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As corporate I'T departments have found them- I N T R 0 D U c T I O N

selves with long backlogs of requests, Excel users
have discovered that they can produce the reports
needed to run their businesses themselves using the
macro language Visual Basic for Applications (VBA).
VBA enables you to achieve tremendous efficien-
cies in your day-to-day use of Excel. VBA helps you
figure out how to import data and produce reports
in Excel so that you don’t have to wait for the I'T
department to help you. The Future of VBA and Windows Versions
of Excel

Wh at I S in Thi S B 0 0k7 Special Elements and Typographical

Conventions...

What Is in This Book?..

You have taken the right step by purchasing this

book. We can help you reduce the learning curve so
that you can write your own VBA macros and put an Next Steps
end to the burden of generating reports manually.

Code Files ..

Reducing the Learning Curve

This Introduction provides a case study about the
power of macros. Chapter 1, “Unleashing the Power
of Excel with VBA,” introduces the tools and con-
firms what you probably already know: The macro
recorder does not work reliably. Chapter 2, “This
Sounds Like BASIC, So Why Doesn’t It Look Famil-
iar?” helps you understand the crazy syntax of VBA.
Chapter 3, “Referring to Ranges,” cracks the code on
how to work efficiently with ranges and cells.

Chapter 4, “Looping and Flow Control,” covers the
power of looping using VBA. The case study in this
chapter demonstrates creating a program to produce
a department report and then wrapping that report
routine in a loop to produce 46 reports.

Chapter 5, “R1C1-Style Formulas,” covers, obvi-
ously, R1C1-style formulas. Chapter 6, “Creating and
Manipulate Names in VBA,” covers names. Chapter
7, “Event Programming,” includes some great tricks
that use event programming. Chapters 8, “Arrays,”
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and 9, “Creating Classes and Collections,” cover arrays, classes, and collections. Chapter 10,
“Userforms: An Introduction,” introduces custom dialog boxes that you can use to collect
information from a human using Excel.

Excel VBA Power

Chapters 11, “Data Mining with Advanced Filter,” and 12, “Using VBA to Create Pivot
Tables,” provide an in-depth look at Filter, Advanced Filter, and pivot tables. Report auto-
mation tools rely heavily on these concepts. Chapters 13, “Excel Power,” and 14, “Sample
User-Defined Functions,” include dozens of code samples designed to exhibit the power of
Excel VBA and custom functions.

Chapters 15, “Creating Charts,” through 20, “Automating Word,” handle charting, data
visualizations, web queries, sparklines, and automating Word.

Techie Stuff Needed to Produce Applications

Chapter 21, “Using Access as a Back End to Enhance Multiuser Access to Data,” handles
reading and writing to Access databases and SQL Server. The techniques for using Access
databases enable you to build an application with the multiuser features of Access while
keeping the friendly front end of Excel.

Chapter 22, “Advanced Userform Techniques,” shows you how to go further with userforms.
Chapter 23, “The Windows Application Programming Interface (API),” teaches some tricky
ways to achieve tasks using the Windows API. Chapters 24, “Handling Errors,” through

26, “Creating Add-ins,” deal with error handling, custom menus, and add-ins. Chapter 27,
“An Introduction to Creating Office Add-Ins,” provides a brief introduction to building
your own JavaScript application within Excel. Chapter 28, “What’s New in Excel 2016 and
What'’s Changed,” summarizes the changes in Excel 2016.

Does This Book Teach Excel?

Microsoft believes that the ordinary Office user touches only 10% of the features in Office.
We realize that everyone reading this book is above average, and MrExcel.com has a pretty
smart audience. Even so, a poll of 8,000 MrExcel.com readers showed that only 42% of
smarter-than-average users are using any 1 of the top 10 power features in Excel.

I regularly present a Power Excel seminar for accountants. These are hard-core Excelers
who use Excel 30 to 40 hours every week. Even so, two things come out in every seminar.
First, half of the audience gasps when they see how quickly you can do tasks with a particu-
lar feature, such as automatic subtotals or pivot tables. Second, someone in the audience
routinely trumps me. For example, someone asks a question, I answer, and someone in the
second row raises a hand to give a better answer.

The point? You and I both know a lot about Excel. However, I assume that in any given
chapter, maybe 58% of the people have not used pivot tables before and maybe even fewer
have used the Top 10 Filter feature of pivot tables. With this in mind, before I show how to
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automate something in VBA, I briefly cover how to do the same task in the Excel interface.
This book does not teach you how to make pivot tables, but it does alert you when you
might need to explore a topic and learn more about it elsewhere.

STUDY: MONTHLY ACCOUNTING REPORTS

This is a true story. Valerie is a business analyst in the accounting department of a medium-size corporation. Her com-
pany recently installed an overbudget $16 million enterprise resource planning (ERP) system. As the project ground to
a close, there were no resources left in the IT budget to produce the monthly report that this corporation used to sum-
marize each department.

However, Valerie had been close enough to the implementation to think of a way to produce the report herself. She
understood that she could export general ledger data from the ERP system to a text file with comma-separated values.
Using Excel, Valerie was able to import the general ledger data from the ERP system into Excel.

(reating the report was not easy. As in many other companies, there were exceptions in the data. Valerie knew that certain
accounts in one particular cost center needed to be reclassed as expenses. She knew that other accounts needed to be
excluded from the report entirely. Working carefully in Excel, Valerie made these adjustments. She created one pivot table to
produce the first summary section of the report. She cut the pivot table results and pasted them into a blank worksheet. Then
she created a new pivot table report for the second section of the summary. After about three hours, she had imported the
data, produced five pivot tables, arranged them in a summary, and neatly formatted the report in color.

Becoming the Hero

Valerie handed the report to her manager. The manager had just heard from the IT department that it would be months
before they could get around to producing “that convoluted report.”When Valerie created the Excel report, she became
the instant hero of the day. In three hours, Valerie had managed to do the impossible. Valerie was on cloud nine after a
well-deserved “atta-girl.”

More Cheers

The next day, Valerie’s manager attended the monthly department meeting. When the department managers started
complaining that they could not get the report from the ERP system, this manager pulled out his department’s report
and placed it on the table. The other managers were amazed. How was he able to produce this report? Everyone was
relieved to hear that someone had cracked the code. The company president asked Valerie’s manager if he could have the
report produced for each department.

Cheers Turn to Dread

You can probably see what's coming. This particular company had 46 departments. That means 46 one-page summa-

ries had to be produced once a month. Each report required importing data from the ERP system, backing out certain
accounts, producing five pivot tables, and then formatting the reports in color. It had taken Valerie three hours to produce
the first report, but after she got into the swing of things, she could produce the 46 reports in 40 hours. Even after she
reduced her time per report, though, this is horrible. Valerie had a job to do before she became responsible for spending
40 hours a month producing these reports in Excel.



4 Introduction

VBA to the Rescue

Valerie found my company, MrExcel Consulting, and explained her situation. In the course of about a week, | was
able to produce a series of macros in Visual Basic that did all the mundane tasks. For example, the macros imported
the data, backed out certain accounts, made five pivot tables, and applied the color formatting. From start to finish,
the entire 40-hour manual process was reduced to two button clicks and about 4 minutes.

Right now, either you or someone in your company is probably stuck doing manual tasks in Excel that can be auto-
mated with VBA. | am confident that | can walk into any company that has 20 or more Excel users and find a case just
as amazing as Valerie’s.

The Future of VBA and Windows Versions of Excel

Several years ago, there were many rumblings that Microsoft might stop supporting VBA.
There is now plenty of evidence to indicate that VBA will be around in Windows versions
of Excel through 2036. When VBA was removed from the Mac version of Excel 2008, a
huge outery from customers led to its being included in the next Mac version of Excel.

XLM macros were replaced by VBA in 1993, and 23 years later, they are still supported.
Microsoft is making strides toward providing a JavaScript alternative to VBA, but it appears
that Excel will support VBA for about another 23 years.

Versions of Excel

This fifth edition of VBA and Macros is designed to work with Excel 2016. The previous
editions of this book covered code for Excel 97 through Excel 2013. In 80% of the chap-
ters, the code for Excel 2016 is identical to the code in previous versions. However, there
are exceptions. For example, the new AutoGroup functionality in pivot tables adds new
options that were not available in Excel 2013.

Differences for Mac Users

Although Excel for Windows and Excel for the Mac are similar in terms of user interface,
there are a number of differences when you compare the VBA environment. Certainly,
nothing in Chapter 23 that uses the Windows API will work on the Mac. That said, the
overall concepts discussed in this book apply to the Mac. You can find a general list of dif-
ferences as they apply to the Mac at http://www.mrexcel.com/macvba.html. Development in
VBA for Mac Excel 2016 is far more difficult than in Windows, with only rudimentary VBA
editing tools. Microsoft actually recommends that you write all of your VBA in Excel 2016
for Windows and then use that VBA on the Mac.
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Special Elements and Typographical Conventions

The following typographical conventions are used in this book:

B [ralic—Indicates new terms when they are defined, special emphasis, non-English words
or phrases, and letters or words used as words.
B Monospace—Indicates parts of VBA code, such as object or method names.

B Bold monospace—Indicates user input.

In addition to these typographical conventions, there are several special elements. Each
chapter has at least one case study that presents a real-world solution to common problems.
The case study also demonstrates practical applications of topics discussed in the chapter.

In addition to the case studies, you will see Notes, Tips, and Cautions.

Notes provide additional information outside the main thread of the chapter discussion that might be

useful for you to know.

—NOTE

Tips provide quick workarounds and time-saving techniques to help you work more efficiently.

TIP

CAUTION
(autions warn about potential pitfalls you might encounter. Pay attention to the Cautions; they alert

you to problems that might otherwise cause you hours of frustration.

Code Files

As a thank-you for buying this book, we have put together a set of 50 Excel workbooks that
demonstrate the concepts included in this book. This set of files includes all the code from
the book, sample data, additional notes from the authors, and 25 bonus macros. To down-
load the code files, visit this book’s web page at http://www.quepublishing.com or http://

www.mrexcel.com/getcode2016.html.

Next Steps

Chapter 1 introduces the editing tools of the Visual Basic environment and shows why
using the macro recorder is not an effective way to write VBA macro code.


http://www.quepublishing.com
http://www.mrexcel.com/getcode2016.html
http://www.mrexcel.com/getcode2016.html
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Referring to Ranges

A yange can be a cell, a row, a column, or a grouping
of any of these. The RaNGE object is probably the
most frequently used object in Excel VBA; after all,
you are manipulating data on a sheet. Although a
range can refer to any grouping of cells on a sheet, it
can refer to only one sheet at a time. If you want to The Range Object
refer to ranges on multiple sheets, you must refer to e r e £
each sheet separately.

. . . Named Ranges
This chapter shows you different ways of referring

to ranges, such as specifying a row or column. You’ll Shortcut for Referencing Ranges

also find out how to manipulate cells based on the Referencing Ranges in Other Sheets
active cell and how to create a new range from over- : .

lapping ranges. Referencing a Range Relative to Another

The Range Object
The following is the Excel object hierarchy:

Application > Workbook > Worksheet >
Range

o Using the Res i ze Property to Change
The range object is a property of the Wworksheet the Size of a Range

object. This means it requires that a sheet be active

or else it must reference a worksheet. Both of the Using the columns and Rows Pro

following lines mean the same thing if iy L
Worksheets (1) is the active sheet: Using the union Method to Join Multiple
Range ("Al1")

Worksheets (1) .Range ("AL") Using the Intersect Method to Create

There are several ways to refer to a Range object. a New Range from Over|apping Ranges
Range ("A1") is the most identifiable because that is
how the macro recorder refers to it. However, all the
following are equivalent when referring to a range:

Using the TsEmpty Function to Check
Whether a Cell Is Empty

Using the currentRrRegion Property

Range ("D5")

[D5] to Select a Data Range

Range ("B3") .Range ("C3") . .

