 169
hosts, 169-170
management interfaces, 171-173
networks, 170
VLANs, 165-168
inhibitors, 134-135
initialization vectors (IVs), 366
input validation, 154, 394-395
insecure direct object references, 150
integer overflow attacks, 159
integrity
Cryptography, 368
Cryptosystems, 363
data, 193
hardware, 103-104
software, 104-105
vulnerabilities, 130
intellectual property, 197-199
interactive mode (nslookup), 435
interception proxies
exploit capabilities, 440
monitoring capabilities, 439-440
software development testing, 392
interconnected networks vulnerabilities, 174-175
interface field (firewall logs), 349
internal penetration testing, 99
internal resources, 14-15
International Electrotechnical Commission (IEC), 260
International Organization for Standardization (ISO), 260
Internet Key Exchange (IKE), 177
Internet Protocol version 4 (packets), 50
Internet Security Association and Key Management Protocol (ISAKMP), 177
interval argument (netstat command), 22
intranet, 72
Intrusion Detection Systems. See IDS
Intrusion Prevention Systems. See IPS
inventory assets, 120
IP (identity provider), 332
IP (Intellectual Property), 199, 433
ipconfig command, 433-434
IPS (Intrusion Prevention Systems), 25, 405
environmental reconnaissance, 26
host-based (HIPS), 408
IPsec, 177, 373
irregular peer-to-peer communication, 222-223
ISAKMP (Internet Security Association and Key Management Protocol), 177
ISO (International Organization for Standardization), 260
ISO/IEC 27000 Series, 260-263
ISO/IEC 27001 certification standard, 292-293
ISO/IEC 27002 certification standard, 294
isolated state (ports), 377
isolation
incident containment, 240
reverse engineering
malware analysis, 103
systems, 75-76
ITIL (Information Technology Infrastructure Library), 267
IVs (initialization vectors), 366
J
job rotation (personnel), 356
John the Ripper password cracker, 445
jump boxes, 76-77
K
KDC (key distribution center), 317
Kennedy-Kassebaum Act, 118, 195, 254
Kerberos
advantages/disadvantages, 321
delegation, 317
KDC, 317
kernel
debugger, 241
proxy firewalls, 29, 409
keys
cryptosystems, 363-364
PKI, 178
wireless key loggers, 224
Kiwi Syslog, 423
known threats, 190
L
L2TP (Layer 2 Tunneling Protocol), 176
LAN (local area network), 72
LAN Manager (LM), 271
last-ack host connection, 22
law enforcement responsibilities (incident responses), 219
LDAP (Lightweight Directory Access Protocol), 319
legal departments, 217
legislation
Basel II, 256
CALEA, 256
CFAA, 255
Computer Security Act of 1987, 256
Economic Espionage Act of 1996, 257
ECPA, 255
Employee Privacy Issues and Expectation of Privacy, 257
EU, 257
Federal Privacy Act of 1974, 255
FISA, 255
FISMA, 256
GLBA, 255
Health Care and Education Reconciliation Act of 2010, 257
HIPAA, 254
PIPEDA, 256
security requirements, 117
SOX, 254
USA PATRIOT Act, 257
lessons learned reports, 245
lexical analysis, 390
Liberty Alliance, 330
Liberty Identity Federation Framework (ID-FF), 330
licensure verification (personnel), 307
life cycles
access control provisioning, 274
patching, 286
Lightweight Directory Access Protocol (LDAP), 319
Linux
Bro, 407
ifconfig command, 434
Nikto, 427
passwords, 270
tcpdump, 429
listen host connections, 21
listening ports, viewing, 430
live VM migration attacks, 171
LM (LAN Manager), 271
local area networks (LANs), 72
Local Security Authority Subsystem Service (LSASS), 318
location
access decisions, 88
context-based authentication, 304
firewalls, 409
log viewers (forensic investigation suites), 207
logged on users, viewing, 436
logical controls, 84-85, 283
logon sessions, listing, 436
LogonSessions tool, 436
logs
analyzers, 103
application, 53
audit, 309
authentication, 351
collecting from log generators, 57-58
event
analyzing, 352-353
output analysis, 53-55
firewalls
analyzing, 348-350
data, 47-49
manual reviews, 348
authentication logs, 351
event logs, 352-353
firewall logs, 348-350
Syslogs, 350-351
reviewing, 6
security, 53, 244
syslog
analyzing, 350-351
environmental reconnaissance, 30
output analysis, 55-56
system, 53
LSASS (Local Security Authority Subsystem Service), 318
M
-m argument (netstat command), 23
MAC (mandatory access control), 82-83, 164
maintenance
accounts, 149
hooks, 149
NIST SP 800-53 control family, 259
software development, 395
malicious processes, 229
malware
analysis, 102-103
anti-malware software, 416-417
endpoints, 311
reverse engineering, 241
types, 311
MAM (mobile application management), 173
man-in-the-middle attacks, 178, 334
managed security service providers (MSSPs), 362
management interface vulnerabilities, 171-173
management responsibilities (incident responses), 219
mandatory access control (MAC), 82-83, 164
mandatory vacations, 356
manual distribution reports, 132
manual log reviews, 348
authentication logs, 351
event logs, 352-353
firewall logs, 348-350
Syslogs, 350-351
manual peer reviews (software), 393
marketing departments, 217
maturity model, 291
maximum period time of disruption (MPTD), 192
maximum tolerable downtime (MTD), 192
MBSA (Microsoft Baseline Security Analyzer), 427
MD algorithms, 370
MD5 hashing algorithm, 445
MDM (mobile device management), 173
mean time between failures (MTBF), 192
mean time to repair (MTTR), 192
media protection (MP)
NIST SP 800-53 control family, 259
memorandum of understanding (MOU), 134
