31 Days Before Your CompTIA® Network+ Certification Exam
A Day-By-Day Review Guide for the N10-006 Certification Exam

Allan Johnson

Free Sample Chapter
Share with Others
Associate Publisher Dave Dusthimer
Executive Editor Mary Beth Ray
Development Editor Andrew Cupp
Managing Editor Sandra Schroeder
Senior Project Editor Tonya Simpson
Copy Editor Bart Reed
Indexer Lisa Stumpf
Proofreader Laura Hernandez
Technical Editor Chris Crayton
Publishing Coordinator Vanessa Evans
Cover Designer Mark Shirar
Compositor Studio Galou
Contents at a Glance

Introduction xx
Day 31: Network Devices 1
Day 30: Network Services and Applications 9
Day 29: WAN Technologies 23
Day 28: Cable Installation 37
Day 27: Network Topologies and Infrastructure 49
Day 26: Implement IPv4 Addressing 63
Day 25: Implement IPv6 Addressing 75
Day 24: Routing Concepts 87
Day 23: Unified Communications, Virtualization, and Cloud 101
Day 22: Network Design and Documentation 117
Day 21: Network Monitoring and Metrics 125
Day 20: Network Segmentation, Patches, and Updates 137
Day 19: Switch Configuration 141
Day 18: STP, VLANs, Trunking, and VTP 151
Day 17: WLAN Implementation 163
Day 16: Risks, Threats, and Vulnerabilities 177
Day 15: Hardening Devices 185
Day 14: Physical Security, Firewalls, Access Control, and Forensics 193
Day 13: Network Models 201
Day 12: Network Theory 207
Day 11: Wired and Wireless Standards 213
Day 9: Best Practices and Change Management 223
Day 8: Implement Ports and Protocols 227
Day 7: Troubleshooting Methodology 235
Day 6: Troubleshooting Tools 239
Day 5: Troubleshoot Wireless Issues 255
Day 4: Troubleshoot Copper and Fiber Cabling Issues 259
Day 3: Troubleshoot Network Issues 263
Day 2: Troubleshoot Security Issues 267
Day 1: Troubleshoot WAN Issues 271
Exam Day 275
Post-Exam Information 277
Index 279
Contents

Introduction xx

Day 31: Network Devices 1
CompTIA Network+ N10-006 Exam Topics 1
Key Topics 1
Common Network Devices 1
Specialty Devices 2
 Firewalls 2
 IDS and IPS 3
 Proxy Server 5
 Load Balancer 5
 Packet Shaper 6
 VPN Concentrator 6
Study Resources 7

Day 30: Network Services and Applications 9
CompTIA Network+ N10-006 Exam Topics 9
Key Topics 9
VPN 9
 Types 9
 IPsec and IKE 11
 Other VPN Technologies 12
Remote Access Services 12
 AAA Services 13
 Microsoft’s RAS 14
 Other Remote Access Services 14
Unified Communications 14
DHCP 15
DNS 17
NAT 18
Study Resources 20

Day 29: WAN Technologies 23
CompTIA Network+ N10-006 Exam Topics 23
Key Topics 23
Packet Switching and Circuit Switching 23
WAN Link Options 24
 Home and Small Office 25
 Wireless 29
Day 28: Cable Installation 37
 CompTIA Network+ N10-006 Exam Topics 37
 Key Topics 37
 Copper 37
 Copper Cables 37
 Copper Connectors 40
 Fiber 42
 Fiber-Optic Cables 43
 Fiber Connectors 44
 Media Converters 45
 Tools 45

Day 27: Network Topologies and Infrastructure 49
 CompTIA Network+ N10-006 Exam Topics 49
 Key Topics 49
 Network Topologies 49
 Bus 49
 Ring 50
 Star, Extended Star, and Hub-and-Spoke 51
 Full and Partial Mesh 53
 Client-Server and Peer-to-Peer 55
 Network Infrastructures 57
 PANS 57
 LANs and WLANs 57
 CANs 58
 MANs 59
 WANs 59
 Other Network Infrastructures 59
 Industrial Networks 59
 Medianets 60

Day 26: Implement IPv4 Addressing 63
 CompTIA Network+ N10-006 Exam Topics 63
 Key Topics 63
Local Addressing 63
 MAC Addresses 63
 Collision and Broadcast Domains 63
IPv4 Addressing 64
 IPv4 Address Structure 64
 Private and Public IP Addressing 66
 IPv4 Address Types 66
Subnetting in Four Steps 68
 Determine How Many Bits to Borrow 68
 Determine the New Subnet Mask 69
 Determine the Subnet Multiplier 69
 List the Subnets, Host Ranges, and Broadcast Addresses 69
 Subnetting Example 1 70
 Subnetting Example 2 70
 Subnetting Example 3 71
VLSM and Classless Addressing 71
Study Resources 74

Day 25: Implement IPv6 Addressing 75
CompTIA Network+ N10-006 Exam Topics 75
Key Topics 75
IPv6 Addressing Overview 75
Representing the IPv6 Address 76
 Conventions for Writing IPv6 Addresses 76
 Conventions for Writing IPv6 Prefixes 77
IPv6 Address Types 78
 Global Unicast Addresses 79
 Link-Local Addresses 79
Configuring IPv6 Addressing 80
 EUI-64 Concept 81
 Stateless Address Autoconfiguration 82
Migration to IPv6 83
 Dual-Stack 83
 Tunneling 83
Study Resources 86

Day 24: Routing Concepts 87
CompTIA Network+ N10-006 Exam Topics 87
Key Topics 87
Static and Default Routing Overview 87
Dynamic Routing Protocols 88
 Route Redistribution 90
 IGP and EGP Routing Protocols 90
Distance Vector Routing Protocols 90
Link-State Routing Protocols 91
Classful Routing Protocols 91
Classless Routing Protocols 91
Dynamic Routing Metrics 92
Administrative Distance 93
Routing Loop Prevention 94
Link-State Routing Protocol Features 94
 Building the LSDB 95
 Calculating the Dijkstra Algorithm 95
 Convergence with Link-State Protocols 96
Route Aggregation 97
High Availability 98
Study Resources 99

Day 23: Unified Communications, Virtualization, and Cloud 101
 CompTIA Network+ N10-006 Exam Topics 101
 Key Topics 101
 Unified Communications 101
 Quality of Service 105
 Virtualization 107
 Server Virtualization 108
 Networking Device Virtualization 109
 Software-Defined Networking 110
 Cloud Concepts 111
 Storage Area Networks 112
 Directly Attached Storage 112
 Network-Attached Storage 112
 Fibre Channel 113
 Fibre Channel over Ethernet 113
 iSCSI 114
 Study Resources 115

Day 22: Network Design and Documentation 117
 CompTIA Network+ N10-006 Exam Topics 117
 Key Topics 117
 Network Design 117
 Sample Design Approach 117
 Design Considerations for Layers 1, 2, and 3 118
 Wireless Design Considerations 119
Day 21: Network Monitoring and Metrics 125

CompTIA Network+ N10-006 Exam Topics 125
Key Topics 125
Types of Metrics 125
SNMP 127
 SNMP Message Types 127
 SNMP Versions 128
 The Management Information Base 128
Syslog 130
 Syslog Operation 130
 Severity Levels 130
 Syslog Message Format 131
Port Scanners 132
 Packet Sniffers 133
 Packet Flow Monitors (NetFlow) 133
Study Resources 136

Day 20: Network Segmentation, Patches, and Updates 137

CompTIA Network+ N10-006 Exam Topics 137
Key Topics 137
Network Segmentation 137
Patches and Updates 139
Study Resources 140

Day 19: Switch Configuration 141

CompTIA Network+ N10-006 Exam Topics 141
Key Topics 141
Evolution to Switching 141
 From Bridges to Switches 141
 Switch Types 142
Switching Logic 142
Basic Switch Configuration 143
AAA Configuration 145
Link Aggregation Configuration 146
 LACP Modes 146
 Configuring EtherChannel 147
Port Mirroring Configuration 148
Study Resources 148

Day 18: STP, VLANs, Trunking, and VTP 151
CompTIA Network+ N10-006 Exam Topics 151
Key Topics 151
 STP and RSTP Concepts and Operation 151
 STP Algorithm 152
 STP Convergence 153
 Port Costs 154
 RSTP Operation 155
 RSTP Port Roles 155
 VLAN Concepts 156
 Reasons for and Benefit of Using VLANs 156
 Types of VLANs 157
 Trunking VLANs 158
 VTP Concepts 159
 VTP Modes 160
 VTP Operation 160
 VTP Pruning 161
Study Resources 162

Day 17: WLAN Implementation 163
CompTIA Network+ N10-006 Exam Topics 163
Key Topics 163
 WLAN Features 163
 Frequencies 163
 Transmission Methods 164
 Channels 165
 Antennas 166
 WLAN Topologies 167
 WLAN Devices 167
 Wireless Routers 167
 Wireless Access Points 168
 Wireless LAN Controllers 169
 Wireless Bridge 170
Day 16: Risks, Threats, and Vulnerabilities 177
CompTIA Network+ N10-006 Exam Topics 177
Key Topics 177
Denial of Service 177
Distributed DoS 178
Reflected and Amplified Attacks 178
Other Attack and Threat Terminology 179
Wireless Attacks 180
Vulnerabilities 181
Risk Management 182
Study Resources 183

Day 15: Hardening Devices 185
CompTIA Network+ N10-006 Exam Topics 185
Key Topics 185
Anti-malware Software 185
Device Hardening 185
Disable Unused Network Services 186
Use Secure Protocols 186
Configure Switch Port Security 186
User Authentication 188
Data Integrity and Hashing 189
Wireless Security 190
Study Resources 190

Day 14: Physical Security, Firewalls, Access Control, and Forensics 193
CompTIA Network+ N10-006 Exam Topics 193
Key Topics 193
Physical Security 193
Firewalls 194
Firewall Placement and Configuration 196
Access Control Models 197
Forensic Concepts 198
Study Resources 199

Day 13: Network Models 201
CompTIA Network+ N10-006 Exam Topics 201
Key Points 201
The OSI and TCP/IP Models 201
 OSI Layers 202
 TCP/IP Layers and Protocols 203
Data Flow Through the Layers 203
Study Resources 204

Day 12: Network Theory 207
CompTIA Network+ N10-006 Exam Topics 207
Key Topics 207
The TCP/IP Application Layer 207
The TCP/IP Transport Layer 207
The TCP/IP Internet Layer 208
The TCP/IP Network Access Layer 208
 Collisions 209
 Transmission Techniques 209
 End-to-End Communication 210
Numbering Systems 211
Study Resources 212

Day 11: Wired and Wireless Standards 213
CompTIA Network+ N10-006 Exam Topics 213
Key Topics 213
Ethernet Standards 213
 Wired Standards 213
 TIA/EIA 568A and 568B Standards 214
Wireless Standards 215
Study Resources 217

CompTIA Network+ N10-006 Exam Topics 219
Key Topics 219
Policies and Procedures 219
Safety Policies 220
Study Resources 222

Day 9: Best Practices and Change Management 223
CompTIA Network+ N10-006 Exam Topics 223
Key Topics 223
Best Practices 223
Change Management 224
Study Resources 226
Day 8: Implement Ports and Protocols 227

CompTIA Network+ N10-006 Exam Topics 227
Key Topics 227
Transport Protocols: TCP and UDP 227
 TCP and UDP Headers 228
 Error Recovery 228
 Flow Control 229
 Connection Establishment and Termination 230
 UDP 231
Port Numbers 231
Study Resources 234

Day 7: Troubleshooting Methodology 235

CompTIA Network+ N10-006 Exam Topics 235
Key Topics 235
Identify the Problem 235
Establish a Theory 236
Test the Theory 236
Establish a Plan of Action 236
Implement the Solution or Escalate 237
Verify the Solution and Implement Preventative Measures 237
Document Findings, Actions, and Outcomes 237
Study Resources 237

Day 6: Troubleshooting Tools 239

CompTIA Network+ N10-006 Exam Topics 239
Key Topics 239
Command-Line Tools 239
 The ipconfig Command 240
 The tracert Command 241
 The ping Command 242
 Windows pathping Command 244
 The arp Command 245
 The netstat Command 247
 The nbtstat Command 250
 The nslookup Command 250
 The Cisco show mac-address-table Command 252
Hardware and Software Tools 252
Study Resources 253

Day 5: Troubleshoot Wireless Issues 255

CompTIA Network+ N10-006 Exam Topics 255
About the Author

Allan Johnson entered the academic world in 1999 after 10 years as a business owner/operator to dedicate his efforts to his passion for teaching. He holds both an MBA and an M.Ed in Occupational Training and Development. He taught CCNA courses at the high school level for 7 years and has taught both CCNA and CCNP courses at Del Mar College in Corpus Christi, Texas. In 2003, Allan began to commit much of his time and energy to the CCNA Instructional Support Team, providing services to Networking Academy instructors worldwide and creating training materials. He now works full time for Cisco Networking Academy as a Learning Systems Developer.