Cells (5,4) Using the Areas Collection to Return a
Range ("Al") .Offset (4,3) Noncontiguous Range

Range ("MyRange") 'assuming that D5 has a .

'Name of MyRange Referencing Tables

Next Steps
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Which format you use depends on your needs. Keep reading....It will all make sense soon!

Syntax for Specifying a Range

The range property has two acceptable syntaxes. To specify a rectangular range in the first
syntax, specify the complete range reference just as you would in a formula in Excel:

Range ("A1:B5")

In the alternative syntax, specify the upper-left corner and lower-right corner of the desired
rectangular range. In this syntax, the equivalent statement might be this:

Range ( "AqM , "BS")

For either corner, you can substitute a named range, the cells property, or the Activecell
property. The following line of code selects the rectangular range from Al to the active cell:

Range ("A1", ActiveCell) .Select

The following statement selects from the active cell to five rows below the active cell and
two columns to the right:

Range (ActiveCell, ActiveCell.Offset (5, 2)) .Select

Named Ranges

You probably have already used named ranges on your worksheets and in formulas. You can
also use them in VBA.

Use the following code to refer to the range "MyRange" in Sheetl:

Worksheets ("Sheetl") .Range ("MyRange")

Notice that the name of the range is in quotes—unlike the use of named ranges in formulas
on the sheet itself. If you forget to put the name in quotes, Excel thinks you are referring to

a variable in the program. One exception is if you use the shortcut syntax discussed in the
next section. In that case, quotes are not used.

Shortcut for Referencing Ranges

A shortcut is available when referencing ranges. The shortcut involves using square brack-
ets, as shown in Table 3.1.

Table 3.1 Shortcuts for Referencing Ranges

Standard Method Shortcut

Range ("D5") [D5]

Range ("A1:D5") [A1:D5]

Range ("Al:D5, G6:I17") [A1:D5, G6:I17]

Range ("MyRange") [MyRange]
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Referencing Ranges in Other Sheets

Switching between sheets by activating the needed sheet slows down your code. To avoid
this, refer to a sheet that is not active by first referencing the worksheet object:

Worksheets ("Sheetl") .Range ("A1")

This line of code references Sheetl of the active workbook even if Sheet2 is the active
sheet.

To reference a range in another workbook, include the workbook object, the Wworksheet
object, and then the Range object:

Workbooks ("InvoiceData.xlsx") .Worksheets ("Sheetl") .Range ("Al")

"To use the Range property as an argument within another Range property, identify the
range fully each time. For example, suppose that Sheetl is your active sheet and you need to
total data from Sheet2:

WorksheetFunction.Sum(Worksheets ("Sheet2") .Range (Range ("A1"), _
Range ("A7")))

This line does not work. Why not? Although range ("A1"), Range ("A7") is meant to refer
to the sheet at the beginning of the code line (Sheet2), Excel does not assume that you want
to carry the worksheet object reference over to these other Range objects and assumes that
they refer to the active sheet, Sheetl. So what do you do? Well, you could write this:
WorksheetFunction.Sum(Worksheets ("Sheet2") .Range (Worksheets ("Sheet2") .
Range ("Al"), Worksheets ("Sheet2") .Range ("A7")))
But this not only is a long line of code but also difficult to read! Thankfully, there is a sim-
pler way, using with...End With:
With Worksheets ("Sheet2")
WorksheetFunction.Sum(.Range (.Range ("A1"), .Range("A7")))
End With
Notice now that there is a .Range in your code, but without the preceding object reference.
That’s because Wwith Worksheets ("Sheet2") implies that the object of the range is the
worksheet. Whenever Excel sees a period without an object reference directly to the left of
it, it looks up the code for the closest with statement and uses that as the object reference.

Referencing a Range Relative to Another Range

Typically, the Range object is a property of a worksheet. It is also possible to have rRange
be the property of another range. In this case, the rRange property is relative to the original
range, which makes for unintuitive code. Consider this example:

Range ("B5") .Range ("C3") .Select

This code actually selects cell D7. Think about cell C3, which is located two rows below
and two columns to the right of cell Al. The preceding line of code starts at cell BS. If we
assume that B5 is in the Al position, VBA finds the cell that would be in the C3 position
relative to BS. In other words, VBA finds the cell that is two rows below and two columns
to the right of BS, which is D7.
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Again, I consider this coding style to be very unintuitive. This line of code mentions two
addresses, and the actual cell selected is neither of these addresses! It seems misleading
when you are trying to read this code.

You might consider using this syntax to refer to a cell relative to the active cell. For exam-
ple, the following line of code activates the cell three rows down and four columns to the
right of the currently active cell:

Selection.Range ("E4") .Select

I mention this syntax only because the macro recorder uses it. Recall that when you
recorded a macro in Chapter 1, “Unleashing the Power of Excel with VBA,” with relative
references on, the following line was recorded:

ActiveCell.Offset (0, 4) .Range("A2") .Select

This line found the cell four columns to the right of the active cell, and from there it
selected the cell that would correspond to A2. This is not the easiest way to write code, but
it is the way the macro recorder does it.

Although a worksheet is usually the object of the Range property, occasionally, such as dur-
ing recording, a range may be the property of a range.

Using the Ce 11 s Property to Select a Range

The cel1s property refers to all the cells of the specified Range object, which can be a
worksheet or a range of cells. For example, this line selects all the cells of the active sheet:

Cells.Select
Using the cells property with the Range object might seem redundant:
Range ("A1:D5") .Cells
This line refers to the original Range object. However, the cells property has an 1tem
property that makes the cells property very useful. The rtem property enables you to refer
to a specific cell relative to the Range object.
The syntax for using the Ttem property with the cells property is as follows:
Cells.Item(Row, Column)

You must use a numeric value for Row, but you may use the numeric value or string value
for column. Both of the following lines refer to cell C5:

Cells.Item(5,"C")
Cells.Item(5,3)

Because the Ttem property is the default property of the rRange object, you can shorten these
lines as follows:

Cells(5,"C")
Cells (5,3)

The ability to use numeric values for parameters is particularly useful if you need to loop
through rows or columns. The macro recorder usually uses something like Range ("aA1") .
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select for a single cell and Range ("a1:C5") .Select for a range of cells. If you are learning
to code only from the recorder, you might be tempted to write code like this:

FinalRow = Cells (Rows.Count, 1) .End(xlUp) .Row
For i = 1 to FinalRow

Range ("A" & i & ":E" & 1).Font.Bold = True
Next i

This little piece of code, which loops through rows and bolds the cells in columns A
through E, is awkward to read and write. But how else can you do it? Like this:

FinalRow = Cells (Rows.Count, 1) .End(xlUp) .Row
For i = 1 to FinalRow

Cells(i,"A") .Resize(,5) .Font.Bold = True
Next i

Instead of trying to type the range address, the new code uses the cells and Resize prop-
erties to find the required cell, based on the active cell. See the “Using the Resize Property
to Change the Size of a Range” section later in this chapter, for more information on the
Resize property.
You can use the cells properties for parameters in the Range property. The following refers
to the range A1:ES:

Range (Cells(1,1),Cells(5,5))

This is particularly useful when you need to specify variables with a parameter, as in the
previous looping example.

Using the Of £ set Property to Refer to a Range

You have already seen a reference to offset when you recorded a relative reference. offset
enables you to manipulate a cell based on the location of another cell, such as the active
cell. Therefore, you do not need to know the address of the cell you want to manipulate.
The syntax for the offset property is as follows:

Range.Offset (RowOffset, ColumnOffset)
For example, the following code affects cell F5 from cell Al:

Range ("Al") .Offset (RowOffset:=4, ColumnOffset:=5)
Or, shorter yet, you can write this:

Range ("Al") .Offset (4,5)
The count of the rows and columns starts at Al but does not include Al.
If you need to go over only a row or a column, but not both, you don’t have to enter both

the row and the column parameters. To refer to a cell one column over, use one of these
lines:

Range ("Al1") .Offset (ColumnOffset:=1)
Range ("Al") .Offset (,1)
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Both of these lines mean the same, so the choice is yours. If you use the second line, make
sure to include the comma so Excel knows that the 1 refers to the columnoffset argument.
Referring to a cell one row up is similar:

Range ("B2") .Offset (RowOffset:=-1)

Range ("B2") .Offset (-1)
Once again, you can choose which one to use. It is a matter of readability of the code.

Suppose you have a list of produce in column A, with totals next to the produce items in
column B. If you want to find any total equal to zero and place Low in the cell next to it, do
this:

Set Rng = Range ("B1l:B1l6") .Find (What:="0", LookAt:=x1Whole,

LookIn:=x1lValues)
Rng.Offset(, 1).Value = "LOW"

When used in a sub and looping through a data set, it would look like this:

Sub FindLow ()

With Range ("B1:Ble")
Set Rng = .Find(What:="0", LookAt:=xlWhole, LookIn:=xlValues)

If Not Rng Is Nothing Then
firstAddress = Rng.Address

Do
Rng.Offset (, 1).Value = "LOW"
Set Rng = .FindNext (Rng)
Loop While Not Rng Is Nothing And Rng.Address <> firstAddress
End If
End With

End Sub
The Low totals are noted by the program, as shown in Figure 3.1.

Figure 3.1 A | B C
Find the produce with 1 Apples 45
zero totals. Kl Oranges 1

3 Grapefruit 86

4 Lemons 0 LOW

Refer to the section “Object Variables” in Chapter 4, “Looping and Flow Control,” for more information
on the set statement.

—NOTE

Offsetting isn’t only for single cells; you can use it with ranges. You can shift the focus of a
range over in the same way you can shift the active cell. The following line refers to B2:D4

(see Figure 3.2):
Range ("Al:C3") .Offset (1,1)
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Figure 3.2 n ] 5 B
Offsetting a range: 1

Range ("A1:C3") . 2

Select. 5 | "

Using the Re s i ze Property to Change the Size of a Range

The Resize property enables you to change the size of a range based on the location of
the active cell. You can create a new range as needed. This is the syntax for the Resize

property:
Range.Resize (RowSize, ColumnSize)
To create the range B3:D13, use the following:
Range ("B3") .Resize (RowSize:=11, ColumnSize:=3)
Here’s a simpler way to create this range:
Range ("B3") .Resize (11, 3)
But what if you need to resize by only a row or a column—not both? You don’t have to
enter both the row and the column parameters.
To expand by two columns, use either of the following:
Range ("B3") .Resize (ColumnSize:=2)
or
Range ("B3") .Resize(,2)

Both lines mean the same thing. The choice is yours. If you use the second line, make sure
to include the comma so Excel knows the 2 refers to the columnsize argument. Resizing
just the rows is similar. You can use either of the following:

Range ("B3") .Resize (RowSize:=2)
or
Range ("B3") .Resize(2)
Once again, the choice is yours. It is a matter of readability of the code.
From the list of produce, say that you want to find the zero totals and color the cells of the
total and corresponding produce (see Figure 3.3). Here’s what you do:

Set Rng = Range ("B1:Bl6") .Find(What:="0", LookAt:=xlWhole, _
LookIn:=x1lValues)

Rng.Offset(, -1).Resize(, 2).Interior.ColorIndex = 15
Figure 3.3 _ A B
Resizing a range to 1 |Apples 45
extend the selection. 2 Oranges 12

3 Grapefruit ]
4 Lemons o
~
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Notice that the offset property first moves the active cell over to the produce column.
When you are resizing, the upper-left-corner cell must remain the same.

Resizing isn’t only for single cells; you can use it to resize an existing range. For example, if
you have a named range but need it and the column next to it, use this:

Range ("Produce") .Resize (,2)
Remember, the number you resize by is the total number of rows/columns you want to

include.