memory consumption, 227
mergers, 200
message digests, 369
Metasploit framework, 441
Microsoft Baseline Security Analyzer (MBSA), 427
Microsoft SDL File/Regex Fuzzer, 442
Microsoft Security Compliance Manager (SCM), 285
Microsoft System Center Configuration Manager (MSCCM), 285
military data classifications, 276-277
mitigating risks, 278
mobile application management (MAM), 173
mobile code, 312
mobile devices
forensic tools, 207, 445
management (MDM), 173
vulnerabilities, 173-174
mobile hacking gear, 224
ModSecurity, 420
monitoring (personnel accountability), 309
monitoring tools, 437-439
Cacti, 439
MRTG, 437
Nagios, 438
NetFlow Analyzer, 439
SolarWinds, 438
MOU (memorandum of understanding), 134
MP (media protection)
NIST SP 800-53 control family, 259
MPTD (maximum period time of disruption), 192
MRTG (Multi Router Traffic Grapher), 437
MSCCM (Microsoft System Center Configuration Manager), 285
MSSPs (managed security service providers), 362
MTBF (mean time between failures), 192
MTD (maximum tolerable downtime), 192
MTTR (mean time to repair), 192
multihomed firewalls, 29, 412
multilevel security mode, 83
Multi Router Traffic Grapher, 437
mutation fuzzing, 392
MX records (DNS), 8
N
-n argument (netstat command), 23
-n parameter (netstat command), 431
NAC (network access control), 86
802.1x, 88-90
access decisions, 87
agents/agentless, 88
limitations, 87
quarantine/remediation, 88
Nagios, 438
National Information Assurance Certification and Accreditation Process (NIACAP), 292
National Institute of Standards and Technology. See NIST
NAXSI (Nginx Anti XSS & SQL Injection), 420
NDAs (nondisclosure agreements), 198
near field communication (NFC), 196
Nessus, 425
NetFlow Analyzer, 61, 439
netstat command, 21-23, 430-431
Network General, 429
networks
access control. See NAC
capture tools, 103
design, 374-377
device vulnerabilities, 169
DLP, 230
incident indicators, 220
bandwidth consumption, 221
beaconing, 221
irregular peer-to-peer communication, 222-223
rogue devices, 223-224
scan sweeps, 224
unusual traffic spikes, 225
infrastucture vulnerabilities, 162
ARP poisoning, 164-165
MAC overflow, 164
routers, 168
switches, 163
VLANs, 165-168
interconnected, 174-175
intrusion detection system. See NIDS
intrusion prevention system (NIPS), 375
mapping, 20
scanning tools, 423
segmentation, 72, 377
DMZs, 73
extranet, 72
intranet, 72
jump boxes, 76-77
LANs, 72
system isolation, 75-76
VLANs, 73-74
VPNs
ICS, 179-180
SCADA, 179-180
vulnerabilities, 175-179
vulnerability tests (NVT), 426
New Technology LAN Manager (NTLM), 271
Nexpose, 426, 442
NFC (near field communication), 196
NGFWs (next-generation firewalls), 375-377
Nginx Anti XSS & SQL Injection (NAXSI), 420
NIACAP (National Information Assurance Certification and Accreditation Process), 292
NIDS (network intrusion detection system), 374
environmental reconnaissance, 27
Bro, 407
Snort, 406
Nikto, 427
NIPS (network intrusion prevention system), 375
NIST (National Institute of Standards and Technology), 180, 258
Cybersecurity framework, 259
SP 800-53 framework, 258-259
Nmap tool, 423
host scanning, 19
ping scanning output analysis, 52
port scanning, 16-19, 52-53
non-credentialed vulnerability scans, 125
non-critical assets, 120
nondisclosure agreements (NDAs), 198
non-essential data, 275
donessential resources, 192
noninteractive mode (nslookup), 434
non-repudiation, 363
normal resources, 192
NS records (DNS), 8
nslookup command, 434-435
NTLM (New Technology LAN Manager), 271
Null scans, 17
numeric passwords, 269
NVT (network vulnerability tests), 426
-o argument (netstat command), 23
OAuth (Open Authorization), 318
OEM (original equipment manufacturer) documentation, 104
on-premises resources, 15
one-time passwords (OTP), 269
one-way hash functions, 369
Open Authorization (OAuth), 318
OpenID, 331-332
Open Source Security Information Management (OSSIM), 422
Open Web Application Security Project (OWASP), 396, 440
OpenSSL, 319, 436
OpenVAS tool, 426
operating system fingerprinting, 5
operational controls, 107
organizational unit (OU), 320
organizations
governance, 135
requirements, 117
asset inventory, 120
corporate policies, 119
data classification, 119-120
regulatory, 117-118
original equipment manufacturer (OEM), 104
OS analysis tools (forensic investigation suites), 207
OS fingerprinting, 5
OSSIM (Open Source Security Information Management), 422
OTP (one-time passwords), 269
OUs (organizational units), 320
outbound communication, 231
output
analysis, 47
event logs, 53-55
firewall logs, 47-49
IDS, 56-57
packet captures, 49-50
ping scanning, 52
port scanning, 52-53
Syslog, 55-56
tools, 58-61
reconciling, 147
unexpected application, 231
vulnerability scans, analyzing, 143
 correlating with other data points, 147-148
 reports, 143-147
 reviewing, 145
outsourcing
 defense-in-depth strategy, 355, 360-362
 third-party, 174
over-the-shoulder reviews, 393
overflows
 buffers, 157-159, 312
 integer, 159
 MAC, 164
 memory, 231
OWASP (Open Web Application Security Project), 396, 440
ownership (data), 272
 -p argument (netstat command), 22-23
 -p parameter (netstat command), 431
 -P protocol argument (netstat command), 23
PAC (Privileged Attribute Certificate), 321
packet-filtering firewalls, 27, 409
packets
 ACLs, compared, 81
 analyzing, 40
 environmental reconnaissance, 23-24
