As Microsoft makes significant updates to Excel 2016, sections of this book will be updated or new sections will be added to match the updates to the software.

The updates will be delivered to you via a free Web Edition of this book, which can be accessed with any Internet connection.

This means your purchase is protected from immediately outdated information!

For more information on Que’s Content Update program, see the inside back cover or go to www.quepublishing.com/CUP.

If you have additional questions, please email our Customer Service department at informit@custhelp.com.
Contents at a Glance

Introduction ... 1

Part I: Mastering Excel Ranges and Formulas
1. Getting the Most Out of Ranges 5
2. Using Range Names 37
3. Building Basic Formulas 53
4. Creating Advanced Formulas 87
5. Troubleshooting Formulas 111

Part II: Harnessing the Power of Functions
6. Understanding Functions 129
7. Working with Text Functions 139
8. Working with Logical and Information Functions 163
9. Working with Lookup Functions 191
10. Working with Date and Time Functions 207
11. Working with Math Functions 237
12. Working with Statistical Functions 257

Part III: Building Business Models
13. Analyzing Data with Tables 291
14. Analyzing Data with PivotTables 325
16. Using Regression to Track Trends and Make Forecasts 371
17. Solving Complex Problems with Solver 411

Part IV: Building Financial Formulas
18. Building Loan Formulas 433
20. Building Discount Formulas 467
Index .. 487
Contents

Introduction ... 1

PART I: MASTERING EXCEL RANGES AND FORMULAS

1 Getting the Most Out of Ranges ... 5
 - Advanced Range-Selection Techniques .. 5
 - Mouse Range-Selection Tricks .. 6
 - Keyboard Range-Selection Tricks .. 7
 - Working with 3D Ranges .. 7
 - Selecting a Range Using Go To ... 8
 - Using the Go To Special Dialog Box .. 9
 - Data Entry in a Range ... 14
 - Filling a Range ... 14
 - Using the Fill Handle ... 15
 - Flash-Filling a Range .. 18
 - Creating a Series .. 20
 - Advanced Range Copying and Pasting .. 21
 - Pasting Selected Cell Attributes .. 21
 - Combining Two Ranges Arithmetically .. 22
 - Transposing Rows and Columns .. 24
 - Clearing a Range .. 25
 - Applying Conditional Formatting to a Range .. 25
 - Creating Highlight Cells Rules ... 26
 - Creating Top/Bottom Rules ... 27
 - Adding Data Bars ... 29
 - Adding Color Scales ... 32
 - Adding Icon Sets ... 33

2 Using Range Names .. 37
 - Defining a Range Name .. 38
 - Working with the Name Box .. 39
 - Using the New Name Dialog Box .. 40
 - Changing the Scope to Define Sheet-Level Names 41
 - Using Worksheet Text to Define Names .. 41
 - Naming Constants ... 44
 - Working with Range Names ... 45
 - Referring to a Range Name ... 45
 - Working with AutoComplete for Range Names ... 47
 - Navigating Using Range Names ... 47
 - Pasting a List of Range Names in a Worksheet ... 48
 - Displaying the Name Manager ... 48
 - Filtering Names .. 48
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Troubleshooting Formulas</td>
<td>111</td>
</tr>
<tr>
<td>Understanding Excel’s Error Values</td>
<td></td>
</tr>
<tr>
<td>#DIV/0!</td>
<td>112</td>
</tr>
<tr>
<td>#N/A</td>
<td>113</td>
</tr>
<tr>
<td>#NAME?</td>
<td>113</td>
</tr>
<tr>
<td>Case Study: Avoiding #NAME? Errors When Deleting Range Names</td>
<td>114</td>
</tr>
<tr>
<td>#NULL!</td>
<td>115</td>
</tr>
<tr>
<td>#NUM!</td>
<td>115</td>
</tr>
<tr>
<td>#REF!</td>
<td>115</td>
</tr>
<tr>
<td>#VALUE!</td>
<td>115</td>
</tr>
<tr>
<td>Fixing Other Formula Errors.</td>
<td>116</td>
</tr>
<tr>
<td>Missing or Mismatched Parentheses</td>
<td>116</td>
</tr>
<tr>
<td>Erroneous Formula Results</td>
<td>117</td>
</tr>
<tr>
<td>Fixing Circular References</td>
<td>118</td>
</tr>
<tr>
<td>Handling Formula Errors with IFERROR()</td>
<td>118</td>
</tr>
<tr>
<td>Using the Formula Error Checker</td>
<td></td>
</tr>
<tr>
<td>Choosing an Error Action</td>
<td>119</td>
</tr>
<tr>
<td>Setting Error Checker Options</td>
<td>120</td>
</tr>
<tr>
<td>Auditing a Worksheet</td>
<td></td>
</tr>
<tr>
<td>Understanding Auditing</td>
<td>123</td>
</tr>
<tr>
<td>Tracing Cell Precedents</td>
<td>124</td>
</tr>
<tr>
<td>Tracing Cell Dependents</td>
<td>125</td>
</tr>
<tr>
<td>Tracing Cell Errors</td>
<td>125</td>
</tr>
<tr>
<td>Removing Tracer Arrows</td>
<td>125</td>
</tr>
<tr>
<td>Evaluating Formulas</td>
<td>126</td>
</tr>
<tr>
<td>Watching Cell Values</td>
<td>126</td>
</tr>
</tbody>
</table>

PART II: HARNESSING THE POWER OF FUNCTIONS

6 Understanding Functions 129

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About Excel’s Functions</td>
<td>130</td>
</tr>
<tr>
<td>The Structure of a Function</td>
<td>130</td>
</tr>
<tr>
<td>Typing a Function into a Formula</td>
<td>132</td>
</tr>
</tbody>
</table>
Using the Insert Function Feature .. 134
Loading the Analysis ToolPak ... 136

7 Working with Text Functions ... 139
Excel’s Text Functions ... 139
Working with Characters and Codes ... 141
The CHAR() Function ... 141
The CODE() Function ... 144
Converting Text ... 144
The LOWER() Function .. 145
The UPPER() Function .. 145
The PROPER() Function .. 145
The NUMBERVER() Function .. 145
Formatting Text ... 146
The DOLLAR() Function .. 146
The FIXED() Function .. 147
The TEXT() Function ... 147
Displaying When a Workbook Was Last Updated 148
Manipulating Text .. 149
Removing Unwanted Characters from a String 149
The REPT() Function: Repeating a Character or String 150
Extracting a Substring ... 150
Converting Text to Sentence Case ... 152
A Date-Conversion Formula .. 153
Case Study: Generating Account Numbers, Part I 154
Searching for Substrings .. 155
The FIND() and SEARCH() Functions .. 155
Extracting a First Name or Last Name .. 156
Extracting First Name, Last Name, and Middle Initial 157
Determining the Column Letter .. 157
Substituting One Substring for Another ... 158
The REPLACE() Function .. 159
The SUBSTITUTE() Function .. 159
Removing a Character from a String ... 160
Removing Two Different Characters from a String 160
Case Study: Generating Account Numbers, Part II 161
Removing Line Feeds ... 161

8 Working with Logical and Information Functions 163
Adding Intelligence with Logical Functions .. 163
Using the IF() Function .. 164
Performing Multiple Logical Tests ... 167
Combining Logical Functions with Arrays .. 173
Case Study: Building an Accounts Receivable Aging Worksheet 178
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getting Data with Information Functions</td>
<td>181</td>
</tr>
<tr>
<td>The <code>CELL()</code> Function</td>
<td>182</td>
</tr>
<tr>
<td>The <code>ERROR.TYPE()</code> Function</td>
<td>184</td>
</tr>
<tr>
<td>The <code>INFO()</code> Function</td>
<td>186</td>
</tr>
<tr>
<td>The <code>SHEETS()</code> and <code>SHEETS()</code> Functions</td>
<td>187</td>
</tr>
<tr>
<td>The <code>IS</code> Functions</td>
<td></td>
</tr>
<tr>
<td>9 Working with Lookup Functions</td>
<td></td>
</tr>
<tr>
<td>Excel’s Lookup Functions</td>
<td>191</td>
</tr>
<tr>
<td>Understanding Lookup Tables</td>
<td>192</td>
</tr>
<tr>
<td>The <code>CHOOSE()</code> Function</td>
<td>193</td>
</tr>
<tr>
<td>Determining the Name of the Day of the Week</td>
<td>194</td>
</tr>
<tr>
<td>Determining the Month of the Fiscal Year</td>
<td>194</td>
</tr>
<tr>
<td>Calculating Weighted Questionnaire Results</td>
<td>195</td>
</tr>
<tr>
<td>Integrating <code>CHOOSE()</code> and Worksheet Option Buttons</td>
<td>195</td>
</tr>
<tr>
<td>Looking Up Values in Tables</td>
<td>196</td>
</tr>
<tr>
<td>The <code>VLOOKUP()</code> Function</td>
<td>197</td>
</tr>
<tr>
<td>The <code>HLOOKUP()</code> Function</td>
<td>197</td>
</tr>
<tr>
<td>Returning a Customer Discount Rate with a Range Lookup</td>
<td>198</td>
</tr>
<tr>
<td>Returning a Tax Rate with a Range Lookup</td>
<td>199</td>
</tr>
<tr>
<td>Finding Exact Matches</td>
<td>200</td>
</tr>
<tr>
<td>Advanced Lookup Operations</td>
<td>201</td>
</tr>
<tr>
<td>10 Working with Date and Time Functions</td>
<td>207</td>
</tr>
<tr>
<td>How Excel Deals with Dates and Times</td>
<td>207</td>
</tr>
<tr>
<td>Entering Dates and Times</td>
<td>208</td>
</tr>
<tr>
<td>Excel and Two-Digit Years</td>
<td>209</td>
</tr>
<tr>
<td>Using Excel’s Date Functions</td>
<td>210</td>
</tr>
<tr>
<td>Returning a Date</td>
<td>212</td>
</tr>
<tr>
<td>Returning Parts of a Date</td>
<td>213</td>
</tr>
<tr>
<td>Calculating the Difference Between Two Dates</td>
<td>223</td>
</tr>
<tr>
<td>Using Excel’s Time Functions</td>
<td>227</td>
</tr>
<tr>
<td>Returning a Time</td>
<td>228</td>
</tr>
<tr>
<td>Returning Parts of a Time</td>
<td>229</td>
</tr>
<tr>
<td>Calculating the Difference Between Two Times</td>
<td>231</td>
</tr>
<tr>
<td>Case Study: Building an Employee Time Sheet</td>
<td>231</td>
</tr>
<tr>
<td>11 Working with Math Functions</td>
<td>237</td>
</tr>
<tr>
<td>Excel’s Math and Trig Functions</td>
<td>237</td>
</tr>
<tr>
<td>Understanding Excel’s Rounding Functions</td>
<td>241</td>
</tr>
<tr>
<td>The <code>ROUND()</code> Function</td>
<td>241</td>
</tr>
<tr>
<td>The <code>MROUND()</code> Function</td>
<td>242</td>
</tr>
<tr>
<td>The <code>ROUNDDOWN()</code> and <code>ROUNDUP()</code> Functions</td>
<td>242</td>
</tr>
<tr>
<td>The <code>CEILING.MATH()</code> and <code>FLOOR.MATH()</code> Functions</td>
<td>243</td>
</tr>
</tbody>
</table>
PART III: BUILDING BUSINESS MODELS

13 Analyzing Data with Tables ... 291
 Planning an Excel Table ... 291
 Converting a Range to a Table ... 292
 Basic Table Operations ... 294
 Sorting a Table ... 295
 Performing a More Complex Sort .. 296
 Sorting a Table in Natural Order .. 297
 Sorting on Part of a Field ... 298
 Sorting Without Articles ... 299
 Filtering Table Data ... 300
 Using Filter Lists to Filter a Table .. 300
 Using Complex Criteria to Filter a Table 304
 Entering Computed Criteria ... 307
 Copying Filtered Data to a Different Range 308
 Referencing Tables in Formulas .. 309
 Using Table Specifiers .. 309
 Entering Table Formulas ... 311
 Excel's Table Functions ... 313
 About Table Functions .. 313
 Table Functions That Don't Require a Criteria Range 313
 Table Functions That Accept Multiple Criteria 317
 Table Functions That Require a Criteria Range 319
 Case Study: Applying Statistical Table Functions to a Defects Database 322

14 Analyzing Data with PivotTables ... 325
 What Are PivotTables? ... 325
 How PivotTables Work .. 326
 Some PivotTable Terms ... 328
 Building PivotTables ... 329
 Building a PivotTable from a Table or Range 329
 Building a PivotTable from an External Database 332
 Working with and Customizing a PivotTable 333
 Working with PivotTable Subtotals .. 333
 Hiding PivotTable Grand Totals .. 334
 Hiding PivotTable Subtotals .. 334
 Customizing the Subtotal Calculation .. 334
 Changing the Data Field Summary Calculation 335
 Using a Difference Summary Calculation 335
 Using a Percentage Summary Calculation 337
 Using a Running Total Summary Calculation 340
 Using an Index Summary Calculation .. 341
15 Using Excel’s Business Modeling Tools .. 349
 Using What-If Analysis ... 349
 Setting Up a One-Input Data Table .. 350
 Adding More Formulas to the Input Table 352
 Setting Up a Two-Input Data Table .. 353
 Editing a Data Table ... 355
 Working with Goal Seek ... 355
 How Does Goal Seek Work? ... 355
 Running Goal Seek ... 356
 Optimizing Product Margin ... 358
 A Note About Goal Seek’s Approximations 358
 Performing a Break-Even Analysis ... 360
 Solving Algebraic Equations ... 360
 Working with Scenarios ... 362
 Understanding Scenarios ... 362
 Setting Up Your Worksheet for Scenarios 363
 Adding a Scenario ... 364
 Displaying a Scenario .. 365
 Editing a Scenario ... 366
 Merging Scenarios ... 367
 Generating a Summary Report .. 367
 Deleting a Scenario ... 369

16 Using Regression to Track Trends and Make Forecasts 371
 Choosing a Regression Method ... 372
 Using Simple Regression on Linear Data .. 372
 Analyzing Trends Using Best-Fit Lines 373
 Making Forecasts ... 380
 Case Study: Trend Analysis and Forecasting for a Seasonal Sales Model ... 386
 Using Simple Regression on Nonlinear Data 393
 Working with an Exponential Trend .. 394
 Working with a Logarithmic Trend ... 399
 Working with a Power Trend ... 401
 Using Polynomial Regression Analysis 403
 Using Multiple Regression Analysis .. 407

