Contents at a Glance

<table>
<thead>
<tr>
<th>Introduction</th>
<th>xviii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I: Network Fundamentals</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>Network Fundamentals: Models and Designs</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>Network Fundamentals: IPv4</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Network Fundamentals: IPv6</td>
</tr>
<tr>
<td>Part II: LAN Switching Technologies</td>
<td>77</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>LAN Switching Technologies: Switching Concepts</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>LAN Switching Technologies: VLANs, Trunks, and STP</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>LAN Switching Technologies: EtherChannel and Switch Stacking</td>
</tr>
<tr>
<td>Part III: Routing Technologies</td>
<td>143</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td>Routing Technologies: Routing Concepts</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>Routing Technologies: Inter-VLAN Routing</td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td>Routing Technologies: Routing Methods</td>
</tr>
<tr>
<td>CHAPTER 10</td>
<td>Routing Technologies: Static Routing and Dynamic Routing</td>
</tr>
<tr>
<td>Part IV: WAN Technologies</td>
<td>225</td>
</tr>
<tr>
<td>CHAPTER 11</td>
<td>WAN Technologies: WAN Options</td>
</tr>
<tr>
<td>CHAPTER 12</td>
<td>WAN Technologies: eBGP</td>
</tr>
<tr>
<td>CHAPTER 13</td>
<td>WAN Technologies: QoS</td>
</tr>
<tr>
<td>Part V: Infrastructure Services</td>
<td>263</td>
</tr>
<tr>
<td>CHAPTER 14</td>
<td>Infrastructure Services: DNS, DHCP, NTP, HSRP</td>
</tr>
<tr>
<td>CHAPTER 15</td>
<td>Infrastructure Services: NAT</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>xviii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I: Network Fundamentals</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 1:</td>
<td></td>
</tr>
<tr>
<td>Network Fundamentals: Models and Designs</td>
<td>3</td>
</tr>
<tr>
<td>Topic: Compare and contrast OSI and TCP/IP models</td>
<td>5</td>
</tr>
<tr>
<td>Topic: Compare and contrast TCP and UDP protocols</td>
<td>11</td>
</tr>
<tr>
<td>Topic: Describe the impact of infrastructure components in an enterprise network</td>
<td>15</td>
</tr>
<tr>
<td>Topic: Describe the effects of cloud resources on enterprise network architecture</td>
<td>18</td>
</tr>
<tr>
<td>Topic: Compare and contrast collapsed core and three-tier architectures</td>
<td>22</td>
</tr>
<tr>
<td>Topic: Compare and contrast network topologies</td>
<td>25</td>
</tr>
<tr>
<td>Topic: Select the appropriate cabling type based on implementation requirements</td>
<td>28</td>
</tr>
<tr>
<td>Topic: Apply troubleshooting methodologies to resolve problems</td>
<td>31</td>
</tr>
<tr>
<td>Review Questions</td>
<td>33</td>
</tr>
<tr>
<td>Answers to Review Questions</td>
<td>35</td>
</tr>
<tr>
<td>Additional Resources</td>
<td>36</td>
</tr>
<tr>
<td>CHAPTER 2:</td>
<td></td>
</tr>
<tr>
<td>Network Fundamentals: IPv4</td>
<td>37</td>
</tr>
<tr>
<td>Topic: Configure, verify, and troubleshoot IPv4 addressing and subnetting</td>
<td>38</td>
</tr>
<tr>
<td>Topic: Compare and contrast IPv4 address types</td>
<td>47</td>
</tr>
<tr>
<td>Topic: Describe the need for private IPv4 addressing</td>
<td>50</td>
</tr>
<tr>
<td>Review Questions</td>
<td>53</td>
</tr>
<tr>
<td>Answers to Review Questions</td>
<td>55</td>
</tr>
<tr>
<td>Additional Resources</td>
<td>56</td>
</tr>
<tr>
<td>CHAPTER 3:</td>
<td></td>
</tr>
<tr>
<td>Network Fundamentals: IPv6</td>
<td>57</td>
</tr>
<tr>
<td>Topic: Identify the appropriate IPv6 addressing scheme to satisfy addressing requirements in a LAN/WAN environment</td>
<td>58</td>
</tr>
<tr>
<td>Topic: Configure, verify, and troubleshoot IPv6 addressing</td>
<td>62</td>
</tr>
<tr>
<td>Topic: Configure and verify IPv6 Stateless Address Auto Configuration</td>
<td>66</td>
</tr>
</tbody>
</table>
Part III: Routing Technologies

CHAPTER 7: Routing Technologies: Routing Concepts 145
 Topic: Describe the routing concepts 146
 Topic: Interpret the components of routing table 148
 Topic: Describe how a routing table is populated by different
 routing information sources 153
 Review Questions .. 156
 Answers to Review Questions ... 157
 Additional Resources ... 158

CHAPTER 8: Routing Technologies: Inter-VLAN Routing 159
 Topic: Configure, verify, and troubleshoot inter-VLAN routing 160
 Review Questions .. 171
 Answers to Review Questions ... 172
 Additional Resources ... 173

CHAPTER 9: Routing Technologies: Routing Methods 175
 Topic: Compare and contrast static routing and dynamic routing 176
 Topic: Compare and contrast distance vector and link state
 routing protocols ... 179
 Topic: Compare and contrast interior and exterior routing protocols .. 181
 Review Questions .. 183
 Answers to Review Questions ... 184
 Additional Resources ... 185

CHAPTER 10: Routing Technologies: Static Routing and Dynamic Routing 187
 Topic: Configure, verify, and troubleshoot IPv4 and IPv6 static routing .. 189
 Topic: Configure, verify, and troubleshoot single area and multi-area
 OSPFv2 for IPv4 (excluding authentication, filtering, manual
 summarization, redistribution, stub, virtual-link, and LSAs) 193
 Topic: Configure, verify, and troubleshoot single area and multi-area
 OSPFv3 for IPv6 (excluding authentication, filtering, manual
 summarization, redistribution, stub, virtual-link, and LSAs) 199
 Topic: Configure, verify, and troubleshoot EIGRP for IPv4
 (excluding authentication, filtering, manual summarization,
 redistribution, and stub) .. 202
Part IV: WAN Technologies

CHAPTER 11:
WAN Technologies: WAN Options
Topic: Configure and verify PPP and MLPPP on WAN interfaces using local authentication 228
Topic: Configure, verify, and troubleshoot PPPoE client-side interfaces using local authentication 232
Topic: Configure, verify, and troubleshoot GRE tunnel connectivity ... 235
Review Questions ... 242
Answers to Review Questions .. 243
Additional Resource ... 244

CHAPTER 12:
WAN Technologies: eBGP ... 245
Topic: Configure and verify single-homed branch connectivity using eBGP IPv4 (limited to peering and route advertisement using Network command only) 246
Review Questions ... 251
Answers to Review Questions .. 252
Additional Resource ... 253

CHAPTER 13:
WAN Technologies: QoS .. 255
Topic: Describe basic QoS concepts 256
Review Questions ... 259
Answers to Review Questions .. 260
Additional Resource ... 261
Part V: Infrastructure Services

CHAPTER 14: Infrastructure Services: DNS, DHCP, NTP, HSRP

- Topic: Describe DNS lookup operation 267
- Topic: Troubleshoot client connectivity issues involving DNS 270
- Topic: Configure and verify DHCP on a router (excluding static reservations) 275
- Topic: Troubleshoot client- and router-based DHCP connectivity issues 280
- Topic: Configure and verify NTP operating in client/server mode 289
- Topic: Configure, verify, and troubleshoot basic HSRP 292
- Review Questions 295
- Answers to Review Questions 296
- Additional Resources 297

CHAPTER 15: Infrastructure Services: NAT

- Topic: Configure, verify, and troubleshoot inside source NAT 300
- Review Questions 309
- Answers to Review Questions 310
- Additional Resource 311

Part VI: Infrastructure Security

CHAPTER 16: Infrastructure Security: Access Layer Security, AAA

- Topic: Configure, verify, and troubleshoot port security 316
- Topic: Describe common access layer threat mitigation techniques 321
- Topic: Describe device security using AAA with TACACS+ and RADIUS .. 323
- Review Questions 325
- Answers to Review Questions 326
- Additional Resources 327

CHAPTER 17: Infrastructure Security: ACLs

- Topic: Configure, verify, and troubleshoot IPv4 standard numbered and named access list for routed interfaces 330
- Review Questions 344
- Answers to Review Questions 345
- Additional Resources 346
CHAPTER 18:
Infrastructure Security: Device Hardening .. 347
Topic: Configure, verify, and troubleshoot basic device hardening 348
Review Questions ... 359
Answers to Review Questions .. 360
Additional Resources ... 361

Part VII: Infrastructure Management ... 363

CHAPTER 19:
Infrastructure Management: SNMP, Syslog, IP SLA 365
Topic: Configure and verify device-monitoring using syslog and SNMP 366
Topic: Troubleshoot network connectivity issues using ICMP echo-based IP SLA 371
Review Questions ... 373
Answers to Review Questions .. 374
Additional Resources ... 375

CHAPTER 20:
Infrastructure Management: Device Management 377
Topic: Configure and verify device management 378
Review Questions ... 384
Answers to Review Questions .. 385
Additional Resources ... 386

CHAPTER 21:
Infrastructure Management: Initial Device Configuration 387
Topic: Configure and verify initial device configuration 388
Review Questions ... 395
Answers to Review Questions .. 396
Additional Resource .. 397

CHAPTER 22:
Infrastructure Management: Device Maintenance 399
Topic: Perform device maintenance ... 400
Review Questions ... 406
Answers to Review Questions .. 407
Additional Resources ... 408
Preface

Why is this book so valuable? Why is it an excellent last resource prior to your exam? Let me outline that for you here:

▶ This book balances the two potential areas of expertise you need for each exam topic. You either need to focus on the theory of a technology or you need to be able to demonstrate mastery of configuration, verification, and troubleshooting. You can trust this text to guide you through the precise knowledge you need, topic by topic.