 output analysis, 59-60
 capture tools, 428-430
 Aircrack-ng, 429-430
 Network General, 429
tcpdump, 429
 Wireshark, 428-429
capturing
 environmental reconnaissance, 6
 output data, 49-50
 paths, tracing, 432
pair programming reviews, 393
Palo Alto firewalls, 415
parity bits, 368
partial-knowledge penetration tests, 100
partial regression testing, 394
passive vulnerability scanner (PVS), 30
password crackers (forensic investigation suites), 207
passwords, 268, 271
 account lockout policies, 270
 authentication period, 269
 complexity, 270
 cracking tools, 445-446
 history, 269
 length, 270
 life, 269
 Linux, 270
 resetting, 270
 types, 268-269
 Windows, 271
patching, 86, 243, 285-286
patents, 197
pattern matching (IDS), 25
payment card information data, 195-197
PCI-DSS (Payment Card Industry Data Security Standard), 118, 195
PDCA (Plan-Do-Check-Act), 357
PDP (policy decision point), 328
PE (physical and environmental protection) NIST SP 800-53 control family, 259
 Peach fuzzer, 442
Pearson IT Certification test engine, 453
Pearson Test Prep practice test, 453
 accessing, 454
 customizing, 455-456
 modes, 455
 purchasing additional, 456
 updating, 456
peer reviews (software), 393
peer-to-peer botnets, 222
peer-to-peer communication, 222-223
penetration testing, 98
 categories, 99
 frequency, 98
 internal vs external, 99
 rules of engagement, 100-101
 strategies, 99
 tools, 100
PEP (policy enforcement point), 328
periodic reviews (personnel), 308
permissions
 incident validation, 244
 vulnerability scanning, 131
personal health information (PHI), 195
Personal Information Protection and Electronic Documents Act (PIPEDA), 256
personally identifiable information (PII), 194
personnel, 306-309
accountability, 309
credential management, 308-309
defense-in-depth strategy, 354
cross-training, 356
dual control, 355
mandatory vacations, 356
separation of duties, 355
split knowledge, 355
succession planning, 356
third-party outsourcing, 355
training, 354-355
employment agreements policies, 308
employment candidate screenings, 306-308
periodic reviews, 308
provisioning life cycle, 309
security (PS) NIST SP 800-53 control family, 259
pharming, 310
PHI (personal health information), 195
phishing, 11, 310
physical and environmental protection (PE) NIST SP 800-53 control family, 259
physical controls, 84-85, 282
physical devices, 13
PII (personally identifiable information), 194
ping command, 431-432
ping scanning, 19, 52
ping sweeps, 225
PIPEDA (Personal Information Protection and Electronic Documents Act), 256
PIX (Private Internet Exchange), 415
PKI (Public Key Infrastructure), 178
PL (planning) NIST SP 800-53 control family, 259
Plan-Do-Check-Act (PDCA), 357
planning (PL) NIST SP 800-53 control family, 259
PLCs (programmable logic controllers), 180
plug-ins, 128-130
PM (program management) NIST SP 800-53 control family, 259
point-in-time data analysis, 40
NetFlow, 41-42
packets, 40
protocols, 40
traffic, 40-41
wireless, 43-45
Point-to-Point Tunneling Protocol (PPTP), 176
PPTP (Point-to-Point Tunneling Protocol), 176
Practice Exam mode (practice test), 455
practice test, 453
accessing, 454
customizing, 455-456
modes, 455
purchasing additional exams, 456
updating, 456
precise methods (DLP), 230
Premium Edition, 456
preventative tools, 405
anti-malware software, 416
anti-spam software, 417
anti-spyware software, 416
antivirus software, 415
cloud antivirus software, 417
EMET, 418
firewalls, 408
bastion hosts, 410
Check Point, 415
Cisco, 415
dual-homed, 411
multihomed, 412
personal information protection and electronic documents act, 256
personally identifiable information (pii), 194
personnel, 306-309
accountability, 309
credential management, 308-309
defense-in-depth strategy, 354
cross-training, 356
dual control, 355
mandatory vacations, 356
separation of duties, 355
split knowledge, 355
succession planning, 356
third-party outsourcing, 355
training, 354-355
employment agreements policies, 308
employment candidate screenings, 306-308
periodic reviews, 308
provisioning life cycle, 309
security (ps) nist sp 800-53 control family, 259
pharming, 310
phi (personal health information), 195
phishing, 11, 310
physical and environmental protection (pe) nist sp 800-53 control family, 259
physical controls, 84-85, 282
physical devices, 13
pii (personally identifiable information), 194
ping command, 431-432
ping scanning, 19, 52
ping sweeps, 225
nist sp 800-53 control family, 259
netflow, 41-42
packets, 40
protocols, 40
traffic, 40-41
wireless, 43-45
point-in-time data analysis, 40
account management, 273-274
aup, 271-272
byod (bring your own device), 173
data classification, 274
commercial business, 276
criticality, 275
essential/non-essential, 275
military/government, 276-277
sensitivity, 275
data ownership, 272
data retention, 272-273
decision point (pdp), 328
employment, 308
enforcement point, 328
group, 78-79
password, 268-271
ports
listening, viewing, 430
pvlan, 377
scanning, 16, 52-53, 225
switch, 166
unused, blocking, 86
power cables, 203
point-in-time data analysis, 40
netflow, 41-42
packets, 40
protocols, 40
traffic, 40-41
wireless, 43-45
point-to-point tunneling protocol (pptp), 176
practice exam mode (practice test), 455
practice test, 453
accessing, 454
customizing, 455-456
modes, 455