17 Solving Complex Problems with Solver ... 411
 Some Background on Solver ... 411
 The Advantages of Solver ... 412
 When Do You Use Solver? .. 412
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading Solver</td>
<td>413</td>
</tr>
<tr>
<td>Using Solver</td>
<td>413</td>
</tr>
<tr>
<td>Adding Constraints</td>
<td>416</td>
</tr>
<tr>
<td>Saving a Solution as a Scenario</td>
<td>418</td>
</tr>
<tr>
<td>Setting Other Solver Options</td>
<td>418</td>
</tr>
<tr>
<td>Selecting the Method Solver Uses</td>
<td>419</td>
</tr>
<tr>
<td>Controlling How Solver Works</td>
<td>419</td>
</tr>
<tr>
<td>Working with Solver Models</td>
<td>422</td>
</tr>
<tr>
<td>Making Sense of Solver’s Messages</td>
<td>424</td>
</tr>
<tr>
<td>Case Study: Solving the Transportation Problem</td>
<td>425</td>
</tr>
<tr>
<td>Displaying Solver’s Reports</td>
<td>427</td>
</tr>
<tr>
<td>The Answer Report</td>
<td>427</td>
</tr>
<tr>
<td>The Sensitivity Report</td>
<td>429</td>
</tr>
<tr>
<td>The Limits Report</td>
<td>430</td>
</tr>
<tr>
<td>PART IV: BUILDING FINANCIAL FORMULAS</td>
<td></td>
</tr>
<tr>
<td>18 Building Loan Formulas</td>
<td>433</td>
</tr>
<tr>
<td>Understanding the Time Value of Money</td>
<td>433</td>
</tr>
<tr>
<td>Calculating a Loan Payment</td>
<td>435</td>
</tr>
<tr>
<td>Loan Payment Analysis</td>
<td>435</td>
</tr>
<tr>
<td>Working with a Balloon Loan</td>
<td>436</td>
</tr>
<tr>
<td>Calculating Interest Costs, Part 1</td>
<td>436</td>
</tr>
<tr>
<td>Calculating the Principal and Interest</td>
<td>437</td>
</tr>
<tr>
<td>Calculating Interest Costs, Part 2</td>
<td>438</td>
</tr>
<tr>
<td>Calculating Cumulative Principal and Interest</td>
<td>439</td>
</tr>
<tr>
<td>Building a Loan Amortization Schedule</td>
<td>440</td>
</tr>
<tr>
<td>Building a Fixed-Rate Amortization Schedule</td>
<td>440</td>
</tr>
<tr>
<td>Building a Dynamic Amortization Schedule</td>
<td>441</td>
</tr>
<tr>
<td>Calculating the Term of a Loan</td>
<td>443</td>
</tr>
<tr>
<td>Calculating the Interest Rate Required for a Loan</td>
<td>445</td>
</tr>
<tr>
<td>Calculating How Much You Can Borrow</td>
<td>446</td>
</tr>
<tr>
<td>Case Study: Working with Mortgages</td>
<td>447</td>
</tr>
<tr>
<td>19 Building Investment Formulas</td>
<td>453</td>
</tr>
<tr>
<td>Working with Interest Rates</td>
<td>453</td>
</tr>
<tr>
<td>Understanding Compound Interest</td>
<td>454</td>
</tr>
<tr>
<td>Nominal Versus Effective Interest</td>
<td>454</td>
</tr>
<tr>
<td>Converting Between the Nominal Rate and the Effective Rate</td>
<td>455</td>
</tr>
<tr>
<td>Calculating the Future Value</td>
<td>456</td>
</tr>
<tr>
<td>The Future Value of a Lump Sum</td>
<td>456</td>
</tr>
<tr>
<td>The Future Value of a Series of Deposits</td>
<td>457</td>
</tr>
<tr>
<td>The Future Value of a Lump Sum Plus Deposits</td>
<td>458</td>
</tr>
</tbody>
</table>
About the Author

Paul McFedries is an Excel expert and full-time technical writer. Paul has been authoring computer books since 1991 and has more than 85 books to his credit, which combined have sold more than 4 million copies worldwide. His titles include the Que Publishing books *My Office 2016*, *Windows 10 In Depth* (with coauthor Brian Knittel), and *PCs for Grownups*, as well as the Sams Publishing book *Windows 7 Unleashed*. Paul is also the proprietor of Word Spy (www.wordspy.com), a website devoted to lexicography, the sleuthing of new words and phrases that have entered the English language. Please drop by Paul’s personal website at www.mcfedries.com or follow Paul on Twitter, at twitter.com/wordsy.
Dedication
To Karen

Acknowledgments

Substitute damn every time you’re inclined to write very; your editor will delete it and the writing will be just as it should be.

—Mark Twain

I didn’t follow Mark Twain’s advice in this book (the word very appears throughout), but if my writing still appears “just as it should be,” then it’s because of the keen minds and sharp linguistic eyes of the editors at Que. Near the front of the book you’ll find a long list of the hard-working professionals whose fingers made it into this particular paper pie. However, there are a few folks I worked with directly, so I’d like to single them out for extra credit. A big, heaping helping of thanks goes out to acquisitions editor Michelle Newcomb, development editors Todd Brakke and Joyce Nielsen, project editor Lori Lyons, copy editor Kitty Wilson, compositor Nonie Ratcliff, and technical editor Bob Umlas.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@quepublishing.com
Mail: Que Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at quepublishing.com/register for convenient access to any updates, downloads, or errata that might be available for this book.
The old 80/20 rule for software—that 80% of a program’s users use only 20% of a program’s features—doesn’t apply to Microsoft Excel. Instead, this program probably operates under what could be called the 95/5 rule: Ninety-five percent of Excel users use a mere 5% of the program’s power. On the other hand, most people know that they could be getting more out of Excel if they could only get a leg up on building formulas and using functions. Unfortunately, this side of Excel appears complex and intimidating to the uninitiated, shrouded as it is in the mysteries of mathematics, finance, and impenetrable spreadsheet jargon.

If this sounds like the situation you find yourself in, and if you’re a businessperson who needs to use Excel as an everyday part of your job, you’ve come to the right book. In Excel 2016 Formulas and Functions, I demystify the building of worksheet formulas and present the most useful of Excel’s many functions in an accessible, jargon-free way. This book not only takes you through Excel’s intermediate and advanced formula-building features but also tells you why these features are useful to you and shows you how to use them in everyday situations and real-world models. This book does all this with no-nonsense, step-by-step tutorials and lots of practical, useful examples aimed directly at business users.

Even if you’ve never been able to get Excel to do much beyond storing data and adding a couple of numbers, you’ll find this book to your liking. I show you how to build useful, powerful formulas from the ground up, so no experience with Excel formulas and functions is necessary.
What’s in the Book

This book isn’t meant to be read from cover to cover, although you’re certainly free to do just that if the mood strikes you. Instead, most of the chapters are set up as self-contained units that you can dip into at will to extract whatever nuggets of information you need. However, if you’re a relatively new Excel user, I suggest starting with Chapters 1, “Getting the Most Out of Ranges,” 2, “Using Range Names,” 3, “Building Basic Formulas,” and 6, “Understanding Functions,” to ensure that you have a thorough grounding in the fundamentals of Excel ranges, formulas, and functions.

The book is divided into four main parts. To give you the big picture before diving in, here’s a summary of what you’ll find in each part:

■ Part I, “Mastering Excel Ranges and Formulas”—The five chapters in Part I tell you just about everything you need to know about building formulas in Excel. Starting with a thorough look at ranges (crucial for mastering formulas), this part also discusses operators, expressions, advanced formula features, and formula-troubleshooting techniques.

■ Part II, “Harnessing the Power of Functions”—Functions take your formulas to the next level, and you’ll learn all about them in Part II. After you see how to use functions in your formulas, you’ll examine the eight main function categories—text, logical, information, lookup, date, time, math, and statistical. In each case, I tell you how to use the functions and give you lots of practical examples that show you how you can use the functions in everyday business situations.

■ Part III, “Building Business Models”—The five chapters in Part III are all business, as they examine various facets of building useful and robust business models. You’ll learn how to analyze data with Excel tables and PivotTables, how to use what-if analysis and Excel’s Goal Seek and scenarios features, how to use powerful regression-analysis techniques to track trends and make forecasts, and how to use the amazing Solver feature to solve complex problems.

This Book’s Special Features

Excel 2016 Formulas and Functions is designed to give you the information you need without making you wade through ponderous explanations and interminable technical background.
To make your life easier, this book includes various features and conventions that help you get the most out of the book and Excel itself:

- **Steps**—Throughout the book, each Excel task is summarized in step-by-step procedures.
- **Things you type**—Whenever I suggest that you type something, what you type appears in a **bold** font.
- **Commands**—I use the following style for Excel menu commands: File, Open. This means that you pull down the File menu and select the Open command.
- **Dialog box controls**—Dialog box controls have underlined accelerator keys: Close.
- **Functions**—Excel worksheet functions appear in capital letters and are followed by parentheses: **SUM()**. When I list the arguments you can use with a function, they appear in italics to indicate that they’re placeholders you replace with actual values; also, optional arguments appear surrounded by square brackets: **CELL(info_type [, reference])**.
- **Code-continuation character (➥)**—When a formula is too long to fit on one line of this book, it’s broken at a convenient place, and the code-continuation character appears at the beginning of the next line.

This book also uses the following boxes to draw your attention to important (or merely interesting) information.

- **Note** The Note box presents asides that give you more information about the topic under discussion. These tidbits provide extra insights that give you a better understanding of the task at hand.

- **Tip** The Tip box tells you about Excel methods that are easier, faster, or more efficient than the standard methods.

- **Caution** The all-important Caution box tells you about potential accidents waiting to happen. There are always ways to mess things up when you’re working with computers. These boxes help you avoid at least some of the pitfalls.

→ These cross-reference elements point you to related material elsewhere in the book.

You’ll find these case studies throughout the book. They’re designed to apply what you’ve learned to projects and real-world examples.
Building Basic Formulas

A worksheet is merely a lifeless collection of numbers and text until you define some kind of relationship among the various entries. You do this by creating formulas that perform calculations and produce results. This chapter takes you through some formula basics, including constructing simple arithmetic and text formulas, understanding the all-important topic of operator precedence, copying and moving worksheet formulas, and making formulas easier to build and read by taking advantage of range names.

Understanding Formula Basics

Most worksheets are created to provide answers to specific questions: What is the company's profit? Are expenses over or under budget, and by how much? What is the future value of an investment? How big will an employee's bonus be this year? You can answer these questions, and an infinite number of others, by using Excel formulas.

All Excel formulas have the same general structure: an equal sign (=) followed by one or more operands, which can be values, cell references, ranges, range names, or function names, separated by one or more operators, which are symbols that combine the operands in some way, such as the plus sign (+) and the greater-than sign (>).
Formula Limits in Excel 2016

It’s a good idea to know the limits Excel sets on various aspects of formulas and worksheet models, even though it’s unlikely that you’ll ever bump up against these limits. Formula limits that were expanded in Excel 2007 remain the same in Excel 2016. So, in the unlikely event that you’re coming to Excel 2016 from Excel 2003 or earlier, Table 3.1 shows you the updated limits.

Table 3.1 Formula-Related Limits in Excel 2016

<table>
<thead>
<tr>
<th>Object</th>
<th>Excel 2016 Maximum</th>
<th>Excel 2003 Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>16,384</td>
<td>1,024</td>
</tr>
<tr>
<td>Rows</td>
<td>1,048,576</td>
<td>65,536</td>
</tr>
<tr>
<td>Formula length (characters)</td>
<td>8,192</td>
<td>1,024</td>
</tr>
<tr>
<td>Function arguments</td>
<td>255</td>
<td>30</td>
</tr>
<tr>
<td>Formula nesting levels</td>
<td>64</td>
<td>7</td>
</tr>
<tr>
<td>Array references (rows or columns)</td>
<td>Unlimited</td>
<td>65,335</td>
</tr>
<tr>
<td>PivotTable columns</td>
<td>16,384</td>
<td>255</td>
</tr>
<tr>
<td>PivotTable rows</td>
<td>1,048,576</td>
<td>65,536</td>
</tr>
<tr>
<td>PivotTable fields</td>
<td>16,384</td>
<td>255</td>
</tr>
<tr>
<td>Unique PivotField items</td>
<td>1,048,576</td>
<td>32,768</td>
</tr>
</tbody>
</table>

Formula nesting levels refers to the number of expressions that are nested within other expressions using parentheses; see “Controlling the Order of Precedence,” p. 58.

Entering and Editing Formulas

Entering a new formula into a worksheet appears to be a straightforward process:

1. Select the cell in which you want to enter the formula.
2. Type an equal sign (=) to tell Excel that you’re entering a formula.
3. Type the formula’s operands and operators.
4. Press Enter to confirm the formula.
However, Excel has three different input modes that determine how it interprets certain keystrokes and mouse actions:

- When you type the equal sign to begin the formula, Excel goes into Enter mode, which is the mode you use to enter text (such as the formula’s operands and operators).
- If you press any keyboard navigation key (such as Page Up, Page Down, or any arrow key), or if you click any other cell in the worksheet, Excel enters Point mode. This is the mode you use to select a cell or range as a formula operand. When you’re in Point mode, you can use any of the standard range-selection techniques. Note that Excel returns to Enter mode as soon as you type an operator or any character.
- If you press F2, Excel enters Edit mode, which is the mode you use to make changes to the formula. For example, when you’re in Edit mode, you can use the left and right arrow keys to move the cursor to another part of the formula for deleting or inserting characters. You can also enter Edit mode by clicking anywhere within the formula. Press F2 to return to Enter mode.

You can tell which mode Excel is currently in by looking at the status bar. On the left side, you’ll see “Enter,” “Point,” or “Edit.”

After you’ve entered a formula, you might need to return to it to make changes. Excel gives you three ways to enter Edit mode and make changes to a formula in the selected cell:

- Press F2.
- Double-click the cell.
- Use the formula bar to click anywhere inside the formula text.

Excel divides formulas into four groups: arithmetic, comparison, text, and reference. Each group has its own set of operators, and you use each group in different ways. In the next few sections, I show you how to use each type of formula.

Using Arithmetic Formulas

Arithmetic formulas are by far the most common type of formula. They combine numbers, cell addresses, and function results with mathematical operators to perform calculations. Table 3.2 summarizes the mathematical operators used in arithmetic formulas.
Table 3.2 The Arithmetic Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Name</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
<td>=10+5</td>
<td>15</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
<td>=10-5</td>
<td>5</td>
</tr>
<tr>
<td>-</td>
<td>Negation</td>
<td>=-10</td>
<td>-10</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication</td>
<td>=10*5</td>
<td>50</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
<td>=10/5</td>
<td>2</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td>=10%</td>
<td>0.1</td>
</tr>
<tr>
<td>^</td>
<td>Exponentiation</td>
<td>=10^5</td>
<td>100000</td>
</tr>
</tbody>
</table>

Most of these operators are straightforward, but the exponentiation operator might require further explanation. The formula \(x^y \) means that the value \(x \) is raised to the power \(y \). For example, the formula \(3^2 \) produces the result 9 (that is, \(3 \times 3 = 9 \)). Similarly, the formula \(2^4 \) produces 16 (that is, \(2 \times 2 \times 2 \times 2 = 16 \)).

