Contents at a Glance

<table>
<thead>
<tr>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1 The CISSP Certification Exam</td>
<td>17</td>
</tr>
<tr>
<td>CHAPTER 2 Logical Asset Security</td>
<td>27</td>
</tr>
<tr>
<td>CHAPTER 3 Physical Asset Security</td>
<td>71</td>
</tr>
<tr>
<td>CHAPTER 4 Security and Risk Management</td>
<td>115</td>
</tr>
<tr>
<td>CHAPTER 5 Security Engineering</td>
<td>175</td>
</tr>
<tr>
<td>CHAPTER 6 The Application and Use of Cryptography</td>
<td>233</td>
</tr>
<tr>
<td>CHAPTER 7 Communications and Network Security</td>
<td>295</td>
</tr>
<tr>
<td>CHAPTER 8 Identity and Access Management</td>
<td>373</td>
</tr>
<tr>
<td>CHAPTER 9 Security Assessment and Testing</td>
<td>425</td>
</tr>
<tr>
<td>CHAPTER 10 Security Operations</td>
<td>491</td>
</tr>
<tr>
<td>CHAPTER 11 Software Development Security</td>
<td>541</td>
</tr>
<tr>
<td>CHAPTER 12 Business Continuity Planning</td>
<td>587</td>
</tr>
<tr>
<td>Practice Exam I</td>
<td>631</td>
</tr>
<tr>
<td>Answers to Practice Exam I</td>
<td>645</td>
</tr>
<tr>
<td>Practice Exam II</td>
<td>661</td>
</tr>
<tr>
<td>Answers to Practice Exam II</td>
<td>675</td>
</tr>
<tr>
<td>Glossary</td>
<td>691</td>
</tr>
<tr>
<td>Index</td>
<td>729</td>
</tr>
</tbody>
</table>
Table of Contents

- **Introduction** .. 1

CHAPTER 1: The CISSP Certification Exam 17
- Introduction .. 18
- Assessing Exam Readiness 18
- Taking the Exam .. 19
- Examples of CISSP Test Questions 21
- Answer to Multiple-Choice Question 23
- Answer to Drag and Drop Question 23
- Answer to Hotspot Question 23
- Exam Strategy ... 24
- Question-Handling Strategies 25
- Mastering the Inner Game 26
- Need to Know More? .. 26

CHAPTER 2: Logical Asset Security 27
- Introduction .. 28
- Basic Security Principles 28
- Data Management: Determine and Maintain Ownership 30
 - Data Governance Policy 30
 - Roles and Responsibility 32
 - Data Ownership .. 33
 - Data Custodians .. 34
 - Data Documentation and Organization 35
 - Data Warehousing 35
 - Data Mining ... 35
 - Knowledge Management 36
- Data Standards ... 37
 - Data Lifecycle Control 37
 - Data Audit .. 37
 - Data Storage and Archiving 38
- Data Security, Protection, Sharing, and Dissemination 41
 - Privacy Impact Assessment 42
 - Information Handling Requirements 43
Data Retention and Destruction .. 44
Data Remanence and Decommissioning 45
Classifying Information and Supporting Assets 46
Data Classification .. 46
Asset Management and Governance 49
Software Licensing .. 50
Equipment Lifecycle .. 51
Determine Data Security Controls 52
Data at Rest ... 52
Data in Transit ... 54
Endpoint Security .. 56
Baselines ... 57
Laws, Standards, Mandates and Resources 58
United States Resources ... 60
International Resources ... 61
Exam Prep Questions .. 64
Answers to Exam Prep Questions 67
Need to Know More? .. 68

CHAPTER 3:
Physical Asset Security .. 71

Introduction .. 72
Physical Security Risks .. 72
Natural Disasters ... 73
Man-Made Threats ... 74
Technical Problems .. 75
Facility Concerns and Requirements 76
CPTED ... 76
Area Concerns .. 77
Location ... 78
Construction .. 78
Doors, Walls, Windows, and Ceilings 79
Asset Placement ... 82
Physical Port Controls .. 82
Perimeter Controls .. 83
Fences ... 83
Gates ... 84
Bollards ... 85
CHAPTER 4: Security and Risk Management

Introduction .. 116
Security Governance 116
 Third-Party Governance 118
 Organization Processes 119
Protection of Intellectual Property 121
Privacy Laws and Protection of Personal Information 121
Relevant Laws and Regulations 123
United States Legal System and Laws 123
International Legal Systems and Laws 124
Computer Crime and Hackers 125
 Sexual Harassment 128
Risk Management Concepts 128
 Risk Management Frameworks 129
 Risk Assessment 130
Contents

Countermeasure Selection .. 146
Develop and Implement Security Policy 149
 Security Policy .. 150
 Standards .. 152
 Baselines .. 152
 Guidelines ... 153
 Procedures ... 153
Types of Controls .. 154
 Administrative Controls ... 154
 Technical Controls .. 155
 Physical Controls ... 155
 Access Control Categories .. 155
Implement Personnel Security ... 156
 New-Hire Agreements and Policies 157
 Separation of Duties .. 157
 Job Rotation .. 158
 Least Privilege .. 158
 Mandatory Vacations ... 159
 Termination .. 159
Security Education, Training, and Awareness 160
 Security Awareness .. 161
 Social Engineering ... 162
Professional Ethics Training and Awareness 163
 ISC² Code of Ethics .. 164
 Computer Ethics Institute .. 165
 Internet Architecture Board 165
 NIST SP 800-14 ... 166
 Common Computer Ethics Fallacies 167
 Regulatory Requirements for Ethics Programs 167
Exam Prep Questions .. 169
Answers to Exam Prep Questions 172
Need to Know More? ... 173

CHAPTER 5: Security Engineering ... 175

 Introduction .. 176
 Fundamental Concepts of Security Models 176
 Central Processing Unit ... 176
 Storage Media ... 181
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Bus Standards</td>
<td>183</td>
</tr>
<tr>
<td>Virtual Memory and Virtual Machines</td>
<td>184</td>
</tr>
<tr>
<td>Computer Configurations</td>
<td>186</td>
</tr>
<tr>
<td>Security Architecture</td>
<td>187</td>
</tr>
<tr>
<td>Protection Rings</td>
<td>187</td>
</tr>
<tr>
<td>Trusted Computer Base</td>
<td>189</td>
</tr>
<tr>
<td>Open and Closed Systems</td>
<td>192</td>
</tr>
<tr>
<td>Security Modes of Operation</td>
<td>193</td>
</tr>
<tr>
<td>Operating States</td>
<td>194</td>
</tr>
<tr>
<td>Recovery Procedures</td>
<td>195</td>
</tr>
<tr>
<td>Process Isolation</td>
<td>195</td>
</tr>
<tr>
<td>Common Formal Security Models</td>
<td>196</td>
</tr>
<tr>
<td>State Machine Model</td>
<td>197</td>
</tr>
<tr>
<td>Information Flow Model</td>
<td>199</td>
</tr>
<tr>
<td>Noninterference Model</td>
<td>199</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>199</td>
</tr>
<tr>
<td>Integrity</td>
<td>202</td>
</tr>
<tr>
<td>Other Models</td>
<td>205</td>
</tr>
<tr>
<td>Product Security Evaluation Models</td>
<td>206</td>
</tr>
<tr>
<td>The Rainbow Series</td>
<td>207</td>
</tr>
<tr>
<td>Information Technology Security Evaluation Criteria</td>
<td>210</td>
</tr>
<tr>
<td>Common Criteria</td>
<td>210</td>
</tr>
<tr>
<td>System Validation</td>
<td>213</td>
</tr>
<tr>
<td>Certification and Accreditation</td>
<td>213</td>
</tr>
<tr>
<td>Security Guidelines and Governance</td>
<td>214</td>
</tr>
<tr>
<td>Enterprise Architecture</td>
<td>215</td>
</tr>
<tr>
<td>Regulatory Compliance and Process Control</td>
<td>218</td>
</tr>
<tr>
<td>Vulnerabilities of Security Architectures</td>
<td>218</td>
</tr>
<tr>
<td>Buffer Overflow</td>
<td>219</td>
</tr>
<tr>
<td>Back Doors</td>
<td>220</td>
</tr>
<tr>
<td>State Attacks</td>
<td>220</td>
</tr>
<tr>
<td>Covert Channels</td>
<td>220</td>
</tr>
<tr>
<td>Incremental Attacks</td>
<td>221</td>
</tr>
<tr>
<td>Emanations</td>
<td>222</td>
</tr>
<tr>
<td>Web-based Vulnerabilities</td>
<td>223</td>
</tr>
<tr>
<td>Mobile System Vulnerabilities</td>
<td>225</td>
</tr>
<tr>
<td>Exam Prep Questions</td>
<td>227</td>
</tr>
</tbody>
</table>
Contents

Answers to Exam Prep Questions .. 230
Need to Know More? ... 231

CHAPTER 6:
The Application and Use of Cryptography 233

Introduction .. 234
Cryptographic Basics ... 234
History of Encryption ... 237
Steganography .. 243
 Steganography Operation .. 244
 Digital Watermark ... 245
Algorithms .. 246
Cipher Types and Methods ... 247
Symmetric Encryption ... 249
 Data Encryption Standard .. 252
 Triple-DES ... 255
 Advanced Encryption Standard (AES) 257
 International Data Encryption Algorithm 258
 Rivest Cipher Algorithms .. 258
Asymmetric Encryption ... 259
 Diffie-Hellman ... 261
 RSA ... 262
 El Gamal ... 263
 Elliptical Curve Cryptosystem .. 263
 Merkle-Hellman Knapsack ... 264
 Review of Symmetric and Asymmetric Cryptographic Systems 264
Hybrid Encryption ... 265
Integrity and Authentication .. 266
 Hashing and Message Digests ... 267
 Digital Signatures .. 270
 Cryptographic System Review ... 272
Public Key Infrastructure ... 272
 Certificate Authority ... 272
 Registration Authority ... 273
 Certificate Revocation List ... 273
 Digital Certificates .. 274
 The Client’s Role in PKI ... 276
Table of Contents

CISSP Exam Cram

Email Protection Mechanisms .. 277
Pretty Good Privacy .. 278
Other Email Security Applications 278
Securing TCP/IP with Cryptographic Solutions 279
 Application/Process Layer Controls 280
 Host to Host Layer Controls 280
 Internet Layer Controls .. 282
 Network Access Layer Controls 283
 Link and End-to-End Encryption 284
Cryptographic Attacks .. 285
Exam Prep Questions .. 289
Answers to Exam Prep Questions 292
Need to Know More? ... 293

CHAPTER 7: Communications and Network Security 295

Introduction .. 296
Secure Network Design .. 296
Network Models and Standards 296
 OSI Model ... 297
 Encapsulation/De-encapsulation 303
TCP/IP ... 304
 Network Access Layer ... 305
 Internet Layer ... 306
 Host-to-Host (Transport) Layer 311
 Application Layer ... 314
LANs and Their Components .. 318
 LAN Communication Protocols 318
 Network Topologies .. 319
 LAN Cabling .. 322
 Network Types .. 325
 Network Storage .. 325
Communication Standards .. 327
Network Equipment .. 328
 Repeaters ... 328
 Hubs ... 328
 Bridges .. 328
 Switches .. 329
 Mirrored Ports and Network Taps 330
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLANs</td>
<td>331</td>
</tr>
<tr>
<td>Routers</td>
<td>332</td>
</tr>
<tr>
<td>Gateways</td>
<td>333</td>
</tr>
<tr>
<td>Routing</td>
<td>333</td>
</tr>
<tr>
<td>WANs and Their Components</td>
<td>336</td>
</tr>
<tr>
<td>Packet Switching</td>
<td>336</td>
</tr>
<tr>
<td>Circuit Switching</td>
<td>337</td>
</tr>
<tr>
<td>Cloud Computing</td>
<td>341</td>
</tr>
<tr>
<td>Voice Communications and Wireless Communications</td>
<td>342</td>
</tr>
<tr>
<td>Voice over IP</td>
<td>343</td>
</tr>
<tr>
<td>Cell Phones</td>
<td>344</td>
</tr>
<tr>
<td>802.11 Wireless Networks and Standards</td>
<td>346</td>
</tr>
<tr>
<td>Network Access Control Devices</td>
<td>355</td>
</tr>
<tr>
<td>Firewalls</td>
<td>355</td>
</tr>
<tr>
<td>Demilitarized Zone</td>
<td>357</td>
</tr>
<tr>
<td>Firewall Design</td>
<td>359</td>
</tr>
<tr>
<td>Remote Access</td>
<td>359</td>
</tr>
<tr>
<td>Point-to-Point Protocol</td>
<td>360</td>
</tr>
<tr>
<td>Remote Authentication Dial-in User Service</td>
<td>362</td>
</tr>
<tr>
<td>Terminal Access Controller Access Control System</td>
<td>362</td>
</tr>
<tr>
<td>IPsec</td>
<td>362</td>
</tr>
<tr>
<td>Message Privacy and Multimedia Collaboration</td>
<td>364</td>
</tr>
<tr>
<td>Exam Prep Questions</td>
<td>366</td>
</tr>
<tr>
<td>Answers to Exam Prep Questions</td>
<td>370</td>
</tr>
<tr>
<td>Need to Know More?</td>
<td>371</td>
</tr>
</tbody>
</table>

CHAPeR 8: **Identity and Access Management** 373

Introduction	374
Identification, Authentication, and Authorization of People and Devices	375
Authentication Techniques	376
Identity Management Implementation	391
Single Sign-On	392
Kerberos	393
Sesame	396
Authorization and Access Control Techniques	397
Discretionary Access Control	397
Mandatory Access Control	398
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eavesdropping and Shoulder Surfing</td>
<td>453</td>
</tr>
<tr>
<td>Identity Theft</td>
<td>453</td>
</tr>
<tr>
<td>Social-based Threats and Attack Techniques</td>
<td>454</td>
</tr>
<tr>
<td>Malicious Software Threats and Attack Techniques</td>
<td>456</td>
</tr>
<tr>
<td>Viruses</td>
<td>456</td>
</tr>
<tr>
<td>Worms</td>
<td>457</td>
</tr>
<tr>
<td>Logic Bombs</td>
<td>457</td>
</tr>
<tr>
<td>Backdoors and Trojans</td>
<td>458</td>
</tr>
<tr>
<td>Rootkits</td>
<td>461</td>
</tr>
<tr>
<td>Crimeware Kits</td>
<td>461</td>
</tr>
<tr>
<td>Advanced Persistent Threats</td>
<td>462</td>
</tr>
<tr>
<td>Ransomware</td>
<td>462</td>
</tr>
<tr>
<td>How Computer Crime Has Changed</td>
<td>464</td>
</tr>
<tr>
<td>Well-Known Computer Crimes and Criminals</td>
<td>465</td>
</tr>
<tr>
<td>Investigating Computer Crime</td>
<td>466</td>
</tr>
<tr>
<td>Computer Crime Jurisdiction</td>
<td>467</td>
</tr>
<tr>
<td>Incident Response</td>
<td>467</td>
</tr>
<tr>
<td>Forensics</td>
<td>472</td>
</tr>
<tr>
<td>Standardization of Forensic Procedures</td>
<td>473</td>
</tr>
<tr>
<td>Computer Forensics</td>
<td>474</td>
</tr>
<tr>
<td>Investigations</td>
<td>479</td>
</tr>
<tr>
<td>Search, Seizure, and Surveillance</td>
<td>479</td>
</tr>
<tr>
<td>Interviews and Interrogations</td>
<td>480</td>
</tr>
<tr>
<td>Honeypots and Honeynets</td>
<td>480</td>
</tr>
<tr>
<td>Evidence Types</td>
<td>481</td>
</tr>
<tr>
<td>Trial</td>
<td>482</td>
</tr>
<tr>
<td>The Evidence Life-Cycle</td>
<td>483</td>
</tr>
<tr>
<td>Exam Prep Questions</td>
<td>484</td>
</tr>
<tr>
<td>Answers to Exam Prep Questions</td>
<td>487</td>
</tr>
<tr>
<td>Need to Know More?</td>
<td>488</td>
</tr>
</tbody>
</table>

CHAPTER 10: Security Operations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>491</td>
</tr>
<tr>
<td>Foundational Security Operations Concepts</td>
<td>492</td>
</tr>
<tr>
<td>Managing Users and Accounts</td>
<td>492</td>
</tr>
<tr>
<td>Privileged Entities</td>
<td>493</td>
</tr>
<tr>
<td>Controlling Access</td>
<td>495</td>
</tr>
<tr>
<td>Clipping Levels</td>
<td>496</td>
</tr>
</tbody>
</table>
Resource Protection .. 496
Due Care and Due Diligence 496
Asset Management ... 497
System Hardening ... 497
Change and Configuration Management 498
Trusted Recovery ... 500
Remote Access .. 502
Media Management, Retention, and Destruction 502
Telecommunication Controls 503
Cloud Computing ... 503
Email ... 504
Whitelisting, Blacklisting, and Graylisting 506
Fax ... 506
PBX ... 507
Anti-malware ... 509
Honeypots and Honeynets 510
Patch Management ... 511
System Resilience, Fault Tolerance, and Recovery Controls 511
Backups .. 511
Fault Tolerance .. 513
RAID .. 514
Recovery Controls ... 516
Monitoring and Auditing Controls 518
Auditing User Activity 519
Monitoring Application Transactions 520
Security Information and Event Management (SIEM) ... 521
Network Access Control 522
Keystroke Monitoring ... 523
Emanation Security ... 524
Controlling Physical Access 524
Intrusion Detection Systems 525
Network-Based Intrusion Detection Systems 526
Host-Based Intrusion-Detection Systems 527
Signature-Based, Anomaly-Based, and Rule-Based IDS Engines ... 527
Intrusion Prevention Systems 530
Responding to Operational Security Incidents 530
Incident Response ... 530
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses</td>
<td>576</td>
</tr>
<tr>
<td>Worms</td>
<td>577</td>
</tr>
<tr>
<td>Exam Prep Questions</td>
<td>579</td>
</tr>
<tr>
<td>Answers to Exam Prep Questions</td>
<td>583</td>
</tr>
<tr>
<td>Need to Know More?</td>
<td>585</td>
</tr>
<tr>
<td>CHAPTER 12: Business Continuity Planning</td>
<td>587</td>
</tr>
<tr>
<td>Introduction</td>
<td>588</td>
</tr>
<tr>
<td>Threats to Business Operations</td>
<td>588</td>
</tr>
<tr>
<td>Business Continuity Planning (BCP)</td>
<td>589</td>
</tr>
<tr>
<td>Project Management and Initiation</td>
<td>591</td>
</tr>
<tr>
<td>Business Impact Analysis</td>
<td>593</td>
</tr>
<tr>
<td>Recovery Strategy</td>
<td>599</td>
</tr>
<tr>
<td>Plan Design and Development</td>
<td>615</td>
</tr>
<tr>
<td>Implementation</td>
<td>618</td>
</tr>
<tr>
<td>Testing</td>
<td>619</td>
</tr>
<tr>
<td>Monitoring and Maintenance</td>
<td>621</td>
</tr>
<tr>
<td>Exam Prep Questions</td>
<td>623</td>
</tr>
<tr>
<td>Answers to Exam Prep Questions</td>
<td>627</td>
</tr>
<tr>
<td>Need to Know More?</td>
<td>629</td>
</tr>
<tr>
<td>Practice Exam I</td>
<td>631</td>
</tr>
<tr>
<td>Answers to Practice Exam I</td>
<td>645</td>
</tr>
<tr>
<td>Practice Exam II</td>
<td>661</td>
</tr>
<tr>
<td>Answers to Practice Exam II</td>
<td>675</td>
</tr>
<tr>
<td>Glossary</td>
<td>691</td>
</tr>
<tr>
<td>Index</td>
<td>729</td>
</tr>
</tbody>
</table>
About the Author

As the CEO of Superior Solutions, Inc., a Houston-based IT security consulting and auditing firm, Michael Gregg has more than 20 years of experience in information security and risk management. He holds two associate’s degrees, a bachelor’s degree, and a master’s degree. Some of the certifications he holds include CISSP, SSCP, MCSE, CTT+, A+, N+, Security+, CASP, CCNA, GSEC, CEH, CHFI, CEI, CISA, CISM, and CGEIT.