▶ As alluded to above, this text remains tightly in scope with the exam. Although larger texts might provide background or peripheral information about a topic, this book is laser-focused on just those topics you need to master for success in the exam environment. We certainly encourage the reading and study of larger works for those that require it.

▶ Your author and technical reviewer have specialized in writing about and training candidates in all things CCNA since the inception of the certification in 1998.

▶ Your author and technical reviewer take the actual CCNA exam as many times as Cisco permits them in a constant effort to be intimately familiar with the exam itself and Cisco’s testing techniques.

▶ This book is filled with valuable resources to assist you immediately in your passing score—these resources include CramSavers, CramQuizzes, Review Questions, Final Exams, a Command Reference, and even CramSheets.
About the Author

Anthony Sequeira (CCIE No. 15626) began his IT career in 1994 with IBM in Tampa, Florida. He quickly formed his own computer consultancy, Computer Solutions, and then discovered his true passion—teaching and writing about Microsoft and Cisco technologies. Anthony has lectured to massive audiences around the world while working for Mastering Computers. Anthony has never been happier in his career than he is now as a full-time trainer for CBT Nuggets. He is an avid tennis player, a private pilot, a semi-professional poker player, and enjoys getting beaten up by women and children at the martial arts school he attends with his daughter. Follow Anthony today on Twitter @compsolv or Facebook at facebook.com/compsolv.
Dedication

This book is dedicated to my beautiful daughter Annabella (Bella) Joy Sequeira. This was my first book of many where you were old enough to help write it! Thank you, my Bell!

Acknowledgments

I cannot thank Keith Barker enough! He helped me acquire this incredible opportunity, and he improved the book dramatically as its technical editor. Keith, I am so lucky to have you as a friend and brother from another Mother!
About the Technical Reviewer

Keith Barker began as a network technician for Electronic Data Systems (EDS) in 1985 and has had experience in IT and networking for more than 30 years. Keith creates training for CBT Nuggets, is a Cisco CCIE in Route/Switch and Security, and has also earned certifications associated with VMware, Palo Alto, Check Point, ITIL, CCISP, and others. He can be reached through his Facebook page: Keith Barker Networking, on YouTube at Keith6783, or on Twitter @KeithBarkerCCIE.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com
Mail: Pearson IT Certification
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA
Reader Services

Register your copy of CCNA Routing and Switching 200-125 Exam Cram at www.pearsonitcertification.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to www.pearsonitcertification.com/register and log in or create an account*. Enter the product ISBN 9780789756749 and click Submit. When the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Introduction

Welcome to *CCNA Routing and Switching 200–125 Exam Cram*! This book covers the accelerated CCNA certification exam. Whether this is your first or your fifteenth Exam Cram, you'll find information here that will ensure your success as you pursue knowledge, experience, and certification.

This introduction covers how the Exam Cram series can help you prepare for the CCNA exam.

This book is one of the Exam Cram series of books and will help by getting you on your way to becoming a CCNA.

This introduction discusses the basics of the CCNA exam. Included are sections covering preparation, how to take an exam, a description of this book’s contents, how this book is organized, and, finally, author contact information.

Each chapter in this book contains practice questions. There are also two full-length practice exams at the end of the book. Practice exams in this book should provide an accurate assessment of the level of expertise you need to obtain to pass the test. Answers and explanations are included for all test questions. It is best to obtain a level of understanding equivalent to a consistent pass rate of at least 90 percent or more on the practice questions and exams in this book before you attempt the real exam.

Let’s begin by looking at preparation for the exam.

How to Prepare for the Exam

This text follows the official exam objectives letter for letter. These official objectives from Cisco Systems can be found here:

https://learningnetwork.cisco.com/community/certifications/ccna/ccna-exam/exam-topics

Following the exam topics item by item and in their original order allows you to ensure you are ready for the real exam questions that will come your way on your actual test date.
Practice Tests

This book is filled with practice exam questions to get you ready! Enjoy the following:

▶ **CramSaver questions before each and every section**: These difficult, open-ended questions ensure you really know the material. Some readers use these questions in order to “test out” of a particular section.

▶ **CramQuizzes to end each section**: Another chance to demonstrate your knowledge after completing a section.

▶ **Review Questions to end each chapter**: Your final pass through the material for that chapter.

▶ **Two full final exams**: These exams include explanations and tips for approaching each final exam question.

In addition, the book includes two additional full practice tests in the Pearson Test Prep software available to you either online or as an offline Windows application. To access the practice exams, please see the instructions in the card inserted in the sleeve in the back of the book. This card includes a unique access code that enables you to activate your exams in the Pearson Test Prep software.

If you are interested in more practice exams than are provided with this book, Pearson IT Certification publishes a Premium Edition eBook and Practice Test product. In addition to providing you with three eBook files (EPUB, PDF, and Kindle) this product provides you with two additional exams' worth of questions. The Premium Edition version also offers you a link to the specific section in the book that presents an overview of the topic covered in the question, allowing you to easily refresh your knowledge. The insert card in the back of the book includes a special offer for a 70 percent discount off of this Premium Edition eBook and Practice Test product, which is an incredible deal.

Taking a Certification Exam

When you have prepared for the exam, you must register with Cisco Systems to take the exam. The CCNA exam is given at Pearson VUE testing centers. Check the Pearson VUE website at http://www.pearsonvue.com/ to get specific details.

You can register for an exam online or by phone. After you register, you will receive a confirmation notice. Some locations may have limited test centers
available, which means you should schedule your exam in advance to make sure you can get the specific date and time you would like.

Arriving at the Exam Location
As with any examination, arrive at the testing center early. Be prepared! You need to bring two forms of identification (one with a picture). The testing center staff requires proof that you are who you say you are and that someone else is not taking the test for you. Arrive early, because if you are late, you will be barred from entry and will not receive a refund for the cost of the exam.

ExamAlert
You’ll be spending a lot of time in the exam room. Plan on using the full two hours of time allotted for your exam and surveys. Policies differ from location to location regarding bathroom breaks—check with the testing center before beginning the exam.

In the Testing Center
You will not be allowed to take into the examination room study materials or anything else that could raise suspicion that you’re cheating. This includes practice test material, books, exam prep guides, or other test aids. The Testing Center will provide you with scratch paper and a pen or pencil. These days, this often comes in the form of an erasable whiteboard.

After the Exam
Examination results are available after the exam. If you pass the exam, you will simply receive a passing grade—your exact score will not be provided. Candidates who do not pass will receive a complete breakdown on their score by domain. This allows those individuals to see what areas they are weak in.

About This Book
The ideal reader for an Exam Cram book is someone seeking certification. However, it should be noted that an Exam Cram book is a very easily readable, rapid presentation of facts. Therefore, an Exam Cram book is also extremely useful as a quick reference manual.
Most people seeking certification use multiple sources of information. Check out the links at the end of each chapter to get more information about subjects you’re weak in.

This book includes other helpful elements in addition to the actual logical, step-by-step learning progression of the chapters themselves. Exam Cram books use elements such as ExamAlerts, tips, notes, and practice questions to make information easier to read and absorb. This text also includes a very helpful command reference and glossary to assist you.

Note

Reading this book from start to finish is not necessary; this book is set up so that you can quickly jump back and forth to find sections you need to study.

Use the *CramSheet* to remember last-minute facts immediately before the exam. Use the practice questions to test your knowledge. You can always brush up on specific topics in detail by referring to the table of contents and the index. Even after you achieve certification, you can use this book as a rapid-access reference manual.

The Exam Blueprint

The table that follows outlines the CCNA exam domains and objectives and maps the objectives to the chapter(s) in the book that cover them in detail.