Using Comparison Formulas

A comparison formula is a statement that compares two or more numbers, text strings, cell contents, or function results. If the statement is true, the result of the formula is given the logical value \(\text{TRUE} \) (which is equivalent to any nonzero value). If the statement is false, the formula returns the logical value \(\text{FALSE} \) (which is equivalent to zero). Table 3.3 summarizes the operators you can use in comparison formulas.

Table 3.3 Comparison Formula Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Name</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Equal to</td>
<td>=10=5</td>
<td>FALSE</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
<td>=10>5</td>
<td>TRUE</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
<td>=10<5</td>
<td>FALSE</td>
</tr>
<tr>
<td>>=</td>
<td>Greater than or equal to</td>
<td>="a">="b"</td>
<td>FALSE</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal to</td>
<td>="a"<="b"</td>
<td>TRUE</td>
</tr>
<tr>
<td>=></td>
<td>Not equal to</td>
<td>="a">="b"</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Comparison formulas have many uses. For example, you can determine whether to pay a salesperson a bonus by using a comparison formula to compare actual sales with a predetermined quota. If the sales are greater than the quota, the rep is awarded the bonus. You also can monitor credit collection. For example, if the amount a customer owes is more than 150 days past due, you might send the invoice to a collection agency.
Comparison formulas also make use of Excel’s logical functions, so see “Adding Intelligence with Logical Functions,” p. 163.

Using Text Formulas

The two types of formulas that I discussed in the previous sections, arithmetic formulas and comparison formulas, calculate or make comparisons and return values. A text formula, on the other hand, is a formula that returns text. Text formulas use the ampersand (&) operator to work with text cells, text strings enclosed in quotation marks, and text function results.

One way to use text formulas is to concatenate text strings. For example, if you enter the formula ="soft"&"ware" into a cell, Excel displays software. Note that the quotation marks and the ampersand aren’t shown in the result. You also can use & to combine cells that contain text. For example, if A1 contains the text Ben and A2 contains Jerry, entering the formula =A1&" and "&A2 returns Ben and Jerry.

For other uses of text formulas, see Chapter 7, “Working with Text Functions,” p. 139.

Using Reference Formulas

The reference operators combine two cell references or ranges to create a single joint reference. Table 3.4 summarizes the operators you can use in reference formulas.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>: (colon)</td>
<td>Range</td>
<td>Produces a range from two cell references (for example, A1:C5).</td>
</tr>
<tr>
<td>(space)</td>
<td>Intersection</td>
<td>Produces a range that is the intersection of two ranges (for example, A1:C5 B2:E8).</td>
</tr>
<tr>
<td>, (comma)</td>
<td>Union</td>
<td>Produces a range that is the union of two ranges (for example, A1:C5,B2:E8).</td>
</tr>
</tbody>
</table>

Understanding Operator Precedence

You’ll often use simple formulas that contain just two values and a single operator. In practice, however, most formulas you use will have a number of values and operators. In more complex expressions, the order in which the calculations are performed becomes crucial. For example, consider the formula =3+5^2. If you calculate from left to right, the answer you get is 64 (3+5 equals 8, and 8^2 equals 64). However, if you perform the exponentiation first and then the addition, the result is 28 (5^2 equals 25, and 3+25 equals 28). As this example shows, a single formula can produce multiple answers, depending on the order in which you perform the calculations.
To control this problem, Excel evaluates a formula according to a predefined order of precedence. This order of precedence enables Excel to calculate a formula unambiguously by determining which part of the formula it calculates first, which part second, and so on.

The Order of Precedence

Excel’s order of precedence is determined by the various formula operators outlined earlier. Table 3.5 summarizes the complete order of precedence used by Excel.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Operation</th>
<th>Order of Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>Range</td>
<td>1st</td>
</tr>
<tr>
<td><space></td>
<td>Intersection</td>
<td>2nd</td>
</tr>
<tr>
<td>,</td>
<td>Union</td>
<td>3rd</td>
</tr>
<tr>
<td>-</td>
<td>Negation</td>
<td>4th</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td>5th</td>
</tr>
<tr>
<td>^</td>
<td>Exponentiation</td>
<td>6th</td>
</tr>
<tr>
<td>* and /</td>
<td>Multiplication and division</td>
<td>7th</td>
</tr>
<tr>
<td>+ and -</td>
<td>Addition and subtraction</td>
<td>8th</td>
</tr>
<tr>
<td>&</td>
<td>Concatenation</td>
<td>9th</td>
</tr>
<tr>
<td>= < > <= >= <></td>
<td>Comparison</td>
<td>10th</td>
</tr>
</tbody>
</table>

From this table, you can see that Excel performs exponentiation before addition. Therefore, the correct answer for the formula \(=3+5^2\), given previously, is 28. Notice also that some operators in Table 3.5 have the same order of precedence (for example, multiplication and division). This means that it usually doesn’t matter in which order these operators are evaluated. For example, consider the formula \(=5*10/2\). If you perform the multiplication first, the answer you get is 25 (\(5*10\) equals 50, and 50/2 equals 25). If you perform the division first, you also get an answer of 25 (10/2 equals 5, and 5*5 equals 25). By convention, Excel evaluates operators with the same order of precedence from left to right, so you should assume that’s how your formulas will be evaluated.

Controlling the Order of Precedence

Sometimes you want to override the order of precedence. For example, suppose that you want to create a formula that calculates the pre-tax cost of an item. If you bought something for $10.65, including 7% sales tax, and you want to find the cost of the item minus the tax, you use the formula \(=10.65/1.07\), which gives you the correct answer, $9.95. In general, the formula is the total cost divided by 1 plus the tax rate, as shown in Figure 3.1.
Understanding Operator Precedence

Figure 3.2 shows how you might implement such a formula. Cell B5 displays the Total Cost variable, and cell B6 displays the Tax Rate variable. Given these parameters, your first instinct might be to use the formula \(\frac{B5}{1 + B6} \) to calculate the original cost. This formula is shown (as text) in cell E9, and the result is given in cell D9. As you can see, this answer is incorrect. What happened? Well, according to the rules of precedence, Excel performs division before addition, so the value in B5 first is divided by 1 and then is added to the value in B6. To get the correct answer, you must override the order of precedence so that the addition \(1 + B6 \) is performed first. You do this by surrounding that part of the formula with parentheses, as shown in cell E10. When this is done, you get the correct answer (cell D10).

In general, you can use parentheses to control the order that Excel uses to calculate formulas. Terms inside parentheses are always calculated first; terms outside parentheses are calculated sequentially (according to the order of precedence).
To gain even more control over your formulas, you can place parentheses inside one another; this is called nesting parentheses. Excel always evaluates the innermost set of parentheses first. Here are a few sample formulas:

<table>
<thead>
<tr>
<th>Formula</th>
<th>1st Step</th>
<th>2nd Step</th>
<th>3rd Step</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3^(15/5)*2–5</td>
<td>3^3*2–5</td>
<td>27*2–5</td>
<td>54–5</td>
<td>49</td>
</tr>
<tr>
<td>3^((15/5)*2–5)</td>
<td>3^(3*2–5)</td>
<td>3^(6–5)</td>
<td>3^1</td>
<td>3</td>
</tr>
<tr>
<td>3^(15/(5*2–5))</td>
<td>3^(15/(10–5))</td>
<td>3^(15/5)</td>
<td>3^3</td>
<td>27</td>
</tr>
</tbody>
</table>

Notice that the order of precedence rules also hold within parentheses. For example, in the expression (5*2–5), the term 5*2 is calculated before 5 is subtracted.

Using parentheses to determine the order of calculations enables you to gain full control over your Excel formulas. This way, you can make sure that the answer given by a formula is the one you want.

CAUTION

One of the most common mistakes when using parentheses in formulas is to forget to close a parenthetic term with a right parenthesis. In such a case, Excel generates an error message (and offers a solution to the problem). To make sure that you’ve closed each parenthetic term, count all the left and right parentheses. If these totals don’t match, you know you’ve left out a parenthesis.

Controlling Worksheet Calculation

Excel always calculates a formula when you confirm its entry, and the program normally recalculates existing formulas automatically whenever their data changes. This behavior is fine for small worksheets, but it can slow you down if you have a complex model that takes several seconds or even several minutes to recalculate. To turn off this automatic recalculation, Excel gives you two ways to get started:

- Select Formulas, Calculation Options.
- Select File, Options and then click Formulas.
Either way, you’re presented with three calculation options:

- **Automatic**—This is the default calculation mode, and it means that Excel recalculates formulas as soon as you enter them and as soon as the data for a formula changes.

- **Automatic Except for Data Tables**—In this calculation mode, Excel recalculates all formulas automatically, except for those associated with data tables. This is a good choice if your worksheet includes one or more massive data tables that are slowing down the recalculation.

 ➔ To learn how to set up data tables, see “Using What-If Analysis,” p. 349.

- **Manual**—Select this mode to force Excel not to recalculate any formulas until either you manually recalculate or you save the workbook. If you’re in the Excel Options dialog box, you can tell Excel not to recalculate when you save the workbook by clearing the Recalculate Workbook Before Saving check box.

With manual calculation turned on, you see “Calculate” in the status bar whenever your worksheet data changes and your formula results need to be updated. When you want to recalculate, first display the Formulas tab. In the Calculation group, you have two choices:

- Click Calculate Now (or press F9) to recalculate every open worksheet.
- Click Calculate Sheet (or press Shift+F9) to recalculate only the active worksheet.

If you want Excel to recalculate every formula—even those that are unchanged—in all open worksheets, press Ctrl+Alt+Shift+F9.

TIP

If you want Excel to recalculate only part of your worksheet while manual calculation is turned on, you have two options:

- To recalculate a single formula, select the cell containing the formula, click in the formula bar, and then confirm the cell (by pressing Enter or clicking the Enter button).
- To recalculate a range, select the range; select Home, Find & Select, Replace (or press Ctrl+H); and enter an equal sign (=) in both the Find What and Replace With boxes. Click Replace All. Excel “replaces” the equal sign in each formula with another equal sign. This doesn’t actually change any formula, but it forces Excel to recalculate each formula.

TIP

Excel supports multithreaded calculation on computers with either multiple processors or processors with multiple cores. For each processor (or core), Excel sets up a thread (a separate process of execution). Excel can then use each available thread to process multiple calculations concurrently. For a worksheet with multiple, independent formulas, this can dramatically speed up calculations. To make sure multithreaded calculation is turned on, select File, Options, click Advanced, and then in the Formulas section ensure that the Enable Multi-Threaded Calculation check box is selected.
Copying and Moving Formulas

You copy and move ranges that contain formulas the same way you copy and move regular ranges, but the results aren't always straightforward.

For example, Figure 3.3 shows a list of expense data for a company. The formula in cell C11 uses the `SUM()` function to total the January expenses (range C6:C10). The idea behind this worksheet is to calculate a new expense budget number for 2016 as a percentage increase of the actual 2015 total. Cell C3 displays the INCREASE variable (in this case, the increase being used is 3%). The formula that calculates the 2016 BUDGET number (cell C13 for the month of January) multiplies the 2015 TOTAL by the INCREASE (that is, `=C11*C3`).

The next step is to calculate the 2015 TOTAL expenses and the 2016 BUDGET figure for February. You could just type each new formula, but you can copy a cell much more quickly. Figure 3.4 shows the results when you copy the contents of cell C11 into cell D11. As you can see, Excel adjusts the range in the formula’s `SUM()` function so that only the February expenses (D6:D10) are totaled. How did Excel know to do this? To answer this question, you need to know about Excel’s relative reference format, which I discuss in the next section.

Understanding Relative Reference Format

When you use a cell reference in a formula, Excel looks at the cell address relative to the location of the formula. For example, suppose that you have the formula `=A1*2` in cell A3. To Excel, this formula says, “Multiply the contents of the cell two rows above this one by 2.” This is called the relative reference format, and it’s the default format for Excel. This means that if you copy this formula to cell A4, the relative reference is still “Multiply the contents of the cell two rows above this one by 2,” but the formula changes to `=A2*2` because A2 is two rows above A4.
Copying and Moving Formulas

Figure 3.4 shows why this format is useful. You had only to copy the formula in cell C11 to cell D11 and, thanks to relative referencing, everything came out perfectly. To get the expense total for March, you would just have to paste the same formula into cell E11. You’ll find that this way of handling copy operations will save you incredible amounts of time when you’re building worksheet models.

However, you need to exercise some care when copying or moving formulas. Let’s see what happens if you return to the budget expense worksheet and try copying the 2016 BUDGET formula in cell C13 to cell D13. Figure 3.5 shows that the result is 0!
What happened? The formula bar shows the problem: The new formula is =D11*D3. Cell D11 is the February 2015 TOTAL, and that's fine, but instead of the INCREASE cell (C3), the formula refers to a blank cell (D3). Excel treats blank cells as 0, so the formula result is 0. The problem is the relative reference format. When the formula was copied, Excel assumed that the new formula should refer to cell D3. To see how you can correct this problem, you need to learn about another format, the absolute reference format, which I discuss in the next section.

The relative reference format problem doesn't occur when you move a formula. When you move a formula, Excel assumes that you want to keep the same cell references.

Understanding Absolute Reference Format

When you refer to a cell in a formula using the absolute reference format, Excel uses the physical address of the cell. You tell the program that you want to use an absolute reference by placing dollar signs ($) before the row and column of the cell address. To return to the example in the preceding section, Excel interprets the formula =A1*2 as “Multiply the contents of cell A1 by 2.” No matter where you copy or move this formula, the cell reference doesn't change. The cell address is said to be anchored.

To fix the budget expense worksheet, you need to anchor the INCREASE variable. To do this, you first change the January 2016 BUDGET formula in cell C13 to read =C11*C3. After making this change, copying the formula to the February 2016 BUDGET column gives the new formula =D11*C3, which produces the correct result.

Most range names refer to absolute cell references. This means that when you copy a formula that uses a range name, the copied formula will use the same range name as the original. This might produce errors in your worksheet.

You also should know that you can enter a cell reference using a mixed-reference format. In this format, you anchor either the cell's row (by placing the dollar sign in front of the row address only—for example, BS6) or its column (by placing the dollar sign in front of the column address only—for example, SB6).

You can quickly change the reference format of a cell address by using the F4 key. When editing a formula, place the cursor to the left of the cell address (or between the row and column values) and then keep pressing F4. Excel cycles through the various formats. When you see the format you want, press Enter. If you want to apply the new reference format to multiple cell addresses, highlight the addresses, press F4 until you get the format you want, and press Enter.
Displaying Worksheet Formulas

By default, Excel displays in a cell the results of the cell’s formula instead of the formula itself. If you need to see a formula, you can simply select the appropriate cell and look at the formula bar. However, sometimes you’ll want to see all the formulas in a worksheet (such as when you’re troubleshooting your work).