In addition to his experience with performing security audits and assessments, Gregg has authored or coauthored more than 20 books, including Certified Ethical Hacker Exam Prep (Que), CISSP Exam Cram 2 (Que), and Security Administrator Street Smarts (Sybex). He has testified before U.S. Congress, his articles have been published on IT websites, and he has been sourced as an industry expert for CBS, ABC, CNN, Fox News and the New York Times. He has created more than 15 security-related courses and training classes for various companies and universities. Although audits and assessments are where he spends the bulk of his time, teaching and contributing to the written body of IT security knowledge are how Michael believes he can give something back to the community that has given him so much.

He is a board member for Habitat for Humanity and when not working, Michael enjoys traveling and restoring muscle cars.
About the Technical Reviewers

Chris Crayton (MCSE) is an author, technical consultant, and trainer. He has worked as a computer technology and networking instructor, information security director, network administrator, network engineer, and PC specialist. Chris has authored several print and online books on PC repair, CompTIA A+, CompTIA Security+, and Microsoft Windows. He has also served as technical editor and content contributor on numerous technical titles for several of the leading publishing companies. He holds numerous industry certifications, has been recognized with many professional teaching awards, and has served as a state-level SkillsUSA competition judge.

Michael Angelo During his tenure in security he was responsible for the secure development, implementation, and deployment of products. This included driving the creation of security solutions, policies and procedures, threat modeling and product analysis exercises, practical encryption techniques, biometric and token access authentication technology, common criteria certifications, and residual risk management scoring methodologies.

Amongst his accomplishments, Michael has 57 U.S. patents, was recognized by the City of Houston as the “2003 Inventor of the Year,” and is a former Sigma-Xi distinguished lecturer. In 2011, he was named ISSA Security Professional of the Year and in 2013 was added to the ISSA Hall of Fame.
Dedication

I dedicate this book to my godson, Alexander Bucio.
May his life be filled with success and happiness. Mucho gusto!

Acknowledgments

I would like to thank my wife, Christine, for understanding the long hours such a project entails. Also, thanks to Michelle Newcomb and the entire Pearson crew.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com
Mail: Pearson IT Certification
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA
Reader Services

Register your copy of *CISSP Exam Cram* at www.pearsonitcertification.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to www.pearsonitcertification.com/register and log in or create an account*. Enter the product ISBN 9780789755537 and click Submit. When the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
This page intentionally left blank
Introduction

Welcome to CISSP® Exam Cram! This book covers the CISSP certification exam. Whether this is your first or your fifteenth Exam Cram, you’ll find information here and in Chapter 1 that will ensure your success as you pursue knowledge, experience, and certification. This introduction explains the ISC² certification programs in general and talks about how the Exam Cram series can help you prepare for the CISSP exam.

This book is one of the Exam Cram series of books and will help by getting you on your way to becoming an ISC² Certified Information Systems Security Professional (CISSP).

This introduction discusses the basics of the CISSP exam. Included are sections covering preparation, how to take an exam, a description of this book’s contents, how this book is organized, and, finally, author contact information.

Each chapter in this book contains practice questions. There are also two full-length practice exams at the end of the book. Practice exams in this book should provide an accurate assessment of the level of expertise you need to obtain to pass the test. Answers and explanations are included for all test questions. It is best to obtain a level of understanding equivalent to a consistent pass rate of at least 95% on the practice questions and exams in this book before you attempt the real exam.

Let’s begin by looking at preparation for the exam.

How to Prepare for the Exam

Preparing for the CISSP exam requires that you obtain and study materials designed to provide comprehensive information about security. The following list of materials will help you study and prepare:

▶ The ISC² website at www.isc2.org
▶ The exam outline available at the ISC² website

Many people form study groups, attend seminars, and attend training classes to help them study for and master the material needed to pass the CISSP exam.
Practice Tests
You don’t need to know much about practice tests, other than that they are a worthwhile expense for three reasons:

▶ They help you diagnose areas of weakness.
▶ They are useful for getting used to the format of questions.
▶ They help you to decide when you are ready to take the exam.

This book contains questions at the end of each chapter and includes two full-length practice tests. However, if you still want more, a related Exam Cram CISSP Practice Questions book has more than 500 additional questions. Many other companies provide CISSP certification practice tests, flash cards, and aids as well.

Taking a Certification Exam
When you have prepared for the exam, you must register with ISC² to take the exam. The CISSP exam is given at Pearson VUE testing centers. ISC² has implemented regional pricing: As an example, as of the publication of this book registration is $599 in the United States. Check the Pearson VUE website at www.pearsonvue.com to get specific details.

After you register, you will receive a confirmation notice. Some locations may have limited test centers available, which means that you should schedule your exam in advance to make sure you can get the specific date and time you would like.

Arriving at the Exam Location
As with any examination, arrive at the testing center early. Be prepared! You will need to bring the confirmation letter and identification, such as a driver’s license, green card, or passport. Any photo ID will suffice. Two forms of ID are usually required. The testing center staff requires proof that you are who you say you are and that someone else is not taking the test for you. Arrive early because if you are late, you will be barred from entry and will not receive a refund for the cost of the exam.
You’ll be spending a lot of time in the exam room. The total test time is six hours, so eat a good breakfast. Policies differ from location to location regarding bathroom breaks—check with the testing center before beginning the exam.

In the Testing Center

You will not be allowed to take study materials or anything else into the examination room with you that could raise suspicion that you’re cheating. This includes practice test material, books, exam prep guides, or other test aids.

After the Exam

Examination results are available after the exam. If you pass the exam, you will simply receive a passing grade—your exact score will not be provided. Candidates who do not pass will receive a complete breakdown on their score by domain. This allows those individuals to see what areas they are weak in.

Retaking a Test

If you fail the exam, you must wait at least 30 days to take it again. Each of the ten domains will be shown, with your score in each. As an example, you may have received a 95% score in the Communications and Network Security domain and only 12% in Asset Security. Use this feedback to better understand what areas you were weak in and where to spend your time and effort in your studies. Additionally, invest in some practice tests if you have not already done so. There is much to be said for getting used to a testing format.

Tracking Your CISSP Status

When you pass the exam, you still need to attest to the CISSP code of ethics and have an existing CISSP complete an endorsement form for you.

When you pass the exam, you will next be required to complete an endorsement form. The endorsement form must be completed by someone who can attest to your professional experience and who is an active CISSP in good standing. If you don’t know anyone who is CISSP-certified, ISC² allows endorsements from other professionals who are certified, licensed, or
commissioned, and an officer of the corporation where you are employed. You can review complete information on the endorsement form at the ISC² website.

About This Book

The ideal reader for an *Exam Cram* book is someone seeking certification. However, it should be noted that an *Exam Cram* book is an easily readable, rapid presentation of facts. Therefore, an *Exam Cram* book is also extremely useful as a quick reference manual.

Most people seeking certification use multiple sources of information. Check out the links at the end of each chapter to get more information about subjects you’re weak in. Various security books from retailers also describe the topics in this book in much greater detail. Don’t forget that many have described the CISSP exam as being a “mile wide.”

This book includes other helpful elements in addition to the actual logical, step-by-step learning progression of the chapters themselves. *Exam Cram* books use elements such as exam alerts, tips, notes, and practice questions to make information easier to read and absorb.

Note

Reading this book from start to finish is not necessary; this book is set up so that you can quickly jump back and forth to find sections you need to study.

Use the *Cram Sheet* to remember last-minute facts immediately before the exam. Use the practice questions to test your knowledge. You can always brush up on specific topics in detail by referring to the table of contents and the index. Even after you achieve certification, you can use this book as a rapid-access reference manual.

The Chapter Elements

Each *Exam Cram* book has chapters that follow a predefined structure. This structure makes *Exam Cram* books easy to read and provides a familiar format for all *Exam Cram* books. The following elements typically are used:

- Opening hotlists
- Chapter topics
Introduction

▶ Exam Alerts
▶ Notes
▶ Tips
▶ Sidebars
▶ Cautions
▶ Exam preparation practice questions and answers
▶ A “Need to Know More?” section at the end of each chapter

Now let’s look at each of the elements in detail.

▶ Opening hotlists—The start of every chapter contains a list of terms you should understand. A second hotlist identifies all the techniques and skills covered in the chapter.

▶ Chapter topics—Each chapter contains details of all subject matter listed in the table of contents for that particular chapter. The objective of an Exam Cram book is to cover all the important facts without giving too much detail; it is an exam cram. When examples are required, they are included.

▶ Exam Alerts—Exam Alerts address exam-specific, exam-related information. An Exam Alert addresses content that is particularly important, tricky, or likely to appear on the exam. An Exam Alert looks like this:

ExamAlert
Make sure you remember the different ways in which DES can be implemented and that ECB is considered the weakest form of DES.

▶ Notes—Notes typically contain useful information that is not directly related to the current topic under consideration. To avoid breaking up the flow of the text, they are set off from the regular text.
This is a note. You have already seen several notes.

Tips—Tips often provide shortcuts or better ways to do things.

Tip
A clipping level is the point at which you set a control to distinguish between activity that should be investigated and activity that should not be investigated.

Sidebars—Sidebars are longer and run beside the text. They often describe real-world examples or situations.

How Caller ID Can Be Hacked
Sure, we all trust caller ID, but some Voice over IP (VoIP) providers allow users to inject their own call party number (CPN) into the call. Because VoIP is currently outside FCC regulation, these hacks are now possible.

Cautions—Cautions apply directly to the use of the technology being discussed in the Exam Cram. For example, a Caution might point out that the CER is one of the most important items to examine when examining biometric devices.

Caution
The crossover error rate (CER) is the point at which Type 1 errors and Type 2 errors intersect. The lower the CER is, the more accurate the device is.

Exam preparation practice questions—At the end of every chapter is a list of at least 10 exam practice questions similar to those in the actual exam. Each chapter contains a list of questions relevant to that chapter, including answers and explanations. Test your skills as you read.

“Need to Know More?” section—This section at the end of each chapter describes other relevant sources of information. With respect to this chapter, the best place to look for CISSP certification information is at the ISC2 website, www.ISC2.org.
Other Book Elements

Most of this *Exam Cram* book on CISSP follows the consistent chapter structure already described. However, there are various, important elements that are not part of the standard chapter format. These elements apply to the entire book as a whole.

▶ **Practice exams**—In addition to exam-preparation questions at the end of each chapter, two full practice exams are included at the end of the book.

▶ **Answers and explanations for practice exams**—These follow each practice exam, providing answers and explanations to the questions in the exams.

▶ **Glossary**—The glossary contains a listing of important terms used in this book with explanations.

▶ **Cram Sheet**—The Cram Sheet is a quick-reference, tear-out cardboard sheet of important facts useful for last-minute preparation. Cram Sheets often include a simple summary of facts that are most difficult to remember.

▶ **Companion website**—The companion website contains the Pearson IT Certification Practice Test engine, which provides multiple test modes that you can use for exam preparation. The practice tests are designed to appropriately balance the questions over each technical area (domain) covered by the exam. All concepts from the actual exam are covered thoroughly to ensure you’re prepared for the exam.

Chapter Contents

The following list provides an overview of the chapters.

▶ **Chapter 1, “The CISSP Certification Exam”**—This chapter introduces exam strategies and considerations.

▶ **Chapter 2, “Logical Asset Security”**—This chapter discusses logical security and the countermeasures available for protecting an organization’s resources. Key topics include CIA, data classification, and control of an organization’s assets from creation to destruction.

▶ **Chapter 3, “Physical Asset Security”**—This chapter discusses physical security and the importance of providing physical protection for an organization’s resources. Physical security plays a key role in securing an organization’s assets. Without effective physical security, there can be no effective security structure at all.
Chapter 4, “Security and Risk Management”—This chapter discusses asset management and the protection of critical resources. Quantitative and qualitative risk assessment are two major topics of this chapter. Readers must understand how these concepts are used to assess and measure risk while reducing threats to the organization. Key concepts include the development of policies, procedures, guidelines, and assorted controls.

Chapter 5, “Security Engineering”—This chapter discusses key concepts such as computer hardware, operating system design, security models (Biba, Bell-LaPadula, Clark-Wilson, etc.) and documentation used to verify, certify, and accredit systems and networks.

Chapter 6, “The Application and Use of Cryptography”—This chapter discusses the methods and systems used to encrypt and protect data. Symmetric, asymmetric, and hashing algorithms are introduced, along with PKI and cryptographic methods of attack.

Chapter 7, “Communication and Network Security”—This chapter discusses telecommunication technology. Items such as the OSI model, TCP/IP, network equipment, LAN, MAN, and WAN protocols, and wireless technologies are just a few of the technologies discussed. This is an expansive domain and covers a lot of information for the CISSP candidate to master.

Chapter 8, “Identity and Access Management”—This chapter covers the basics of access control. It addresses the three A’s: authentication, authorization, and accountability. Items like identification, single sign-on, centralized authentication, and federation are discussed.

Chapter 9, “Security Assessment and Testing”—This chapter discusses security assessments, ethical hacking, and vulnerability scanning. It also reviews common types of malware and various attack methodologies.

Chapter 10, “Security Operations”—This chapter covers operation controls—that is, the types of controls that the organization can implement. Topics such as background checks, dual controls, mandatory vacations, rotation of duties, and auditing are introduced.

Chapter 11, “Software Development Security”—This chapter discusses databases, the system development life cycle, and the importance of building security into applications and systems as early as possible during the development process. Project management is reviewed, as are malicious code, knowledge-based systems, and application issues.
Chapter 12, “Business Continuity Planning”—This chapter covers all the aspects of the BCP process. Although some may discount the importance of this domain, storms, floods, hurricanes, earthquakes, and other natural disasters should demonstrate the criticality of this domain. This chapter addresses key elements of disaster recovery. One important item is that no demonstrated recovery exists until the business continuity plan has been tested. Exam candidates must understand what is needed to prevent, minimize, and recover from disasters.

Practice Exam I—This is a full-length practice exam.

Answers to Practice Exam I—This element contains the answers and explanations for the first practice exam.

Practice Exam II—This is a second full-length practice exam.

Answers to Practice Exam II—This element contains the answers and explanations for the second practice exam.

Companion Website

Register this book to get access to the Pearson IT Certification test engine and other study materials, plus additional bonus content. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam. Be sure to check the box that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow the steps below:

1. Go to www.pearsonITcertification.com/register and log in or create a new account.
2. Enter the ISBN: 9780789757142.
3. Answer the challenge question as proof of purchase.
4. Click on the “Access Bonus Content” link in the Registered Products section of your account page, to be taken to the page where your downloadable content is available.

Please note that many of our companion content files can be very large, especially image and video files.
If you are unable to locate the files for this title by following the steps at left, please visit www.pearsonITcertification.com/contact and select the “Site Problems/Comments” option. Our customer service representatives will assist you.

Pearson IT Certification Practice Test Engine and Questions

The companion site includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice questions. Using the Pearson IT Certification Practice Test engine, you can either study by going through the questions in Study Mode, or take a simulated exam that mimics real exam conditions.

The installation process requires two major steps: installing the software and then activating the exam. The website has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam—the database of exam questions—is not on this site.

Note

The cardboard case in the back of this book includes a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. Also included on the paper is a unique, one-time use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Install the Software

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows Virtual Machine, but it was built specifically for the Windows platform. The minimum system requirements are:

- Windows 10, Windows 8.1, or Windows 7
- Microsoft .NET Framework 4.5 Client
- Pentium class 1 GHz processor (or equivalent)
- 512 MB RAM
Introduction

▶ 650 MB disc space plus 50 MB for each downloaded practice exam
▶ Access to the Internet to register and download exam databases

The software installation process is pretty routine compared to other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the access code card sleeve in the back of the book.

The following steps outline the installation process:

1. Download the exam practice test engine from the companion site.
2. Respond to Windows prompts as with any typical software installation process.

The installation process will give you the option to activate your exam with the activation code supplied on the paper in the cardboard sleeve. This process requires that you establish a Pearson website login. You will need this login in order to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

Once the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process), as follows:

Step 1: Start the Pearson IT Certification Practice Test software from the Windows Start menu or from your desktop shortcut icon.

Step 2: To activate and download the exam associated with this book, from the My Products or Tools tab, select the Activate button.

Step 3: At the next screen, enter the activation code from the paper inside the cardboard holder in the back of the book. Once entered, click the Activate button.

Step 4: The activation process will download the practice exam. Click Next, and then click Finish.
Once the activation process is completed, the **My Products** tab should list your new exam. If you do not see the exam, make sure you have selected the **My Products** tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the **Open Exam** button.

To update a particular exam that you have already activated and downloaded, simply select the **Tools** tab and select the **Update Products** button. Updating your exams will ensure you have the latest changes and updates to the exam data.

If you wish to check for updates to the Pearson Cert Practice Test exam engine software, simply select the **Tools** tab and select the **Update Application** button. This will ensure you are running the latest version of the software engine.

Activating Other Exams

The exam software installation process, and the registration process, only has to happen once. Then, for each new exam, only a few steps are required. For instance, if you buy another new Pearson IT Certification book, extract the activation code from the cardboard sleeve in the back of that book—you don’t even need the exam engine at this point. From there, all you have to do is start the exam engine (if not still up and running), and perform steps 2 through 4 from the previous list.

Contacting the Author

Hopefully, this book provides you with the tools you need to pass the CISSP exam. Feedback is appreciated. You can contact the author at mikeg@thesolutionfirm.com.

Thank you for selecting my book; I have worked to apply the same concepts in this book that I have used in the hundreds of training classes I have taught. Spend your study time wisely and you, too, can become a CISSP. Good luck on the exam!

Self-Assessment

This self-assessment section enables you to evaluate your readiness to take the CISSP certification exam. It should also help you understand what’s required to obtain the CISSP certification. Are you ready?
CISSPs in the Real World

Security continues to be on everyone’s mind. The CISSP certification continues to be one of the most sought-after security certifications. Increasing numbers of people are studying for and obtaining their CISSP certifications. Congratulations on making the decision to follow in their footsteps. If you are willing to tackle the process seriously and do what it takes to obtain the necessary experience and knowledge, you can pass the exam on the first try.

Tip

You can also assess your CISSP skill set by using the MeasureUp Certification Mode.

The Ideal CISSP Candidate

The CISSP is designed for individuals who are leading, planning, organizing, or controlling the security initiative of an organization. The ideal CISSP candidate is likely to have a 4-year college education and have at least 5–7 years’ experience in one or more of the 8 CISSP domains. The most applicable degree is in computer science or perhaps a related field. A degree is not a prerequisite for taking the test. However, exam candidates must have a minimum of 5 years of direct full-time security work experience in 2 or more of the 8 domains. One year of experience can be substituted for a 4-year college degree or an approved certification such as CompTIA Security+ or CASP. The complete list of approved certifications can be found at www.isc2.org/credential_waiver/default.aspx

Don’t be lulled into thinking that this is an easy test. Some words of caution might be in order:

▶ The CISSP exam requires the candidate to absorb a substantial amount of material. The test is 6 hours long and consists of 225 graded questions. This is longer than typical exams at Microsoft and most other IT vendors.

▶ The pass mark is set high, at 700 points. The individual questions are weighted, which means that harder questions are worth more than easier ones.

▶ Most of the individuals attempting the exam are familiar with one to three of the domains. This means that studying for the exam can be
overwhelming because there is so much material to cover. This book can help by guiding you to the areas in which you are weak or strong.

▶ To be eligible for the CISSP exam, students are required to have five years of experience, or four years of experience and a college degree.

Put Yourself to the Test
In this section, you answer some simple questions. The objective is for you to understand exactly how much work and effort you must invest to pass the CISSP certification exam. The simple answer to this question is this: The experience and education you have will dictate how difficult it will be for you to pass. Be honest in your answers or you will end up wasting around $600 on an exam you were not ready to take. From the beginning, two things should be clear:

▶ Any educational background in computer science will be helpful, as will other IT certifications you have achieved.