Using the Columns and Rows Properties to Specify a Range

The columns and Rows properties refer to the columns and rows of a specified Range object,
which can be a worksheet or a range of cells. They return a Range object referencing the
rows or columns of the specified object.

You have seen the following line used, but what is it doing?

FinalRow = Cells(Rows.Count, 1) .End(x1Up) .Row
This line of code finds the last row in a sheet in which column A has a value and places the
row number of that Range object into the variable called Finalrow. This can be useful when
you need to loop through a sheet row by row; you will know exactly how many rows you
need to go through.

Some properties of columns and rows require contiguous rows and columns in order to work properly.
For example, if you were to use the following line of code, 9 would be the answer because only the
first range would be evaluated:

NOTE

Range ("A1:B9, C10:D19") .Rows.Count

However, if the ranges were grouped separately, the answer would be 19 . Excel takes the top, left-
most cell address, 21, and the bottom, rightmost cell address, D19, and counts the cells in the range
Al:D109:

Range ("A1:B9", "C10:D19") .Rows.Count

Using the Union Method to Join Multiple Ranges

The union method enables you to join two or more noncontiguous ranges. It creates a tem-
porary object of the multiple ranges, which enables you to affect them together:
Application.Union (argumentl, argument2, etc.)

The expression Application is not required. The following code joins two named ranges
on the sheet, inserts the =ranD () formula, and bolds them:
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Set UnionRange = Union(Range ("Rangel"), Range ("Range2"))
With UnionRange

.Formula = "=RAND()"

.Font.Bold = True
End With

Using the Int ersect Method to Create a New Range from
Overlapping Ranges

The Intersect method returns the cells that overlap between two or more ranges. If there
is no overlap, an error will be returned:

Application.Intersect (argumentl, argument2, etc.)

The expression Application is not required. The following code colors the overlapping
cells of the two ranges:

Set IntersectRange = Intersect (Range ("Rangel"), Range ("Range2"))
IntersectRange.Interior.ColorIndex = 6

Using the T sEmpty Function to Check Whether a Cell Is
Empty
The 1sEmpty function returns a Boolean value that indicates whether a single cell is empty:
True if empty, False if not. The cell must truly be empty for the function to return True.
If it contains even just a space that you cannot see, Excel does not consider the cell to be
empty:
ISEmpty (Cell)
Say that you have several groups of data separated by a blank row. You want to make the

separations a little more obvious. The following code goes down the data in column A.
When it finds an empty cell in column A, it colors in the first four cells of that row (see

Figure 3.4):
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 1 To LastRow

If IsSsEmpty(Cells(i, 1)) Then
Cells (i, 1) .Resize(1l, 4) .Interior.ColorIndex = 1
End If
Next 1

Figure 3.4 A B c D
Colored rows separating Apples Oranges  Grapefruit Lemons
data 45 12 86 15

: 71% 53% B2% 52%

1
2

3

4

5 | Tomatoes Cabbage Lettuce Green Peppers
6 58 24 31 o

T 30% 43% 68% 1%

8

9 | Potatoes Yams Onions Garlic

0 10 61 26 29

1 1B% 19% 22% 82%
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Using the CurrentRegion Property to Select a Data
Range

CurrentRegion returns a Range object that represents a set of contiguous data. As long as
the data is surrounded by one empty row and one empty column, you can select the data set
by using CurrentRegion:

RangeObject.CurrentRegion

The following line selects A1:D3 because this is the contiguous range of cells around cell

Al (see Figure 3.5):

Range ("Al") .CurrentRegion.Select

This is useful if you have a data set whose size is in constant flux.

Figure 3.5 - = = =
Use CurrentRegion 1 Apples Oranges  Grapefruit Lemons
to select a range of con- 2 14 97 = H
tiguous data around the . — a7% 29% ok
active cell.

STUDY: USING THE SPECIALCELLS METHOD TO SELECT
SPECIFIC CELLS

Even Excel power users might not have encountered the Go To Special dialog box. If you press the F5 key in an Excel
worksheet, you get the normal Go To dialog box (see Figure 3.6). In the lower-left corner of this dialog is a button labeled
Special. Click this button to get to the super-powerful Go To Special dialog box (see Figure 3.7).

Figure 3.6 A 8 CI 0 E F G
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8
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12 -
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15 TE% 36% % aatky E 1
16 Spedial. oK | Cancel
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In the Excel interface, the Go To Special dialog enables you to select only cells with formulas, only blank cells, or only the
visible cells. Selecting only visible cells is excellent for grabbing the visible results of AutoFiltered data.

To simulate the Go To Special dialog in VBA, use the specialcells method. This enables you to act on cells that meet
certain criteria, like this:

RangeObject.SpecialCells (Type, Value)
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This method has two parameters: Type and value. Type is one of the x1ce11Type constants:

x1CellTypeAllFormatConditions
x1CellTypeAllValidation
x1CellTypeBlanks
x1CellTypeComments
x1CellTypeConstants
x1CellTypeFormulas
x1CellTypeLastCell
x1CellTypeSameFormatConditions
x1CellTypeSameValidation
x1CellTypeVisible

Value is optional and can be one of the following:

x1lErrors
x1Logical
x1Numbers
x1TextValues

The following code returns all the ranges that have conditional formatting set up. It produces an error if there are no
conditional formats and adds a border around each contiguous section it finds:

Set rngCond = ActiveSheet.Cells.SpecialCells (x1CellTypeAllFormatConditions)
If Not rngCond Is Nothing Then

rngCond.BorderAround xlContinuous
End If

Have you ever had someone send you a worksheet without all the labels filled in? Some people think that the data
shown in Figure 3.8 looks neat. They enter the Region field only once for each region. This might look aesthetically
pleasing, but it is impossible to sort.

Figure 3.8 A B c
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Using the specialcel1s method to select all the blanks in this range is one way to fill in all the blank region
cells quickly with the region found above them:

Sub FillIn()

On Error Resume Next 'Need this because if there aren't any blank

'cells, the code will error

Range ("Al") .CurrentRegion.SpecialCells (x1CellTypeBlanks) .FormulaR1Cl

= "=R [_1] cn

Range ("Al") .CurrentRegion.Value = Range ("Al") .CurrentRegion.Value

End Sub
In this code, Range ("A1") . CurrentRegion refers to the contiguous range of data in the report. The
SpecialcCells method returns just the blank cells in that range. This particular formula fills in all the blank cells
with a formula that points to the cell above the blank cell. (You can read more about R1C1-style formulas in Chapter
5,“R1C1-Style Formulas.”) The second line of code is a fast way to simulate doing a Copy and then Paste Special
Values. Figure 3.9 shows the results.

Figure 3.9 A B c
After the macro runs, the ; Region Product sales
. . North ABC 766,469
blank cells in the Region % [ = e
column have been filled 4 |North XvZ 832,414
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7 _East XZ 897,949

Using the Areas Collection to Return a Noncontiguous Range

The areas collection is a collection of noncontiguous ranges within a selection. It consists
of individual rRange objects representing contiguous ranges of cells within the selection. If
a selection contains only one area, the Areas collection contains a single Range object that
corresponds to that selection.

You might be tempted to loop through the rows in a sheet and check the properties of a cell
in a row, such as its formatting (for example, font or fill) or whether the cell contains a for-
mula or value. Then you could copy the row and paste it to another section. However, there
is an easier way. In Figure 3.10, the user enters the values below each fruit and vegetable.
The percentages are formulas. The following line of code selects the cells with numeric
constants and copies them to another area:

Range ("A:D") .SpecialCells (x1CellTypeConstants, x1lNumbers) .Copy _
Range ("I1")
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Referencing Tables

A table is a special type of range that offers the convenience of referencing named ranges.
However, tables are not created in the same manner as other ranges. For more informa-
tion on how to create a named table, see Chapter 6, “Creating and Manipulating Names in
VBA”

Although you can reference a table by using Worksheets (1) .Range ("Tablel"), you have
access to more of the properties and methods that are unique to tables if you use the
ListObjects object, like this:

Worksheets (1) .ListObjects ("Tablel")

This opens the properties and methods of a table, but you can’t use that line to select the
table. To do that, you have to specify the part of the table you want to work with. To select
the entire table, including the header and total rows, specify the Range property:

Worksheets (1) .ListObjects ("Tablel") .Range.Select

The table part properties include the following:

B rRange—Returns the entire table.

B DataBodyRange—Returns the data part only.

B HeaderRowrRange—Returns the header row only.
]

TotalRowRange—Returns the total row only.

What I really like about coding with tables is the ease of referencing specific columns of a
table. You don’t have to know how many columns to move in from a starting position or the
letter/number of the column, and you don’t have to use a FIND function. Instead, you can
use the header name of the column. For example, to select the data of the Qty column of
the table, but not the header or total rows, do this:

Worksheets (1) .ListObjects ("Tablel") .ListColumns ("Qty")
.DataBodyRange.Select

For more details on coding with tables, check out Excel Tables: A Complete Guide for Creating, Using, and
Automating Lists and Tables by Zack Barresse and Kevin Jones (ISBN: 978-1615470280).

—NOTE
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Next Steps

Chapter 4 describes a fundamental component of any programming language: loops. If
you have taken a programming class, you will be familiar with basic loop structures. VBA
supports all the usual loops. That chapter also describes a special loop, For Each. . .Next,
which is unique to object-oriented programming such as VBA.
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Macros icon, 10

Record Macro icon, 10

Use Relative References icon, 10
Visual Basic Editor, opening, 10
Visual Basic icon, 10
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Areas collection, returning noncon-
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data visualization, 334
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ToggleButton controls, 444
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files to add-ins
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VB Editor, 511-512
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workbooks to add-ins, 510-511
Save As method, 511
VB Editor, 511-512
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data to
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258-259
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case study, 196-197
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criteria ranges (Advanced Filter)

joining multiple ranges
Logical AND, 194
Logical OR, 193-194
.CSS files and Office (MS) add-ins, 525
.CSV files
deleting, 254
importing, 254
curly braces ({ }), JavaScript interactivity in
Office (MS) add-ins, 527

CurrentRegion property, selecting data
ranges, 68

cursors
ADO, 426
location, 426
types of, 426
debugging code
hovering the cursor, 47-48
running to cursor, 46
custom functions. See UDF
custom objects
creating, 143-145
using, 145

custom properties, creating via UDT
(User-Defined Types), 153-156

customizing Ribbon for running macros,
487-488

accessing Excel file structure, 496
adding controls to Ribbon, 490-491
creating

groups, 489-490

tabs, 489-490
customui folder and file, 488-489
images on buttons, 497-500
.RELS files, 496-497
renaming Excel files, 497

troubleshooting (error handling),
500-503
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daily dates, grouping to months, quarters,
years via pivot tables, 221-222