➔ For more information about solving formula problems, see Chapter 5, “Troubleshooting Formulas,” p. 111.

Displaying All Worksheet Formulas

To display all of a worksheet’s formulas, select Formulas, Show Formulas.

You can also press Ctrl+` (backquote) to toggle a worksheet between values and formulas.

Displaying a Cell’s Formula by Using FORMULATEXT ()

In some cases, rather than showing all of a sheet’s formulas, you might prefer to show the formulas in only a cell or two. For example, if you’re presenting a worksheet to other people, that sheet might have some formulas you want to show, but it might also have one or
more proprietary formulas that you don’t want your audience to see. In such a case, you can display individual cell formulas by using the `FORMULATEXT` function:

```
FORMULATEXT(cell)
```

cell The address of the cell that contains the formula you want to show

For example, the following formula displays the formula text from cell D9:

```
=FORMULATEXT(D9)
```

Converting a Formula to a Value

If a cell contains a formula whose value will never change, you can convert the formula to that value. This speeds up large worksheet recalculations and frees up memory for your worksheet because values use much less memory than formulas do. For example, you might have formulas in part of your worksheet that use values from a previous fiscal year. Because these numbers aren’t likely to change, you can safely convert the formulas to their values. To do this, follow these steps:

1. Select the cell containing the formula you want to convert.
2. Double-click the cell or press F2 to activate in-cell editing.
3. Press F9. The formula changes to its value.
4. Press Enter or click the Enter button. Excel changes the cell to the value.

You'll often need to use the result of a formula in several places. If a formula is in cell C5, for example, you can display its result in other cells by entering `=C5` in each of the cells. This is the best method if you think the formula result might change because, if it does, Excel updates the other cells automatically. However, if you're sure that the result won't change, you can copy only the value of the formula into the other cells. Use the following procedure to do this:

1. Select the cell that contains the formula.
2. Copy the cell.
3. Select the cell or cells to which you want to copy the value.
4. Select Home, display the Paste list, and then select Paste Values. Excel pastes the cell's value to each cell you selected.

Another method is to copy the cell, paste it into the destination, drop down the Paste Options list, and then select Values Only.

CAUTION

If your worksheet is set to manual calculation, make sure that you update your formulas (by pressing F9) before copying the values of your formulas.
Working with Range Names in Formulas

In Chapter 2, “Using Range Names,” you saw how to define and use range names in worksheets. You probably use range names often in your formulas. After all, a cell that contains the formula =Sales-Expenses is much more comprehensible than one that contains the more cryptic formula =F12-F3. The next few sections show you some techniques that make it easier to use range names in formulas.

Pasting a Name into a Formula

One way to enter a range name in a formula is to type the name in the formula bar. But what if you can’t remember the name? Or what if the name is long, and you’ve got a deadline looming? For these kinds of situations, Excel has several features that enable you to select the name you want from a list and paste it right into the formula. Start your formula, and when you get to the spot where you want the name to appear, use any of the following techniques:

■ Select Formulas, Use in Formula and then click the name in the list that appears (see Figure 3.6).

■ Select Formulas, Use in Formula, Paste Names (or press F3) to display the Paste Name dialog box, click the range name you want to use, and then click OK.

■ Type the first letter or two of the range name to display a list of names and functions that start with those letters, select the name you want, and then press Tab.
Applying Names to Formulas

If you’ve been using ranges in your formulas and you name those ranges later, Excel doesn’t automatically apply the new names to the formulas. Instead of substituting the appropriate names by hand, you can get Excel to do the hard work for you. Follow these steps to apply the new range names to your existing formulas:

1. Select the range in which you want to apply the names or select a single cell if you want to apply the names to the entire worksheet.
2. Select Formulas, Define Name, Apply Names. Excel displays the Apply Names dialog box, shown in Figure 3.7.
3. In the Apply Names list, choose the name or names you want applied from this list.
4. Select the Ignore Relative/Absolute check box to ignore relative and absolute references when applying names. (See the next section for more information on this option.)
5. Select the Use Row and Column Names check box to tell Excel whether to use the worksheet’s row and column names when applying names. If you select this check box, you also can click the Options button to see more choices. (See the section “Using Row and Column Names When Applying Names,” later in this chapter, for details.)
6. Click OK to apply the names.

Ignoring Relative and Absolute References When Applying Names

If you clear the Ignore Relative/Absolute option in the Apply Names dialog box, Excel replaces relative range references only with names that refer to relative references, and it replaces absolute range references only with names that refer to absolute references. If you leave this option selected, Excel ignores relative and absolute reference formats when applying names to a formula.
For example, suppose that you have a formula such as `=SUM(A1:A10)` and a range named Sales that refers to A1:A10. With the Ignore Relative/Absolute option turned off, Excel won’t apply the name Sales to the range in the formula; Sales refers to an absolute range, and the formula contains a relative range. Unless you think you’ll be moving your formulas around, you should leave the Ignore Relative/Absolute option selected.

Using Row and Column Names When Applying Names

For extra clarity in your formulas, leave the Use Row and Column Names check box selected in the Apply Names dialog box. This option tells Excel to rename all cell references that can be described as the intersection of a named row and a named column. In Figure 3.8, for example, the range C6:C10 is named January, and the range C7:E7 is named Rent. This means that cell C7—the intersection of these two ranges—can be referenced as January Rent.

As shown in Figure 3.8, the Total for the Rent row (cell F7) currently contains the formula `=C7+D7+E7`. If you applied range names to this worksheet and selected the Use Row and Column Names option, you’d think this formula would be changed to this:

`=January Rent + February Rent + March Rent`

If you try this, however, you’ll get a slightly different formula, as shown in Figure 3.9.

The reason for this is that when Excel is applying names, it omits the row name if the formula is in the same row. (It also omits the column name if the formula is in the same column.) In cell F7, for example, Excel omits Rent in each term because F7 is in the Rent row.
Omitting row headings isn’t a problem in a small model, but it can be confusing in a large worksheet, where you might not be able to see the names of the rows. Therefore, if you’re applying names to a large worksheet, you’ll probably prefer to include the row names when applying names.

Choosing the Options button in the Apply Names dialog box displays the expanded dialog box shown in Figure 3.10. This includes extra options that enable you to include column (and row) headings:

- **Omit Column Name if Same Column**—Clear this check box to include column names when applying names.
- **Omit Row Name if Same Row**—Clear this check box to include row names.
- **Name Order**—Use these options (Row Column or Column Row) to select the order of names in the reference.

Naming Formulas

In Chapter 2, you learned how to set up names for often-used constants. You can apply a similar naming concept for frequently used formulas. As with the constants, the formula doesn’t physically have to appear in a cell. This not only saves memory but often makes your worksheets easier to read as well. Follow these steps to name a formula:

1. Select Formulas, Define Name to display the New Name dialog box.
2. Enter the name you want to use for the formula in the Name text box.
3. In the Refers To box, enter the formula exactly as you would if you were entering it in a worksheet.
4. Click OK.
Now you can enter the formula name in your worksheet cells (instead of the formula itself). For example, the following is the formula for the volume of a sphere (r is the radius of the sphere):

$$4\pi r^3/3$$

So, assuming that you have a cell named Radius somewhere in the workbook, you could create a formula named, say, SphereVolume, and make the following entry in the Refers To box of the New Name dialog box (where PI() is the Excel worksheet function that returns the value of pi):

$$=(4 \times \text{PI()} \times \text{Radius}^3) / 3$$

Working with Links in Formulas

If you have data in one workbook that you want to use in another, you can set up a link between the two workbooks. This action enables your formulas to use references to cells or ranges in the other workbook. When the other data changes, Excel automatically updates the link.

For example, Figure 3.11 shows two linked workbooks. The Budget Summary sheet in the 2017 Budget–Summary workbook includes data from the Details worksheet in the 2017 Budget workbook. Specifically, the formula shown for cell B2 in 2017 Budget–Summary contains an external reference to cell R7 in the Details worksheet of 2017 Budget. If the value in R7 changes, Excel immediately updates the 2017 Budget–Summary workbook.

NOTE

The workbook that contains the external reference is called the **dependent workbook (or the client workbook)**. The workbook that contains the original data is called the **source workbook (or the server workbook)**.
Understanding External References

There's no big mystery behind external reference links. You set up links by including an external reference to a cell or range in another workbook (or in another worksheet from the same workbook). In the example shown in Figure 3.11, all I did was enter an equal sign in cell B2 of the Budget Summary worksheet and then click cell R7 in the Details worksheet.

You just need to be comfortable with the structure of an external reference. Here's the syntax:

\[\text{'path[workbookname]sheetname'!reference} \]

- **path**
 The drive and directory in which the workbook is located, which can be a local path, a network path, or even an Internet address. You need to include the path only when the workbook is closed.

- **workbookname**
 The name of the workbook, including an extension. Always enclose the workbook name in square brackets ([]). You can omit workbookname if you're referencing a cell or range in another sheet of the same workbook.

- **sheetname**
 The name of the worksheet's tab. You can omit sheetname if reference is a defined name in the same workbook.

- **reference**
 A cell or range reference, or a defined name.

For example, if you close the 2017 Budget workbook, Excel automatically changes the external reference shown in Figure 3.11 to this (depending on the actual path of the file):

\[='C:\Users\Paul\Documents\[2017 Budget.xlsx]Details'!R7 \]
The purpose of a link is to avoid duplicating formulas and data in multiple worksheets. If one workbook contains the information you need, you can use a link to reference the data without re-creating it in another workbook.

To be useful, however, the data in the dependent workbook should always reflect what actually is in the source workbook. You can make sure of this by updating the link, as explained here:

- If both the source and the dependent workbooks are open, Excel automatically updates the link whenever the data in the source file changes.
- If the source workbook is open when you open the dependent workbook, Excel automatically updates the links again.
- If the source workbook is closed when you open the dependent workbook, Excel displays a security warning in the information bar, which tells you that automatic updating of links has been disabled. In this case, click Enable Content.

If you didn’t update a link when you opened the dependent document, you can update it any time by choosing Data, Edit Links. In the Edit Links dialog box that appears (see Figure 3.12), click the link and then click Update Values.

Changing the Link Source

If the name of the source document changes, you’ll need to edit the link to keep the data up to date. You can edit the external reference directly, or you can change the source by following these steps:

1. With the dependent workbook active, select Data, Edit Links to display the Edit Links dialog box.
2. Click the link you want to work with.
3. Click Change Source. Excel displays the Change Source dialog box.
4. Find and then select the new source document and then click OK to return to the Edit Links dialog box.
5. Click Close to return to the workbook.

Figure 3.12
Use the Edit Links dia-
log box to update the
linked data in the source
workbook.

Formatting Numbers, Dates, and Times

One of the best ways to improve the readability of worksheets is to display your data in a format that is logical, consistent, and straightforward. Formatting currency amounts with leading dollar signs, percentages with trailing percent signs, and large numbers with commas are a few of the ways you can improve your spreadsheet style.

This section shows you how to format numbers, dates, and times using Excel’s built-in formatting options. You’ll also learn how to create your own formats to gain maximum control over the appearance of your data.

Numeric Display Formats

When you enter numbers in a worksheet, Excel removes any leading or trailing zeros. For example, if you enter 0123.4500, Excel displays 123.45. The exception to this rule occurs when you enter a number that is wider than the cell. In that case, Excel usually expands the width of the column to fit the number. However, in some cases, Excel tailors the number to fit the cell by rounding off some decimal places. For example, a number such as 123.45678 is displayed as 123.4568. Note that, in this case, the number is changed for display purposes only; Excel still retains the original number internally.

When you create a worksheet, each cell uses this format, known as the General number format, by default. If you want your numbers to appear differently, you can select from among Excel’s seven categories of numeric formats:

- **Number**—The number formats have three components: the number of decimal places, whether the thousands separator (,) is used, and how negative numbers are displayed. For negative numbers, you can display the number with a leading minus sign, in red, surrounded by parentheses, or in red surrounded by parentheses.
Formatting Numbers, Dates, and Times

■ **Currency**—The currency formats are similar to the number formats, except that the thousands separator is always used, and you have the option of displaying the numbers with a leading dollar sign ($) or some other currency symbol.

■ **Accounting**—With the accounting formats, you can select the number of decimal places and whether to display a leading dollar sign (or other currency symbol). If you do use a dollar sign, Excel displays it flush left in the cell. All negative entries are displayed surrounded by parentheses.

■ **Percentage**—The percentage formats display the number multiplied by 100 with a percent sign (%) to the right of the number. For example, .506 is displayed as 50.6%. You can display up to 14 decimal places.

■ **Fraction**—The fraction formats enable you to express decimal quantities as fractions. There are nine fraction formats in all, including displaying the number as halves, quarters, sixteenths, tenths, and hundredths.

■ **Scientific**—The scientific formats display the most significant number to the left of the decimal, 2–30 decimal places to the right of the decimal, and then the exponent. So, 123000 is displayed as 1.23E+05.

■ **Special**—The special formats are a collection designed to take care of special cases. Here’s a list of the special formats, with some examples:

<table>
<thead>
<tr>
<th>Format</th>
<th>Enter This</th>
<th>It Displays as This</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIP Code</td>
<td>1234</td>
<td>01234</td>
</tr>
<tr>
<td>ZIP Code + 4</td>
<td>123456789</td>
<td>12345-6789</td>
</tr>
<tr>
<td>Phone Number</td>
<td>1234567890</td>
<td>(123) 456-7890</td>
</tr>
<tr>
<td>Social Security Number</td>
<td>123456789</td>
<td>123-45-6789</td>
</tr>
</tbody>
</table>

Changing Numeric Formats

The quickest way to format numbers is to specify the format as you enter your data. For example, if you begin a dollar amount with a dollar sign ($), Excel automatically formats the number as currency. Similarly, if you type a percent sign (%) after a number, Excel automatically formats the number as a percentage. Here are a few more examples of this technique. Note that you can enter a negative value using either the negative sign (–) or parentheses.