▶ Hands-on actual experience is not only essential, but also required to obtain this certification.

Your Educational Background
▶ Do you have a computer science degree?

You’ll have a good basic knowledge needed for three or more of the eight domains, assuming that you finished your degree and your schooling and have some fairly sophisticated computer skills. Subject areas such as application development, networking, and database design are a great help.

▶ Did you attend some type of technical school or week-long CISSP course?

This question applies to low-level or short-term computer courses. Many of these courses are extremely basic or focused in one particular area. Although the CISSP exam is not platform-specific, training classes that focused on networking, security, hacking, or database design will help you pass the exam.

▶ Have you developed any security policies, performed security audits, performed penetration tests, or developed response plans?

If yes, you will probably be able to handle about half of the CISSP exam domains.
Do you have a photographic memory?

If yes, you might have a slim chance of passing simply by reading this book, taking some practice exams, and using the Internet to brush up on the subjects you are weak in. However, the goal here is to gain a real understanding of the material. As a CISSP, you might be asked to lead, plan, organize, or control your organization’s security operations; if that happens, you’ll need a real understanding of how the various technologies and techniques work. Don’t cheat yourself or gamble with your career.

Again, the education and requirements given here are by no means absolute. Still, an education can give you a very good grounding in any endeavor—the higher the level of education, the better.

Testing Your Exam Readiness

Whether you attend a training class, form a study group, or study on your own, preparing for the CISSP exam is essential. The exam will cost you about $600, depending on where you are located, so you’ll want to do everything you can to make sure you pass on the first try. Reading, studying, and taking practice exams are the best ways to increase your readiness. Practice exams help in two main ways:

- Practice exams highlight weak spots for further study.
- Practice exams give you a general perspective on the question format. Practicing the questions the way they are asked can help enormously on the actual testing day.

Two full-length practice exams are provided with this book. Que also publishes a second book, CISSP Practice Questions Exam, with more than 500 practice CISSP test questions; it is an excellent supplement to this book.

After the Exam

After you have passed the exam, you will need to gain continuing education credits each year to maintain your certification. Your certification will come up for renewal every 3 years, so you’ll need to obtain 120 continuing education credits (CPE) or retake the exam. Retaking the exam is not a popular choice. These are some ways to gain CPEs to keep your certification current:

- Write a book.
- Read a book. (Only one per year can be used for credit.) This will give you a couple of credits, but not enough to keep your certification current.
Do volunteer work that is approved by ISC². When you are certified, you can log on to the ISC² website for more information. A variety of volunteer work is available.

Attend a training class. Just about any type of technology training class is accepted as long as it is tied to one of the domains.

Teach a training class.

Attend a college-level security class.

As you can see, the goal here is to help you stay current. As technology changes, we all must continue to learn to keep up the pace.

Now that we have covered some of the ways in which to assess your exam readiness, let’s move on to Chapter 1, “The CISSP Certification Exam,” where you will learn more about how the exam is structured and some effective test-taking strategies.
CHAPTER 2

Logical Asset Security

Terms you’ll need to understand:
- Confidentiality
- Integrity
- Availability
- SANs
- Information lifecycle management
- Privacy impact assessment
- Data classification
- Data destruction
- Data remanence

Techniques you’ll need to master:
- Proper methods for destruction of data
- Development of documents that can aid in compliance of all local, state, and federal laws
- The implementation of encryption and its use for the protection of data
- International concerns of data management
CHAPTER 2: Logical Asset Security

Introduction

Asset security addresses the controls needed to protect data throughout its lifecycle. From the point of creation to the end of its life, data protection controls must be implemented to ensure that information is adequately protected during each life cycle phase. This chapter starts by reviewing the basic security principles of confidentiality, integrity, and availability and moves on to data management and governance.

A CISSP must know the importance of data security and how to protect it while it is in transit, in storage, and at rest. A CISSP must understand that protection of data is much more important today than it was ten to fifteen years ago because data is no longer in just a paper form. Today, data can be found on local systems, RAID arrays, or even in the cloud. Regardless of where the data is stored it must have adequate protection and be properly disposed of at the end of its useful life.

Basic Security Principles

Confidentiality, integrity, and availability (CIA) define the basic building blocks of any good security program when defining the goals for network, asset, information, and/or information system security and are commonly referred to collectively as the CIA triad. Although the abbreviation CIA might not be as intriguing as the United States government’s spy organization, it is a concept that security professionals must know and understand.

Confidentiality addresses the secrecy and privacy of information and preventing unauthorized persons from viewing sensitive information. There are a number of controls used in the real world to protect the confidentiality of information, such as locked doors, armed guards, and fences. Administrative controls that can enhance confidentiality include the use of information classification systems, such as requiring sensitive data be encrypted. For example, news reports have detailed several large-scale breaches in confidentiality as a result of corporations misplacing or losing laptops, data, and even backup media containing customer account, name, and credit information. The simple act of encrypting this data could have prevented or mitigated the damage. Sending information in an encrypted format denies attackers the opportunity to intercept and sniff clear text information.
Integrity is the second leg in the security triad. Integrity provides accuracy of information, and offers users a higher degree of confidence that the information they are viewing has not been tampered with. Integrity must be protected while in storage, at rest, and in transit. Information in storage can be protected by using access controls and audit controls. Cryptography can enhance this protection through the use of hashing algorithms. Real-life examples of this technology can be seen in programs such as Tripwire, and MD5Sum. Likewise, integrity in transit can be ensured primarily by the use of transport protocols, such as PKI, hashing, and digital signatures.

The concept of availability requires that information and systems be available when needed. Although many people think of availability only in electronic terms, availability also applies to physical access. If, at 2 a.m., you need access to backup media stored in a facility that allows access only from 8 a.m. to 5 p.m., you definitely have an availability problem. Availability in the world of electronics can manifest itself in many ways. Access to a backup facility 24 × 7 does little good if there are no updated backups to restore from.

Backups are the simplest way to ensure availability. Backups provide a copy of critical information, should data be destroyed or equipment fail. Failover equipment is another way to ensure availability. Systems such as redundant arrays of independent disks (RAID) and redundant sites (hot, cold, and warm) are two other examples. Disaster recovery is tied closely to availability because it’s all about getting critical systems up and running quickly.

Which link in the security triad is considered most important? That depends. In different organizations with different priorities, one link might take the lead over the other two. For example, your local bank might consider integrity the most important; however, an organization responsible for data processing might see availability as the primary concern, whereas an organization such as the NSA might value confidentiality the most. Finally, you should be comfortable seeing the triad in any form. Even though this book refers to it as CIA, others might refer to it as AIC, or as CAIN (where the “N” stands for nonrepudiation).

Security management does not stop at CIA. These are but three of the core techniques that apply to asset security. True security requires defense-in-depth. In reality, many techniques are required to protect the assets of an organization; take a moment to look over Figure 2.1.
Data Management: Determine and Maintain Ownership

Data management is not easy and has only become more complex over the last ten to fifteen years. Years ago, people only had to be concerned with paper documents and control might have only meant locking a file cabinet. Today, electronic data might be found on thumb drives, SAN storage arrays, laptop hard drives, mobile devices, or might even be stored in a public cloud.

Data Governance Policy

Generally you can think of policies as high-level documents developed by management to transmit the guiding strategy and philosophy of management to employees. A data governance policy is a documented set of specifications for the guarantee of approved management and control of an organization’s digital assets and information. Data governance programs generally address the following types of data:

- Sets of master data
- Metadata
Sensitive data

Acquired data

Such specifications can involve directives for business process management (BPM) and enterprise risk planning (ERP), as well as security, data quality, and privacy. The goal of data governance is:

- To establish appropriate responsibility for the management of data
- To improve ease of access to data
- To ensure that once data are located, users have enough information about the data to interpret them correctly and consistently
- To improve the security of data, including confidentiality, integrity, and availability

Issues to consider include:

- **Cost**—This can include the cost of providing access to the data as well as the cost to protect it.

- **Ownership**—This includes concerns as to who owns the data or who might be a custodian. As an example, you may be the custodian of fifty copies of Microsoft Windows Server 2012 yet the code is owned by Microsoft. This is why users pay for a software license and not the ownership of the software itself, and typically have only the compiled “.exe” file and not the source code itself.

- **Liability**—This refers to the financial and legal costs an organization would bear should data be lost, stolen, or hacked.

- **Sensitivity**—This includes issues related to the sensitivity of data that should be protected against unwarranted disclosure. As an example, social security numbers, data of birth, medical history, etc.

- **Ensuring Law/Legal Compliance**—This includes items related to legal compliance. As examples, you must retain tax records for a minimum number of years, while you may only retain customers’ for only the time it takes to process a single transaction.

- **Process**—This includes methods and tools used to transmit or modify the data.
Roles and Responsibility

Data security requires responsibility. There must be a clear division of roles and responsibility. This will be a tremendous help when dealing with any security issues. Everyone should be subject to the organization’s security policy, including employees, management, consultants, and vendors. The following list describes some general areas of responsibility. Specific roles have unique requirements. Some key players and their responsibilities are as follows:

- **Data Owner**—Because senior management is ultimately responsible for data and can be held liable if it is compromised, the data owner is usually a member of senior management, or head of that department. The data owner is responsible for setting the data’s security classification. The data owner can delegate some day-to-day responsibility.

- **Data Custodian**—Usually a member of the IT department. The data custodian does not decide what controls are needed, but does implement controls on behalf of the data owner. Other responsibilities include the day-to-day management of data, controlling access, adding and removing privileges for individual users, and ensuring that the proper controls have been implemented.

- **IS Security Steering Committee**—These are individuals from various levels of management that represent the various departments of the organization. They meet to discuss and make recommendations on security issues.

- **Senior Management**—These individuals are ultimately responsible for the security practices of the organization. Senior management might delegate day-to-day responsibility to another party or someone else, but cannot delegate overall responsibility for the security of the organization’s data.

- **Security Advisory Group**—These individuals are responsible for reviewing security issues with the chief security officer and they are also responsible for reviewing security plans and procedures.

- **Chief Security Officer**—The individual responsible for the day-to-day security of the organization and its critical assets.

- **Users**—This is a role that most of us are familiar with because this is the end user in an organization. Users do have responsibilities; they must comply with the requirements laid out in policies and procedures.

- **Developers**—These individuals develop code and applications for the organization. They are responsible for implementing the proper security controls within the programs they develop.
Data Management: Determine and Maintain Ownership

▶ **Auditor**—This individual is responsible for examining the organization’s security procedures and mechanisms. The auditor's job is to provide an independent objective as to the effectiveness of the organization’s security controls. How often this process is performed depends on the industry and its related regulations. As an example, the health care industry in the United States is governed by the Health Insurance Portability and Accountability Act (HIPAA) regulations and requires yearly reviews.

ExamAlert

The CISSP candidate might be tested on the concept that data access does not extend indefinitely. It is not uncommon for an employee to gain more and more access over time while moving to different positions within a company. Such poor management can endanger an organization. When employees are terminated, data access should be withdrawn. If unfriendly termination is known in advance, access should be terminated as soon as possible to reduce the threat of potential damage.

Data Ownership

All data objects within an organization must have an owner. Objects without a data owner will be left unprotected. The process of assigning a data owner and set of controls to information is known as information lifecycle management (ILM). ILM is the science of creating and using policies for effective information management. ILM includes every phase of a data object from its creation to its end. This applies to any and all information assets.

ILM is focused on fixed content or static data. While data may not stay in a fixed format throughout its lifecycle there will be times when it is static. As an example consider this book; after it has been published it will stay in a fixed format until the next version is released.

For the purposes of business records, there are five phases identified as being part of the lifecycle process. These include the following:

▶ Creation and Receipt
▶ Distribution
▶ Use
▶ Maintenance
▶ Disposition
Data owners typically have legal rights over the data. The data owner typically is responsible for understanding the intellectual property rights and copyright of their data. Intellectual property is agreed on and enforced worldwide by various organizations, including the United Nations Commission on International Trade Law (UNCITRAL), the European Union (EU), and the World Trade Organization (WTO). International property laws protect trade secrets, trademarks, patents, and copyrights:

- **Trade secret**—A trade secret is a confidential design, practice, or method that must be proprietary or business related. For a trade secret to remain valid, the owner must take precautions to ensure the data remains secure. Examples include encryption, document marking, and physical security.

- **Trademark**—A trademark is a symbol, word, name, sound, or thing that identifies the origin of a product or service in a particular trade. The ISC² logo is an example of a trademarked logo. The term service mark is sometimes used to distinguish a trademark that applies to a service rather than to a product.

- **Patent**—A patent documents a process or synthesis and grants the owner a legally enforceable right to exclude others from practicing or using the invention’s design for a defined period of time.

- **Copyright**—A copyright is a legal device that provides the creator of a work of authorship the right to control how the work is used and protects that person’s expression on a specific subject. This includes the reproduction rights, distribution rights, music, right to create, and right to public display.

Data Custodians

Data custodians are responsible for the safe custody, transport, and storage of data and the implementation of business rules. This can include the practice of due care and the implementation of good practices to protect intellectual assets such as patents or trade secrets. Some common responsibilities for a data custodian include the following:

- **Data owner identification**—A data owner must be identified and known for each data set and be formally appointed. Too many times data owners do not know that they are data owners and do not understand the role and its responsibilities. In many organizations the data custodian or IT department by default assumes the role of data owner.

- **Data controls**—Access to data is authorized and managed. Adequate controls must be in place to protect the confidentiality, integrity, and
availability of the data. This includes administrative, technical, and physical controls.

- **Change control**—A change control process must be implemented so that change and access can be audited.

- **End-of-life provisions or disposal**—Controls must be in place so that when data is no longer needed or is not accurate it can be destroyed in an approved method.

Data Documentation and Organization

Data that is organized and structured can help ensure that it is better understood and interpreted by users. Data documentation should detail how data was created, what the context is for the data, the format of the data and its contents, and any changes that have occurred to the data. It’s important to document the following:

- Data context
- Methodology of data collection
- Data structure and organization
- Validity of data and quality assurance controls
- Data manipulations through data analysis from raw data
- Data confidentiality, access, and integrity controls

Data Warehousing

A *data warehouse* is a database that contains data from many other databases. This allows for trend analysis and marketing decisions through data analytics (discussed below). Data warehousing is used to enable a strategic view. Because of the amount of data stored in one location, data warehouses are tempting targets for attackers who can comb through and discover sensitive information.

Data Mining

Data mining is the process of analyzing data to find and understand patterns and relationships about the data (see Figure 2.2). There are many things that must be in place for data mining to occur. These include multiple data sources, access, and warehousing. Data becomes information, information becomes knowledge, and knowledge becomes intelligence through a process called data analytics, which is simply examination of the data. *Metadata* is best described
as being “data about data”. As an example, the number 212 has no meaning by itself. But, when qualifications are added, such as to state the field is an area code, it is then understood the information represents an area code on Manhattan Island. Organizations treasure data and the relationships that can be deduced between individual elements. The relationships discovered can help companies understand their competitors and the usage patterns of their customers, and can result in targeted marketing. As an example, it might not be obvious why the diapers are at the back of the store by the beer case until you learn from data mining that after 10 p.m., more men than women buy diapers, and that they tend to buy beer at the same time.

Knowledge Management

Knowledge management seeks to make intelligent use of all the data in an organization by applying wisdom to it. This is called turning data into intelligence through analytics. This skill attempts to tie together databases, document management, business processes, and information systems. The result is a huge store of data that can be mined to extract knowledge using artificial intelligence techniques. These are the three main approaches to knowledge extraction:

- **Classification approach**—Used to discover patterns; can be used to reduce large databases to only a few individual records or data marts. Think of data marts as small slices of data from the data warehouse.
- **Probabilistic approach**—Used to permit statistical analysis, often in planning and control systems or in applications that involve uncertainty.

- **Statistical approach**—A number-crunching approach; rules are constructed that identify generalized patterns in the data.

Data Standards

Data standards provide consistent meaning to data shared among different information systems, programs, and departments throughout the product’s life cycle. Data standards are part of any good enterprise architecture. The use of data standards makes data much easier to use. As an example, say you get a new 850-lumen flashlight that uses two AA batteries. You don’t need to worry about what brand of battery you buy as all AA batteries are manufactured to the same size and voltage.

Tip

If you would like to see an example of a data standard check out Texas Education Agency. It requires all Texas school districts to submit data to the PEIMS data standard. Learn more at: tea.texas.gov/Reports_and_Data/Data_Submission/PEIMS/PEIMS_Data_Standards/PEIMS_Data_Standards/

Data Lifecycle Control

Data lifecycle control is a policy-based approach to managing the flow of an information system’s data throughout its life cycle from the point of creation to the point at which it is out of date and is destroyed or archived.

Data Audit

After all the previous tasks discussed in this chapter have been performed, the organization’s security-management practices will need to be evaluated periodically. This is accomplished by means of an audit process. The audit process can be used to verify that each individual’s responsibility is clearly defined. Employees should know their accountability and their assigned duties. Most audits follow a code or set of documentation. As an example, financial audits can be performed using Committee of Sponsoring Organizations of the Treadway Commission (COSO). IT audits typically follow the Information Systems Audit and Control Association (ISACA) Control Objectives for
Information and related Technology (COBIT) framework. COBIT is designed around four domains:

- Plan and organize
- Acquire and implement
- Deliver and support
- Monitor and evaluate

Although the CISSP exam will not expect you to understand the inner workings of COBIT, you should understand that it is a framework to help provide governance and assurance. COBIT was designed for performance management and IT management. It is considered a system of best practices. COBIT was created by the Information Systems Audit and Control Association (ISACA), and the IT Governance Institute (ITGI) in 1992.

Although auditors can use COBIT, it is also useful for IT users and managers designing controls and optimizing processes. It is designed around 34 key controls that address:

- Performance concerns
- IT control profiling
- Awareness
- Benchmarking

Audits are the only way to verify that the controls put in place are working, that the policies that were written are being followed, and that the training provided to the employees actually works. To learn more about COBIT, check out www.isaca.org/cobit/. Another set of documents that can be used to benchmark the infrastructure is the family of ISO 27000 standards.

Data Storage and Archiving

Organizations have a never-ending need for increased storage. My first 10-megabyte thumb drive is rather puny by today's standards. Data storage can include:

- Network attached storage (NAS)
- Storage area network (SAN)
- Cloud
Organizations should fully define their security requirements for data storage before a technology is deployed. For example, NAS devices are small, easy to use, and can be implemented quickly, but physical security is a real concern, as is implementing strong controls over the data. A SAN can be implemented with much greater security than a NAS. Cloud-based storage offers yet another option but also presents concerns such as:

- Is it a private or public cloud?
- Does it use physical or virtual servers?
- How are the servers provisioned and decommissioned?
- Is the data encrypted and if so what kind of encryption is used?
- Where is the data actually stored?
- How is the data transferred (data flow)?
- Where are the encryption keys kept?
- Are there co-tenants?

Keep in mind that storage integration also includes securing virtual environments, services, applications, appliances, and equipment that provide storage.

SAN
The Storage Network Industry Association (SNIA) defines a SAN as “a data storage system consisting of various storage elements, storage devices, computer systems, and/or appliances, plus all the control software, all communicating in efficient harmony over a network.” A SAN appears to the client OS as a local disk or volume that is available to be formatted and used locally as needed.

- Virtual SAN—A virtual SAN (VSAN) is a SAN that offers isolation among devices that are physically connected to the same SAN fabric. A VSAN is sometimes called fabric virtualization. VSANs were developed to support independent virtual fabrics on a single switch. VSANs improve consolidation and simplify management by allowing for more efficient SAN utilization. A VSAN will allow a resource on any individual VSAN to be shared by other users on a different VSAN without merging the SAN fabrics.

