MrExcel c: Content Update
LIBRARY Program

FREE...See Details Inside

Excel° 2016

VBA and MACROS

A

Tracy Syrstad W
- //l/ v
FREE SAMPLE CHAPTER
£ 9 B A W

SHARE WITH OTHERS

Bill Jelen Ef3.

http://www.facebook.com/share.php?u=http://www.quepublishing.com/title/9780789755858
http://twitter.com/?status=RT: download a free sample chapter http://www.quepublishing.com/title/9780789755858
https://plusone.google.com/share?url=http://www.quepublishing.com/title/9780789755858
http://www.linkedin.com/shareArticle?mini=true&url=http://www.quepublishing.com/title/9780789755858
http://www.stumbleupon.com/submit?url=http://www.quepublishing.com/title/9780789755858/Free-Sample-Chapter

Excel® 2016

r

VBA
and MACROS

This book is part of Que’s exciting new Content Update
Program, which provides automatic content updates for
major technology improvements!

» As Microsoft makes significant updates to Excel 2016,
sections of this book will be updated or new sections
will be added to match the updates to the software.

» The updates will be delivered to you via a free
Web Edition of this book, which can be accessed
with any Internet connection.

» This means your purchase is protected from
immediately outdated information!

For more information on Que’s Content Update program,
see the inside back cover or go to

www.quepublishing.com/CUP.

\ Content Update
c: Program P

If you have additional questions, please email our
Customer Service department at informit@custhelp.com.

http://www.que publishing.com/CUP

MrExcel
LIBRARY

Excel® 2016
VBA and Macros

Bill Felen

Tracy Syrstad

800 E. 96th Street
Indianapolis, Indiana 46240

O o N O

10

12
13
14
15
16
17
18
19
2
21
y))
3
24
25
2%
27
28

Introduction

Referring to Ranges

Looping and Flow Control

R1C1-Style Formulas

Event Programming

Arrays

Userforms: An Introduction

Excel Power

Creating Charts

Text File Processing

Automating Word

Handling Errors

Creating Add-ins

1

Unleashing the Power of Excel with VBA 7
This Sounds Like BASIC, So Why Doesn't It Look Familiar?...............33
59

73

923

Creating and Manipulating Names in VBA..........oriririinn 103
115

131

Creating Classes and Collections 139
157

Data Mining with Advanced Filter 177
Using VBA to Create Pivot Tables 211
251

Sample User-Defined Functions 283
309

Data Visualizations and Conditional Formatting...................... 333
Dashboarding with Sparklines in Excel 2016.............ccrrirnn355
Reading from and Writing to the Web 375
391

405

Using Access as a Back End to Enhance Multiuser Access to Data...423
Advanced Userform Techniques 439
The Windows Application Programming Interface (API)................463
473

Customizing the Ribbon to Run Macrosveseses 487
509

An Introduction to Creating Office Add-ins..............cvriririsinn 317
What's New in Excel 2016 and What's Changed..............c.coouvrrn539
545

Index

Excel® 2016 VBA and Macros

Copyright © 2016 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, pho-
tocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the infor-
mation contained herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility
for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

ISBN-13: 978-0-7897-5585-8
ISBN-10: 0-7897-5585-8

Library of Congress Control Number: 2015950785
Printed in the United States of America
First Printing: November 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Que Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is
on an “as is” basis. The authors and the publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Editor-in-Chief
Greg Wiegand

Acquisitions Editor
Joan Murray

Development Editor
Charlotte Kughen

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Kitty Wilson

Indexer
Ken Johnson

Proofreader
Dan Knott

Technical Editor
Bob Umlas

Editorial Assistant
Cindy Teeters

Designer
Chuti Prasertsith

Compositor
Trina Wurst

Contents

Introduction 1
What Is in This Book? 1
Reducing the Learning Curve 1
Excel VBA Power 2
Techie Stuff Needed to Produce Applications 2
Does This Book Teach Excel? 2
The Future of VBA and Windows Versions of Excel 4
Versions of Excel 4
Differences for Mac Users 4
Special Elements and Typographical Conventions 5
Code Files 5
Next Steps 5
1 Unleashing the Power of Excel with VBA 7
The Power of Excel 7
Barriers to Entry 7
The Macro Recorder Doesn’t Work! 7

No One on the Excel Team Is Focused on the Macro Recorder 8
Visual Basic Is Not Like BASIC 8
Good News: Climbing the Learning Curve s Easy 9
Great News: Excel with VBA Is Worth the Effort 9
Knowing Your Tools: The Developer Tab 9
Understanding Which File Types Allow Macros 10
Macro Security 12
Adding a Trusted Location 12
Using Macro Settings to Enable Macros in Workbooks Outside Trusted Locations 13
Using Disable All Macros with Notification 14
Overview of Recording, Storing, and Running a Macro 14
Filling Out the Record Macro Dialog 15
Running a Macro 16
(reating a Macro Button on the Ribbon 16
(reating a Macro Button on the Quick Access Toolbar 17
Assigning a Macro to a Form Control, Text Box, or Shape 18
Understanding the VB Editor 19
VB Editor Settings 20
The Project Explorer 20
The Properties Window 21
Understanding Shortcomings of the Macro Recorder 21
Recording the Macro 23
Examining Code in the Programming Window 23
Running the Macro on Another Day Produces Undesired Results 25
Possible Solution: Use Relative References When Recording 26
Never Use AutoSum or Quick Analysis While Recording a Macro 30

iv FExcel 2016 VBAs and Macros

Four Tips for Using the Macro Recorder

31

Next Steps

32

This Sounds Like BASIC, So Why Doesn’t It Look Familiar?

33

| Can't Understand This Code

33

Understanding the Parts of VBA “Speech”

34

37

VBA Is Not Really Hard
VBA Help Files: Using F1 to Find Anything

38

38

Using Help Topics
Examining Recorded Macro Code: Using the VB Editor and Help

39

39

Optional Parameters
Defined Constants

40

Properties Can Return Objects

It

Using Debugging Tools to Figure Out Recorded Code

5

5

Stepping Through Code
More Debugging Options: Breakpoints

45

Backing Up or Moving Forward in Code

45

Not Stepping Through Each Line of Code

46

Querying Anything While Stepping Through Code

46

49

Using a Watch to Set a Breakpoint
Using a Watch on an Object

49

50

Object Browser: The Ultimate Reference
Seven Tips for Cleaning Up Recorded Code

51

51

Tip 1: Don’t Select Anything
Tip2:Use Cells (2, 5) Because It's More Convenient Than Range ("E2")

52

52

Tip 3: Use More Reliable Ways to Find the Last Row
Tip 4: Use Variables to Avoid Hard-Coding Rows and Formulas

53

Tip 5: Use R1C1 Formulas That Make Your Life Easier

54

Tip 6: Copy and Paste in a Single Statement

54

Tip7:Usewith. ..End with to Perform Multiple Actions

54

Next Steps

57

Referring to Ranges

59

59

The Range Object
Syntax for Specifying a Range

60

Named Ranges

60

Shortcut for Referencing Ranges

60

Referencing Ranges in Other Sheets

61

61

Referencing a Range Relative to Another Range
Using the Ce11 s Property to Select a Range

62

Using the Of £ set Property to Refer to a Range

63

65

Using the Res i ze Property to Change the Size of a Range
Using the Columns and Rows Properties to Specify a Range

66

66

Using the Union Method to Join Multiple Ranges

Contents v

Using the Intersect Method to Create a New Range from Overlapping Ranges 67
Using the T sEmpty Function to Check Whether a Cell Is Empty 67
Using the CurrentRegion Property to Select a Data Range 68
Using the Areas Collection to Return a Noncontiguous Range 70
Referencing Tables 71
Next Steps 72
Looping and Flow Control 73
For...Next Loops 73
Using Variables in the For Statement 75
Variations on the For . . . Next Loop 76
Exiting a Loop Early After a Condition Is Met 77
Nesting One Loop Inside Another Loop 78
Do Loops 78
Using the while oruntil Clause in Do Loops 81
The VBA Loop: For Each 82
Object Variables 83
Flow Control:Using If . . . Then. . .Elseand Select Case 86
Basic Flow Control: T£. . . Then. . .Else 86
Using Select Case...End Select for Multiple Conditions 88
Next Steps 91
R1C1-Style Formulas 93
Referring to Cells: A1 Versus R1C1 References 93
Toggling to R1C1-Style References 94
Witnessing the Miracle of Excel Formulas 95
Entering a Formula Once and Copying 1,000 Times 95
The Secret: It's Not That Amazing 9%
Understanding the R1C1 Reference Style 97
Using R1C1 with Relative References 97
Using R1C1 with Absolute References 98
Using R1C1 with Mixed References 98
Referring to Entire Columns or Rows with R1C1 Style 929
Replacing Many A1 Formulas with a Single R1C1 Formula 929
Remembering Column Numbers Associated with Column Letters 101
Using R1C1 Formulas with Array Formulas 101
Next Steps 102
Creating and Manipulating Names in VBA 103
Global Versus Local Names 103
Adding Names 104
Deleting Names 105
Adding Comments 106
Types of Names 106

Formulas 106

vi Excel 2016 VBAs and Macros

Strings 107
Numbers 108
Tables 109
Using Arrays in Names 109
Reserved Names 110
Hiding Names m
Checking for the Existence of a Name m
Next Steps 14
7 Event Programming 115
Levels of Events 15
Using Events 116
Event Parameters 116
Enabling Events n7
Workbook Events 17
Workbook-Level Sheet and Chart Events 19
Worksheet Events 120
Chart Events 123
Embedded Charts 123
Embedded Chart and Chart Sheet Events 124
Application-Level Events 125
Next Steps 130
8 Arrays 131
Declaring an Array 131
Declaring a Multidimensional Array 132
Filling an Array 133
Retrieving Data from an Array 134
Using Arrays to Speed Up Code 135
Using Dynamic Arrays 136
Passing an Array 137
Next Steps 138
9 Creating Classes and Collections 139
Inserting a Class Module 139
Trapping Application and Embedded Chart Events 140
Application Events 140
Embedded Chart Events 141
(reating a Custom Object 143
Using a Custom Object 145
Using Collections 145
(reating a Collection 146
(reating a Collection in a Standard Module 146

Creating a Collection in a Class Module 148

Contents | vii

Using Dictionaries 150
Using User-Defined Types to Create Custom Properties 153
Next Steps 156
10 Userforms: An Introduction 157
Input Boxes 157
Message Boxes 158
(reating a Userform 158
(alling and Hiding a Userform 159
Programming Userforms 160
Userform Events 160
Programming Controls 162
Using Basic Form Controls 163
Using Labels, Text Boxes, and Command Buttons 163
Deciding Whether to Use List Boxes or Combo Boxes in Forms 165
Adding Option Buttons to a Userform 167
Adding Graphics to a Userform 169
Using a Spin Button on a Userform 170
Using the Mu1 t i Page Control to Combine Forms 17
Verifying Field Entry 174
lllegal Window Closing 174
Getting a Filename 175
Next Steps 176
11 Data Mining with Advanced Filter 177
Replacing a Loop with AutoFilter 177
Using AutoFilter Techniques 180
Selecting Visible Cells Only 183
Advanced Filter—Easier in VBA Than in Excel 184
Using the Excel Interface to Build an Advanced Filter 185
Using Advanced Filter to Extract a Unique List of Values 186
Extracting a Unique List of Values with the User Interface 186
Extracting a Unique List of Values with VBA Code 187
Getting Unique Combinations of Two or More Fields 191
Using Advanced Filter with Criteria Ranges 192
Joining Multiple Criteria with a Logical OR 193
Joining Two Criteria with a Logical AND 194
Other Slightly Complex Criteria Ranges 194
The Most Complex Criteria: Replacing the List of Values with a Condition Created as the Result of a Formula................. 194
Using Filter in Place in Advanced Filter 201
(atching No Records When Using a Filter in Place 202
Showing All Records After Running a Filter in Place 202
The Real Workhorse: x1 Fi 1 terCopy with All Records Rather Than Unique Records Only 203

Copying All Columns 203

viii Fxcel 2016 VBAs and Macros

Copying a Subset of Columns and Reordering

204

Excel in Practice: Turning Off a Few Drop-downs in the AutoFilter

Next Steps

209

210

12 Using VBA to Create Pivot Tables

Understanding How Pivot Tables Evolved Over Various Excel Versions

21
M

212

While Building a Pivot Table in Excel VBA
Defining the Pivot Cache

212

213

(reating and Configuring the Pivot Table
Adding Fields to the Data Area

214

Learning Why You Cannot Move or Change Part of a Pivot Report
Determining the Size of a Finished Pivot Table to Convert the Pivot Table to Values

Using Advanced Pivot Table Features

216

217

219

Using Multiple Value Fields

220

Grouping Daily Dates to Months, Quarters, or Years

221

222

Changing the Calculation to Show Percentages
Eliminating Blank Cells in the Values Area

225

225

Controlling the Sort Order with AutoSort
Replicating the Report for Every Product

225

228

Filtering a Data Set

Manually Filtering Two or More Items in a Pivot Field

Using the Conceptual Filters

228

229

Using the Search Filter

233

Setting Up Slicers to Filter a Pivot Table

235

Setting Up a Timeline to Filter an Excel 2016 Pivot Table

Using the Data Model in Excel 2016

239

242

Adding Both Tables to the Data Model

242

(reating a Relationship Between the Two Tables

243

Defining the PivotCache and Building the Pivot Table

Adding Model Fields to the Pivot Table

243

244

Adding Numeric Fields to the Values Area

244

Putting It All Together.

245

247

Using Other Pivot Table Features
(alculated Data Fields

247

(alculated Items

247

Using ShowDetail to Filter a Record Set

248

Changing the Layout from the Design Tab

248

248

Settings for the Report Layout
Suppressing Subtotals for Multiple Row Fields

249

250

Next Steps

13 Excel Power

File Operations

251
251

Listing Files in a Directory

251

Importing and Deleting a CSV File

254

254

Reading a Text File into Memory and Parsing

Contents | ix

Combining and Separating Workbooks 255
Separating Worksheets into Workbooks 255
Combining Workbooks 256
Filtering and Copying Data to Separate Worksheets 257
Copying Data to Separate Worksheets Without Using Filter 258
Exporting Data to an XML File 259

Working with Cell Comments 260
Resizing Comments 260
Placing a Chart in a Comment 261

Selecting Cells 263
Using Conditional Formatting to Highlight the Selected Cell 263
Highlighting the Selected Cell Without Using Conditional Formatting 264
Selecting/Deselecting Noncontiguous Cells 265
(reating a Hidden Log File 267

Techniques for VBA Pros 268
(reating an Excel State Class Module 268
Drilling-Down a Pivot Table 270
Filtering an OLAP Pivot Table by a List of Items 271
(reating a Custom Sort Order 273
(reating a Cell Progress Indicator 274
Using a Protected Password Box 275
Changing Case 277
Selecting with SpecialCells 279
Resetting a Table’s Format 279

(ool Applications 280
Getting Historical Stock/Fund Quotes 280
Using VBA Extensibility to Add Code to New Workbooks 281

Next Steps 282

14 Sample User-Defined Functions 283

(reating User-Defined Functions 283

Sharing UDFs 286

Useful Custom Excel Functions 286
Setting the Current Workbook's Name in a Cell 286
Setting the Current Workbook's Name and File Path in a Cell 287
Checking Whether a Workbook Is Open 287
Checking Whether a Sheet in an Open Workbook Exists 287
Counting the Number of Workbooks in a Directory 288
Retrieving the User ID 289
Retrieving Date and Time of Last Save 291
Retrieving Permanent Date and Time 291
Validating an Email Address 292
Summing Cells Based on Interior Color 293
Counting Unique Values 294

Removing Duplicates from a Range 295

X Excel 2016 VBAs and Macros

Finding the First Nonzero-Length Cell in a Range 296
Substituting Multiple Characters 297
Retrieving Numbers from Mixed Text 298
Converting Week Number into Date 299
Extracting a Single Element from a Delimited String 300
Sorting and Concatenating 300
Sorting Numeric and Alpha Characters 302
Searching for a String Within Text 303
Reversing the Contents of a Cell 304
Returning the Addresses of Duplicate Max Values 304
Returning a Hyperlink Address 305
Returning the Column Letter of a Cell Address 306
Using Static Random 306
Using select Case onaWorksheet 307
Next Steps 308
15 Creating Charts 309
(ontrasting the Good and Bad VBA to Create Charts 309
Planning for More Charts to Break 310
Using . AddChart2 to Create a Chart 3N
Understanding Chart Styles 312
Formatting a Chart 315
Referring to a Specific Chart 315
Specifying a Chart Title 316
Applying a Chart Color 317
Filtering a Chart 318
Using Set E1ement to Emulate Changes from the Plus Icon 319
Using the Format Method to Micromanage Formatting Options 324
Changing an Object’s Fill 325
Formatting Line Settings 327
(reating a Combo Chart 327
Exporting a Chart as a Graphic 330
Considering Backward Compatibility 331
Next Steps 331
16 Data Visualizations and Conditional Formatting 333
VBA Methods and Properties for Data Visualizations 334
Adding Data Bars to a Range 335
Adding Color Scales to a Range 339
Adding Icon Sets to a Range 341
Specifying an Icon Set 341
Specifying Ranges for Each Icon 343
Using Visualization Tricks 343
(reating an Icon Set for a Subset of a Range 344

Using Two Colors of Data Bars in a Range 345

Using Other Conditional Formatting Methods

Contents

Xi

347

348

Formatting Cells That Are Above or Below Average
Formatting Cells in the Top 10 or Bottom 5