Although you can select a number as high as 30 in the Decimal Places spin box, Excel will display only the first 14 decimal places. This applies to percentages as well (see below).
Chapter 3 Building Basic Formulas

<table>
<thead>
<tr>
<th>Number Entered</th>
<th>Number Displayed</th>
<th>Format Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1234.567</td>
<td>$1,234.57</td>
<td>Currency</td>
</tr>
<tr>
<td>($1234.5)</td>
<td>($1,234.50)</td>
<td>Currency</td>
</tr>
<tr>
<td>10%</td>
<td>10%</td>
<td>Percentage</td>
</tr>
<tr>
<td>123E+02</td>
<td>1.23E+04</td>
<td>Scientific</td>
</tr>
<tr>
<td>5 3/4</td>
<td>5 3/4</td>
<td>Fraction</td>
</tr>
<tr>
<td>0 3/4</td>
<td>3/4</td>
<td>Fraction</td>
</tr>
<tr>
<td>3/4</td>
<td>4–Mar</td>
<td>Date</td>
</tr>
</tbody>
</table>

Excel interprets a simple fraction such as 3/4 as a date (March 4, in this case). Always include a leading zero, followed by a space, if you want to enter a simple fraction in the formula bar.

Specifying the numeric format as you enter a number is fast and efficient because Excel guesses the format you want to use. Unfortunately, Excel sometimes guesses wrong (for example, interpreting a simple fraction as a date). In any case, you don’t have access to all the available formats (for example, displaying negative dollar amounts in red). To overcome these limitations, you can select your numeric formats from a list. Here are the steps to follow:

1. Select the cell or range of cells to which you want to apply the new format.
2. Select the Home tab.
3. Pull down the Number Format list. Excel displays its built-in formats, as shown in Figure 3.13. Under the name of each format, Excel shows you how the current cell would be displayed if you chose that format.
4. Click the format you want to use.

For more numeric formatting options, use the Number tab of the Format Cells dialog box (or display the Number Format list and select More Number Formats). Select the cell or range and then select Home, Number Format, More Number Formats. (You can also click the Number group’s dialog box launcher or press Ctrl+1.) As you can see in Figure 3.14, when you click a numeric format in the Category list, Excel displays more formatting options, such as the Decimal Places spin box. (The options you see depend on the category you select.) The Sample information box shows a sample of the format applied to the current cell’s contents.

As an alternative to the Format Cells dialog box, Excel offers several keyboard shortcuts for setting the numeric format. Select the cell or range you want to format and use one of the key combinations listed in Table 3.6.
Figure 3.13
On the Home tab, pull down the Number Format list to see all of Excel's built-in numeric formats.

Figure 3.14
When you select a format in the Category list, Excel displays the format's options.
You can use the controls in the Home tab's Number group as another method of selecting numeric formats. The Number Format list (refer to Figure 3.13) displays all the formats. Here are the other controls that appear in this group:

<table>
<thead>
<tr>
<th>Button</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting Number Format</td>
<td>Accounting (two decimal places; using dollar sign)</td>
</tr>
<tr>
<td>Percent Style</td>
<td>Percentage (zero decimal places)</td>
</tr>
<tr>
<td>Comma Style</td>
<td>Number (two decimal places; using thousands separator)</td>
</tr>
<tr>
<td>Increase Decimal</td>
<td>Increases the number of decimal places in the current format</td>
</tr>
<tr>
<td>Decrease Decimal</td>
<td>Decreases the number of decimal places in the current format</td>
</tr>
</tbody>
</table>

Customizing Numeric Formats

Excel numeric formats give you lots of control over how your numbers are displayed, but they have their limitations. For example, no built-in format enables you to display a number such as 0.5 without the leading zero or to display temperatures using, for example, the degree symbol.

To overcome these and other limitations, you need to create your own custom numeric formats. You can do this either by editing an existing format or by entering your own from scratch. The formatting syntax and symbols are explained in detail later in this section.

Every Excel numeric format, whether built in or customized, has the following syntax:

```
positive format;negative format;zero format;text format
```

The four parts, separated by semicolons, determine how various numbers are presented. The first part defines how a positive number is displayed, the second part defines how a negative number is displayed, the third part defines how zero is displayed, and the fourth part defines how text is displayed. If you leave out one or more of these parts, numbers are controlled as shown here:
Number of Parts	Format Syntax Used
Three | positive format; negative format; zero format
Two | positive and zero format; negative format
One | positive, negative, and zero format

Table 3.7 lists the special symbols you use to define each of these parts.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Displays the number with the General format.</td>
</tr>
<tr>
<td>#</td>
<td>Holds a place for a digit and displays the digit exactly as typed. Displays nothing if no number is entered.</td>
</tr>
<tr>
<td>0</td>
<td>Holds a place for a digit and displays the digit exactly as typed. Displays 0 if no number is entered.</td>
</tr>
<tr>
<td>?</td>
<td>Holds a place for a digit and displays the digit exactly as typed. Displays a space if no number is entered.</td>
</tr>
<tr>
<td>. (period)</td>
<td>Sets the location of the decimal point.</td>
</tr>
<tr>
<td>, (comma)</td>
<td>Sets the location of the thousands separator. Marks only the location of the first thousand.</td>
</tr>
<tr>
<td>%</td>
<td>Multiplies the number by 100 (for display only) and adds the percent (%) character.</td>
</tr>
<tr>
<td>E+ e+ E- e-</td>
<td>Displays the number in scientific format. E- and e- place a minus sign in the exponent; E+ and e+ place a plus sign in the exponent.</td>
</tr>
<tr>
<td>/ (slash)</td>
<td>Sets the location of the fraction separator.</td>
</tr>
<tr>
<td>$ () : - + <space></td>
<td>Displays the character.</td>
</tr>
<tr>
<td>*</td>
<td>Repeats whatever character immediately follows the asterisk until the cell is full. Doesn’t replace other symbols or numbers.</td>
</tr>
<tr>
<td>_ (underscore)</td>
<td>Inserts a blank space the width of whatever character follows the underscore.</td>
</tr>
<tr>
<td>\ (backslash)</td>
<td>Inserts the character that follows the backslash.</td>
</tr>
<tr>
<td>"text"</td>
<td>Inserts the text that appears within the quotation marks.</td>
</tr>
<tr>
<td>@</td>
<td>Holds a place for text.</td>
</tr>
<tr>
<td>[COLOR]</td>
<td>Displays the cell contents in the specified color.</td>
</tr>
<tr>
<td>[COLOR n]</td>
<td>Displays the cell contents in the specified color value (where n is a number between 1 and 56).</td>
</tr>
<tr>
<td>[condition value]</td>
<td>Uses conditional statements to specify when the format is to be used.</td>
</tr>
</tbody>
</table>
Before looking at some examples, let's run through the basic procedure. To customize a numeric format, select the cell or range you want to format and then follow these steps:

1. Select Home, Number Format, More Number Formats (or press Ctrl+1) and select the Number tab, if it’s not already displayed.
2. In the Category list, click Custom.
3. If you’re editing an existing format, select it in the Type list box.
4. Edit or enter your format code.
5. Click OK. Excel returns you to the worksheet, where you see the custom format applied.

Excel stores each new format definition in the Custom category. If you edited an existing format, the original format is left intact, and the new format is added to the list. You can select the custom formats the same way you select the built-in formats. To use a custom format in other workbooks, you copy a cell containing the format to that workbook. Figure 3.15 shows a dozen examples of custom formats.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Example</td>
<td>Custom Format</td>
<td>Cell Entry</td>
<td>Result</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0,0</td>
<td>12500</td>
<td>12.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0,0</td>
<td>125000000</td>
<td>12.5 million</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>@</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>@</td>
<td>1234</td>
<td>1234</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>@</td>
<td>-1234</td>
<td>-1234</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>@</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>@</td>
<td>text</td>
<td>Enter a number</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>@</td>
<td>1234</td>
<td>1234 Dollars</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>@</td>
<td>1.44</td>
<td>1.44M</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>@</td>
<td>98.6</td>
<td>98.6°F</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>@</td>
<td>1234</td>
<td>1234</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>@</td>
<td>123456</td>
<td>123456</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>@</td>
<td>123456</td>
<td>Don't enter dash</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>@</td>
<td>123456</td>
<td>Don't enter dash</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>@</td>
<td>1234</td>
<td>1234</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>@</td>
<td>123456</td>
<td>123456</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>@</td>
<td>123456</td>
<td>Don't enter dash</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>@</td>
<td>123456</td>
<td>Don't enter dash</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>@</td>
<td>March</td>
<td>March</td>
</tr>
</tbody>
</table>

Here’s a quick explanation of each example:

- **Example 1**—These formats show how you can reduce a large number to a smaller, more readable one by using the thousands separator. A format such as 0,000.0 would display, for example, 12500 as 12,500.0. If you remove the three zeros between the comma and the decimal (to get the format 0,.0), Excel displays the number as 12.5 (although it still uses the original number in calculations). In essence, you’ve told Excel to express the number in thousands. To express a larger number in millions, you just add a second thousands separator.
■ **Example 2**—Use this format when you want to display no leading or trailing zeros.

■ **Example 3**—These are examples of four-part formats. The first three parts define how Excel should display positive numbers, negative numbers, and zero. The fourth part displays the message “Enter a number” if the user enters text in the cell.

■ **Example 4**—In this example, the cents sign (¢) is used after the value. To enter the cents sign, press Alt+0162 on your keyboard’s numeric keypad. (This won’t work if you use the numbers along the top of the keyboard.) Table 3.8 shows some common ANSI characters you can use.

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>ANSI Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt+0162</td>
<td>¢</td>
</tr>
<tr>
<td>Alt+0163</td>
<td>£</td>
</tr>
<tr>
<td>Alt+0165</td>
<td>¥</td>
</tr>
<tr>
<td>Alt+0169</td>
<td>©</td>
</tr>
<tr>
<td>Alt+0174</td>
<td>®</td>
</tr>
<tr>
<td>Alt+0176</td>
<td>°</td>
</tr>
</tbody>
</table>

■ **Example 5**—This example adds the thousands separator and the text string “Dollars” to the format.

■ **Example 6**—In this example, an M is appended to any number, which is useful if your spreadsheet unit is megabytes.

■ **Example 7**—This example uses the degree symbol (°) to display temperatures.

■ **Example 8**—The three semicolons used in this example result in no number being displayed (which is useful as a basic method for hiding a sensitive value).

■ **Example 9**—This example shows that you can get a number sign (#) to display in your formats by preceding # with a backslash (\).

■ **Example 10**—In this example, you see a trick for creating dot trailers. Recall that the asterisk (*) symbol fills the cell with whatever character follows it. So, creating a dot trailer is a simple matter of adding "*." to the end of the format.

■ **Example 11**—This example shows a similar technique that creates a dot leader. Here, the first three semicolons display nothing; then "*.*" runs dots from the beginning of the cell up to the text (represented by the @ sign).

■ **Example 12**—This example shows a format that’s useful for entering stock quotations.
Hiding Zeros

Worksheets look less cluttered and are easier to read if you hide unnecessary zeros. Excel enables you to hide zeros either throughout an entire worksheet or only in selected cells.

To hide all zeros, select File, Options, click the Advanced tab in the Excel Options dialog box, and scroll down to the Display Options for This Worksheet section. Clear the Show a Zero in Cells That Have Zero Value check box and then click OK.

To hide zeros in selected cells, create a custom format that uses the following format syntax:

```
positive format;negative format;
```

The extra semicolon at the end acts as a placeholder for the zero format. Because there’s no definition for a zero value, nothing is displayed. For example, the format `$#,##0.00;($#,##0.00)`; displays standard dollar values, but it leaves the cell blank if it contains zero.

If your worksheet contains only integers (no fractions or decimal places), you can use the format `#,###` to hide zeros.

TIP

Using Condition Values

The actions of the formats you’ve seen so far have depended on whether the cell contents were positive, negative, zero, or text. Although this is fine for most applications, sometimes you need to format a cell based on different conditions. For example, you might want only specific numbers, or numbers within a certain range, to take on a particular format. You can achieve this effect by using the [condition value] format symbol. With this symbol, you set up conditional statements using the logical operators `=, <, >, <=, >=, and <>`, plus the appropriate numbers. You then assign these conditions to each part of your format definition.

For example, suppose you have a worksheet for which the data must be within the range –1,000 to 1,000. To flag numbers outside this range, you set up the following format definition:

```
[>=1000]"Error: Value >= 1,000";[<=-1000]"Error: Value <= -1,000";0.00
```

The first part defines the format for numbers greater than or equal to 1,000 (an error message). The second part defines the format for numbers less than or equal to –1,000 (also an error message). The third part defines the format for all other numbers (0.00).

➔ To learn about using Excel’s extensive conditional formatting features, see “Applying Conditional Formatting to a Range,” p. 25.
Date and Time Display Formats

If you include dates or times in your worksheets, you need to make sure they’re presented in a readable, unambiguous format. For example, most Americans would interpret the date 8/5/16 as August 5, 2016. However, in some countries, this date would mean May 8, 2016. Similarly, if you use the time 2:45, do you mean a.m. or p.m.? To avoid these kinds of problems, you can use Excel’s built-in date and time formats, listed in Table 3.9.

<table>
<thead>
<tr>
<th>Format</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/d</td>
<td>8/3</td>
</tr>
<tr>
<td>m/d/yy</td>
<td>8/3/16</td>
</tr>
<tr>
<td>mm/dd/yy</td>
<td>08/03/16</td>
</tr>
<tr>
<td>d-mmm</td>
<td>3-Aug</td>
</tr>
<tr>
<td>d-mmm-yy</td>
<td>3-Aug-16</td>
</tr>
<tr>
<td>dd-mmm-yy</td>
<td>03-Aug-16</td>
</tr>
<tr>
<td>mmmm-yy</td>
<td>Aug-16</td>
</tr>
<tr>
<td>mmmm d, yyyy</td>
<td>August 3, 2016</td>
</tr>
<tr>
<td>h:mm AM/PM</td>
<td>3:10 PM</td>
</tr>
<tr>
<td>h:mm:ss AM/PM</td>
<td>3:10:45 PM</td>
</tr>
<tr>
<td>h:mm</td>
<td>15:10</td>
</tr>
<tr>
<td>h:mm:ss</td>
<td>15:10:45</td>
</tr>
<tr>
<td>mm:ss.0</td>
<td>10:45.7</td>
</tr>
<tr>
<td>[h]:[mm]:[ss]</td>
<td>25:61:61</td>
</tr>
<tr>
<td>m/d/yy h:mm AM/PM</td>
<td>8/23/16 3:10 PM</td>
</tr>
<tr>
<td>m/d/yy h:mm</td>
<td>8/23/16 15:10</td>
</tr>
</tbody>
</table>

The [h]:[mm]:[ss] format requires a bit of explanation. You use this format when you want to display hours greater than 24 or minutes and seconds greater than 60. For example, suppose that you have an application in which you need to sum several time values (such as the time you’ve spent working on a project). If you add, say, 10:00 and 15:00, Excel normally shows the total as 1:00 (because, by default, Excel restarts times at 0 when they hit 24:00). To display the result properly (that is, as 25:00), use the format [h]:00.