DAO (Data Access Objects) versus ADO,
424-425
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369-373

data analysis via Application.OnTime
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macros, 382
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minutes, 384-385

scheduling macros to run x min-
utes in the future, 383

scheduling verbal reminders,
383-384

Ready mode for scheduled proce-
dures, 381-382
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for, 382

data bars, 334
adding to ranges, 335-339

multiple colors of data bars in ranges,
345-347

Data Model, 242
creating, 245-247

loading large text files to Data Model
via Power Query, 401-402

pivot tables
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tables, 244
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area, 244-245

adding tables to Data Model,
242-243
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above/below average rules, 334, 348
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blanks/errors formatting, 351-352
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duplicate cell formatting, 349-350
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format, 352-353
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unique cell formatting, 349-350

value-based formatting, 350-351
color scales, 334, 339-340
conditional formatting, 334
data bars, 334
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multiple colors of data bars in
ranges, 345-347

duplicate value rules, 334
highlight cell rules, 334
icon sets, 334

adding to ranges, 341-343

creating for subsets of ranges,

344-345
methods, 334-335
NumberFormat property, 353-354
pivot tables case study, 249-250
properties, 334-335
ranges
adding data bars to, 335-339

creating icon sets for subsets of
ranges, 344-345

debugging code 555

highlighting unique values in
ranges, 352-353

muldple colors of data bars in
ranges, 345-347

rows, highlighting for the largest
value, 353

top/bottom rules, 334, 348-349
databases
MDB, 423-426

shared access databases, creating (case
study), 425-426

date and time
cells dates, formatting, 351

daily dates, grouping to months,
quarters, years via pivot tables,
221-222

retrieving
from last save, 291
permanent date and time, 291

week numbers, converting to

dates, 299

date ranges (dynamic), selecting via
AutoFilter, 182-183

debugging code

backing up/moving forward in code,
45-46

breakpoints, 45, 49

controls, adding to userforms,
162-163

error handling (troubleshooting) and
code security, 484

querying while stepping through
code, 46
hovering the cursor, 47-48
Immediate window, 46-47
watches, 48
running to cursor, 46
stepping through code, 43-45




declarations (API)

declarations (API)

32-bit compatible declarations,
465-466

64-bit compatible declarations,
465-466

About dialog, customizing, 469-470
computer names, retrieving, 467

display resolution information,
retrieving, 468-469

example of, 464, 465

Excel file open status, checking in
network, 467-468

private versus public status, 464-465
running timers, creating, 471
sounds, playing, 472

types of, 464

usage example, 465

X button for closing userforms,
disabling, 470-471

declaring

arrays, 131-132

multidimensional arrays, 132-133
defined constants (VBA), 40-43
deleting

empty cells from values area (pivot
tables), 225

names, 105-106
records from MDB, 433

delimited files (imported), opening,
395-397

delimited strings, extracting a single
element from, 300

Developer tab
accessing, 9-10
Add-ins group, 10
Code group, 10
Controls group, 10
Modify group, 10
XML group, 10

development stage errors versus errors
months later (error handling/trouble-
shooting), 482

Runtime Error 9: Subscript Out of
Range, 482-483

Runtime Error 1004: Method Range
of Object Global Failed, 483-484

dictionaries. See also collections (VBA),
150-151

digital signatures, Disable All Macros
Except Digitally Signed Macros option
(macro security), 14

directories
listing files in, 251-253
looping case study, 84-85

workbooks, counting number of
workbooks in a directory, 288-289

Disable All Macros Except Digitally Signed
Macros option (macro security), 14

Disable All Macros with Notification
option (macro security), 13-14

Disable All Macros Without Notification
option (macro security), 13

Do loops, 78-80

Until clause and, 81-82

While clause and, 81-82

While.Wend loops, 82
Document object (Word), 413-415
downloading code files, 5
duplicate cells, formatting, 349-350

duplicate max values, returning the
addresses of, 304-305

duplicate value rules, 334

duplicates, removing from ranges,
295-296

dynamic arrays, 136-137

dynamic date ranges, selecting via
AutoFilter, 182-183



E

early binding, referencing Word objects
via, 406-409

editing macros, 19
defined constants, 40-43
optional parameters, 40
Project Explorer, 20
properties that return objects, 43
Properties window, 21
settings, 20
email addresses, validating, 292-293
embedded charts and events
class modules, 123, 141-143
list of events, 124

empty cells, deleting from values area
(pivot tables), 225

Enable All Macros option (macro
security), 14

error handling (troubleshooting), 473
blanks/errors formatting, 351-352
case study, 480
clients, training, 481-482
code security

debugging and, 484
locking code, 485-486

password cracking (case study),
484-485

debug errors in userforms, 475-477

development stage errors versus
errors months later, 482

encountering errors on purpose, 481
On Error GoTo syntax, 477-478
Excel warnings, suppressing, 481
generic error handlers, 478-479
ignoring errors, 479

Ribbon, customizing for running
macros, 500-503

Excel

Runtime Error 9: Subscript Out of
Range, 482-483

Runtime Error 1004: Method Range
of Object Global Failed, 483-484

VBA, 473-475
versioning errors, 486
events, 115

accessing, 116

application-level events
class modules, 125, 140-141
list of, 125-130

case study, 122

chart events, 119, 123

embedded charts and class
modules, 123, 141-143

embedded charts events, 124
enabling, 117

frame control events in userforms,

167-169
graphic control events, 169
levels of, 115-116
military time, entering in cells, 122
parameters, 116

QueryClose events, userform win-
dows, 174-175

userform events, 160-161
viewing, 116
workbooks
events, 117
sheet events, 119
worksheet events, 120
Excel
Advanced Filter, building, 185-186
charts

planning for Excel migration,
310-311

version changes to, 541
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Excel

compatibility issues, 542-543

Excel8CompatibilityMode prop-
erty, 543-544

Version property, 543

content management (web page data),
387-389

file structure, accessing, 496
FTP, 389-390
Macro Recorder, 8
pivot tables, version changes to, 541
power programming
combining workbooks, 256-257

copying data to separate work-
sheets, 257-258

copying data to separate work-
sheets without filters, 258-259

creating hidden log files, 267-268
deleting .CSV files, 254

exporting data to .XML files,
259-260

filtering data to separate work-
sheets, 257-258

highlighting selected cells using
conditional formatting, 263-265

importing .CSV files, 254
listing files in directories, 251-253
parsing text files, 254-255

placing charts in comments,
261-262

reading text files into memory,
254-255

resizing cell comments, 260-261

selecting noncontiguous cells,
265-267

separating worksheets into work-
books, 255-256

Quick Analysis tool, version changes
to, 541

.RELS files and ribbon
customization, 496-497

renaming files, 497
Ribbon, version changes to, 539
SDI, version changes to, 540
slicers, version changes to, 541
SmartArt, version changes to, 542
VBEVB Editor
learning new methods, 542
learning new objects, 542
versioning errors, 486
versions of, 4
chart changes, 541
learning new methods, 542
learning new objects, 542
pivot table changes, 541
Quick Analysis tool changes, 541
Ribbon changes, 539
SDI changes, 540
slicer changes, 541
SmartArt changes, 542
warnings, suppressing, 481

Excel 97-2003 Workbook (.xls) files and
macros, 11

Excel Binary Workbook (.xIsb) files and
macros, 11

Excel Macro-Enable Workbook (.xIsm) files
concerns with, 11
macros, 11
public perception of, 11
saving files in, 11

Excel State class modules, creating,
268-270

Excel Tables: A Complete Guide for Creating,
Using, and Automating Lists and
Tables, 71

Excel Workbook (.xlsx) files and macros,
10-11

Excel8CompatibilityMode property, Excel
compatibility issues, 543-544



ExcelMatters.com website, 254
exiting loops early, 77-78
exp.com, 271
exporting

charts as graphics, 330

data to XML files, 259-260

extracting single element from a
delimited string, 300

F

field entry, verifying in userforms, 174
files
converting to add-ins
Save As method, 511
VB Editor, 511-512
.CSS files and Office (MS) add-ins, 525
.CSV files
deleting, 254
importing, 254
delimited files (imported), opening,
395-397

directories
listing files in, 251-253
looping case study, 84-85
Excel files
accessing file structure, 496
renaming, 497

fixed-width files (imported), opening,
392-395

hidden log files, creating, 267-268
naming, userforms and, 175-176

paths, setting in cells, 287

.RELS files and ribbon customiza-
tion, 496-497

text files, 391
delimited files (imported), 395-397

fixed-width files (imported),
392-395

filtering

importing, 391-402

importing files with less than
1,048,576 rows, 391-397

importing files with more than
1,048,576 rows, 398-402

loading large files to Data Model
via Power Query, 401-402

parsing, 254-255
reading into memory, 254-255

running files a row at a time,

398-400
writing, 402

XML files, exporting data to,
259-260

fills (object), changing in charts, 325-327

Filter in Place (Advanced Filter), 186,
201-202

catching no records with filter in
place, 202

showing all records, 202
filtering
Advanced Filter, 184-185
Action option, 186

building via Excel interface,
185-186

criteria ranges, 186
Filter in Place, 186, 201-202

multple Advanced Filters (case
study), 206-209

unique lists, 186-192

xlFilterCopy, 203-206
AutoFilter

filtering by color, 181

filtering by icon, 181-182

turning off drop-downs in,
209-210

charts, 318
data to separate worksheets, 257-258
pivot tables
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filtering

case study, 233-235
conceptual filters, 229-230

configuring filtering timelines,
239-242

configuring slicers for filtering,
235-239

filtering OLAP pivot tables by lists
of items, 271-273

manually filtering multiple items
in pivot fields, 228-229

search filter, 233
types of filters, 230
finding
first nonzero-length cell in a range,
296-297

last row (cleaning up recorded code),
52-53

fixed-width files (imported), opening,
392-395

flow control
If. Elself.End loops, 87-88
If. Then.Else loops, 86
If Then.Else.End If loops, 87
If . Then.End If loops, 86-87
Select Case.End Select loops, 88

complex expressions in Case state-
ments, 89

nesting If statements, 89-91
For Each. loops, 82-83

For each.next statements, JavaScript inter-
activity in Office (MS) add-ins, 532

for loops, JavaScript interactivity in Office
(MS) add-ins, 529-530

Form Controls, assigning macros to, 18-19
form fields, automating Word, 420-422

Format method, micromanaging format-
ting changes in charts, 324-325

formatting
cells
above/below average rules, 348
blanks/errors formatting, 351-352
date formatting, 351
duplicate cell formatting, 349-350

formulas to determine cells to for-
mat, 352-353

text formatting, 351

top/bottom rules, 348-349

unique cells, 349-350

value-based formatting, 350-351
charts, 312-315

applying color, 317-318

changing object fills, 325-327

emulating Plus icon changes via
SetElement, 319-323

filtering charts, 318
line settings, 327

micromanaging formatting
changes, 324-325

specific chart references, 315-316
specifying titles, 316

conditional formatting
data visualization, 334

highlighting selected cells,
263-264

sparklines, 361
RGB colors, 364-365
theme colors, 361-364
tables, resetting formatting, 279-280

formula-based conditions and criteria
ranges (Advanced Filter)

case study, 196-197

returning above-average records, 201
setting up conditions, 196

VBA, 197-201



formulas
Al formulas
autofilling data, 95-96
case study, 96-97
R1Cl1 versus, 93-97

replacing multiple Al formulas
with one R1C1 formula, 99-101

array formulas and R1C1 formulas,
101-102

hard-coding formulas, avoiding
(cleaning up recorded code), 53-54

names, 106-107
R1C1 formulas
Al versus, 93-97
absolute references and, 98
accessing, 94-95
array formulas and, 101-102
autofilling data, 96
case study, 96-97
cleaning up recorded code, 54

column number/letter
associations, 101

column references, 99
mixed references and, 98-99
relative references and, 97-98

replacing multiple Al formulas
with one R1Cl1 formula, 99-101

row references, 99

For.Next loops, 73-76

exiting early, 77-78

nested loops, 78

running backwards, 77

For statement variables, 76

Step clause and, 76-77

variations on, 76-77

frame control events in userforms,
167-169

Frankston, Bob, 93

functions 561

FTP from Excel, 389-390
functions

CreateObject function, creating new
instances of Word objects, 409

custom functions. See UDF

GetObject function, referencing
existing instances of Word objects,
410-411

IsEmpty function, checking for empty
cells in ranges, 67

JavaScript functions in Office (MS)
add-ins, 526, 534-535

UDF, 283, 286
alpha characters, 302-303
case study, 284-285

checking existence of a worksheet,
287-288

checking workbook open status, 287

concatenating data (sorting and),
300-302

converting week numbers to

dates, 299

counting number of workbooks in
a directory, 288-289

counting unique values, 294-295
creating

extracting a single element from a

delimited string, 300

finding the first nonzero-length
cell in a range, 296-297

removing duplicates from ranges,
295-296

retrieving date and time from last
save, 291

retrieving numbers from mixed
text, 298-299

retrieving permanent date and
time, 291

retrieving user ID, 289-290




functions

returning addresses of duplicate
max values, 304-305

returning column letters from cell
addresses, 306

returning hyperlink addresses,
305-306

reversing cell contents, 304

searching for a string within text,
303-304

Select.Case statements in work-
sheets, 307

setting workbook names and file
paths in cells, 287

setting workbook names in
cells, 286

sharing, 286

sorting and concatenating data,
300-302

sorting numeric characters,

302-303
static random, 306

substituting multiple characters,
297-298

summing cells based on interior
color, 293-294

validating email addresses,
292-293

fund/stock quotes (power programming
techniques), 280-281

G

GetObject function, referencing existing
instances of Word objects, 410-411

GetOpenFilename, 175-176, 478
GetSaveAsFilename, 176
global names versus local names, 103-104