purchasing additional exams, 456
updating, 456
precise methods (dlp), 230
premium edition, 456
preventative tools, 405
anti-malware software, 416
anti-spam software, 417
anti-spyware software, 416
antivirus software, 415
cloud antivirus software, 417
emet, 418
firewalls, 408
bastion hosts, 410
check point, 415
cisco, 415
dual-homed, 411
multihomed, 412
Palo Alto, 415
placement, 409
screened host, 413
screened subnet, 414
types, 408
HIPS, 408
IDS, 405-407
Bro, 407
Snort, 406
Sourcefire, 405
IPS, 405
web proxy servers, 418-421
Imperva, 421
ModSecurity, 420
NAXSI, 420
WAF, 418-419
preventive countermeasures, 84, 278
Principles on Privacy (EU), 257
prioritization (incidents), 191
data types, 194
corporate confidential, 199-201
intellectual property, 197-199
payment card information, 195-197
PHI, 195
PII, 194
response actions, 147
scope, 191
data integrity, 193
downtime/recovery time, 191-192
economic impact, 193
system process criticality, 193
vulnerabilities, 133-134
private data, 119, 276
Private Internet Exchange (PIX), 415
private VLANs (PVLANs), 377
Privileged Attribute Certificates (PACs), 321
privileges
elevation attacks, 171
escalation, 335
unauthorized, 229
proactive threat indicators (PTI), 105
procedures, 284
continuous monitoring, 284
control development/testing, 286
evidence production, 285
exceptions, managing, 287
patching, 285-286
remediation plans, 287-288
Process Explorer, 226
processes
analysis tools (forensic investigation suites), 207
defense-in-depth strategy, 356-357
malicious, 229
processor consumption, 226
product field (firewall logs), 349
profiling social media, 7
program management (PM)
NIST SP 800-53 control family, 259
programmable logic controllers (PLCs), 180
promiscuous state (ports), 377
proprietary data, 119
protocol field (firewall logs), 349
protocols
analyzing. See packets, analyzing
anomaly based IDS, 26
DAP, 319
DTP, 166
HTTP, 372
HTTPS, 372
IPsec, 177, 373
L2TP, 176
LDAP, 319
PPTP, 176
SCP, 179
SHTTP, 372
SSH, 373
SSL, 372
Syslog, 55-56
TCP, 50
TLS, 372
provisioning
federated identity systems, 333
life cycle (personnel), 309
service providers (PSPs), 329
service targets (PSTs), 329
proxies
application-level, 28, 409
circuit-level, 28, 409
firewalls, 28
interception
exploit capabilities, 440
monitoring capabilities, 439
software development testing, 392
kernel proxy firewalls, 409
monitoring tools, 440
web proxy servers, 418, 421
Imperva, 421
ModSecurity, 420
NAXSI, 420
WAF, 418-419
PS (personnel security)
 NIST SP 800-53 control family, 259
PsLoggedOn tool, 436
PSPs (provisioning service providers), 329
PSTs (provisioning service targets), 329
PTI (proactive threat indicators), 105
Public Company Accounting Reform and
Investor Protection Act of 2002 (SOX), 117, 254
public data, 119, 276
Public Key Infrastructure (PKI), 178
purging data, 243
PVLANs (private VLANs), 377
PVS (passive vulnerability scanner), 30

Q
QRadar, 422
qualitative risk analysis, 280
quality control
 assessments, 290
 audits, 288-289
 certification, 291
 ISO/IEC 27001, 292-293
 ISO/IEC 27002, 294
 NIST, 292
 evaluations, 290
 maturity model, 291
quality improvement, 357
Qualys, 425
quantitative risk analysis, 279
quarantine (countermeasures), 88

R
-r argument (netstat command), 22
-r parameter (netstat command), 431
RA (request authority), 329
RA (risk assessment) NIST SP 800-53 control family, 259
race conditions, 150, 160
RADIUS (Remote Authentication Dial-in User Service), 89, 323-324
Rapid7 Exploit Database, 441
RBAC (role-based access control), 88, 315-316
RDBMS (relational database management system), 326
real user monitoring (RUM), 391
reconciling output, 147
reconstructing devices, 242
recovery
 countermeasures, 84, 278
 point objective (RPO), 192
 time, 191-192
Red team (training), 105
reference checks (personnel), 307
Regex Fuzzer, 442
registry tools, 103
regression testing, 394
regulatory compliance, 254
 Basel II, 256
 CALEA, 256
 CFAA, 255
 Computer Security Act of 1987, 256
 Economic Espionage Act of 1996, 257
 ECPA, 255
Employee Privacy Issues and Expectation of Privacy, 257
EU, 257
Federal Privacy Act of 1974, 255
FISA, 255
FISMA, 256
GLBA, 255
Health Care and Education Reconciliation Act of 2010, 257
HIPAA, 254
PIPEDA, 256
requirements, 117-118
SOX, 254
USA PATRIOT Act, 257
relational database management system (RDBMS), 326
release/maintenance phase (software development), 395
relying parties (RPs), 331
remediation, 88, 133
 change control, 134
 communication, 134
 inhibitors, 134-135
 plan procedures, 287-288
 prioritizing, 133-134
 sandboxing, 134
Remote Authentication Dial-in User Service (RADIUS), 89, 323-324
remote terminal units (RTUs), 180
removable media, 204
removing devices, 241
reports
automated, 358
change, 132, 358
distribution, 132
executive, 132, 358
formats, 143
Hosts Summary, 143
IDS, 56-57
lessons learned, 245
penetration testing, 101
senior executive, 358
SOC, 289-290
technical, 132, 358
trend, 132
Vulnerabilities by Host, 144
Vulnerabilities by Plug-in, 145
vulnerability scanning, 132
vulnerability scans, analyzing, 143-147
repositories (identity), 319
directory services, 319-322
AD, 320
DNS, 322
LDAP, 319
SESAME, 321
RADIUS, 323-324
TACACS+, 323-325
request authorities (RAs), 329
resetting passwords, 270
residual risk, 281
resources
cloud, 15-16