You use the same methods you used for numeric formats to select date and time formats. In particular, you can specify the date and time format as you input your data. For example,
entering \texttt{Jan-16} automatically formats the cell with the mmm-yy format. Also, you can use the following shortcut keys:

<table>
<thead>
<tr>
<th>Shortcut Key</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+#</td>
<td>d—mmm—yy</td>
</tr>
<tr>
<td>Ctrl+@</td>
<td>h:mm AM/PM</td>
</tr>
<tr>
<td>Ctrl+;</td>
<td>Current date (m/d/yy)</td>
</tr>
<tr>
<td>Ctrl+:</td>
<td>Current time (h:mm AM/PM)</td>
</tr>
</tbody>
</table>

Excel for the Macintosh uses a different date system than Excel for Windows uses. If you share files between these environments, you need to use Macintosh dates in your Excel for Windows worksheets to maintain the correct dates when you move from one system to another. Select File, Options, click Advanced, scroll down to the When Calculating This Workbook section, and then select the Use 1904 Date System check box.

Customizing Date and Time Formats

Although the built-in date and time formats are fine for most applications, you might need to create your own custom formats. For example, you might want to display the day of the week (for example, \textit{Friday}). Custom date and time formats generally are simpler to create than custom numeric formats. There are fewer formatting symbols, and you usually don’t need to specify different formats for different conditions. Table 3.10 lists the date and time formatting symbols.

Table 3.10 Date and Time Formatting Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>Day number without a leading zero (1–31)</td>
</tr>
<tr>
<td>(dd)</td>
<td>Day number with a leading zero (01–31)</td>
</tr>
<tr>
<td>(ddd)</td>
<td>Three-letter day abbreviation (Mon, for example)</td>
</tr>
<tr>
<td>(dddd)</td>
<td>Full day name (Monday, for example)</td>
</tr>
<tr>
<td>(m)</td>
<td>Month number without a leading zero (1–12)</td>
</tr>
<tr>
<td>(mm)</td>
<td>Month number with a leading zero (01–12)</td>
</tr>
<tr>
<td>(mmm)</td>
<td>Three-letter month abbreviation (Aug, for example)</td>
</tr>
<tr>
<td>(mmmm)</td>
<td>Full month name (August, for example)</td>
</tr>
<tr>
<td>(yy)</td>
<td>Two-digit year (00–99)</td>
</tr>
<tr>
<td>(yyyy)</td>
<td>Full year (1900–2078)</td>
</tr>
</tbody>
</table>
Symbol | Description
---|---
h | Hour without a leading zero (0–24)
hh | Hour with a leading zero (00–24)
m | Minute without a leading zero (0–59)
mm | Minute with a leading zero (00–59)
s | Second without a leading zero (0–59)
ss | Second with a leading zero (00–59)
AM/PM, am/pm, A/P | 12-hour clock time
/ : . – | Symbols used to separate parts of dates or times
[COLOR] | Date or time displayed in the color specified
[condition value] | Conditional statements specifying when the format is to be used

Figure 3.16 shows some examples of custom date and time formats.

Figure 3.16
Sample custom date and time formats.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Custom Format</td>
<td>Cell Entry</td>
<td>Result</td>
</tr>
<tr>
<td>2</td>
<td>dddd, mmmm d, yyyy</td>
<td>8/23/2016</td>
<td>Tuesday, August 23, 2016</td>
</tr>
<tr>
<td>3</td>
<td>mmmn, yyyy</td>
<td>8/23/2016</td>
<td>August, 2016</td>
</tr>
<tr>
<td>4</td>
<td>ddd</td>
<td>8/23/2016</td>
<td>Tuesday</td>
</tr>
<tr>
<td>5</td>
<td>mmmm.dd yy</td>
<td>8/23/2016</td>
<td>08.23.16</td>
</tr>
<tr>
<td>6</td>
<td>mmmm.dd</td>
<td>8/23/2016</td>
<td>08/23/16</td>
</tr>
<tr>
<td>7</td>
<td>mmdd yy</td>
<td>8/23/2016</td>
<td>160823</td>
</tr>
<tr>
<td>8</td>
<td>ddd</td>
<td>8/23/2016</td>
<td>OVERDUE</td>
</tr>
<tr>
<td>9</td>
<td>mm/dd</td>
<td>8/23/2016</td>
<td>OVERDUE</td>
</tr>
<tr>
<td>10</td>
<td>hhmm "hours"</td>
<td>3:10 PM</td>
<td>1510 hours</td>
</tr>
<tr>
<td>11</td>
<td>hh"h" mm"m"</td>
<td>3:10 PM</td>
<td>15h10m</td>
</tr>
<tr>
<td>12</td>
<td>[-5]"12 Noon";[0]"12 Midnight";h:mm AM/PM</td>
<td>0</td>
<td>12 Midnight</td>
</tr>
<tr>
<td>13</td>
<td>[-5]"12 Noon";[0]"12 Midnight";h:mm AM/PM</td>
<td>12:00</td>
<td>12 Noon</td>
</tr>
<tr>
<td>14</td>
<td>[-5]"12 Noon";[0]"12 Midnight";h:mm AM/PM</td>
<td>3:10 PM</td>
<td>3:10 PM</td>
</tr>
</tbody>
</table>

Deleting Custom Formats

The best way to become familiar with custom formats is to try your own experiments. Just remember that Excel stores each format you try. If you find that your list of custom formats is getting a bit unwieldy or that it’s cluttered with unused formats, you can delete formats by following the steps outlined here:

1. Select Home, Number Format, More Number Formats.
2. Click the Custom category.
3. Click the format in the Type list box. (Note that you can delete only the formats that were added to Excel’s standard list.)
4. Click Delete. Excel removes the format from the list.
5. To delete other formats, repeat steps 2 through 4.
6. Click OK. Excel returns you to the spreadsheet.

From Here

- To learn about conditional formatting, see “Applying Conditional Formatting to a Range,” p. 25.
- To learn how to solve formula problems, see Chapter 5, “Troubleshooting Formulas,” p. 111.
- To get details on text formulas and functions, see Chapter 7, “Working with Text Functions,” p. 139.
- If you want to use logical worksheet functions in your comparison formulas, see “Adding Intelligence with Logical Functions,” p. 163.
- To learn how to create and use data tables, see “Using What-If Analysis,” p. 349.
This page intentionally left blank
Symbols & Numerics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#DIV/0! error</td>
<td>112</td>
</tr>
<tr>
<td>#N/A error</td>
<td>113</td>
</tr>
<tr>
<td>#NAME? error</td>
<td>113-114</td>
</tr>
<tr>
<td>#NULL! error</td>
<td>115</td>
</tr>
<tr>
<td>#NUM! error</td>
<td>115</td>
</tr>
<tr>
<td>#REF! error</td>
<td>115</td>
</tr>
<tr>
<td>#VALUE! error</td>
<td>115-116</td>
</tr>
<tr>
<td>° (degree symbol)</td>
<td>148</td>
</tr>
<tr>
<td>3D ranges</td>
<td>7-8</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute reference format</td>
<td>64</td>
</tr>
<tr>
<td>account numbers, generating</td>
<td>154-155, 161</td>
</tr>
<tr>
<td>accounting formats</td>
<td>75</td>
</tr>
<tr>
<td>accounts receivable aging worksheet,</td>
<td>178-181</td>
</tr>
<tr>
<td>building</td>
<td></td>
</tr>
<tr>
<td>adjacent cells, selecting</td>
<td>10-11</td>
</tr>
<tr>
<td>adjusting range name coordinates</td>
<td>49-51</td>
</tr>
<tr>
<td>advantages of Solver</td>
<td>412</td>
</tr>
<tr>
<td>AGGREGATE() function</td>
<td>315-316</td>
</tr>
<tr>
<td>algebraic equations, solving</td>
<td>361-362</td>
</tr>
<tr>
<td>amortization schedules, building</td>
<td>440-443</td>
</tr>
<tr>
<td>dynamic amortization schedules</td>
<td>441-443</td>
</tr>
<tr>
<td>fixed-rate amortization schedules</td>
<td>440-441</td>
</tr>
</tbody>
</table>
Analysis ToolPak
Correlation tool, 281-283
Descriptive Statistics tool, 279-281
Histogram tool, 283-285
loading, 136-137
Random Number Generation tool, 285-288
Rank and Percentile tool, 288-289
statistical tools, 276-289
anchor cells, 6
AND() function, 168-169
ANSI characters, 141
generating, 141-143
key combinations, 81
Answer report, 427-428
applying
conditional formatting
with formulas, 171-172
to ranges, 25-35
data-validation rules to cells, 100-102
range names to formulas, 68-71
approximations in Goal Seek, 359-360
arguments, 131
arithmetic formulas, 55
array constants, 91-92
array formulas, 88-91
arrays
combining with logical functions, 173-178
returning, 91-92
attributes, pasting cell attributes, 22-23
auditing worksheets, 123-127
evaluating formulas, 126
tracers, 124-125
AutoComplete feature, 47
AutoFill
custom AutoFill list, creating, 16-17
series, creating, 15-16
AVERAGE() function, 262
AVERAGEIF() function, 315
AVERAGEIFS() function, 318-319
avoiding
#NAME? errors, 114
dividing by zero, 167
balloon loans, 436-437
basic table operations, 294-295
best-fit line values, calculating
with LINEST() function, 378-380
with TREND() function, 376-377
bins, 270-271
blanks in a range, counting, 187-188
break-even analysis, 360-361
building
accounts receivable aging
worksheet, 178-181
amortization schedules, 440-443
dynamic amortization schedules,
441-443
fixed-rate amortization schedules,
440-441
employee timesheet, 231-234
investment formulas
compound interest, 454
nominal interest, 454-455
investment schedule, 462-465
PivotTables, 329-333
from external database, 332
from a table or range, 329-332
business-modeling tools, 349
Goal Seek, 355-362
algebraic equations, solving, 361-362
approximations, 359-360
break-even analysis, 360-361
optimizing product margin, 358-359
running, 356-358
what-if analysis, 349-355
editing data tables, 355
one-input data table, setting up, 350-353
two-input data table, setting up, 353-355

buttons
Filter, 48
option buttons, 105-106

buying versus leasing, 471-472

C

calculated fields (PivotTables), creating, 344-345
calculated items (PivotTables), creating, 346-347
calculating
best-fit values
 with LINEST() function, 378-380
 with TREND() function, 376-377
cumulative totals, 248-249
difference between two dates, 223
difference between two times, 231
discounted payback period, 479
exact undiscounted payback period, 478-479
future value, 456-458
 of lump sum, 456-457
required initial deposit, 461
required interest rate, 458-459
required number of periods, 459-460
required regular deposit, 460
 of series of deposits, 457
with varying interest rates, 461-462
holiday dates, 221-222
internal rate of return, 479-482
Julian dates, 222
loan payments, 435-440
 balloon loans, 436-437
 cumulative principle and interest, 458-460
 interest, 437, 445-446
 maximum principle, 446-447
 principal, 437-438
measures of variation
 range, 268
 standard deviation, 269-270
 variance, 268-269
net present value, 473-477
normal trends, 387-388
person’s age, 223, 225
present value, 468-472
simple undiscounted payback period, 477-478
term of loan, 443-445
tiered bonuses, 168
weighted means, 263

case studies
 applying statistical table functions to defects database, 322-323
 avoiding #NAME? errors when deleting ranges, 114
 building accounts receivable aging worksheet, 178-181
 building an employee timesheet, 231-234
 building an investment schedule, 462-465
forecasting for seasonal sales model, 386-393
 forecast trends, calculating, 388-389
 normal trends, calculating, 387-388
generating account numbers, 154-155, 161
mortgages, 447-450
publishing a book, 482-485
rounding billable time, 247
for seasonal sales model
 deseasoned monthly values, calculating, 391-392
 deseasoned trend, calculating, 392
 monthly seasonal indexes, computing, 390-391
 reseasoned trend, calculating, 392
 seasonal forecast, calculating, 393
 seasonal trend, calculating, 389-390
 solving the transportation problem, 425-427
cash flow, 472-473
CEILING.MATH() function, 243-244
CELL() function, 182-184
cells
 absolute reference format, 64
 anchor cells, 6
 attributes, pasting, 22-23
 data-validation rules, applying, 100-102
dependents, 12
 selecting, 12-13
direct precedents, 12
earnings, tracing, 125
formulas, displaying, 65-66
indirect precedents, 12
overlapping cells, referring to, 51-52
padding, 150-151
precedents, selecting, 12-13
ranges. See ranges
relative reference format, 63-64
rows, transposing with columns, 24
selecting
 by differences, 11-12
 by reference, 12-13
 by type, 10
changing
 numeric formats, 75-78
 range names, 51
CHAR() function, 141-143
characters, removing from strings, 160-161
check boxes, 106-107
CHOOSE() function, 193-196
circular references, 93-94
troubleshooting, 118
CLEAN() function, 150, 161
clearing, ranges, 25
CODE() function, 144
color scales, adding to ranges, 32-33
COLUMN() function, 158
columns, transposing with rows, 24
combining
 cell attributes, 22-23
 logical functions with arrays, 173-178
 ranges, 23-24
combo boxes, 107-108
commands
 Go To, selecting ranges with, 8-9
 Series, creating series with, 20-21
comparison formulas, 56-57
complex criteria, filtering tables
 with, 304-307
complex sorts, performing on tables, 296-297
compound interest, 454
computed criteria, 307-308
condition values, 82
Conditional Formats option (Go To Special dialog box), 13
conditional formatting, 171-172
applying to ranges, 25-35
 color scales, 32-33
 data bars, 29-31
 highlight cell rules, 26-27
 icon sets, 33-35
 top/bottom rules, 27-29
consolidating multisheet data, 95-100
 by category, 98-100
 by position, 95-98
constants, 44-45
 array constants, 91-92
constraints, adding to Solver, 416-418
controlling
 order of precedence, 58-60
 Solver operation, 419-422
 worksheet calculation, 60-61
 manual calculation, 61
 multithreaded calculation, 61
controls
 adding to a worksheet, 104
 check boxes, 106-107
 combo boxes, 107-108
 dialog box, 103
 form, 103
 group boxes, 105
 linking to a cell value, 104
 list boxes, 107-108
 option buttons, 105-106
 scroll bars, 108-109
 spin boxes, 108-109
converting
 formulas to values, 66
 between nominal and effective rate, 455-456
 ranges to tables, 292-294
 strings
 to lower case letters, 145
 to proper case, 145
 to upper case letters, 145
 text, 144-146
 to sentence case, 153-154
coordinates of range names
 adjusting, 49-51
 editing, 49
copying
 filtered table data, 308-309
 formulas, 62-63, 65
Correlation tool (Analysis ToolPak), 280-283
COUNT() function, 261-262
COUNTIF() function, 313-314
COUNTIFS() function, 317
counting
 blanks in a range, 187-188
 errors in ranges, 188
 occurrences of values in ranges, 176
creating
 3D ranges, 7-8
 custom AutoFill list, 16-17
 ledger shading, 251-253
 line breaks, 54
 rules
 highlight cell rules, 26-27
 top/bottom rules, 27-29
 series
 with Autofill, 15-16
 with Series command, 20-21
cumulative totals, calculating, 248-249
currency formats, 75
 DOLLAR() function, 146-147
current date, returning, 212
current time, returning, 228
custom AutoFill list, creating, 16-17
customizing
date and time formats, 84-85
numeric formats, 78-81
PivotTables, 333
subtotal calculation, 334-335