Go to Special versus looping (case
study), 184

graphics
buttons, adding graphics to, 497
custom icon images, 499-500
Microsoft Office icons, 498-499

exporting charts as graphics, 330
userforms, adding to, 169, 453-454

H

hard-coding rows/formulas, avoiding
(cleaning up recorded code), 53-54

“Hello World” add-in (Office), 517-521
help
Cell Masters website, 254

Excel Tables: A Complete Guide for
Creating, Using, and Automating Lists
and Tables, 71

ExcelMatters.com website, 254
help buttons case study, 151-153

JKP Application Development
Services, 466

Juanpg.com website, 268-270

OpenXMLDeveloper.org
website, 497

RibbonX Visual Designer, 497
userforms, adding to, 456
adding control tip text, 457
coloring active controls, 457-459
creating tab order, 457
showing accelerator keys, 456
Wallentin blog, Dennis, 257
XcelFiles website, 263
Help (VBA), 38-40
defined constants, 40-43
optional parameters, 40
hiding
hidden log files, creating, 267-268
hidden workbooks
as alternative to add-ins, 515-516
storing macros in, 515-516
storing userforms in, 515-516
names, 111

userforms, 160



highlighting
cells, 334

selected cells via conditional for-
matting, 263-264

selected cells without conditional
formatting, 264-265

rows for the largest value, 353
unique values in ranges, 352-353

historical stock/fund quotes (power pro-
gramming techniques), 280-281

HTML (Hypertext Markup Language)
Office (MS) add-ins, 524
.CSS files, 525
HTML buttons, 524-525
HTML tags, 524
hyperlinks
addresses, returning, 305-306
macros, running, 507-508
userforms, 449-450

icon sets, 334
ranges, adding to, 341-343

subsets of ranges, creating for, 344-
345

icons
adding to buttons
custom icon images, 499-500
Microsoft Office icons, 498-499
filtering by (AutoFilter), 181-182
If statements

JavaScript interactivity in Office (MS)
add-ins, 530

nesting If statements (Select Case.
End Select loops), 89-91

If.Elself.End loops and flow control, 87-88
If. Then.Else loops and flow control, 86

interactivity in Office (MS) add-ins

If. Then.Else.End If loops and flow
control, 87

If.Then.End If loops and flow control,
86-87

ignoring errors as a way of error handling/
troubleshooting, 479

images
buttons, adding images to, 497
custom icon images, 499-500
Microsoft Office icons, 498-499
exporting charts as images, 330
userforms, adding to, 453-454
importing text files, 391
delimited files, 395-397

files with less than 1,048,576 rows,
391-397

files with more than 1,048,576 rows,
398-402

fixed-width files, 392-395

loading large files to Data Model via
Power Query, 401-402

running files a row at a time, 398-400
initializing add-ins (Office) via
JavaScript, 536
input boxes (userforms), 157-158

interactivity in Office (MS) add-ins, 521,
526,535

arrays, 528-529

assignment operators, 532-533
For each.next statements, 532
functions, 526-527

if statements, 530

initializing add-ins, 536

logical operators, 532-533

for loops, 529-530

math functions, 534-535
mathematical operators, 532-533
reading/writing to add-ins, 536

563




564 interactivity in Office (MS) add-ins

Select.Case statements, 530-531

strings, 528

variables, 527-528

writing to content pane, 535
Internet data

analyzing via Application.OnTime
method, 381

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

Ready mode for scheduled proce-
dures, 381-382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x min-
utes in the future, 383

scheduling verbal reminders,
383-384

scheduling window of time for
updates, 382

content management via Excel,

387-389
publishing to web pages, 385-386

content management via Excel,
387-389

custom web pages, 386-387

FTP from Excel, 389-390
retrieving, 375-380

building multiple queries, 377-378

examples of, 380

finding results from retrieved data,
378-379

interrupting macros, 117

Intersect method, creating new ranges
from overlapping ranges, 67

IsEmpty function, checking for empty cells

in ranges, 67

J

JavaScript and Office (MS) add-ins,
526,535

arrays, 528-529
assignment operators, 532-533
For each.next statements, 532
functions, 526-527
if statements, 530
initializing, 536
logical operators, 532-533
for loops, 529-530
math functions, 534-535
mathematical operators, 532-533
reading/writing to, 536
Select.Case statements, 530-531
strings, 528
variables, 527-528
writing to

content pane, 535

task pane, 535

Jiang, Wei, 273

JKP Application Development
Services, 466

joining multiple ranges, 66-67
Jones, Kevin, 71, 258
Juanpg.com website, 268-270

K

Kaji, Masaru, 254
Kapor, Mitch, 93

keyboard shortcuts, running macros
from, 504

Klann, Daniel, 275
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labels (userforms), 163-165
largest value, highlighting rows for, 353

last row, finding (cleaning up recorded
code), 52-53

late binding, referencing Word objects via,
408-409

layouts (pivot tables)
changing via Design tab (VBA), 248
report layout settings, 248-249

line breaks, JavaScript interactivity in
Office (MS) add-ins, 527

lines (sparklines)
creating, 356-357
formatting, 361
RGB colors, 364-365
sparkline elements, 365-367
theme colors, 361-364
scaling, 357-361
list boxes

multicolumn list boxes in userforms

(case study), 459
MultiSelect property, 166-167
userforms, 165-167
lists
file lists in directories, 251-253

pivot tables, filtering OLAP pivot
tables by lists of items, 271-273

unique lists (Advanced Filter), 186
local names versus global names, 103-104
locking code, 485-486
log files (hidden), creating, 267-268

logical operators (JavaScript) and Office
(MS) add-ins, 532-533

loops

loops, 73

Do loops, 78-80
Until clause and, 81-82
While clause and, 81-82
While.Wend loops, 82

For Each. loops, 82-83

exiting early, 77-78

file directory case study, 84-85

flow control
If. Elself.End loops, 87-88
If. Then.Else loops, 86
If. Then.Else.End If loops, 87
If . Then.End If loops, 86-87

Select Case.End Select loops,
88-91

Go to Special versus looping (case
study), 184

If Elself.End loops and flow control,
87-88

If. Then.Else loops and flow
control, 86

If Then.Else.End If loops and flow
control, 87

If.Then.End If loops and flow con-
trol, 86-87

for loops, JavaScript interactivity in
Office (MS) add-ins, 529-530

For.Next loops, 73-76
exiting early, 77-78
nested loops, 78
running backwards, 77
For statement variables, 76
Step clause and, 76-77
variations on, 76-77
nested loops, 78
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object variables
For Each. loops, 83-85

VBA loops (For Each. loops),
83-85

replacing via AutoFilter, 177-179

Select Case.End Select loops and flow
control, 88

complex expressions in Case
statements, 89

nesting If statements, 89-91
VBA loops (For Each. loops), 82-83
While.Wend loops, 82
Lotus 1-2-3
Macro Recorder, 7-8
R1CI1 formulas, 93

M

Macro Recorder

AutoSum while recording macros,
30-31

case study

AutoSum while recording macros,

30-31

Quick Analysis while recording
macros, 30-31

recording macros, 21-24

relative references when recording
macros, 26-30

running macros on another day
produces undesired results, 25-26

testing macros, 24-25
Excel and, 8
flaws in, 7-8
Lotus 1-2-3, 7-8
navigating data sets, 31

Quick Analysis while recording
macros, 30-31

Macro Security icon (Code group), 10-12

macros, 19

ActiveX Controls, attaching macros
to, 506-507

assigning to
Form Controls, 18-19
shapes, 18-19
text boxes, 18-19
buttons, creating on
Quick Access Toolbar, 17
Ribbon, 16
case studies
AutoSum, 30-31
Quick Analysis, 30-31
recording macros, 21-24
relative references, 26-30

running macros on another day
produces undesired results, 25-26

testing macros, 24-25

command buttons, attaching macros

to, 504-505
data analysis via Application.OnTime

method

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x min-
utes in the future, 383

scheduling verbal reminders,
383-384

debugging

backing up/moving forward in
code, 45-46

breakpoints, 45, 49

querying while stepping through
code, 46-48

running to cursor, 46

stepping through code, 43-45



editing
defined constants, 40-43
optional parameters, 40
Project Explorer, 20
properties that return objects, 43
Properties window, 21
settings, 20

Form Controls, assigning macros to,
18-19

hyperlinks, running macros from,
507-508

interrupting, 117

keyboard shortcuts, running macros
from, 504

pausing, 117

Personal Macro Workbook (Personal.

xlsm), 15

Record Macro dialog, filling out,
14-16

recording, 14-16
AutoSum, 30-31
case study, 21-24
navigating data sets, 31
Quick Analysis, 30-31
relative references, 26-30, 31

using different methods while
recording, 31

recording macros case study, 21-24
relative references, 26-31
restarting, 117

Ribbon, customizing for running
macros, 487-488

accessing Excel file structure, 496

adding controls to Ribbon,
490-491

creating groups, 489-490
creating tabs, 489-490

customui folder and file, 488-489
images on buttons, 497-500

macros

.RELS files, 496-497
renaming Excel files, 497

troubleshooting (error handling),
500-503

running, 16
case study, 25-26

creating macro buttons on Quick
Access Toolbar, 17

creating macro buttons on
Ribbon, 16

running macros on another day
produces undesired results, 25-26

running macros on another day pro-
duces undesired results, 25-26

scheduling

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x
minutes in the future, 383

scheduling verbal reminders,
383-384

security
Disable All Macros Except
Digitally Signed Macros
option, 14
Disable All Macros with
Notification option, 13-14
Disable All Macros Without
Notification option, 13
Enable All Macros option, 14
Macro Security icon (Code group),
10-12
using macros outside of trusted
locations, 13-14
shapes
assigning macros to, 18-19
attaching macros to, 505-506
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568 macros

storing in hidden workbooks,
515-516

testing, 24-25
text boxes, assigning macros to, 18-19
tips for using, 31

trusted locations, using macros
outside of, 13-14

using different methods while
recording, 31

xls files, 11

xlsb files, 11

xlsm files, 11

xlsx files, 10-11

XML macros, 4
Macros icon (Code group), 10
Macs (Apple) and VBA, 4

math functions (JavaScript), Office (MS)
add-ins, 534-535

mathematical operators (JavaScript) and
Office (MS) add-ins, 532-533

max values (duplicate), returning
addresses of, 304-305

MDB (Multidimensional Databases),
423-424

records
adding to MDB, 427-428
deleting via ADO, 433
retrieving from MDB, 429-430
summarizing via ADO, 433-434
updating existing records, 431-432

shared access databases, creating (case
study), 425-426

memory, reading text files into, 254-255
message boxes (userforms), 158
methods (VBA), 34-37