348

Formatting Unique or Duplicate Cells

349

Formatting Cells Based on Their Value

350

Formatting Cells That Contain Text

351

351

Formatting Cells That Contain Dates
Formatting Cells That Contain Blanks or Errors

351

Using a Formula to Determine Which Cells to Format

352

353

Using the New NumberFormat Property
Next Steps

354

17 Dashboarding with Sparklines in Excel 2016

(reating Sparklines

355
356

Scaling Sparklines

357

Formatting Sparklines

361

Using Theme Colors

361

Using RGB Colors

364

Formatting Sparkline Elements

365

368

Formatting Win/Loss Charts
(reating a Dashboard

369

369

Observations About Sparklines
(reating Hundreds of Individual Sparklines in a Dashboard

370

Next Steps

374

18 Reading from and Writing to the Web
Getting Data from the Web

375
375

377

Building Multiple Queries with VBA
Finding Results from Retrieved Data

378

Putting It All Together

379

380

Examples of Scraping Websites Using Web Queries
Using Application.OnTime to Periodically Analyze Data

381

381

Using Ready Mode for Scheduled Procedures
Specifying a Window of Time for an Update

382

(anceling a Previously Scheduled Macro

382

(losing Excel Cancels All Pending Scheduled Macros

383

Scheduling a Macro to Run x Minutes in the Future

383

383

Scheduling a Verbal Reminder
Scheduling a Macro to Run Every Two Minutes

384

385

Publishing Data to a Web Page
Using VBA to Create Custom Web Pages

386

Using Excel as a Content Management System

387

Bonus: FTP from Excel

389

Next Steps

390

Xii FExcel 2016 VBAs and Macros

19 Text File Processing 391
Importing from Text Files 391
Importing Text Files with Fewer Than 1,048,576 Rows 391
Dealing with Text Files with More Than 1,048,576 Rows 398
Writing Text Files 402
Next Steps 403

20 Automating Word 405
Using Early Binding to Reference a Word Object 406
Using Late Binding to Reference a Word Object 408
Using the New Keyword to Reference a Word Application 409
Using the CreateObsject Function to Create a New Instance of an Object 409
Using the Get Obj ect Function to Reference an Existing Instance of Word 410
Using Constant Values 4an
Using the Watches Window to Retrieve the Real Value of a Constant 4an

Using the Object Browser to Retrieve the Real Value of a Constant 412
Understanding Word's Objects 413
The Document Object 413

The Selection Object 415

The Range Object 416
Bookmarks 419
Controlling Form Fields in Word 420
Next Steps 422

21 Using Access as a Back End to Enhance Multiuser Access to Data 423
ADO Versus DAOs 424
The Tools of ADO 426
Adding a Record to a Database 427
Retrieving Records from a Database 429
Updating an Existing Record 431
Deleting Records via ADO 433
Summarizing Records via ADO 433
Other Utilities via ADO 434
Checking for the Existence of Tables 434
Checking for the Existence of a Field 435
Adding a Table On the Fly 436
Adding a Field On the Fly 436

SQL Server Examples 437
Next Steps 438

22 Advanced Userform Techniques 439
Using the UserForm Toolbar in the Design of Controls on Userforms 439
More Userform Controls 440

Checkbox Controls

440

Contents | xiii

Controls and Collections 447
Modeless Userforms 449
Using Hyperlinks in Userforms 449
Adding Controls at Runtime 450
Resizing the Userform On the Fly 452
Adding a Control On the Fly 452
Sizing On the Fly 452
Adding Other Controls 453
Adding an Image On the Fly 453
Putting It All Together 454
Adding Help to a Userform 456
Showing Accelerator Keys 456
Adding Control Tip Text 457
(reating the Tab Order 457
Coloring the Active Control 457
(reating Transparent Forms 460
Next Steps 461
23 The Windows Application Programming Interface (API) 463
Understanding an APl Declaration 464
Using an API Declaration 465
Making 32-Bit- and 64-Bit-Compatible APl Declarations 465
API Function Examples 467
Retrieving the Computer Name 467
Checking Whether an Excel File Is Open on a Network 467
Retrieving Display-Resolution Information 468
Customizing the About Dialog 469
Disabling the X for Closing a Userform 470
(reating a Running Timer 471
Playing Sounds 472
Next Steps 472
24 Handling Errors 473
What Happens When an Error Occurs? 473
A Misleading Debug Error in Userform Code 475
Basic Error Handling with the On Error GoTo Syntax 477
Generic Error Handlers 478
Handling Errors by Choosing to Ignore Them 479
Suppressing Excel Warnings 481
Encountering Errors on Purpose 481
Training Your Clients 481
Errors While Developing Versus Errors Months Later 482
Runtime Error 9: Subscript Out of Range 482
Runtime Error 1004: Method Range of Object Global Failed 483

The llls of Protecting Code 484

Xiv Excel 2016 VBAs and Macros

More Problems with Passwords 485
Errors Caused by Different Versions 486
Next Steps 486
25 Customizing the Ribbon to Run Macros 487
Where to Add Code: The customui Folder and File 488
(reating a Tab and a Group 489
Adding a Control to a Ribbon 490
Accessing the File Structure 496
Understanding the RELS File 496
Renaming an Excel File and Opening a Workbook 497
Using Images on Buttons 497
Using Microsoft Office Icons on a Ribbon 498
Adding Custom Icon Images to a Ribbon 499
Troubleshooting Error Messages 500
The Attribute “Attribute Name" on the Element “customui Ribbon" Is Not Defined in the DTD/Schema.....................500
Illegal Qualified Name Character 501
Element “customui Tag Name" |s Unexpected According to Content Model of Parent Element
“customui Tag Name” 501
Found a Problem with Some Content 502
Wrong Number of Arguments or Invalid Property Assignment 503
Invalid File Format or File Extension 503
Nothing Happens 503
Other Ways to Run a Macro 504
Using a Keyboard Shortcut to Run a Macro 504
Attaching a Macro to a Command Button 504
Attaching a Macro to a Shape 505
Attaching a Macro to an ActiveX Control 506
Running a Macro from a Hyperlink 507
Next Steps 508
26 Creating Add-ins 509
Characteristics of Standard Add-ins 509
Converting an Excel Workbook to an Add-in 510
Using Save As to Convert a File to an Add-in 511
Using the VB Editor to Convert a File to an Add-in 512
Having a Client Install an Add-in 512
(losing Add-ins 514
Removing Add-ins 514
Using a Hidden Workbook as an Alternative to an Add-in 515
Next Steps 516
27 An Introduction to Creating Office Add-ins 517
Creating Your First Office Add-in—Hello World 517

Adding Interactivity to an Office Add-in 521

Contents XV

A Basic Introduction to HTML 524
Using Tags 524
Adding Buttons 524
Using CSS Files 525

Using XML to Define an Office Add-in 525

Using JavaScript to Add Interactivity to an Office Add-in 526
The Structure of a Function 526
Variables 527
Strings 528
Arrays 528
JavaScript £or Loops 529
How to Do an i £ Statement in JavaScript 530
HowtoDoa Select. . Case Statement in JavaScript 530
HowtoDoa For each..next Statementin JavaScript 532
Mathematical, Logical, and Assignment Operators 532
Math Functions in JavaScript 534
Writing to the Content Pane or Task Pane 535
JavaScript Changes for Working in an Office Add-in 535

Napa Office 365 Development Tools 536

Next Steps 537

28 What's New in Excel 2016 and What's Changed 539

If It Has Changed in the Front End, It Has Changed in VBA 539
The Ribbon 539
Single Document Interface (SDI) 540
Quick Analysis Tool 541
Charts 541
Pivot Tables 541
Slicers 541
SmartArt 542

Learning the New Objects and Methods 542

Compatibility Mode 542
Using the Version Property 543
Using the Excel8CompatibilityMode Property 543

Next Steps 544

Index 545

Xvi Excel 2016 VBAs and Macros

About the Authors

Bill Jelen, Excel MVP and the host of MrExcel.com, has been using spreadsheets since
1985, and he launched the MrExcel.com website in 1998. Bill was a regular guest on Ca/l
for Help with Leo Laporte and has produced more than 1,900 episodes of his daily video
podcast, Learn Excel from MrExcel. He is the author of 44 books about Microsoft Excel and
writes the monthly Excel column for Strategic Finance magazine. Before founding MrExcel.
com, Bill Jelen spent 12 years in the trenches—working as a financial analyst for finance,
marketing, accounting, and operations departments of a $500 million public company. He
lives in Merritt Island, Florida, with his wife, Mary Ellen.

Tracy Syrstad is a Microsoft Excel developer and author of eight Excel books. She has
been helping people with Microsoft Office issues since 1997, when she discovered free
online forums where anyone could ask and answer questions. Tracy found out she enjoyed
teaching others new skills, and when she began working as a developer, she was able to
integrate the fun of teaching with one-on-one online desktop sharing sessions. Tracy lives
on acreage in eastern South Dakota with her husband, one dog, two cats, one horse (two,
hopefully soon), and a variety of wild foxes, squirrels, and rabbits.

Dedications
For Robert K. Jelen
—Bill Felen

For Marlee Fo Facobson
—Tracy Syrstad

Acknowledgments | Xvii

Acknowledgments
Thanks to Tracy Syrstad for being a great coauthor.

Bob Umlas is the smartest Excel guy I know and is an awesome technical editor. At
Pearson, Joan Murray is an excellent acquisitions editor.

Along the way, I've learned a lot about VBA programming from the awesome community
at the MrExcel.com message board. VoG, Richard Schollar, and Jon von der Heyden all
stand out as having contributed posts that led to ideas in this book. Thanks to Pam Gensel
for Excel macro lesson #1. Mala Singh taught me about creating charts in VBA, and Oliver
Holloway brought me up to speed with accessing SQL Server. Scott Ruble and Robin
Wakefield at Microsoft helped with the charting chapter.

My family was incredibly supportive during this time. Thanks to Mary Ellen Jelen, Robert
F. Jelen, and Robert K. Jelen.

—Bill

Juan Pablo Gonzalez Ruiz and Zack Barresse are great programmers, and I really appreciate
their time and patience showing me new ways to write better programs. Chris “Smitty”
Smith has really helped me sharpen my business acumen.

Thank you to all the moderators at the MrExcel forum who keep the board organized,
despite the best efforts of the spammers.

Programming is a constant learning experience, and I really appreciate the clients who have
encouraged me to program outside my comfort zone so that my skills and knowledge have
expanded.

And last, but not least, thanks to Bill Jelen. His site, MrExcel.com, is a place where
thousands come for help. It’s also a place where I, and others like me, have an opportunity
to learn from and assist others.

—Tracy

xviii Excel 2016 VBAs and Macros

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

y p
your opinion and want to know what we’re doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot belp you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Que Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at quepublishing.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

As corporate I'T departments have found them- I N T R 0 D U c T I O N

selves with long backlogs of requests, Excel users
have discovered that they can produce the reports
needed to run their businesses themselves using the
macro language Visual Basic for Applications (VBA).
VBA enables you to achieve tremendous efficien-
cies in your day-to-day use of Excel. VBA helps you
figure out how to import data and produce reports
in Excel so that you don’t have to wait for the I'T
department to help you. The Future of VBA and Windows Versions
of Excel

Wh at I S in Thi S B 0 0k7 Special Elements and Typographical

Conventions...

What Is in This Book?..

You have taken the right step by purchasing this

book. We can help you reduce the learning curve so
that you can write your own VBA macros and put an Next Steps
end to the burden of generating reports manually.

Code Files ..

Reducing the Learning Curve

This Introduction provides a case study about the
power of macros. Chapter 1, “Unleashing the Power
of Excel with VBA,” introduces the tools and con-
firms what you probably already know: The macro
recorder does not work reliably. Chapter 2, “This
Sounds Like BASIC, So Why Doesn’t It Look Famil-
iar?” helps you understand the crazy syntax of VBA.
Chapter 3, “Referring to Ranges,” cracks the code on
how to work efficiently with ranges and cells.

Chapter 4, “Looping and Flow Control,” covers the
power of looping using VBA. The case study in this
chapter demonstrates creating a program to produce
a department report and then wrapping that report
routine in a loop to produce 46 reports.

Chapter 5, “R1C1-Style Formulas,” covers, obvi-
ously, R1C1-style formulas. Chapter 6, “Creating and
Manipulate Names in VBA,” covers names. Chapter
7, “Event Programming,” includes some great tricks
that use event programming. Chapters 8, “Arrays,”

2 Introduction

and 9, “Creating Classes and Collections,” cover arrays, classes, and collections. Chapter 10,
“Userforms: An Introduction,” introduces custom dialog boxes that you can use to collect
information from a human using Excel.

Excel VBA Power

Chapters 11, “Data Mining with Advanced Filter,” and 12, “Using VBA to Create Pivot
Tables,” provide an in-depth look at Filter, Advanced Filter, and pivot tables. Report auto-
mation tools rely heavily on these concepts. Chapters 13, “Excel Power,” and 14, “Sample
User-Defined Functions,” include dozens of code samples designed to exhibit the power of
Excel VBA and custom functions.

Chapters 15, “Creating Charts,” through 20, “Automating Word,” handle charting, data
visualizations, web queries, sparklines, and automating Word.

Techie Stuff Needed to Produce Applications

Chapter 21, “Using Access as a Back End to Enhance Multiuser Access to Data,” handles
reading and writing to Access databases and SQL Server. The techniques for using Access
databases enable you to build an application with the multiuser features of Access while
keeping the friendly front end of Excel.

Chapter 22, “Advanced Userform Techniques,” shows you how to go further with userforms.
Chapter 23, “The Windows Application Programming Interface (API),” teaches some tricky
ways to achieve tasks using the Windows API. Chapters 24, “Handling Errors,” through

26, “Creating Add-ins,” deal with error handling, custom menus, and add-ins. Chapter 27,
“An Introduction to Creating Office Add-Ins,” provides a brief introduction to building
your own JavaScript application within Excel. Chapter 28, “What’s New in Excel 2016 and
What'’s Changed,” summarizes the changes in Excel 2016.

Does This Book Teach Excel?

Microsoft believes that the ordinary Office user touches only 10% of the features in Office.
We realize that everyone reading this book is above average, and MrExcel.com has a pretty
smart audience. Even so, a poll of 8,000 MrExcel.com readers showed that only 42% of
smarter-than-average users are using any 1 of the top 10 power features in Excel.

I regularly present a Power Excel seminar for accountants. These are hard-core Excelers
who use Excel 30 to 40 hours every week. Even so, two things come out in every seminar.
First, half of the audience gasps when they see how quickly you can do tasks with a particu-
lar feature, such as automatic subtotals or pivot tables. Second, someone in the audience
routinely trumps me. For example, someone asks a question, I answer, and someone in the
second row raises a hand to give a better answer.

The point? You and I both know a lot about Excel. However, I assume that in any given
chapter, maybe 58% of the people have not used pivot tables before and maybe even fewer
have used the Top 10 Filter feature of pivot tables. With this in mind, before I show how to

What Is in This Book? | 3

automate something in VBA, I briefly cover how to do the same task in the Excel interface.
This book does not teach you how to make pivot tables, but it does alert you when you
might need to explore a topic and learn more about it elsewhere.

STUDY: MONTHLY ACCOUNTING REPORTS

This is a true story. Valerie is a business analyst in the accounting department of a medium-size corporation. Her com-
pany recently installed an overbudget $16 million enterprise resource planning (ERP) system. As the project ground to
a close, there were no resources left in the IT budget to produce the monthly report that this corporation used to sum-
marize each department.

However, Valerie had been close enough to the implementation to think of a way to produce the report herself. She
understood that she could export general ledger data from the ERP system to a text file with comma-separated values.
Using Excel, Valerie was able to import the general ledger data from the ERP system into Excel.

(reating the report was not easy. As in many other companies, there were exceptions in the data. Valerie knew that certain
accounts in one particular cost center needed to be reclassed as expenses. She knew that other accounts needed to be
excluded from the report entirely. Working carefully in Excel, Valerie made these adjustments. She created one pivot table to
produce the first summary section of the report. She cut the pivot table results and pasted them into a blank worksheet. Then
she created a new pivot table report for the second section of the summary. After about three hours, she had imported the
data, produced five pivot tables, arranged them in a summary, and neatly formatted the report in color.

Becoming the Hero

Valerie handed the report to her manager. The manager had just heard from the IT department that it would be months
before they could get around to producing “that convoluted report.”When Valerie created the Excel report, she became
the instant hero of the day. In three hours, Valerie had managed to do the impossible. Valerie was on cloud nine after a
well-deserved “atta-girl.”

More Cheers

The next day, Valerie’s manager attended the monthly department meeting. When the department managers started
complaining that they could not get the report from the ERP system, this manager pulled out his department’s report
and placed it on the table. The other managers were amazed. How was he able to produce this report? Everyone was
relieved to hear that someone had cracked the code. The company president asked Valerie’s manager if he could have the
report produced for each department.

Cheers Turn to Dread

You can probably see what's coming. This particular company had 46 departments. That means 46 one-page summa-

ries had to be produced once a month. Each report required importing data from the ERP system, backing out certain
accounts, producing five pivot tables, and then formatting the reports in color. It had taken Valerie three hours to produce
the first report, but after she got into the swing of things, she could produce the 46 reports in 40 hours. Even after she
reduced her time per report, though, this is horrible. Valerie had a job to do before she became responsible for spending
40 hours a month producing these reports in Excel.

4 Introduction

VBA to the Rescue

Valerie found my company, MrExcel Consulting, and explained her situation. In the course of about a week, | was
able to produce a series of macros in Visual Basic that did all the mundane tasks. For example, the macros imported
the data, backed out certain accounts, made five pivot tables, and applied the color formatting. From start to finish,
the entire 40-hour manual process was reduced to two button clicks and about 4 minutes.