- Internet Small Computer System Interface (iSCSI)—iSCSI is a SAN standard used for connecting data storage facilities and allowing remote SCSI devices to communicate. Many see it as a replacement for
fiber channel, because it does not require any special infrastructure and can run over existing IP LAN, MAN, or WAN networks.

- **Fiber Channel over Ethernet (FCoE)**—FCoE is another transport protocol that is similar to iSCSI. FCoE can operate at speeds of 10 GB per second and rides on top of the Ethernet protocol. While it is fast, it has a disadvantage in that it is non-routable. iSCSI is, by contrast, routable because it operates higher up the stack, on top of the TCP and UDP protocols.

- **Host Bus Adapter (HBA) Allocation**—The host bus adapter is used to connect a host system to an enterprise storage device. HBAs can be allocated by either soft zoning or by persistent binding. Soft zoning is more permissive, whereas persistent binding decreases address space and increases network complexity.

- **LUN Masking**—LUN masking is implemented primarily at the HBA level. It is a number system that makes LUN numbers available to some but not to others. LUN masking implemented at this level is vulnerable to any attack that compromises the local adapter.

- **Redundancy (Location)**—Location redundancy is the idea that content should be accessible from more than one location. An extra measure of redundancy can be provided by means of a replication service so that data is available even if the main storage backup system fails.

- **Secure Storage Management and Replication**—Secure storage management and replication systems are designed to allow an organization to manage and handle all its data in a secure manner with a focus on the confidentiality, integrity, and availability of the data. The replication service allows the data to be duplicated in real time so that additional fault tolerance is achieved.

- **Multipath Solutions**—Enterprise storage multipath solutions reduce the risk of data loss or lack of availability by setting up multiple routes between a server and its drives. The multipath software maintains a listing of all requests, passes them through the best possible path, and reroutes communication if a path fails.

- **SAN Snapshots**—SAN snapshot software is typically sold with SAN solutions and offers a way to bypass typical backup operations. The snapshot software has the ability to temporarily stop writing to physical disk and then make a point-in-time backup copy. Snapshot software is typically fast and makes a copy quickly, regardless of the drive size.
Data De-Duplication (DDP)—Data de-duplication is the process of removing redundant data to improve enterprise storage utilization. Redundant data is not copied. It is replaced with a pointer to the one unique copy of the data. Only one instance of redundant data is retained on the enterprise storage media, such as disk or tape.

Data Security, Protection, Sharing, and Dissemination

Data security is the protection of data from unauthorized activity by authorized users and from access by unauthorized users. Although laws differ depending on which country an organization is operating in, organizations must make the protection of personal information in particular a priority. To understand the level of importance, consider that according to the Privacy Rights Clearinghouse (www.privacyrights.org), the total number of records containing sensitive personal information accumulated from security breaches in the United States between January 2005 and December 2015 is 895,531,860.

From a global standpoint the international standard ISO/IEC 17799 covers data security. ISO 17799 makes clear the fact that all data should have a data owner and data custodian so that it is clear whose responsibility it is to secure and protect access to that data.

An example of a proprietary international information security standard is the Payment Card Industry Data Security Standard. PCI-DSS sets standards for any entity that handles cardholder information for credit cards, prepaid cards, and POS cards. PCI DSS version is comprised of six control objectives that contain one or more requirements:

1. Build and Maintain a Secure Network
 - Requirement 1: Install and maintain a firewall configuration to protect cardholder data
 - Requirement 2: Do not use vendor-supplied defaults for system passwords and other security parameters

2. Protect Cardholder Data
 - Requirement 3: Protect stored cardholder data
 - Requirement 4: Encrypt transmission of cardholder data across open, public networks
CHAPTER 2: Logical Asset Security

3. Maintain a Vulnerability Management Program
 Requirement 5: Use and regularly update anti-virus software
 Requirement 6: Develop and maintain secure systems and applications

4. Implement Strong Access Control Measures
 Requirement 7: Restrict access to cardholder data by business need-to-know
 Requirement 8: Assign a unique ID to each person with computer access
 Requirement 9: Restrict physical access to cardholder data

5. Regularly Monitor and Test Networks
 Requirement 10: Track and monitor all access to network resources and cardholder data
 Requirement 11: Regularly test security systems and processes

6. Maintain an Information Security Policy
 Requirement 12: Maintain a policy that addresses information security

Privacy Impact Assessment

Another approach for organizations seeking to improve their protection of personal information is to develop an organization-wide policy based on a privacy impact analysis (PIA). A PIA should determine the risks and effects of collecting, maintaining, and distributing personal information in electronic-based systems. The PIA should be used to evaluate privacy risks and ensure that appropriate privacy controls exist. Existing data controls should be examined to verify that accountability is present and that compliance is built-in every time new projects or processes are planned to come online. The PIA must include a review of the following items as they adversely affect the CIA of privacy records:

- **Technology**—Any time new systems are added or modifications are made, reviews are needed.

- **Processes**—Business processes change, and even though a company might have a good change policy, the change management system might be overlooking personal information privacy.

- **People**—Companies change employees and others with whom they do business. Any time business partners, vendors, or service providers change, the impact of the change on privacy needs to be reexamined.
Privacy controls tend to be overlooked for the same reason many security controls are. Management might have a preconceived idea that security controls will reduce the efficiency or speed of business processes. To overcome these types of barriers, senior management must make a strong commitment to protection of personal information and demonstrate its support. Risk-assessment activities aid in the process by informing stakeholders of the actual costs for the loss of personal information of clients and customers. These costs can include fines, lawsuits, lost customers, reputation, and the company going out of business.

Information Handling Requirements

Organizations handle large amounts of information and should have policies and procedures in place that detail how information is to be stored. Think of policies as high level documents, whereas procedures offer step-by-step instructions. Many organizations are within industries that fall under regulatory standards that detail how and how long information must be retained.

One key concern with storage is to ensure that media is appropriately labeled. Media should be labeled so that the data librarian or individual in charge of media management can identify the media owner, when the content was created, the classification level, and when the content is to be destroyed. Figure 2.3 shows an example of appropriate media labeling.

Figure 2.3 Data labeling.
CHAPTER 2: Logical Asset Security

Data Retention and Destruction

All data has a lifetime. Eventually it should either be purged, released, or unclassified. As an example, consider the JFK Records Act. The JFK Records Act was put in place to eventually declassify all records dealing with the assassination of President John F. Kennedy. The JFK Records Act states that all assassination records must finally be made public by 2017. This is an example of declassification, but sometimes data in an organization will never be released and will need to be destroyed.

If the media is held on hard drives, magnetic media, or thumb drives, it must be sanitized. Sanitization is the process of clearing all identified content, such that no data remnants can be recovered. Some of the methods used for sanitization are as follows:

- **Drive wiping**—This is the act of overwriting all information on the drive. As an example, DoD.5200.28-STD (7) specifies overwriting the drive with a special digital pattern through seven passes. Drive wiping allows the drive to be reused.

- **Zeroization**—This process is usually associated with cryptographic processes. The term was originally used with mechanical cryptographic devices. These devices would be reset to 0 to prevent anyone from recovering the key. In the electronic realm, zeroization involves overwriting the data with zeros. Zeroization is defined as a standard in ANSI X9.17.

- **Degaussing**—This process is used to permanently destroy the contents of a hard drive or magnetic media. Degaussing works by means of a powerful magnet whose field strength penetrates the media and reverses the polarity of the magnetic particles on the tape or hard disk. After media has been degaussed, it cannot be reused. The only method more secure than degaussing is physical destruction.

Data Disposal is a Big Problem

While hard drive size and performance has continued to grow at a rapid pace most hard drive and thumb drives are still shipped without encryption enabled. What this means is that you can take a hard drive from a computer you bought at an auction that will not boot up, plug the drive into another computer, and possibly have access to the data on the drive. While many of us have used a shredder, few have probably ever sanitized a hard drive. Whether your organization is planning to sell old hard drives, give them to charity, or just throw them away, you need to make sure the data on the drive is impossible to recover.
If you are thinking that most organizations already do this, consider the following. Two researchers from MIT bought 158 used hard drives from eBay. Out of the 158 hard drives, 129 had data that the researchers were able to copy. Some of the data on these drives included personal information, company HR records, medical information, a pharmacies database, and another database with 3,700 credit card numbers.

Physical media should be protected with a level of control equal to electronic media. These issues are covered in much greater detail in Chapter 3, “Physical Asset Security.”

With the discussion of controls concluded, the next section focuses on auditing and monitoring. It is time to review some of the ways organizations can maintain accountability.

Note

Unless you’re a 1960s car enthusiast like I am, it might have been a while since you have seen a working 8-track player. The point is that technology changes and the requirement to be able to read and access old media is something to consider. Be it 8-tracks, laser discs, Zip drives, or floppy disks, stored media must be readable to be useful.

Data Remanence and Decommissioning

Object reuse is important because of the remaining information that may reside on a hard disk or any other type of media. Even when data has been sanitized there may be some remaining information. This is known as data remanence. Data remanence is the residual data that remains after data has been erased. Most objects that may be reused will have some remaining amount of information left on media after it has been erased. If the media is not going to be destroyed outright, best practice is to overwrite it with a minimum of seven passes of random ones and zeros.

When information is deemed too sensitive assets such as hard drive, media, and other storage devices may not be reused and the decision may be made for asset disposal. Asset disposal must be handled in an approved manner and part of the system development life cycle. As an example, media that has been used to store sensitive or secret information should be physically destroyed. Before systems or data are decommissioned or disposed of, you must understand any existing legal requirements pertaining to records retention. When archiving information, you must consider the method for retrieving the information.
CHAPTER 2: Logical Asset Security

Classifying Information and Supporting Assets

Organizational information that is proprietary or confidential in nature must be protected. Data classification is a useful way to rank an organization’s informational assets. A well-planned data classification system makes it easy to store and access data. It also makes it easier for users of data to understand its importance. As an example, if an organization has a clean desk policy and mandates that company documents, memos, and electronic media not be left on desks, it can change people’s attitudes about the value of that information. However, whatever data classification system is used, it should be simple enough that all employees can understand it and execute it properly. Two common data classification plans are discussed next.

Data Classification

The two most common data-classification schemes are military and public. Organizations store and process so much electronic information about their customers and employees that it’s critical for them to take appropriate precautions to protect this information. The responsibility for the classification of data lies with the data owner. Both military and private data classification systems accomplish this task by placing information into categories and applying labels to data and clearances to people that access the data.

The first step of this process is to assess the value of the information. When the value is known, it becomes much easier to decide the amount of resources that should be used to protect the data. It would make no sense to spend more on protecting something with a lesser value. By using this system, not all data is treated equally; data that requires more protection gets it, and funds are not wasted protecting data that does not need it.

Each level of classification established should have specific requirements and procedures. The military and commercial data-classification models have predefined labels and levels. When an organization decides which model to use, it can evaluate data placement by using criteria such as the following:

- Data value
- Data age
- Laws pertaining to data
Regulations pertaining to disclosure
Replacement cost

Regardless of which model is used, the following questions will help determine the proper placement of the information:

- Who owns the asset or data?
- Who controls access rights and privileges?
- Who approves access rights and privileges?
- What level of access is granted to the asset or data?
- Who currently has access to the asset or data?

Classification of data requires several steps:
1. Identify the data custodian.
2. Determine the criteria used for data classification.
3. Task the owner with classifying and labeling the information.
4. Identify any exceptions to the data classification policy.
5. Determine security controls to be applied to protect each category of information.
6. Specify sunset policy or end of life policy and detail in a step-by-step manner how data will be reclassified or declassified. Reviews specifying retention and end of life should occur at specific periods of time.
7. Develop awareness program.

Military Data Classification
The military data-classification system is mandatory within the U.S. Department of Defense. This system has five levels of classification:

- **Top Secret**—Grave damage if exposed.
- **Secret**—Serious damage if exposed.
- **Confidential**—Disclosure could cause damage.
- **Sensitive but Unclassified or Restricted**—Disclosure should be avoided.
- **Unclassified or Official**—If released, no damage should result.
Each classification represents a level of sensitivity. *Sensitivity* is the desired degree of secrecy that the information should maintain. If you hold a confidential clearance, it means that you could access unclassified, sensitive, or confidential information for which you have a need to know. Your need to know would not extend to the secret or top secret levels. The concept of need-to-know is similar to the principle of least privilege in that employees should have access only to information that they need to know to complete their assigned duties.

Public/Private Data Classification

The public or commercial data classification is also built on a four-level model:

- **Confidential**—This is the highest level of sensitivity and disclosure could cause extreme damage to the organization.
- **Private**—This information is for organization use only and its disclosure would damage the organization.
- **Sensitive**—This information requires a greater level of protection to prevent loss of confidentiality.
- **Public**—This information might not need to be disclosed, but if it is, it shouldn’t cause any damage.

Table 2.1 provides details about the military and public/private data-classification models.

<table>
<thead>
<tr>
<th>Commercial Business Classifications</th>
<th>Military Classifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidential</td>
<td>Top secret</td>
</tr>
<tr>
<td>Private</td>
<td>Secret</td>
</tr>
<tr>
<td>Sensitive</td>
<td>Confidential</td>
</tr>
<tr>
<td>Public</td>
<td>Sensitive (BU)</td>
</tr>
<tr>
<td></td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Caution

Information has a useful life. Data classification systems need to build in mechanisms to monitor whether information has become obsolete. Obsolete information should be declassified or destroyed.
Asset Management and Governance

The job of asset management and governance is to align the goals of IT to the business functions of the organization, to track assets throughout their lifecycle, and to protect the assets of the organization. Asset management can be defined as any system that inventories, monitors, and maintains items of value. Assets can be both tangible and intangible. Assets can include the following:

- Hardware
- Software
- Employees
- Services
- Reputation
- Documentation

You can think of asset management as a structured approach of deploying, operating, maintaining, upgrading, and disposing of assets cost-effectively. Asset management is required for proper risk assessment. Before you can start to place a value on an asset you must know what it is and what it is worth. Its value can be assessed either quantitatively or qualitative. A quantitative approach requires:

1. Estimation of potential losses and determination of single loss expectancy (SLE)
2. Completion of a threat frequency analysis and calculation of the annual rate of occurrence (ARO)
3. Determination of the annual loss expectancy (ALE)

A qualitative approach does not place a dollar value on the asset and ranks it as high, medium, or low concern. The downside of performing qualitative evaluations is that you are not working with dollar values, so it is sometimes harder to communicate the results of the assessment to management.

One key asset is software. CISSP candidates should understand common issues related to software licensing. Because software vendors usually license their software rather than sell it, and license it for a number of users on a number of systems, software licenses must be accounted for by the purchasing organization. If users or systems exceed the licensed number, the organization can be held legally liable.
As we move into an age where software is being delivered over the Internet and not with media (CD), software asset management is an important concern.

Software Licensing

Intellectual property rights issues have always been hard to enforce. Just consider the uproar that Napster caused years ago as the courts tried to work out issues of intellectual property and the rights of individuals to share music and files. The software industry has long dealt with this same issue. From the early days of computing, some individuals have been swapping, sharing, and illegally copying computer software. The unauthorized copying and sharing of software is considered software piracy, which is illegal. Many don’t think that the copy of that computer game you gave a friend is hurting anyone. But software piracy is big business, and accumulated loss to the property’s owners is staggering. According to a 2008 report on intellectual property to the United States Congress, in just one raid in June 2007, the FBI recovered more than two billion dollars worth of illegal Microsoft and Symantec software. Internationally, losses from illegal software are estimated to be in excess of $200 billion.

Microsoft and other companies are actively fighting to protect their property rights. Some organizations have formed the Software Protection Association, which is one of the primary bodies that work to enforce licensing agreements. The Business Software Alliance (BSA) and the Federation Against Software Theft are international groups targeting software piracy. These associations target organizations of all sizes from small, two-person companies to large multinationals.

Software companies are making clear in their licenses what a user can and cannot do with their software. As an example, Microsoft Windows XP allowed multiple transfers of licenses whereas Windows 8 and 10 have different transfer rules. As an example, Windows 8 allows only one transfer. The user license states, “The first user of the software may reassign the license to another device one time.” Some vendors even place limits on virtualization. License agreements can actually be distributed in several different ways, including the following:

- **Click-wrap license agreements**—Found in many software products, these agreements require you to click through and agree to terms to install the software product. These are often called *contracts of adhesion*; they are “take it or leave it” propositions.

- **Master license agreements**—Used by large companies that develop specific software solutions that specify how the customer can use the product.
Shrink-wrap license agreements—Created when software started to be sold commercially and named for the fact that breaking the shrink wrap signifies your acceptance of the license.

Even with licensing and increased policing activities by organizations such as the BSA, improved technologies make it increasingly easy to pirate software, music, books, and other types of intellectual property. These factors and the need to comply with two World Trade Organization (WTO) treaties led to the passage of the 1998 Digital Millennium Copyright Act (DMCA). Here are some salient highlights:

- The DMCA makes it a crime to bypass or circumvent antipiracy measures built into commercial software products.
- The DMCA outlaws the manufacture, sale, or distribution of any equipment or device that can be used for code-cracking or illegally copying software.
- The DMCA provides exemptions from anti-circumvention provisions for libraries and educational institutions under certain circumstances; however, for those not covered by such exceptions, the act provides penalties up to $1,000,000 and 10 years in prison.
- The DMCA provides Internet service providers exceptions from copyright infringement liability enabling transmission of information across the Internet.

Equipment Lifecycle

The equipment lifecycle begins at the time equipment is requested to the end of its useful life or when it is discarded. The equipment lifecycle typically consist of four phases:

- Defining requirements
- Acquisition and implementation
- Operation and maintenance
- Disposal and decommission

While some may think that much of the work is done once equipment has been acquired, that is far from the truth. There will need to be some established support functions. Routine maintenance is one important item.
Without routine maintenance equipment will fail, and those costs can be calculated. Items to consider include:

- Lost productivity
- Delayed or canceled orders
- Cost of repair
- Cost of rental equipment
- Cost of emergency services
- Cost to replace equipment or reload data
- Cost to pay personnel to maintain the equipment

Technical support is another consideration. The longer a piece of equipment has been in use the more issues it may have. As an example, if you did a search for exploits for Windows 7 or Windows 10 which do you think would return more results? Most likely Windows 7. This all points to the need for more support the longer the resource has been in use.

Determine Data Security Controls

Any discussion on logical asset security must at some point discuss encryption. While there is certainly more to protecting data than just encrypting it, encryption is one of the primary controls used to protect data. Just consider all the cases of lost hard drives, laptops, and thumb drives that have made the news because they contained data that was not encrypted. In many cases encryption is not just a good idea; it is also mandated by law. CISSP candidates must ensure that corporate policies addressing where and how encryption will be used are well defined and being followed by all employees.

Let’s examine the two areas at which encryption can be used to protect data at a high level. These topics will be expanded on in Chapter 6, “The Application and Use of Cryptography.”

Data at Rest

Data at rest is information stored on some form of media that is not traversing a network or residing in temporary memory. Failure to properly protect data at rest can lead to attacks such as the following:

- Pod slurping, a technique for illicitly downloading or copying data from a computer. Typically used for data exfiltration.
Various forms of USB (Universal Serial Bus) malware, including but not limited to USB Switchblade and Hacksaw.

Other forms of malicious software, including but not limited to viruses, worms, Trojans, and various types of key loggers.

Data at rest can be protected via different technical and physical hardware or software controls that should be defined in your security policy. Some hardware offers the ability to build in encryption. A relatively new hardware security device for computers is called the trusted platform module (TPM) chip. The TPM is a “slow” cryptographic hardware processor which can be used to provide a greater level of security than software encryption. A TPM chip installed on the motherboard of a client computer can also be used for system state authentication. The TPM can also be used to store the encryption keys.

The TPM measures the system and stores the measurements as it traverses through the boot sequence. When queried, the TPM will return these values signed by a local private key. These values can be used to discover the status of a platform. The recognition of the state and validation of these values is referred to as attestation. Phrased differently, attestation allows one to confirm, authenticate, or prove a system to be in a specific state. Data can also be encrypted using these values. This process is referred to as sealing a configuration. In short, the TPM is also a tamper-resistant cryptographic module that can provide a means to report the system configuration to a policy enforcer or “health monitor.”