Application.OnTime method and
data analysis, 381

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

Ready mode for scheduled
procedures, 381-382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x
minutes in the future, 383

scheduling verbal reminders,
383-384

scheduling window of time for
updates, 382

data visualization, 334-335

Format method, micromanaging for-
matting changes in charts, 324-325

Intersect method, creating new rang-
es from overlapping ranges, 67

new methods, learning, 542
parameters, 35-37

Save As method, converting
workbooks to add-ins, 511

SetElement method, emulating Plus
icon changes, 319-323

SpecialCells method, selecting
specific cells in ranges, 68-70

Union method, joining multiple
ranges, 66-67
Microsoft Office icons, adding to buttons,
498-499

Miles, Tommy, 255-256

military time, entering in cells (case
study), 122

mixed references and R1C1 formulas,
98-99

mixed text, retrieving numbers from,
298-299

Moala, Ivan F., 263-264, 277-279
modeless userforms, 449
Modify group (Developer tab), 10

monthly accounting reports case
study, 3-4



months, grouping daily dates to, 221-222
moving
forward/backing up in code (debug-
ging), 45-46
pivot tables, 216-217

multidimensional arrays, declaring,
132-133

MultiPage control, combining userforms,
171-173

multiple actions in recorded code, 54-55

multiple characters, substituting via UDF,
297-298

multiple items, selecting via
AutofFilter, 180

MultiSelect property, userform list boxes,
166-167

N

names, 103
adding comments to, 106
arrays, 109-110
checking existence of, 111-112
creating, 104-105
deleting, 105-106
formulas, 106-107
global names
creating, 104-105
local names versus, 103-104
hiding, 111
local names
creating, 105
global names versus, 103-104
Name Manager
adding comments to names, 106

global names versus local names,

103-104

local names versus global names,

103-104

numeric characters, sorting

named ranges, 60
numbers, 108-109
renaming Excel files, 497
reserved names, 110-111
strings, 107-108

tables, 109

types of names, 106-111

Vlookup, named ranges for (case
study), 112-113

workbooks

setting names and file paths in
cells, 287

setting names in cells, 286

Napa Office 365 development tools and
Office (MS) add-ins, 536-537

navigating
data sets in Macro Recorder, 31
Object Browser, 50

nested If statements (Select Case.End
Select loops), 89-91

nested loops, 78

New keyword, referencing Word
objects, 409

noncontiguous cells, selecting, 265-267

noncontiguous ranges, returning via
Areas collection, 70-71

nonzero-length cells, finding in ranges,
296-297

NumberFormat property, 353-354
numbers

names, 108-109

retrieving from mixed text, 298-299

week numbers, converting to
dates, 299

numeric characters, sorting, 302-303
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Object Browser

Object Browser
navigating, 50
opening, 50

Word constant values, retrieving,
412-413

object fills, changing in charts, 325-327
object variables

For Each. loops, 83-85

VBA loops (For Each. loops), 83-85
objects (VBA), 34-37

class modules, inserting into objects,
139-140

collections, 35
custom objects
creating, 143-145
using, 145
hierarchy of, 59
new objects, learning, 542
properties, 36-37
Range object, 59-60
returning objects via properties, 43
watches and, 49-50
objects (Word), 405-406, 413
bookmarks, 419-420

constant values, retrieving via late
binding, 411-413

Document object, 413-415

new instances, creating via
CreateObject function, 409

Range object, 416-419
referencing
early binding, 406-408

early binding using New
keyword, 409

late binding, 408-409

referencing existing instances via

GetObject function, 410-411
Selection object, 415-416

Office (MS)

add-ins, 517
buttons (HTML), 524-525
creating, 517-521
.CSS files, 525
“Hello World” add-in, 517-521
HTML in, 524-525
interactivity in, 521-524
JavaScript interactivity in, 526-536

Napa Office 365 development
tools, 536-537

tags (HTML), 524
writing to content pane, 535
writing to task pane, 535
XML in, 525-526
icons, adding to buttons, 498-499
Offset property, referencing ranges, 63-65

OLAP pivot tables, filtering by lists of
items, 271-273

Oliver, Nathan P.251, 280

On Error GoTo syntax (error handling/
troubleshooting), 477-478

online resources
Cell Masters website, 254
code files, 5
ExcelMatters.com website, 254
exp.com, 271
JKP Application Development
Services, 466
Juanpg.com website, 268-270

OpenXMLDeveloper.org
website, 497



RibbonX Visual Designer, 497
Wallentin blog, Dennis, 257
XcelFiles website, 263
open status (workbooks), checking, 287
OpenXMLDeveloper.org website, 497
option buttons in userforms, 167-169

overlapping ranges, creating new ranges
from, 67

P

parameters (VBA), 35-37
event parameters, 116
optional parameters, 40
parsing text files, 254-255
passing arrays, 137-138
passwords
cracking (case study), 484-485

protected password boxes, creating,
275-277

pausing macros, 117

percentages, changing calculations to
show (pivot tables), 222-224

performance, speeding up code via arrays,
135-136

permanent date and time, retrieving, 291

Personal Macro Workbook
(Personal.xIsm), 15

Pieterse, Jan Karel, 466

pivot tables, 2-3, 211, 212, 219-220
calculated data fields, 247
calculated items, 247
case studies, 249-250
changing, 216-217
configuring, 213-214
converting to values, 217-219
creating, 213-214

daily dates, grouping to months,
quarters, years, 221-222

pivot tables 571

data area, adding fields to, 214-216
Data Model, 242

adding model fields to pivot
tables, 244

adding numeric fields to value
area, 244-245

adding tables to Data Model,
242-243

building pivot tables, 243
creating, 245-247

creating relationships between
tables, 243

defining pivot caches, 243
data visualization case study, 249-250
development of, 211-212
drilling down, 270-271
Excel's changes to, 541
fields

adding to data area, 214-216

multiple value fields, 220-221
filtering

case study, 233-235

conceptual filters, 229-230

configuring filtering timelines,
239-242

configuring slicers for filtering,
235-239

manually filtering multiple items
in pivot fields, 228-229

record sets via ShowDetail, 248
search filter, 233
types of filters, 230
layouts
changing via Design tab (VBA), 248
report layout settings, 248-249
moving, 216-217

OLAP pivot tables, filtering by lists
of items, 271-273
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percentages, changing calculations to
show, 222-224

pivot caches, defining, 212-213

record sets, filtering via
ShowDetail, 248

reports
layout settings, 248-249
replicating for every product
Show Report Filter Pages, 225-228

ShowDetail, filtering record sets
via, 248

sizing tables to convert to values,
217-219

sort order, controlling via
AutoSort, 225

subtotals, suppressing for multiple
row fields, 249-250

values area, deleting empty cells
from, 225

versions of, 211-212

Plus icon, emulating changes via
SetElement, 319-323

Pope, Andy, 497
power programming (Excel)
cells
creating hidden log files, 267-268

highlighting selected cells using
conditional formatting, 263-265

placing charts in comments,
261-262

resizing comments, 260-261

selecting noncontiguous cells,
265-267

charts, placing in cell comments,
261-262

files
creating hidden log files, 267-268
deleting .CSV files, 254
importing .CSV files, 254

listing in directories, 251-253
parsing text files, 254-255

reading text files into memory,
254-255

workbooks
combining, 256-257

separating worksheets into work-
books, 255-256

worksheets

copying data to separate work-
sheets, 257-258

copying data to separate work-
sheets without filters, 258-259

filtering data to separate work-
sheets, 257-258

separating into workbooks,
255-256

XML files, exporting data to,
259-260

power programming (VBA)
cells
progress indicators, 274-275
selecting via SpecialCells, 279
custom sort orders, 273-274

Excel State class modules, creating,
268-270

fund/stock quotes, 280-281
pivot tables
drilling down, 270-271

filtering OLAP pivot tables by lists
of items, 271-273

protected password boxes, creating,
275-277

stock/fund quotes, 280-281
tables, resetting formatting, 279-280
text, changing case, 277-278

workbooks, adding code via VBA
extensibility, 281-282



Power Query

loading large text files to Data Model,
401-402

Web data (Internet), retrieving,
375-378

progress indicators (cells), creating,
274-275

Project Explorer (VB Editor), 20
properties (VBA), 36-37
Columns property, specifying
ranges, 66

CurrentRegion property, selecting
data ranges, 68

custom properties, creating via UDT,
153-156

data visualization, 334-335

Excel8CompatibilityMode property,
543-544

MultiSelect property and userform
list boxes, 166-167

NumberFormat property, 353-354

Offset property, referencing ranges,
63-65

Resize property, sizing ranges, 65-66
returning objects, 43
Rows property, specifying ranges, 66
Version property, 543

Properties window (VB Editor), 20

protected password boxes, creating,
275-277

publishing data to web pages, 385-386

content management via Excel,

387-389
custom web pages, 386-387
FTP from Excel, 389-390

R1C1 formulas

Q

quarters, grouping daily rates to via pivot
tables, 221-222

queries (web) and data retrieval, 375-377,
379-380

building multiple queries, 377-378
examples of, 380

finding results from retrieved data,
378-379

QueryClose events, userform windows,
174-175

querying while stepping through code
(debugging), 46

hovering the cursor, 47-48
Immediate window, 46-47
watches, 48

Quick Access Toolbar, creating macro but-
tonson, 17

Quick Analysis tool
Excel's changes to, 541
recording macros, 30-31

quotes (stock/fund), power programming
techniques, 280-281

R

R1C1 formulas
Al versus, 93-97
absolute references and, 98
accessing, 94-95
array formulas and, 101-102
autofilling data, 96
case study, 96-97
cleaning up recorded code, 54
columns
number/letter associations, 101

references, 99




574 R1C1 formulas

mixed references and, 98-99
relative references and, 97-98

replacing multiple Al formulas with
one R1C1 formula, 99-101

row references, 99
random (static), 306
Range object (Word), 416-419
ranges, 59

case study, selecting specific cells in
ranges, 68-70

cells
checking for empty cells, 67

finding the first nonzero-length
cell in a range, 296-297

ranges versus cells when cleaning
up code, 52

selecting specific cells, 68-70

color scales, adding to ranges,
339-340

criteria ranges (Advanced Filter), 186,
192-194

case study, 194-197

complex criteria, 194-195

formula-based conditions, 196-201

joining multiple ranges via Logical
AND, 194

joining multiple ranges via Logical
OR, 193-194

data bars
adding to ranges, 335-339

multple colors of data bars in
ranges, 345-347

dynamic date ranges, selecting via
AutoFilter, 182-183

highlighting unique values in ranges,
352-353

icon sets
adding to ranges, 341-343

creating for subsets of ranges,
341-343

joining multiple ranges, 66-67
named ranges, 60, 112-113

noncontiguous ranges, returning via
Areas collection, 70-71

overlapping ranges, creating new
ranges from, 67

Range object, 59-60
referencing
Offset property, 63-65
in other worksheets, 61
relative to other ranges, 61-62
shortcuts, 60
tables, 71
removing duplicates from, 295-296
selecting
data ranges, 68
ranges via cells, 62-63
sizing via Resize property, 65-66
specifying
columns and, 66
rows and, 66
syntax for, 60

reading/writing to add-ins (Office) via
JavaScript, 536

Record Macro dialog; filling out, 14-16

Record Macro icon (Code group), 10

record sets (ADO), 426

recording

cleaning up recorded code, 51

avoiding hard-coding rows, 53-54
case study, 55-57
cells versus ranges, 52
copying/pasting in statements, 54