Right now, either you or someone in your company is probably stuck doing manual tasks in Excel that can be auto-
mated with VBA. | am confident that | can walk into any company that has 20 or more Excel users and find a case just
as amazing as Valerie’s.

The Future of VBA and Windows Versions of Excel

Several years ago, there were many rumblings that Microsoft might stop supporting VBA.
There is now plenty of evidence to indicate that VBA will be around in Windows versions
of Excel through 2036. When VBA was removed from the Mac version of Excel 2008, a
huge outery from customers led to its being included in the next Mac version of Excel.

XLM macros were replaced by VBA in 1993, and 23 years later, they are still supported.
Microsoft is making strides toward providing a JavaScript alternative to VBA, but it appears
that Excel will support VBA for about another 23 years.

Versions of Excel

This fifth edition of VBA and Macros is designed to work with Excel 2016. The previous
editions of this book covered code for Excel 97 through Excel 2013. In 80% of the chap-
ters, the code for Excel 2016 is identical to the code in previous versions. However, there
are exceptions. For example, the new AutoGroup functionality in pivot tables adds new
options that were not available in Excel 2013.

Differences for Mac Users

Although Excel for Windows and Excel for the Mac are similar in terms of user interface,
there are a number of differences when you compare the VBA environment. Certainly,
nothing in Chapter 23 that uses the Windows API will work on the Mac. That said, the
overall concepts discussed in this book apply to the Mac. You can find a general list of dif-
ferences as they apply to the Mac at http://www.mrexcel.com/macvba.html. Development in
VBA for Mac Excel 2016 is far more difficult than in Windows, with only rudimentary VBA
editing tools. Microsoft actually recommends that you write all of your VBA in Excel 2016
for Windows and then use that VBA on the Mac.

http://www.mrexcel.com/macvba.html

NextSteps | 5

Special Elements and Typographical Conventions

The following typographical conventions are used in this book:

B [ralic—Indicates new terms when they are defined, special emphasis, non-English words
or phrases, and letters or words used as words.
B Monospace—Indicates parts of VBA code, such as object or method names.

B Bold monospace—Indicates user input.

In addition to these typographical conventions, there are several special elements. Each
chapter has at least one case study that presents a real-world solution to common problems.
The case study also demonstrates practical applications of topics discussed in the chapter.

In addition to the case studies, you will see Notes, Tips, and Cautions.

Notes provide additional information outside the main thread of the chapter discussion that might be

useful for you to know.

—NOTE

Tips provide quick workarounds and time-saving techniques to help you work more efficiently.

TIP

CAUTION
(autions warn about potential pitfalls you might encounter. Pay attention to the Cautions; they alert

you to problems that might otherwise cause you hours of frustration.

Code Files

As a thank-you for buying this book, we have put together a set of 50 Excel workbooks that
demonstrate the concepts included in this book. This set of files includes all the code from
the book, sample data, additional notes from the authors, and 25 bonus macros. To down-
load the code files, visit this book’s web page at http://www.quepublishing.com or http://

www.mrexcel.com/getcode2016.html.

Next Steps

Chapter 1 introduces the editing tools of the Visual Basic environment and shows why
using the macro recorder is not an effective way to write VBA macro code.

http://www.quepublishing.com
http://www.mrexcel.com/getcode2016.html
http://www.mrexcel.com/getcode2016.html

This page intentionally left blank

This page intentionally left blank

Referring to Ranges

A yange can be a cell, a row, a column, or a grouping
of any of these. The RaNGE object is probably the
most frequently used object in Excel VBA; after all,
you are manipulating data on a sheet. Although a
range can refer to any grouping of cells on a sheet, it
can refer to only one sheet at a time. If you want to The Range Object
refer to ranges on multiple sheets, you must refer to e r e £
each sheet separately.

. . . Named Ranges
This chapter shows you different ways of referring

to ranges, such as specifying a row or column. You’ll Shortcut for Referencing Ranges

also find out how to manipulate cells based on the Referencing Ranges in Other Sheets
active cell and how to create a new range from over- : .

lapping ranges. Referencing a Range Relative to Another

The Range Object
The following is the Excel object hierarchy:

Application > Workbook > Worksheet >
Range

o Using the Res i ze Property to Change
The range object is a property of the Wworksheet the Size of a Range

object. This means it requires that a sheet be active

or else it must reference a worksheet. Both of the Using the columns and Rows Pro

following lines mean the same thing if iy L
Worksheets (1) is the active sheet: Using the union Method to Join Multiple
Range ("Al1")

Worksheets (1) .Range ("AL") Using the Intersect Method to Create

There are several ways to refer to a Range object. a New Range from Over|apping Ranges
Range ("A1") is the most identifiable because that is
how the macro recorder refers to it. However, all the
following are equivalent when referring to a range:

Using the TsEmpty Function to Check
Whether a Cell Is Empty

Using the currentRrRegion Property

Range ("D5")

[D5] to Select a Data Range

Range ("B3") .Range ("C3") . .

Cells (5,4) Using the Areas Collection to Return a
Range ("Al") .Offset (4,3) Noncontiguous Range

Range ("MyRange") 'assuming that D5 has a .

'Name of MyRange Referencing Tables

Next Steps

60 Referring to Ranges

Which format you use depends on your needs. Keep reading....It will all make sense soon!

Syntax for Specifying a Range

The range property has two acceptable syntaxes. To specify a rectangular range in the first
syntax, specify the complete range reference just as you would in a formula in Excel:

Range ("A1:B5")

In the alternative syntax, specify the upper-left corner and lower-right corner of the desired
rectangular range. In this syntax, the equivalent statement might be this:

Range ("AqM , "BS")

For either corner, you can substitute a named range, the cells property, or the Activecell
property. The following line of code selects the rectangular range from Al to the active cell:

Range ("A1", ActiveCell) .Select

The following statement selects from the active cell to five rows below the active cell and
two columns to the right:

Range (ActiveCell, ActiveCell.Offset (5, 2)) .Select

Named Ranges

You probably have already used named ranges on your worksheets and in formulas. You can
also use them in VBA.

Use the following code to refer to the range "MyRange" in Sheetl:

Worksheets ("Sheetl") .Range ("MyRange")

Notice that the name of the range is in quotes—unlike the use of named ranges in formulas
on the sheet itself. If you forget to put the name in quotes, Excel thinks you are referring to

a variable in the program. One exception is if you use the shortcut syntax discussed in the
next section. In that case, quotes are not used.

Shortcut for Referencing Ranges

A shortcut is available when referencing ranges. The shortcut involves using square brack-
ets, as shown in Table 3.1.

Table 3.1 Shortcuts for Referencing Ranges

Standard Method Shortcut

Range ("D5") [D5]

Range ("A1:D5") [A1:D5]

Range ("Al:D5, G6:I17") [A1:D5, G6:I17]

Range ("MyRange") [MyRange]

Referencing a Range Relative to Another Range | 61

Referencing Ranges in Other Sheets

Switching between sheets by activating the needed sheet slows down your code. To avoid
this, refer to a sheet that is not active by first referencing the worksheet object:

Worksheets ("Sheetl") .Range ("A1")

This line of code references Sheetl of the active workbook even if Sheet2 is the active
sheet.

To reference a range in another workbook, include the workbook object, the Wworksheet
object, and then the Range object:

Workbooks ("InvoiceData.xlsx") .Worksheets ("Sheetl") .Range ("Al")

"To use the Range property as an argument within another Range property, identify the
range fully each time. For example, suppose that Sheetl is your active sheet and you need to
total data from Sheet2:

WorksheetFunction.Sum(Worksheets ("Sheet2") .Range (Range ("A1"), _
Range ("A7")))

This line does not work. Why not? Although range ("A1"), Range ("A7") is meant to refer
to the sheet at the beginning of the code line (Sheet2), Excel does not assume that you want
to carry the worksheet object reference over to these other Range objects and assumes that
they refer to the active sheet, Sheetl. So what do you do? Well, you could write this:
WorksheetFunction.Sum(Worksheets ("Sheet2") .Range (Worksheets ("Sheet2") .
Range ("Al"), Worksheets ("Sheet2") .Range ("A7")))
But this not only is a long line of code but also difficult to read! Thankfully, there is a sim-
pler way, using with...End With:
With Worksheets ("Sheet2")
WorksheetFunction.Sum(.Range (.Range ("A1"), .Range("A7")))
End With
Notice now that there is a .Range in your code, but without the preceding object reference.
That’s because Wwith Worksheets ("Sheet2") implies that the object of the range is the
worksheet. Whenever Excel sees a period without an object reference directly to the left of
it, it looks up the code for the closest with statement and uses that as the object reference.

Referencing a Range Relative to Another Range

Typically, the Range object is a property of a worksheet. It is also possible to have rRange
be the property of another range. In this case, the rRange property is relative to the original
range, which makes for unintuitive code. Consider this example:

Range ("B5") .Range ("C3") .Select

This code actually selects cell D7. Think about cell C3, which is located two rows below
and two columns to the right of cell Al. The preceding line of code starts at cell BS. If we
assume that B5 is in the Al position, VBA finds the cell that would be in the C3 position
relative to BS. In other words, VBA finds the cell that is two rows below and two columns
to the right of BS, which is D7.

62 Referring to Ranges

Again, I consider this coding style to be very unintuitive. This line of code mentions two
addresses, and the actual cell selected is neither of these addresses! It seems misleading
when you are trying to read this code.

You might consider using this syntax to refer to a cell relative to the active cell. For exam-
ple, the following line of code activates the cell three rows down and four columns to the
right of the currently active cell:

Selection.Range ("E4") .Select

I mention this syntax only because the macro recorder uses it. Recall that when you
recorded a macro in Chapter 1, “Unleashing the Power of Excel with VBA,” with relative
references on, the following line was recorded:

ActiveCell.Offset (0, 4) .Range("A2") .Select

This line found the cell four columns to the right of the active cell, and from there it
selected the cell that would correspond to A2. This is not the easiest way to write code, but
it is the way the macro recorder does it.

Although a worksheet is usually the object of the Range property, occasionally, such as dur-
ing recording, a range may be the property of a range.

Using the Ce 11 s Property to Select a Range

The cel1s property refers to all the cells of the specified Range object, which can be a
worksheet or a range of cells. For example, this line selects all the cells of the active sheet:

Cells.Select
Using the cells property with the Range object might seem redundant:
Range ("A1:D5") .Cells
This line refers to the original Range object. However, the cells property has an 1tem
property that makes the cells property very useful. The rtem property enables you to refer
to a specific cell relative to the Range object.
The syntax for using the Ttem property with the cells property is as follows:
Cells.Item(Row, Column)

You must use a numeric value for Row, but you may use the numeric value or string value
for column. Both of the following lines refer to cell C5:

Cells.Item(5,"C")
Cells.Item(5,3)

Because the Ttem property is the default property of the rRange object, you can shorten these
lines as follows:

Cells(5,"C")
Cells (5,3)

The ability to use numeric values for parameters is particularly useful if you need to loop
through rows or columns. The macro recorder usually uses something like Range ("aA1") .

Using the Of £ set Property to RefertoaRange | 63

select for a single cell and Range ("a1:C5") .Select for a range of cells. If you are learning
to code only from the recorder, you might be tempted to write code like this:

FinalRow = Cells (Rows.Count, 1) .End(xlUp) .Row
For i = 1 to FinalRow

Range ("A" & i & ":E" & 1).Font.Bold = True
Next i

This little piece of code, which loops through rows and bolds the cells in columns A
through E, is awkward to read and write. But how else can you do it? Like this:

FinalRow = Cells (Rows.Count, 1) .End(xlUp) .Row
For i = 1 to FinalRow

Cells(i,"A") .Resize(,5) .Font.Bold = True
Next i

Instead of trying to type the range address, the new code uses the cells and Resize prop-
erties to find the required cell, based on the active cell. See the “Using the Resize Property
to Change the Size of a Range” section later in this chapter, for more information on the
Resize property.
You can use the cells properties for parameters in the Range property. The following refers
to the range A1:ES:

Range (Cells(1,1),Cells(5,5))

This is particularly useful when you need to specify variables with a parameter, as in the
previous looping example.

Using the Of £ set Property to Refer to a Range

You have already seen a reference to offset when you recorded a relative reference. offset
enables you to manipulate a cell based on the location of another cell, such as the active
cell. Therefore, you do not need to know the address of the cell you want to manipulate.
The syntax for the offset property is as follows:

Range.Offset (RowOffset, ColumnOffset)
For example, the following code affects cell F5 from cell Al:

Range ("Al") .Offset (RowOffset:=4, ColumnOffset:=5)
Or, shorter yet, you can write this:

Range ("Al") .Offset (4,5)
The count of the rows and columns starts at Al but does not include Al.
If you need to go over only a row or a column, but not both, you don’t have to enter both

the row and the column parameters. To refer to a cell one column over, use one of these
lines:

Range ("Al1") .Offset (ColumnOffset:=1)
Range ("Al") .Offset (,1)

64 Chapter3 Referring to Ranges

Both of these lines mean the same, so the choice is yours. If you use the second line, make
sure to include the comma so Excel knows that the 1 refers to the columnoffset argument.
Referring to a cell one row up is similar:

Range ("B2") .Offset (RowOffset:=-1)

Range ("B2") .Offset (-1)
Once again, you can choose which one to use. It is a matter of readability of the code.

Suppose you have a list of produce in column A, with totals next to the produce items in
column B. If you want to find any total equal to zero and place Low in the cell next to it, do
this:

Set Rng = Range ("B1l:B1l6") .Find (What:="0", LookAt:=x1Whole,

LookIn:=x1lValues)
Rng.Offset(, 1).Value = "LOW"

When used in a sub and looping through a data set, it would look like this:

Sub FindLow ()

With Range ("B1:Ble")
Set Rng = .Find(What:="0", LookAt:=xlWhole, LookIn:=xlValues)

If Not Rng Is Nothing Then
firstAddress = Rng.Address

Do
Rng.Offset (, 1).Value = "LOW"
Set Rng = .FindNext (Rng)
Loop While Not Rng Is Nothing And Rng.Address <> firstAddress
End If
End With

End Sub
The Low totals are noted by the program, as shown in Figure 3.1.

Figure 3.1 A | B C
Find the produce with 1 Apples 45
zero totals. Kl Oranges 1

3 Grapefruit 86

4 Lemons 0 LOW

Refer to the section “Object Variables” in Chapter 4, “Looping and Flow Control,” for more information
on the set statement.

—NOTE

Offsetting isn’t only for single cells; you can use it with ranges. You can shift the focus of a
range over in the same way you can shift the active cell. The following line refers to B2:D4

(see Figure 3.2):
Range ("Al:C3") .Offset (1,1)

Using the Re s 1 ze Property to Change the Size of aRange | 65

Figure 3.2 n] 5 B
Offsetting a range: 1

Range ("A1:C3") . 2

Select. 5 | "

Using the Re s i ze Property to Change the Size of a Range

The Resize property enables you to change the size of a range based on the location of
the active cell. You can create a new range as needed. This is the syntax for the Resize

property:
Range.Resize (RowSize, ColumnSize)
To create the range B3:D13, use the following:
Range ("B3") .Resize (RowSize:=11, ColumnSize:=3)
Here’s a simpler way to create this range:
Range ("B3") .Resize (11, 3)
But what if you need to resize by only a row or a column—not both? You don’t have to
enter both the row and the column parameters.
To expand by two columns, use either of the following:
Range ("B3") .Resize (ColumnSize:=2)
or
Range ("B3") .Resize(,2)

Both lines mean the same thing. The choice is yours. If you use the second line, make sure
to include the comma so Excel knows the 2 refers to the columnsize argument. Resizing
just the rows is similar. You can use either of the following:

Range ("B3") .Resize (RowSize:=2)
or
Range ("B3") .Resize(2)
Once again, the choice is yours. It is a matter of readability of the code.
From the list of produce, say that you want to find the zero totals and color the cells of the
total and corresponding produce (see Figure 3.3). Here’s what you do:

Set Rng = Range ("B1:Bl6") .Find(What:="0", LookAt:=xlWhole, _
LookIn:=x1lValues)

Rng.Offset(, -1).Resize(, 2).Interior.ColorIndex = 15
Figure 3.3 _ A B
Resizing a range to 1 |Apples 45
extend the selection. 2 Oranges 12

3 Grapefruit]
4 Lemons o
~

66 Referring to Ranges

Notice that the offset property first moves the active cell over to the produce column.
When you are resizing, the upper-left-corner cell must remain the same.

Resizing isn’t only for single cells; you can use it to resize an existing range. For example, if
you have a named range but need it and the column next to it, use this:

Range ("Produce") .Resize (,2)
Remember, the number you resize by is the total number of rows/columns you want to

include.

Using the Columns and Rows Properties to Specify a Range

The columns and Rows properties refer to the columns and rows of a specified Range object,
which can be a worksheet or a range of cells. They return a Range object referencing the
rows or columns of the specified object.

You have seen the following line used, but what is it doing?

FinalRow = Cells(Rows.Count, 1) .End(x1Up) .Row
This line of code finds the last row in a sheet in which column A has a value and places the
row number of that Range object into the variable called Finalrow. This can be useful when
you need to loop through a sheet row by row; you will know exactly how many rows you
need to go through.