criticality levels, 192
internal vs. external, 14-15
monitoring, 61
on-premises, 15
response actions, prioritizing, 147
response and recovery process (incidents)
containment techniques, 240-241
corrective actions, 245
eradication techniques, 242-243
plans, 205, 245
summary report, 246
validation techniques, 243-244
responsibilities (incident response role-based), 218-220
retention (data), 272-273
reverse engineering, 101
hardware, 103-104
incident containment, 241
isolation, 103
sandboxing, 101-102
sheep dip computers, 102
software, 104-105
test beds, 102
reviewing
firewalls, 6
logs, 6
processes, 357
routers, 6
user accounts, 274
vulnerability scan results, 145
risks
appetite (vulnerability scans), 120
assessment (RA) NIST SP 800-53 control family, 259
handling, 278
acceptance, 278
avoidance, 278
mitigation, 278
qualitative risk analysis, 280
quantitative risk analysis, 279
safeguards, selecting, 280-281
total risk vs. residual risk, 281
transferring, 278
management, 106-107
rogue access points, 12, 45, 224, 312
rogue devices, 223-224
rogue endpoints, 311
rogue switches, 224
role-based access control (RBAC), 88, 315-316
role-based responsibilities, 218-220
rootkits, 335-336
routers
ACLs, 80
reviewing, 6
sinkholes, 81-82
vulnerabilities, 168
RP (relying party), 331
RPO (recovery point objective), 192
RTO (recovery time objective), 192
RTUs (remote terminal units), 180
rule based access decisions, 87
rule based IDS, 26
rule field (firewall logs), 349
rules of engagement, 100-101
RUM (real user monitoring), 391
S
-s argument (netstat command), 22
-s parameter (netstat command), 431
SA (security association), 177-178
SA (system and services acquisition) NIST SP 800-53 control family, 259
SaaS (Software as a Service), 316, 362
SABSA (Sherwood Applied Business Security Architecture) framework, 265
safe harbor, 258
Safe Harbor Privacy Principles (EU), 257
safeguards. See countermeasures
SAM (Security Account Manager), 271
SAML (Security Assertion Markup Language), 330-331
sandboxing
malware analysis, 101-102
tools, 103
vulnerability remediation, 134
sanitization, 242
SANS (SysAdmin, Audit, Network, and Security Institute), 396
Sarbanes-Oxley Act (SOX), 117, 254
SAS (Statement on Auditing Standards), 289
SC (system and communications protection) NIST SP 800-53 control family, 259
SCADA (supervisory control and data acquisition), 179-180
scanning
assessment, 122
data output, 47
firewall logs, 47-49
packet captures, 49-50
ping scanning, 52
port scanning, 52-53
discovery, 122
hosts, 19
incident validation, 244
network tools, 423
ping, 52, 225
ports, 225
Nmap, 16
output analysis, 52-53
 sweeps, 224
vulnerabilities. See vulnerabilities, scanning
web applications, 391
SCAP (Security Content Automation Protocol), 128-130, 287
SCM (Microsoft Security Compliance Manager), 285
scope
incidents, 191
data integrity, 193
downtime/recovery time, 191-192
economic impact, 193
system process criticality, 193
penetration testing, 100
vulnerability scanning tools, 123
SCP (Secure Copy Protocol), 179
screened host firewalls, 30, 413
screened subnet firewalls, 30, 414
SDelete tool, 436
SDL (System Development Life Cycle), 387
best practices
CIS, 397-398
OWASP, 396
SANS, 396
certification, 395
change management, 395
design, 388
developing, 389
gathering requirements, 388
input validation, 394-395
planning/initiating projects, 387
release/maintenance phase, 395
testing, 390
 fuzzing, 391-392
interception proxies, 392
manual peer reviews, 393
regression, 394
static code analysis, 390
stress, 393-394
unit testing, 390
user acceptance, 393
web application vulnerabilities, 391
testing/validating, 389
secret data, 119, 276
Secure Copy Protocol (SCP), 179
secure disposal, 242
Secure European System for Applications in a Multi-vendor Environment (SESAME), 321
Secure Hash Algorithm (SHA), 371, 445
Secure Hypertext Transfer Protocol (SHTTP), 372
Secure Sockets Layer (SSL), 178
security
assessment and authorization (CA) NIST SP 800-53 control family, 259 associations (SAs), 177 awareness training, 354 data analytics, 346-347 logs, 53 modes, 82 parameter index (SPI), 178 regression testing, 394 suites, 359 Security Account Manager (SAM), 271 Security Assertion Markup Language (SAML), 330-331 Security Content Automation Protocol (SCAP), 128-130, 287 Security Information and Event Management. See SIEM segmentation, 240 segmenting networks, 72, 377 DMZs, 73 extranet, 72 intranet, 72 jump boxes, 76-77 LANs, 72 system isolation, 75-76 VLANs, 73-74 self-service password resets, 270, 334 senior executive reports, 358 sensitive but unclassified data, 120, 277 sensitive data, 156, 275-276 sensitivity levels, 122 sensors, 179 separation of duties (personnel), 355 servers authentication, 88, 323 database, 160-161 DNS, 434 isolating, 75 jump, 76-77 Syslog, 55 threats, 312-313 vulnerability scanning tools, 126-127 web proxy, 418-421 vulnerabilities, 149-160 service field (firewall logs), 349 service interruptions (applications), 231 service level agreements (SLAs), 135 Service Organization Control (SOC), 289 service providers (SPs), 332 Service Provisioning Markup Language (SPML), 329 services discovery, 6 threats, 313-315 unused, blocking, 86 SESAME (Secure European System for Applications in a Multi-vendor Environment), 321 session hijacking, 153, 