The TPM also provides the ability to encrypt information to a specific platform configuration by calculating hashed values based on items such as the system’s firmware, configuration details, and core components of the operating system as it boots. These values, along with a secret key stored in the TPM, can be used to encrypt information and only allow it to become usable in a specific machine configuration. This process is called sealing.

The TPM is now addressed by ISO 11889-1:2009. It can also be used with other forms of data and system protection to provide a layered approach, referred to as defense in depth. For example, the TPM can help protect the actual system, while another set of encryption keys can be stored on a user’s common access card or smart card to decrypt and access the data set.

Another potential option that builds on this technology is self-encrypting hard drives (SEDs). These pieces of hardware offer many advantages over non-encrypted drives:

- Compliance—SEDs have the ability to offer built-in encryption. This can help with compliance laws that many organizations must adhere to.
CHAPTER 2: Logical Asset Security

- Strong security—SEDs make use of strong encryption. The contents of an SED are always encrypted and the encryption keys are themselves encrypted and protected in hardware.
- Ease of use—Users only have to authenticate to the drive when the device boots up or when they change passwords/credentials. The encryption is not visible to the user.
- Performance—As SEDs are not visible to the user and are integrated into hardware, the system operates at full performance with no impact on user productivity.

Software encryption is another protection mechanism for data at rest. There are many options available, such as EFS, BitLocker, and PGP. Software encryption can be used on specific files, databases, or even entire RAID arrays that store sensitive data. What is most important about any potential software option is that not only must the encrypted data remain secure and remain inaccessible when access controls, such as usernames and passwords, are incorrect; the encryption keys themselves must be protected, and should therefore be updated on a regular basis.

Caution

Encryption keys should be stored separately from the data.

Data in Transit

Any time data is being processed or moved from one location to the next, it requires proper controls. The basic problem is that many protocols and applications send information via clear text. Services such as email, web, and FTP were not designed with security in mind and send information with few security controls and no encryption. Examples of insecure protocols include:

- FTP—Clear-text username and password
- Telnet—Clear-text username and password
- HTTP—Clear text
- SMTP—All data is passed in the clear

For data in transit that is not being protected by some form of encryption, there are many dangers, which include the following:

- Eavesdropping
- Sniffing
Today, many people connect to corporate networks from many different locations. Employees may connect via free Wi-Fi from coffee shops, restaurants, airports, or even hotels.

One way to protect this type of data in transit is by means of a Virtual Private Network (VPN). VPNs are used to connect devices through the public Internet. Three protocols are used to provide a tunneling mechanism in support of VPNs: Point-to-Point Tunneling Protocol (PPTP), Layer 2 Tunneling Protocol (L2TP), and IP Security (IPSec). When an appropriate protocol is defined, the VPN traffic will be encrypted. Microsoft supplies Microsoft Point-to-Point Encryption (MPPE), with PPTP, native to the Microsoft operating systems. L2TP offers no encryption, and as such is usually used with IPSec in ESP mode to protect data in transit. IPSec can provide both tunneling and encryption.

Two types of tunnels can be implemented:

- **LAN-to-LAN tunnels**—Users can tunnel transparently to each other on separate LANS.
- **Host-to-LAN tunnels**—Mobile users can connect to the corporate LAN.

Having an encrypted tunnel is just one part of protecting data in transit. Another important concept is that of authentication. Almost all VPNs use digital certificates as the primary means of authentication. X.509 v3 is the de facto standard. X.509 specifies certificate requirements and their contents. Much like that of a state driver's license office, the Certificate Authority (CA) guarantees the authenticity of the certificate and its contents. These certificates act as an approval mechanism.

Just as with other services, organizations need to develop policies to define who will have access to the VPN and what encryption mechanisms will be used. It's important that VPN policies be designed to map to the organization's security policy. As senior management is ultimately responsible, they must approve and support this policy.

Standard email is also very insecure and can be exposed while in transit. Standard email protocols such as SMTP, POP3, and IMAP all send data via clear text. To protect email in transit you must use encryption. Email protection mechanisms include PGP, Secure Multipurpose Internet Mail Extensions (S/MIME), and Privacy Enhanced Mail (PEM). Regardless of what is being protected periodic auditing of sensitive data should be part of policy and should occur on a regular schedule.
Data in transit will also require a discussion of how the encryption will be applied. Encryption can be performed at different locations with different amounts of protection applied.

- **Link encryption**—The data is encrypted through the entire communication path. Because all header information is encrypted each node must decrypt and encrypt the routing information. Source and destination address cannot be seen to someone sniffing traffic.

- **End to end encryption**—Generally performed by the end user and as such can pass through each node without further processing. However, source and destination addresses are passed in clear text, so they can be seen to someone sniffing traffic.

Endpoint Security

No review of logical asset security would be complete without a discussion of endpoint security. Endpoint security consists of the controls placed on client or end user systems, such as control of USB and CD/DVD, antivirus, anti-malware, anti-spyware, and so on. The controls placed on a client system are very important.

- **Removable media**—A common vector for malware propagation is via USB thumb drive. Malware such as Stuxnet, Conficker, and Flame all had the capability to spread by thumb drives. Removable drives should be restricted and turned off when possible.

- **Disk encryption**—Disk encryption software such as EFS and BitLocker can be used to encrypt the contents of desktop and laptop hard drives. Also, corporate smartphones and tablets should have encryption enabled.

- **Application whitelisting**—This approach only allows known good applications and software to be installed, updated, and used. Whitelisting techniques can include code signing, digital certificates, known good cryptographic hashes, or trusted full paths and names. Blacklisting, alternatively, blocks known bad software from being downloaded and installed.

- **Host-based firewalls**—Defense in depth dictates that the company should consider not just enterprise firewalls but also host-based firewalls.

- **Configuration lockdown**—Not just anyone should have the ability to make changes to equipment or hardware. Configurations controls can be used to prevent unauthorized changes.

- **Antivirus**—This is the most commonly deployed endpoint security product. While it is a needed component, antivirus has become much less effective over the last several years.
One basic starting point is to implement the principle of least privilege. This concept can also be applied to each logical asset: each computer, system component or process should have the least authority necessary to perform its duties.

Baselines

A baseline can be described as a standard of security. Baselines are usually mapped to industry standards. As an example, an organization might specify that all computer systems be certified by Common Criteria to an Evaluation Assurance Level (EAL) 3. Another example of baselining can be seen in NIST 800-53. NIST 800-53 describes a tailored baseline as a starting point for determining the needed level of security as seen in Figure 2.4.

- IT structure analysis (survey)—Includes analysis of technical, operation, and physical aspects of the organization, division, or group.
- Assessment of protection needs—Determination of the needed level of protection. This activity can be quantitative or qualitative.
- Selection of actions—Determination of what specific controls need to be implemented.
- Running comparison of nominal and actual—Periodic review of activities and actions to measure the change between what was previously occurring and what is currently occurring.

Baselines Provided by Special Publication 800-53

- **Baseline #1**
 - Selection of a subset of security controls from the master catalog—consisting of basic level controls

- **Baseline #2**
 - Selection of a subset of security controls from the master catalog—consisting of basic level controls, plus additional controls and control enhancements, as needed

- **Baseline #3**
 - Selection of a subset of security controls from the master catalog—consisting of basic level controls, plus additional controls and control enhancements, as needed

FIGURE 2.4 NIST 800-53 Scoping and Baselining Controls.
NIST 800-53 specifies scoping or tailoring activities and categorizes information based on impact.

- Low impact
- Moderate impact
- High impact

Scoping or tailoring is the act of adding or removing controls as needed to get the right level of protection. Obviously, adding controls will increase cost and generally increase system security, whereas removing controls reduces costs but can expose the system to unnecessary threats. Therefore due care must be used to determine the proper level of controls. Scoping and tailoring activities should be well documented with appropriate justification. In some cases, information and information systems must be protected regardless of the cost, because of laws that may govern certain industries.

Laws, Standards, Mandates and Resources

The following laws, standards, and mandates have an impact on information security and can affect the risk profile of an organization. Regardless of the laws and mandates, organizations should be proactive when it comes to corporate governance. Several laws and mandates are described here:

- Health Insurance Portability and Accountability Act (HIPAA)—HIPAA was signed into law in 1996. It has two areas. Title I of the HIPAA of 1996 protects health insurance coverage for workers and their families when they change or lose their jobs. Title II requires the U.S. Department of Health and Human Services (DHHS) to establish national standards for electronic health care transactions and national identifiers for providers, health plans, and employers.

Under HIPAA, the U.S. DHHS was required to publish a set of rules regarding privacy. The Privacy Rule dictates controls that organizations must put in place to protect personal information. The privacy rule defines three major purposes:

- “To protect and enhance the rights of consumers by providing them access to their health information and controlling the inappropriate use of that information.”
“To improve the quality of health care in the United States by restoring trust in the health care system among consumers, health care professionals, and the multitude of organizations and individuals committed to the delivery of care.”

“...To improve the efficiency and effectiveness of health care delivery by creating a national framework for health privacy protection that builds on efforts by states, health systems, and individual organizations and individuals.”

Gramm-Leach-Bliley Act (GLBA)—GLBA was signed into law in 1999 and resulted in the most sweeping overhaul of financial services regulation in the United States.

Title V of GLBA addresses financial institution privacy with two subtitles. Subtitle A requires financial institutions to make certain disclosures about their privacy policies and to give individuals an opt-out capability. Subtitle B criminalizes the practice known as pretexting, which can be described as the practice of obtaining personal information under false pretenses.

Under GLBA, financial institutions are required to protect the confidentiality of individual privacy information. As specified in GLBA, financial institutions are required to develop, implement, and maintain a comprehensive information security program with appropriate administrative, technical, and physical safeguards. Administrative controls include items such as background checks and separation of duties. Technical controls can be hardware or software, such as encryption or an IDS. Physical controls include gates, guards, and fences. The controls specified in the information security program must include:

- The assignment of a designated program manager for the organization’s information security program
- A periodic risk and vulnerability assessment and audit
- A program of regular testing and monitoring
- The development of policies and procedures for control of sensitive information and PII

Federal Information Security Management Act (FISMA)—FISMA was signed into law in 2002. One of the big changes that FISMA brought about was a set of clear guidelines for information security designed for the protection of
federal government IT infrastructure and data assets. FISMA requirements specify the following responsibilities:

- Develop and maintain an information assurance (IA) program with an entire IT security architecture and framework.
- Ensure that information security training is conducted to keep IAT and IAM personnel properly trained and certified in accordance with DoD 8570.
- Implement accountability for personnel with significant responsibilities for information security.

FISMA also requires periodic risk assessments, risk assessment policies and procedures, periodic (at least annual) testing and evaluation, and proper training and awareness to senior management so that proper security awareness programs can be deployed.

Sarbanes-Oxley Act (SOX)—SOX was signed into law in 2002. This act mandated a number of reforms to enhance corporate responsibility, enhance financial disclosures, and combat corporate and accounting fraud. Sections 302 and 404 are the two sections that address IT infrastructures and information security. Section 302 requires the CEO and CFO to personally certify that the organization has the proper internal controls. It also mandates that the CEO and CFO report on effectiveness of internal controls around financial reporting.

Section 404 sets requirements on management’s structure, control objectives, and control procedures. Staying compliant with Section 404 requires companies to establish an infrastructure that is designed to archive records and data and protect them from destruction, loss, unauthorized alteration, or other misuse. It requires that a set of comprehensive controls be put in place and holds CEOs and CFOs accountable.

United States Resources

NIST started as the National Bureau of Standards and changed its name in 1989 to the National Institute of Standards and Technology. Some of the NIST documents a CISSP should have knowledge of are:

- NIST 800-37—Guide for applying risk management.
- NIST 800-53—Government publication that provides guidelines for selecting and specifying security controls for information systems supporting the executive agencies of the federal government. Many
organizations in private industry use NIST SP 800-53 as a guide for their own security management.

- NIST 800-60—Guide for Mapping Types of Information and Information.

Federal Information Processing Standards (FIPS) are publicly announced standards developed by the United States federal government for use in computer systems by non-military government agencies and government contractors.

- FIPS 199—Establishes security categories of information systems used by the federal government.
- FIPS 200—Mandatory security standards for government systems.

International Resources

Our first item is the information technology infrastructure library (ITIL). ITIL provides a framework for identifying, planning, delivering, and supporting IT services for business.

The IT Governance Institute has developed a process that begins with setting objectives for the enterprise's IT, providing the initial direction and then evolving into a continuous loop.

ITIL presents a service lifecycle that includes

- Continual service improvement
- Service strategy
- Service design
- Service transition
- Service operation

Next up are some of the standards from the International Organization for Standardization that a CISSP should be familiar with:

- ISO 27001—This standard describes requirements on how to establish, implement, operate, monitor, review, and maintain an information security management system (ISMS); it is based on British Standard 7799.
- ISO 27002—This standard is considered a code of practice that describes ways to develop a security program within the organization.
CHAPTER 2: Logical Asset Security

- **ISO 27003**—This standard focuses on implementation.
- **ISO 27004**—This standard is a standard for information security measurements.
- **ISO 27005**—This standard describes how to implement solutions based on risk management.
- **ISO 27799**—This standard describes how to protect personal health information.

ISO 9001 is a quality management standard that has widespread support and attention. ISO 9001 describes how production processes are to be managed and reviewed. It is not a standard of quality; it is about how well a system or process is documented. Companies that wish to obtain 9001 certification will need to perform a gap analysis to determine areas that need improvement.

ISO 9001 is actually six documents that specify:

- Control of Documents
- Control of Records
- Control of Non-conforming Product
- Corrective Action
- Preventive Action
- Internal Audits

Tip

Achieving ISO 9001:2000 Certification—ISO 9001 certification requires an organization to perform a gap analysis. This allows the company to identify shortcomings that need to be addressed in order to obtain certification.

Being ISO-certified means that the organization has the capability to provide products that meet specific requirements, and includes a process for continual improvement. It may also have a direct bearing on an audit as it places strong controls on documented procedures. Another ISO standard that the auditor should be aware of is ISO 17799. 17799 provides the best practice guidance on information security management. It is divided into 12 main sections:

- Risk assessment and treatment
- Security policy
Organization of information security
Asset management
Human Resources security
Physical and environmental security
Communications and operations management
Access control
Information systems acquisition, development, and maintenance
Information security incident management
Business continuity management
Compliance

Tip
CISSP exam candidates should have a basic understanding of ISO standards and their purpose; however, the exam does not cover U.S. laws.

Finally, let's review a couple of European documents:

1. 10 Steps to Cyber Security—Detailed cyber-security information and advice across 10 critical technical and procedural areas. Created by CESG, the information security arm of GCHQ, and the National Technical Authority for Information Assurance within the United Kingdom.

2. Cybersecurity Strategy of the European Union—This document was developed by the European Union; it describes their approach to preventing and responding to cyber-security attacks.
Exam Prep Questions

1. Which of the following levels best represents the military classification system?
 - A. Confidential, private, sensitive, and public
 - B. Top secret, secret, private, sensitive, and public
 - C. Top secret, confidential, private, sensitive, and unclassified
 - D. Top secret, secret, confidential, sensitive, and unclassified

2. Which of the following standards describes how well a system or process is documented?
 - A. ISO 27001
 - B. ISO 9001
 - C. ISO 27002
 - D. ISO 17799

3. Which of the following endpoint security controls could have been used to potentially prevent malware such as Stuxnet, Conficker, and Flame?
 - A. Implementing disk encryption
 - B. Hardening edge devices
 - C. Blocking removable media
 - D. Enforcing application whitelisting

4. Place the following in their proper order:
 - A. Determine SLE, ARO, and ALE, then asset value.
 - B. Determine asset value, then ARO, SLE, and ALE.
 - C. Determine asset value, then SLE, ALE, and SLE.
 - D. Determine asset value, then SLE, ARO, and ALE.

5. The downside of performing this type of assessment is that you are not working with dollar values, so it is sometimes harder to communicate the results of the assessment to management. Which of the following assessment types does this describe?
 - A. Qualitative
 - B. Quantitative
 - C. Numeric mitigation
 - D. Red team
6. Which of the following categories of control can include the logical mechanisms used to control access and authenticate users?
 - A. Administrative
 - B. Clerical
 - C. Technical
 - D. Physical

7. Which of the following is incorrect when describing an SED?
 - A. Eases compliance
 - B. Slow performance
 - C. Ease of use
 - D. Strong security

8. Which of the following is the top level of protection for commercial business classification?
 - A. Secret
 - B. Confidential
 - C. Top secret
 - D. Private

9. Which of the following is the most specific of security documents?
 - A. Procedures
 - B. Standards
 - C. Policies
 - D. Baselines

10. The last thing you want in an organization is that everyone is accountable but no one is responsible. Therefore, the data owner should be in which of the following groups?
 - A. End users
 - B. Technical managers
 - C. Senior management
 - D. Everyone is responsible; therefore, all groups are owners
CHAPTER 2: Logical Asset Security

11. Which term best describes a symbol, word, name, sound, or thing that uniquely identifies a product or service?
 ○ A. Trade secret
 ○ B. Copyright
 ○ C. Patent
 ○ D. Trademark

12. After opening a new branch in the Midwest your company is analyzing buying patterns to determine the relationship between various items purchased. Which of the following best describes this situation?
 ○ A. Data mining
 ○ B. Knowledge management
 ○ C. Data warehouse
 ○ D. Data standards

13. Which ISO document is used for a standard for information security management?
 ○ A. ISO 27001
 ○ B. ISO 27002
 ○ C. ISO 27004
 ○ D. ISO 27799

14. Which of the following SAN solutions is fast, rides on top of Ethernet, yet is non-routable?
 ○ A. SCSI
 ○ B. iSCSI
 ○ C. HBA
 ○ D. FCoE

15. Who is ultimately responsible for the security of an asset?
 ○ A. Asset owner
 ○ B. Auditor
 ○ C. Custodian
 ○ D. Risk assessment team
Answers to Exam Prep Questions

1. D. The military data classification system is widely used within the Department of Defense. This system has five levels of classification: unclassified, sensitive, confidential, secret, and top secret. Each level represents an increasing level of sensitivity.

2. B. ISO 9001 describes how production processes are to be managed and reviewed. It is not a standard of quality; it is about how well a system or process is documented. Answers A, C, and D are incorrect: ISO 27001 describes requirements on how to establish, implement, operate, monitor, review, and maintain an information security management system; ISO 27002 is considered a code of practice that describes ways to develop a security program within the organization; ISO 17799 provides best practice guidance on information security management.

3. C. Restricting removable media may have helped prevent infection from malware that is known to spread via thumb drive or removable media. Answer A is incorrect because encryption of media would not have helped. Answer B is incorrect because edge devices were not specifically targeted. Answer D is incorrect because enforcing application whitelisting would not have prevented advanced persistent threats from executing on local systems.

4. D. The proper order is to determine the asset value, then SLE, ARO, and ALE. Answers A, B, and C are incorrect; they are not in the proper order.

5. A. Qualitative assessment is scenario-driven and does not attempt to assign dollar values to components of the risk analysis. Quantitative assessment is based on dollar amounts; both numeric mitigation and red team are distractors.

6. C. Technical controls can be hardware or software. They are the logical mechanisms used to control access and authenticate users, identify unusual activity, and restrict unauthorized access. Clerical is a nonexistent category and all other answers are incorrect: administrative controls are procedural and physical controls include locks, guards, gates, and alarms.

7. B. Self-encrypting hard drives offer many advantages, such as easing compliance issues with items like PII. They are easy to use and offer strong encryption. Answer B is correct because SEDs do not slow down performance; they are actually integrated into the hardware and operate at full performance with no impact on user productivity.

8. B. Confidential is the top level of data classification for commercial business classification. Answers A, C, and D are incorrect because secret and top secret are both part of the military classification, while private is a lower level of commercial business classification.