Some properties of columns and rows require contiguous rows and columns in order to work properly.
For example, if you were to use the following line of code, 9 would be the answer because only the
first range would be evaluated:

NOTE

Range ("A1:B9, C10:D19") .Rows.Count

However, if the ranges were grouped separately, the answer would be 19 . Excel takes the top, left-
most cell address, 21, and the bottom, rightmost cell address, D19, and counts the cells in the range
Al:D109:

Range ("A1:B9", "C10:D19") .Rows.Count

Using the Union Method to Join Multiple Ranges

The union method enables you to join two or more noncontiguous ranges. It creates a tem-
porary object of the multiple ranges, which enables you to affect them together:
Application.Union (argumentl, argument2, etc.)

The expression Application is not required. The following code joins two named ranges
on the sheet, inserts the =ranD () formula, and bolds them:

Using the T sEmpty Function to Check Whether a Cell Is Empty | 67

Set UnionRange = Union(Range ("Rangel"), Range ("Range2"))
With UnionRange

.Formula = "=RAND()"

.Font.Bold = True
End With

Using the Int ersect Method to Create a New Range from
Overlapping Ranges

The Intersect method returns the cells that overlap between two or more ranges. If there
is no overlap, an error will be returned:

Application.Intersect (argumentl, argument2, etc.)

The expression Application is not required. The following code colors the overlapping
cells of the two ranges:

Set IntersectRange = Intersect (Range ("Rangel"), Range ("Range2"))
IntersectRange.Interior.ColorIndex = 6

Using the T sEmpty Function to Check Whether a Cell Is
Empty
The 1sEmpty function returns a Boolean value that indicates whether a single cell is empty:
True if empty, False if not. The cell must truly be empty for the function to return True.
If it contains even just a space that you cannot see, Excel does not consider the cell to be
empty:
ISEmpty (Cell)
Say that you have several groups of data separated by a blank row. You want to make the

separations a little more obvious. The following code goes down the data in column A.
When it finds an empty cell in column A, it colors in the first four cells of that row (see

Figure 3.4):
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 1 To LastRow

If IsSsEmpty(Cells(i, 1)) Then
Cells (i, 1) .Resize(1l, 4) .Interior.ColorIndex = 1
End If
Next 1

Figure 3.4 A B c D
Colored rows separating Apples Oranges Grapefruit Lemons
data 45 12 86 15

: 71% 53% B2% 52%

1
2

3

4

5 | Tomatoes Cabbage Lettuce Green Peppers
6 58 24 31 o

T 30% 43% 68% 1%

8

9 | Potatoes Yams Onions Garlic

0 10 61 26 29

1 1B% 19% 22% 82%

68 Referring to Ranges

Using the CurrentRegion Property to Select a Data
Range

CurrentRegion returns a Range object that represents a set of contiguous data. As long as
the data is surrounded by one empty row and one empty column, you can select the data set
by using CurrentRegion:

RangeObject.CurrentRegion

The following line selects A1:D3 because this is the contiguous range of cells around cell

Al (see Figure 3.5):

Range ("Al") .CurrentRegion.Select

This is useful if you have a data set whose size is in constant flux.

Figure 3.5 - = = =
Use CurrentRegion 1 Apples Oranges Grapefruit Lemons
to select a range of con- 2 14 97 = H
tiguous data around the . — a7% 29% ok
active cell.

STUDY: USING THE SPECIALCELLS METHOD TO SELECT
SPECIFIC CELLS

Even Excel power users might not have encountered the Go To Special dialog box. If you press the F5 key in an Excel
worksheet, you get the normal Go To dialog box (see Figure 3.6). In the lower-left corner of this dialog is a button labeled
Special. Click this button to get to the super-powerful Go To Special dialog box (see Figure 3.7).

Figure 3.6 A 8 CI 0 E F G
5 1 Appl [+] Grapefruit L
Althoughthe GoTodialog |, ™5™ "% 5™ " on 7%
doesn’t seem useful, click 1% 2% 3% 41% S
the Special button in the 5 Tomatoes Cabbage Lettuce | Green Peppers §;L‘:;H
i] 51 17 17 82 | Rangez
|0W€r left corner. T 92% 9% 18% Bat |Range3
8
9 Potatoes Yams Onions Garlic
10 13 45 24 25
1 6% 63% 1% 43%
12 -
13 GreenBeans Brocoll Peas Carrots Befereke
14 1 19 12 o I
15 TE% 36% % aatky E 1
16 Spedial. oK | Cancel
7

In the Excel interface, the Go To Special dialog enables you to select only cells with formulas, only blank cells, or only the
visible cells. Selecting only visible cells is excellent for grabbing the visible results of AutoFiltered data.

To simulate the Go To Special dialog in VBA, use the specialcells method. This enables you to act on cells that meet
certain criteria, like this:

RangeObject.SpecialCells (Type, Value)

Using the CurrentRegion Property to Select a Data Range = 69

Figure 3.7 A B c D E F I G I
: H 1 I frui
The Go To Speial dialog G Oryges Grpeiit Lemoms GoTo Specil 7 x
has many incredibly use- - 2% | 7% % i
ful selection tools, SUCN @S |5 tomatoes cabbsge tettuce Greenpeppers () Somments Roy diterences
F [51 17 17 82 Constants Column differences
one for SE|QCtIng Only the 7 2% 2% 1E% Ba%) Farmiitas|) Precedents
formulas on a sheet. 3] Humbers) Dependents
3 Potstoes Yams Onions Garlic] Test & Direct onl
10 18 a5 249 25] Logicals ey
1; 365 3% 11% 43% ¥ Eners) Last cen
13 GreenBeans Brocolli Peas Carrots L ARk ot e ety nhle
14 11 19 12 a (L) Current pegian Condigional farmats
15 TER 36% 2% a8% i) Current greay Data yalidation
16 ") Objects & Al
17
18
19 oK Cancel
20 =

This method has two parameters: Type and value. Type is one of the x1ce11Type constants:

x1CellTypeAllFormatConditions
x1CellTypeAllValidation
x1CellTypeBlanks
x1CellTypeComments
x1CellTypeConstants
x1CellTypeFormulas
x1CellTypeLastCell
x1CellTypeSameFormatConditions
x1CellTypeSameValidation
x1CellTypeVisible

Value is optional and can be one of the following:

x1lErrors
x1Logical
x1Numbers
x1TextValues

The following code returns all the ranges that have conditional formatting set up. It produces an error if there are no
conditional formats and adds a border around each contiguous section it finds:

Set rngCond = ActiveSheet.Cells.SpecialCells (x1CellTypeAllFormatConditions)
If Not rngCond Is Nothing Then

rngCond.BorderAround xlContinuous
End If

Have you ever had someone send you a worksheet without all the labels filled in? Some people think that the data
shown in Figure 3.8 looks neat. They enter the Region field only once for each region. This might look aesthetically
pleasing, but it is impossible to sort.

Figure 3.8 A B c

The blank cells in the ; fiegion Product Sales

Region column make it C & D

difficult to sort data sets 4 X¥Z 832,414

such as this. 5 |East ABC 703,255
6 | DEF 891,799
T XYL 897,949

Referring to Ranges

Using the specialcel1s method to select all the blanks in this range is one way to fill in all the blank region
cells quickly with the region found above them:

Sub FillIn()

On Error Resume Next 'Need this because if there aren't any blank

'cells, the code will error

Range ("Al") .CurrentRegion.SpecialCells (x1CellTypeBlanks) .FormulaR1Cl

= "=R [_1] cn

Range ("Al") .CurrentRegion.Value = Range ("Al") .CurrentRegion.Value

End Sub
In this code, Range ("A1") . CurrentRegion refers to the contiguous range of data in the report. The
SpecialcCells method returns just the blank cells in that range. This particular formula fills in all the blank cells
with a formula that points to the cell above the blank cell. (You can read more about R1C1-style formulas in Chapter
5,“R1C1-Style Formulas.”) The second line of code is a fast way to simulate doing a Copy and then Paste Special
Values. Figure 3.9 shows the results.

Figure 3.9 A B c
After the macro runs, the ; Region Product sales
. . North ABC 766,469
blank cells in the Region % [= e
column have been filled 4 |North XvZ 832,414
in with data. 5 |East ABC 703,255
6 [East DEF 891,799
7 _East XZ 897,949

Using the Areas Collection to Return a Noncontiguous Range

The areas collection is a collection of noncontiguous ranges within a selection. It consists
of individual rRange objects representing contiguous ranges of cells within the selection. If
a selection contains only one area, the Areas collection contains a single Range object that
corresponds to that selection.

You might be tempted to loop through the rows in a sheet and check the properties of a cell
in a row, such as its formatting (for example, font or fill) or whether the cell contains a for-
mula or value. Then you could copy the row and paste it to another section. However, there
is an easier way. In Figure 3.10, the user enters the values below each fruit and vegetable.
The percentages are formulas. The following line of code selects the cells with numeric
constants and copies them to another area:

Range ("A:D") .SpecialCells (x1CellTypeConstants, x1lNumbers) .Copy _
Range ("I1")

Referencing Tables

n

Figure 3.10 A B C D E/FIGH] J K E

1 Apples Oranges Grapefruit Lemans a5 12 ES 15
The Areas collec- 2 45 12 85 15 58 2 31 0
tion makes it easier to o e = 5 4 2
manipu|ate non(ont]gu_ 5 Tomatoes Cabbage Lettuce Green Peppers

L] 58 24 n o
0us ranges. 7. 2% 31% 70% 65%

8

9 Potatoes Yams Onions Garlic

10 10 61 26 25

1 18% 49% 5TH BE%

12

13 GreenBeans Broceoli Peas Carrots

14 46 64 9 a5

15 7% SE6% 21% 41%
Referencing Tables

A table is a special type of range that offers the convenience of referencing named ranges.
However, tables are not created in the same manner as other ranges. For more informa-
tion on how to create a named table, see Chapter 6, “Creating and Manipulating Names in
VBA”

Although you can reference a table by using Worksheets (1) .Range ("Tablel"), you have
access to more of the properties and methods that are unique to tables if you use the
ListObjects object, like this:

Worksheets (1) .ListObjects ("Tablel")

This opens the properties and methods of a table, but you can’t use that line to select the
table. To do that, you have to specify the part of the table you want to work with. To select
the entire table, including the header and total rows, specify the Range property:

Worksheets (1) .ListObjects ("Tablel") .Range.Select

The table part properties include the following:

B rRange—Returns the entire table.

B DataBodyRange—Returns the data part only.

B HeaderRowrRange—Returns the header row only.
]

TotalRowRange—Returns the total row only.

What I really like about coding with tables is the ease of referencing specific columns of a
table. You don’t have to know how many columns to move in from a starting position or the
letter/number of the column, and you don’t have to use a FIND function. Instead, you can
use the header name of the column. For example, to select the data of the Qty column of
the table, but not the header or total rows, do this:

Worksheets (1) .ListObjects ("Tablel") .ListColumns ("Qty")
.DataBodyRange.Select

For more details on coding with tables, check out Excel Tables: A Complete Guide for Creating, Using, and
Automating Lists and Tables by Zack Barresse and Kevin Jones (ISBN: 978-1615470280).

—NOTE

72 (hapter3 Referring to Ranges

Next Steps

Chapter 4 describes a fundamental component of any programming language: loops. If
you have taken a programming class, you will be familiar with basic loop structures. VBA
supports all the usual loops. That chapter also describes a special loop, For Each. . .Next,
which is unique to object-oriented programming such as VBA.

Index

Symbols

{} (curly braces), JavaScript interactivity in
Office (MS) add-ins, 527

:= (parameters), VBA syntax, 35-37

; (semicolons), JavaScript interactivity in
Office (MS) add-ins, 527

Numbers

32-bit compatible API declarations,
465-466

64-bit compatible API declarations,
465-466

A

A1 formulas
Al versus, 93-97
autofilling data, 95-96
case study, 96-97

replacing multiple Al formulas with
one R1C1 formula, 99-101

About dialog, customizing via API
declarations, 469-470

above/below average rules, 334, 348
absolute references and R1C1 formulas, 98
accelerator keys (userforms), showing, 456
Access (MS)
ADO, 424, 426-427, 434
adding fields “on the fly,” 436-437
adding records to MDB, 427-428
adding tables “on the fly,” 436
connections, 426

Access (MS)

cursors, 426

deleting records from MDB, 433
lock type, 426

record sets, 426

retrieving records from MDB,
429-430

summarizing records, 433-434

updating existing MDB records,
431-432

verifying field existence, 435-436

verifying table existence, 434-435
MDB, 423-424

adding records to, 427-428

deleting records via ADO, 433

retrieving records from, 429-430

summarizing records via ADO,
433-434

updating existing records, 431-432

shared access databases, creating (case
study), 425-426

SQL server and, 437-438
accounting reports case study, 3-4
Action option (Advanced Filter), 186

ActiveX Controls, attaching macros to,
506-507

AddChart2 and chart creation, 311-312
add-ins, 509
case study, 515-516
characteristics of, 509-510
client installations, 512-514
closing, 514
Office (MS) add-ins, 517
buttons (HTML), 524-525
creating, 517-521
.CSS files, 525
“Hello World” add-in, 517-521
HTML in, 524-525

interactivity in, 521-524
JavaScript interactivity in, 526-536

Napa Office 365 development
tools, 536-537

tags (HTML), 524
writing to content pane, 535
writing to task pane, 535
XML in, 525-526

removing, 514-515

security, 513-514

workbooks
converting to add-ins, 510-512

hidden workbooks as alternative to
add-ins, 515-516

Add-ins group (Developer tab), 10
addresses

cell addresses, returning column
letters from, 306

duplicate max values, returning the
addresses of, 304-305

email addresses, validating, 292-293

hyperlink addresses, returning,
305-306

ADO (ActiveX Data Objects), 426-427, 434
connections, 426
cursors, 426
location, 426
types of, 426
DAO versus, 424-425
fields
adding fields “on the fly,” 436-437
verifying existence of, 435-436
lock type, 426
MDB
deleting records from MDB, 433
summarizing records, 433-434
record sets, 426

tables
adding tables “on the fly,” 436
verifying existence of, 434-435

Advanced Filter, 177, 184-185

Action option, 186
building via Excel interface, 185-186
case studies

criteria ranges, 194-197

multiple Advanced Filters,
206-209

criteria ranges, 186, 192-194
case study, 194-197
complex criteria, 194-195
formula-based conditions, 196-201
joining multiple ranges via Logical
AND, 194
joining multiple ranges via Logical
OR, 193-194
Filter in Place, 186, 201-202

catching no records with filter in
place, 202

showing all records, 202
multiple Advanced Filters, 206-209
unique lists, 186

extracting values via user interface,

186-187

extracting values via VBA code,
187-191

unique combinations of two or

more fields, 191-192
xlFilterCopy, 203
copying columns, 203-204

copying subsets of columns,
204-206

reordering columns, 204-206

alpha characters, sorting, 302-303

application-level events

analyzing data via Application.OnTime
method, 381

macros

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x min-
utes in the future, 383

scheduling verbal reminders,
383-384

Ready mode for scheduled proce-
dures, 381-382

updates, scheduling window of time
for, 382

Anderson, Ken, 390
API declarations, 463-464

32-bit compatible declarations,
465-466

64-bit compatible declarations,
465-466

checking Excel file open status on
network, 467-468

computer names, 467
creating running timers, 471
customizing About dialog, 469-470

disabling X button for closing user-
forms, 470-471

display resolution information,
468-469

example of, 464-465
playing sounds, 472
private versus public status, 464-465
types of, 464
application-level events
class modules, 125, 140-141
list of, 125-130

548 Application.OnTime method and data analysis

Application.OnTime method and data
analysis, 381

macros

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x min-
utes in the future, 383

scheduling verbal reminders,
383-384

Ready mode for scheduled proce-
dures, 381-382

updates, scheduling window of time
for, 382

Archibald, Rory, 254

Areas collection, returning noncontiguous
ranges, 70-71

arrays, 131
declaring, 131-132
dynamic arrays, 136-137
filling, 133-134

JavaScript arrays in Office (MS)
add-ins, 528-529

multidimensional arrays, declaring,
132-133

names, 109-110

passing, 137-138

R1Cl1 formulas and, 101-102

retrieving data from, 134-135

speeding up code, 135-136

variant variables, 133
assigning macros to

Form Controls, 18-19

shapes, 18-19

text boxes, 18-19

assignment operators (JavaScript) and
Office (MS) add-ins, 532-533

Atlas Programming Management, 260

audio (sound), playing via API declara-
tions, 472

autofilling data
Al formulas, 95-96
R1Cl1 formulas, 96
AutoFilter, 180
color, filtering by, 181

dynamic date ranges, selecting,
182-183

icon, filtering by, 181-182

loops, replacing, 177-179

multiple items, selecting, 180
search box, selecting via, 180-181
turning off drop-downs in, 209-210
visible cells, selecting, 183-184