About the Technical Reviewer

Chris Crayton (MCSE) is an author, technical consultant, and trainer. He has worked as a computer technology and networking instructor, information security director, network administrator, network engineer, and PC specialist. Chris has authored several print and online books on PC repair, CompTIA A+, CompTIA Security+, and Microsoft Windows. He has also served as technical editor and content contributor on numerous technical titles for several of the leading publishing companies. He holds numerous industry certifications, has been recognized with many professional teaching awards, and has served as a state-level SkillsUSA competition judge.
Dedication

For my wife, Becky. You continue to travel with me through those “thin times” when projects like these need to be nurtured. Without your constant vigilance and loving support, this work would not have come to fruition.
Acknowledgments

This book is a concise summary of networking concepts and draws upon the work of several Pearson authors. Thank you to Keith Barker, Emmett Dulaney, Anthony Sequeira, and Kevin Wallace for blazing a trail in the Network+ domain by authoring some outstanding resources for the reader.

Thank you to my technical editor, Chris Crayton, who is a tough task master and excellent subject matter expert. This book was made much better by his attentive guidance.

The Digital Study Guide version of this book includes activities, videos, and quizzes for each day.

I am grateful to Dan Alberghetti for agreeing to do the videos. Students of Cisco Network Academy will be familiar with his work. But you can also find Dan’s work at his website, http://danscourses.com, and his YouTube channel, http://youtube.com/danscourses.

For writing outstanding quiz items to challenge our readers, we called on Troy McMillan. Thank you, Troy, for your attention to detail and assessment-authoring skill.

Lisa Matthews took my activity designs and Troy’s quiz questions and made them interactive—a task that requires creativity, talent, and skill. Thank you, Lisa, for taking the final steps to make activities and quizzes available on PCs, tablets, and mobile devices.

Thank you to Drew Cupp, development editor, and Tonya Simpson, project editor, for juggling all the many pieces that must be managed to bring this product to our students, both in a book format and as a digital study guide.

A project like this goes through many review cycles. One of the very last reviews is for grammar and style. It always amazes me how much of an impact a copy editor can have on the final readability of a product. Thank you, Bart Reed, for making me look good.

And, finally, thank you to my editor, Mary Beth Ray, for bringing me this project when I said, “Okay, what’s next?” You continue to challenge me to grow and expand my horizons.
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).

- **Italic** indicates arguments for which you supply actual values.

- Vertical bars (|) separate alternative, mutually exclusive elements.

- Square brackets ([]) indicate an optional element.

- Braces ({ }) indicate a required choice.

- Braces within brackets ({{ }}) indicate a required choice within an optional element.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com
Mail: Pearson IT Certification
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Register your copy of 31 Days Before Your CompTIA Network+ Certification Exam at www.pearsonitcertification.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to www.pearsonitcertification.com/register and log in or create an account*. Enter the product ISBN 9780789756473 and click Submit. When the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Introduction

You are almost there! If you’re reading this Introduction, you’ve probably already spent a considerable amount of time and energy pursuing your CompTIA Network+ certification. Regardless of how you got to this point in your travels through your networking studies, 31 Days Before Your CompTIA Network+ Certification Exam most likely represents the last leg of your journey on your way to the destination: to become Network+ certified.

However, if you’re like me, you might be reading this book at the beginning of your studies. If such is the case, then this book provides you with an excellent overview of the material you must now spend a great deal of time studying and practicing. However, I must warn you: unless you are extremely well-versed in networking technologies and have considerable experience as a network technician or administrator, this book will not serve you well as the sole resource for Network+ exam preparation. I know this first hand. I recently took the Network+ exam and was impressed with both the breadth and depth of knowledge required to pass. I have been teaching, writing about, and implementing networks for more than a decade, and yet there was a moment during the Network+ exam where I thought, “Wow, this is really a tough exam!”

You see, CompTIA states that the Network+ exam “covers the configuration, management, and troubleshooting of common wired and wireless network devices.” You simply cannot just study this content. You must practice it. Although I have a solid understanding of networking concepts and technologies, I also have extensive experience implementing and troubleshooting networks. That’s why I was able to easily pass the exam. There really is no other way to correctly answer the many scenario-based questions a candidate will receive during the exam than to have experienced the same or similar scenarios in the real-world or a lab simulation.

Now that I’ve sufficiently challenged you, let me spend some time discussing my recommendations for study resources.

Study Resources

Pearson IT Certification offers an abundance of books and resources to serve you well as you learn how to configure, manage, and troubleshoot wired and wireless networks. Most of the resources can be purchased in book form or as e-books for your tablet reader by visiting www.pearsonitcertification.com.

Safari Books Online

All the resources I reference in the book are available with a subscription to Safari Books Online (https://www.safaribooksonline.com). If you don’t have an account, you can try it free for 10 days.

Primary Resources

First on the list must be Keith Barker and Kevin Wallace’s book CompTIA Network+ N10-006 Cert Guide (ISBN: 9780789754080). These two Cisco Certified Internetwork Experts (CCIE) do an outstanding job of gathering together and organizing all the material you need to study for the Network+ certification exam. If you get the premium edition bundle, you’ll also receive an e-book version, more practice exams, a free copy of the CompTIA Network+ Simulator Lite software, and more than 60 minutes of video mentoring from the author. The practice exams and study materials
on the DVD in the back of the book are worth the price of the book. There is no better resource on the market for a Network+ candidate.

Kevin Wallace also recorded more than 17 hours of video in his *CompTIA Network+ N10-006 Complete Video Course* (ISBN: 9780789754721), which is available free with your Safari Books Online account. You can also purchase it separately at pearsonitcertification.com. Kevin walks you through the full range of topics on the CompTIA Network+ exam using a variety of presentation styles, including live instructor whiteboarding, real-world demonstrations, animations of network activity, dynamic KeyNote presentations, and doodle videos. He also demonstrates hands-on router and switch CLI configuration and troubleshooting in real lab environments, enabling you to learn both the concepts and the hands-on application.

Next on the list must be Emmett Dulaney and Mike Harwood’s *CompTIA Network+ N10-006 Exam Cram, Fifth Edition* (ISBN: 9780789754103). This dense Exam Cram book is jam packed with essential content for the Network+ exam. It also includes a handy, pullout exam cram sheet and a CD with practice exams.

At the end of each day in *31 Days Before Your CompTIA Network+ Certification Exam*, you will find a handy reference of what topics to look at in these three resources. They are referred to as “Certification Guide,” “Video Course,” and “Exam Cram,” respectively.

Supplemental Resources

In addition to the book you hold in your hands, there are two more supplemental resources I recommend to augment your final 31 days of review and preparation.

Michael Taylor’s *CompTIA Network+ N10-006 Hands-on Lab Simulator* (ISBN: 9780789755179) helps you gain hands-on experience with the concepts presented on the Network+ exam. Using the labs in this software, you will be able to experience realistic operating system and network device configuration and troubleshooting. The three types of labs in the software present you with progressively more difficult real-world challenges. Drag-and-drop labs demonstrate network design concepts and allow you to manipulate physical network cables. Matching labs help reinforce key networking concepts. Operating system and Cisco router and switch command-line interface (CLI) simulator labs present real-world configuration and troubleshooting scenarios for you to solve.

Anthony Sequeira is a CCIE and well-respected networking technologies author. His *CompTIA Network+ N10-006 Flash Cards and Exam Practice Pack* (ISBN: 9780789754646) is a compilation of more than 700 flash cards, practice questions, and quick reference sheets to help you prepare for the Network+ exam. Go through the printed flash cards or install the flash card software on your computer. The CD also includes the practice test software as well as 40 performance-based question exercises, including drag-and-drop and command-line interface questions that mimic the kinds of hands-on questions you will face on the actual exam.

So which resources should you buy? That question is largely up to how deep your pockets are or how much you like books. If you’re like me, you want it all—online access for mobile and tablet reading, as well as hard copies for intensive study sessions with a pencil in hand. I admit it: My bookcase is a testament to my “geekness.” However, that’s not practical for most students. So if you are on a budget, then choose one of the primary study resources and one of the supplemental resources, such as the Cert Guide and the Lab Simulator. Whatever you choose, you will be in good hands. Any or all of these authors will serve you well.
Digital Study Guide

Pearson offers this book in an online digital format that includes enhancements such as video, activities, and Check Your Understanding questions:

- Read the complete text of the book on any web browser that supports HTML5, including mobile.
- Watch dozens of unique embedded videos that demonstrate configurations, explain important topics, and visually describe key Network+ exam objectives.
- Reinforce key network concepts with more than 30 dynamic and interactive hands-on exercises, and see the results with the click of a button.
- Test your understanding of the material at the end of each day with more than 300 fully interactive online quiz questions.

31 Days Before Your CompTIA Network+ Certification Exam Digital Study Guide is available at a discount for anyone who purchases this book. You can find details about redeeming this offer in the back of the book.

Throughout this book you’ll see references to the Digital Study Guide enhancements that look like this:

- **Video: Data Encapsulation Summary**
 Refer to the Digital Study Guide to view this video.

- **Activity: Identify the Encapsulation Layer**
 Refer to the Digital Study Guide to complete this activity.

- **Check Your Understanding**
 Refer to the Digital Study Guide to take a 10-question quiz covering the content of this day.

When you are at these points in the Digital Study Guide, you can start the enhancement.

Goals and Methods

The main goal of this book is to provide you with a clear and succinct review of the Network+ exam objectives. Each day’s exam topics are grouped into a common conceptual framework and uses the following format:

- A title for the day that concisely states the overall topic
- A list of one or more CompTIA Network+ N10-006 exam topics to be reviewed
- A “Key Topics” section to introduce the review material and quickly orient you to the day’s focus
An extensive review section consisting of short paragraphs, lists, tables, examples, and graphics
- A “Study Resources” section to provide you a quick reference for locating more in-depth treatment of the day’s topics

The book counts down starting with Day 31 and continues through the exam day to provide post-test information. You will also find a calendar and checklist that you can tear out and use during your exam preparation inside the book.

Use the calendar to enter each actual date beside the countdown day and the exact day, time, and location of your Network+ exam. The calendar provides a visual for the time that you can dedicate to each Network+ exam topic.

The checklist highlights important tasks and deadlines leading up to your exam. Use it to help you map out your studies.

Who Should Read This?
The audience for this guide is anyone finishing his or her preparation for taking the CompTIA Network+ N10-006 exam. A secondary audience is anyone needing a refresher review of Network+ exam topics—possibly before attempting to recertify.

Getting to Know the CompTIA Network+ N10-006 Exam
CompTIA launched the newest version of the Network+ exam, numbered N10-006, in February 2015. The exam covers the configuration, management, and troubleshooting of common wired and wireless network devices. Also included are emerging technologies such as unified communications, mobile, cloud, and virtualization technologies. CompTIA recommends that you are A+ certified and have at least 9 months of networking experience.

Currently for the Network+ exam, you are allowed 90 minutes to answer a maximum of 90 questions. A passing score is 720 on a scale of 100 to 900. If you’ve never taken a certification exam before with Pearson VUE, there is a 2-minute 45-second video titled “What to expect in a Pearson VUE test center” that nicely summarizes the experience. You will find it under “Related Links” at http://www.pearsonvue.com/comptia, or you can search for it on YouTube.

When you get to the testing center and check in, the proctor verifies your identity, gives you some general instructions, and then takes you into a quiet room containing a PC. When you’re at the PC, you have a few things to do before the timer starts on your exam. For instance, you can take the tutorial to get accustomed to the PC and the testing engine. Every time I sit for an exam, I go through the tutorial even though I know how the test engine works. It helps me settle my nerves and get focused. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment.
What Topics Are Covered on the Network+ Exam

Table I-1 summarizes the five domains of the Network+ exam.

<table>
<thead>
<tr>
<th>Domain</th>
<th>% of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Network architecture</td>
<td>22%</td>
</tr>
<tr>
<td>2.0 Network operations</td>
<td>20%</td>
</tr>
<tr>
<td>3.0 Network security</td>
<td>18%</td>
</tr>
<tr>
<td>4.0 Troubleshooting</td>
<td>24%</td>
</tr>
<tr>
<td>5.0 Industry standards, practices, and network theory</td>
<td>16%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Registering for the Network+ N10-006 Exam

If you are starting your *31 Days Before Your CompTIA Network+ Certification Exam* today, register for the exam right now. In my testing experience, there is no better motivator than a scheduled test date staring me in the face. I’m willing to bet it’s the same for you. Don’t worry about unforeseen circumstances. You can cancel your exam registration for a full refund up to 24 hours before taking the exam. So if you’re ready, then you should gather the following information and register right now:

- Legal name
- Social Security or passport number
- Company name
- Valid email address
- Method of payment

You can schedule your exam at any time by visiting http://www.pearsonvue.com/comptia/. I recommend you schedule it for 31 days from now. The process and available test times will vary based on the local testing center you choose.
This page intentionally left blank
WAN Technologies

CompTIA Network+ N10-006 Exam Topics
- 1.4 Explain the characteristics and benefits of various WAN technologies

Key Topics
First today, we review packet switching and circuit switching. Then we review all the various ways networks are connected together through WAN technologies.