9. A. A procedure is a detailed, in-depth, step-by-step document that lays out exactly what is to be done. It’s tied to specific technologies and devices. Standards are tactical documents; policies are high-level documents; and baselines are minimum levels of security that a system, network, or device must adhere to.
10. C. Senior management is the ultimate owner because these individuals are responsible for the asset and must answer if data is compromised. Although answer C is the best possible choice, it is important to realize that, in most cases, the data owner will be a member of management but might not be the most senior executive within the organization. For example, the CFO would be the data owner for all financial data, the director of human resources would be the data owner for all HR data, and so on. All other answers are incorrect because end users, technical managers, and other employees are not typically the data owners.

11. D. A trademark is a symbol, word, name, sound, or thing that identifies the origin of a product or service in a particular trade. Answers A, B, and C are incorrect as they do not properly describe a trademark.

12. A. Data mining. It is the process of analyzing data to find and understand patterns and relationships about the data. Answers B, C, and D are incorrect. Knowledge management seeks to make intelligent use of all the knowledge in an organization. A data warehouse is a database that contains data from many different databases. Data standards provide consistent meaning to data shared among different information systems.

13. C. ISO 27004 is the standard for security management. ISO 27001 is focused on requirements. ISO 27002 was developed from BS 7799, and ISO 27799 is focused on health.

14. D. Fiber Channel over Ethernet (FCoE) can operate at speeds of 10 GB per second and rides on top of the Ethernet protocol. While it is fast, it has a disadvantage in that it is non-routable. Answers A, B, and C are incorrect. SCSI is used for local devices only. iSCSI is a SAN standard used for connecting data storage facilities and allowing remote SCSI devices to communicate. HBAs are used to connect a host system to an enterprise storage device.

15. A. Some day-to-day responsibility may be passed down to the custodian; however, ultimately the owner is responsible.

Need to Know More?

Site security: www.faqs.org/rfc/rfc2196.html

IT asset management: searchcio.techtarget.com/definition/IT-asset-management-information-technology-asset-management
Building effective security policies: www.sans.org/security-resources/policies/

IT security baselines: www.securestate.com/services/minimum-security-baselines

Hard drive disposal: www.semshred.com/contentmgr/showdetails.php/id/2480
This page intentionally left blank
Index

Numbers
1G, 344
2G, 345
3DES (Triple–DES), 246, 255–257
3G, 345
4G, 345
10 Steps to Cyber Security, 63
64-bit key, 246
802.1AE (MACsec), 306
802.1AR, 306
802.1X, 352
802.11 wireless networks, 346–348
 Bluetooth, 350
 encryption, 351
 standards, 348–349
 topologies, 348
 wireless protection mechanisms, 352–354
802.11a, 348
802.11ac, 349
802.11b, 349
802.11g, 349
802.11i, 349, 353
802.11n, 349
802.15, 349
802.16, 349

A
AaaS (Authentication as a Service), 377
absolute addressing, 181
acceptable risk, 147
acceptable use policies (AUPs), 154,
 495, 519, 523
acceptance testing and implementation, SDLC (System Development Life Cycle), 551–552

access, 375
 to BCP (business continuity plan), 621
 controlling, managing users, 495
 Kerberos, 393–396
 monitoring, 408–409
 network access control devices, 355
demilitarized zones, 357–358
 firewall designs, 359
 firewalls, 355
 physical access, controlling, 524–525
 remote access, 502
 CHAP (Challenge Handshake Authentication Protocol), 360
 EAP (Extensible Authentication Protocol), 360–361
 PAP (Password Authentication Protocol), 360
 PPP (Point-to-Point Protocol), 360
 single sign-on (SSO), 392–393
 unauthorized access, 448

access aggregation, 448–449

access control lists (ACLs), 397–398

access control models, 403
 centralized access control, 403–404
 Diameter, 406–407
 RADIUS (remote authentication dial-in user service), 404–405
 TACACS (Terminal Access Controller Access Control System), 406
 decentralized access controls, 407

access control threats, 448
 access aggregation, 448–449
 eavesdropping, 453
 identity theft, 453–454
 password attacks, 449–450
 shoulder surfing, 453
 spoofing, 453
 unauthorized access, 448

access controls
 authentication, 375–376
 authorization, 375–376, 397
 CDAC (content-dependent access control), 403
 DAC (discretionary access control), 397–398
 LBAC (lattice-based access control), 403
 MAC (mandatory access control), 398–400
 RBAC (role-based access controls), 401–402
 rule-based access controls, 402
 categories of, 155–156
 identification, 375–376

access logs, 434

accessibility, to facilities, 77

account management, 391

accountability, 375, 408, 518, 525.
 See also auditing
 monitoring and auditing controls, 518

accounts, managing, 493–495
 clipping level, 496

accreditation, 213–214, 553

ACLs (access control lists), 397–398, 402

acoustical detection, 106

acquire, computer forensics, 475–477

active sniffing, 440

ActiveX, 564

activity blockers, 510

Address Resolution Protocol (ARP), 306

address space layout randomization (ASLR), 219–220

adhoc mode, 348

administrative controls, 154

administrative law, 124

administrative support teams, 534

ADSL (asymmetric digital subscriber line), 340
Advanced Encryption Standard (AES), 255, 257–258
advanced persistent threats (APTs, 439, 462
advisory policies, 151
AES (Advanced Encryption Standard), 255, 257–258
agent based, SIEM (security information and event management), 522
agentless, SIEM (security information and event management), 522
aggregation, databases, 567, 568–569
agile development methods, 557–558
AH (authentication header), 282, 363
AI (artificial intelligence), 570
AIC (availability, integrity, confidentiality), 29
air conditioning, facilities, 98–99
air intakes, 81
alarm systems, 106
IDS (intrusion detection systems), 106–107
monitoring and detection, 107–108
alarms, silent hostage alarms, 95
ALE (annual loss expectancy), 139–140
algorithms, 246–247
asymmetric algorithms, 247
Diffie-Hellman, 261–262
DSA (digital signature algorithm), 271
dynamic routing, 334
hashing algorithms, 267–268
Merkle-Hellman Knapsack, 264
Rivest cipher, 258–259
RSA, 262–263
symmetric algorithms, 247, 250–251
alpha tests, 551
alphabetic cipher, 238–239
alternate routing, 607
ALU (arithmetic logic unit (ALU), 176
American Society for Testing and Materials (ASTM), 84
analysis, computer forensics, 478
analyzing, threats, 135–139
Anderson, James, 409
annual loss expectancy (ALE), 139–140
annual rate of occurrence (ARO), 139
annunciators, 87
anomaly-based IDS engines, 412
Anonymous, 437
anti-malware, 509–510
antivirus, 56
antivirus software, 577
applets, Java, 573–574
application layer
OSI (Open Systems Interconnection) model, 302
TCP/IP, 314–317
application security testing, 429
application servers, 186
application switches, 330
application transactions, monitoring, 520–521
application whitelisting, 56
application-level proxy, 356
application/process layer controls, securing TCP/IP, 280
APTs (advanced persistent threats), 439, 462
architecture, security architecture. See security architecture
archive bits, 512
archiving, 38–39
area concerns, facilities, 77–78
arithmetic logic unit (ALU), 176
ARO (annual rate of occurrence), 139
ARP (Address Resolution Protocol), 306, 310
ARP poisoning, 446
artificial intelligence, 570–571
ASLR (address space layout randomization), 219–220
assemblers, 564
assessing
exam readiness, 18–19
potential loss, 595–598
risk, 130–133
asset identification, 133–135
asset management, 49–50, 497
directory security, 56–57
equipment lifecycle, 51–52
software licensing, 50–51
asset placement, in facilities, 82
asset security, 28
asset valuation, 133–135
assets, 49, 130
assisted password reset, 391
assurance classes, 210
ASTM (American Society for Testing
and Materials), 84
asymmetric algorithms, 247
asymmetric cryptography, 236
asymmetric digital subscriber line
(ADSL), 340
asymmetric encryption, 259–261, 272
versus symmetric encryption, 264–265
asymmetric mode, 178–179
asynchronous attacks, 220
asynchronous replication, 611
asynchronous token devices, 382–383
asynchronous transfer mode
(ATM), 307
ATBASH, 237–238
ATM (asynchronous transfer mode),
307, 337
ATO (Authorization to Operate), 118
atomicity, 569
attack methodologies, 437–439
attack surface, 571
attacks, 126. See also threats
availability attacks, 437
birthday attack, 287
brute force attacks, 378
chosen ciphertext, 287
chosen plaintext, 287
ciphertext-only attack, 287
cov covert channels, 221
cryptographic attacks, 285–288
data diddling, 435
DDoS attacks, 437, 443
dictionary attacks, 378
differential cryptanalysis, 287
directory traversal attacks, 223
DoS attacks, 442–443
VoIP (voice over IP), 344
emanations, 222–223
financial attacks, 575
hybrid attacks, 451
incremental attacks, 221–222
inference attacks, 284
injection attacks, 225
key clustering, 287
known plaintext attack, 287
linear cryptanalysis, 287
logic bombs, 575
man-in-the-middle attack, 288
password attacks, 449–450
brute-force crack, 451
dictionary crack, 450–451
rainbow tables, 452
pharming attacks, 447
phishing, 454
replay attack, 288
rubber hose attack, 288
salami attacks, 575
side channel attack, 288
social engineering attacks, 454–455
spear phishing, 454
SQL injection, 224–225
state attacks, 220
viruses, 576–577
worms, 577–578
attenuation, 327
attributes, databases, 567
attribute-value pairs (AVPs), 404
audio detection, 106
audit controls, 525
backups

Audit logs, 434
Audit processes, 37–38
Audit reduction and correlation tools, 518
Audit reduction tools, 408–409
Auditing, 408. See also accountability
User activities, 519
Auditors, 33
Audits, 426–427
AUPs (acceptable use policies), 154, 495, 519, 523
Authentication, 375–376
Computer forensics, 477
Cryptography, 235, 266
Something you are (Type 3), 385–390
Something you have (Type 2), 381
Asynchronous token devices, 382–383
Cards, 383–384
Certificates, 384–385
Synchronous tokens, 381–382
Strong authentication, 390
Techniques for, 376–377
Something you know (Type 1), 377–379
Authentication as a Service (AaaS), 377
Authentication header (AH), 282, 363
Authentication service, 394
Authority, 162
Authorization, 374, 375–376
Access controls, 397
CDAC (content-dependent access control), 403
DAC (discretionary access control), 397–398
LBAC (lattice-based access control), 403
MAC (mandatory access control), 398–400
RBAC (role-based access control), 401–402
Rule-based access controls, 402
Authorization to Operate (ATO), 118
Automated backups, 512
Availability, 29
Calculating, 606
Availability attacks, 437
Avalanche effect, 267–268
Avoiding system failures, 543
Checks and application controls, 543–544
Failure states, 544
AVPs (attribute-value pairs), 404
Awareness
BCP (business continuity plan), 619
Ethics, 163–164
Security awareness, 161–162
Security management, 160–161
Backdoors, 220, 458–459, 550
Background checks, 156–157
Social networking, 157
Backup sites, 601–602
Backups, 29, 511–512, 608–609
Automated backups, 512
Choosing methods, 613–614
Cloud computing backups, 613
Continuous backups, 609
Data replication, 611
Database shadowing, 612
differential backups, 512, 609
Electronic vaulting, 612
Full backups, 512, 609
Incremental backups, 512–513, 609
Media-rotation strategies, 611–612
On-demand backups, 512
Remote journaling, 612
Restoration, 609–611
SAN (storage area network), 613
Tape rotation methods, 513
badges, employee access control

94–95
baseband, 322
baselines, 57–58
risk management, 152
Basic Rate Interface (BRI), 338
bastion hosts, 357–358
BC (business continuity), 588
defined, 590
BCP (business continuity plan), 588, 589–591
access to, 621
assessing potential loss, 595–598
BIA (business impact analysis), 593–595
implementing, 618–619
awareness and training, 619
monitoring and maintenance, 621–622
plan design and development, 615
employee services, 617
insurance, 617–618
interacting with external groups, 616–617
personnel mobilization, 615–616
process responsibilities, 622
project management and initiation, 591–593
recovery strategies, 599–600
backup and restoration, 609–611
business process recovery, 600–601
data and information recovery, 608–609
facility and supply recovery, 601
operations recovery, 606–608
user recovery, 605
testing, 619–621
behavioral-based IDS, 412, 528–529
Bell-LaPadula model, 199–201
Berlin Wall, 83
Bernay, Mark, 465
best evidence, 482
BIA (business impact analysis), 593–595
assessing, potential loss, 595–598
questionnaires, 595–597
reputation, 599
vulnerability assessments, 595
Biba model, 202–203
Tibetan monks, 203
biometric access controls, 96–97
considerations before deploying, 389–390
usage patterns, 388
biometrics, authentication, 385–390
birthday attack, 287
blackbox testing, 428
blackbox tests, 552
blacklists, 506
blind tests, 429
block ciphers, 237, 240, 247–248
Blowfish, 250
bluejacking, 350
bluesnarfing, 350
Bluetooth, 350
Boehm, Barry, 554–555
bogon filtering, 333
bollards, 85–86
boolean operators, stream ciphers, 248
BootP (Bootstrap Protocol), 315
bot herders, 444–445
botnets, 443–446
fast-flux botnets, 445
BPA (Business Partnership Agreement), 119
The Brain, 456
Brewer and Nash model, 205
BRI (Basic Rate Interface), 338
bridges, 328
British Standard (BS) 7799, 216
broadband, 322
brute force attacks, 378
brute-force crack, 451
buffer overflows, 219–220, 574–575
 preventing, 574–575
buffers, 574
bulletproof hosting, 461–462
bus, I/O bus standards, 183–184
bus topology, 319
business continuity. See BC (business continuity)
business continuity plan. See BCP (business continuity plan)
business impact analysis (BIA), 593–595
business operations, threats to, 588–589
Business Partnership Agreement (BPA), 119
business process recovery, 600–601
business reference model, 215
BYOD (bring your own device), 226
BYOT (bring your own technology), 226

C
C, 564
C#, 564
C++, 564
CA (Certificate Authority), 272–273
CaaS (Communication as a Service), 503
Cable Internet access, 340
cable modems, 340–341
cable specifications, LAN cabling, 323–324
cabling
 coaxial cable, 322
 fiber-optic cable, 324
 LANs (local area networks), 322–324
 multimode fiber, 324
 plenum-grade cable, 324
 single-mode fiber, 324
 twisted pair, 322–323
CAC (Common Access Card), 95
Caesar’s cipher, 237
CAIN (confidentiality, availability, integrity, nonrepudiation), 29
calculating, availability, 606
CALEA (Communications Assistance for Law Enforcement Act), 441
call trees, 615–616
CAM (content addressable memory), 329
campus area networks (CANs), 325
Canadian Trusted Computer Product Evaluation Criteria (CTCPEC), 207
CANs (campus area networks), 325
capability lists, reference monitors, 191
Capability Maturity Model (CMM), 558–560
Capability Maturity Model Integration (CMMI), 559–560
capability tables, 402
cards
 authentication, 383–384
 employee access control, 94–95
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), 320
carriers, steganography, 244
CASE (Computer-Aided Software Engineering), 557
CAST (Carlisle Adams/Stafford Tavares), 251
categories of
 access controls, 155–156
 cloud computing models, 504
 threats to business operations, 589
CBC (Cipher Block Chaining) mode, 253, 270
CBF (critical business function), 590
CCDs (charged coupled devices), 87
CCMP, 353
CCTV (closed-circuit television), 76–77
 perimeter controls, 87
CDAC (content-dependent access control), 403
CDDI (Copper Distributed Data Interface), 320
CDI (constrained data items), 204
CDs (compact discs), 183
ceilings, 79–81
cell phones, 344–346
central processing unit. See CPU (central processing unit)
centralized access control, 403–404
 Diameter, 406–407
 RADIUS (remote authentication dial-in user service), 404–405
 TACACS (Terminal Access Controller Access Control System), 406
CER (crossover error rate), 386
CERT (Computer Emergency Response Team), 467
Certificate Revocation List (CRL), 273–274
certificates
 authentication, 384–385
 digital certificates, 274–276
certification, 18, 213–214
 operations and maintenance, SDLC (System Development Life Cycle), 552–553
CFAA (Computer Fraud and Abuse Act), 123
CFB (Cipher Feedback) mode, 253–254
chain of custody, 478
chaining, 253
Challenge Handshake Authentication Protocol (CHAP), 360, 404
change control process, 561–562
change controls, 34–35
change detection, 575–576
change management, 498–500, 561–562
changeover techniques, 553
CHAP (Challenge Handshake Authentication Protocol), 360, 404
charged coupled devices (CCDs), 87
charts, Gantt charts, 560
checklists, BCP (business continuity plan), 620
checks and application controls, 543–544
chief security officer, roles and responsibilities, 32
Chinese Wall model, 205
chosen ciphertext, 287
chosen plaintext, 287
CIA (confidentiality, integrity, and availability), 28
Cialdini, Robert, 162
Cipher Block Chaining mode, 253
cipher block chaining-Message Authentication Code (CBC-MAC), 270
Cipher Feedback mode, 253–254
cipher-based message authentication code (CMAC), 270
ciphers
 alphabetic cipher, 238–239
 block ciphers, 240, 247–248
 Caesar’s cipher, 237
 concealment ciphers, 241
 polyalphabetic cipher, 238–239
 Rivest cipher, 258–259
 rotation cipher, 237
 running key cipher, 241
 stream ciphers, 240, 248
 symmetric substitution ciphers, 240
 transposition ciphers, 240
 Vernam cipher, 241–242
 Vigenere cipher, 238–239, 239
ciphertext, 236, 249
ciphertext-only attack, 287
CIR (committed information rate), 337
Communications Assistance for Law Enforcement Act (CALEA)

circuit switching, WANs (wide area networks), 337
 cable modems, 340–341
 DSL (digital subscriber line), 339–340
 ISDN (Integrated Services Digital Network), 338
 POTS (Plain Old Telephone Service), 338
 T-carriers, 338–339

circuit-level proxy, 357
CIRT (Computer Incident Response Team), 467
CISC (Complex Instruction Set Computing), 178
Citadel, 461
civil law, 124
Clark-Wilson model, 204
classification approach, knowledge extraction, 36
classifying information, 46
data classification, 46–47