335 setup logs, 53 severity (incidents), 191, 350 data types, 194 corporate confidential, 199-201 intellectual property, 197-199 payment card information, 195-197 PHI, 195 PII, 194 scope, 191 data integrity, 193 downtime/recovery time, 191-192 economic impact, 193 system process criticality, 193 SHA (Secure Hash Algorithm), 371, 445 ShareEnum tool, 436 sheep dip computers, 102 Sherwood Applied Business Security Architecture (SABSA) framework, 265 Shibboleth, 332 shoulder surfing, 310 SHTTP (Secure Hypertext Transfer Protocol), 372 SI (system and information integrity) NIST SP 800-53 control family, 259 SIEM (Security Information and Event Management), 57-58, 244, 421 AlienVault, 422 ArcSight, 421 incident recovery validation, 244 Kiwi Syslog, 423 log collection, 57-58 network design, 375 OSSIM, 422 QRadar, 422 Splunk, 422 signal cables, 203 signature-based IDS, 25 Simple Object Access Protocol (SOAP), 329
single loss expectancy (SLE), 279
single sign-on (SSO), 320
sinkholes, 81-82
site accreditation, 292
SLAs (service level agreements), 135
SLE (single loss expectancy), 279
sniffers, 428
Aircrack-ng, 429-430
Network General, 429
tcpdump, 429
Wireshark, 428-429
WLANs, 45
Snort, 406
SOA (Start of Authority), 8, 322
SOAP (Simple Object Access Protocol), 329
SOC (Service Organization Control), 289
social engineering threats, 8, 310-311
social media profiling, 7
Social Security verification (personnel), 307
SOCKS firewall, 28
software
anti-malware, 416
anti-spam, 417
anti-spyware, 416
antivirus, 415
application-related incident indicators, 230-231
cloud antivirus, 417
development. See SDLC
DLP, 230
integrity, checking, 104-105
startup programs, viewing, 436
unauthorized, 228-230
vulnerability scanning updates/plug-ins, 128-130
Software as a Service (SaaS), 316, 362
Software Development Life Cycle. See SDLC
SolarWinds, 438
source field (firewall logs), 349
Sourcefire, 405
sources (Syslogs), 351
SOX (Sarbanes-Oxley Act), 117, 254
SP (service provider), 332
SPI (security parameter index), 178
SPL (Splunk Search Processing Language), 422
split knowledge (personnel), 355
Splunk, 422
Splunk Search Processing Language (SPL), 422
SPML (Service Provisioning Markup Language), 329
spoofing switches, 166
spyware, 311
SQL injection attacks, 155
SSAE (Statement on Standards for Attestation Engagements), 289
SSH, 373
SSL (Secure Sockets Layer), 178
advantages/disadvantages, 179
implementing, 178
TLS, compared, 179
transport encryption, 372
SSO (single sign-on), 320
identity propagation, 326-327
OpenID, 331-332
provisioning/deprovisioning, 333
SAML, 330-331
self-service password reset, 334
Shibboleth, 332
SPML, 329
XACML, 327-329
stakeholders (incident response), 216-217
communication, 217-218
HR, 216
legal, 217
management, 217
marketing, 217
standard word passwords, 268
Start of Authority (SOA), 322
startup programs, viewing, 436
stateful firewalls, 28
stateful matching (IDS), 25
Statement on Auditing Standards (SAS), 289
Statement on Standards for Attestation Engagements (SSAE), 289
states
host connections, identifying, 21-22
PVLAN ports, 377
static code analysis, 390
static passwords, 268
statistical anomaly based IDS, 26
step-up authentication, 304
stream-based ciphers, 365
stress testing software, 393-394
strong identification (personnel accountability), 309
Study mode (practice test), 455
study plan, 457
Stuxnet virus, 180
subnets, 414
substance-abuse testing, 307
succession planning (personnel), 356
supervisory control and data acquisition (SCADA), 179
supplicants, 88, 323
switches
rogue, 224
spoofing, 166
vulnerabilities, 163
symmetric algorithms, 364-365
block ciphers, 365-366
stream-based ciphers, 365
symptoms (incidents)
application-related, 230-231
host-related, 225-229
network-related, 220-225
SYN flood attacks, 48
syn-received host connection, 21
syn-sent host connection, 21
synthetic transaction monitoring, 391
SysAdmin, Audit, Network, and Security Institute (SANS), 396
Sysinternals command, 435-436
forensic tools, 444
processor consumption, 226
Syslogs, 30
analyzing, 350-351
output analysis, 55-56
system and communications protection (SC) NIST SP 800-53 control family, 259
system and information integrity (SI) NIST SP 800-53 control family, 259
system and services acquisition (SA) NIST SP 800-53 control family, 259
systems
access, viewing, 436
accreditation, 292
hardening, 82-86
high security mode, 82
isolating, 75-76
logs, 53
process criticality, 193
t-t argument (netstat command), 22
TACACS+ (Terminal Access Controller Access Control System Plus), 89, 323-325
taint analysis, 390
tamper-proof seals (forensics kits), 204
target penetration testing, 99
Task Manager, 226
TCA (third-party connection agreement), 174
TCP (Transmission Control Protocol), 50
tcpdump command, 429
technical architecture domain (TOGAF), 266
technical controls, 107
technical reports, 132, 358
technical responsibilities (incident responses), 219
telemetry system, 180
TEMPEST program, 313
temporal vulnerabilities, 129
Terminal Access Controller Access Control System Plus (TACACS+), 89, 323-325
test beds, 102
test preparation
Pearson IT Certification test engine, 453
Pearson Test Prep practice test, 453
customizing, 455-456
modes, 455
offline access, 454
online access, 454
purchasing additional, 456
updating, 456
testing