Packet Switching and Circuit Switching
The switching function provides communication pathways between two endpoints and manages how data flows between them. The two most common switching methods are circuit switching and packet switching.

Integrated Service Digital Network (ISDN), shown in Figure 29-1, is an example of a circuit-switched network.

Figure 29-1 Circuit Switching ISDN Topology

Circuit switching requires a dedicated physical connection between the sending and receiving devices. For example, parties involved in a phone call have a dedicated link between them for the duration of the conversation. When either party disconnects, the circuit is broken, and the data path is lost. This is an accurate representation of how circuit switching works with network and data transmissions. The sending system establishes a physical connection, and the data is transmitted between the two. When the transmission is complete, the channel is closed.

A Frame Relay network, shown in Figure 29-2, is an example of a packet-switched network.
In packet switching, messages are broken into smaller pieces called packets. Each packet is assigned source and destination addresses. Packets are required to have this information because they do not always use the same path or route to get to their intended destination. Packets can take an alternative route if a particular route is unavailable for some reason.

Table 29-1 compares circuit switching and packet switching.

<table>
<thead>
<tr>
<th>Switching Method</th>
<th>Pros</th>
<th>Cons</th>
<th>Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit switching</td>
<td>Offers a dedicated transmission channel that is reserved until it is disconnected.</td>
<td>Dedicated channels can cause delays because a channel is unavailable until one side disconnects. Uses a dedicated physical link between the sending and receiving devices.</td>
<td>Offers the capability of storing messages temporarily to reduce network congestion.</td>
</tr>
<tr>
<td>Packet switching</td>
<td>Packets can be routed around network congestion. Packet switching makes efficient use of network bandwidth.</td>
<td>Packets can become lost while taking alternative routes to the destination. Messages are divided into packets that contain source and destination information.</td>
<td>The two types of packet switching are datagram and virtual circuit. Datagram packets are independently sent and can take different paths throughout the network. Virtual circuit uses a logical connection between the source and destination device.</td>
</tr>
</tbody>
</table>

WAN Link Options

A variety of different methods can be used to link networks together. To select an appropriate WAN technology, you need the ability to compare one WAN technology to another.
Home and Small Office

Home and small office networks can connect to other networks and the Internet through a variety of methods.

Dialup

Dialup connectivity is done through the Public Switched Telephone Network (PSTN), which is composed of multiple telephone carriers from around the world. Although the bandwidth available on the PSTN is limited, it is more likely to be available in a given location than other wired WAN solutions. A dialup connection can be used to access the Internet by connecting a computer to a modem, connecting the modem to an analog phone line, and dialing in to a service provider. The service provider can then connect to the Internet, as shown in Figure 29-3. Modems in the United States and Canada are limited to 53.3Kbps download and 48.0Kbps upload.

Table 29-2 describes some of the common terminology used to describe PSTNs.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telco</td>
<td>Abbreviation for telephone company.</td>
</tr>
<tr>
<td>Local loop</td>
<td>A local loop is a connection between a customer’s premises and his local telephone central office (CO).</td>
</tr>
</tbody>
</table>
Term Definition

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central office (CO)</td>
<td>A building containing a telephone company’s telephone switching equipment is referred to a central office (CO).</td>
</tr>
<tr>
<td>Tip and ring</td>
<td>The tip and ring wires are the red and green wires found in an RJ-11 wall jack, which carry voice, ringing voltage, and signaling information between an analog device and a telephone’s wall jack.</td>
</tr>
<tr>
<td>Demarc</td>
<td>A demarc, short for demarcation point, is the point in a telephone network where the maintenance responsibility passes from a telephone company to the subscriber.</td>
</tr>
<tr>
<td>Smart jack</td>
<td>A smart jack is a type of network interface device that adds features such as converting between framing formats on digital circuits, supporting remote diagnostics, and regenerating a digital signal.</td>
</tr>
</tbody>
</table>

ISDN

ISDN connections are considerably faster than regular modem connections. ISDN is a digital technology that supports multiple 64Kbps channels on a single connection. ISDN circuits are classified as either a basic rate interface (BRI) circuit or a primary rate interface (PRI) circuit:

- **BRI**—A BRI circuit consists of two 64Kbps bearer (B) channels and one 16Kbps delta (D) channel. The B channels carry voice, video, and data. They can carry two separate voice conversations or they can be combined using PPP multilink. The D channel carries Layer 2 (Q.921) and Layer 3 (Q.931) signaling.

- **PRI**—A PRI circuit is equivalent to a 1.544Mbps T1 circuit. Therefore, it consists of 23 B channels and one 64Kbps D channel.

The components of an ISDN network are shown in Figure 29-4.

Figure 29-4 ISDN Topology

![ISDN Topology Diagram](image-url)
Table 29-3 lists a brief description of the ISDN components shown in Figure 29-4.

Table 29-3 ISDN Components

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>R reference point</td>
<td>The R reference point resides between a non-ISDN device and a terminal adapter (TA).</td>
</tr>
<tr>
<td>S/T reference point</td>
<td>The S/T reference point resides between a network termination 1 (NT1) and a terminal endpoint 1 (TE1).</td>
</tr>
<tr>
<td>U reference point</td>
<td>The U reference point resides between a network termination 1 (NT1) and the wall jack connecting back to an ISDN service provider.</td>
</tr>
<tr>
<td>Terminal adapter (TA)</td>
<td>A TA performs protocol conversion between a non-ISDN device and a terminal endpoint 1 (TE1) device.</td>
</tr>
<tr>
<td>Terminal endpoint 1 (TE1)</td>
<td>A TE1 is a device (such as an ISDN phone) that natively supports ISDN.</td>
</tr>
<tr>
<td>Terminal endpoint 2 (TE2)</td>
<td>A TE2 is a device (such as a PC) that does not natively support ISDN.</td>
</tr>
<tr>
<td>Network termination 1 (NT1)</td>
<td>An NT1 is a device that interconnects a four-wire ISDN circuit and a two-wire ISDN circuit.</td>
</tr>
</tbody>
</table>

DSL

Digital Subscriber Line (DSL) is a group of technologies that provide high-speed data transmission over existing telephone wiring. There are many different varieties of DSL. Together, all these variations are referred to as xDSL. Popular variants include the following:

- **Asymmetric DSL (ADSL)**—ADSL is the most popular variant. It includes a channel for analog voice conversations, a channel for uploads, and a channel for downloads. It is called asymmetrical because the download channel is faster than the upload channel.
- **Symmetric DSL (SDSL)**—SDSL is more suited to business applications because it offers the same speeds for uploads and downloads.
- **Very High Bit-Rate DSL (VDSL)**—VDSL is a variant of ADSL that provides data speeds of up to 13Mbps.

Table 29-4 summarizes the maximum speeds for all the DSL variants.

Table 29-4 DSL Speeds

<table>
<thead>
<tr>
<th>DSL Variation</th>
<th>Upload Speed</th>
<th>Download Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSL</td>
<td>1Mbps</td>
<td>3Mbps</td>
</tr>
<tr>
<td>ADSL2</td>
<td>1.3Mbps</td>
<td>12Mbps</td>
</tr>
<tr>
<td>ADSL2+</td>
<td>1.4Mbps</td>
<td>24Mbps</td>
</tr>
<tr>
<td>ADSL</td>
<td>1.5Mbps</td>
<td>1.5Mbps</td>
</tr>
<tr>
<td>IDSL (ISDN DSL)</td>
<td>144Kbps</td>
<td>144Kbps</td>
</tr>
<tr>
<td>RADSL (Rate-adaptive DSL)</td>
<td>1Mbps</td>
<td>7Mbps</td>
</tr>
<tr>
<td>DSL Variation</td>
<td>Upload Speed</td>
<td>Download Speed</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>VHDSL</td>
<td>1.6Mbps</td>
<td>13Mbps</td>
</tr>
<tr>
<td>HDSL (High bit rate DSL)</td>
<td>768Kbps</td>
<td>768Kbps</td>
</tr>
</tbody>
</table>

PPP

Point-to-Point Protocol (PPP) is a common Layer 2 protocol used on dedicated leased lines. It can carry multiple Layer 3 protocols, such as IPv4 and IPv6. IP uses PPP’s IP control protocol (IPCP). When a link is configured with IP and PPP, IPCP initiates the Link Control Protocol (LCP), which can provide any or all of the following features:

- **Multilink interface**—PPP multilink allows multiple interfaces to be combined into one logical interface.
- **Looped link detection**—A Layer 2 loop (of PPP links) can be detected and prevented.
- **Error detection**—Frames containing errors can be detected and discarded by PPP.
- **Authentication**—PPP provides three methods of authentication methods:
 - **Password Authentication Protocol (PAP)**—PAP performs one-way authentication. Passwords are sent in clear text.
 - **Challenge Handshake Authentication Protocol (CHAP)**—CHAP performs one-way authentication using a three-way handshake (challenge, response, and acceptance). Passwords are not sent across the link.
 - **Microsoft Challenge Handshake Authentication Protocol (MS-CHAP)**—MS-CHAP is a Microsoft-enhanced version of CHAP, offering a collection of additional features, including two-way authentication.

Broadband Cable

Broadband cable is an always-on Internet access method available in areas that have digital cable television. Connectivity is achieved by using a device called a cable modem. It has a coaxial connection for connecting to the provider’s outlet and an unshielded twisted-pair (UTP) connection for connecting directly to a system or to a hub, switch, or router.

The provider’s infrastructure probably has a mix of coaxial and fiber cabling called hybrid fiber-coax (HFC). A broadband cable network is shown in Figure 29-5.
Wireless WAN connection options include satellite, Worldwide Interoperability for Microwave Access (WiMAX), and several varieties of cellular technologies.

Satellite

Some locations do not have the WAN connectivity options, such as DSL connections or cable modems, commonly available in urban areas. However, these locations might be able to connect to the Internet or to a remote office using satellite communications, where a transmission is bounced off of a satellite, received by a satellite ground station, and then sent to its destination using either another satellite hop or a wired WAN connection.

Two different types of broadband Internet satellite services are deployed:

- One-way satellite system—A one-way satellite system requires a satellite card and a satellite dish installed at the end user’s site. Outgoing requests are sent using a phone line. Inbound traffic returns on the satellite link.

- Two-way satellite system—A two-way satellite system, in contrast, provides data paths for both upstream and downstream data. Bidirectional communication occurs directly between the end user’s site and the satellite.
WiMAX

WiMAX (Worldwide Interoperability for Microwave Access) provides wireless Internet broadband access to fixed locations (as an alternative to technologies such as DSL or cable). Depending on the WiMAX service provider, WiMAX coverage areas could encompass entire cities or small countries. Based on the IEEE 802.16 standard, WiMAX can provide data rates up to 1Gbps. Although WiMAX can send data up to 31 miles (50 km), it is most effective within one mile. WiMAX is a popular choice for connecting cell towers in cellular networks.

Cellular Technologies

Some cellular phone technologies (for example, Long-Term Evolution [LTE], which supports a 100Mbps data rate to mobile devices and a 1Gbps data rate for stationary devices) can be used to connect a mobile device (such as a smartphone) to the Internet. Other technologies for cellular phones include the older 2G edge, which provides slow data rates. 2G edge was improved upon with 3G, in addition to the newer 4G, LTE, and Evolved High-Speed Packet Access (HSPA+). Code division multiple access (CDMA) and Global System for Mobile Communications (GSM) are the two major radio systems used in cell phones.

SONET

Synchronous Optical Network (SONET) is a fiber-optic WAN technology that delivers voice, data, and video at speeds starting at 51.84Mbps. SONET uses dense wavelength-division multiplexing (DWDM), which uses erbium-doped fiber amplifiers (EDFA) to amplify the signal and allow it to travel greater distances. An alternative to DWDM is CWDM (coarse wavelength-division multiplexing), which is commonly used with television cable networks. SONET is classified into various Optical Carrier (OCx) levels, as shown in Table 29-5.