AutoSort, controlling pivot table sort
orders, 225

AutoSum, recording macros, 30-31

B

backing up/moving forward in code
(debugging), 45-46

backward compatibility and charts, 331
Barresse, Zack, 71, 258, 279
BASIC

example of, 33-34

'VBA versus, 8, 33-34

binary event tracking in win/loss charts
(sparklines), 368-369

binding Word objects
early binding, 406-408
early binding using New
keyword, 409
late binding, 408-409

blanks/errors formatting in cells, 351-352
bookmarks (Word), 419-420

breakpoints (debugging code), 45, 49
Bricklin, Dan, 93

bug fixes. See debugging code

buttons

command buttons, attaching macros

to, 504-505

HTML buttons and Office (MS)
add-ins, 524-525

images, adding to buttons, 497
custom icon images, 499-500
Microsoft Office icons, 498-499

macro buttons

creating on Quick Access
Toolbar, 17

creating on Ribbon, 16
userforms

option buttons, 167-169

spin buttons, 170-171

C

calculations, changing to show percent-
ages, 222-224

calling userforms, 159-160
case (text), changing, 277-278

Case statements, complex expressions in
(Select Case.End Select loops), 89

case studies
Al formulas, 96-97
accounting reports, 3-4
add-ins, 515-516
Advanced Filter
criteria ranges, 196-197

multiple Advanced Filters,
206-209

cells in ranges, selecting specific,
68-70

case studies

charts, 327-330
cleaning up recorded code, 55-57

criteria ranges (Advanced Filter),
194-197

error handling (troubleshooting), 480
events, 122
Go to Special versus looping, 184
help buttons, 151-153
looping
through file directories, 84-85
versus Go to Special, 184
macros
AutoSum, 30-31
Quick Analysis, 30-31
recording, 21-24

relative references when recording
macros, 26-30

testing, 24-25
named ranges for Vlookup, 112-113

password cracking and code security,
484-485

pivot tables
data visualization, 249-250
filtering case study, 233-235
R1C1 formulas, 96-97
ranges

named ranges for Vlookup,
112-113

selecting specific cells in, 68-70

relative references when recording
macros, 26-30

shared access databases, creating,
425-426

troubleshooting (error handling), 480
UDF, creating, 284-285
userforms

controls, 162-163

multicolumn list boxes, 459

549

550

Cell Masters website

Cell Masters website, 254
cells
above/below average rules, 334, 348
case studies
entering military time in cells, 122

selecting specific cells in ranges,
68-70

column letters, returning from cell
addresses, 306

comments

placing charts in comments,

261-262
resizing, 260-261
data bars, 334
adding to ranges, 335-339

multiple colors of data bars in
ranges, 345-347

duplicate cell formatting, 349-350
empty cells

checking for empty cells in
ranges, 67

deleting empty cells from values
area, 225

file paths, setting in cells, 287
formatting
above/below average rules, 348
blanks/errors formatting, 351-352
date formatting, 351
duplicate cell formatting, 349-350

formulas to determine cells to
format, 352-353

text formatting, 351

top/bottom rules, 348-349

unique cells, 349-350

value-based formatting, 350-351
highlighting, 334

military time, entering (case
study), 122

noncontiguous cells, selecting,
265-267

nonzero-length cells, finding in
ranges, 296-297

progress indicators, creating, 274-275
ranges

cells versus ranges when cleaning
up code, 52

finding nonzero-length cells in,
296-297

selecting specific cells in, 68-70

selecting via cells, 62-63
reversing cell contents, 304
selecting, 263

creating hidden log files, 267-268

highlighting selected cells using
conditional formatting, 263-264

highlighting selected cells without
using conditional formatting,
264-265

noncontiguous cells, 265-267
via SpecialCells, 279
SpecialCells, selecting cells via, 279

specific cells, selecting in ranges,
68-70

summing based on interior color,
293-294

top/bottom rules, 334, 348-349
unique cells, formatting, 349-350

visible cells, selecting via AutoFilter,
183-184

workbook names, setting in cells,

286-287

charts, 309

AddChart2 and chart creation,
311-312

backward compatibility, 331
case study, 327-330
combo charts, creating, 327-330

creating via AddChart2, 311-312
embedded charts
class modules, 141-143
events and class modules, 123
events list, 124
events, 119, 123

embedded charts and class
modules, 123, 141-143

embedded charts events, 124
Excel

changes to, 541

planning for migration, 310-311
exporting as graphics, 330
filtering, 318
formatting, 312-315

applying color, 317-318

changing object fills, 325-327

emulating Plus icon changes via
SetElement, 319-323

filtering charts, 318
line settings, 327

micromanaging formatting

changes, 324-325
specific chart references, 315-316
specifying titles, 316
good/bad of the VBA creation pro-
cess, 309-310
placing in cell comments, 261-262
styles of, 312-315
types of, 313-315
win/loss charts (sparklines), 355
binary event tracking, 368-369
formatting, 361-369
RGB colors, 364-365
scaling, 357-361
theme colors, 361-364
Checkbox controls (userforms), 440-441

Code group

class modules, 139
application-level events, 125, 140-141
collections, creating in, 148-149
embedded chart events, 123, 141-143

Excel State class modules, creating,
268-270

inserting into objects, 139-140
cleaning up code, 51

case study, 55-57

cells versus ranges, 52

copying/pasting in statements, 54

With.End With blocks for multiple
actions, 54-55

formulas

avoiding hard-coding formulas,
53-54

R1C1 formulas, 54

multiple actions in recorded code,
54-55

ranges versus cells, 52
rows
avoiding hard-coding rows, 53-54
finding the last row, 52-53
selecting things, 51
clients
add-in installations, 512-514

error handling (troubleshooting)
procedures, training in, 481-482

closing
add-ins, 514
userforms
closing windows illegally, 174-175

disabling X button via API
declarations, 470-471

code files, 5
Code group
Developer tab, 10
Macro Security icon, 10, 12

551

552 Code group

Macros icon, 10

Record Macro icon, 10

Use Relative References icon, 10
Visual Basic Editor, opening, 10
Visual Basic icon, 10

collections (VBA), 35-37, 139, 145. See also
dictionaries

Areas collection, returning noncon-
tiguous ranges, 70-71

collections, 37
creating, 146

in class modules, 148-149

in standard modules, 146-147
userform controls and, 447-449

color

charts, applying to, 317-318
color scales, 334, 339-340
data bars, multiple colors of, 345-347
filtering by (AutoFilter), 181
ranges

adding color scales to, 339-340

muldple colors of data bars in
ranges, 345-347

sparkline formatting
RGB colors, 364-365
theme colors, 361-364

summing cells based on interior

color, 293-294

userforms, coloring active controls,
457-459

columns

column letters, returning from cell
addresses, 306

copying

subsets of columns via

xlFilterCopy (Advanced Filter),
204-206

xlFilterCopy (Advanced Filter),
203-204

multicolumn list boxes in userforms
(case study), 459

R1C1 formulas

column number/letter
associations, 101

column references, 99
ranges, specifying via columns, 66

reordering via xIFilterCopy
(Advanced Filter), 204-206

spark columns, 355
creating, 356-357
formatting, 361-369
RGB colors, 364-365
scaling, 357-361
theme colors, 361-364

combining

userforms, 171-173

workbooks, 256-257

combo charts, creating, 327-330
command buttons

macros, attaching to command

buttons, 504-505
userforms, 163-165
comments
cell comments
placing charts in, 261-262
resizing, 260-261

JavaScript interactivity in Office (MS)
add-ins, 527

names, adding to, 106
compatibility

backward compatibility and
charts, 331

Excel compatibility issues, 542-543

Excel8CompatibilityMode prop-
erty, 543-544

Version property, 543
concatenating data (sorting and), 300-302

conditional formatting

data visualization, 334

highlighting selected cells, 263-264
configuring

pivot tables, 213-214

slicers for pivot table filtering,
235-239

connections (ADO), 426
constants (defined) in VBA, 40-43

content management (web page data) via
Excel, 387-389

content pane (Office add-ins), writing
to, 535

controls

ActiveX Controls, attaching macros
to, 506-507

Ribbon, customizing for running
macros

adding controls to Ribbon,
490-491

control attributes, 490

required arguments, 491
userforms, 440

adding, 453

adding at runtime, 450-456

adding controls to existing forms,
162-163

adding “on the fly,” 452

adding tip text, 457

case study, 162-163

Checkbox controls, 440-441
collections and, 447-449
coloring active controls, 457-459
designing via toolbar, 439-440

MultiPage control and combining
userforms, 171-173

programming, 162
RefEdit controls, 444

criteria ranges (Advanced Filter) 553

Scrollbar controls, 446
TabStrip controls, 442-443
ToggleButton controls, 444
Controls group (Developer tab), 10
converting
files to add-ins
Save As method, 511
VB Editor, 511-512
pivot tables to values, 217-219
week numbers to dates, 299
workbooks to add-ins, 510-511
Save As method, 511
VB Editor, 511-512
copying

columns via xIFilterCopy (Advanced
Filter), 203-204

data to
separate worksheets, 257-258

separate worksheets without filters,
258-259

reports for every product (pivot
tables), 225-228

within statements (cleaning up
recorded code), 54

subsets of columns via xIFilterCopy
(Advanced Filter), 204-206

counting unique values, 294-295

CreateObiject function, creating new
instances of Word objects, 409

criteria ranges (Advanced Filter), 186,
192-194

case studies, 184, 196-197

complex criteria, 194-195

formula-based conditions
case study, 196-197

returning above-average
records, 201

setting up conditions, 196
VBA, 197-201

554

criteria ranges (Advanced Filter)

joining multiple ranges
Logical AND, 194
Logical OR, 193-194
.CSS files and Office (MS) add-ins, 525
.CSV files
deleting, 254
importing, 254
curly braces ({ }), JavaScript interactivity in
Office (MS) add-ins, 527

CurrentRegion property, selecting data
ranges, 68

cursors
ADO, 426
location, 426
types of, 426
debugging code
hovering the cursor, 47-48
running to cursor, 46
custom functions. See UDF
custom objects
creating, 143-145
using, 145

custom properties, creating via UDT
(User-Defined Types), 153-156

customizing Ribbon for running macros,
487-488

accessing Excel file structure, 496
adding controls to Ribbon, 490-491
creating

groups, 489-490

tabs, 489-490
customui folder and file, 488-489
images on buttons, 497-500
.RELS files, 496-497
renaming Excel files, 497

troubleshooting (error handling),
500-503

D

daily dates, grouping to months, quarters,
years via pivot tables, 221-222

DAO (Data Access Objects) versus ADO,
424-425

dashboards, creating via sparklines,
369-373

data analysis via Application.OnTime
method, 381

macros

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x min-
utes in the future, 383

scheduling verbal reminders,
383-384

Ready mode for scheduled proce-
dures, 381-382

updates, scheduling window of time
for, 382

data bars, 334
adding to ranges, 335-339

multiple colors of data bars in ranges,
345-347

Data Model, 242
creating, 245-247

loading large text files to Data Model
via Power Query, 401-402

pivot tables

adding model fields to pivot
tables, 244

adding numeric fields to value
area, 244-245

adding tables to Data Model,
242-243

building pivot tables, 243

creating relationships between
pivot tables, 243

defining pivot caches, 243
data sets
duplicate value rules, 334
navigating in Macro Recorder, 31
data visualization, 333
above/below average rules, 334, 348
cells
blanks/errors formatting, 351-352
date formatting, 351
duplicate cell formatting, 349-350

formulas to determine cells to
format, 352-353

text formatting, 351

unique cell formatting, 349-350

value-based formatting, 350-351
color scales, 334, 339-340
conditional formatting, 334
data bars, 334

adding to ranges, 335-339

multiple colors of data bars in
ranges, 345-347

duplicate value rules, 334
highlight cell rules, 334
icon sets, 334

adding to ranges, 341-343

creating for subsets of ranges,

344-345
methods, 334-335
NumberFormat property, 353-354
pivot tables case study, 249-250
properties, 334-335
ranges
adding data bars to, 335-339

creating icon sets for subsets of
ranges, 344-345

debugging code 555

highlighting unique values in
ranges, 352-353

muldple colors of data bars in
ranges, 345-347

rows, highlighting for the largest
value, 353

top/bottom rules, 334, 348-349
databases
MDB, 423-426

shared access databases, creating (case
study), 425-426

date and time
cells dates, formatting, 351

daily dates, grouping to months,
quarters, years via pivot tables,
221-222

retrieving
from last save, 291
permanent date and time, 291

week numbers, converting to

dates, 299

date ranges (dynamic), selecting via
AutoFilter, 182-183

debugging code

backing up/moving forward in code,
45-46

breakpoints, 45, 49

controls, adding to userforms,
162-163

error handling (troubleshooting) and
code security, 484

querying while stepping through
code, 46
hovering the cursor, 47-48
Immediate window, 46-47
watches, 48
running to cursor, 46
stepping through code, 43-45

declarations (API)

declarations (API)

32-bit compatible declarations,
465-466

64-bit compatible declarations,
465-466

About dialog, customizing, 469-470
computer names, retrieving, 467

display resolution information,
retrieving, 468-469

example of, 464, 465

Excel file open status, checking in
network, 467-468

private versus public status, 464-465
running timers, creating, 471
sounds, playing, 472

types of, 464

usage example, 465

X button for closing userforms,
disabling, 470-471

declaring

arrays, 131-132

multidimensional arrays, 132-133
defined constants (VBA), 40-43
deleting

empty cells from values area (pivot
tables), 225

names, 105-106
records from MDB, 433

delimited files (imported), opening,
395-397

delimited strings, extracting a single
element from, 300

Developer tab
accessing, 9-10
Add-ins group, 10
Code group, 10
Controls group, 10
Modify group, 10
XML group, 10

development stage errors versus errors
months later (error handling/trouble-
shooting), 482

Runtime Error 9: Subscript Out of
Range, 482-483

Runtime Error 1004: Method Range
of Object Global Failed, 483-484

dictionaries. See also collections (VBA),
150-151

digital signatures, Disable All Macros
Except Digitally Signed Macros option
(macro security), 14

directories
listing files in, 251-253
looping case study, 84-85

workbooks, counting number of
workbooks in a directory, 288-289

Disable All Macros Except Digitally Signed
Macros option (macro security), 14

Disable All Macros with Notification
option (macro security), 13-14

Disable All Macros Without Notification
option (macro security), 13

Do loops, 78-80

Until clause and, 81-82

While clause and, 81-82

While.Wend loops, 82
Document object (Word), 413-415
downloading code files, 5
duplicate cells, formatting, 349-350

duplicate max values, returning the
addresses of, 304-305

duplicate value rules, 334

duplicates, removing from ranges,
295-296

dynamic arrays, 136-137

dynamic date ranges, selecting via
AutoFilter, 182-183

E

early binding, referencing Word objects
via, 406-409

editing macros, 19
defined constants, 40-43
optional parameters, 40
Project Explorer, 20
properties that return objects, 43
Properties window, 21
settings, 20
email addresses, validating, 292-293
embedded charts and events
class modules, 123, 141-143
list of events, 124

empty cells, deleting from values area
(pivot tables), 225

Enable All Macros option (macro
security), 14

error handling (troubleshooting), 473
blanks/errors formatting, 351-352
case study, 480
clients, training, 481-482
code security

debugging and, 484
locking code, 485-486

password cracking (case study),
484-485

debug errors in userforms, 475-477

development stage errors versus
errors months later, 482

encountering errors on purpose, 481
On Error GoTo syntax, 477-478
Excel warnings, suppressing, 481
generic error handlers, 478-479
ignoring errors, 479

Ribbon, customizing for running
macros, 500-503

Excel

Runtime Error 9: Subscript Out of
Range, 482-483

Runtime Error 1004: Method Range
of Object Global Failed, 483-484

VBA, 473-475
versioning errors, 486
events, 115

accessing, 116

application-level events
class modules, 125, 140-141
list of, 125-130

case study, 122

chart events, 119, 123

embedded charts and class
modules, 123, 141-143

embedded charts events, 124
enabling, 117

frame control events in userforms,

167-169
graphic control events, 169
levels of, 115-116
military time, entering in cells, 122
parameters, 116

QueryClose events, userform win-
dows, 174-175

userform events, 160-161
viewing, 116
workbooks
events, 117
sheet events, 119
worksheet events, 120
Excel
Advanced Filter, building, 185-186
charts

planning for Excel migration,
310-311

version changes to, 541

558

Excel

compatibility issues, 542-543

Excel8CompatibilityMode prop-
erty, 543-544

Version property, 543

content management (web page data),
387-389

file structure, accessing, 496
FTP, 389-390
Macro Recorder, 8
pivot tables, version changes to, 541
power programming
combining workbooks, 256-257

copying data to separate work-
sheets, 257-258

copying data to separate work-
sheets without filters, 258-259

creating hidden log files, 267-268
deleting .CSV files, 254

exporting data to .XML files,
259-260

filtering data to separate work-
sheets, 257-258

highlighting selected cells using
conditional formatting, 263-265

importing .CSV files, 254
listing files in directories, 251-253
parsing text files, 254-255

placing charts in comments,
261-262

reading text files into memory,
254-255

resizing cell comments, 260-261

selecting noncontiguous cells,
265-267

separating worksheets into work-
books, 255-256

Quick Analysis tool, version changes
to, 541

.RELS files and ribbon
customization, 496-497

renaming files, 497
Ribbon, version changes to, 539
SDI, version changes to, 540
slicers, version changes to, 541
SmartArt, version changes to, 542
VBEVB Editor
learning new methods, 542
learning new objects, 542
versioning errors, 486
versions of, 4
chart changes, 541
learning new methods, 542
learning new objects, 542
pivot table changes, 541
Quick Analysis tool changes, 541
Ribbon changes, 539
SDI changes, 540
slicer changes, 541
SmartArt changes, 542
warnings, suppressing, 481

Excel 97-2003 Workbook (.xls) files and
macros, 11

Excel Binary Workbook (.xIsb) files and
macros, 11

Excel Macro-Enable Workbook (.xIsm) files
concerns with, 11
macros, 11
public perception of, 11
saving files in, 11

Excel State class modules, creating,
268-270

Excel Tables: A Complete Guide for Creating,
Using, and Automating Lists and
Tables, 71