<table>
<thead>
<tr>
<th>Exam Domain</th>
<th>Objective</th>
<th>Chapter in Book That Covers It</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Fundamentals</td>
<td>Compare and contrast OSI and TCP/IP models</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Compare and contrast TCP and UDP protocols</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Describe the impact of infrastructure components in an enterprise network</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Describe the effects of cloud resources on enterprise network architecture</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Compare and contrast collapsed core and three-tier architectures</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Compare and contrast network topologies</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Exam Domain</td>
<td>Objective</td>
<td>Chapter in Book That Covers It</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Select the appropriate cabling type based on implementation requirements</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Apply troubleshooting methodologies to resolve problems</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Configure, verify, and troubleshoot IPv4 addressing and sub-netting</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Compare and contrast IPv4 address types</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Describe the need for private IPv4 addressing</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Identify the appropriate IPv6 addressing scheme to satisfy addressing requirements in a LAN/WAN environment</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Configure, verify, and troubleshoot IPv6 addressing</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Configure and verify IPv6 Stateless Address Auto Configuration</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Network Fundamentals</td>
<td>Compare and contrast IPv6 address types</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Describe and verify switching concepts</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Interpret Ethernet frame format</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Troubleshoot interface and cable issues (collisions, errors, duplex, speed)</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Configure, verify, and troubleshoot VLANs (normal/extended range) spanning multiple switches</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Configure, verify, and troubleshoot inter-switch connectivity</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Configure, verify, and troubleshoot STP protocols</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Configure, verify, and troubleshoot STP-related optional features</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Configure and verify Layer 2 protocols</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Exam Domain</td>
<td>Objective</td>
<td>Chapter in Book That Covers It</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Configure, verify, and troubleshoot (Layer 2/Layer 3) EtherChannel</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>LAN Switching Technologies</td>
<td>Describe the benefits of switch stacking and chassis aggregation</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Describe the routing concepts</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Routing Fundamentals</td>
<td>Interpret the components of a routing table</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Describe how a routing table is populated by different routing information sources</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Configure, verify, and troubleshoot inter-VLAN routing</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Compare and contrast static routing and dynamic routing</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Compare and contrast distance vector and link state routing protocols</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Compare and contrast interior and exterior routing protocols</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Configure, verify, and troubleshoot IPv4 and IPv6 static routing</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Configure, verify, and troubleshoot single area and multi-area OSPFv2 for IPv4 (excluding authentication, filtering, manual summarization, redistribution, stub, virtual-link, and LSAs)</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Configure, verify, and troubleshoot single area and multi-area OSPFv3 for IPv6 (excluding authentication, filtering, manual summarization, redistribution, stub, virtual-link, and LSAs)</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Configure, verify, and troubleshoot EIGRP for IPv4 (excluding authentication, filtering, manual summarization, redistribution, stub)</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Configure, verify, and troubleshoot EIGRP for IPv6 (excluding authentication, filtering, manual summarization, redistribution, stub)</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>Exam Domain</td>
<td>Objective</td>
<td>Chapter in Book That Covers It</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Configure, verify, and troubleshoot RIPv2 for IPv4 (excluding authentication, filtering, manual summarization, redistribution)</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>Routing Technologies</td>
<td>Troubleshoot basic Layer 3 end-to-end connectivity issues</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>WAN Technologies</td>
<td>Configure and verify PPP and MLPPP on WAN interfaces using local authentication</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>WAN Technologies</td>
<td>Configure, verify, and troubleshoot PPPoE client-side interfaces using local authentication</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>WAN Technologies</td>
<td>Configure, verify, and troubleshoot GRE tunnel connectivity</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>WAN Technologies</td>
<td>Describe WAN topology options</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>WAN Technologies</td>
<td>Describe WAN access connectivity options</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>WAN Technologies</td>
<td>Configure and verify single-homed branch connectivity using eBGP IPv4 (limited to peering and route advertisement using Network command only)</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>WAN Technologies</td>
<td>Describe basic QoS concepts</td>
<td>Chapter 13</td>
</tr>
<tr>
<td>Infrastructure Services</td>
<td>Describe DNS lookup operation</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>Infrastructure Services</td>
<td>Troubleshoot client connectivity issues involving DNS</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>Infrastructure Services</td>
<td>Configure and verify DHCP on a router (excluding static reservations)</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>Infrastructure Services</td>
<td>Troubleshoot client- and router-based DHCP connectivity issues</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>Infrastructure Services</td>
<td>Configure, verify, and troubleshoot basic HSRP</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>Infrastructure Services</td>
<td>Configure and verify NTP operating in a client/server mode</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>Infrastructure Services</td>
<td>Configure, verify, and troubleshoot inside source NAT</td>
<td>Chapter 15</td>
</tr>
<tr>
<td>Infrastructure Security</td>
<td>Configure, verify, and troubleshoot port security</td>
<td>Chapter 16</td>
</tr>
<tr>
<td>Infrastructure Security</td>
<td>Describe common access layer threat mitigation techniques</td>
<td>Chapter 16</td>
</tr>
<tr>
<td>Exam Domain</td>
<td>Objective</td>
<td>Chapter in Book That Covers It</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Infrastructure Security</td>
<td>Describe device security using AAA with TACACS+ and RADIUS</td>
<td>Chapter 16</td>
</tr>
<tr>
<td>Infrastructure Security</td>
<td>Configure, verify, and troubleshoot IPv4 and IPv6 standard, extended, and named access list for traffic filtering</td>
<td>Chapter 17</td>
</tr>
<tr>
<td>Infrastructure Security</td>
<td>Verify ACLs using the APIC-EM Path Trace ACL analysis tool</td>
<td>Chapter 17</td>
</tr>
<tr>
<td>Infrastructure Security</td>
<td>Configure, verify, and troubleshoot basic device hardening</td>
<td>Chapter 18</td>
</tr>
<tr>
<td>Infrastructure Management</td>
<td>Configure and verify device-monitoring protocols</td>
<td>Chapter 19</td>
</tr>
<tr>
<td>Infrastructure Management</td>
<td>Troubleshoot network connectivity issues using ICMP echo-based IP SLA</td>
<td>Chapter 19</td>
</tr>
<tr>
<td>Infrastructure Management</td>
<td>Configure and verify device management</td>
<td>Chapter 20</td>
</tr>
<tr>
<td>Infrastructure Management</td>
<td>Configure and verify initial device configuration</td>
<td>Chapter 21</td>
</tr>
<tr>
<td>Infrastructure Management</td>
<td>Perform device maintenance</td>
<td>Chapter 22</td>
</tr>
<tr>
<td>Infrastructure Management</td>
<td>Use Cisco IOS tools to troubleshoot and resolve problems</td>
<td>Chapter 23</td>
</tr>
<tr>
<td>Infrastructure Management</td>
<td>Describe network programmability in enterprise network architecture</td>
<td>Chapter 24</td>
</tr>
</tbody>
</table>

The Chapter Elements

Each *Exam Cram* book has chapters that follow a predefined structure. This structure makes *Exam Cram* books easy to read and provides a familiar format for all *Exam Cram* books. The following elements typically are used:

- Chapter topics
- Essential Terms and Components
- CramSavers
- CramQuizzes
- ExamAlerts
- Notes
Exam preparation practice questions and answers

An “Additional Resources” section at the end of each chapter

Note

Bulleted lists, numbered lists, tables, and graphics are also used where appropriate. A picture can paint a thousand words sometimes, and tables can help to associate different elements with each other visually.

Now let’s look at each of the elements in detail.

► **Chapter topics**—Each chapter contains details of all subject matter listed in the table of contents for that particular chapter. The objective of an *Exam Cram* book is to cover all the important facts without giving too much detail; it is an exam cram. When examples are required, they are included.

► **Essential Terms and Components**—The start of every chapter contains a list of terms and concepts you should understand. These are all defined in the book’s accompanying Glossary.

► **CramSavers**—Each major section in the chapter kicks off with a brief short answer question quiz to help you assess your knowledge of the section topic. This chapter element is designed to help you determine if you need to read the whole section in detail or merely skim the material and skip ahead to the CramQuiz at the end of the section.

► **CramQuizzes**—Each major section in the chapter concludes with a multiple choice question quiz to help ensure that you have gained a familiarity with the section content.

► **ExamAlerts**—ExamAlerts address exam-specific, exam-related information. An ExamAlert addresses content that is particularly important, tricky, or likely to appear on the exam. An ExamAlert looks like this:

ExamAlert

Make sure you remember the different ways in which you can access a router remotely. Know which methods are secure, and which are not.
Notes—Notes typically contain useful information that is not directly related to the current topic under consideration. To avoid breaking up the flow of the text, they are set off from the regular text.

Review Questions—At the end of every chapter is a battery of exam practice questions similar to those in the actual exam. Each chapter contains a list of questions relevant to that chapter, including answers and explanations. Test your skills as you read.

Additional Resources section—This section at the end of each chapter describes other relevant sources of information related to the chapter topics covered.

Other Book Elements

Most of this Exam Cram book on CCNA follows the consistent chapter structure already described. However, there are various, important elements that are not part of the standard chapter format. These elements apply to the entire book as a whole.

Practice exams—In addition to exam-preparation questions at the end of each chapter, two full practice exams are included at the end of the book.

Answers and explanations for practice exams—These follow each practice exam, providing answers and explanations to the questions in the exams.

Command reference—This valuable study guide appears at the end of the text.

Glossary—The glossary contains a listing of important terms used in this book with explanations.

CramSheet—The CramSheet is a quick-reference, tear-out cardboard sheet of important facts useful for last-minute preparation. CramSheets often include a simple summary of the facts that are most difficult to remember.

Companion website—The companion website for your book allows you to access several digital assets that come with your book, including:
Pearson Test Prep software (both online and Windows desktop versions)
Key Terms Flash Cards application
A PDF version of the command reference
A PDF version of the CramSheet

To access the book’s companion website, simply follow these steps:

2. Respond to the challenge questions.
3. Go to your account page and select the Registered Products tab.
4. Click on the Access Bonus Content link under the product listing.

Pearson Test Prep Practice Test Software

As noted previously, this book comes complete with the Pearson Test Prep practice test software containing four full exams (the two from the back of the book as well as two additional tests). These practice tests are available to you either online or as an offline Windows application. To access the practice exams that were developed with this book, please see the instructions in the card inserted in the sleeve in the back of the book. This card includes a unique access code that enables you to activate your exams in the Pearson Test Prep software.

Accessing the Pearson Test Prep Software Online

The online version of this software can be used on any device with a browser and connectivity to the Internet, including desktop machines, tablets, and smartphones. To start using your practice exams online, simply follow these steps:

2. Select Pearson IT Certification as your product group.
3. Enter your email/password for your account. If you don’t have an account on PearsonITCertification.com or CiscoPress.com, you will need to establish one by going to PearsonITCertification.com/join.
4. In the **My Products** tab, click the **Activate New Product** button.

5. Enter the access code printed on the insert card in the back of your book to activate your product.

6. The product will now be listed in your My Products page. Click the **Exams** button to launch the exam settings screen and start your exam.

Accessing the Pearson Test Prep Software Offline

If you wish to study offline, you can download and install the Windows version of the Pearson Test Prep software. There is a download link for this software on the book’s companion website, or you can just enter this link in your browser:

http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip

To access the book’s companion website and the software, simply follow these steps:

2. Respond to the challenge questions.

3. Go to your account page and select the **Registered Products** tab.

4. Click on the **Access Bonus Content** link under the product listing.

5. Click the **Install Pearson Test Prep Desktop Version** link under the Practice Exams section of the page to download the software.

6. After the software finishes downloading, unzip all the files on your computer.

7. Double-click the application file to start the installation, and follow the on-screen instructions to complete the registration.

8. When the installation is complete, launch the application and select **Activate Exam** button on the My Products tab.

9. Click the **Activate a Product** button in the Activate Product Wizard.

10. Enter the unique access code found on the card in the sleeve in the back of your book and click the **Activate** button.
11. Click **Next** and then the **Finish** button to download the exam data to your application.

12. You can now start using the practice exams by selecting the product and clicking the **Open Exam** button to open the exam settings screen.

Note that the offline and online versions will synch together, so saved exams and grade results recorded on one version will be available to you on the other as well.