<table>
<thead>
<tr>
<th>OCx Level</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-1</td>
<td>51.84Mbps</td>
</tr>
<tr>
<td>OC-3</td>
<td>155.52Mbps</td>
</tr>
<tr>
<td>OC-12</td>
<td>622.08Mbps</td>
</tr>
<tr>
<td>OC-24</td>
<td>1.244Gbps</td>
</tr>
<tr>
<td>OC-48</td>
<td>2.488Gbps</td>
</tr>
<tr>
<td>OC-96</td>
<td>4.976Gbps</td>
</tr>
<tr>
<td>OC-192</td>
<td>9.953Gbps</td>
</tr>
<tr>
<td>OC-768</td>
<td>39.813Gbps</td>
</tr>
</tbody>
</table>

SONET can connect as many as 16 other devices in a linear fashion (similar to a bus topology) or in a ring topology. A metropolitan area network (MAN), as depicted in Figure 29-6, often uses SONET in a ring topology.
Dedicated Leased Lines

A dedicated leased line is typically a point-to-point digital circuit interconnecting two sites. All the bandwidth on that circuit is available to those sites. These circuits can use multiplexing technology to simultaneously carry multiple conversations in different 64Kbps channels. A single 64Kbps channel is called a Digital Signal 0 (DS0). WAN technologies commonly used with dedicated leased lines include the following:

- **T1**—T1 circuits were originally used in telephony networks, with the intent of one voice conversation being carried in a single channel. A T1 circuit is composed of 24 DS0s, which is called a Digital Signal 1 (DS1). The bandwidth of a T1 circuit is 1.544Mbps.

- **T3**—T3 circuits combine 672 DS0s into a single physical connection, which is called a Digital Signal 3 (DS3). A T3 circuit has a bandwidth capacity of 44.7Mbps.

- **E1**—E1 circuits are popular outside of North America and Japan. They contain 32 channels, in contrast to the 24 channels on a T1 circuit, for a bandwidth capacity of 2.048Mbps.

- **E3**—E3 circuits have a bandwidth capacity of 34.4Mbps, which is less than a T3 circuit.

Dedicated leased lines are terminated at the customer’s premises with a channel service unit/data service unit (CSU/DSU), as shown in Figure 29-7.
Enterprise WANs

Initially, dedicated leased lines were used by enterprises to connect various sites. However, as network traffic and the number of required WAN connections grew, leased lines became cost prohibitive. Several technologies emerged to answer the need, including Frame Relay, Asynchronous Transfer Mode (ATM), Multiprotocol Label Switching (MPLS), and Metro Ethernet.

Frame Relay

Frame Relay sites are interconnected using virtual circuits (VCs). Frame Relay is a Layer 2 technology that uses locally significant identifiers called data-link connection identifiers (DLCI). DLCIs identify the VC. A single router interface can have multiple VCs, as shown in Figure 29-8.

Unlike a dedicated leased line, Frame Relay shares a service provider’s bandwidth with other customers of its service provider. Therefore, subscribers might purchase a service level agreement (SLA) to guarantee a minimum level of service. Part of the Frame Relay SLA would be a minimum bandwidth guarantee called a committed information rate (CIR).
During times of congestion, the service provider manages transmission rates using the backward explicit congestion notification (BECN) and forward explicit congestion notification (FECN) bits in the frame relay header. The BECN and FECN bits inform the customers to slow down the transmission rates.

If the service is not congested, a customer might have an SLA that allows transmission rates higher than the CIR. In such cases, the discard eligibility (DE) bit is set in each frame. If the service becomes congested, these frames can be discarded by the Frame Relay service provider.

ATM

ATM is a Layer 2 technology that uses VCs. However, ATM uses a fixed-length frame, called a cell, which includes 48 bytes of data and a 5-byte header, as shown in Figure 29-9.

Figure 29-9 ATM Cell Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFC (4 bits)</td>
<td>The Generic Flow Control (GFC) field is used to indicate congestion.</td>
</tr>
<tr>
<td>VCI (16 bits)</td>
<td>The Virtual Circuit Identifier (VCI) field indicates a VC.</td>
</tr>
<tr>
<td>VPI (8 bits)</td>
<td>The Virtual Path Identifier (VPI) indicates the virtual path, which could contain multiple VCs.</td>
</tr>
<tr>
<td>PTI (3 bits)</td>
<td>The Payload Type Indicator (PTI) indicates the type of payload (for example, user data versus ATM management data).</td>
</tr>
<tr>
<td>HEC (8 bits)</td>
<td>The Header Error Control (HEC) field is used to detect and correct errors in the header.</td>
</tr>
</tbody>
</table>

ATM VCs are identified with a VPI/VCI pair, as shown in Figure 29-10.
MPLS

Multiprotocol Label Switching (MPLS) can accommodate both Frame Relay and ATM on the same backbone. It does this by inserting a 32-bit header between the Layer 2 and Layer 3 headers. The 32-bit header contains a 20-bit label. This label is used to make forwarding decisions within an MPLS cloud. Therefore, the process of routing MPLS frames through an MPLS cloud is commonly referred to as label switching. Figure 29-11 shows an MPLS topology.

Table 29-7 lists the definitions for the components of the MPLS topology shown in Figure 29-11.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPE</td>
<td>A customer premises equipment (CPE) device resides at a customer site.</td>
</tr>
<tr>
<td>ELSR</td>
<td>An edge label switch router (ELSR) resides at the edge of an MPLS service provider’s cloud and interconnects a service provider to one or more customers.</td>
</tr>
<tr>
<td>LSR</td>
<td>A label switch router (LSR) resides as part of a service provider’s MPLS cloud and makes frame-forwarding decisions based on labels applied to frames.</td>
</tr>
</tbody>
</table>
Metro Ethernet
Metro Ethernet is simply Ethernet technology extended into the metropolitan area network (MAN). The customer connects to the service provider through an Ethernet connection (using an RJ-45 connector). This effectively extends the LAN into the MAN. The service provider is responsible for configuring the logical connections between the customer sites. The technologies used with the service provider network are hidden from the customer.

Video: WAN Links (Circuit Switched)
Refer to the Digital Study Guide to view this video.

Video: WAN Links (Packet Switched)
Refer to the Digital Study Guide to view this video.

Activity: Identify the WAN Technology
Refer to the Digital Study Guide to complete this activity.

Study Resources
For today’s exam topics, refer to the following resources for more study.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Location</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certification Guide</td>
<td>7</td>
<td>All</td>
</tr>
<tr>
<td>Video Course</td>
<td>5</td>
<td>All</td>
</tr>
<tr>
<td>Exam Cram</td>
<td>6</td>
<td>WAN Technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internet Access Technologies</td>
</tr>
<tr>
<td>Supplemental Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Simulator</td>
<td>7</td>
<td>Configuring a VPN Client</td>
</tr>
<tr>
<td>Flash Cards</td>
<td>3</td>
<td>WAN Technologies</td>
</tr>
<tr>
<td>Quick Reference</td>
<td>3</td>
<td>WAN Technologies</td>
</tr>
</tbody>
</table>

Check Your Understanding
Refer to the Digital Study Guide to take a 10-question quiz covering the content of this day.
Symbols

2.4GHz band, 165
5GHz band, 165
6to4 tunneling, IPv6, 84
10BASE2, 214
10BASE5, 214
10BASE-T, 214
limitations of, 141
10GBASE-ER, 214
10GBASE-EW, 214
10GBASE-LR, 214
10GBASE-LW, 214
10GBASE-SR, 214
10GBASE-SW, 214
10GBASE-T, 214
100BASE-FX, 214
100BASE-TX, 214
100GBASE-ER4, 214
100GBASE-LR4, 214
100GBASE-SR10, 214
802.1Q, 159
802.1Q tag inside an Ethernet frame, 159
802.11, 215
characteristics of, 216
802.11a, 215
802.11ac, 216
802.11a-ht, 165
802.11b, 216
802.11g, 216
802.11g-ht, 165
802.11n, 216
1000BASE-LH, 214
1000BASE-LX, 214
1000BASE-T, 214
1000BASE-TX, 214
1000BASE-ZX, 214

A

AAA (authentication, authorization, and accounting), 13
AAA configuration, 145-146
AAA server, 268
acceptable use policies (AUP), 219
access control entries (ACEs), 196
access control lists (ACLs), 188, 196
access control models, 197-198
access points (APs), 2, 165
ACEs (access control entries), 196
ACLs (access control lists), 188, 196
misconfigured, 267
active mode, LACP, 146
AD (administrative distance), routing, 93
ad hoc WLAN topologies, 167
Address Resolution Protocol (ARP), 245
address types
IPv4 addressing, 66-67
IPv6, 78
 global unicast addresses, 79
 link-local unicast addresses, 79-80
addressing
classless addressing, 71-73
IPv4 addressing, 64
 address types, 66-67
 private, 66
 public, 66
 structure, 64-65
IPv6 addressing. See IPv6 addressing
collision and broadcast domains, 63-64
MAC addresses, 63
VLSM, 71-73
administrative distance (AD), routing, 93
ADSL (asymmetric DSL), 27
Advanced Encryption Standard (AES), 190
advertisement request message, 161
AES (Advanced Encryption Standard), 190
AH (Authentication Header), 11
algorithms
Dijkstra Shortest Path First (SPF) algorithm, 95-96
STP, 152-153
amplified attacks, 178
amplitude, 163
analog modems, 1
analog phone, 15, 102
ANDing process, 65
antennas, WLANs, 166
anti-malware software, 185
AP placement, wireless configuration issues, 258
APs (access points), 2, 165
wireless access points, 168
application-aware firewalls, 195
application layer
OSI model, 202
TCP/IP, 203, 207
applications, misconfigured, 267
ARP (Address Resolution Protocol), 245
arp, 239, 245-247
arp -a, 245
ARP inspection, 187
AS (autonomous system), 90
asset management, documentation, 122
asymmetric DSL (ADSL), 27
Asynchronous Transfer Mode (ATM), 59
enterprise WANs, 33
ATM (Asynchronous Transfer Mode), 59
enterprise WANs, 33
header fields, 33
VCs (virtual circuits), 33-34
attacks, 180. See also threats
brute force, 179
DoS (denial of service) attack, 177-178
man-in-the-middle, 179
packet abuse, 179
session hijacking, 179
smurf attacks, 178
social engineering, 180
spoofing, 179
VLAN hopping, 180
wireless attacks, 180
zero-day attacks, 180
AUP (acceptable use policies), 219
authentication
multifactor authentication, 189
PPP, 28
two-factor authentication, 189
authentication, authorization, and accounting (AAA), 13
Authentication Header (AH), 11
authentication issues, 268
authentication port-control auto command, 188
autonomous APs, wireless configuration issues, 258
autonomous system (AS), 90