Excel Workbook (.xlsx) files and macros,
10-11

Excel8CompatibilityMode property, Excel
compatibility issues, 543-544

ExcelMatters.com website, 254
exiting loops early, 77-78
exp.com, 271
exporting

charts as graphics, 330

data to XML files, 259-260

extracting single element from a
delimited string, 300

F

field entry, verifying in userforms, 174
files
converting to add-ins
Save As method, 511
VB Editor, 511-512
.CSS files and Office (MS) add-ins, 525
.CSV files
deleting, 254
importing, 254
delimited files (imported), opening,
395-397

directories
listing files in, 251-253
looping case study, 84-85
Excel files
accessing file structure, 496
renaming, 497

fixed-width files (imported), opening,
392-395

hidden log files, creating, 267-268
naming, userforms and, 175-176

paths, setting in cells, 287

.RELS files and ribbon customiza-
tion, 496-497

text files, 391
delimited files (imported), 395-397

fixed-width files (imported),
392-395

filtering

importing, 391-402

importing files with less than
1,048,576 rows, 391-397

importing files with more than
1,048,576 rows, 398-402

loading large files to Data Model
via Power Query, 401-402

parsing, 254-255
reading into memory, 254-255

running files a row at a time,

398-400
writing, 402

XML files, exporting data to,
259-260

fills (object), changing in charts, 325-327

Filter in Place (Advanced Filter), 186,
201-202

catching no records with filter in
place, 202

showing all records, 202
filtering
Advanced Filter, 184-185
Action option, 186

building via Excel interface,
185-186

criteria ranges, 186
Filter in Place, 186, 201-202

multple Advanced Filters (case
study), 206-209

unique lists, 186-192

xlFilterCopy, 203-206
AutoFilter

filtering by color, 181

filtering by icon, 181-182

turning off drop-downs in,
209-210

charts, 318
data to separate worksheets, 257-258
pivot tables

559

560

filtering

case study, 233-235
conceptual filters, 229-230

configuring filtering timelines,
239-242

configuring slicers for filtering,
235-239

filtering OLAP pivot tables by lists
of items, 271-273

manually filtering multiple items
in pivot fields, 228-229

search filter, 233
types of filters, 230
finding
first nonzero-length cell in a range,
296-297

last row (cleaning up recorded code),
52-53

fixed-width files (imported), opening,
392-395

flow control
If. Elself.End loops, 87-88
If. Then.Else loops, 86
If Then.Else.End If loops, 87
If . Then.End If loops, 86-87
Select Case.End Select loops, 88

complex expressions in Case state-
ments, 89

nesting If statements, 89-91
For Each. loops, 82-83

For each.next statements, JavaScript inter-
activity in Office (MS) add-ins, 532

for loops, JavaScript interactivity in Office
(MS) add-ins, 529-530

Form Controls, assigning macros to, 18-19
form fields, automating Word, 420-422

Format method, micromanaging format-
ting changes in charts, 324-325

formatting
cells
above/below average rules, 348
blanks/errors formatting, 351-352
date formatting, 351
duplicate cell formatting, 349-350

formulas to determine cells to for-
mat, 352-353

text formatting, 351

top/bottom rules, 348-349

unique cells, 349-350

value-based formatting, 350-351
charts, 312-315

applying color, 317-318

changing object fills, 325-327

emulating Plus icon changes via
SetElement, 319-323

filtering charts, 318
line settings, 327

micromanaging formatting
changes, 324-325

specific chart references, 315-316
specifying titles, 316

conditional formatting
data visualization, 334

highlighting selected cells,
263-264

sparklines, 361
RGB colors, 364-365
theme colors, 361-364
tables, resetting formatting, 279-280

formula-based conditions and criteria
ranges (Advanced Filter)

case study, 196-197

returning above-average records, 201
setting up conditions, 196

VBA, 197-201

formulas
Al formulas
autofilling data, 95-96
case study, 96-97
R1Cl1 versus, 93-97

replacing multiple Al formulas
with one R1C1 formula, 99-101

array formulas and R1C1 formulas,
101-102

hard-coding formulas, avoiding
(cleaning up recorded code), 53-54

names, 106-107
R1C1 formulas
Al versus, 93-97
absolute references and, 98
accessing, 94-95
array formulas and, 101-102
autofilling data, 96
case study, 96-97
cleaning up recorded code, 54

column number/letter
associations, 101

column references, 99
mixed references and, 98-99
relative references and, 97-98

replacing multiple Al formulas
with one R1Cl1 formula, 99-101

row references, 99

For.Next loops, 73-76

exiting early, 77-78

nested loops, 78

running backwards, 77

For statement variables, 76

Step clause and, 76-77

variations on, 76-77

frame control events in userforms,
167-169

Frankston, Bob, 93

functions 561

FTP from Excel, 389-390
functions

CreateObject function, creating new
instances of Word objects, 409

custom functions. See UDF

GetObject function, referencing
existing instances of Word objects,
410-411

IsEmpty function, checking for empty
cells in ranges, 67

JavaScript functions in Office (MS)
add-ins, 526, 534-535

UDF, 283, 286
alpha characters, 302-303
case study, 284-285

checking existence of a worksheet,
287-288

checking workbook open status, 287

concatenating data (sorting and),
300-302

converting week numbers to

dates, 299

counting number of workbooks in
a directory, 288-289

counting unique values, 294-295
creating

extracting a single element from a

delimited string, 300

finding the first nonzero-length
cell in a range, 296-297

removing duplicates from ranges,
295-296

retrieving date and time from last
save, 291

retrieving numbers from mixed
text, 298-299

retrieving permanent date and
time, 291

retrieving user ID, 289-290

functions

returning addresses of duplicate
max values, 304-305

returning column letters from cell
addresses, 306

returning hyperlink addresses,
305-306

reversing cell contents, 304

searching for a string within text,
303-304

Select.Case statements in work-
sheets, 307

setting workbook names and file
paths in cells, 287

setting workbook names in
cells, 286

sharing, 286

sorting and concatenating data,
300-302

sorting numeric characters,

302-303
static random, 306

substituting multiple characters,
297-298

summing cells based on interior
color, 293-294

validating email addresses,
292-293

fund/stock quotes (power programming
techniques), 280-281

G

GetObject function, referencing existing
instances of Word objects, 410-411

GetOpenFilename, 175-176, 478
GetSaveAsFilename, 176
global names versus local names, 103-104

Go to Special versus looping (case
study), 184

graphics
buttons, adding graphics to, 497
custom icon images, 499-500
Microsoft Office icons, 498-499

exporting charts as graphics, 330
userforms, adding to, 169, 453-454

H

hard-coding rows/formulas, avoiding
(cleaning up recorded code), 53-54

“Hello World” add-in (Office), 517-521
help
Cell Masters website, 254

Excel Tables: A Complete Guide for
Creating, Using, and Automating Lists
and Tables, 71

ExcelMatters.com website, 254
help buttons case study, 151-153

JKP Application Development
Services, 466

Juanpg.com website, 268-270

OpenXMLDeveloper.org
website, 497

RibbonX Visual Designer, 497
userforms, adding to, 456
adding control tip text, 457
coloring active controls, 457-459
creating tab order, 457
showing accelerator keys, 456
Wallentin blog, Dennis, 257
XcelFiles website, 263
Help (VBA), 38-40
defined constants, 40-43
optional parameters, 40
hiding
hidden log files, creating, 267-268
hidden workbooks
as alternative to add-ins, 515-516
storing macros in, 515-516
storing userforms in, 515-516
names, 111

userforms, 160

highlighting
cells, 334

selected cells via conditional for-
matting, 263-264

selected cells without conditional
formatting, 264-265

rows for the largest value, 353
unique values in ranges, 352-353

historical stock/fund quotes (power pro-
gramming techniques), 280-281

HTML (Hypertext Markup Language)
Office (MS) add-ins, 524
.CSS files, 525
HTML buttons, 524-525
HTML tags, 524
hyperlinks
addresses, returning, 305-306
macros, running, 507-508
userforms, 449-450

icon sets, 334
ranges, adding to, 341-343

subsets of ranges, creating for, 344-
345

icons
adding to buttons
custom icon images, 499-500
Microsoft Office icons, 498-499
filtering by (AutoFilter), 181-182
If statements

JavaScript interactivity in Office (MS)
add-ins, 530

nesting If statements (Select Case.
End Select loops), 89-91

If.Elself.End loops and flow control, 87-88
If. Then.Else loops and flow control, 86

interactivity in Office (MS) add-ins

If. Then.Else.End If loops and flow
control, 87

If.Then.End If loops and flow control,
86-87

ignoring errors as a way of error handling/
troubleshooting, 479

images
buttons, adding images to, 497
custom icon images, 499-500
Microsoft Office icons, 498-499
exporting charts as images, 330
userforms, adding to, 453-454
importing text files, 391
delimited files, 395-397

files with less than 1,048,576 rows,
391-397

files with more than 1,048,576 rows,
398-402

fixed-width files, 392-395

loading large files to Data Model via
Power Query, 401-402

running files a row at a time, 398-400
initializing add-ins (Office) via
JavaScript, 536
input boxes (userforms), 157-158

interactivity in Office (MS) add-ins, 521,
526,535

arrays, 528-529

assignment operators, 532-533
For each.next statements, 532
functions, 526-527

if statements, 530

initializing add-ins, 536

logical operators, 532-533

for loops, 529-530

math functions, 534-535
mathematical operators, 532-533
reading/writing to add-ins, 536

563

564 interactivity in Office (MS) add-ins

Select.Case statements, 530-531

strings, 528

variables, 527-528

writing to content pane, 535
Internet data

analyzing via Application.OnTime
method, 381

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

Ready mode for scheduled proce-
dures, 381-382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x min-
utes in the future, 383

scheduling verbal reminders,
383-384

scheduling window of time for
updates, 382

content management via Excel,

387-389
publishing to web pages, 385-386

content management via Excel,
387-389

custom web pages, 386-387

FTP from Excel, 389-390
retrieving, 375-380

building multiple queries, 377-378

examples of, 380

finding results from retrieved data,
378-379

interrupting macros, 117

Intersect method, creating new ranges
from overlapping ranges, 67

IsEmpty function, checking for empty cells

in ranges, 67

J

JavaScript and Office (MS) add-ins,
526,535

arrays, 528-529
assignment operators, 532-533
For each.next statements, 532
functions, 526-527
if statements, 530
initializing, 536
logical operators, 532-533
for loops, 529-530
math functions, 534-535
mathematical operators, 532-533
reading/writing to, 536
Select.Case statements, 530-531
strings, 528
variables, 527-528
writing to

content pane, 535

task pane, 535

Jiang, Wei, 273

JKP Application Development
Services, 466

joining multiple ranges, 66-67
Jones, Kevin, 71, 258
Juanpg.com website, 268-270

K

Kaji, Masaru, 254
Kapor, Mitch, 93

keyboard shortcuts, running macros
from, 504

Klann, Daniel, 275

L

labels (userforms), 163-165
largest value, highlighting rows for, 353

last row, finding (cleaning up recorded
code), 52-53

late binding, referencing Word objects via,
408-409

layouts (pivot tables)
changing via Design tab (VBA), 248
report layout settings, 248-249

line breaks, JavaScript interactivity in
Office (MS) add-ins, 527

lines (sparklines)
creating, 356-357
formatting, 361
RGB colors, 364-365
sparkline elements, 365-367
theme colors, 361-364
scaling, 357-361
list boxes

multicolumn list boxes in userforms

(case study), 459
MultiSelect property, 166-167
userforms, 165-167
lists
file lists in directories, 251-253

pivot tables, filtering OLAP pivot
tables by lists of items, 271-273

unique lists (Advanced Filter), 186
local names versus global names, 103-104
locking code, 485-486
log files (hidden), creating, 267-268

logical operators (JavaScript) and Office
(MS) add-ins, 532-533

loops

loops, 73

Do loops, 78-80
Until clause and, 81-82
While clause and, 81-82
While.Wend loops, 82

For Each. loops, 82-83

exiting early, 77-78

file directory case study, 84-85

flow control
If. Elself.End loops, 87-88
If. Then.Else loops, 86
If. Then.Else.End If loops, 87
If . Then.End If loops, 86-87

Select Case.End Select loops,
88-91

Go to Special versus looping (case
study), 184

If Elself.End loops and flow control,
87-88

If. Then.Else loops and flow
control, 86

If Then.Else.End If loops and flow
control, 87

If.Then.End If loops and flow con-
trol, 86-87

for loops, JavaScript interactivity in
Office (MS) add-ins, 529-530

For.Next loops, 73-76
exiting early, 77-78
nested loops, 78
running backwards, 77
For statement variables, 76
Step clause and, 76-77
variations on, 76-77
nested loops, 78

565

566 loops

object variables
For Each. loops, 83-85

VBA loops (For Each. loops),
83-85

replacing via AutoFilter, 177-179

Select Case.End Select loops and flow
control, 88

complex expressions in Case
statements, 89

nesting If statements, 89-91
VBA loops (For Each. loops), 82-83
While.Wend loops, 82
Lotus 1-2-3
Macro Recorder, 7-8
R1CI1 formulas, 93

M

Macro Recorder

AutoSum while recording macros,
30-31

case study

AutoSum while recording macros,

30-31

Quick Analysis while recording
macros, 30-31

recording macros, 21-24

relative references when recording
macros, 26-30

running macros on another day
produces undesired results, 25-26

testing macros, 24-25
Excel and, 8
flaws in, 7-8
Lotus 1-2-3, 7-8
navigating data sets, 31

Quick Analysis while recording
macros, 30-31

Macro Security icon (Code group), 10-12

macros, 19

ActiveX Controls, attaching macros
to, 506-507

assigning to
Form Controls, 18-19
shapes, 18-19
text boxes, 18-19
buttons, creating on
Quick Access Toolbar, 17
Ribbon, 16
case studies
AutoSum, 30-31
Quick Analysis, 30-31
recording macros, 21-24
relative references, 26-30

running macros on another day
produces undesired results, 25-26

testing macros, 24-25

command buttons, attaching macros

to, 504-505
data analysis via Application.OnTime

method

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x min-
utes in the future, 383

scheduling verbal reminders,
383-384

debugging

backing up/moving forward in
code, 45-46

breakpoints, 45, 49

querying while stepping through
code, 46-48

running to cursor, 46

stepping through code, 43-45

editing
defined constants, 40-43
optional parameters, 40
Project Explorer, 20
properties that return objects, 43
Properties window, 21
settings, 20

Form Controls, assigning macros to,
18-19

hyperlinks, running macros from,
507-508

interrupting, 117

keyboard shortcuts, running macros
from, 504

pausing, 117

Personal Macro Workbook (Personal.

xlsm), 15

Record Macro dialog, filling out,
14-16

recording, 14-16
AutoSum, 30-31
case study, 21-24
navigating data sets, 31
Quick Analysis, 30-31
relative references, 26-30, 31

using different methods while
recording, 31

recording macros case study, 21-24
relative references, 26-31
restarting, 117

Ribbon, customizing for running
macros, 487-488

accessing Excel file structure, 496

adding controls to Ribbon,
490-491

creating groups, 489-490
creating tabs, 489-490

customui folder and file, 488-489
images on buttons, 497-500

macros

.RELS files, 496-497
renaming Excel files, 497

troubleshooting (error handling),
500-503

running, 16
case study, 25-26

creating macro buttons on Quick
Access Toolbar, 17

creating macro buttons on
Ribbon, 16

running macros on another day
produces undesired results, 25-26

running macros on another day pro-
duces undesired results, 25-26

scheduling

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x
minutes in the future, 383

scheduling verbal reminders,
383-384

security
Disable All Macros Except
Digitally Signed Macros
option, 14
Disable All Macros with
Notification option, 13-14
Disable All Macros Without
Notification option, 13
Enable All Macros option, 14
Macro Security icon (Code group),
10-12
using macros outside of trusted
locations, 13-14
shapes
assigning macros to, 18-19
attaching macros to, 505-506

567

568 macros

storing in hidden workbooks,
515-516

testing, 24-25
text boxes, assigning macros to, 18-19
tips for using, 31

trusted locations, using macros
outside of, 13-14

using different methods while
recording, 31

xls files, 11

xlsb files, 11

xlsm files, 11

xlsx files, 10-11

XML macros, 4
Macros icon (Code group), 10
Macs (Apple) and VBA, 4

math functions (JavaScript), Office (MS)
add-ins, 534-535

mathematical operators (JavaScript) and
Office (MS) add-ins, 532-533

max values (duplicate), returning
addresses of, 304-305

MDB (Multidimensional Databases),
423-424

records
adding to MDB, 427-428
deleting via ADO, 433
retrieving from MDB, 429-430
summarizing via ADO, 433-434
updating existing records, 431-432

shared access databases, creating (case
study), 425-426

memory, reading text files into, 254-255
message boxes (userforms), 158
methods (VBA), 34-37

Application.OnTime method and
data analysis, 381

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

Ready mode for scheduled
procedures, 381-382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x
minutes in the future, 383

scheduling verbal reminders,
383-384

scheduling window of time for
updates, 382

data visualization, 334-335

Format method, micromanaging for-
matting changes in charts, 324-325

Intersect method, creating new rang-
es from overlapping ranges, 67

new methods, learning, 542
parameters, 35-37

Save As method, converting
workbooks to add-ins, 511

SetElement method, emulating Plus
icon changes, 319-323

SpecialCells method, selecting
specific cells in ranges, 68-70

Union method, joining multiple
ranges, 66-67
Microsoft Office icons, adding to buttons,
498-499