Customizing Your Exams

Once you are in the exam settings screen, you can choose to take exams in one of three modes:

- **Study Mode**
- **Practice Exam Mode**
- **Flash Card Mode**

Study Mode allows you to fully customize your exams and review answers as you are taking the exam. This is typically the mode you would use first to assess your knowledge and identify information gaps. Practice Exam Mode locks certain customization options, as it is presenting a realistic exam experience. Use this mode when you are preparing to test your exam readiness. Flash Card Mode strips out the answers and presents you with only the question stem. This mode is great for late stage preparation when you really want to challenge yourself to provide answers without the benefit of seeing multiple choice options. This mode will not provide the detailed score reports that the other two modes will, so it should not be used if you are trying to identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions. You can choose to take exams that cover all of the chapters or you can narrow your selection to just a single chapter or the chapters that make up specific parts in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, simply deselect all the chapters then select only those on which you wish to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. The two exams printed in the book are available to you as well as two additional exams of unique questions. You can have the test engine serve up exams from all four banks or just from one individual bank by selecting the desired banks in the exam bank area.
There are several other customizations you can make to your exam from the exam settings screen, such as the time of the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple answer questions, or whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software, it will check to see if there are any updates to your exam data and automatically download any changes that were made since the last time you used the software. This requires that you are connected to the Internet at the time you launch the software.

Sometimes, due to many factors, the exam data may not fully download when you activate your exam. If you find that figures or exhibits are missing, you may need to manually update your exams.

To update a particular exam you have already activated and downloaded, simply select the **Tools** tab and select the **Update Products** button. Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Pearson Test Prep exam engine software, Windows desktop version, simply select the **Tools** tab and select the **Update Application** button. This will ensure you are running the latest version of the software engine.

Contacting the Author

Hopefully, this book provides you with the tools you need to pass the CCNA exam. Feedback is appreciated. You can contact the author at compsolv@me.com.

Thank you for selecting my book; I have worked to apply the same concepts in this book that I have used in the hundreds of training classes I have taught. Spend your study time wisely and you, too, can become a CCNA. Good luck for the exam, although if you carefully work through this text, you will certainly minimize the amount of luck required!
This page intentionally left blank
PART V

Infrastructure Services

This part of the text deals with one of the seven overall sections you must master for the CCNA exam. There are two chapters total that make up Part 5.

These chapters prove critical for your success in production networks. If you cannot successfully manage your infrastructure services in your complex network, you are in for big trouble, especially when things inevitably go wrong. Part 5 includes the following chapters:

CHAPTER 14 Infrastructure Services: DNS, DHCP, NTP, HSRP
CHAPTER 15 Infrastructure Services: NAT
CHAPTER 14

Infrastructure Services: DNS, DHCP, NTP, HSRP

This chapter covers the following official CCNA 200-125 exam topics:

▶ Describe DNS lookup operation
▶ Troubleshoot client connectivity issues involving DNS
▶ Configure and verify DHCP on a router (excluding static reservations)
▶ Troubleshoot client- and router-based DHCP connectivity issues
▶ Configure and verify NTP operating in client/server mode
▶ Configure, verify, and troubleshoot basic HSRP

This chapter ensures you are ready for the preceding topics from the Infrastructure Services section of the overall exam blueprint from Cisco Systems. Remember, this is just a section of the Infrastructure Services area. Chapter Fifteen, which deals with NAT, also exists in this grouping.

Essential Terms and Components

▶ DNS
▶ DNS Lookups
▶ Client DNS Configurations
▶ DHCP
▶ DHCP Server
▶ DHCP Relay
▶ DHCP Client
▶ Other DHCP Assigned Parameters
▶ NTP Server
▶ NTP Client
CHAPTER 14: Infrastructure Services: DNS, DHCP, NTP, HSRP

- Stratum
- FHRP
- HSRP
- Priority
- Preemption
- Version
Imagine a world where we would need to communicate with devices on the Internet (or our company’s intranet) using the IP addresses of systems. This would be nearly impossible since IP addresses are so difficult to memorize for the many devices. The Domain Name System (DNS) prevents this nightmare.
DNS resolves “friendly” names like www.cbt Nuggets.com to the IP address that devices truly need to reach the remote system. We use DNS every day, as you might guess. The system can refer to a private RFC 1918 address space inside your organization or to the public, globally routable IPv4 address space on the Internet. You can also have your internal private DNS servers interact with public DNS servers.

The Domain Name System delegates the responsibility of assigning domain names and mapping those names to Internet resources by designating authoritative name servers for each domain. Network administrators may delegate authority over sub-domains of their allocated name space to other name servers. This approach gives us a fault-tolerant design and eliminates the need for everyone to rely on one single huge database.

Remember, when you hear DNS, you are talking about this structure of naming as well as the technical details of the protocol itself (for example, what messages are exchanged and how data is processed in the system).

The Internet maintains the domain name hierarchy and the Internet Protocol (IP) address spaces. DNS maintains the domain name hierarchy and provides translation services between it and the address spaces. A DNS name server is a server that stores the DNS records for a domain; a DNS name server responds with answers to queries against its database.

The most common types of records stored in the DNS database are as follows:

- Start of Authority (SOA)
- IP Addresses (A and AAAA)
- SMTP Mail Exchangers (MX)
- Name Servers (NS)
- Pointers for Reverse DNS Lookups (PTR)
- Domain Name Aliases (CNAME)

DNS databases are traditionally stored in structured zone files.
CramQuiz

1. Which statement about DNS is false?
 - A. DNS operates thanks to one central master database.
 - B. DNS resolves domain names to IP addresses.
 - C. DNS uses many types of records to do its job.
 - D. Multiple DNS servers are typically available for a client.

2. What device is responsible for each DNS domain?
 - A. Master DNS
 - B. Authoritative name server
 - C. Zone file server
 - D. DNS client

CramQuiz Answers

1. A is correct. The DNS system creates a distributed database so that one central master database does not need to be relied upon.

2. B is correct. Each domain has an authoritative name server that helps manage the domain.
CHAPTER 14: Infrastructure Services: DNS, DHCP, NTP, HSRP

Topic: Troubleshoot client connectivity issues involving DNS

CramSaver

1. What Windows CLI command allows you to see the IP address information configured as well as the DNS server IP address?

2. What Windows CLI tool allows you to learn information regarding the DNS lookup including the DNS server name, address, non-authoritative response, and resolved addresses and aliases?

3. What is the command that specifies one or more DNS servers for a Cisco device to use?

Answers

1. ipconfig /all
2. nslookup
3. ip name-server

Ensuring your clients are properly configured to use DNS is important for full functionality on the Internet today.

On a Windows client system, you can check the DNS settings using ipconfig, as shown in Example 14.1.

EXAMPLE 14.1 Examining DNS Settings on a Windows Client

C:\Users\terry>ipconfig /all

Windows IP Configuration

 Host Name: DESKTOP-ABC123
 Primary Dns Suffix :
 Node Type .: Hybrid
 IP Routing Enabled. : No
Notice from the output in Example 14.1 that this client will send DNS requests to 192.168.1.1. This is, of course, a private-use-only address inside our network. This router receives public DNS server addresses automatically from our ISP so that it can resolve public website names that we want to visit.

Figure 14.1 shows the actual configuration for this Windows client in the graphical user interface of the Control Panel. Notice that the DNS information of 192.168.1.1 is being learned by this client automatically.
What about verifying the Windows client is fine from a DNS perspective? One approach is to ping a known and reachable Web server using the friendly name. Example 14.2 demonstrates this approach.

EXAMPLE 14.2 Checking DNS Functionality by Using PING

C:\Users\terry> ping www.cisco.com

Ping e144.dscb.akamaiedge.net [23.202.192.170] with 32 bytes of data:
Reply from 23.202.192.170: bytes=32 time=35ms TTL=54
Reply from 23.202.192.170: bytes=32 time=37ms TTL=54
Reply from 23.202.192.170: bytes=32 time=36ms TTL=54
Reply from 23.202.192.170: bytes=32 time=35ms TTL=54

Ping statistics for 23.202.192.170:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 35ms, Maximum = 37ms, Average = 35ms

C:\Users\terry>
If you would like to receive even more information, however, use the NSLOOKUP command. Example 14.3 demonstrates this powerful tool.

EXAMPLE 14.3 Using NSLOOKUP to Verify DNS

C:\Users\terry>nslookup www.cisco.com
Server: ACME_Quantum_Gateway.my-router.home
Address: 192.168.1.1

Non-authoritative answer:
Name: e144.dscb.akamaiedge.net
Addresses: 2600:1408:10:18c::90
2600:1408:10:181::90
23.202.192.170
Aliases: www.cisco.com
www.cisco.com.akadns.net
wwwds.cisco.com.edgekey.net
wwwds.cisco.com.edgekey.net.globalredir.akadns.net
C:\Users\terry>

Just as it can be convenient for your Windows client to use DNS, it can also be beneficial for your Cisco routers and switches. Table 14.1 provides commands available on these devices.

TABLE 14.1 DNS Related Commands on Cisco Devices

<table>
<thead>
<tr>
<th>Cisco Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip domain-lookup</td>
<td>This command enables DNS-based host name-to-address translation; note this command is enabled by default on many Cisco devices.</td>
</tr>
<tr>
<td>ip name-server</td>
<td>This command specifies the address of one or more name servers for the device to use for DNS resolution.</td>
</tr>
<tr>
<td>ip domain-name</td>
<td>This command defines a default domain name that the Cisco IOS software uses to complete unqualified host names (names without a dotted-decimal domain name).</td>
</tr>
</tbody>
</table>
CramQuiz

1. What is a common Windows client setting for IPv4 DNS?
 - A. The use of only Google DNS public servers
 - B. To acquire the DNS settings automatically via DHCP
 - C. To use the public IP address of the ISP's router
 - D. To use a local loopback address

2. What command enables DNS-based host name translations on a Cisco router and is enabled by default on many Cisco routers?
 - A. ip domain-name
 - B. ip name-server
 - C. ip domain-list
 - D. ip domain-lookup

CramQuiz Answers

1. B is correct. A very common approach for Windows client's DNS is to acquire this information dynamically.

2. D is correct. The \texttt{ip domain-lookup} command enables DNS-based host name resolution. This command is a default setting.
1. What is the default lease duration on a Cisco DHCP server?