cleaning crews, 94
cleartext, 236
cleartext protocols, sniffing, 441
click-wrap license agreements, 50
client’s role, in PKI (public key infrastructure), 276–277
climatology, facilities, 77
clipping level, 379, 496
cloning, 345–346
closed systems, 192
closed-circuit television (CCTV), 76–77
cloud computing, 341–342, 503–504
cloud computing backups, 613
cloud computing models, 504
cloud-based storage, 39
clouds, 185
clustering, 514, 606
CMAC (cipher-based message authentication code), 270
CMM (Capability Maturity Model), 558–560
CMMI (Capability Maturity Model Integration), 559–560
coaxial cable, 322
COBIT (Control Objectives for Information and related Technology), 37–38, 218, 427
COBOL (Common Business Oriented Language), 564
CoCOM (Coordinating Committee for Multilateral Export Controls), 285
cognitive passwords, 380
cohesion addresses, 549
COI (conflict of interest), 205
cold sites, 603
collisions, 269
 hashing, 268
combination locks, 90
committed information rate (CIR), 337
Committee for Sponsoring Organizations of the Treadway Commission (COSO), 168
Common Access Card (CAC), 95
Common Business Oriented Language (COBOL), 564
common computer ethics fallacies, 167
Common Criteria, 210–212
common law, 123
Common Object Request Broker Architecture (CORBA), 566
communication
 cell phones, 344–346
 LANs (local area networks). See LANs (local area networks)
 standards, 327
 VoIP (voice over IP), 343
Communication as a Service (CaaS), 503
communication loss, physical security, 75
communication protocols, 318–319
Communications Assistance for Law Enforcement Act (CALEA), 441
communications attack, 126
communications teams, 534
compact discs (CDs), 183
comparative analysis, 450
comparing
quantitative assessments, and qualitative assessments, 145–146
symmetric encryption, and asymmetric encryption, 250, 264–265
UDP (User Datagram Protocol), and TCP, 313
compartmentalized systems, 400
compartmented, security modes of operation, 193
compensating access controls, 155
compilers, 564
completeness check, 544
Complex Instruction Set Computing (CISC), 178
components of, IDS (intrusion detection systems), 413, 529
crimes, 125–128
Computer Emergency Response Team (CERT), 467
Computer Ethics Institute, 165
crimes, 472, 473, 474
acquire, 475–477
analysis, 478
authentication, 477
integrity, 477–478
Computer Fraud and Abuse Act (CFAA), 123
Computer Security Incident Response Team (CSIRT), 467
Computer-Aided Software Engineering (CASE), 557
concealment ciphers, 241
confidential
military data classification, 47
public/private data classification, 48
confidentiality, 28
Bell-LaPadula model, 199–201
cryptography, 235
reciprocal agreements, 605
security models, 199
symmetric encryption, 250
confidentiality, integrity, and availability (CIA), 28
configuration lockdown, 56
configuration management, 498–500
conflict of interest (COI), 205
confusion, 248
consistency, 569
social engineering, 163
constrained data items (CDI), 204
construction of facilities, 78
doors, walls, windows, and ceilings, 79–81
contact smart cards, 383
contactless smart cards, 383
content addressable memory (CAM), 329
Content Scrambling System (CSS), 286
content switches, 330
content-dependent access control (CDAC), 403
content-services switches, 330
contingency planning, 511, 516–517
continuing professional education (CPE), 128
Continuity of Operations (COOP), 118
continuous backups, 609
continuous lighting, 88
Control Objectives for Information and related Technology (COBIT), 37–38, 218, 427
control units, 177
control zones, 524
controlling, physical access, 524–525
controlling access, 495
controls, 131, 154
access controls, categories of, 155–156
administrative controls, 154
application/process layer controls, security TCP/IP, 280
biometric access controls, 96–97
change controls, 34–35
checks and application controls, 543–544
corrective controls, 550–551
data controls, 34–35
data lifecycle control, 37
detective controls, 550–551
environmental controls, 98
host to host layer controls, securing TCP/IP, 280–282
Internet layer controls, securing TCP/IP, 282–283
manual authorization input control, 520
monitoring and auditing controls, 518–519
 auditing user activities, 519
 controlling physical access, 524–525
 emanations, 524
 keystroke monitoring, 523
 monitoring application transactions, 520–521
 NAC (Network Access Control), 522
 SIEM (security information and event management), 521–522
network access layer controls, securing TCP/IP, 283–284
output controls, 520, 521
physical controls, 155
physical port controls, 82
preventative controls, 550–551
privacy controls, 43
process controls, 520
recovery controls, 516–518
technical controls, 155
telecommunication controls, 503
 blacklists, 506
 cloud computing, 503–504
 email, 504–506
 fax, 506–507
 graylists, 506
 PBX, 507–508
 whitelists, 506
COOP (Continuity of Operations), 118, 531
Coordinating Committee for Multilateral Export Controls (CoCOM), 285
coordination teams, 534
Copper Distributed Data Interface (CDDI), 320
copyrights, 34
 length of, 121
CORBA (Common Object Request Broker Architecture), 566
corporate spies, 127, 435
Corpus Juris Civilis, 125
corrective access controls, 155
corrective controls, 550–551
COSO (Committee for Sponsoring Organizations of the Treadway Commission), 168
cost, data governance policies, 31
counter measure selection, risk assessment, 146–149
Counter mode, 254–255
covering tracks, 439
covers, steganography, 244
cover covert channels, 220–221
covert storage channel attacks, 221
covert timing channel attacks, 221
Cowen, Fred, 456
CPE (continuing professional education), 128
CPTED (Crime Prevention Through Environmental Design), 76–77
CPU (central processing unit), 176–180
 advancements, 177
 cracking, password attacks, 450
cramming, 509
credentials, Kerberos, 394
crime, 465–466
 evidence life cycles, 483
evidence types, 481–482
forensics, 472–473
cryptanalysis, 236, 285
crypters, 460
cryptographic algorithm, 236
cryptographic keys, 236
cryptography, 29, 234
 3DES (Triple-DES), 255–257
 AES (Advanced Encryption Standard), 257–258
 algorithms, 246–247
 asymmetric encryption, 259–261
 attacks, 285–288
 authentication, 235, 266
 confidentiality, 235
des (Data Encryption Standard), 252
 CBC (Cipher Block Chaining) mode, 253
 CFB (Cipher Feedback) mode, 253–254
 Counter mode, 254–255
 ECB (Electronic Cookbook) mode, 253
 OFB (Output Feedback) mode, 254
 Diffie-Hellman, 261–262
digital signatures, 270–271
dsa (digital signature algorithm), 271
ecc (Elliptical Curve Cryptosystem), 263
el gamal, 263
email protection mechanisms, 277
 pGP (Pretty Good Privacy), 278
encryption
 history of, 237–243
 hybrid encryption, 265–266
 feistel network, 242
 hashing algorithms, 267–268
 CBC-MAC (cipher block chaining-Message Authentication Code), 270
 cmac (cipher-based message authentication code), 270
 haaval, 269

Crime Prevention Through Environmental Design (CPTED), 76–77
crime triangle, 466–467
crimes, computer crimes, 125–128
crimeware kits, 461–462
criminal activities, physical security, 75
criminal law, 123–124
criminals, 465–466
critical business function (CBF), 590
criticality prioritization, 594
CRL (Certificate Revocation List), 273–274
crossover error rate (CER), 386
cross-site request forgery (CSRF), 223
cross-site scripting (XSS), 223
crosstalk, 327
HMAC (Hashed Message Authentication Code), 269–270
MAC (Message Authentication Code), 269
MD algorithms, 268–269
secure hashing algorithms, 269
integrity, 235
integrity verification, 266–267
Merkle-Hellman Knapsack, 264
nonrepudiation, 235–236
NSA (National Security Agency), 242
PAIN (privacy, authentication, integrity, and nonrepudiation), 235
quantum cryptography, 242
RSA, 262–263
steganography, 243–244
digital watermarks, 245–246
steganography operations, 244–245
symmetric encryption, 249–252
TCP/IP, 279
application/process layer controls, 280
host to host layer controls, 280–282
Internet layer controls, 282–283
network access layer controls, 283–284
CSIRT (Computer Security Incident Response Team), 467
CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance), 320
CSRF (cross-site request forgery), 223
CSS (Content Scrambling System), 286
CTCPEC (The Canadian Trusted Computer Product Evaluation Criteria), 207
custodial law, 125
cut-through switches, 330
cybercriminals, 127
Cybersecurity Strategy of the European Union, 63
cyberterrorists, 127

D
DAC (discretionary access control), 397–398
damage assessment teams, 534
DARPA (Defense Advanced Research Projects Agency), 467
DASD (direct access storage device), 513
data
decommissioning, 45
organizing, 35
data access, terminated employees, 33
data and information recovery, 608–609
data at rest, encryption, 52–54
data audits, 37–38
data centers, 82
temperatures of, 98
data classification, 46–47
military data classification, 47–48
public/private data classification, 48
data controls, 34–35
data custodians, roles and responsibilities, 32, 34–35
data de-duplication (DDP), SAN (storage area network), 41
data diddling, 435
data disposal, 44–45
data documentation, 35
data entry specialists, 493
data execution preventions (DEP), 219–220
data governance policies, 30–31
data in transit, 54–56
data input validation, 543
data lifecycle control, 37
data link layer, OSI (Open Systems Interconnection) model, 299–300
data management, 30
data mining, 35–36
Data Over Cable Service Interface Specification (DOCSIS), 340–341

data owner identification, 34

data owners, roles and responsibilities, 32

data ownership, 33–34
 roles and responsibilities, 33–34

data protection, 28

Data Protection Authority, 121

data reference model, 215

data remanence, 45

data replication, 611

data retention, 44–45

data security, 41–42
 encryption, 52
 data at rest, 52–54
 data in transit, 54–56
 endpoint security, 56–57
 information handling requirements, 43
 privacy impact assessment, 42–43

data standards, 37–140

data storage, 38–39
 cloud-based storage, 39
 information handling requirements, 43
 NAS (network attached storage), 38–39
 SAN (storage area network), 38–39, 39–41

data warehousing, 35

database administrators, 493

database attacks, 446

database management, 566–567
 artificial intelligence, 570–571
 common terms, 567–568
 integrity, 569
 transaction processing, 569–570

database servers, 186

database shadowing, 612

databases
 aggregation, 568–569
 inference, 569

DBMS (database management system), 566

DDoS (distributed denial of service) attacks, 443

DDoS attacks, 437

DDP (data de-duplication), SAN (storage area network), 41

DDR (double data rate), 182

DDR2, 182

DDR3, 182

DDR4, 182
dead analysis, 478
decentralized access controls, 407
decommissioning, data, 45

DeCSS, 286

DECT (Digital Enhanced Cordless Communication), 354
dedicated, security modes of operation, 193
de-encapsulation, 304
default routes, 334

Defense Advanced Research Projects Agency (DARPA), 467
defense in depth, 72, 279
defense of breadth, 72
degaussing, 44, 502–503
delay alarms, 80

Delphi technique, 144
deluges, water sprinklers, 105
demilitarized zones, 357–358
 NAT (Network Address Translation), 358

denial-of-service (DoS) attacks, 442–443
denial-of-service (DoS) testing, 429

DEP (data execution prevention), 219–220

Department of Defense
 security modes of operation, 193–194
 standard, 177–199, 554
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES (Data Encryption Standard)</td>
<td>246, 250, 252</td>
</tr>
<tr>
<td>CBC (Cipher Block Chaining) mode</td>
<td>253</td>
</tr>
<tr>
<td>CFB (Cipher Feedback) mode</td>
<td>253–254</td>
</tr>
<tr>
<td>Counter mode</td>
<td>254–255</td>
</tr>
<tr>
<td>ECB (Electronic Cookbook) mode</td>
<td>253</td>
</tr>
<tr>
<td>OFB (Output Feedback) mode</td>
<td>254</td>
</tr>
<tr>
<td>DES EDE2, DES EDE3, DES EEE2, DES EEE3</td>
<td>256</td>
</tr>
<tr>
<td>destruction of data, physical security</td>
<td>44–45, 74</td>
</tr>
<tr>
<td>detective access controls</td>
<td>155</td>
</tr>
<tr>
<td>detective controls</td>
<td>550–551</td>
</tr>
<tr>
<td>deterrent access controls</td>
<td>155</td>
</tr>
<tr>
<td>developers, roles and responsibilities</td>
<td>32</td>
</tr>
<tr>
<td>developing, security policies</td>
<td>149–150</td>
</tr>
<tr>
<td>development methods, software development</td>
<td>554</td>
</tr>
<tr>
<td>JAD (Joint Application Development)</td>
<td>555–556</td>
</tr>
<tr>
<td>MPM (Modified Prototype Model)</td>
<td>557</td>
</tr>
<tr>
<td>prototyping</td>
<td>556–557</td>
</tr>
<tr>
<td>RAD (Rapid Application Development)</td>
<td>556</td>
</tr>
<tr>
<td>spiral model</td>
<td>554–555</td>
</tr>
<tr>
<td>waterfall model</td>
<td>554</td>
</tr>
<tr>
<td>DIACAP (DoD Information Assurance Certification and Accreditation Process)</td>
<td>213</td>
</tr>
<tr>
<td>Diameter</td>
<td>406–407</td>
</tr>
<tr>
<td>dictionary attacks</td>
<td>378</td>
</tr>
<tr>
<td>dictionary crack</td>
<td>450–451</td>
</tr>
<tr>
<td>diesel fuel</td>
<td>100</td>
</tr>
<tr>
<td>differential backups</td>
<td>512, 609</td>
</tr>
<tr>
<td>differential cryptanalysis</td>
<td>287</td>
</tr>
<tr>
<td>Diffie-Hellman</td>
<td>261–262</td>
</tr>
<tr>
<td>diffusion</td>
<td>248</td>
</tr>
<tr>
<td>digital certificates</td>
<td>274–276, 384–385</td>
</tr>
<tr>
<td>Digital Enhanced Cordless Communication (DECT)</td>
<td>354</td>
</tr>
<tr>
<td>digital signature algorithms (DSA)</td>
<td>271</td>
</tr>
<tr>
<td>digital signatures</td>
<td>236, 270–271, 273</td>
</tr>
<tr>
<td>DSA (digital signature algorithm)</td>
<td>271</td>
</tr>
<tr>
<td>digital subscriber line (DSL)</td>
<td>339–340</td>
</tr>
<tr>
<td>digital video discs (DVDs)</td>
<td>183</td>
</tr>
<tr>
<td>digital watermarks</td>
<td>245–246</td>
</tr>
<tr>
<td>direct access storage device (DASD)</td>
<td>513</td>
</tr>
<tr>
<td>direct evidence</td>
<td>482</td>
</tr>
<tr>
<td>direct OS commands</td>
<td>223</td>
</tr>
<tr>
<td>directory traversal attacks</td>
<td>223</td>
</tr>
<tr>
<td>direct-sequence spread spectrum (DSSS)</td>
<td>347</td>
</tr>
<tr>
<td>disaster recovery</td>
<td>532–533</td>
</tr>
<tr>
<td>physical security</td>
<td>534</td>
</tr>
<tr>
<td>Disaster Recovery Institute (DRI)</td>
<td>588</td>
</tr>
<tr>
<td>disaster recovery life cycle</td>
<td>531–532</td>
</tr>
<tr>
<td>disaster recovery managers</td>
<td>532</td>
</tr>
<tr>
<td>disaster recovery plan. See DRP (disaster recovery plan)</td>
<td></td>
</tr>
<tr>
<td>disaster recovery teams</td>
<td>533–534</td>
</tr>
<tr>
<td>disasters, defined</td>
<td>590</td>
</tr>
<tr>
<td>discernment</td>
<td>89</td>
</tr>
<tr>
<td>discretionary access control (DAC)</td>
<td>397–398</td>
</tr>
<tr>
<td>discretionary security property</td>
<td>201</td>
</tr>
<tr>
<td>disgruntled employees, 127</td>
<td></td>
</tr>
<tr>
<td>disk encryption</td>
<td>56</td>
</tr>
<tr>
<td>disposal</td>
<td></td>
</tr>
<tr>
<td>data custodians</td>
<td>35</td>
</tr>
<tr>
<td>SDLC (System Development Life Cycle)</td>
<td>553, 554</td>
</tr>
<tr>
<td>distance-vector protocols</td>
<td>334</td>
</tr>
<tr>
<td>distributed computing</td>
<td>514</td>
</tr>
</tbody>
</table>
distributed denial of service (DDoS) attacks, 443

distribution of, symmetric keys, 249–250
diverse routing, 607
DIX (Digital, Intel, and Xerox), 318
DMCA (Digital Millennium Copyright Act), 51
DMZ (demilitarized zones), 357–358
 NAT (Network Address Translation), 358
DNS (Domain Name Service), 315
DNS spoofing, 447
DNSSEC, 315
DOCSIS (Data Over Cable Service Interface Specification), 340–341
documentation
 change control process, 561–562
 data documentation, 35
DoD Information Assurance
 Certification and Accreditation Process (DIACAP), 213
dogs, perimeter controls, 89
Domain Name Service (DNS), 315
doors, 79–81
DoS (denial-of-service) testing, 429
DoS (denial-of-service) attacks, 442–443
 VoIP (voice over IP), 344
double data rate (DDR), 182
double-blind tests, 429
drag and drop questions, 21
DRAM (Dynamic Random Access Memory), 181–182
Draper, John, 465
DRI (Disaster Recovery Institute), 588
drive wiping, 44, 502
DRP (disaster recovery plan), 589
dry contact switches, 106
dry pipes, water sprinklers, 104
DSA (digital signature algorithm), 271
DSD (dynamic separation of duties), 401
DSL (digital subscriber line), 339–340
DSL (very high data rate digital subscriber line), 340
Dsniff suite, 449–450
DSSS (direct-sequence spread spectrum), 347
dual-homed gateways, 359
dual-use keys, 249
due care, 123, 496–497
due diligence, 123, 496–497
dumb cards, 95
duplicate check, 544
durability, 570
duress alarms, 95
DVD CCA (DVD Copy Control Association), 286
DVD Copy Control Association (DVD CCA), 286
DVDs (digital video discs), 183
dwell time, 347
dynamic NAT, 358
dynamic passwords, 379–380
Dynamic Random Access Memory (DRAM), 181–182
dynamic routing, 334
dynamic separation of duties (DSD), 401

E

E1, 339
E3, 339
EA (enterprise architecture), 214–217
EALs (Evaluation Assurance Levels), 211
EAP (Extensible Authentication Protocol), 284, 360–361, 404
EAP-FAST, 361
EAP-Flexible Authentication via Secure Tunneling), 361
EAP-LEAP, 361
encapsulation of process or objects