ACLs, 15
devices, 286
device connectivity, 431
DNS servers, 434
network vulnerabilities (NVT), 426
penetration, 98
categories, 99
frequency, 98
internal vs external, 99
rules of engagement, 100-101
strategies, 99
tools, 100
software, 389-390
fuzzing, 391-392
interception proxies, 392
manual peer reviews, 393
regression, 394
static code analysis, 390
stress, 393-394
unit testing, 390
user acceptance, 393
web application vulnerabilities, 391
TGT (ticket-granting ticket), 321
The Open Group Architecture Framework (TOGAF), 265-266
third-party
collection agreement (TCA), 174
IAM software, 316
incident response providers, 220
outsourcing, 174, 355, 360-362
threats. See also attacks
applicants, 316-319
as identities, 317
IAM software, 316
OAuth, 318
OpenSSL, 319
classifications, 189-191
APTs, 191
known threats, 190
unknown threats, 190
zero day, 190
endpoints, 310-312
malware, 311
rogue access points, 312
rogue endpoints, 311
social engineering threats, 310-311
identity and access management
impersonation, 334
man-in-the-middle, 334
privilege escalation, 335
rootkits, 335-336
session hijacking, 335
XSS, 335
managing. See countermeasures
modeling, 106-107
RBAC, 315-316
servers, 312-313
services, 313-315
social engineering, 310-311
three-legged firewalls, 29
ticket-granting ticket (TGT), 321
time
access decisions, 87
collection-based authentication, 304
penetration testing, 100
time field (firewall logs), 349
time-of-check attacks, 150
time-of-use attacks, 150
Time to Live (TTL), 322
TLS (Transport Layer Security), 179, 372
TOGAF (The Open Group Architecture Framework), 265-266
tool-assisted code reviews, 393
tools
analytical, 436
interception proxy, 439-440
monitoring, 437-439
vulnerability scanning, 437
collective, 421
command-line, 430-436
HIDS, 436
IDS, 436
network scanning, 423
packet capture, 428-430
SIEM, 421-423
vulnerability scanning, 423-427
configuration, 103
data analysis, 103
environmental reconnaissance, 16
firewalls, 27-30
HIDS, 27
host scanning, 19
IDS, 25-26
IPS, 26
netstat command, 21-23
network mapping, 20
NIDS, 27
packet analyzer, 23-24
port scanning, 16-19
syslog, 30
vulnerability scanners, 30-31
exploit, 440-442
file analysis, 103
forensic investigation suites
analysis utilities, 206
chain of custody, 207
cryptography utilities, 207
hashing utilities, 207
imaging utilities, 206
log viewers utilities, 207
mobile devices utilities, 207
OS/process analysis utilities, 207
password crackers, 207
forensics
hashing, 445
imaging, 447
password cracking, 445-446
suites, 443-445
imaging, 103
input validation, 394
log analyzers, 103
monitoring, 437
 Cacti, 439
 MRTG, 437
 Nagios, 438
 NetFlow Analyzer, 439
 SolarWinds, 438
NetFlow, 61
network captures, 103
Nmap, 52-53
output analysis
 IDS, 60
 NetFlow analyzer, 61
 packet analyzer, 59-60
 resource monitoring, 61
 SIEM, 57-58
penetration testing, 100
preventative, 405
 anti-malware software, 416
 anti-spam software, 417
 anti-spyware software, 416
 antivirus software, 415
 cloud antivirus software, 417
 EMET, 418
 firewalls, 408-415
 HIPS, 408
 IDS, 405-407
 IPS, 405
 web proxy servers, 418-421
Process Explorer, 226
registry, 103
rootkits, 335-336
sandboxing, 103
Sysinternals
 forensics, 444
 processor consumption, 226
Task Manager, 226
tracert, 9
vulnerability scanning, 122
credential vs. non-credentialed, 125
data types, 126
permissions/access, 131
scope, 123
sensitivity levels, 122
server-based vs. agent-based, 126-127
updates/plug-ins, 128-130
vulnerability feeds, 123
Whois, 9
top secret data, 119, 276
topology discovery, 5
total risk, 281
tracert command, 9, 432
trade secrets, 198
trademarks, 198
trends
 analysis, 46, 346-347
 reports, 132
 vulnerability, 148
Trojan horses, 311
Trust Foundry program, 104
trusted party communication, 218
trusted third-party model (federations), 327
TSIG (Transaction Signature), 322
TTL (Time to Live), 322
type accreditation, 292
types
 access
 countermeasures, 84-86,
 282-284
 decisions, 87
analysis, 45-47
 cryptography, 364-368
data, 194
corporate confidential, 199-201
 intellectual property, 197-199
 payment card information, 195-197
 PHI, 195
 PII, 194
DNS records, 8
firewalls, 27-29, 408
IDS, 25
malware, 311
Nmap scans, 17-18
passwords, 268-269
regression testing, 394
virtualization attacks, 13
WPA/WPA2, 12
UEBA (user entity behavior analytics), 47
unauthorized changes, 229
unauthorized privileges, 229
unauthorized software, 228
unclassified data, 120, 277
unencrypted traffic, identifying, 24
Unified Security Management (USM), 422
unified threat management (UTM), 359
unit regression testing, 390, 394
Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism Act, 255-257
user entity behavior analytics (UEBA), 47
usermode debugger, 241
users
acceptance testing, 393
access, viewing, 436
logged on, viewing, 436
USM (Unified Security Management), 422
utilities. See tools
UTM (unified threat management), 359

v
-v argument (netstat command), 22
validating
input, 154
software, 389
software input, 394-395
techniques, 243-244
testing, 389
vulnerability scan results, 147-148
Vega, 440
verification
assessments, 290
audits, 288-289
certification, 291
ISO/IEC 27001, 292-293
ISO/IEC 27002, 294
NIACAP, 292
evaluations, 290
maturity model, 291
testing, 389
vertical privilege escalation, 335
virtual private networks.