2. Which feature allows a router to forward a client’s DHCP request to a remote DHCP server?

Answers

1. The default lease duration is 1 day, which is 86,400 seconds.
2. The DHCP Relay-Agent feature permits this.

Figure 14.2 shows the simple topology we use to configure a Dynamic Host Configuration Protocol (DHCP) server using a Cisco router (R1), and to configure a Cisco router (R2) as a DHCP client.

![Figure 14.2 The DHCP Server and Client Topology](image)

Example 14.4 shows the configuration of R1, the DHCP Server.

EXAMPLE 14.4 The Configuration of the DHCP Server

```
R1#
R1(config)#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#interface fa0/0
R1(config-if)#ip address 10.1.1.1 255.255.255.0
R1(config-if)#no shutdown
R1(config-if)#exit
```
The commands directly involving DHCP are as follows:

- **ip dhcp excluded-address 10.1.1.1 10.1.1.10**: This command tells the DHCP server *not* to assign the addresses from 10.1.1.1 to 10.1.1.10 to DHCP clients. For example, the 10.1.1.1 address is the static router interface address configured on R1’s fa0/0 interface.

- **ip dhcp pool CCNAEXAMCRAM**: This command creates our DHCP pool on R1. This pool will contain the specific parameters we want to hand out to clients who lease addresses from the DHCP server.

- **default-router 10.1.1.1**: This command assigns the default gateway to clients of this DHCP pool.

- **dns-server 8.8.8.8 4.2.2.2**: This command sets a primary and backup DNS server for the clients.

- **option 150 ip 10.10.10.2**: This command provides clients with the IP address of a TFTP server.

- **network 10.1.1.0 /24**: This command specifies the IP address assignments for the pool. Remember, we excluded a small portion of this network address space. As a result, we expect the first leased address to be 10.1.1.11/24.

ExamAlert

The **network** command used in DHCP configuration accepts a subnet mask or prefix notation in its syntax.

Example 14.5 shows the configuration of a DHCP client function on a Cisco router.
EXAMPLE 14.5 The Configuration of the DHCP Client

R2#
R2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#interface fa0/0
R2(config-if)#ip address dhcp
R2(config-if)#no shutdown
R2(config-if)#end
R2#
%SYS-5-CONFIG_I: Configured from console by console
R2#
%LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R2#

Notice here the very simple configuration. The command `ip address dhcp` gets the job done for the client interface.

Next, let's begin our verification on the server. Example 14.6 shows the use of the `show ip dhcp binding` command to verify the server's operation.

EXAMPLE 14.6 Verifying the DHCP Server

R1#
R1#show ip dhcp binding
Bindings from all pools not associated with VRF:
IP address Client-ID/ Hardware address/ Lease expiration Type
 User name
10.1.1.11 0063.6973.636f.2d63. 08:10 PM _______ Automatic
 6130.332e.3066.6330.
 2e30.3030.302d.4661.
 302f.30

R1#

ExamAlert
Notice that the default lease duration for Cisco DHCP servers is one day. To see any IP address conflicts in your Cisco DHCP environment, you can use the command `show ip dhcp conflict`.

Example 14.7 shows a simple verification on the client. The `show ip interface brief` command allows us to quickly view the DHCP learned address on Fa0/0.
EXAMPLE 14.7 Verifying the DHCP Client

R2# show ip interface brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 10.1.1.11 YES DHCP up up
FastEthernet1/0 unassigned YES unset administratively down down
FastEthernet1/1 unassigned YES unset administratively down down
R2#

What happens if your DHCP server is not on the same subnet with the clients that need it? One option is to configure a DHCP relay-agent. This is a router that hears the DHCP requests from clients and forwards them to the appropriate DHCP server. It is very simple to configure this relay agent. Figure 14.3 and Example 14.8 show a sample topology and configuration. Note that the powerful ip helper-address dhcp-server-ip command gets the job done. The relay agent knows the address of the DHCP server, so it can successfully forward local DHCP traffic to the DHCP server.

FIGURE 14.3 The DHCP Relay-Agent

EXAMPLE 14.8 Configuring the DHCP Relay-Agent

R2# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)# interface fa1/0
R2(config-if)# ip helper-address 10.1.1.3
R2(config-if)# end
R2#
CramQuiz

1. What command ensures your DHCP server does not lease out addresses you have statically configured elsewhere?
 - A. no dhcp-server assign-address
 - B. no dhcp-lease address
 - C. ip dhcp no-lease address
 - D. ip dhcp excluded-address

2. What command configures a default gateway in a DHCP server pool?
 - A. ip default-gateway
 - B. gateway-of-last-resort
 - C. ip domain-server
 - D. default-router

3. What command configures a Cisco device as a DHCP client?
 - A. ip address auto
 - B. ip address dhcp
 - C. ip address learn
 - D. ip address dynamic

CramQuiz Answers

1. D is correct. Use the ip dhcp excluded-address command to create a range of excluded addresses from your pool.

2. D is correct. Use the default-router command in the DHCP pool to set the default gateway address.

3. B is correct. ip address dhcp, used in interface configuration mode, sets the Cisco device as a DHCP client.
1. Examine the figure and the example configurations. Why is the DHCP client failing to acquire IP address information?

R1#
R1#show running-config
Building configuration...

Current configuration : 1343 bytes
!
! Last configuration change at 08:30:24 UTC Fri Aug 26 2016
!
upgrade fpd auto
version 15.0
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname R1
!
boot-start-marker
boot-end-marker
!
!
no aaa new-model
!
!
ip source-route
no ip icmp rate-limit unreachable
ip cef
!
!
ip dhcp excluded-address 10.1.1.1 10.1.1.10
!
ip dhcp pool CCNAEXAMCRAM
 network 10.1.2.0 255.255.255.0
default-router 10.1.1.1
dns-server 8.8.8.8 4.2.2.2
option 150 ip 10.10.10.2
!
!
no ip domain lookup
no ipv6 cef
!
multilink bundle-name authenticated
!
!
redundancy
!
!
ip tcp synwait-time 5
!
!
interface FastEthernet0/0
 ip address 10.1.1.1 255.255.255.0
duplex half
!
interface FastEthernet1/0
 no ip address
 shutdown
duplex auto
 speed auto
!
interface FastEthernet1/1
 no ip address
 shutdown
duplex auto
 speed auto
!
 ip forward-protocol nd
 no ip http server
 no ip http secure-server
!
!
no cdp log mismatch duplex
!
!
control-plane
!
!
mgcp fax t38 ecm
mgcp behavior g729-variants static-pt
!
!
gatekeeper
 shutdown
!
!
line con 0
 exec-timeout 0 0
 privilege level 15
 logging synchronous
 stopbits 1
line aux 0
 exec-timeout 0 0
 privilege level 15
 logging synchronous
 stopbits 1
line vty 0 4
 login
 !
ntp master 2
end
R1#

R2#
R2#show running-config
Building configuration...

Current configuration : 1165 bytes
!
! Last configuration change at 08:49:30 UTC Fri Aug 26 2016
!
upgrade fpd auto
version 15.0
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname R2
!
boot-start-marker
boot-end-marker
!
no aaa new-model
!
!
!
ip source-route
no ip icmp rate-limit unreachable
ip cef
!
!
no ip domain lookup
no ipv6 cef
!
multilink bundle-name authenticated
!
!
redundancy
!
!
ip tcp synwait-time 5
!
!
interface FastEthernet0/0
 ip address dhcp
duplex half
!
!
interface FastEthernet1/0
 no ip address
shutdown
duplex auto
speed auto
!
!
interface FastEthernet1/1
 no ip address
shutdown
duplex auto
speed auto
!
!
ip forward-protocol nd
no ip http server
no ip http secure-server
!
!
!
no cdp log mismatch duplex
!
!
control-plane
!
!
mgcp fax t38 ecm
mgcp behavior g729-variants static-pt
!
!
gatekeeper
 shutdown
!
!
line con 0
 exec-timeout 0 0
 privilege level 15
 logging synchronous
 stopbits 1
line aux 0
 exec-timeout 0 0
 privilege level 15
 logging synchronous
 stopbits 1
line vty 0 4
 login
!
ntp server 10.1.1.1
end

R2#

2. What command allows you to easily verify the lease assignments from the DHCP server?

Answers

1. The subnet for lease assignments is incorrect for the DHCP server pool; the correct subnet should be configured with **network 10.1.0.0 /24**.

2. **show ip dhcp server bindings**
There can be many issues to prevent proper DHCP connectivity. Here are just some issues you should be aware of:

- Errors in router or switch configurations
- DHCP server configuration
- DHCP relay-agent configuration
- DHCP server scope configuration or software defect

ExamAlert
Although there are many possible errors in your CCNA exam, watch out for server or client misconfigurations because these will be the most common.

The four steps of the DHCP process that must succeed for a successful DHCP lease are as follows:

1. Discover (from the client)
2. Offer (from the server)
3. Request (from the client)
4. Acknowledgement (from the server)

Remember the key verification commands for DHCP. `show ip dhcp binding` is critical for the server, and `show ip interface brief` works well for the client.