With.End With blocks for mul-
tiple actions, 54-55

finding the last row, 52-53

multiple actions in recorded code,

54-55



R1C1 formulas, 54
ranges versus cells, 52
selecting things, 51

macros, 14-16
AutoSum, 30-31
case study, 21-24
navigating data sets, 31
Quick Analysis, 30-31
relative references, 26-30, 31

using different methods while
recording, 31

RefEdit controls (userforms), 444
referencing
charts (specific), 315-316
ranges
Offset property, 63-65
in other worksheets, 61
relative to other ranges, 61-62
shortcuts, 60
tables, 71
Word objects
early binding, 406-408
early binding using New
keyword, 409
late binding, 408-409
relative references
R1C1 formulas and, 97-98
recording macros, 26-31

reminders (verbal), scheduling for macro

operation, 383-384
removing
add-ins, 514-515
duplicates from ranges, 295-296
renaming Excel files, 497
reports
accounting reports case study, 3-4
layout settings, 248-249

replicating for every product (pivot
tables), 225-228

Ribbon 575

reserved names, 110-111
resetting table formatting, 279-280
Resize property, sizing ranges, 65-66
resources (online)
Cell Masters website, 254
code files, 5
ExcelMatters.com website, 254
exp.com, 271

JKP Application Development
Services, 466

Juanpg.com website, 268-270

OpenXMLDeveloper.org
website, 497

RibbonX Visual Designer, 497
Wallentin blog, Dennis, 257
XcelFiles website, 263
restarting macros, 117
retrieving
data from arrays, 134-135
date and time
permanent date and time, 291
retrieving from last save, 291
Internet data, 375-380
building multiple queries, 377-378
examples of, 380

finding results from retrieved data,
378-379

numbers from mixed text, 298-299
user ID, 289-290

reversing cell contents, 304

Ribbon
creating macro buttons on, 16

customizing for running macros,

487-488
accessing Excel file structure, 491

adding controls to Ribbon,
490-491

creating groups, 489-490




576 Ribbon

creating tabs, 489-490

customui folder and file, 488-489
images on buttons, 497-500
.RELS files, 496-497

renaming Excel files, 497

troubleshooting (error handling),
500-503

Excel's changes to, 539
RibbonX Visual Designer, 497
rows

hard-coding rows, avoiding (cleaning
up recorded code), 53-54

highlighting for the largest value, 353

last row, finding (cleaning up record-
ed code), 52-53

R1C1 formulas, row references, 99
ranges, specifying via rows, 66
Ruiz, Juan Pablo Gonzalez, 268-270
running
to cursor (debugging code), 46
macros, 16
case study, 25-26

creating macro buttons on Quick
Access Toolbar, 17

creating macro buttons on

Ribbon, 16

on another day produces undesired
results, 25-26
running timers, creating via API
declarations, 471

Runtime Error 9: Subscript Out of Range,
482-483

Runtime Error 1004: Method Range of
Object Global Failed, 483-484

S

Save As method, converting workbooks to
add-ins, 511

saving

date and time from last save,
retrieving, 291

files in xIsm file format, 11
scaling sparklines, 357-361
scheduling macros
canceling
all pending scheduled macros, 383
previously scheduled macros, 382
to run
every 2 minutes, 384-385
x minutes in the future, 383
verbal reminders, 383-384
scraping websites (data retrieval), 375-380
examples of, 380
multiple queries, building, 377-378

results, finding from retrieved data,
378-379

Scrollbar controls (userforms), 446

SDI (Single Document Interface), Excel's
changes to, 540

search box (AutoFilter), selecting via,
180-181

searching for strings within text, 303-304
security
add-ins, 513-514
error handling (troubleshooting)
code security and debugging, 484
locking code, 485-486

password cracking (case study),
484-485

locking code, 485-486



Macro Security icon (Code group),
10-12

macros

Disable All Macros Except
Digitally Signed Macros
option, 14

Disable All Macros with
Notification option, 13-14

Disable All Macros Without
Notification option, 13

Enable All Macros option, 14

Macro Security icon (Code group),
10-12

using macros outside of trusted
locations, 13-14

password cracking (case study),
484-485

protected password boxes, creating,
275-277

"Trust Center, accessing, 10
trusted locations
adding a trusted location, 12-13

using macros outside of trusted
locations, 13-14

Select Case.End Select loops and flow
control, 88

complex expressions in Case
statements, 89

nesting If statements, 89-91
Select.Case statements

JavaScript interactivity in Office (MS)
add-ins, 530-531

worksheets, 307
selecting
cells, 263
creating hidden log files, 267-268

highlighting selected cells using
conditional formatting, 263-264

slicers 577

highlighting selected cells without
using conditional formatting,
264-265

noncontiguous cells, 265-267
via SpecialCells, 279

dynamic date ranges via AutoFilter,
182-183

multiple items via AutoFilter, 180

ranges via cells, 62-63

via search box (AutoFilter), 180-181

visible cells via AutoFilter, 183-184
Selection object (Word), 415-416

semicolons (;), JavaScript interactivity in
Office (MS) add-ins, 527

SetElement method, emulating Plus icon
changes, 319-323

shapes
assigning macros to, 18-19
attaching macros to, 505-506
sharing UDF, 286

shortcuts (keyboard), running macros
from, 504

Show Report Filter Pages (pivot tables),
225-228

ShowDetail, filtering record sets in pivot
tables, 248

signatures (digital), Disable All Macros
Except Digitally Signed Macros option
(macro security), 14

sizing
cell comments, 260-261

pivot tables to convert to values,
217-219

ranges via Resize property, 65-66
userforms “on the fly,” 452
slicers

configuring for pivot table filtering,
235-239

Excel's changes to, 541
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SmartArt, Excel’s changes to

SmartArt, Excel's changes to, 542
Smith, Chris “Smitty,” 267
sorting

alpha characters, 302-303

concatenating data (sorting and),
300-302

custom sort orders, creating, 273-274
numeric characters, 302-303

pivot table sort orders, controlling via
AutoSort, 225

sounds, playing via API declarations, 472

spaces, JavaScript interactivity in Office
(MS) add-ins, 527

sparklines, 355
columns, 355
creating, 356-357
formatting, 361-369
RGB colors, 364-365
scaling, 357-361
theme colors, 361-364
dashboards, creating, 369-373
lines, 355
creating, 356-357
formatting, 361-369
RGB colors, 364-365
scaling, 357-361
theme colors, 361-364
observations about, 369-370
usage observations, 369-370
win/loss charts, 355
binary event tracking, 368-369
creating, 356-357
formatting, 361-369
RGB colors, 364-365
scaling, 357-361
theme colors, 361-364

SpecialCells method
selecting cells via, 279

selecting specific cells in ranges,
68-70

speeding up code via arrays, 135-136
spin buttons in userforms, 170-171
SQL server and Access, 437-438

standard modules, creating in collections,
146-147

statements, copying/pasting within
(cleaning up recorded code), 54

static random, 306
Step clause, For.Next loops, 76-77

stepping through code (debugging),
43-45

stock/fund quotes (power programming
techniques), 280-281

storing

macros in hidden workbooks,
515-516

userforms in hidden workbooks,
515-516

strings
delimited strings, extracting a single
element from, 300

JavaScript strings in Office (MS) add-
ins, 528

names, 107-108

searching for a string within text,
303-304

substituting multiple characters via UDF,
297-298

Sullivan, Jerry, 271
summarizing MDB records, 433-434

summing cells based on interior color,
293-294



tables
Access tables

adding tables “on the fly” via
ADO, 436

verifying existence via ADO,
434-435

formatting, resetting, 279-280
names, 109

pivot tables. See individual entry
referencing, 71

tabs, customizing Ribbon for running
macros, 489-490

TabStrip controls (userforms), 442-443
tags (HTML) and Office (MS) add-ins, 524
task pane (Office add-ins), writing to, 535
testing macros, case study, 24-25
text

case, changing, 277-278

cells, formatting text in, 351

mixed text, retrieving numbers from,

298-299

searching for a string within text,
303-304

tip text, adding to userform
controls, 457

text boxes
macros, assigning to text boxes, 18-19
userforms, 163-165
text files, 391
importing, 391
delimited files, 395-397

files with less than 1,048,576 rows,
391-397

files with more than 1,048,576
rows, 398-402

troubleshooting (error handling)

fixed-width files, 392-395

loading large files to Data Model
via Power Query, 401-402

running files a row at a time,

398-400
parsing, 254-255
reading into memory, 254-255
writing, 402

timelines (pivot table filtering),
configuring, 239-242

timers (running), creating via API
declarations, 471

tip text, adding to userform controls, 457
titles (chart), specifying, 316
ToggleButton controls (userforms), 444
top/bottom rules, 334, 348-349
transparent userforms, 460-461
troubleshooting (error handling), 473
blanks/errors formatting, 351-352
case study, 480
clients, training, 481-482
code security
debugging and, 484
locking code, 485-486

password cracking (case study),
484-485

development stage errors versus
errors months later, 482

encountering errors on purpose, 481
On Error GoTo syntax, 477-478
Excel warnings, suppressing, 481
generic error handlers, 478-479
Help (VBA), 38

ignoring errors, 479

Ribbon, customizing for running
macros, 500-503

Runtime Error 9: Subscript Out of
Range, 482-483
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580 troubleshooting (error handling)

Runtime Error 1004: Method Range
of Object Global Failed, 483-484

userforms

adding controls to existing forms,
162-163

debug errors, 475-477
VBA, 473-475
versioning errors, 486
Trust Center, accessing, 10
trusted locations
adding a trusted location, 12-13

macros, using outside of trusted
locations, 13-14

Tufte, Prof. Edward, 355

U

UDF (User-Defined Functions), 283, 286
case study, 284-285
cells

finding the first nonzero-length
cell in a range, 296-297

returning column letters from cell

addresses, 306
reversing cell contents, 304

setting workbook names and file
paths in cells, 287

setting workbook names in cells,
286

summing cells based on interior

color, 293-294

column letters, returning from cell
addresses, 306

concatenating data (sorting and),
300-302

creating, 283-285
date and time
retrieving from last save, 291

retrieving permanent date and
time, 291

duplicate max values, returning the
addresses of, 304-305

email addresses, validating, 292-293

hyperlink addresses, returning,
305-306

multiple characters, substituting,
297-298

numbers

converting week numbers to

dates, 299

retrieving from mixed text,

298-299
ranges

finding the first nonzero-length
cell in a range, 296-297

removing duplicates from, 295-296

Select.Case statements in
worksheets, 307

sharing, 286
sorting
alpha characters, 302-303

concatenating data (sorting and),
300-302

numeric characters, 302-303
static random, 306
strings
extracting a single element from a
delimited string, 300

searching for a string within text,
303-304

unique values, counting, 294-295
user ID, retrieving, 289-290
workbooks

checking open status, 287

counting number of workbooks in
a directory, 288-289

setting names and file paths in
cells, 287

setting names in cells, 286



worksheets
checking existence of, 287-288
Select.Case statements, 307

UDT (User-Defined Types), creating cus-
tom properties, 153-156

Union method, joining multiple ranges,
66-67

unique cells, formatting, 349-350
unique lists (Advanced Filter), 186

extracting values via user
interface, 186

changing list ranges to single col-
umn format, 186-187

copying customer headings, 187

extracting values via VBA code,
187-191

unique combinations of two or more

fields, 191-192
unique values
counting, 294-295
highlighting in ranges, 352-353
Until clauses and Do loops, 81-82

updating existing records in MDB,
431-432

Urtis, Tom, 260- 261, 265, 270, 274

Use Relative References icon (Code
group), 10

user ID, retrieving, 289-290
userforms, 157

calling, 159-160

case study, 162-163, 459

closing, disabling X button via API
declarations, 470-471

collections and controls, 447-449
combining, 171-173

combo boxes, 165-167

command buttons, 163-165

userforms

controls, 440
adding, 453
adding at runtime, 450-456

adding controls to existing forms,
162-163

adding “on the fly,” 452

adding tip text, 457

case study, 162-163

Checkbox controls, 440-441

collections and, 447-449

coloring active controls, 457-459

designing via toolbar, 439-440

programming, 162

RefEdit controls, 444

Scrollbar controls, 446

TabStrip controls, 442-443

ToggleButton controls, 444
creating, 158-159

debug errors, troubleshooting,
475-477

events, 160-161
field entry, verifying, 174
filenames, 175-176
frame control events, 167-169
graphics, 169
help, adding, 456
adding control tip text, 457
coloring active controls, 457-459
creating tab order, 457
showing accelerator keys, 456
hiding, 160
hyperlinks, 449-450
illegal window closing, 174-175
images, adding “on the fly,” 453-454
input boxes, 157-158
labels, 163-165
list boxes, 165, 459
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userforms

message boxes, 158
modeless userforms, 449

multicolumn list boxes (case
study), 459

MultiSelect property and list boxes,
166-167

option buttons, 167-169
programming, 160
QueryClose events, 174-175

scrollbar, using as a slider to select
values, 446

sizing “on the fly,” 452
spin buttons, 170-171

storing in hidden workbooks,
515-516

text boxes, 163-165

toolbar and control design, 439-440
transparent userforms, 460-461
troubleshooting, 162-163, 475-477