B
backdoor access, 268
backup procedures, 123
backward explicit congestion notification (BECN), 33
bad connections, copper cable, 260
bad wiring, copper, 259
bandwidth, 125
metrics, 92
bandwidth saturation, wireless transmissions, 256
banner grabbing, 269
base10 numbering, 211
baseband, 210
baselines, documentation, 122
basic rate interface (BRI), 26
baud rate, 210
Bayonet Neill-Concelman (BNC) connectors, 41
BECN (backward explicit congestion notification), 33
behavior-based IDSs, 4
Bellman-Ford algorithm, 90
best-effort, QoS, 106
best practices, 223
cable management, 223
cable placement
copper cable, 260
physical layer issues, 263
cable testers, 253
cables
copper, 37
copper cables, 39-40
plenum, 39
PVC cables, 39
twisted-pair, 37-39
copper cable issues, 259-260
fiber cable issues, 260-261
fiber-optic cables, 43
tools for installing, 45-47
twisted-pair cables, 38-39
cabling properties, Ethernet, 214
calculating network addresses, 65-66
call agent, 15, 102
CANs (campus area networks), 58
CAPWAP (Control and Provisioning of Wireless Access Points), 169
Carrier Sense Multiple Access with Collision Detection (CSMA/CD), 209
broadband, 210
broadband cable, 28-29
broadband modems, 2
broadcast addresses, subnetting, 69-70
broadcast domains, 63-64
broadcast storms, 152, 264
broadcast transmission, 67
brute force attacks, 179
buffer overflow, 178
bus topologies, 49-50
business continuity, 183
BYOD (bring-your-own-device), 219
catalyst switch configuration commands, 144-145
CCMP, 190
CCTVs (closed-circuit TVs), 194
CDP (Cisco Discovery Protocol), 264
cells, ATM, 33
cellular technologies, 30
central office (CO), 26
certificates, receiving after exam, 277
certification options, 277-278
certified examination score report, 275
chain of custody, 198
Challenge Handshake Authentication Protocol (CHAP), 28, 189
change management, 224-225
channel service unit/data service unit (CSU/DSU), 272
channels, WLANs, 165-166
wireless installation, 171-172
CHAP (Challenge Handshake Authentication Protocol), 28, 189
characteristics of 802.11, 216
CIDR (classless interdomain routing), 97
CIR (committed information rate), 32
circuit switching, 23
versus packet switching, 24
Cisco catalyst switch configuration commands, 144
Cisco Discovery Protocol (CDP), 264
Cisco Systems, 277
Cisco Unified Communications, 102
Cisco Unified Communications Manager (CUCM), 102
Cisco Unified Communications Manager Express (CME), 102
Cisco Unified Communications Manager IM and Presence, 102
Cisco Unity Connection, 102, 104
Cisco wireless control system heat map, 172
class of service (CoS), 106
classful routing protocols, 91
classification, DiffServ QoS, 106
classless addressing, 71-73
classless interdomain routing (CIDR)
route aggregation, 97
classless routing protocols, 91
client mode, VTP (VLAN Trunking Protocol), 160
client-server network, 55
client-to-site VPNs, 10
clients, network devices, 1
closed-circuit TVs (CCTVs), 194
cloud computing, 101, 111-112
cloud/server-based anti-malware, 185
CME (Cisco Unified Communications Manager Express), 102
CNAME, 18
CO (central office), 26
coarse wavelength-division multiplexing (CSDM), 30
coaxial cables, copper, 39-40
coaixial connectors, 41-42
collision domains, 63-64
collisions, TCP/IP network access layer, 209
command-line tools, 239-240
arp, 245-247
ifconfig, 240-241
nbtstat, 250
netstat, 247-250
nslookup, 250-251
pathping, 244-245
ping, 242-243
show mac-address-table, 252
tracert, 241-242
command switches
arp, 246
netstat, 247
pathping, 245
ping, 243
tracert, 242
commands
arp, 245-247
arp -a, 245
catalyst switch configuration commands, 144-145
nsstat, 250
netstat, 247-250
netstat -a, 132
nslookup, 250-251
pathping, 244-245
ping, 242-243
show, 264, 271
show cdp neighbors detail, 264
show interface, 126
show interface gigabitethernet 0/0, 126
show mac-address-table, 252
traceroute, 271
tracer, 241-242
committed information rate (CIR), 32
community cloud, 112
company security policies, WANs, 272
comparing
circuit switching and packet switching, 24
RADIUS and TACACS+, 13
static and default routing, 87-88
compliance, network segmentation, 138
components
of ISDN, 27
of MPLS (Multiprotocol Label Switching), 34
computer room security, 193
configuration, firewalls, 196-197
configurations
AAA, 145-146
link aggregation, 146
EtherChannel, 147
Link Aggregation Control Protocol (LACP) modes, 146-147
port mirroring, 148
security configuration issues, 267-268
switch configurations, 143-145
wireless configuration issues, 257-258
configuring
EtherChannel, 147
IPv6 addressing, 80-81
EUI-64, 81
SLAAC (stateless address autoconfiguration), 82
switch port security, 186-188
congestion avoidance, QoS, 107
congestion management, DiffServ, 106
connection establishment, TCP, 230
connection termination, TCP, 230
connectionless protocol, 231
connectors
copper, 40
coaxial connectors, 41-42
registered jack connectors, 40-41
RS-232, 41
fiber-optic, 44
content caching, proxy servers, 5
content filters, proxy servers, 5
content virtualization, medianets, 60
context-aware firewalls, 195
Control and Provisioning of Wireless Access Points (CAPWAP), 169
controllers, wireless LAN controllers, 169
conventions for writing
IPv6 addresses, 76-77
IPv6 prefixes, 77-78
convergence
link-state protocols, 96-97
STP, 153
converters, media converters, 45
copper, 37
cables, 37
coaxial cables, 39-40
connectors, 40
coaxial connectors, 41-42
registered jack connectors, 40-41
RS-232, 41
plenum, 39
PVC cables, 39
twisted-pair cabling, 37-39
copper cable issues, 259-260
copper line drivers, 272
CoS (class of service), 106
cost, metrics, 92
CPE (customer premises equipment), 34, 271
WANs, 272
CPU usage, 125
crosstalk, copper cable, 260
cRTP (RTP header compression), 107
CSMA/CD (Carrier Sense Multiple Access with Collision Detection), 209
CSU/DSU (channel service unit/data service unit), 272
CUCM (Cisco Unified Communications Manager), 102-105
CUCUM, 103
customer premises equipment (CPE), 34, 271
WANs, 272
CWDM (coarse wavelength-division multiplexing), 30

D
-d switch, 242
DAS (directly attached storage), 112
data encapsulation, 203-204
MAC sublayer, 213
data flow through layers, 203-204
data integrity, 189
data-link connection identifiers (DLCI), 32
data link layer, OSI model, 202
data link layer issues, networks, 264
Data Over Cable Service Interface Specification (DOCSIS), 215
data rates, OCx (Optical Carrier), 30
data transport, 198
data VLAN, 157
DCs (distributed control systems), 59
DDoS (distributed DoS), 178
DE (discard eligibility) bit, 33
decimal, 211
dedicated leased lines, 31
terminating, 32
default VLAN, 157
delay, 105
metrics, 92
demarc, 26
demarcation point, 272
demilitarized zone (DMZ), 196
denial of service (DoS), 268
dense wavelength-division multiplexing (DWDM), 30
density, APs (access points), 166
description, syslog, 131
design, network design. See network design
design considerations for networks, layers 1, 2, and 3, 118-119
destination NAT (DNAT), 19
device hardening, 185
configuring switch port security, 186-188
data integrity, 189
disabling unused network services, 186
hashing, 189
secure protocols, 186
user authentication, 188-189
wireless security, 190
device saturation, wireless transmission, 256
devices, WLANs, 167
wireless access points, 168
wireless bridges, 170
wireless LAN controllers, 169
wireless routers, 167-168
DHCP (Dynamic Host Configuration Protocol), 15-17
misconfigured, 265
port numbers, 233
DHCP snooping, 187
DHCPv6, 80-82
dialup, home and small office networks, 25-26
differentiated service code point (DSCP), 106
differentiated services, QoS, 106-107
dig, 240
Digital Subscriber Line (DSL), 27-28
Dijkstra Shortest Path First (SPF) algorithm, 95-96
Direct Sequence Spread Spectrum (DSSS), 164
directly attached storage (DAS), 112
disabling unused network services, 186
disaster recovery, 183
discard eligibility (DE) bit, 33
discovering neighbors, 264
distance limitations, copper cable, 260
distance vector, routing protocols, 90
distributed control system (DCS), 59
distributed DoS (DDoS), 178
divide-and-conquer approach, 236
DLCI (data-link connection identifiers), 32
DMZ (demilitarized zone), 196
DMZ devices, 197
DNAT (destination NAT), 19
DNS (Domain Name System), 17-18
misconfigured, 265
port numbers, 232
record types, 18
DNS issues, WANs, 271
DOCSIS (Data Over Cable Service Interface Specification), 215
documentation
network design, 119
asset management, 122
baselines, 122
IP addressing, 119-120
network diagrams, 120-121
policies, 122
procedures, 123
standard business documents, 220
documenting troubleshooting actions, 237
domain configurations, troubleshooting, 267
Domain Name System (DNS), 17-18
misconfigured, 265
record types, 18
domains, 63-64
door access controls, 194
DORA (Discover, Offer, Request, and Acknowledge), 16
DoS (denial of service), 268
DoS (denial of service) attack, 177-178
downgrading, 139
driver updates, 139
drops, 105
DSCP (differentiated service code point), 106
DSL (Digital Subscriber Line)
home and small office networks, 27-28
speeds, 27
DSSS (Direct Sequence Spread Spectrum), 164
dual-stack, IPv6, 83
duplex mismatch, 264
DWDM (dense wavelength-division multiplexing), 30
Dynamic Host Configuration Protocol (DHCP), 15-17
dynamic NAT, 19
dynamic routing metrics, 92
dynamic routing versus static routing, 87-88
dynamic routing protocols, 90-91

E
-e switch, 249
E1 circuits, 31
E3 circuits, 31
EAP (Extensible Authentication Protocol), 189
delay edge and access control, 198
delay edge label switch router (ELSR), 34
ediscovery, 198
EGP (Exterior Gateway Protocol), 89-90
EIA (Electronics Industry Alliance), 215
EIGRP (Enhanced Interior Gateway Routing Protocol), 89
electrical safety, 220
electromagnetic interference (EMI), 263
Electronics Industry Alliance (EIA), 215
electrostatic discharge (ESD), 220
ELSR (edge label switch router), 34
email usage policy, 122
emergency procedures, 221
EMI (electromagnetic interference), 263
encapsulating FC frames, 114
Encapsulating Security Payload (ESP), 11
end-to-end communication, TCP/IP network access layer, 210-211
end-user awareness, 183
Enhanced Interior Gateway Routing Protocol (EIGRP), 89
enterprise WANs, 32
ATM (Asynchronous Transfer Mode), 33
Frame Relay, 32-33
Metro Ethernet, 35
MPLS (Multiprotocol Label Switching), 34
environmental factors, wireless transmissions, 256
environmental monitoring, 127
error detection, PPP, 28
error recovery, 227
TCP, 228-229
escalating issues, 237
ESD (electrostatic discharge), 220
ESP (Encapsulating Security Payload), 11
EtherChannel, 146
configuring, 147
Ethernet, standards, 213
TIA/EIA 568A and 568B standards, 214-215
wired standards, 213-214
wireless standards, 215-216
Ethernet cabling properties, 214
Ethernet frames, encapsulating, 114
Ethernet switches, 142
EUI-64, 80
IPv6, 81
evil twins, 180
exam day, 275
exams, re-taking, 278
extended star topologies, 51
Extensible Authentication Protocol (EAP), 189
Exterior Gateway Protocol (EGP), 89-90

F
facility, syslog, 131
failed exams, retaking, 278
far-end crosstalk (FEXT), 260
fault detection, 125
FC frames, encapsulating, 114
FCoE (fibre channel over Ethernet), 101, 113-114
FDDI (Fiber Distributed Data Interface), 50
FDM (frequency-division multiplexing), 210
feature changes and updates, 139
FECN (forward explicit congestion notification), 33
FEXT (far-end crosstalk), 260
FHRPs (first-hop redundancy protocols), 98-99
FHSS (Frequency-Hopping Spread Spectrum), 164
fiber cable issues, 260-261
Fiber Distributed Data Interface (FDDI), 50
fiber-optic cables, 43
fiber-optic connectors, 44
fibre channel, 113
fibre channel over Ethernet (FCoE), 101, 113-114
fire extinguishers, 221
fire suppression, 221
firewalls, 2-3, 194-195
misconfigured, 267
placement and configuration, 196-197
FireWire, 57
firmware updates, 139
first-hop redundancy protocol (FHRP), 98-99
first responders, security breaches, 198
fixed switches, 142
fixed systems, fire suppression, 221
Flexible NetFlow, 133
flow control, TCP, 229
forensics concepts, 198
forensics report, 198
forward explicit congestion notification (FECN), 33
forwarding STP, 153
four-post racks, 224
FQDN (fully qualified domain name), 17
fraggle attacks, 178
Frame Relay, 59
enterprise WANs, 32-33
packet switching, 23
free-standing racks, 224
frequencies, WLANs, 163-164
frequency bands, WLANs (wireless installation), 171-172
frequency-division multiplexing (FDM), 210
Frequency-Hopping Spread Spectrum (FHSS), 164
frequency-shift keying (FSK), 164
friendly DoS, 178
FSK (frequency-shift keying), 164
FTP, port numbers, 232
F-type connectors, 42
full-mesh topologies, 53-54
fully qualified domain name (FQDN), 17

gateway, 102
VoIP, 15
Gateway Load Balancing Protocol (GLBP), 99
GBIC (gigabit interface converter), 260
Generic Routing Encapsulation (GRE), 12
IPv6, 85
get-bulk-request, 128
get-next-request, 128
get-request, 128
get-response, 128
gigabit interface converter (GBIC), 260
GLBP (Gateway Load Balancing Protocol), 99
global unicast addresses, IPv6, 79
global unicast configuration options, 80
Graziani’s 3-1-4 rule for remembering global unicast address structure, 79
GRE (Generic Routing Encapsulation), 12
IPv6, 85
guest networks, 198