See VPNs
virtualization
attacks, 13
environmental reconnaissance, 13-14
hosts, 169-170
private networks. See VPNs
vulnerabilities, 169
hosts, 169-170
management interfaces, 171-173
networks, 170
viruses, 311
VLANs (virtual local area networks), 73-74, 165
advantages/disadvantages, 166
hopping, 166
vulnerabilities, 165-168
VM escape attacks, 13, 169
VM sprawl attacks, 13
VPNs (virtual private networks), 175
connection protocols, 176
man-in-the-middle attacks, 178
vulnerabilities, 175-179
vulnerabilities
APTs, 191
countermeasures. See countermeasures
database servers, 160-161
endpoints, 161-162
exploit tools, 440-442
feeds, 123
ICS, 179-180
interconnected networks, 174-175
mobile devices, 173-174
network devices, 169

update
incident response plans, 245
practice tests, 456
vulnerability scanning tools, 128-130
urgent resources, 192
network infrastructure, 162
 ARP poisoning, 164-165
 MAC overflow, 164
 routers, 168
 switches, 163
 VLANs, 165-168
network tests (NVT), 426
organizational requirements, 117
SCADA, 179-180
scanning, 30-31
 Access Complexity, 129
 Access Vector, 129
 authentication, 129
 availability, 130
 benefits, 135
 confidentiality, 130
 executing, 131
 frequency, 121
 integrity, 130
 organizational requirements, 117-120
 output, analyzing, 143-148
 remediation, 133-135
 reports, 132
 tools, 122-128
 trends, 148
virtualization, 169
 bots, 169-170
 management interfaces, 171-173
 networks, 170
VPNs, 175-179
web applications, 391
web servers, 149
 buffer overflows, 157-159
 click-jacking, 152-153
 CSRFs, 151-152
 errors/exceptions, handling, 156
 input validation, 154
insecure direct object references, 150
integer overflows, 159
maintenance hooks, 149
race conditions, 160
sensitive data storage, 156
session hijacking, 153
SQL injections, 155
time-of-check, 150
time-of-use, 150
XSS, 150-151
zero day, 190
Vulnerabilities by Host report, 144
Vulnerabilities by Plug-in report, 145
W
 -W argument (netstat command), 22
 WAF (web application firewall), 418-419
 WAN (wide area network), 72
 warcaking, 44
 wardriving, 44
 web application firewall (WAF), 418-419
 web application vulnerability scanning, 391
 web proxy servers, 418-421
 Imperva, 421
 ModSecurity, 420
 NAXSI, 420
 WAF, 418-419
web server vulnerabilities, 149
 buffer overflows, 157-159
 click-jacking, 152-153
 CSRFs, 151-152
 errors/exceptions, handling, 156
 input validation, 154
websites
 ArcSight, 421
 Cacti, 439
 Cellebrite, 445
 CIS Benchmarks, 398
 CIS Controls, 398
 EnCase Forensic, 444
 FTK, 444
 Helix, 444
 Imperva, 421
 ISO standards, 263
 ISO/IEC 27001 certification, 293
 MRTG, 437
 NAXSI, 421
 Pearson Test Prep download link, 454
 Pearson Test Prep software, 454
 Premium Edition, 457
 QRadar, 422
 SANS, 397
 Sourcefire, 405
 Sysinternals, 444
tcpdump command, 429
White team (training), 106
Whois tool, 9
wide area connections (WANs), 72
Wi-Fi hacking gear, 224
Windows
 firewall log, 48
 MBSA, 427
 passwords, 271
 Snort, 406
 windump, 429
windump command, 429
wiped removable media, 204
WIPO (World Intellectual Property Organization), 199
WIPS (wireless intrusion prevention system), 224
wired networks, 12
wireless intrusion prevention system (WIPS), 224
wireless key loggers, 224
Wireshark, 23-24, 428-429
WLANs (wireless LANs), 12
 analysis, 43-45
 environmental reconnaissance, 12
 Infrastructure Mode
 wireless networks, 43
 rogue APs, 12
 sniffing, 45
 WPA/WPA2, 12
work history verification, 307
work recovery time (WRT), 192
workflow, 121
workstations, 202-203
World Intellectual Property Organization (WIPO), 199
worms, 311
WPA, 12
WPA2, 12
write blockers, 203
WRT (work recovery time), 192
X
XACML (Extensible Access Control Markup Language), 327-329
XMAS scans, 18
XSS (cross-site scripting), 150-151, 335
Z
Zap, 440
ZAP (Zed Attack Proxy), 392
zero day attacks, 46, 190
zero-knowledge penetration tests, 99
zone transfers, 10