X button for closing userforms, dis-
abling via API declarations, 470-471

\Y

validating email addresses, 292-293
value-based cell formatting, 350-351
variables

JavaScript variables in Office (MS)
add-ins, 527-528

object variables
For Each. loops, 83-85

VBA loops (For Each. loops),
83-85

variant variables in arrays, 133
VB Editor, 19
cleaning up code, 51
avoiding hard-coding rows, 53-54
case study, 55-57
cells versus ranges, 52

copying/pasting in statements, 54

With.End With blocks for
multiple actions, 54-55

finding the last row, 52-53

multiple actions in recorded code,
54-55

R1C1 formulas, 54
ranges versus cells, 52
selecting things, 51

converting workbooks to add-ins,

511-512
debugging code

backing up/moving forward in
code, 45-46

breakpoints, 45, 49
querying while stepping through
code, 46-48
running to cursor, 46
stepping through code, 43-45
defined constants, 40-43
Object Browser
navigating, 50
opening, 50
opening, 10
parameters (optional), 40
Project Explorer, 20
properties, 43
Properties window, 21
returning objects, 43
settings, 20
UDF, creating, 284-285
userforms, creating, 158-159
VBA (Visual Basic for Applications), 1, 7, 9
add-ins, 509
case study, 515-516
characteristics of, 509-510
client installations, 512-514
closing, 514



converting workbooks to, 510-512

hidden workbooks as alternative to
add-ins, 515-516

Office (MS) add-ins. See indi-
vidual entry

removing, 514-515
security, 513-514
BASIC versus, 8, 33-34
charts
applying color, 317-318
changing object fills, 325-327

emulating Plus icon changes via
SetElement, 319-323

filtering, 318
formatting, 312-315
formatting line settings, 327

good/bad of the VBA creation
process, 309-310

micromanaging formatting
changes, 324-325

specific chart references, 315-316
specifying titles, 316
styles of, 312-315
types of, 313-315
collections, 35-37, 139, 145
creating, 146
creating in class modules, 148-149

creating in standard modules,
146-147

returning noncontiguous ranges,
70-71

userform controls and, 447-449
Data Model, 242

adding model fields to pivot
tables, 244

adding numeric fields to value
area, 244-245

adding pivot tables to Data Model,
242-243

VBA (Visual Basic for Applications)

building pivot tables, 243
creating, 245-247

creating relationships between
pivot tables, 243

defining pivot caches, 243
data visualization

methods, 334-335

properties, 334-335

error handling (troubleshooting),
473-475

example of, 33
future of, 4
Help, 38-40
defined constants, 40-43
optional parameters, 40
Macs and, 4
methods, 34-37

Application.OnTime method and
data analysis, 381-385

data visualization, 334-335
Format method, 324-325
Intersect method, 67
learning new methods, 542
parameters, 35-37
Save As method, 511
SetElement method, 319-323
SpecialCells method, 68-70
Union method, 66-67
objects, 34-37
collections, 35-37
custom objects, creating, 143-145
custom objects, using, 145
hierarchy of, 59

inserting class modules into

objects, 139-140
learning new objects, 542
properties, 36-37
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Range object, 59-60
returning objects via properties, 43
watches and, 49-50

parameters, 35-37

event parameters, 116
optional parameters, 40

pivot tables, 211-212, 219-220

adding fields to data area, 214-216
calculated data fields, 247
calculated items, 247

case study, 249-250

changing, 216-217

changing calculations to show per-
centages, 222-224

conceptual filters, 229-230
configuring, 213-214

configuring filtering timelines,
239-242

configuring slicers for filtering,
235-239

controlling sort order via
AutoSort, 225

converting to values, 217-219
creating, 213-214
Data Model and, 242-247

data visualization case study,
249-250

defining pivot caches, 212-213

deleting empty cells from values
area, 225

development of, 211-212
drilling down, 270-271
filtering case study, 233-235

filtering record sets via
ShowDetail, 248

grouping daily dates to months,
quarters, years, 221-222

layout changes via Design tab

(VBA), 248

manually filtering multiple items
in pivot fields, 228-229

moving, 216-217
multiple value fields, 220-221

replicating reports for every
product, 225-228

report layout settings, 248-249
search filter, 233

Show Report Filter Pages,
225-228

sizing tables to convert to values,

217-219

suppressing subtotals for multiple
row fields, 249-250

types of filters, 230
versions of, 211-212
power programming

adding code to workbooks via
VBA extensibility, 281-282

cell progress indicators, 274-275
changing case (text), 277-278

creating Excel State class
modules, 267

custom sort orders, 273-274
drilling down pivot tables, 270-271

filtering OLAP pivot tables by lists
of items, 271-273

protected password boxes, 275-277

resetting table formatting, 279-280

selecting cells via SpecialCells, 279

stock/fund quotes, 280-281
properties, 36-37

Columns property, 66

CurrentRegion property, 68

custom properties, creating via
UDT, 153-156

data visualization, 334-335

Excel8CompatibilityMode
property, 543-544



MultiSelect property and userform
list boxes, 166-167

NumberFormat property, 353-354
Offset property, 63-65
Resize property, 65-66
returning objects, 43
Rows property, 66
Version property, 543
syntax of, 34-37

workbooks, adding code via VBA
extensibility, 281-282

VBA loops (For Each. loops), 82-83
VBEVB Editor
new methods, learning, 542
new objects, learning, 542

verbal reminders, scheduling for macro
operation, 383-384

verifying

Access field existence via ADO,
435-436

Access table existence via ADO,
434-435

field entry in userforms, 174

Version property, Excel compatibility
issues, 543

versioning errors, 486

visible cells, selecting via AutoFilter,
183-184

Visual Basic icon (Code group), 10
visualizing data, 333
above/below average rules, 334, 348
cells
blanks/errors formatting, 351-352
date formatting, 351
duplicate cell formatting, 349-350

formulas to determine cells to

format, 352-353
text formatting, 351

watches 585

unique cell formatting, 349-350
value-based formatting, 350-351
color scales, 339-340
conditional formatting, 334
data bars, 334
adding to ranges, 335-339

muldple colors of data bars in
ranges, 345-347

duplicate value rules, 334
highlight cell rules, 334
icon sets, 334

adding to ranges, 341-343

creating for subsets of ranges,
344-345

methods, 334-335
NumberFormat property, 353-354
pivot tables case study, 249-250
properties, 334-335
ranges

data bars, 335, 345-347

highlighting unique values in,
352-353

icon sets, 341, 344-345

rows, highlighting for the largest
value, 353

top/bottom rules, 334, 348-349

Vlookup, named ranges for (case study),
112-113

w

Wallentin, Dennis, 257
warnings (Excel), suppressing, 481

watches
breakpoints in, 49
objects and, 49-50
querying while stepping through
code, 48




586 Watches window, retrieving Word constant values

Watches window, retrieving Word
constant values, 411-412

Web data (Internet)

analyzing via Application.OnTime
method, 381

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

Ready mode for scheduled
procedures, 381-382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x
minutes in the future, 383

scheduling verbal reminders,
383-384

scheduling window of time for
updates, 382

content management via Excel,

387-389
publishing to web pages, 385-386

content management via Excel,
387-389

custom web pages, 386-387

FTP from Excel, 389-390
retrieving, 375-380

building multiple queries, 377-378

examples of, 380

finding results from retrieved data,
378-379

web pages

content management via Excel,
387-389

custom web pages, 386-387
publishing data to, 385-386

content management via Excel,
387-389

custom web pages, 386-387
FTP from Excel, 389-390

web queries and data retrieval, 375-380
examples of, 380
multiple queries, building, 377-378

results, finding from retrieved data,
378-379

web resources
Cell Masters website, 254
code files, 5
ExcelMatters.com website, 254
exp.com, 271

JKP Application Development
Services, 466

Juanpg.com website, 268-270

OpenXMLDeveloper.org
website, 497

RibbonX Visual Designer, 497
Wallentin blog, Dennis, 257
XcelFiles website, 263
building multiple queries, 377-378
examples of, 380

finding results from retrieved data,
378-379

websites, scraping (data retrieval),
375-380

week numbers, converting to dates, 299
While clauses and Do loops, 81-82
While.Wend loops, 82

windows (userform), illegally closing,
174-175

win/loss charts (sparklines), 355
creating, 356-357
formatting, 361
binary event tracking, 368-369
RGB colors, 364-365
theme colors, 361-364
scaling, 357-361

With.End With blocks, cleaning up
recorded code, 54-55



Word, automating, 405-406
bookmarks, 419-420
Document object, 413-415
form fields, 420-422
objects, 413

creating new instances via

CreateObject function, 409

late binding using constant values,

411-413

referencing existing instances via

GetObject function, 410-411

referencing via early binding,
406-408

referencing via early binding using
New keyword, 409

referencing via late binding,
408-409

Range object, 416-419
Selection object, 415-416
workbooks

adding code via VBA extensibility,
281-282

add-ins
case study, 515-516
converting to add-ins, 510-511

converting to add-ins via Save As
method, 511

converting to add-ins via VB
Editor, 511-512

hidden workbooks as alternative to
add-ins, 515-516

combining, 256-257

directories, counting number of
workbooks in, 288-289

events
workbook events, 117
workbook-level sheet events, 119

writing text files 587

hidden workbooks
as alternative to add-ins, 515-516
storing macros in, 515-516
storing userforms in, 515-516
names, setting in cells, 286-287
open status, checking, 287

Personal Macro Workbook
(Personal.xIsm), 15

trusted locations
adding a trusted location, 12-13

using macros outside of trusted
locations, 13-14

workbook-level sheet events, 119
worksheets
checking existence of, 287-288

separating into workbooks,
255-256

xls files, 11
xlsb files, 11
xlsm files
macros, 11
saving files in, 11
xlsx files, 10-11
worksheets
checking existence of, 287-288

copying data to separate worksheets,
257-258

copying data to separate worksheets
without filters, 258-259

events, 120

filtering data to separate worksheets,
257-258

referencing ranges in other
worksheets, 61

Select.Case statements, 307
separating into workbooks, 255-256
writing text files, 402




588 X button (userforms), disabling via API declarations

X
X button (userforms), disabling via API
declarations, 470-471
XcelFiles website, 263
xlIFilterCopy (Advanced Filter), 203
copying
columns, 203-204
subsets of columns, 204-206
reordering columns, 204-206

Xls files, 11

Xlsb files, 11

Xxlsm files
concerns with, 11
macros, 11
public perception of, 11
saving files in, 11

xlsx files, 10-11

XML (Extensible Markup Language)
exporting data to files, 259-260
groups (Developer tab), 10
macros4

Office (MS) add-ins, 525-526

Y-Z

years, grouping pivot tables to, 221-222
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