H
H.323, port numbers, 233
hardening devices, 185
configuring switch port security, 186-188
data integrity, 189
disabling unused network services, 186
hashing, 189
secure protocols, 186
user authentication, 188-189
wireless security, 190
hardware and software tools, 252-253
hardware failure
physical layer issues, 263
hardware firewalls, 195
hash-based message authentication code (HMAC), 190
hashing, 189
HBA (host bus adapter), 113
header fields, ATM (Asynchronous Transfer Mode), 33
headers, 228
hextets, 76
HFC (hybrid fiber and coaxial) network, 215
HIDS (host-based IDSs), 4
high availability, 98-99
HMAC (hash-based message authentication code), 190
hold-down timers, 94
home and small office networks, 25
broadband cable, 28-29
dialup, 25-26
DSL (Digital Subscriber Line), 27-28
ISDN, 26-27
PPP (Point-to-Point Protocol), 28
home networks, 58
honeynets, 138
honeypot, network segmentation, 138
hop count, 92
host-based anti-malware, 185
host-based firewalls, 195
host-based IDSs (HIDS), 4
host bus adapter (HBA), 113
host ranges, subnetting, 69-70
Hot Standby Router Protocol (HSRP), 99
HSRP (Hot Standby Router Protocol), 99
ht (high throughput), 165
HTTP, port numbers, 233
HTTP requests, 207
HTTP responses, 207
HTTPS (Hypertext Transfer Protocol Secure), 186
port numbers, 233
hub-and-spoke topologies, 52-53
hubs, network devices, 1
HVAC (heating, ventilation, and air-conditioning), procedures, 221
hybrid cloud, 112
hybrid topologies, 52
Hypertext Transfer Protocol Secure (HTTPS), 186
hypervisors, 108
identifying, 109
IaaS (Infrastructure as a Service), 111
ICA (Independent Computing Architecture), 14
ICS (industrial control system), 59
identifying
hypervisors, 109
problems, 235-236
IDF (intermediate distribution frame), 223
IDS (intrusion detection systems), 3-4
IEEE 802.1X, 188, 197
IEEE 1901.5-2013, 214
ifconfig, 239-241
IGP (Interior Gateway Protocols), 90
IGRP (Interior Gateway Routing Protocol), 89
IKE (Internet Key Exchange), VPNS, 11-12
IMAP (Internet Message Access Protocol), port numbers, 233
IMP (Instant Messaging and Presence), 105
implementing
preventative measures, 237
solutions when troubleshooting, 237
incompatibilities, wireless configuration issues, 257
incorrect VLAN assignment, 264
Independent Computing Architecture (ICA), 14
industrial control system (ICS), 59
industrial networks, 59
Infrared (IR), 57
Infrastructure as a Service (IaaS), 111
infrastructure WLAN topologies, 167
INID (intelligent network interface device), 272
inside global, NAT, 19
inside local, NAT, 19
INSIDE zone devices, 197
insider threats, 180
instability, MAC database instability, 152
installation safety, 220
installing WLANs. See wireless installation
Integrated Service Digital Network (ISDN), 23
integrated services, QoS, 106
intelligent network interface device (INID), 272
interface errors
physical layer issues, 263
WANs, 271
interface monitoring, 126
interference
WANs, 272
wireless transmissions, 255
interior environmental obstacles,
wireless transmission issues, 256
Interior Gateway Protocols (IGP), 90
Interior Gateway Routing Protocol (IGRP), 89
intermediate distribution frames (IDFs), 223
Intermediate System-to-Intermediate System (IS-IS), 89
Internet Key Exchange (IKE), VPNs, 11-12
Internet layer, TCP/IP, 203, 208
Internet Small Computer System Interface (iSCSI), 114-115
Internet usage policies, 122
Inter-Switch link (ISL), 159
intrusion detection systems (IDS), 3-4
intrusion prevention systems (IPS), 3-4
IP addressing
documentation, 119-120
misconfigured IP addressing, 265
ip arp inspection trust, 187
ip dhcp snooping limit rate 5, 187
IP phone, 15, 102
IP routes, missing, 265
ipconfig, 239
IPS (intrusion prevention systems), 3-4
IPsec (IP Security), 186
VPNs, 11-12
IPv4 addressing
address types, 66-67
private, 66
public, 66
structure, 64-65
IPv6 addressing
address types, 78
 global unicast addresses, 79
 link-local unicast addresses, 79-80
configuring, 80-81
 EUI-64, 81
 SLAAC (stateless address autoconfiguration), 82
conventions for writing, 76-77
 prefixes, 77-78
migrating
dual-stack, 83
 tunneling, 83-85
overview, 75-76
ipv6 unicast-routing, 82
IPV6 Unnumbered, 80
IR (Infrared), 57
ISATAP, tunneling (IPv6), 85
iSCSI (Internet Small Computer System Interface), 114-115
ISDN (Integrated Service Digital Network), 23
 components of, 27
home and small office networks, 26-27
IS-IS (Intermediate System-to-Intermediate System), 89
ISL (Inter-Switch link), 159
ISM bands (industrial, scientific, and medical), 165

J
jamming, 269
jitter, 105

K
Kerberos, 189
key fobs, 194
keypad/cipher locks, 194

L
L2F (Layer 2 Forwarding), 12
L2TP (Layer 2 Tunneling Protocol), 12
label switch router (LSR), 34
labeling, best practices, 224
LACP (Link Aggregation Control Protocol), 146
modes, 146-147
LANs (local area networks), 57-58
LAN switches, 143
latency, 273
Layer 2 Forwarding (L2F), 12
Layer 2 Tunneling Protocol (L2TP), 12
layers
data flow through, 203-204
OSI model, 202-203
TCP/IP, 203
LDAP (Lightweight Directory Access Protocol), port numbers, 233
legacy systems, network segmentation, 138
LFI (link fragmentation and interleaving), 107
light meter, 253
Lightweight Access Point Protocol (LWAPP), 169
Lightweight Directory Access Protocol (LDAP), port numbers, 233
limitations of 10BASE-T, 141
line of sight, 273
link aggregation, 146
EtherChannel, configuring, 147
LACP (Link Aggregation Control Protocol) modes, 146-147
Link Aggregation Control Protocol (LACP), 146
link efficiency, 107
link fragmentation and interleaving (LFI), 107
Link Layer Discovery Protocol (LLDP), 264
link-local unicast addresses, IPv6, 79-80
link-state advertisements (LSA), 95
link-state database (LSDB), 95
link-state routing protocols, 91, 94
convergence, 96-97
Dijkstra Shortest Path First (SPF) algorithm, 95-96
LSDB (link-state database), 95
LLC (Logical Link Control) sublayer, 213
LLDP (Link Layer Discovery Protocol), 264
load, metrics, 92
load balancers, 5-6
load balancing, network segmentation, 138
local AAA authentication, 145
local addressing, 63
collision and broadcast domains, 63-64
MAC addresses, 63
local area networks (LANs), 57-58
local group configurations, troubleshooting, 267
local loop, 25
Logical Link Control (LLC) sublayer, 213
logical topology diagrams, 120
looking glass sites, 253
loopbacks, 272
looped link detection, PPP, 28
loops, routing loop prevention, 94
loss of Internet connectivity, WANs, 271
LSA (link-state advertisements), 95
LSDB (link-state database), 95
LSR (label switch router), 34
LWAPP (Lightweight Access Point Protocol), 169

M

MAC address filtering, 188
MAC address OUI, 269
MAC (Media Access Control) addresses, 142
 local addressing, 63
 static, 188
 switch forwarding, 143
MAC database instability, 152
MAC sublayer, 213
main distribution frames (MDF), 223
major updates, 139
malicious employees, 180
malicious users, 268
malware, 268
 anti-malware software, 185
MAM (mobile application management), 219
MAN (metropolitan area network), 35, 59
man-in-the-middle attacks, 179
managed switches, 142
management, medianets, 60
Management Information Base (MIB), 127-130
management VLANs, 157
managing change, 224-225
mantraps, 194
manual tunneling, IPv6, 84
marking DiffServ QoS, 106
master service agreement (MSA), 220
material safety data sheet (MSDS), 220
MDF (main distribution frames), 223
MDIX (medium dependent interface crossover), 259
MDM (mobile device management), 219
media, network devices, 1
Media Access Control (MAC) sublayer, 213
media converters, 45
Media Gateway Control Protocol (MGCP), port numbers, 233
medianets, 60
medium dependent interface crossover (MDIX), 259
memorandum of understanding (MOU), 220
memory usage, 125
mesh WLAN topologies, 167
message format, syslog, 131-132
message types, SNMP (Simple Network Management Protocol), 127-128
metrics, dynamic routing metrics, 92
Metro Ethernet, 35
metropolitan area network (MAN), 35, 59
MGCP (Media Gateway Control Protocol), port numbers, 233
MIB (Management Information Base), 127
 SNMP (Simple Network Management), 128-130
Microsoft Challenge Handshake Authentication Protocol (MS-CHAP), 28, 189
migrating IPv6
dual-stack, 83
tunneling, 83-85
MIMO (multiple-input and multiple-output), 166
wireless configuration issues, 258
minor updates, 139
Miredo, 85
misconfigured ACLs/applications, 267
misconfigured DHCP, 265
misconfigured DNS, 265
misconfigured firewalls, 267
misconfigured IP addressing, 265
mismatched channels, wireless transmissions, 255
missing IP routes, 265
MMF (multimode fiber), 43
MNEMONIC, syslog, 131
mobile application management (MAM), 219
mobile device management (MDM), 219
mobile device policies, 122
mobility, medianets, 60
modems
 analog modems, 1
 broadband modems, 2
modes
 LACP (Link Aggregation Control Protocol), 146-147
 VTP (VLAN Trunking Protocol), 160
modular switches, 142
modulation, 209
MOU (memorandum of understanding), 220
MPLS (Multiprotocol Label Switching), 34, 59
MSA (master service agreement), 220
MS–CHAP (Microsoft Challenge Handshake Authentication Protocol), 28, 189
MSDS (material safety data sheet), 220
MTU (maximum transmission unit), 264
 black hole, 264
MU (multiuser), 166
multicast transmission, IPv4, 67
multifactor authentication, 189
multilayer switches, network devices, 1
multilink interface,PPP, 28
multimeters, 252
multimode fiber (MMF), 43
multiple frame transmission, 152
multiple-input and multiple-output (MIMO), 166
Multiprotocol Label Switching (MPLS), 34, 59
multiuser, 166
MUMIMO (multiuser multiple-input and multiple-output), 166
MX (mail exchange), 18

N
NAC (Network Access Control), 123
NAS (network attached storage), 112-113
NAT (Network Address Translation), 18-20, 66
National Institute of Standards and Technology (NIST), 111
native VLAN, 157
nbtstat, 239, 250
nbtstat -r, 250
near-end crosstalk (NEXT), 260
Near Field Communication (NFC), 57, 194
Nessus Home Vulnerability Scanner, 182
NetBIOS, port numbers, 232
NetFlow, 133-135
 collector functions, 134
netstat, 239, 247-250
netstat -a command, 132
netstat -e, 249
netstat -n, 248
netstat -r, 249
Network Access Control (NAC), 123
network access layer, TCP/IP, 203, 208
collisions, 209
 end-to-end communication, 210-211
 transmission techniques, 209-210
Network Address Translation (NAT), 18-20, 66
network addresses, calculating, 65-66
network topologies 293

network admission procedures, 123
network attached storage (NAS), 112-113
network-based anti-malware, 185
network-based firewalls, 195
network-based IDSs (NIDS), 4
network closets, 193

network design, 117
considerations for layers 1, 2, and 3, 118-119
documentation, 119
 asset management, 122
 baselines, 122
 IP addressing, 119-120
 network diagrams, 120-121
 policies, 122
 procedures, 123
sample approach to, 117-118
wireless considerations, 119

network devices, 1
analog modems, 1
AP (access point), 2
broadband modems, 2
clients, 1
firewalls, 2-3
hubs, 1
IDS (intrusion detection systems), 3-4
IPS (intrusion prevention systems), 3-4
load balancers, 5-6
media, 1
multilayer switches, 1
packet shapers, 5
proxy servers, 6
routers, 1
servers, 1
switches, 1
VPN concentrators, 6

network diagrams, documentation, 120-121

network infrastructures, 57
CANs (campus area networks), 58
industrial networks, 59
LANs (local area networks), 57-58
MANs (metropolitan area networks), 59
medianets, 60
PANs (personal area networks), 57
WANs (wide area networks), 59

network interface unit (NIU), 272

network issues
data link layer issues, 264
network layer issues, 265
physical layer issues, 263-264

network layer, OSI model, 202
network layer issues, 265

network management system (NMS), 127

network models, 201-202
data flow through layers, 203-204
OSI model, 201
 layers, 202-203
TCP/IP model, 201
 layers and protocols, 203

network monitoring, 125-127
port scanners, 132-133
 packet flow monitors, 133-135
 packet sniffers, 133
SNMP (Simple Network Management Protocol), 127
 message types, 127-128
 MIB, 128-130
 versions, 128
syslog, 130
 message format, 131-132
 operations, 130
 security levels, 130-131

network monitoring procedures, 123
Network News Transport Protocol (NNTP), port numbers, 233
network operating system (NOS), 55
network policies, 219
network segmentation, 137-138
network termination 1 (NT1), 27
Network Time Protocol (NTP), 233
network topologies, 49
 bus, 49-50
 client-server, 55
network topologies

extended star, 51
full-mesh, 53-54
hub-and-spoke, 52-53
partial mesh, 54-55
peer-to-peer networks, 56-57
ring, 50-51
star, 51

network usage policies, 122

networking device virtualization, 109-110

networks, WAN link options, 24
dedicated leased lines, 31
enterprise WANs, 32-35
home and small office networks, 25-29
SONET (Synchronous Optical Network), 30
wireless, 29-30