Miles, Tommy, 255-256

military time, entering in cells (case
study), 122

mixed references and R1C1 formulas,
98-99

mixed text, retrieving numbers from,
298-299

Moala, Ivan F., 263-264, 277-279
modeless userforms, 449
Modify group (Developer tab), 10

monthly accounting reports case
study, 3-4

months, grouping daily dates to, 221-222
moving
forward/backing up in code (debug-
ging), 45-46
pivot tables, 216-217

multidimensional arrays, declaring,
132-133

MultiPage control, combining userforms,
171-173

multiple actions in recorded code, 54-55

multiple characters, substituting via UDF,
297-298

multiple items, selecting via
AutofFilter, 180

MultiSelect property, userform list boxes,
166-167

N

names, 103
adding comments to, 106
arrays, 109-110
checking existence of, 111-112
creating, 104-105
deleting, 105-106
formulas, 106-107
global names
creating, 104-105
local names versus, 103-104
hiding, 111
local names
creating, 105
global names versus, 103-104
Name Manager
adding comments to names, 106

global names versus local names,

103-104

local names versus global names,

103-104

numeric characters, sorting

named ranges, 60
numbers, 108-109
renaming Excel files, 497
reserved names, 110-111
strings, 107-108

tables, 109

types of names, 106-111

Vlookup, named ranges for (case
study), 112-113

workbooks

setting names and file paths in
cells, 287

setting names in cells, 286

Napa Office 365 development tools and
Office (MS) add-ins, 536-537

navigating
data sets in Macro Recorder, 31
Object Browser, 50

nested If statements (Select Case.End
Select loops), 89-91

nested loops, 78

New keyword, referencing Word
objects, 409

noncontiguous cells, selecting, 265-267

noncontiguous ranges, returning via
Areas collection, 70-71

nonzero-length cells, finding in ranges,
296-297

NumberFormat property, 353-354
numbers

names, 108-109

retrieving from mixed text, 298-299

week numbers, converting to
dates, 299

numeric characters, sorting, 302-303

569

570

Object Browser

Object Browser
navigating, 50
opening, 50

Word constant values, retrieving,
412-413

object fills, changing in charts, 325-327
object variables

For Each. loops, 83-85

VBA loops (For Each. loops), 83-85
objects (VBA), 34-37

class modules, inserting into objects,
139-140

collections, 35
custom objects
creating, 143-145
using, 145
hierarchy of, 59
new objects, learning, 542
properties, 36-37
Range object, 59-60
returning objects via properties, 43
watches and, 49-50
objects (Word), 405-406, 413
bookmarks, 419-420

constant values, retrieving via late
binding, 411-413

Document object, 413-415

new instances, creating via
CreateObject function, 409

Range object, 416-419
referencing
early binding, 406-408

early binding using New
keyword, 409

late binding, 408-409

referencing existing instances via

GetObject function, 410-411
Selection object, 415-416

Office (MS)

add-ins, 517
buttons (HTML), 524-525
creating, 517-521
.CSS files, 525
“Hello World” add-in, 517-521
HTML in, 524-525
interactivity in, 521-524
JavaScript interactivity in, 526-536

Napa Office 365 development
tools, 536-537

tags (HTML), 524
writing to content pane, 535
writing to task pane, 535
XML in, 525-526
icons, adding to buttons, 498-499
Offset property, referencing ranges, 63-65

OLAP pivot tables, filtering by lists of
items, 271-273

Oliver, Nathan P.251, 280

On Error GoTo syntax (error handling/
troubleshooting), 477-478

online resources
Cell Masters website, 254
code files, 5
ExcelMatters.com website, 254
exp.com, 271
JKP Application Development
Services, 466
Juanpg.com website, 268-270

OpenXMLDeveloper.org
website, 497

RibbonX Visual Designer, 497
Wallentin blog, Dennis, 257
XcelFiles website, 263
open status (workbooks), checking, 287
OpenXMLDeveloper.org website, 497
option buttons in userforms, 167-169

overlapping ranges, creating new ranges
from, 67

P

parameters (VBA), 35-37
event parameters, 116
optional parameters, 40
parsing text files, 254-255
passing arrays, 137-138
passwords
cracking (case study), 484-485

protected password boxes, creating,
275-277

pausing macros, 117

percentages, changing calculations to
show (pivot tables), 222-224

performance, speeding up code via arrays,
135-136

permanent date and time, retrieving, 291

Personal Macro Workbook
(Personal.xIsm), 15

Pieterse, Jan Karel, 466

pivot tables, 2-3, 211, 212, 219-220
calculated data fields, 247
calculated items, 247
case studies, 249-250
changing, 216-217
configuring, 213-214
converting to values, 217-219
creating, 213-214

daily dates, grouping to months,
quarters, years, 221-222

pivot tables 571

data area, adding fields to, 214-216
Data Model, 242

adding model fields to pivot
tables, 244

adding numeric fields to value
area, 244-245

adding tables to Data Model,
242-243

building pivot tables, 243
creating, 245-247

creating relationships between
tables, 243

defining pivot caches, 243
data visualization case study, 249-250
development of, 211-212
drilling down, 270-271
Excel's changes to, 541
fields

adding to data area, 214-216

multiple value fields, 220-221
filtering

case study, 233-235

conceptual filters, 229-230

configuring filtering timelines,
239-242

configuring slicers for filtering,
235-239

manually filtering multiple items
in pivot fields, 228-229

record sets via ShowDetail, 248
search filter, 233
types of filters, 230
layouts
changing via Design tab (VBA), 248
report layout settings, 248-249
moving, 216-217

OLAP pivot tables, filtering by lists
of items, 271-273

572 pivot tables

percentages, changing calculations to
show, 222-224

pivot caches, defining, 212-213

record sets, filtering via
ShowDetail, 248

reports
layout settings, 248-249
replicating for every product
Show Report Filter Pages, 225-228

ShowDetail, filtering record sets
via, 248

sizing tables to convert to values,
217-219

sort order, controlling via
AutoSort, 225

subtotals, suppressing for multiple
row fields, 249-250

values area, deleting empty cells
from, 225

versions of, 211-212

Plus icon, emulating changes via
SetElement, 319-323

Pope, Andy, 497
power programming (Excel)
cells
creating hidden log files, 267-268

highlighting selected cells using
conditional formatting, 263-265

placing charts in comments,
261-262

resizing comments, 260-261

selecting noncontiguous cells,
265-267

charts, placing in cell comments,
261-262

files
creating hidden log files, 267-268
deleting .CSV files, 254
importing .CSV files, 254

listing in directories, 251-253
parsing text files, 254-255

reading text files into memory,
254-255

workbooks
combining, 256-257

separating worksheets into work-
books, 255-256

worksheets

copying data to separate work-
sheets, 257-258

copying data to separate work-
sheets without filters, 258-259

filtering data to separate work-
sheets, 257-258

separating into workbooks,
255-256

XML files, exporting data to,
259-260

power programming (VBA)
cells
progress indicators, 274-275
selecting via SpecialCells, 279
custom sort orders, 273-274

Excel State class modules, creating,
268-270

fund/stock quotes, 280-281
pivot tables
drilling down, 270-271

filtering OLAP pivot tables by lists
of items, 271-273

protected password boxes, creating,
275-277

stock/fund quotes, 280-281
tables, resetting formatting, 279-280
text, changing case, 277-278

workbooks, adding code via VBA
extensibility, 281-282

Power Query

loading large text files to Data Model,
401-402

Web data (Internet), retrieving,
375-378

progress indicators (cells), creating,
274-275

Project Explorer (VB Editor), 20
properties (VBA), 36-37
Columns property, specifying
ranges, 66

CurrentRegion property, selecting
data ranges, 68

custom properties, creating via UDT,
153-156

data visualization, 334-335

Excel8CompatibilityMode property,
543-544

MultiSelect property and userform
list boxes, 166-167

NumberFormat property, 353-354

Offset property, referencing ranges,
63-65

Resize property, sizing ranges, 65-66
returning objects, 43
Rows property, specifying ranges, 66
Version property, 543

Properties window (VB Editor), 20

protected password boxes, creating,
275-277

publishing data to web pages, 385-386

content management via Excel,

387-389
custom web pages, 386-387
FTP from Excel, 389-390

R1C1 formulas

Q

quarters, grouping daily rates to via pivot
tables, 221-222

queries (web) and data retrieval, 375-377,
379-380

building multiple queries, 377-378
examples of, 380

finding results from retrieved data,
378-379

QueryClose events, userform windows,
174-175

querying while stepping through code
(debugging), 46

hovering the cursor, 47-48
Immediate window, 46-47
watches, 48

Quick Access Toolbar, creating macro but-
tonson, 17

Quick Analysis tool
Excel's changes to, 541
recording macros, 30-31

quotes (stock/fund), power programming
techniques, 280-281

R

R1C1 formulas
Al versus, 93-97
absolute references and, 98
accessing, 94-95
array formulas and, 101-102
autofilling data, 96
case study, 96-97
cleaning up recorded code, 54
columns
number/letter associations, 101

references, 99

574 R1C1 formulas

mixed references and, 98-99
relative references and, 97-98

replacing multiple Al formulas with
one R1C1 formula, 99-101

row references, 99
random (static), 306
Range object (Word), 416-419
ranges, 59

case study, selecting specific cells in
ranges, 68-70

cells
checking for empty cells, 67

finding the first nonzero-length
cell in a range, 296-297

ranges versus cells when cleaning
up code, 52

selecting specific cells, 68-70

color scales, adding to ranges,
339-340

criteria ranges (Advanced Filter), 186,
192-194

case study, 194-197

complex criteria, 194-195

formula-based conditions, 196-201

joining multiple ranges via Logical
AND, 194

joining multiple ranges via Logical
OR, 193-194

data bars
adding to ranges, 335-339

multple colors of data bars in
ranges, 345-347

dynamic date ranges, selecting via
AutoFilter, 182-183

highlighting unique values in ranges,
352-353

icon sets
adding to ranges, 341-343

creating for subsets of ranges,
341-343

joining multiple ranges, 66-67
named ranges, 60, 112-113

noncontiguous ranges, returning via
Areas collection, 70-71

overlapping ranges, creating new
ranges from, 67

Range object, 59-60
referencing
Offset property, 63-65
in other worksheets, 61
relative to other ranges, 61-62
shortcuts, 60
tables, 71
removing duplicates from, 295-296
selecting
data ranges, 68
ranges via cells, 62-63
sizing via Resize property, 65-66
specifying
columns and, 66
rows and, 66
syntax for, 60

reading/writing to add-ins (Office) via
JavaScript, 536

Record Macro dialog; filling out, 14-16

Record Macro icon (Code group), 10

record sets (ADO), 426

recording

cleaning up recorded code, 51

avoiding hard-coding rows, 53-54
case study, 55-57
cells versus ranges, 52
copying/pasting in statements, 54

With.End With blocks for mul-
tiple actions, 54-55

finding the last row, 52-53

multiple actions in recorded code,

54-55

R1C1 formulas, 54
ranges versus cells, 52
selecting things, 51

macros, 14-16
AutoSum, 30-31
case study, 21-24
navigating data sets, 31
Quick Analysis, 30-31
relative references, 26-30, 31

using different methods while
recording, 31

RefEdit controls (userforms), 444
referencing
charts (specific), 315-316
ranges
Offset property, 63-65
in other worksheets, 61
relative to other ranges, 61-62
shortcuts, 60
tables, 71
Word objects
early binding, 406-408
early binding using New
keyword, 409
late binding, 408-409
relative references
R1C1 formulas and, 97-98
recording macros, 26-31

reminders (verbal), scheduling for macro

operation, 383-384
removing
add-ins, 514-515
duplicates from ranges, 295-296
renaming Excel files, 497
reports
accounting reports case study, 3-4
layout settings, 248-249

replicating for every product (pivot
tables), 225-228

Ribbon 575

reserved names, 110-111
resetting table formatting, 279-280
Resize property, sizing ranges, 65-66
resources (online)
Cell Masters website, 254
code files, 5
ExcelMatters.com website, 254
exp.com, 271

JKP Application Development
Services, 466

Juanpg.com website, 268-270

OpenXMLDeveloper.org
website, 497

RibbonX Visual Designer, 497
Wallentin blog, Dennis, 257
XcelFiles website, 263
restarting macros, 117
retrieving
data from arrays, 134-135
date and time
permanent date and time, 291
retrieving from last save, 291
Internet data, 375-380
building multiple queries, 377-378
examples of, 380

finding results from retrieved data,
378-379

numbers from mixed text, 298-299
user ID, 289-290

reversing cell contents, 304

Ribbon
creating macro buttons on, 16

customizing for running macros,

487-488
accessing Excel file structure, 491

adding controls to Ribbon,
490-491

creating groups, 489-490

576 Ribbon

creating tabs, 489-490

customui folder and file, 488-489
images on buttons, 497-500
.RELS files, 496-497

renaming Excel files, 497

troubleshooting (error handling),
500-503

Excel's changes to, 539
RibbonX Visual Designer, 497
rows

hard-coding rows, avoiding (cleaning
up recorded code), 53-54

highlighting for the largest value, 353

last row, finding (cleaning up record-
ed code), 52-53

R1C1 formulas, row references, 99
ranges, specifying via rows, 66
Ruiz, Juan Pablo Gonzalez, 268-270
running
to cursor (debugging code), 46
macros, 16
case study, 25-26

creating macro buttons on Quick
Access Toolbar, 17

creating macro buttons on

Ribbon, 16

on another day produces undesired
results, 25-26
running timers, creating via API
declarations, 471

Runtime Error 9: Subscript Out of Range,
482-483

Runtime Error 1004: Method Range of
Object Global Failed, 483-484

S

Save As method, converting workbooks to
add-ins, 511

saving

date and time from last save,
retrieving, 291

files in xIsm file format, 11
scaling sparklines, 357-361
scheduling macros
canceling
all pending scheduled macros, 383
previously scheduled macros, 382
to run
every 2 minutes, 384-385
x minutes in the future, 383
verbal reminders, 383-384
scraping websites (data retrieval), 375-380
examples of, 380
multiple queries, building, 377-378

results, finding from retrieved data,
378-379

Scrollbar controls (userforms), 446

SDI (Single Document Interface), Excel's
changes to, 540

search box (AutoFilter), selecting via,
180-181

searching for strings within text, 303-304
security
add-ins, 513-514
error handling (troubleshooting)
code security and debugging, 484
locking code, 485-486

password cracking (case study),
484-485

locking code, 485-486

Macro Security icon (Code group),
10-12

macros

Disable All Macros Except
Digitally Signed Macros
option, 14

Disable All Macros with
Notification option, 13-14

Disable All Macros Without
Notification option, 13

Enable All Macros option, 14

Macro Security icon (Code group),
10-12

using macros outside of trusted
locations, 13-14

password cracking (case study),
484-485

protected password boxes, creating,
275-277

"Trust Center, accessing, 10
trusted locations
adding a trusted location, 12-13

using macros outside of trusted
locations, 13-14

Select Case.End Select loops and flow
control, 88

complex expressions in Case
statements, 89

nesting If statements, 89-91
Select.Case statements

JavaScript interactivity in Office (MS)
add-ins, 530-531

worksheets, 307
selecting
cells, 263
creating hidden log files, 267-268

highlighting selected cells using
conditional formatting, 263-264

slicers 577

highlighting selected cells without
using conditional formatting,
264-265

noncontiguous cells, 265-267
via SpecialCells, 279

dynamic date ranges via AutoFilter,
182-183

multiple items via AutoFilter, 180

ranges via cells, 62-63

via search box (AutoFilter), 180-181

visible cells via AutoFilter, 183-184
Selection object (Word), 415-416

semicolons (;), JavaScript interactivity in
Office (MS) add-ins, 527

SetElement method, emulating Plus icon
changes, 319-323

shapes
assigning macros to, 18-19
attaching macros to, 505-506
sharing UDF, 286

shortcuts (keyboard), running macros
from, 504

Show Report Filter Pages (pivot tables),
225-228

ShowDetail, filtering record sets in pivot
tables, 248

signatures (digital), Disable All Macros
Except Digitally Signed Macros option
(macro security), 14

sizing
cell comments, 260-261

pivot tables to convert to values,
217-219

ranges via Resize property, 65-66
userforms “on the fly,” 452
slicers

configuring for pivot table filtering,
235-239

Excel's changes to, 541

578

SmartArt, Excel’s changes to

SmartArt, Excel's changes to, 542
Smith, Chris “Smitty,” 267
sorting

alpha characters, 302-303

concatenating data (sorting and),
300-302

custom sort orders, creating, 273-274
numeric characters, 302-303

pivot table sort orders, controlling via
AutoSort, 225

sounds, playing via API declarations, 472

spaces, JavaScript interactivity in Office
(MS) add-ins, 527

sparklines, 355
columns, 355
creating, 356-357
formatting, 361-369
RGB colors, 364-365
scaling, 357-361
theme colors, 361-364
dashboards, creating, 369-373
lines, 355
creating, 356-357
formatting, 361-369
RGB colors, 364-365
scaling, 357-361
theme colors, 361-364
observations about, 369-370
usage observations, 369-370
win/loss charts, 355
binary event tracking, 368-369
creating, 356-357
formatting, 361-369
RGB colors, 364-365
scaling, 357-361
theme colors, 361-364