CramQuiz

1. Examine the configuration shown. DHCP clients in the 10.1.1.0/24 subnet are complaining that they cannot access Internet resources. What is the most likely issue?

```text
R1#show running-config
Building configuration...

Current configuration : 1312 bytes
!
! Last configuration change at 08:57:10 UTC Fri Aug 26 2016
!
upgrade fpd auto
version 15.0
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
```
hostname R1

boot-start-marker
boot-end-marker

no aaa new-model

ip source-route
no ip icmp rate-limit unreachable
ip cef

ip dhcp excluded-address 10.1.1.1 10.1.1.10

ip dhcp pool CCNAEXAMCRAM
 network 10.1.1.0 255.255.255.0
 default-router 10.1.1.1
 option 150 ip 10.10.10.2

no ip domain lookup
no ipv6 cef

multilink bundle-name authenticated

redundancy

ip tcp synwait-time 5

interface FastEthernet0/0
 ip address 10.1.1.1 255.255.255.0
duplex half

interface FastEthernet1/0
 no ip address
shutdown
duplex auto
speed auto
CramQuiz

Topic: Troubleshoot client- and router-based DHCP connectivity issues

!
! interface FastEthernet1/1
 no ip address
 shutdown
 duplex auto
 speed auto
!
! ip forward-protocol nd
 no ip http server
 no ip http secure-server
!
!
! no cdp log mismatch duplex
!
!
control-plane
!
!
mgcp fax t38 ecm
mgcp behavior g729-variants static-pt
!
!
! gatekeeper
 shutdown
!
! line con 0
 exec-timeout 0 0
 privilege level 15
 logging synchronous
 stopbits 1
 line aux 0
 exec-timeout 0 0
 privilege level 15
 logging synchronous
 stopbits 1
 line vty 0 4
 login
! ntp master 2
end

R1#
CramQuiz

Topic: Troubleshoot client- and router-based DHCP connectivity issues

- A. The scope of addresses in the pool is not correct.
- B. There is no lease duration set.
- C. There are no DNS servers assigned to the clients.
- D. The default gateway is incorrect.

2. What is the second step of the four steps of the DHCP process?
 - A. Acknowledgement
 - B. Request
 - C. Offer
 - D. Discover

CramQuiz Answers

1. C is correct. This configuration is missing the assignment of DNS servers for the clients.
2. C is correct. The second step of the process is an offer.
It is critical for many reasons to have accurate time on your network devices. To automate this process, we have Network Time Protocol (NTP). NTP uses the transport layer protocol of UDP and port 123. NTP uses the concept of a stratum value to gauge the accuracy of time values carried by NTP. A lower stratum value is preferred. You can think of stratum like a hop count from the authoritative reference clock source. Ideally, this time source should be an atomic clock, or at least linked to one. Example 14.9 configures R1 to act as a reference clock source for the network. Notice we select a stratum value of 2.

EXAMPLE 14.9 Configuring the NTP Master in the Network

```bash
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#ntp master ?
  <1-15> Stratum number
  <cr>

R1(config)#ntp master 2
R1(config)#end
R1#
```
The default stratum value for the `ntp master` command is 8.

How do you configure an NTP client to receive the correct time from your NTP server (master)? The command is `ntp server ntp-server-ip-address`. Example 14.10 shows this configuration.

EXAMPLE 14.10 Configuring the NTP Client

```
R2#
R2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#ntp server 10.1.1.1
R2(config)#end
R2#
```

There are several other NTP configuration options available (such as broadcasting NTP updates), but these are not required at the CCNA level.

There are two key commands for verifying NTP. Example 14.11 shows one of them, the `show ntp associations` command. Note how this allows us to easily verify our association with the configured NTP master device.

EXAMPLE 14.11 Verifying the NTP Configuration with Show NTP Associations

```
R2#show ntp associations

address       ref clock     st when poll reach  delay  offset     disp
*~10.1.1.1     127.127.1.1  2      0   64   275 19.784 40129.7 68.951
* sys.peer, # selected, + candidate, - outlyer, x falseticker, ~ configured
```

Example 14.12 shows another frequently used verification option of `show ntp status`.
CramQuiz

EXAMPLE 14.12 **Using Show NTP Status to Verify NTP**

R2# show ntp status
Clock is synchronized, stratum 3, reference clock is 10.1.1.1
nominal freq is 250.0000 Hz, actual freq is 250.0000 Hz, precision is 2^24
reference time is DA5E7147.56CADEA7 (19:54:31.339 EST Thu Feb 4 2016)
clock offset is 0.0986 msec, root delay is 2.46 msec
root dispersion is 16.27 msec, peer dispersion is 5.33 msec
loopfilter state is 'CTRL' (Normal Controlled Loop), drift is 0.000000009 s/s
system poll interval is 64, last update was 530 sec ago.
R2#

CramQuiz

1. What is a stratum in NTP?
 - A. A measure of the proximity to the reference clock
 - B. A key value for authentication
 - C. The number of total NTP clients
 - D. A measurement for the number of NTP queries per minute

2. What command configures your Cisco device as an NTP client of 10.1.1.1?
 - A. ntp client 10.1.1.1
 - B. ntp master 10.1.1.1
 - C. ntp server 10.1.1.1
 - D. ntp 10.1.1.1

CramQuiz Answers

1. A is correct. The stratum indicates how far a device is from the reference clock.
2. C is correct. The `ntp server` command is used on a client.
CHAPTER 14: Infrastructure Services: DNS, DHCP, NTP, HSRP

Topic: Configure, verify, and troubleshoot basic HSRP

CramSaver

1. What command configures HSRP under an interface for group 10 with a virtual IP address of 10.10.10.1?

2. What feature would you use along with interface tracking in HSRP?

Answers

1. standby 10 ip 10.10.10.1
2. Preemption

The Hot Standby Router Protocol (HSRP) allows multiple default gateways to respond to clients and permit them access off of their LAN segment. This technology was invented by Cisco Systems and is known as a First Hop Redundancy Protocol (FHRP).

HSRP has each router (or even more than two devices) present a virtual IP address to the LAN segment. The active router can respond to this virtual IP address and forward traffic. The device that forwards traffic is called the active router, and the others in the group are called standby routers.

The HSRP routers communicate with each other every three seconds by default to ensure they are up. There is a dead timer of ten seconds. Example 14.13 demonstrates the HSRP configuration on two routers connected to a LAN segment.

EXAMPLE 14.13 Configuring HSRP

R1#
R1(config)#interface gi0/1
R1(config-if)#standby 10 ip 10.10.10.100
R1(config-if)#end
R1#
R2#
R2(config)#interface gi0/1
R2(config-if)#standby 10 ip 10.10.10.100
R2(config-if)#end
R2#
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#interface gi0/1
R2(config-if)#standby 10 ip 10.10.10.100
R2(config-if)#end
R2#

Verification is also simple. Example 14.14 demonstrates the use of the `show standby` command on R1.

EXAMPLE 14.14 Verifying HSRP

R1#
R1#show standby
GigabitEthernet0/1 - Group 10
 State is Active
 2 state changes, last state change 00:02:03
 Virtual IP address is 10.10.10.100
 Active virtual MAC address is 0000.0c07.ac0a
 Local virtual MAC address is 0000.0c07.ac0a (v1 default)
 Hello time 3 sec, hold time 10 sec
 Next hello sent in 0.304 secs
 Preemption disabled
 Active router is local
 Standby router is 10.10.10.2, priority 100 (expires in 9.552 sec)
 Priority 100 (default 100)
 Group name is "hsrp-Gi0/1-10" (default)

R1#

Notice that R1 is the active router. The virtual IP address is our assignment of 10.10.10.100. The actual IP addresses on R1 and R2 are 10.10.10.1 and 10.10.10.2, respectively. Notice the default priority is in place of 100. The greater the priority number, the higher the priority is. This directly controls the active router assignment. Example 14.15 demonstrates setting preemption (disabled by default) and setting the priority to immediately win the active role.

EXAMPLE 14.15 Setting Preemption and Adjusting HSRP Priority

R2#
R2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#interface gi0/1
R2(config-if)#standby 10 preempt
R2(config-if)#standby 10 priority 120
R2(config-if)#end
R2#

%HSRP-5-STATECHANGE: GigabitEthernet0/1 Grp 10 state Standby -> Active
ExamAlert

Remember that HSRP is a Cisco proprietary FHRP! There are other standards-based protocols, such as VRRP and GLBP.

CramQuiz

1. What does FHRP stand for?
 - A. First Hop Redundancy Protocol
 - B. First HSRP Router Protocol
 - C. First Hop Routing Protocol
 - D. Final Hop Routing Protocol

2. What command permits the verification of your HSRP configuration?
 - A. show standby
 - B. show router hsrp
 - C. show hsrp
 - D. show fhrp hsrp

CramQuiz Answers

1. A is correct. HSRP is an example of a First Hop Redundancy Protocol.
2. A is correct. Use show standby for the HSRP verification.
Review Questions

1. What type of record is used in DNS for a mail server?
 - A. SOA
 - B. MX
 - C. NS
 - D. CNAME

2. Your junior network admin issues a ping to www.cisco.com, which is successful. What has been verified?
 - A. WINS
 - B. DNS
 - C. NTP
 - D. DHCP

3. What command sets the DHCP scope to 192.168.1.0/24?
 - A. `scope 192.168.1.0 /24`
 - B. `network 192.168.1.0 255.255.255.0`
 - C. `subnet 192.168.1.0 /24`
 - D. `addresses 192.168.1.0`

4. What command configures a DHCP relay-agent?
 - A. `ip dhcp relay-agent`
 - B. `ip dhcp relay-agent enable`
 - C. `ip forward-address`
 - D. `ip helper-address`

5. What command configures HSRP preemption for group 10?
 - A. `standby 10 preempt`
 - B. `standby preempt group 10`
 - C. `hsrp 10 preempt`
 - D. `hsrp preempt group 10`
Answers to Review Questions

1. B is correct. The MX record is for a mail server.
2. B is correct. DNS name resolution has been verified.
3. B is correct. The `network` command sets this.
4. D is correct. To configure a relay agent, we use `ip helper-address`.
5. A is correct. The simple command is `standby 10 preempt`.
Additional Resources

Configuring a Cisco Router as a DHCP Server—
http://www.ajsnetworking.com/dhcp-server

network-time-protocol

HSRP Configuration—http://www.ajsnetworking.com/hsrp
Index

Numbers
802.1Q, 107–110
802.1X, 321

A
AAA (authentication, authorization, accounting) with TACACS+ and RADIUS, 323–324
access layer (three-tier network model), 22, 23, 321–322
ACEs (Access Control Entries), 338
ACI (Application Centric Infrastructure), 433
ACLs (Access Control Lists), 330–343
Active Discovery Phase, 233
addressing (IPv4). See IPv4 addressing
addressing (IPv6). See IPv6 addressing
administrative distance, 151, 153–155, 190
anycast (IPv6) addresses, 70
APIC-EM Path Trace ACL Analysis Tool, 342
APIs (application programming interfaces), 433
Application layer (OSI model), 8
applications, TCP versus UDP, 12
APs (access points), 16
archive command, 404
ARP (Address Resolution Protocol), 8
authentication
AAA with TACACS+ and RADIUS, 323–324
local authentication, 351–352
MLPPP (Multilink Point to Point Protocol), 228–231
PPP (Point to Point Protocol), 228–231
PPPoE (Point to Point Protocol over Ethernet), 232–234
Autonomous System (AS), routing protocols, 181