NEXT (near-end crosstalk), 260

NFC (Near Field Communication), 57, 194

NIC teaming misconfiguration, 264

NIDS (network-based IDSs), 4

NIST (National Institute of Standards and Technology), 111

NIU (network interface unit), 272

NMS (network management system), 127

NNTP (Network News Transport Protocol), port numbers, 233

non-persistent agents, 197

NOS (network operating system), 55

nslookup, 240-251

nslookup tool, 265

NT1 (network termination 1), 27

NTP (Network Time Protocol), port numbers, 233

numbering systems, TCP/IP, 211

offboarding, 122

omnidirectional antenna, 166

on mode, LACP, 146

onboarding, 122

one-way satellite system, 29

open, copper cable, 259

open networks, wireless configuration issues, 257

open ports, 181

OSPF (Open Shortest Path First), 89, 95

operating systems, unpatched, 268

operations

RSTP, 155

syslog, 130

VTP (VLAN Trunking Protocol), 160-161

Optical Carrier (OCx), 30

optical time domain reflectometer (OTDR), 47

Organizationally Unique Identifier (OUI), 63, 269

Orthogonal Frequency-division Multiplexing (OFDM), 165

OS updates, 139

OSI model, 201

layers, 202-203

OSPF (Open Shortest Path First), 89, 95

OUI (Organizationally Unique Identifier), 63, 269

outside global, NAT, 19

outside local, NAT, 19

OUTSIDE zone devices, 197

overlapping channels, wireless transmissions, 255

ownership policies, 122

P

PaaS (Platform as a Service), 111

packet abuse, 179

packet flow monitors, 133-135

packet shapers, 6
packet sniffers, 133
packet switching, 23-24
versus circuit switching, 24
PAgP (Port Aggregation Protocol), 146
PANs (personal area networks), 57
PAP (Password Authentication Protocol), 28, 188
partial mesh topologies, 54-55
passive mode, LACP, 146
Password Authentication Protocol (PAP), 28, 188
PAT (Port Address Translation), 19-20
patches, 139, 181
pathping, 239, 244-245
PBX (Private Branch Exchange), 15, 102
peer-to-peer networks, 56-57
penetration testing, 182
performance optimization, network segmentation, 138
perimeter security, 193
permanent DoS, 178
persistent agents, 197
personal area networks (PANs), 57
personal software policies, 122
phase, 163
phase-shift keying (PSK), 164
physical layer, OSI model, 202
physical layer issues, networks, 263-264
physical security, 193-194
physical topology diagrams, 120
pin positions, 214
ping, 239, 242-243
ping –6, 239
ping6, 239
ping of death, 178
placement of firewalls, 196-197
plans of action, establishing, 236
Platform as a Service (PaaS), 111
PLCs (programmable logic controllers), 59
plenum, 39
POD (point of demarcation), 272
PoE (Power over Ethernet), 142
point of demarcation (POD), 272
point-to-multipoint topologies, 53
Point-to-Point Protocol (PPP), 28
Point-to-Point Tunneling Protocol (PPTP), 12
poison reverse, 94
policies
AUP (acceptable use policies), 219
company security policies (WANs), 272
documentation, 122
network policies, 219
safety policies, 220-221
security policies, 219
policing QoS, 107
polyvinyl chloride (PVC), 39
POP3, port numbers, 233
Port Address Translation (PAT), 19-20
Port Aggregation Protocol (PAgP), 146
port costs, STP, 154
port mirroring, configurations, 148
port numbers, 231-232
protocols, 232-233
port roles
RSTP, 155-156
STP, 155
port scanners, 132-133
packet flow monitors, 133-135
packet sniffers, 133
port states, 155
ports
open ports, 181
source ports, 231
positive acknowledgement, 229
post-exam information, receiving your certificate, 277
posture assessment, 197
power anomalies, physical layer issues, 263
power failures, physical layer issues, 263
power levels, wireless configuration issues, 257
power management, 224
power monitoring, 127
Power over Ethernet (PoE), 142
powered ports, 142
PPPoE (Point-to-Point Protocol), home and small office networks, 28
PPTP (Point-to-Point Tunneling Protocol), 12
prefixes, writing for IPv6, 77
presentation layer, OSI model, 202
preventative measures, implementing, 237
preventing routing loops, 94
PRI (primary rate interface), 26
private, IPv4 addressing, 66
Private Branch Exchange (PBX), 15, 102
private cloud, 111
private networks, network segmentation, 138
problems, identifying, 235-236
procedures
documentation, 123
emergency procedures, 221
fire suppression, 221
HVAC (heating, ventilation, and air-conditioning), 221
for security breaches, 198
procedures for adding new users, 123
procedures for reporting violations, 123
programmable logic controllers (PLCs), 59
protocol analyzer, 253
protocol weaknesses, 253
protocols
BGP (Border Gateway Protocol), 89
CHAP (Challenge Handshake Authentication Protocol), 28, 189
classful routing protocols, 91
classless routing protocols, 91
DHCP (Dynamic Host Configuration Protocol), 15-17
distance vector routing protocols, 90
EAP (Extensible Authentication Protocol), 189
EGP (Exterior Gateway Protocol), 89-90
EIGRP (Enhanced Interior Gateway Routing Protocol), 89
GLBP (Gateway Load Balancing Protocol), 99
GRE (Generic Routing Encapsulation), 12
HSRP (Hot Standby Router Protocol), 99
HTTPS (Hypertext Transfer Protocol Secure), 186
ICA (Independent Computing Architecture), 14
IGP (Interior Gateway Protocols), 90
IGRP (Interior Gateway Routing Protocol), 89
IPsec, 186
IS-IS (Intermediate System-to-Intermediate System), 89
Kerberos, 189
L2F (Layer 2 Forwarding), 12
L2TP (Layer 2 Tunneling Protocol), 12
link-state routing, 94
convergence, 96-97
Dijkstra Shortest Path First (SPF) algorithm, 95-96
LSDB (link-state database), 95
link-state routing protocols, 91
MS-CHAP (Microsoft Challenge Handshake Authentication Protocol), 28, 189
OSPF (Open Shortest Path First), 89
PAP (Password Authentication Protocol), 28, 188
port numbers, 232-233
PPTP (Point-to-Point Tunneling Protocol), 12
RADIUS, 13
RDP (Remote Desktop Protocol), 14
RIP (Routing Information Protocol), 89
RIPvng (Routing Information Protocol next generation), 89
RIPv2 (Routing Information Protocol version 2), 89
routing protocols, 88
RTP (Real-time Transport Protocol), 15
secure protocols, 186
SFTP (Secure File Transfer Protocol), 186
SIP (Session Initiation Protocol), 15
SNMPv3 (Simple Network Management Protocol version 3), 186
SSH (Secure Shell), 14, 186
SSL (Secure Sockets Layer), 12, 186
TACACS+, 13
TCP (Transmission Control Protocol), 227
connection establishment, 230
collection termination, 230
error recovery, 228, 229
flow control, 229
headers, 228
TCP/IP model, 203
Telnet, 14
TLS (Transport Layer Security), 12, 186
UDP (User Datagram Protocol), 227, 231
headers, 228
unsecure protocols, 181
VRRP (Virtual Router Redundancy Protocol), 99
proximity readers, 194
proxy servers, 5
pruning, VTP (VLAN Trunking Protocol), 161-162
PSK (phase-shift keying), 164
PSTN (public switched telephone network), 25, 103
PTR records, 18
public cloud, 112
public IP addressing, IPv4 addressing, 66
public networks, network segmentation, 138
Public Switched Telephone Network (PSTN), 25, 103
punch down tool, 46
PVC (polyvinyl chloride), 39
Q
QAM (quadrature amplitude modulation), 164
QoE (quality of experience), medianets, 60
QoS (Quality of Service), 101, 105-106
DiffServ, 106-107
quadrature amplitude modulation (QAM), 164
quality of experience (QoE), medianets, 60
Quality of Service. See QoS
quarantine networks, 197
R
R reference point, 27
-r switch, 249
rack systems, best practices, 224
radio frequency (RF), vulnerabilities, 181
radio frequency interference (RFI), 263
radio waves, 163
RADIUS (Remote Authentication Dial-In User Service), 13, 268
rain fade, 273
Rapid STP (RSTP), 151
RAS (remote access service), 14
RDP (Remote Desktop Protocol), 14
port numbers, 233
read-only (ro), 128
read-write (rw), 128
real-time Protocol (RTSP), 233
Real-time Transport Protocol (RTP), 15, 102
Recommended Standard 232 (RS-232), 41
record types, DNS (Domain Name System), 18
redundant switched topology, 152
reflected DoS (DDoS), 178
registered jack connectors, 40-41
reliability, metrics, 92
remote access service (RAS), 14
remote access services, 12-14
 AAA (authentication, authorization, and accounting), 13
Remote Authentication Dial-In User Service (RADIUS), 13, 268
Remote Desktop Protocol (RDP), 14
 port numbers, 233
remote terminal units (RTU), 59
re-taken exams, 278
reverse proxy, 5
RFI (radio frequency interference), 263
RF (radio frequency), vulnerabilities, 181
RG-6, 40
RG-58, 40
RG-59, 40
ring topologies, 50-51
SONET, 31
RIP (Routing Information Protocol), 89
 metrics, 92
RIPng (Routing Information Protocol next generation), 89
RIPv2 (Routing Information Protocol version 2), 89
risk, DoS (denial of service) attack, 177-178
risk management, 182-183
RJ-11 (type 11 registered jack), 40
RJ-45 (type 45 registered jack), 40
RJ-48C (type 48C registered jack), 40
ro (read-only), 128
rogue access points, wireless configuration issues, 257
rogue AP, 180
rollover cables, 39
round trip timer (RTT), 241
route aggregation, 97-98
route poisoning, 94
route redistribution, 90
router configurations, WANs, 272
routers
 network devices, 1
 wireless routers, 167-168
routing, administrative distance (AD), 93
Routing Information Protocol (RIP), 89
Routing Information Protocol next generation (RIPng), 89
Routing Information Protocol version 2 (RIPv2), 89
routing loop prevention, 94
routing protocols, 88
 AS (autonomous system), 90
 classful routing protocols, 91
 classless routing protocols, 91
 distance vector, 90
 link-state routing protocols, 91
 route redistribution, 90
RS-232, 41
rsh (remote shell), port numbers, 232
RSTP (Rapid STP), 151
 operations, 155
 port roles, 155-156
 port states, 155
RTP (Real-time Transport Protocol), 15, 102
 port numbers, 233
RTP header compression (cRTP), 107
RTSP (Real-Time Streaming Protocol), port numbers, 233
RTT (round trip timer), 241
RTU (round trip units), 59
rw (read-write), 128
S
SaaS (Software as a Service), 111
safety policies, 220-221
same service set identifier (SSID), 171
sampling size, 210
SAN (storage area network), 112
 DAS (directly attached storage), 112
signature-based IDSs

fibre channel, 113
fibre channel over Ethernet (FCoE), 113-114
iSCSI (Internet Small Computer System Interface), 114-115
NAS (network attached storage), 112-113

satellites, 29

WANs, 273

SCADA (Supervisory Control and Data Acquisition), 59

SCADA systems, network segmentation, 138

SCCP (Skinny Client Control Protocol), 103

score report, 275

scores, certified score report, 275

SCP, port numbers, 232

SDN (software-defined networking), 110

SDSL (symmetric DSL), 27

Secure File Transfer Protocol (SFTP), 186

secure protocols, 186

Secure Shell (SSH), 14, 186

Secure Sockets Layer (SSL), 12, 186

security

access control models, 197-198
firewalls, 194-195
placement and configuration, 196-197
medianets, 60
network segmentation, 138
physical security, 193-194
risk management, 182-183

switch port security, configuring, 186-188

troubleshooting, 268-269
vulnerabilities, 181
wireless security, 190

security breaches, procedures for, 198
security configuration issues, 267-268

security guards, 194

Security Information and Event Management (SIEM), 126

security levels, syslog, 130-131

security monitoring, 125

security policies, 219

security procedures, 123

seq no, syslog, 131

server mode, VTP (VLAN Trunking Protocol), 160

server rail racks, 224

server virtualization, 108-109

servers

network devices, 1
proxy servers, 5

service level agreement (SLA), 220, 272

session control, medianets, 60

Session Initiation Protocol (SIP), 15, 102

port numbers, 233

session layer, OSI model, 202

sessions hijacking, 179

set-request, 128

severity, syslog, 131

SFTP (Secure File Transfer Protocol), 186

Secure Sockets Layer (SSL), 12, 186

Secure Shell (SSH), 14, 186

Secure Sockets Layer (SSL), 12, 186

security

access control models, 197-198
firewalls, 194-195
placement and configuration, 196-197
medianets, 60
network segmentation, 138
physical security, 193-194
risk management, 182-183