SpecialCells method
selecting cells via, 279

selecting specific cells in ranges,
68-70

speeding up code via arrays, 135-136
spin buttons in userforms, 170-171
SQL server and Access, 437-438

standard modules, creating in collections,
146-147

statements, copying/pasting within
(cleaning up recorded code), 54

static random, 306
Step clause, For.Next loops, 76-77

stepping through code (debugging),
43-45

stock/fund quotes (power programming
techniques), 280-281

storing

macros in hidden workbooks,
515-516

userforms in hidden workbooks,
515-516

strings
delimited strings, extracting a single
element from, 300

JavaScript strings in Office (MS) add-
ins, 528

names, 107-108

searching for a string within text,
303-304

substituting multiple characters via UDF,
297-298

Sullivan, Jerry, 271
summarizing MDB records, 433-434

summing cells based on interior color,
293-294

tables
Access tables

adding tables “on the fly” via
ADO, 436

verifying existence via ADO,
434-435

formatting, resetting, 279-280
names, 109

pivot tables. See individual entry
referencing, 71

tabs, customizing Ribbon for running
macros, 489-490

TabStrip controls (userforms), 442-443
tags (HTML) and Office (MS) add-ins, 524
task pane (Office add-ins), writing to, 535
testing macros, case study, 24-25
text

case, changing, 277-278

cells, formatting text in, 351

mixed text, retrieving numbers from,

298-299

searching for a string within text,
303-304

tip text, adding to userform
controls, 457

text boxes
macros, assigning to text boxes, 18-19
userforms, 163-165
text files, 391
importing, 391
delimited files, 395-397

files with less than 1,048,576 rows,
391-397

files with more than 1,048,576
rows, 398-402

troubleshooting (error handling)

fixed-width files, 392-395

loading large files to Data Model
via Power Query, 401-402

running files a row at a time,

398-400
parsing, 254-255
reading into memory, 254-255
writing, 402

timelines (pivot table filtering),
configuring, 239-242

timers (running), creating via API
declarations, 471

tip text, adding to userform controls, 457
titles (chart), specifying, 316
ToggleButton controls (userforms), 444
top/bottom rules, 334, 348-349
transparent userforms, 460-461
troubleshooting (error handling), 473
blanks/errors formatting, 351-352
case study, 480
clients, training, 481-482
code security
debugging and, 484
locking code, 485-486

password cracking (case study),
484-485

development stage errors versus
errors months later, 482

encountering errors on purpose, 481
On Error GoTo syntax, 477-478
Excel warnings, suppressing, 481
generic error handlers, 478-479
Help (VBA), 38

ignoring errors, 479

Ribbon, customizing for running
macros, 500-503

Runtime Error 9: Subscript Out of
Range, 482-483

579

580 troubleshooting (error handling)

Runtime Error 1004: Method Range
of Object Global Failed, 483-484

userforms

adding controls to existing forms,
162-163

debug errors, 475-477
VBA, 473-475
versioning errors, 486
Trust Center, accessing, 10
trusted locations
adding a trusted location, 12-13

macros, using outside of trusted
locations, 13-14

Tufte, Prof. Edward, 355

U

UDF (User-Defined Functions), 283, 286
case study, 284-285
cells

finding the first nonzero-length
cell in a range, 296-297

returning column letters from cell

addresses, 306
reversing cell contents, 304

setting workbook names and file
paths in cells, 287

setting workbook names in cells,
286

summing cells based on interior

color, 293-294

column letters, returning from cell
addresses, 306

concatenating data (sorting and),
300-302

creating, 283-285
date and time
retrieving from last save, 291

retrieving permanent date and
time, 291

duplicate max values, returning the
addresses of, 304-305

email addresses, validating, 292-293

hyperlink addresses, returning,
305-306

multiple characters, substituting,
297-298

numbers

converting week numbers to

dates, 299

retrieving from mixed text,

298-299
ranges

finding the first nonzero-length
cell in a range, 296-297

removing duplicates from, 295-296

Select.Case statements in
worksheets, 307

sharing, 286
sorting
alpha characters, 302-303

concatenating data (sorting and),
300-302

numeric characters, 302-303
static random, 306
strings
extracting a single element from a
delimited string, 300

searching for a string within text,
303-304

unique values, counting, 294-295
user ID, retrieving, 289-290
workbooks

checking open status, 287

counting number of workbooks in
a directory, 288-289

setting names and file paths in
cells, 287

setting names in cells, 286

worksheets
checking existence of, 287-288
Select.Case statements, 307

UDT (User-Defined Types), creating cus-
tom properties, 153-156

Union method, joining multiple ranges,
66-67

unique cells, formatting, 349-350
unique lists (Advanced Filter), 186

extracting values via user
interface, 186

changing list ranges to single col-
umn format, 186-187

copying customer headings, 187

extracting values via VBA code,
187-191

unique combinations of two or more

fields, 191-192
unique values
counting, 294-295
highlighting in ranges, 352-353
Until clauses and Do loops, 81-82

updating existing records in MDB,
431-432

Urtis, Tom, 260- 261, 265, 270, 274

Use Relative References icon (Code
group), 10

user ID, retrieving, 289-290
userforms, 157

calling, 159-160

case study, 162-163, 459

closing, disabling X button via API
declarations, 470-471

collections and controls, 447-449
combining, 171-173

combo boxes, 165-167

command buttons, 163-165

userforms

controls, 440
adding, 453
adding at runtime, 450-456

adding controls to existing forms,
162-163

adding “on the fly,” 452

adding tip text, 457

case study, 162-163

Checkbox controls, 440-441

collections and, 447-449

coloring active controls, 457-459

designing via toolbar, 439-440

programming, 162

RefEdit controls, 444

Scrollbar controls, 446

TabStrip controls, 442-443

ToggleButton controls, 444
creating, 158-159

debug errors, troubleshooting,
475-477

events, 160-161
field entry, verifying, 174
filenames, 175-176
frame control events, 167-169
graphics, 169
help, adding, 456
adding control tip text, 457
coloring active controls, 457-459
creating tab order, 457
showing accelerator keys, 456
hiding, 160
hyperlinks, 449-450
illegal window closing, 174-175
images, adding “on the fly,” 453-454
input boxes, 157-158
labels, 163-165
list boxes, 165, 459

581

userforms

message boxes, 158
modeless userforms, 449

multicolumn list boxes (case
study), 459

MultiSelect property and list boxes,
166-167

option buttons, 167-169
programming, 160
QueryClose events, 174-175

scrollbar, using as a slider to select
values, 446

sizing “on the fly,” 452
spin buttons, 170-171

storing in hidden workbooks,
515-516

text boxes, 163-165

toolbar and control design, 439-440
transparent userforms, 460-461
troubleshooting, 162-163, 475-477

X button for closing userforms, dis-
abling via API declarations, 470-471

\Y

validating email addresses, 292-293
value-based cell formatting, 350-351
variables

JavaScript variables in Office (MS)
add-ins, 527-528

object variables
For Each. loops, 83-85

VBA loops (For Each. loops),
83-85

variant variables in arrays, 133
VB Editor, 19
cleaning up code, 51
avoiding hard-coding rows, 53-54
case study, 55-57
cells versus ranges, 52

copying/pasting in statements, 54

With.End With blocks for
multiple actions, 54-55

finding the last row, 52-53

multiple actions in recorded code,
54-55

R1C1 formulas, 54
ranges versus cells, 52
selecting things, 51

converting workbooks to add-ins,

511-512
debugging code

backing up/moving forward in
code, 45-46

breakpoints, 45, 49
querying while stepping through
code, 46-48
running to cursor, 46
stepping through code, 43-45
defined constants, 40-43
Object Browser
navigating, 50
opening, 50
opening, 10
parameters (optional), 40
Project Explorer, 20
properties, 43
Properties window, 21
returning objects, 43
settings, 20
UDF, creating, 284-285
userforms, creating, 158-159
VBA (Visual Basic for Applications), 1, 7, 9
add-ins, 509
case study, 515-516
characteristics of, 509-510
client installations, 512-514
closing, 514

converting workbooks to, 510-512

hidden workbooks as alternative to
add-ins, 515-516

Office (MS) add-ins. See indi-
vidual entry

removing, 514-515
security, 513-514
BASIC versus, 8, 33-34
charts
applying color, 317-318
changing object fills, 325-327

emulating Plus icon changes via
SetElement, 319-323

filtering, 318
formatting, 312-315
formatting line settings, 327

good/bad of the VBA creation
process, 309-310

micromanaging formatting
changes, 324-325

specific chart references, 315-316
specifying titles, 316
styles of, 312-315
types of, 313-315
collections, 35-37, 139, 145
creating, 146
creating in class modules, 148-149

creating in standard modules,
146-147

returning noncontiguous ranges,
70-71

userform controls and, 447-449
Data Model, 242

adding model fields to pivot
tables, 244

adding numeric fields to value
area, 244-245

adding pivot tables to Data Model,
242-243

VBA (Visual Basic for Applications)

building pivot tables, 243
creating, 245-247

creating relationships between
pivot tables, 243

defining pivot caches, 243
data visualization

methods, 334-335

properties, 334-335

error handling (troubleshooting),
473-475

example of, 33
future of, 4
Help, 38-40
defined constants, 40-43
optional parameters, 40
Macs and, 4
methods, 34-37

Application.OnTime method and
data analysis, 381-385

data visualization, 334-335
Format method, 324-325
Intersect method, 67
learning new methods, 542
parameters, 35-37
Save As method, 511
SetElement method, 319-323
SpecialCells method, 68-70
Union method, 66-67
objects, 34-37
collections, 35-37
custom objects, creating, 143-145
custom objects, using, 145
hierarchy of, 59

inserting class modules into

objects, 139-140
learning new objects, 542
properties, 36-37

583

VBA (Visual Basic for Applications)

Range object, 59-60
returning objects via properties, 43
watches and, 49-50

parameters, 35-37

event parameters, 116
optional parameters, 40

pivot tables, 211-212, 219-220

adding fields to data area, 214-216
calculated data fields, 247
calculated items, 247

case study, 249-250

changing, 216-217

changing calculations to show per-
centages, 222-224

conceptual filters, 229-230
configuring, 213-214

configuring filtering timelines,
239-242

configuring slicers for filtering,
235-239

controlling sort order via
AutoSort, 225

converting to values, 217-219
creating, 213-214
Data Model and, 242-247

data visualization case study,
249-250

defining pivot caches, 212-213

deleting empty cells from values
area, 225

development of, 211-212
drilling down, 270-271
filtering case study, 233-235

filtering record sets via
ShowDetail, 248

grouping daily dates to months,
quarters, years, 221-222

layout changes via Design tab

(VBA), 248

manually filtering multiple items
in pivot fields, 228-229

moving, 216-217
multiple value fields, 220-221

replicating reports for every
product, 225-228

report layout settings, 248-249
search filter, 233

Show Report Filter Pages,
225-228

sizing tables to convert to values,

217-219

suppressing subtotals for multiple
row fields, 249-250

types of filters, 230
versions of, 211-212
power programming

adding code to workbooks via
VBA extensibility, 281-282

cell progress indicators, 274-275
changing case (text), 277-278

creating Excel State class
modules, 267

custom sort orders, 273-274
drilling down pivot tables, 270-271

filtering OLAP pivot tables by lists
of items, 271-273

protected password boxes, 275-277

resetting table formatting, 279-280

selecting cells via SpecialCells, 279

stock/fund quotes, 280-281
properties, 36-37

Columns property, 66

CurrentRegion property, 68

custom properties, creating via
UDT, 153-156

data visualization, 334-335

Excel8CompatibilityMode
property, 543-544

MultiSelect property and userform
list boxes, 166-167

NumberFormat property, 353-354
Offset property, 63-65
Resize property, 65-66
returning objects, 43
Rows property, 66
Version property, 543
syntax of, 34-37

workbooks, adding code via VBA
extensibility, 281-282

VBA loops (For Each. loops), 82-83
VBEVB Editor
new methods, learning, 542
new objects, learning, 542

verbal reminders, scheduling for macro
operation, 383-384

verifying

Access field existence via ADO,
435-436

Access table existence via ADO,
434-435

field entry in userforms, 174

Version property, Excel compatibility
issues, 543

versioning errors, 486

visible cells, selecting via AutoFilter,
183-184

Visual Basic icon (Code group), 10
visualizing data, 333
above/below average rules, 334, 348
cells
blanks/errors formatting, 351-352
date formatting, 351
duplicate cell formatting, 349-350

formulas to determine cells to

format, 352-353
text formatting, 351

watches 585

unique cell formatting, 349-350
value-based formatting, 350-351
color scales, 339-340
conditional formatting, 334
data bars, 334
adding to ranges, 335-339

muldple colors of data bars in
ranges, 345-347

duplicate value rules, 334
highlight cell rules, 334
icon sets, 334

adding to ranges, 341-343

creating for subsets of ranges,
344-345

methods, 334-335
NumberFormat property, 353-354
pivot tables case study, 249-250
properties, 334-335
ranges

data bars, 335, 345-347

highlighting unique values in,
352-353

icon sets, 341, 344-345

rows, highlighting for the largest
value, 353

top/bottom rules, 334, 348-349

Vlookup, named ranges for (case study),
112-113

w

Wallentin, Dennis, 257
warnings (Excel), suppressing, 481

watches
breakpoints in, 49
objects and, 49-50
querying while stepping through
code, 48

586 Watches window, retrieving Word constant values

Watches window, retrieving Word
constant values, 411-412

Web data (Internet)

analyzing via Application.OnTime
method, 381

canceling all pending scheduled
macros, 383

canceling previously scheduled
macros, 382

Ready mode for scheduled
procedures, 381-382

scheduling macros to run every 2
minutes, 384-385

scheduling macros to run x
minutes in the future, 383

scheduling verbal reminders,
383-384

scheduling window of time for
updates, 382

content management via Excel,

387-389
publishing to web pages, 385-386

content management via Excel,
387-389

custom web pages, 386-387

FTP from Excel, 389-390
retrieving, 375-380

building multiple queries, 377-378

examples of, 380

finding results from retrieved data,
378-379

web pages

content management via Excel,
387-389

custom web pages, 386-387
publishing data to, 385-386

content management via Excel,
387-389

custom web pages, 386-387
FTP from Excel, 389-390

web queries and data retrieval, 375-380
examples of, 380
multiple queries, building, 377-378

results, finding from retrieved data,
378-379

web resources
Cell Masters website, 254
code files, 5
ExcelMatters.com website, 254
exp.com, 271

JKP Application Development
Services, 466

Juanpg.com website, 268-270

OpenXMLDeveloper.org
website, 497

RibbonX Visual Designer, 497
Wallentin blog, Dennis, 257
XcelFiles website, 263
building multiple queries, 377-378
examples of, 380

finding results from retrieved data,
378-379

websites, scraping (data retrieval),
375-380

week numbers, converting to dates, 299
While clauses and Do loops, 81-82
While.Wend loops, 82

windows (userform), illegally closing,
174-175

win/loss charts (sparklines), 355
creating, 356-357
formatting, 361
binary event tracking, 368-369
RGB colors, 364-365
theme colors, 361-364
scaling, 357-361

With.End With blocks, cleaning up
recorded code, 54-55

Word, automating, 405-406
bookmarks, 419-420
Document object, 413-415
form fields, 420-422
objects, 413

creating new instances via

CreateObject function, 409

late binding using constant values,

411-413

referencing existing instances via

GetObject function, 410-411

referencing via early binding,
406-408

referencing via early binding using
New keyword, 409

referencing via late binding,
408-409

Range object, 416-419
Selection object, 415-416
workbooks

adding code via VBA extensibility,
281-282

add-ins
case study, 515-516
converting to add-ins, 510-511

converting to add-ins via Save As
method, 511

converting to add-ins via VB
Editor, 511-512

hidden workbooks as alternative to
add-ins, 515-516

combining, 256-257

directories, counting number of
workbooks in, 288-289

events
workbook events, 117
workbook-level sheet events, 119

writing text files 587

hidden workbooks
as alternative to add-ins, 515-516
storing macros in, 515-516
storing userforms in, 515-516
names, setting in cells, 286-287
open status, checking, 287

Personal Macro Workbook
(Personal.xIsm), 15

trusted locations
adding a trusted location, 12-13

using macros outside of trusted
locations, 13-14

workbook-level sheet events, 119
worksheets
checking existence of, 287-288

separating into workbooks,
255-256

xls files, 11
xlsb files, 11
xlsm files
macros, 11
saving files in, 11
xlsx files, 10-11
worksheets
checking existence of, 287-288

copying data to separate worksheets,
257-258

copying data to separate worksheets
without filters, 258-259

events, 120

filtering data to separate worksheets,
257-258

referencing ranges in other
worksheets, 61

Select.Case statements, 307
separating into workbooks, 255-256
writing text files, 402

588 X button (userforms), disabling via API declarations

X
X button (userforms), disabling via API
declarations, 470-471
XcelFiles website, 263
xlIFilterCopy (Advanced Filter), 203
copying
columns, 203-204
subsets of columns, 204-206
reordering columns, 204-206

Xls files, 11

Xlsb files, 11

Xxlsm files
concerns with, 11
macros, 11
public perception of, 11
saving files in, 11

xlsx files, 10-11

XML (Extensible Markup Language)
exporting data to files, 259-260
groups (Developer tab), 10
macros4

Office (MS) add-ins, 525-526

Y-Z

years, grouping pivot tables to, 221-222

	Contents
	Introduction
	What Is in This Book?
	Reducing the Learning Curve
	Excel VBA Power
	Techie Stuff Needed to Produce Applications
	Does This Book Teach Excel?

	The Future of VBA and Windows Versions of Excel
	Versions of Excel
	Differences for Mac Users

	Special Elements and Typographical Conventions
	Code Files
	Next Steps

	3 Referring to Ranges
	The Range Object
	Syntax for Specifying a Range
	Named Ranges
	Shortcut for Referencing Ranges
	Referencing Ranges in Other Sheets
	Referencing a Range Relative to Another Range
	Using the Cells Property to Select a Range
	Using the Offset Property to Refer to a Range
	Using the Resize Property to Change the Size of a Range
	Using the Columns and Rows Properties to Specify a Range
	Using the Union Method to Join Multiple Ranges
	Using the Intersect Method to Create a New Range from Overlapping Ranges
	Using the IsEmpty Function to Check Whether a Cell Is Empty
	Using the CurrentRegion Property to Select a Data Range
	Using the Areas Collection to Return a Noncontiguous Range
	Referencing Tables
	Next Steps

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