B
baby giant frames, 90
backup configurations, 379
banner login # command, 357
banner motd command, 357
BE (Best Effort), 257
BGP (Border Gateway Protocol), 246
bidirectional NAT, 303
binary numbers, conversion chart, 39
block size, 42
BPDU Guard, 119–121
BPDUs (Bridge Protocol Data Units), 112
broadband PPPoE (Point-to-Point Protocol over Ethernet), 241
broadcasts, 47–49
buffer logging, 368

C
cabling types, 28–30
CDP (Cisco Discovery Protocol), 122–123, 379–380
CEF (Cisco Express Forwarding), 147
chassis aggregation, 137–138
clear logging command, 422
client DNS configurations, troubleshooting, 270–274
client VPN, 241
cloud services, 18–21
collapsed core network designs, three-tier network designs, compared, 22–24
collisions, 90
configure replace command, 404
configuring
ACLs (Access Control Lists), 330–343
BPDU Guard, 120
device hardening, 348–358
device management, 378–383
device monitoring with syslog and SNMP, 366–370
DHCP (Dynamic Host Configuration Protocol), 275–279
DHCP clients, 276–277
DHCP relay agents, 278
DHCP servers, 275–276
DNS (Domain Name System), troubleshooting client configurations, 270–274
EIGRP for IPv4, 202–204
EIGRP for IPv6, 205–207
EtherChannel, 130–136
GRE (Generic Routing Encapsulation), 235–237
HSRP (Hot Standby Router Protocol), 292–294
initial device configuration, 388–394
interswitch links, 107–110
inter-VLAN routing, 160–170
IPv4 addressing and subnetting, 38–46
IPv6 addressing, 62–65
IPv6 SLAAC, 66–68
Layer 2 protocols, 122–124
local authentication, 351–352
login banners, 356–357
loopback interfaces, 382
MLPPP (Multilink Point to Point Protocol), 228–231
NAT (Network Address Translation), 300–308
NTP (Network Time Protocol), 289–291
OSPFv2 for IPv4, 193–198
OSPFv3 for IPv6, 199–201
port security, 316–320
PortFast, 119–120
PPP (Point to Point Protocol), 228–231
congestion management, 258
connectivity issues, troubleshooting, 218–219
console logging, 368
consoles, 392
core layer (three-tier network model), 23
CSMA/CA (carrier sense multiple access with collision avoidance), 16
CSMA/CD (carrier sense multiple access with collision detection), 16
cut-through frame switching, 82

data access ports, 102
Data Link layer (OSI model), 8
data plane, 433
data traffic, 257
debug ip rip command, 421
debug messages, 421–424
decimal numbers, conversion chart, 39
default routing, 176–177
default VLAN, 102
device access, 354
device configuration, initial, 388–394
device hardening, 348–358
device maintenance, 400–405
device management, 378–383
device monitoring, 366–370
device security with TACACS+ and RADIUS, 323–324
device trust, 257
DHCP (Dynamic Host Configuration Protocol)
configured and verifying, 275–279
troubleshooting, 280–288
DHCP clients
configured, 276–277
verifying, 277–278
DHCP relay agents, configuring, 278
DHCP servers
configured, 275–276
verifying, 277
DHCP snooping, 321–322
DiffServ (Differentiated Services), 257–258
disabling
CDP (Cisco Discovery Protocol), 380
debug messages, 422
distance vector routing protocols, link state protocols, compared, 179–180
distribution layer (three-tier network model), 23
DMVPN (Dynamic Multipoint VPN), 241
DNS (Domain Name System), 267–269
troubleshooting client configurations, 270–274
troubleshooting connectivity, 270–274
DNS lookups, 267–269
documentation, 32
dual-homed WAN topology, 238
dynamic NAT, 305–306
dynamic port security, 317–318
dynamic routing
fl oating static routes, 191
link state and distance vector routing protocols, compared, 179–180
static routing, compared, 176–178

e
EBGP (exterior Border Gateway Protocol), 246–250
EIGRP for IPv4, 202–204
EIGRP for IPv6, 205–207
enable password command, 353
enable secret command, 354
encapsulation dot1q 10 command, 163
encapsulation dot1q 20 command, 163
errdisable recovery command, 317
errors, 89
escalation, 32
EtherChannel, 130–136
Ethernet cabling types, 28–30
Ethernet frame format, 85–87
Ethernet switching, 80–84
PPPoE (Point to Point Protocol over Ethernet), 232–234
troubleshooting interface and cable issues, 88–93
extended ACLs
configuring, 342
defined, 338
extended options
for ping command, 415–416
for traceroute command, 418
exterior routing protocols, interior protocols, compared, 181–182

f
fault isolation, 32
FHRP (First Hop Redundancy Protocol), 292
file system management, 403–404
firewalls, 16
fl oating static routes, 191
fragment-free frame switching, 82
frame fl ooding, 82
frame rewrite, 146–147
frame switching, 81–82
FTP (File Transfer Protocol), 403
full mesh WAN topology, 238

G
gateway of last resort, 151
giants, 90
global unicast addresses, 70
GRE (Generic Routing Encapsulation), 235–237

h
host routes, 189
HSRP (Hot Standby Router Protocol), 292–294
hub and spoke WAN topology, 238
hybrid routing protocols, 179
hybrid topologies, 26

i
IaaS (infrastructure as a service), 20
IANA (Internet Assigned Numbers Authority), 60
iBGP (interior Border Gateway Protocol), 246
ICMP Echo Replies, 411–412
ICMP Echo Requests, 411–412
implicit deny all, 339
initial device configuration, 388–394
inside source NAT, 300–308
interfaces, 393
interior routing protocols, exterior protocols, compared, 181–182
Internet VPN, 241
interswitch links, 107–110
inter-VLAN routing, 160–170
IntServ (Integrated Services), 256
IOS recovery, 402
IOS tools, troubleshooting with, 410–426
IOS upgrade, 400–402
ip access-group command, 340
ip address dhcp command, 277
ip domain-lookup command, 273
ip domain-name command, 273
ip helper-address command, 278
ip name-server command, 273
ip nat inside source command, 307
ip route command, 190
IP SLA (service-level agreements), 371–372
ipconfig command, 270–271
IPv4 address classes, 40
IPv4 addressing
 address classes, 40
 comparison of address types, 47–49
 configuring, verifying, troubleshooting, 38–46
 EIGRP for IPv4, 202–204
 OSPFv2 for IPv4, 193–198
 private addressing, 50–52
 RIPv2 for IPv4, 208–217
IPv4 static routing, 189–192
IPv4 subnetting
 configuring, verifying, troubleshooting, 38–46
 subnet masks, 40–41
IPv6 addressing
 comparison of address types, 69–71
 configuring, verifying, troubleshooting, 62–65
 EIGRP for IPv6, 205–207
 OSPFv3 for IPv6, 199–201
 shortening addresses, 58–61
IPv6 autoconfiguration, 70
ipv6 enable command, 70
IPv6 stateless address auto configuration (SLAAC), 66–68
IPv6 static routing, 189–192
ipv6 unicast-routing command, 63, 67, 200
ISL (Inter Switch Link), 107

J
jumbo frames, 90

L
LACP (Link Aggregation Control Protocol), 134–135
Layer 2 EtherChannel, 130–136
Layer 2 protocols, configuring and verifying, 122–124
Layer 3 end-to-end connectivity, troubleshooting, 218–219
Layer 3 EtherChannel, 130–136
LCP (Link Control Protocol), 228
licensing, 381
link local addresses, 70
link state routing protocols, distance vector protocols, compared, 179–180
LLDP (Link Layer Discovery Protocol), 123, 380
local authentication
 configuring and verifying, 351–352
 MLPPP (Multilink Point to Point Protocol), 228–231
 PPP (Point to Point Protocol), 228–231
 PPPoE (Point to Point Protocol over Ethernet), 232–234
Local SPAN (Switched Port Analyzer), 424
log events, debug messages, 421–424
logging. See also syslog
 debug messages, 421–424
defined, 381
login banners, configuring and verifying, 356–357
loopback interfaces, 393
 configuring and verifying, 382
 testing with ping command, 412–413

M
MAC address table, 82
MAC aging, 81
MAC learning, 81
marking traffic, 257
maximum MAC addresses, 318
MD5 Verify, 403–404
mesh topologies, 26
metric (in routing table), 151
Metro Ethernet, 240
MLPPP (Multilink Point to Point Protocol), 228–231
modified EUI-64, 63–64, 70
monitor logging, 368
MPLS (Multiprotocol Label Switching), 241
multicast (IPv6) addresses, 70
multicasts, 40, 47–49
multilayer switches, 161

N
named ACLs, 330–343
NAT (Network Address Translation), 50–52, 300–308
NAT overloading, 306–307
NAT pools, 306
Native VLAN, 109, 164–166
NCP (Network Control Protocol), 228
neighbor command, 247
network cabling types, 28–30
network command, 193, 209, 246–250, 276
Network layer (OSI model), 8
network mask, 149
network programmability, 432–434
network routes, 189

network topologies
 comparisons, 25–27
 WAN, 238–239
next hop, 149
no debug all command, 422
no service password-encryption command, 353
Northbound APIs, 433
nslookup command, 273
NTP (Network Time Protocol), 289–291
NTP clients, configuring, 290
ntp master command, 290
ntp server command, 290
NTP servers, configuring, 289–290
numbered ACLs, 330–343