switch port security, configuring, 186-188

troubleshooting, 268-269
vulnerabilities, 181
wireless security, 190

security breaches, procedures for, 198
security configuration issues, 267-268

security guards, 194

Security Information and Event Management (SIEM), 126

security levels, syslog, 130-131
Simple Network Management Protocol. See SNMP

Simple Network Management Protocol version 3 (SNMPv3), 186

Simple Network Time Protocol (SNTP), port numbers, 233

simultaneous wired/wireless connections, physical layer issues, 264

single-mode fiber (SMF), 43

single point of failure, 183

single sign-on, 189

SIP (Session Initiation Protocol), 15, 102

port numbers, 233

site surveys, WLANs, 172

site-to-site VPNs, 9

Skinny Client Control Protocol (SCCP), 103

SLA (service level agreement), 220, 272

SLAAC (Stateless Address Autoconfiguration), 80-82

small form-factor pluggable (SFP), 260

smart jacks, 26, 272

SMB (Server Message Block), port numbers, 232

SMF (single-mode fiber), 43

SMTP (Simple Mail Transfer Protocol), port numbers, 233

smurf attack, 178

SNAT (Static NAT), 19

snips, 46

SNMP (Simple Network Management Protocol), 127

message types, 127-128

MIB (Management Information), 128-130

port numbers, 233

versions, 128

SNMP Trap, port numbers, 233

SNMPv1, 128

SNMPv2c, 128

SNMPv3, 128, 186

SNTP (Simple Network Time Protocol), port numbers, 233

SOA (start of authority) record, 18

social engineering, 180

software, patches/updates, 139

Software as a Service (SaaS), 111

software-defined networking (SDN), 110

software firewalls, 195

software procedures, 123

solutions, 237

SONET (Synchronous Optical Network), 30

SOW (statement of work), 220

spanning tree port states, 154

Spanning Tree Protocol (STP), 151, 264

SPB (Shortest Path Bridging), 92, 156

speed mismatch, 264

speed spectrum, 164

speed test sites, 253

speeds, DSL, 27

SPF (Dijkstra Shortest Path First) algorithm, 95-96

SPI (stateful packet inspection) firewalls, 195

split horizon, 94

split horizons, WANs, 271

split pairs, copper cable, 260

spoofing, 179

spread spectrum, 164

SSH (Secure Shell), 14, 186

port numbers, 232

SSID (same service set identifier), 171

SSL (Secure Sockets Layer), 12, 186

S/T reference point, 27

standard business documents, 220

standards, Ethernet, 213

TIA/EIA 568A and 568B standards, 214-215

wired standards, 213-214

wireless standards, 215-216
star bus topologies, 52
star topologies, 51
stateful inspection firewalls, 195
stateful packet inspection (SPI) firewalls, 195
Stateless Address Autoconfiguration (SLAAC), 80
IPv6, 82
stateless firewalls, 195
statement of work (SOW), 220
static MAC addresses, 188
Static NAT (SNAT), 19
static routes, 88
static routing versus dynamic routing, 87-88
storage area networks (SANs), 112
DAS (directly attached storage), 112
fibre channel, 113
fibre channel over Ethernet (FCoE), 113-114
iSCSI (Internet Small Computer System Interface), 114-115
NAS (network attached storage), 112-113
storage space, 125
STP (shielded twisted-pair), 37, 152
algorithms, 152-153
port costs, 154
port roles, 155
port states, 155
STP (Spanning Tree Protocol), 151, 264
STP convergence, 153
structure, IPv4 addressing, 64-65
stub networks, 88
study resources, WLANs, 175-176
subnet masks, 65, 69
subnet multipliers, 69
subnets, 69-70
subnetting, 68
determining how many bits to borrow, 68-69
determining subnet masks, 69
determining subnet multiplier, 69
examples, 70-71
listing subnets, host ranges and broadcast addresses, 69-70
subset advertisement message, 161
summary advertisement message, 161
Supervisory Control And Data Acquisition (SCADA), 59
surveys, wireless site surveys (WLANs), 172
switch configuration, 143-145
switch forwarding, MAC addresses, 143
switch port security, configuring, 186-188
switch types, 142
switches
-e, 249
Ethernet switches, 142
evolving from bridges, 141-142
LAN switches, 143
multilayer switches, 1
network devices, 1
powered, 142
-r, 249
unpowered ports, 142
virtual switches, 109
switching,
evolution to, 141
from bridges to switches, 141-142
switch types, 142
logic, 142-143
switching loops, 264
switchport port-security, 188
switchport port-security mac-address sticky, 188
symmetric DSL (SDSL), 27
Synchronous Optical Network (SONET), 30
syslog, 130
message format, 131-132
operations, 130
security levels, 130-131
T

T1 circuits, 31
T3 circuits, 31
TA (terminal adapter), 27
TACACS (Terminal Access Controller Access-Control System), 268
TACACS+ (Terminal Access Controller Access-Control System Plus), 13
TCP (Transmission Control Protocol), 227
connection establishment, 230
connection termination, 230
error recovery, 228-229
flow control, 229
headers, 228
TCP SYN flood, 178
TCP/IP
application layer, 207
Internet layer, 208
network access layer, 208
collisions, 209
end-to-end communication, 210-211
transmission techniques, 209-210
numbering systems, 211
transport layer, 207-208
TCP/IP models, 201
data flow through layers, 203
TCP/IP Transport Layer, 227
TDM (time-division multiplexing), 209
TE1 (terminal endpoint 1), 27
TE2 (terminal endpoint 2), 27
telco, 25
Telecommunications Electronics Material Protected from Emanating Spurious, 181
Telecommunications Industry Association (TIA), 215
Telnet, 14
port numbers, 232
TEMPEST (Telecommunications Electronics Material Protected from Emanating Spurious), 181
Temporal Key Integral Protocol (TKIP), 190
Teredo (RFC 4380), 85
Terminal Access Controller Access-Control System (TACACS), 268
Terminal Access Controller Access-Control System Plus (TACACS+), 13
terminal adapter (TA), 27
terminal endpoint 1 (TE1), 27
terminal endpoint 2 (TE2), 27
terminating dedicated leased lines, 32
testing troubleshooting theories, 236
testing labs, network segmentation, 138
TFTP (Trivial File Transfer Protocol), port numbers, 232
theories, 236
thick Aps, wireless configuration issues, 258
threats, 180. See also attacks
insider threats, 180
malicious employees, 180
protocol weaknesses, 179
TIA (Telecommunications Industry Association), 215
TIA/EIA 568A standards, Ethernet, 214-215
TIA/EIA 568B standards, Ethernet, 214-215
time-division multiplexing (TDM), 209
Time to Live (TTL) field, 94
timestamp, syslog, 131
tip and ring, 26
TKIP (Temporal Key Integral Protocol), 190
TLS (Transport Layer Security), 12, 186
Token Ring, 50
toner probe, 253
tools
for cable installation, 45-47
command-line tools, 239-240
arp, 245-247
ifconfig, 240-241
TRILL (Transparent Interconnection of Lots of Links), 156
Trivial File Transfer Protocol (TFTP), port numbers, 232
troubleshooting, 235
documenting findings, actions, and outcomes, 237
establishing plans of action, 236
establishing theories, 236
identifying problems, 235-236
implementing solutions, 237
security, 268-269
security configuration issues, 267-268
testing theories, 236
verifying solutions/implementing preventative measures, 237
wireless configuration issues, 257-258
wireless transmission issues, 255-256
interior environmental obstacles, 256
trunking VLANs, 158-159
TTL (Time to Live) field, 94
tunneling, IPv6, 83-85
twisted-pair cabling, copper, 37-39
two-factor authentication, 189
two-post racks, 224
two-way satellite system, 29
Tx/Rx reverse, copper cable, 259
Type 1 Bare Metal Hypervisor Approach, 108
Type 2 hosted hypervisor, 108
Type 2 hypervisors, 108
type 11 registered jack (RJ-11), 40
type 45 registered jack (RJ-45), 40
type 48C registered jack (RJ-48C), 40
type of service (ToS), 106
types of switches, 142
U
U reference point, 27
UC (unified communications), 14-15
UDP (User Datagram Protocol), 227, 231
headers, 228
V

variable-length subnet masking (VLSM), 91

VCs (virtual circuits), 32
 ATM, 33-34

VDSL (very high bit-rate DSL), 27

verifying solutions, 237

versions, SNMP (Simple Network Management Protocol), 128

very high bit-rate DSL (VDSL), 27

video monitoring, 194

video teleconferencing (VTC), 60

virtual circuits (VCs), 32
 ATM, 33-34

virtual local area networks. See VLANs

virtual private networks. See VPNs

Virtual Router Redundancy Protocol (VRRP), 99

tions, 159-160

modes, 160

operations, 160-161

pruning, 161-162

VLSM (variable-length subnet masking), 71-73, 91

V

unencrypted channels, 181

unicast transmission, 66

unidirectional antennas, 166

unified communications, 101-103
 cloud computing, 111-112
 CUCM, 104-105
 PSTN (public switched telephone network), 103
 QoS. See QoS

 virtualization, 107
 networking device virtualization, 109-110
 server virtualization, 108-109
 software-defined networking, 110

VoIP, 102-104

unified communications (UC), 14-15

Unified Threat Management (UTM) firewalls, 195

uninterruptible power supplies (UPS), 263

Unity, 102-105

universal serial bus (USB), 57

unmanaged switches, 142

unpatched firmware, 268

unpowered ports, switches, 142

unsecure protocols, 181

unshielded twisted-pair (UTP), 37-38

untested updates, wireless configuration issues, 257

unused network services, disabling, 186

updates, 139, 181

upgrading, 139

UPS (uninterruptible power supplies), 263

USB (universal serial bus), 57

user account policies, 122

user authentication, 188-189

User Datagram Protocol (UDP), 227, 231
 headers, 228

UTM (Unified Threat Management) firewalls, 195

UTP (unshielded twisted-pair), 37-38
voice over IP. See VoIP
Voice VLANs, 158
VoIP (Voice over IP), 102-104
elements of, 14-15
VoIP network topology, 15
VPN concentrators, 6
VPNs (virtual private networks), 9
client-to-site VPNs, 10
IKE (Internet Key Exchange), 11-12
IPsec (Internet Protocol Security), 11-12
protocols, 12
site-to-site VPNs, 9
VRRP (Virtual Router Redundancy
Protocol), 99
VTC (video teleconferencing), 60
VTP (VLAN Trunking Protocol),
159-160
modes, 160
operations, 160-161
pruning, 161-162
vulnerabilities, 181
vulnerability assessments, 182
vulnerability patches, 139
vulnerability scanning, 182

W
WAN (wide area network), 59
common issues, 271
company security policies, 272
CPE (customer premises equipment), 272
DNS issues, 271
interface errors, 271
interference, 272
loss of Internet connectivity, 271
router configurations, 272
satellites, 273
split horizons, 271
WAN link options, 24
dedicated leased lines, 31
terprise WANs, 32
ATM (Asynchronous Transfer Mode), 33
Frame Relay, 32-33
Metro Ethernet, 35
MPLS (Multiprotocol Label Switching), 34
home and small office networks, 25
broadband cable, 28-29
dialup, 25-26
DSL (Digital Subscriber Line), 27-28
ISDN, 26-27
PPP (Point-to-Point Protocol), 28
SONET (Synchronous Optical Network), 30
wireless, 29
cellular technologies, 30
satellites, 29
WiMAX, 30
war chalking, 180
war driving, 180
wavelength, 210
WEP (Wired Equivalent Privacy), 190
WEP/WPA attacks, 180
Wi-Fi analyzer, 253
Wi-Fi Protect Setup (WPS) attacks, 180
Wi-Fi Protected Access (WPA), 190
wide area networks (WANs), 59
WiMAX (Worldwide Interoperability
for Microwave Access), 30
windowing, 229
wire strippers, 45
Wired Equivalent Privacy (WEP), 190
grouped standards, Ethernet, 213-214
wireless access points, 168
wireless attacks, 180
wireless bridges, 170
wireless configuration issues, 257-258
wireless design considerations for
etworks, 119
wireless installation, WLANs, 170
channels and frequency bands, 171-172
wireless router configuration, 172-175
wireless site surveys, 172
wireless LAN. See WLANs
wireless LAN controllers (WLC), 169
wireless monitoring, 125
wireless networks, 29
 cellular technologies, 30
 satellites, 29
 WiMAX, 30
wireless router configuration, WLANs (wireless installation), 172-175
wireless routers, 167-168
wireless security, 190
wireless site surveys, WLANs (wireless installation), 172
wireless standards, 256
 Ethernet, 215-216
wireless transmission issues, 255-256
wiring closets, 193, 223
WLANs (wireless LANs), 163
 antennas, 166
 channels, 165-166
 devices, 167
 wireless access points, 168
 wireless bridges, 170
 wireless LAN controllers, 169
 wireless routers, 167-168
 frequencies, 163-164
 study resources, 175-176
 topologies, 167
 transmission methods, 164-165
wireless installation, 170
 channels and frequency bands, 171-172
 wireless router configuration, 172-175
 wireless site surveys, 172
WLC (wireless LAN controllers), 169
Worldwide Interoperability for Microwave Access (WiMAX), 30
WPA (Wi-Fi Protected Access), 190
WPA Enterprise, 190
WPA Personal, 190
WPS (Wi-Fi Protected Setup) attacks, 180
writing
 IPv6 addresses, 76-77
 IPv6 prefixes, 77-78
wrong antenna type, wireless configuration issues, 257
wrong encryption, wireless configuration issues, 257
wrong SSID, wireless configuration issues, 257
X-Y-Z
zero-day attacks, 180