d
data bars, adding to ranges, 29-31
data columns, 192
data field summary calculation (PivotTables), 299-309
difference summary calculation, 336-337
index summary calculation, 341-343
percentage summary calculation, 337-340
running total summary calculation, 340-341
data sources, 328
Data Validation option (Go To Special dialog box), 13
database analysis, 325-328
data-validation rules, applying to cells, 100-102
date and time formats, 83-85, 208-209
shortcut keys, 84
two-digit years, 209-210
date functions. See function, date functions
date serial numbers, 207
DATE() function, 154, 212-213
DATEDIF() function, 224-225
DATEVALUE() function, 213
DAVERAGE() function, 321
DAY() function, 214
DAYS() function, 224
defining
data validation rules, 101-102
noncontiguous ranges, 6
range names, 38-45
AutoComplete feature, 47
constants, 44-45
Name box, 39
Name Manager, 48
New Name dialog box, 40-41
scope, changing, 114-115
with worksheet text, 41-44
sheet-level names, 41
degree symbol, inserting, 148
deleting
custom formats, 85-86
range names, 51
ranges, 25
scenarios, 369
dependent workbook, 72
dependents, 12
selecting, 12-13
tracing, 125
descriptive statistics, 260-261
Descriptive Statistics tool (Analysis ToolPak), 279-281
Developer tab, displaying, 103
DGET() function, 321-322
dialog boxes
controls. See controls
Format Cells dialog box, 77
Go To Special dialog box, 9-13
shortcut keys, 13
New Name dialog box, 40-41
Zoom dialog box, 45
difference between two dates, calculating, 223

difference between two times, calculating, 231

difference summary calculation (PivotTables), 336-337

direct precedents, 12

discount formulas, 467-468, 472-477

 buying versus leasing, 471-472
 discounted payback period, calculating, 479
 exact undiscounted payback period, calculating, 478-479
 income investing versus rental property, 470-471
 internal rate of return, calculating, 479-482

 net present value, calculating, 473-477
 present value, calculating, 468-472
 simple undiscounted payback period, calculating, 477-478

discounted payback period, calculating, 479

displaying:
 Developer tab, 103
 formulas
 in cells, 65-66
 in worksheets, 65
 last update of workbook, 148
 scenarios, 365-366

division by zero, avoiding, 167

DOLLAR() function, 146-147

dynamic amortization schedules, building, 441-443

EDATE() function, 217

Edit mode, 55

editing
 data tables, 355
 range name coordinates, 49
 scenarios, 366-367

effective interest, 454-455

employee timesheet, building, 231-234

engines (Solver), 419

Enter mode, 55

EOMONTH() function, 217-218

equations, linear regression, 375-376

erroneous formula results, troubleshooting, 117-118

errors
 #DIV/0!, 112
 #N/A, 113
 #NAME?, 113-114
 #NULL!, 115
 #NUM!, 115
 #REF!, 115
 #VALUE!, 115-116
 handling with IFERROR(), 118-119
 in ranges
 counting, 188
 ignoring, 188-189

ERROR.TYPE() function, 184-185

evaluating formulas, 126

EVEN() function, 245

Evolutionary engine, 419

exact matches, finding, 200-201

exact undiscounted payback period, calculating, 478-479
exponential trends, 394-398
- forecasting, 396
 - with GROWTH() function, 396-398
 - plotting exponential trendline, 394

Extend mode, 6

extending linear trends
- with fill handle, 382
- with Series command, 383

external databases, building PivotTables from, 332

external references, 72-73
- source, changing, 74
- updating, 73-74

extracting
- first or last names, 156-158
- substrings, 152-153

extreme values, calculating, 264

F

fields, 328

fill handle
- AutoFill
 - creating series with, 15-16
 - custom AutoFill list, creating, 16-17
 - linear trends, extending, 382
 - ranges, filling, 15, 18

filling ranges, 14-20
- with fill handle, 15, 18
- with Flash Fill, 18-20

Filter button, 48

Filter lists, 300-302

filtering
- range names, 48-49
- tables
 - with complex criteria, 304-307
 - with computed criteria, 307-308
 - copying filtered data, 308-309
 - with Filter lists, 300-302
 - with quick filters, 302-303

financial formulas
- discount formulas, 467-468, 472-477
 - buying versus leasing, 471-472
 - discounted payback period, calculating, 479
 - exact undiscounted payback period, calculating, 478-479
 - income investing versus rental property, 470-471
 - internal rate of return, calculating, 479-482
 - net present value, calculating, 473-477
 - present value, calculating, 468-472
 - simple undiscounted payback period, calculating, 477-478

investment formulas, 453

loan formulas
- amortization schedules, building, 440-443
- loan payments, calculating, 435-440
- mortgages, 447-450
- term of loan, calculating, 443-445
- time value of money, 433-434

FIND() function, 155-156

finding
- exact matches, 200-201
- substrings, 155-158

first or last names, extracting, 156-158

FIXED() function, 147

fixed-rate amortization schedules, building, 440-441

Flash Fill, filling ranges with, 18-20

FLOOR.MATH() function, 243-244
forecasting
with linear regression, 381-385
forecasted values, plotting, 381
LINEST() function, 385
TREND() function, 384
linear trends, extending
with fill handle, 382
with Series command, 383
with nonlinear regression
GROWTH() function, 396-398
logarithmic trends, 400
LOGEST() function, 397-398
power trends, 402-403
with regression equation, 384
for seasonal sales model, case study, 386-393
deseasoned monthly values, calculating, 391-392
deseasoned trend, calculating, 392
forecast trends, calculating, 388-389
monthly seasonal indexes, computing, 390-391
normal trends, calculating, 387-388
reseasoned trend, calculating, 392
seasonal forecast, calculating, 393
seasonal trend, calculating, 389-390

Format Cells dialog box, 77

formatting
custom formats, deleting, 85-86
date and time formats, 83-85, 208-209
two-digit years, 209-210
ledger shading, 251-253
numeric formats, 74-82
changing, 75-78
condition values, 82
customizing, 78-81
selecting from lists, 76-77
symbols, 79
text, 146-148

formula bar, Name box, 39

formula error checker, 119-123
choosing an action, 120-121
options, setting, 121-123

formulas, 53-57
absolute reference format, 64
arithmetic formulas, 55
array constants, 91-92
array formulas, 88-91
circular references, 93-94
troubleshooting, 118
comparison formulas, 56-57
conditional formatting, applying, 171-172
converting to values, 66
copying, 62-63, 65
date and time formats, customizing, 84-85
displaying, 65-66
entering, 54-55
evaluating, 126
investment formulas, 453
compound interest, 454
effective interest, 454-455
nominal interest, 454-455
limits, 54
line breaks, creating, 54
loan formulas, 433
loan payments, calculating, 435-440
time value of money, 433-434
moving, 62-63
naming, 70
nudging, 54
order of precedence, 57-60
controlling, 58-60
PivotTable data, including, 347-348
range names
applying, 68-71
pasting, 67
referring to, 45-47
reference formulas, 57
relative reference format, 63-64
tables, referencing, 309-313
entering table formulas, 311-313
with table specifiers, 309-311
text formulas, 57
text functions
PROPER(), 145
RIGHT(), 153
troubleshooting, 111-112
erroneous results, 117-118
mismatched parentheses,
troubleshooting, 116-117
worksheet calculation, 60-61
manual calculation, 61
multithreaded calculation, 61

equation formats, 75
equation distributions, 270-276
bins, 270-271
FREQUENCY() function, 271-272
KURT() function, 275-276
NORMDIST() function, 272-274
SKEW() function, 274-275
FREQUENCY() function, 271-272
functions, 129-130
arrays, 91-92
date functions, 210-227
DATE(), 212-213
DATEDIF(), 224-225
DATEVALUE(), 213
DAY(), 214
DAYS(), 224
EDATE(), 217
EOMONTH(), 217-218
MONTH(), 213-214
NETWORKDAYS(), 225-226
TODAY(), 212
WEEKDAY(), 214
WEEKNUM(), 214-215
WORKDAY(), 216-217
YEAR(), 213
YEARFRAC(), 226-227
GROWTH(), 396-398
IFERROR(), 118-119
information functions, 181-189
CELL(), 182-184
ERROR.TYPE(), 184-185
INFO(), 186
IS(), 187-189
SHEET(), 186-187
SHEETS(), 186-187
Insert Function feature, 134-136
LINEST(), 378-380, 385
LOGEST(), 397-398
logical functions, 163-181
AND(), 168-169
combining with arrays, 173-178
IF(), 164-167, 174-175
OR(), 170-171
lookup functions, 191-192
CHOOSE(), 193-196
HLOOKUP(), 197-201
INDEX(), 202-206
MATCH(), 202-203
VLOOKUP(), 197-201
math functions, 237
CEILING.MATH(), 243-244
EVEN(), 245
FLOOR.MATH(), 243-244
INT(), 245-246
MOD(), 249-253
MROUND(), 242
ODD(), 245
RAND(), 253-256
RANDBETWEEN(), 256
ROUND(), 241
ROUNDDOWN(), 242-243
ROUNDUP(), 242-243
SUM(), 247-249
TRUNC(), 245-246
statistical functions, 257-258
AVERAGE(), 262
COUNT(), 261-262
FREQUENCY(), 271-272
KURT(), 275-276
LARGE(), 266-267
MAX(), 265
MEDIAN(), 262-263
MIN(), 265
MODE(), 263
NORMDIST(), 272-274
SKEW(), 274-275
SMALL(), 266-267
structure, 130-132
arguments, 131
syntax, 131-132
table functions, 313-323
AGGREGATE(), 315-316
AVERAGEIF(), 315
AVERAGEIFS(), 318-319
COUNTIF(), 313-314
COUNTIFS(), 317
daVERAGE(), 321
dGET(), 321-322
SUMIF(), 314
SUMIFS(), 318
text functions, 139
CHAR(), 141-143
CLEAN(), 150
CODE(), 144
COLUMN(), 158
DOLLAR(), 146-147
FIND(), 155-156
FIXED(), 147
LEFT(), 152
LOWER(), 145
MID(), 153
NOW(), 148
NUMBERVALUE(), 145-146
REPLACE(), 159
REPT(), 150-152
SEARCH(), 155-156
SUBSTITUTE(), 159-161
TEXT(), 147-148
TRIM(), 149
UPPER(), 145
time functions, 227-234
HOUR(), 229
MINUTE(), 229
NOW(), 228
SECOND(), 229
TIME(), 228
TIMEVALUE(), 228-229
tREND(), 376-377, 384
trigonometric functions, 13-15, 240
typing into formulas, 132-133
future value, calculating
of lump sum, 456-457
required initial deposit, 461
required interest rate, 458-459
required number of periods, 459-460
required regular deposit, 460
of series of deposits, 457
with varying interest rates, 461-462

G

generating
account numbers, 154-155, 161
ANSI character set, 141-143
letters, 143, 144
random numbers, 253-256
summary reports, 367-369
GETPIVOTDATA() function, 347-348
GIGO (garbage in, garbage out), 100
Go To Special dialog box, 9-13
options, 13
selecting cells with
adjacent cells, 10-11
by differences, 11-12
precedents, 12-13
by type, 10
shortcut keys, 13
Goal Seek, 355-362
algebraic equations, solving, 360-362
approximations, 358-360
break-even analysis, 360-361
optimizing product margin, 358-359
running, 356-358
grand totals, removing from
PivotTables, 334
GRG Nonlinear engine, 419
group boxes, 105
GROWTH() function, 396-398

H

hiding zeros, 82
highlight cell rules, 26-27
Histogram tool (Analysis ToolPak), 283-285
HLOOKUP() function, 197-201
holiday dates, calculating, 221-222
HOUR() function, 229

I

icon sets, adding to ranges, 33-35
identifying, leap years, 251
IF() function, 164-167, 174-175
nested IF() functions, 167-168
IFERROR() function, 118-119, 157
ignoring errors in ranges, 188-189
income investing versus rental property, 470-471
index summary calculation
(PivotTables), 341-343
INDEX() function, 202-206
indirect precedents, 12
INFO() function, 186
information functions. See function,
information functions
input modes, 54-55
Insert Function feature, 134-136
INT() function, 245-246
interest
calculating for loan payments, 437, 445-446
compound interest, 454
effective interest, 454-455
nominal interest, 454-455
internal rate of return, calculating, 479-482
intersection operator, 51-52
investment formulas, 453
 compound interest, 454
 effective interest, 454-455
 future value, calculating, 456-458
 required initial deposit, 461
 required interest rate, 458-459
 required number of periods, 459-460
 required regular deposit, 460
 with varying interest rates, 461-462
 nominal interest, 454-455
IRR() function, 480
IS() function, 187-189
items (PivotTable), 328
iteration, 93-94

J-K
Julian dates, calculating, 222
k values, 266-267
key combinations, for ANSI characters, 81
keyboard, selecting ranges with, 7
KURT() function, 275-276

L
labels, 328
LARGE() function, 266-267
Last Cell option (Go To Special dialog box), 13
last names, extracting, 156-158
layout (PivotTables), 328
leap years, identifying, 251
leasing versus buying, 471-472
ledger shading, creating, 251-253
LEFT() function, 152
letters, generating, 143, 144
limits of Excel 2016 formulas, 54
Limits report, 430-431
line breaks, creating, 54
line feeds, removing, 161
linear regression, 372-393
 best-fit lines, 373-381
 values, calculating with LINEST() function, 378-380
 values, calculating with TREND() function, 376-377
 extending linear trends
 with fill handle, 382
 with Series command, 383
 forecasting, 381-385
 forecasted values, plotting
 with LINEST() function, 385
 with regression equation, 384
 with TREND() function, 384
LINEST() function, 378-380, 385
links, 71-72
 source, changing, 74
 updating, 73-74
list boxes, 107-108
lists
 numeric formats, selecting, 76-77
 values
 checking for, 175-176
 determining position of, 177-178
loading
 Analysis ToolPak, 136-137
 Solver, 413
loan formulas, 433
 amortization schedules, building, 440-443
 dynamic amortization schedules, 441-443
 fixed-rate amortization schedules, 440-441
loan payments, calculating, 435-440
maximum principle, 446-447
mortgages, 447-450
term of loan, calculating, 443-445
time value of money, 433-434
loan payments, calculating
balloon loans, 436-437
cumulative principle and interest, 439-440
interest, 437, 445-446
maximum principle, 446-447
principal, 437-438
locating substrings, 155-158
logarithmic trends, 399-
forecast values, calculating, 400
logarithmic trendlines, plotting, 399
LOGEST() function, 397-398
logical functions. See functions, logical functions
logical tests, performing, 167-172
AND() function, 168-169
nested IF() functions, 167-168
slotting values into categories, 169-170
tiered bonuses, calculating, 168
lookup columns, 192
lookup functions. See functions, lookup functions
lookup tables, 192-193
LOWER() function, 145
lump sum, calculating future value of, 456-457
MATCH() function, 202-203
math functions. See functions, math functions
MAX() function, 265
maximum principle, calculating for loans, 446-447
measures of central tendency, 267
measures of variation, calculating
range, 268
standard deviation, 269-270
variance, 268-269
MEDIAN() function, 262-263
merging scenarios, 367
messages (Solver), 424-427
MID() function, 153
MIN() function, 265
MINUTE() function, 229
mismatched parentheses, troubleshooting, 116-117
MOD() function, 249-253
MODE() function, 263
models (Solver), 422-423
MONTH() function, 213-214
mortgages, 447-450
mouse, selecting ranges with, 6
moving formulas, 62-63
MROUND() function, 242
multiple regression, 372, 407-409
multisheet data, consolidating, 95-100
by category, 98-100
by position, 95-98
multithreaded calculation, 61