O
OSI (Open System Interconnection) model
 protocols by layer, 9
 TCP/IP model, compared, 5–10
 troubleshooting with, 32
OSPFv2 for IPv4, 193–198
OSPFv3 for IPv6, 199–201

P
PaaS (platform as a service), 20
packet handling, 146–147
PAgP (Port Aggregation Protocol), 133–134
password recovery, 402–403
password security, 352–354
PAT (Port Address Translation), 306–307
path vector routing protocols, 179
PDUs (Protocol Data Units), 8–9
peerings, 246–250
Physical layer (OSI model), 8
physical security, 354
ping command, 272, 304, 411–416
point-to-point WAN topology, 238
policing, 258
port numbers, well-known, 13
port security
 configuring, verifying, troubleshooting, 316–320
violation actions, 317
PortFast, 119–121
PPP (Point to Point Protocol), 228–231
PPP Session Phase, 233
PPPoE (Point to Point Protocol over Ethernet)
 broadband PPPoE, 241
 configuring, verifying, troubleshooting, 232–234
preemption, 293
prefix (in routing table), 151
Presentation layer (OSI model), 8
prioritization, 257
priority in HSRP, 293
private IPv4 addressing, 50–52
privilege levels, 352
protocol identifiers, 12
protocols by OSI layer, 9. See also specific protocol names
PVST+ (Per VLAN Spanning Tree Plus), 111

Q
QoS (Quality of Service), 256–258

R
RADIUS, 323–324
recovery
 IOS, 402
 passwords, 402–403
remote-as command, 247
resolution monitoring, 32
return codes for ping command, 414
RFC 1918, 51
RIPv2 for IPv4, 208–217
root bridge selection (STP), 111–112
route lookups, 146–147
router bgp command, 248
router on a stick (ROAS), 160–170
router-id command, 200
routing
 concepts, explained, 146–147
 default routing, 176–177
 EIGRP for IPv4, 202–204
 EIGRP for IPv6, 205–207
 interior and exterior protocols, compared, 181–182
 inter-VLAN routing, 160–170
 Layer 3 end-to-end connectivity, troubleshooting, 218–219
 link state and distance vector routing protocols, compared, 179–180
 OSPFv2 for IPv4, 193–198
 OSPFv3 for IPv6, 199–201
 RIPv2 for IPv4, 208–217
 static and dynamic routing, compared, 176–178
 static routing, 189–192
routing engine (RE), 161
routing protocol code, 150
routing table
 administrative distance values, 153–155
 components of, 148–152
RPVST+ (Rapid Per VLAN Spanning Tree Plus), 116–117
running configurations, 378–379
runts, 90

S
SaaS (software as a service), 20
SCP (Secure Copy Protocol), 403
SDN (Software Defined Networking), 432–434
secure passwords, 352–354
security
 access layer threat mitigation, 321–322
ACLs (Access Control Lists), 330–343
device hardening, 348–358
device security with TACACS+ and RADIUS, 323–324
local authentication, 351–352
password recovery, 402–403
passwords, 352–354
physical security, 354
port security, 316–320
serial connections, 29
service password-encryption command, 352–353, 354
service timestamps command, 366
Session layer (OSI model), 8
shaping, 258
show access-list command, 341
show bgp summary command, 248
show controllers command, 29
show flash command, 401–402
show interface command, 88–89, 91–92
show interface switchport command, 104
show interface trunk command, 164
show ip dhcp binding command, 285
show ip dhcp conflict command, 277
show ip interface brief command, 164, 231, 277, 285
show ip interface command, 341
show ip nat translation command, 304
show ip protocols command, 210
show ip route command, 154, 190, 210, 249, 412
show ipv6 route command, 190
show ntp associations command, 290
show ntp status command, 290
show port-security interface command, 317
show run | include nat command, 305
show running-config command, 378, 379
show spanning-tree command, 113, 114, 116, 117
show spanning-tree interface detail command, 120
show standby command, 293
show startup-config command, 379
show vlan brief command, 101
show vlans command, 164
single-homed WAN topology, 238, 246–250
site-to-site VPN, 241
SLAAC (IPv6 stateless address auto configuration), 66–68
SNMP (Simple Network Management Protocol), 369
SNMP version 2, 369
SNMP version 3, 369
source addressing, 354
source interface command, 424
Southbound APIs, 433
speed and duplex mismatches, 90
SSH (Secure Shell), 355–356
standard ACLs
configuring, verifying, troubleshooting, 330–343
defined, 338
star topologies, 25–26
startup configurations, 379
static EtherChannel, 131–133
static NAT, 303–305
static port security, 318–319
static routing
configuring, verifying, troubleshooting, 189–192
dynamic routing, compared, 176–178
sticky learning, 319–320
store-and-forward frame switching, 82
STP (Spanning Tree Protocol)
configuring, verifying, troubleshooting, 111–118
optional features, 119–121
root bridge selection, 111–112
stratum values, 289
subinterfaces, 162–164
subnet masks
 IPv4, 40–41
 IPv6, 59–60
switch port port-security command, 317
switch stacking, 137–138
switching
 chassis aggregation, 137–138
 EtherChannel, 130–136
 Ethernet switching, 80–84
 PPPoE (Point to Point Protocol over Ethernet), 232–234
 troubleshooting interface and cable issues, 88–93
interswitch links, 107–110
Layer 2 protocols, 122–124
multilayer switches, 161
STP (Spanning Tree Protocol)
 configuring, verifying, troubleshooting, 111–118
 optional features, 119–121
 root bridge selection, 111–112
 switch stacking, 137–138
VLANs (virtual local area networks), 99–106
syslog
 configuring and verifying device monitoring, 366–370
 severity levels, 368
 terminal monitor feature, 419–421
terminal monitor feature, 419–421
terminal no monitor command, 421
TFTP (Trivial File Transfer Protocol), 403
threat mitigation, 321–322
three-tier network designs, collapsed
 core network designs, compared, 22–24
three-way handshake, 8
timezones, setting, 381–382
topologies. See network topologies
traceroute command, 416–418
tracert command, 417
transport input command, 356
Transport layer (OSI model), 8
troubleshooting
 ACLs (Access Control Lists), 330–343
 BPDGU Guard, 120
 client DNS configurations, 270–274
 device hardening, 348–358
 DHCP (Dynamic Host Configuration Protocol), 280–288
 DNS connectivity, 270–274
 EIGRP for IPv4, 202–204
 EIGRP for IPv6, 205–207
 EtherChannel, 130–136
 Ethernet interface and cable issues, 88–93
 GRE (Generic Routing Encapsulation), 235–237
 HSRP (Hot Standby Router Protocol), 292–294
 interswitch links, 107–110
 inter-VLAN routing, 160–170
 with IOS tools, 410–426
 with IP SLA, 371–372
 IPv4 addressing and subnetting, 38–46
 IPv6 addressing, 62–65
 Layer 3 end-to-end connectivity, 218–219
 methodologies for, 31–32
 NAT (Network Address Translation), 300–308
troubleshooting

OSPFv2 for IPv4, 193–198
OSPFv3 for IPv6, 199–201
port security, 316–320
PortFast, 120
PPPoE (Point to Point Protocol over Ethernet), 232–234
RIPv2 for IPv4, 208–217
static routing, 189–192
STP (Spanning Tree Protocol), 111–118
STP optional features, 119–121
VLANs (virtual local area networks), 99–106

trunk ports, 802.1Q, 107–110
trunks, 100
tunneling GRE (Generic Routing Encapsulation), 235–237

UDP (User Datagram Protocol), 8
port numbers, 13
TCP, compared, 11–14
undebug all command, 422
unicasts, 47–49
unidirectional NAT, 303
unique local addresses, 70
upgrading IOS, 400–402
user mode, 352

variable length subnet masking, 43
verify /md5 command, 403–404

verifying
ACLs (Access Control Lists), 330–343
BPDU Guard, 120
device hardening, 348–358
device management, 378–383
device monitoring with syslog and SNMP, 366–370
DHCP (Dynamic Host Configuration Protocol), 275–279
DHCP clients, 277–278
DHCP servers, 277
EIGRP for IPv4, 202–204
EIGRP for IPv6, 205–207
EtherChannel, 130–136
GRE (Generic Routing Encapsulation), 235–237
HSRP (Hot Standby Router Protocol), 292–294
initial device configuration, 388–394
interswitch links, 107–110
inter-VLAN routing, 160–170
IPv4 addressing and subnetting, 38–46
IPv6 addressing, 62–65
IPv6 SLAAC, 66–68
Layer 2 protocols, 122–124
local authentication, 351–352
login banners, 356–357
loopback interfaces, 382
MLPPP (Multilink Point to Point Protocol), 228–231
NAT (Network Address Translation), 300–308
NTP (Network Time Protocol), 289–291
OSPFv2 for IPv4, 193–198
OSPFv3 for IPv6, 199–201
port security, 316–320
PortFast, 120
PPP (Point to Point Protocol), 228–231
PPPoE (Point to Point Protocol over Ethernet), 232–234
RIPv2 for IPv4, 208–217
single-homed WAN topology with eBGP, 246–250
static routing, 189–192
STP (Spanning Tree Protocol), 111–118
STP optional features, 119–121
VLANs (virtual local area networks), 99–106

video traffic, 257

virtual network services, 20

VLANs (virtual local area networks)
configuring, verifying, troubleshooting, 99–106
inter-VLAN routing, 160–170

voice access ports, 103–104

voice traffic, 257

VTP (VLAN Trunking Protocol), 100–101

VTY (virtual terminal lines), 393

W

WAN interfaces
configuring and verifying with eBGP, 246–250

cannectivity options, 240–241

GRE (Generic Routing Encapsulation), 235–237

MLPPP (Multilink Point to Point Protocol), 228–231

PPP (Point to Point Protocol), 228–231

PPPoE (Point to Point Protocol over Ethernet), 232–234

QoS (Quality of Service), 256–258

topology options, 238–239

well-known port numbers, 13

wildcard (inverse) mask, 338

WLCs (wireless LAN controllers), 16–17

X

XaaS (X as a service), 20