M

manipulating text, 149-155
manual calculation, 61
manually entering ranges, 6

N

Name box, 39
Name Manager, 48
naming formulas, 70
navigating with range names, 47-48
navigation keys for ranges, 14
negative cash flow, 472-473
negative values, summing, 249
nested IF() functions, 167-168
nesting, 54
net present value, calculating, 473-477
NETWORKDAYS() function, 225-226
New Name dialog box, 40-41
nominal interest, 454-455
noncontiguous ranges, selecting, 6
nonlinear regression, 393-407
 exponential trends, 394-398
 forecast values, calculating, 396
 GROWTH() function, 396-398
 LOGEST() function, 397-398
 plotting exponential trendline, 394-395
 logarithmic trends, 399
 forecast values, calculating, 400
 logarithmic trendlines, plotting, 399
 power trends, 401-403
 forecast values, calculating, 403
 power trendlines, plotting, 402
non-numeric values, checking for in ranges, 188
nonprintable characters, removing from strings, 150
NORMDIST() function, 272-274
NOW() function, 148, 228
NPER() function, 443-445
NPV() function, 474-475
NUMBERVALUE() function, 145-146
numeric formats, 74-82
 changing, 75-78
 condition values, 82
 customizing, 78-81
 selecting
 from lists, 76-77
 shortcut keys, 77
 symbols, 79
 zeros, hiding, 82
numeric series, creating with Autofill, 15-16

O

ODD() function, 245
one-input data table, setting up, 350-353
operators, controlling order of precedence, 57-60
option buttons, 105-106
options
 formula error checker, 121-123
 Go To Special dialog box, 13
OR() function, 170-171
order of precedence, 57-60
 controlling, 58-60
 parentheses, 59-60
overlapping cells, referring to, 51-52

P

padding cells, 150-151
parentheses
 controlling order of precedence, 59-60
 mismatched parentheses, troubleshooting, 116-117
parts of a time, returning, 229-231
pasting
 cell attributes, 22-23
 filtered table data to new location, 308-309
 range names, 48
 into formulas, 67
payback period, calculating, 477-479
percentage formats, 75
percentage summary calculation
(PivotTables), 337-340
performing
logical tests, 167-172
nested IF() functions, 167-168
slotting values into categories, 169-170
tiered bonuses, calculating, 168
PivotTables, 325-348
building, 329-333
from external database, 332
from a table or range, 329-332
calculated fields, creating, 344-345
calculated items, creating, 346-347
customizing, 333, 342
data field summary calculation, 299-309
difference summary calculation, 336-337
index summary calculation, 341-343
percentage summary calculation, 337-340
running total summary calculation, 340-341
data sources, 328
database analysis, 325-328
fields, 328
GETPIVOTDATA() function, 347-348
grand totals, hiding, 334
items, 328
labels, 328
layout, 328
results, using in worksheet formulas, 347-348
subtotal calculation, customizing, 334-335
planning tables, 291-292
plotting
best-fit trendlines, 373-374
exponential trendlines, 394-398
forecasted values, 381
logarithmic trendlines, 399-400
power trendlines, 401-402
Point mode, 55
polynomial regression, 372, 404-407
position of values in list, determining, 177-178
positive cash flow, 472-473
positive values, summing, 249
power trends, 401-403
forecast values, calculating, 403-404
power trendlines, plotting, 402
precedents, selecting, 12-13
preparing worksheets for scenarios, 363-364
present value, calculating, 468-472
price points, setting, 246
PROPER() function, 145
properties of tables, 291
PV() function, 469-470
quick filters, 302-303
random numbers, generating, 253-256
RAND() function, 253-256
RANDBETWEEN() function, 256
Random Number Generation tool
(Analysis ToolPak), 285-288
referring to range names. See also ranges

applying to formulas, 68-71
ignoring absolute/relative references, 68-69
using row and column names, 69-71
AutoComplete feature, 47
changing, 51
coordinates
adjusting, 49-51
editing, 49
defining, 38-45
constants, 44-45
Name box, 39
New Name dialog box, 40-41
scope, changing, 114-115
with worksheet text, 41-44
deleting, 51
filtering, 48-49
Name Manager, 48
navigating with, 47-48
pasting, 48
into formulas, 67
referring to, 45-47
restrictions, 38
sheet-level names, 46-47

ranges, 5
3D ranges, 7-8
creating, 7-8
blanks, counting, 187-188
clearing, 25
combining arithmetically, 23-24
conditional formatting, 25-35
color scales, 32-33
data bars, adding, 29-31
highlight cell rules, 26-27
icon sets, 33-35
top/bottom rules, 27-29

conditions, applying, 173
converting to tables, 292-294
counting occurrences of values in, 176
entering manually, 6
errors
counting, 188
ignoring, 188-189
filling, 14-20
with fill handle, 15, 18
with Flash Fill, 18-20
navigation keys, 14
noncontiguous ranges, selecting, 6
non-numeric values, checking for, 188
PivotTables, building from, 329-332
positive or negative values, summing, 249
selecting
with Go To command, 8-9
with keyboard, 7
with mouse, 6
Rank and Percentile tool (Analysis ToolPak), 288-289
records, sorting, 295-300
reference formulas, 57
references
as cell selection criteria, 12-13
circular references, 93-94
troubleshooting, 118
referencing
overlapping cells, 51-52
tables
entering table formulas, 309, 311-313
with table specifiers, 309-311
referring to range names, 45-47
regression analysis
linear regression, forecasting, 380-385
multiple regression, 407-409
nonlinear regression, 393-407
 exponential trends, 394-398
 logarithmic trends, 399
 power trends, 401-402
polynomial regression, 372, 404-407
selecting method of, 372
simple regression, 372
 performing on linear data, 372-393
relative reference format, 63-64
removing
 characters from strings, 160-161
 grand totals from PivotTables, 334
 line feeds, 161
 nonprintable characters from strings, 150
 scenarios, 369
 tracer arrows, 125
 unwanted characters from strings, 149-150
repeating strings, 150-152
REPLACE() function, 159
reports (Solver), 427-431
 Answer report, 427-428
 Limits report, 430-431
 Sensitivity report, 429-430
REPT() function, 150-152
resizing
 Name Box, 39
 tables, 295
restrictions for range names, 38
returning
 current time, 228
 nth occurrence of a weekday in a month, 218-221
 parts of a time, 229-231
Ribbon, displaying Developer tab, 103
RIGHT() function, 153
ROUND() function, 241
ROUNDDOWN() function, 242-243
rounding billable time, 247
ROUNDUP() function, 242-243
rows
 summing, 250-251
 transposing with columns, 24
rules, 25
 data-validation rules, applying to cells, 100-102
 highlight cell rules, creating, 26-27
 top/bottom rules, creating, 27-29
running total summary calculation (PivotTables), 340-341
saving solutions as scenarios, 418
scenarios, 362-369
 adding to worksheets, 364-365
 deleting, 369
 displaying, 365-366
 editing, 366-367
 merging, 367
 preparing worksheets for, 363-364
 summary reports, generating, 367-369
scientific formats, 75
scope of range names, defining, 114-115
scroll bars, 108-109
SEARCH() function, 155-156
SECOND() function, 229
selecting
 cells
 adjacent cells, 10-11
 by differences, 11-12
 precedents, 12-13
by reference, 12-13
by type, 10
numeric formats from lists, 76-77
ranges
 with Go To command, 8-9
 with keyboard, 7
 with mouse, 6
 noncontiguous ranges, 6
 regression method, 372
Sensitivity report, 429-430
sentence case, 153-154
serial numbers
 date serial numbers, 207
 time serial numbers, 207-208
series, creating
 with Autofill, 15-16
 with Series command, 20-21
Series command, 20-21
 linear trends, extending, 383-
series of deposits, calculating future value of, 457
SHEET() function, 186-187
sheet-level names, 46-47
 defining, 41
SHEETS() function, 186-187
shortcut keys. See also date and time formats, 84
 Go To Special operations, 13
 for selecting numeric formats, 77
simple regression, 372-381, 393
Simplex LP engine, 419
SKEW() function, 274-275
slotting values into categories, 169-170
SMALL() function, 266-267
solutions, saving as scenarios, 418
Solver, 411-416, 418-423
 advantages of, 412
 constraints, adding, 416-418
 controlling operation, 419-422
 engines, 419
 loading, 413
 messages, 424-427
 models, 422-423
 reports, 427-431
 Answer report, 427-428
 Limits report, 430-431
 Sensitivity report, 429-430
 solutions, saving as scenario, 418
 solving the transportation problem, 425-427
 when to use, 412-413
sorting
 tables, 295-300
 complex sorts, 296-297
 in natural order, 297-298
 on part of a field, 298-299
 without articles, 299-300
 values, 255-256
source of links, changing, 74
source workbook, 72
special formats, 75
spin boxes, 108-109
standard deviation, calculating, 269-270
statistical functions. See functions, statistical functions
statistical tools (Analysis ToolPak)
 Correlation tool, 281-283
 Descriptive Statistics tool, 279-281
 Histogram tool, 283-285
 Random Number Generation tool, 285-288
 Rank and Percentile tool, 288-289
strings
characters, removing, 160-161
converting
to lower case letters, 145
to proper case, 145
to upper case letters, 145
nonprintable characters, removing, 150
repeating, 150-152
substrings
extracting, 152-153
finding, 155-158
substituting, 158-161
unwanted characters, removing, 149-150
structure of functions, 130-132
arguments, 131
syntax, 131-132
STUBSTITUTE() function, 159-161
substituting substrings, 158-161
substrings
extracting, 152-153
finding, 155-158
substituting, 158-161
subtotal calculation (PivotTables),
customizing, 334-335
SUM() function, 247-249
SUMIF() function, 314
SUMIFS() function, 318
summary reports, generating, 367-369
summing
every nth row, 250-251
positive or negative values in a
range, 249
time values, 230-231
symbols for numeric formats, 79
syntax
for external references, 72
for functions, 131-132

T

table functions. See functions, table
functions
tables. See also basic table operations,
294-295
creating from ranges, 292-294
filtering
with complex criteria, 304-307
with computed criteria, 307-308
copying filtered data, 308-309
with Filter lists, 300-302
with quick filters, 302-303
PivotTables, building from, 329-332
planning, 291-292
properties, 291
referencing in formulas, 309-313
entering table formulas, 311-313
with table specifiers, 309-311
resizing, 295
sorting, 295-300
complex sorts, 296-297
in natural order, 297-298
on part of a field, 298-299
without articles, 299-300
values, looking up, 196-198
term of loan, calculating, 443-445
text. See also converting to sentence case,
153-154
formatting, 146-148
manipulating, 149-155
text formulas, 57
TEXT() function, 147-148
text functions. See functions, text functions
text series, creating with Autofill, 15-16
tiered bonuses, calculating, 168
time formats, 83-85
customizing, 84-85
shortcut keys, 84
TIME() function, 228
time functions. See functions, time functions
time serial numbers, 207-208
time value of money, 433-434
TIMEVALUE() function, 228-229
TODAY() function, 212
top/bottom rules, 27-29
tracers, 124-125
transposing rows and columns, 24
trend analysis, 380-381
case study, 386-393
deseasoned monthly values, calculating, 391-392
deseasoned trend, calculating, 392
forecast trends, calculating, 388-389
monthly seasonal indexes, computing, 390-391
normal trends, calculating, 387-388
reseasoned trend, calculating, 392
seasonal forecast, calculating, 393
seasonal trend, calculating, 389-390
TREND() function, 376-377, 384
trigonometric functions, 13-15
TRIM() function, 149
troubleshooting
with formula error checker, 119-123
choosing an action, 120-121
options, setting, 121-123
formulas, 111-112
circular references, 118
erroneous results, 117-118
mismatched parentheses, 116-117
with IFERROR() function, 118-119
TRUNC() function, 245-246
two-digit years, 209-210
two-input data table, setting up, 353-355
typing
formulas, 54-55
functions, 132-133
Insert Function feature, 134-136

U
unwanted characters, removing from strings, 149-150
updating links, 73-74
UPPER() function, 145

V
values
bins, 270-271
cell values, watching, 126-127
checking for in lists, 175-176
controls, linking to, 104
counting occurrences of in ranges, 176
creating from formulas, 66
error values. See errors
k values, 267
looking up in tables, 196-198
non-numeric, checking for, 188
position in list, determining, 177-178
slotting into categories, 169-170
sorting randomly, 255-256
summing, 247
variance, calculating, 268-269
Visible Cells Only option (Go To Special
dialog box), 13
VLOOKUP() function, 197-201

W

watching cell values, 126-127
WEEKDAY() function, 214
WEEKNUM() function, 214-215
weighted means, calculating, 263
what-if analysis, 349-355
 editing data tables, 355
 one-input data table, setting up, 350-353
 two-input data table, setting up, 353-355
when to use Solver, 412-413
workbooks
 external references, 72-73
 last update, displaying, 148
 linking, 71-72

WORKDAY() function, 216-217

worksheets
 3D ranges, 7-8
 auditing, 123-127
 tracers, 124-125
 auditing worksheets, evaluating
 formulas, 126
 calculation, 60
 controls. See controls
 formulas, displaying, 65
 range names with text, defining,
 41-44
 scenarios
 adding, 364-365
 preparing for, 363-364

X-Y-Z

YEAR() function, 213
YEARFRAC() function, 226-227
zeros
 division by zero, avoiding, 167
 hiding, 82
Zoom feature, 45