EAP-MD5, 361
EAP-PEAP, 361
EAP-SIM, 361
EAP-Subscriber Identity Module (EAP-SIM), 361
EAP-TTLS, 361
EAP-Tunneled Transport Layer Security (EAP-TTLS), 361
earthquakes, 73
eavesdropping, 453
VoIP (voice over IP), 344
eBay, passwords, 378
ECB (Electronic Cookbook) mode, 253
ECC (Elliptical Curve Cryptosystem), 263
Economic Espionage Act of 1996, 123
Edmondson, Dave, 154
education, security management, 160–161
EFF (Electronic Frontier Foundation), 254
EGP (Exterior Gateway Protocol), 336
EICER (European Institute of Computer Anti-virus Research), 577
El Gamal, 263
electric lock pick guns, 93
electrical, physical security, 81
electrical power, 99–100
electromagnetic (EMI) chambers, 78
electro-mechanical, 106
Electronic Cookbook mode, 253
Electronic Frontier Foundation (EFF), 254
electronic serial number (ESN), 345–346
electronic vaulting, 612
elliptic curve discrete logarithm problem, 263
elliptic curves, 263
Elliptical Curve Cryptosystem (ECC), 263
e-mail, 504–506
cryption, 55
e-mail protection mechanisms, 277, 365
PGP (Pretty Good Privacy), 278
emanation security, 524
emanations, 222–223, 524
embedded device forensics, 472
embedded devices, 186
emergency funding, Katrina (hurricane), 617
emergency management teams, 534
emergency operations center (EOC), 601
emergency operations teams, 534
emergency power off (EPO), 100
emergency response teams, 534
emergency system restart, Orange Book, 501
EMI (electromagnetic interference) chambers, 78
employee access control, 94
badges, tokens, and cards, 94–95
biometric access controls, 96–97
RFID tags, 95–96
employee services, BCP (business continuity plan), 617
employee-awareness programs, security management, 160
employees, terminated employees, security management, 159–160
encapsulated secure payload (ESP), 282
encapsulating security payload (ESP), 363
encapsulation, 303–304
OOP (object-oriented programming), 565
encapsulation of process or objects, 179
encryption, 52, 235, 236
802.11, 351
asymmetric encryption, 259–261
authentication, 235
data at rest, 52–54
data in transit, 54–56
disk encryption, 56
disk encryption, 54–56
end to end encryption, 56
equipment failure, physical security, 75
end-of-life provisions, 35
end-to-end encryption, 284
enforcement, 377
enforcement, 377
Enigma machine, 242
enterprise architecture (EA), 214–215
enticement, 480, 482
entity relationship diagram (ERD), 547–548
entraption, 482
warning banners, 510
enumeration, 438
environmental controls, facilities, 98
EOC (emergency operations center), 601
EPO (emergency power off), 100
equipment, network equipment, 328
bridges, 328
gateways, 333
hubs, 328
mirrored ports, 330
network tap, 330–331
repeaters, 328
routers, 332–333
switches, 329–330
VLANs (virtual LANs), 331
equipment failure, physical security, 75
equipment lifecycle, 51–52, 101
ERD (entity relationship diagram), 547–548
escalation, 439
escalation of privilege, 439
escrow agreements, 611
ESN (electronic serial number), 345–346
ESP (encapsulated secure payload), 282
ESP (encapsulating security payload), 363
Estonia
attacks, 464
DDoS attacks, 443
Ethernet, 305, 318
Ethernet frame, 318
Ethernet II protocol, 318
ethical hackers, 430
ethics, 163–164
common computer ethics fallacies, 167
Computer Ethics Institute, 165
IAB (Internet Architecture Board), 165–166
ISC2, 164
NIST SP 800–14, 166–167
regulatory requirements, 167–168
European Institute of Computer Anti-virus Research (EICER), 577
European Union, Data Protection Authority, 121
Evaluation Assurance Levels (EALs), 211
event logs, 434
events, 468
evidence life cycles, crime, 483
evidence types, crime, 481–482
exam readiness, assessing, 18–19

exams. See also tests
drag and drop questions, 21
hotspot question format, 22–23
multiple-choice questions, 21
strategies for taking, 24–25
strategies for taking exams,
question-handling strategies, 24–25
taking, 19–20
exclusive-or (XOR), 352
execution domain switching, 189
existence check, 544
expert systems, 570
exposed risk, 138
Extensible Authentication Protocol (EAP), 284, 360–361, 404
Extensible Markup Language (XML), 565
extensions, Diameter, 407
Exterior Gateway Protocol (EGP), 336
exterior gateway protocols, 336
external groups, interacting with, 616–617
extreme programming (XP), 558

facial recognition, 388
facial scans, 97
Facilitated Risk Assessment Process (FRAP), 144
facilities, 76
area concerns, 77–78
asset placement, 82
construction, 78
doors, walls, windows, and ceilings, 79–81
CPTED (Crime Prevention Through Environmental Design), 76–77
electrical power, 99–100
employee access control, 94
badges, tokens, and cards, 94–95
biometric access controls, 96–97
RFID tags, 95–96
environmental controls, 98
heating, ventilating, and air conditioning, 98–99
location, 78
perimeter controls, 83
bollards, 85–86
fences, 83–84
gates, 84–85
guards and dogs, 89
lighting, 88–89
lock picking, 92–94
locks, 89–92
UPS (uninterruptible power supplies), 100
facility and supply recovery, 601
mobile sites, 604
reciprocal agreements, 604–605
redundant sites, 603–604
subscription services, 601–603
factor analysis of information risk (FAIR), 130
fail safe, 195
fail soft, 195
fail-open state, 544
fail-safe locks, 80
fail-secure, 80
failure states, 544
FAIR (factor analysis of information risk), 130
fake login screens, 455
false acceptance rate (FAR), 386
false negatives, 410, 526
false positives, 410, 526
false rejection rate (FRR), 386
FAR (false acceptance rate), 386
Farmer, Dan, 164, 427
fast infection viruses, 576–577
fast-flux botnets, 445
fault tolerance, 513–514, 606–607
fax, 506–507
fax activity logs, 507
fax encryption, 507
fax servers, 507
FCoE (Fiber Channel over Ethernet), 40, 326
FCPA (Foreign Corrupt Practices Act), 168
FEA (Federal Enterprise Architecture), 215
Federal Enterprise Architecture (FEA), 215
Federal Information Processing Standards (FIPS), 61
Federal Information Security Management Act (FISMA), 59–60, 497
federation, 392
fees, for hot sites, 601–602
Feistel, Horst, 242
Feistel Network, 242
FEMA (Federal Emergency Management Administration), 81
fences, 83–84
FHSS (frequency-hopping spread spectrum), 347
Fiber Channel over Ethernet (FCoE), 40
fiber-optic cable, 324
fields, databases, 567
file infection, 456, 576
file servers, 186
File Transfer Protocol (FTP), 314
final tests, 552
finance teams, 534
financial attacks, 575
financial audits, 37–38
fingerprint scans, 96–97
fingerprint scans, 388–389
FIPS (Federal Information Processing Standards), 61
fire, 74
fire detection, 101–102
fire detectors, 81
fire drills, 102
fire escapes, physical security, 81
fire prevention, 101–102
fire suppression, 101–102, 103
halon, 105–106
water sprinklers, 104–105
fire-detection equipment, 102–103
firewall designs, 359
firewalls, 355
packet filters, 355–356
proxy servers, 356–357
stateful firewalls, 356
FISMA (Federal Information Security Management Act), 59–60, 497
floods, 73
food, disaster recovery, 605
footprinting, 225, 438
Foreign Corrupt Practices Act (FCPA), 168
foreign government agents, 436
foreign keys, databases, 567
forensics, 472–473
computer forensics, 474
acquire, 475–477
analysis, 478
authenticate, 477
integrity, 477–478
procedures, 473
FORTRAN, 564
fraggle, DoS attacks, 442–443
fragment free switches, 330
fragmentation, 307
Frame Relay, 337
frameworks
risk management, 129–130
Zachman Framework, 214–215
FRAP (Facilitated Risk Assessment Process), 144
Free Space Optics (FSO), 608
frequency analysis, 238
frequency-hopping spread spectrum (FHSS), 347
Fresnel lens, 88
Friedman, William, 243
FRR (false rejection rate), 386
FSO (Free Space Optics), 608
FTP (File Transfer Protocol), 314, 357
FTP Secure (FTPS), 280
FTPS (FTP Secure), 280
full backups, 512, 609
full duplex, 327
full interruption, BCP (business continuity plan), 620
fully connected topology, 322
function tests, 552
functional requirements and planning, SDLC (System Development Life Cycle), 547–548
fuzzing, 552
fuzzy solutions, 570

G

G8 (Group of Eight), 497
GANs (Global Area Networks), 325
Gantt charts, 560
GAP in WAP, 354
garbage in, garbage out testing, 552
gates, 84–85
gateways, 333
Generation 1, 563
Generation 2, 563
Generation 3, 563
Generation 4, 563
Generation 5, 563
generations of languages (GLs), 562–563
generators, 100
GFS (grandfather-father-son), 513, 612
GLBA (Gramm-Leach-Bliley Act), 59

global Area Networks (GANs), 325
Global System for Mobile Communications (GSM), 192
globally unique identifier (GUID), 479
GLs (generations of languages), 562–563
gold box, phreakers, 508
Gonzalez, Albert, 466
governance, 49–50
laws, standards, mandates, 58–60
resources
international resources, 61–63
United States, 60–61
security, 214–215
security governance, 116–117
government spies, 127
Graham Denning model, 205
Gramm-Leach-Bliley Act (GLBA), 59
grandfather-father-son (GFS), 513, 612
granularity, databases, 567–568
graybox testing, 428
graylists, 506
grounding devices, 98
Group of Eight (G8), 497
GSM (Global System for Mobile Communications), 192
guards, perimeter controls, 89
GUID (globally unique identifier), 479
guidelines, 153
security, 214–215

H

hacker insurance, 135
hacker researchers, 436
hackers, 125–128
ethical hackers, 430
skilled hackers, 436
hactivists, 435, 444
half duplex, 327
halon, 105–106
hand geometry, 97, 387
hard changeovers

hard changeovers, 553
hardening, 498
hardware device forensics, 472
hardware failures, 606
hardware keystroke loggers, 415–416, 523
Hardware Security Modules (HSM), 277
hardware-based NAC, 415, 522
Harrison-Ruzzo-Ullman model, 205
hash, 236
hash values, 267
Hashed Message Authentication Code (HMAC), 269–270
hashed values, 576
hashes, 379
hashing, 575
collisions, 268
hashing algorithms, 267–268, 273
CBC-MAC (cipher block chaining-Message Authentication Code), 270
CMAC (cipher-based message authentication code), 270
HAVAL, 269
HMAC (Hashed Message Authentication Code), 269–270
MAC (Message Authentication Code), 269
MD algorithms, 268–269
secure hashing algorithms, 269
HAVAL, 269
HBA (host bus adapter), 40, 326
HDLC (High-Level data Link Control), 341
HDSL (high data rate digital subscriber line), 340
Health Insurance Portability and Accountability Act (HIPAA), 58
hearsay evidence, 482
heating, facilities, 98–99
heuristic scanning, 509–510
HIDS (host-based intrusion detection systems), 411, 526, 527
hierarchical database management system, 567
hierarchical designs, 400
high data rate digital subscriber (HDSL), 340
High-Level Data Link Control (HDLC), 341
high-speed serial interface, 341
HIPAA (Health Insurance Portability and Accountability Act), 58
history of, encryption, 237–243
HMAC (Hashed Message Authentication Code), 269–270
honeynets, 480–481, 510
honeypots, 480–481, 510
horizontal privilege escalation, 439
host bus adapter (HBA) allocation, 40, 326
host to host layer controls, securing TCP/IP, 280–282
host-based firewalls, 56
host-based intrusion detection systems, 411
host-based intrusion detection systems (HIDS), 527
host-to-host layer, TCP/IP, 311
TCP (Transmission Control Protocol), 312–313
UDP (User Datagram Protocol), 313
Host-to-LAN tunnels, 55
hot fixes, 572
hot sites, 601–602
hotspot question format, 22–23
HSM (Hardware Security Modules), 277
HTML, 564
HTTP (Hypertext Transfer Protocol), 315–316, 357
hubs, 328
human safety, 590
hurricanes, 73
HVAC
facilities, 98–99
security, 81
hybrid attacks, 451
hybrid designs, 400
hybrid encryption, 265–266
Hypertext Transfer Protocol (HTTP), 315–316
hypervisor, 185

I
I Love You virus, 464
IA (Interoperability Agreement), 118
IaaS (Infrastructure-as-a-service), 341, 503
IAB (Internet Architecture Board), 165–166
IAM (Information Assurance Methodology), 144
IANA (Internet Assigned Numbers Authority), 333
ICMP, 306
ICMP (Internet Control Message Protocol), 309–310
IDEA (International Data Encryption Algorithm), 251, 258
identification, 375–376
identity and access management, 374
identity management, 391–392
account management, 391
federation, 392
password management, 391
profile management, 391
identity theft, 453–454
IDP (Intrusion Detection and Prevention), 414, 525
IDS (intrusion detection systems), 106–107, 409–410, 525–526
anomaly-based IDS engines, 412, 528
behavioral-based IDS, 412, 528–529
components of, 413, 529
HIDS (host-based intrusion detection systems), 411, 527
NIDS (network-based intrusion detection systems), 410, 526–527
rule-based access controls, 412
rule-based IDS, 528–529
sensor placement, 413, 529
signature-based IDS engines, 411, 528
IDSL (Internet digital subscriber line), 340
IEEE (Institute of Electrical and Electronics Engineers), 297
IETF (Internet Engineering Task Force), 166, Open Systems Interconnection model
IGMP (Internet Group Management Protocol), 310–311
IGRP (Internet Gateway Routing Protocol), 306
IKE (Internet Key Exchange), 363
IKE (IPSec Internet Key Exchange), 283
ILM (information lifecycle management), 33
IM (instant messaging), 364
IMAP (Internet Message Authentication Protocol), 316, 505
IMAPv4, 316
implementing
BCP (business continuity plan), 618–619
awareness and training, 619
personnel security, 156–157
IMSI (International Mobile Subscriber Identity), 345–346
incident response, 467–468, 530–531
processes, 469–470
results, 470–471
teams, 468
incident response teams, 468, 534
incidents, 468
operational security incidents, responding to, 530
incremental attacks
incremental backups, 512–513, 609
Industry Standard Architecture (ISA), 183
inference, 284
databases, 569, 567
inference attacks, 284
information
classifying, 46
data classification, 46–47
obsolete information, 48
Information Assurance Methodology (IAM), 144
information flow model, 199
information handling requirements, data security, 43
information lifecycle management. See ILM (information lifecycle management)
Information Systems Audit and Control Association (ISACA), 37–38, 218
information technology infrastructure library (ITIL), 61, 214
Information Technology Security Evaluation Criteria (ITSEC), 210
informative policies, 151–152
Infrastructure-as-a-service (IaaS), 341, 503
infrastructure-based NAC, 414, 522
initial program load (IPL), 501
initial sequence numbers (ISNs), 440
initialization vector (IV), 247
initiation, BCP (business continuity plan), 591–593
injection attacks, 225
input/output operations, 189
inputs, 520
insiders, threat actors, 435
instant messaging (IM), 364
insurance
BCP (business continuity plan), 617–618
hacker insurance, 135
intangible assets, 496
Integrated Services Digital Network (ISDN), 338
integrity, 29
computer forensics, 477–478
cryptography, 235
referential integrity, 569
security models, 202
Biba model, 202–203
Clark-Wilson model, 204
semantic integrity, 569
integrity checking, 510
integrity verification, cryptography, 266–267
integrity verification procedures (IVPs), 204
intellectual property, protecting, 121
intellectual property rights, 34
software licensing, 50–51
interacting with external groups, BCP (business continuity plan), 616–617
Interconnection Security Agreement (ISA), 118
interface testing, 551
International Data Encryption Algorithm (IDEA), 258
international law, 124–125
International Organization for Standardization (ISO), 297
International Organization on Computer Evidence (IOCE), 473
international resources, for governance, 61–63
International Subscriber Identity (IMSI), 345–346
International Telecommunication Union-Telecommunications Standardization Sector (ITU-T), 297
Internet Architecture Board (IAB), 165–166
Internet Assigned Numbers Authority (IANA), 333
Internet Association and Key Management Protocol (ISAKMP), 283
Internet digital subscriber (IDSL), 340
Internet Engineering Task Force (IETF), 166, 297
Internet Gateway Routing Protocol. See IGRP (Internet Gateway Routing Protocol)
Internet key exchange (IKE), 363
Internet layer, TCP/IP, 306
ARP (Address Resolution Protocol), 310
ICMP (Internet Control Message Protocol, 309–310
IGMP (Internet Group Management Protocol), 310–311
IP (Internet Protocol), 306–309
Internet layer controls, securing TCP/IP, 282–283
Internet Message Authentication Protocol (IMAP), 316, 505
Internet Small Computer System Interface (iSCSI), 39–40, 325
Interoperability Agreement (IA), 118
interpreters, 564
interrogations, 480
interrupt-driven I/O, 180
interrupts, 179–180
Inter-Switch Link (ISL), 331
interviews, crime, 480
intrusion detection, 409
intrusion Detection and Prevention (IDP), 414
intrusion detection systems (IDS). See IDS (intrusion detection systems)
intrusion prevention systems, 414
intrusion prevention systems (IPSs), 530
investigating computer crime, 466–467, 479
invocation property, 202
I/O bus standards, 183–184
I/O using DMA, 180
IOCE (International Organization on Computer Evidence), 473
IP (Internet Protocol), 306–309
IP addresses, 332
IPL (initial program load), 501
IPS (intrusion prevention systems), 414, 530
IPSec (IP Security), 55, 362–364
IPSec Internet Key Exchange), 283
IPv6, 307–309
iris recognition, 387
iris scans, 97
IS security steering committees, roles and responsibilities, 32
ISA (Industry Standard Architecture), 183
ISA (Interconnection Security Agreement), 118
ISACA (Information Systems Audit and Control Association), 37–38, 218
ISAKMP (The Internet Association and Key Management Protocol), 283
ISC2, ethics, 164
iSCSI (Internet Small Computer System Interface), 39–40, 325
ISDN (Integrated Services Digital Network), 338
ISL (Inter-Switch Link), 331
ISNs (initial sequence numbers), 440
ISO (International Organization for Standardization), 61–62, 297
ISO 9001, 62
ISO 17799, 41, 216
ISO 27000, 217
ISO 27001, 61, 217
ISO 27002, 61, 117, 217
ISO 27003, 62, 217
ISO 27004, 62, 217
ISO 27005, 62, 217
ISO 27799, 62
ISO-certified, 62
isolation, 570
IT audits, 37–38
ITIL (information technology infrastructure library), 61, 214
ITSEC (Information Technology Security Evaluation Criteria), 210
ITU-T (International Telecommunication Union-Telecommunications Standardization Sector), 297
IV (initialization vector), 247
IVPs (integrity verification procedures), 204

J
JAD (Joint Application Development), 555–556
Japanese Purple Machine, 242, 243
Java, 196, 564, 573
mobile code, 573
Java applets, 573–574
JBOD (Just a Bunch of Disks), 516
JKF Records Act, 44
job rotation, 158
job titles, 494
Johansen, Jon Lech, 286
joins, 403
Joint Application Development (JAD), 555–556
jurisdiction over computer crime, 467
Just a Bunch of Disks (JBOD), 516

K
Katrina (hurricane), 600
emergency funding, 617
KDC (Key Distribution Center), 393, 394
Kerberos, 393–396
weaknesses of, 395
Kerckhoff’s Principle, 286
Kerckhoff, Auguste, 286
key cards, employee access control, 94–95
key clustering, 287
Key Distribution Center (KDC), 393
key space, 246
key-bumping, 93
keys, dual-use keys, 249
keystroke monitoring, 415–416, 523
knowledge base, 570
knowledge extraction, 36–37
knowledge management, 36–37
known plaintext attack, 287
KryptoKnight, 396
L
L2F, 284
L2TP (Layer 2 Tunneling Protocol), 55, 284
land, DoS attacks, 442
languages, programming languages, 562–565
LANs (local area networks), 318
cabling, 322–324
communication protocols, 318–319
LAN-to-LAN tunnels, 55
last mile protection, 607
Lattice model, 205–206
lattice structure, 567
lattice-based access control (LBAC), 403
laws
administrative law, 124
civil law, 124
common law, 123
Corpus Juris Civilis, 125
criminal law, 123–124
customary law, 125
FISMA (Federal Information Security Management Act), 59–60
GLBA (Gramm-Leach-Bliley Act), 59
governance, 58–60
HIPAA (Health Insurance Portability and Accountability Act), 58–59
international law, 124–125
keystroke monitoring, 524
mixed law, 125
Napoleonic law, 125
privacy laws, 121–122
religious law, 125
security, 123
SOX (Sarbanes-Oxley Act), 60
United States, 123–124
Layer 2 Tunneling Protocol (L2TP), 55, 284
layered protections, 72
LBAC (lattice-based access control), 403
LDAP (Lightweight Directory Access Protocol), 316, 404
LEAP (Lightweight Extensible Authentication Protocol), 361
least privilege, 158–159
legal compliance, data governance policies, 31
liability, data governance policies, 31
librarians, 493
licensing, software, 50–51
lifecycles, equipment lifecycle, 51–52, 101
lighting, perimeter controls, 88–89
Lightweight Directory Access Protocol (LDAP), 316
Lightweight directory access protocol (LDAP, 404
Lightweight Extensible Authentication Protocol (LEAP), 361
liking, social engineering, 163
limit check, 543
Line Printer Daemon, 316
linear cryptanalysis, 287
link encryption, 56
link-state protocols, 335
link-to-link encryption, 285
Lipner model, 205
live analysis, 478
LKM (loadable kernel module), 461
loadable kernel module (LKM), 461
local area networks. See LANs (local area networks)
location, of facilities, 78
location redundancy, 326
SAN (storage area network), 40
lock pick sets, 93
lock picking, 92–94
lock shims, 94
locks
combination locks, 90
lock picking, 92–94
mechanical locks, 91
perimeter controls, 89–92
programmable locks, 91–92
tumbler locks, 91
warded locks, 91
logging, 408–409
access logs, 434
audit logs, 434
centralized logging, 518
event logs, 434
system logs, 434
logic bombs, 457–458, 575
logic check, 544
logical attacks, 126
logs, security logs, 434
LOIC (Low Orbit Ion Cannon), 437, 444
Loki program, 221
longest running suppressed patent, 243
lookup tables, 329
loose source routing, 307
loss
potential loss, assessing, 595–598
threat analysis, 136
Low Orbit Ion Cannon (LOIC), 437, 444
low-level checks, 149
LPD (Line Printer Daemon), 316
LUC, 263
Lucifer, 252
LUN masking, 326
 SAN (storage area network), 40
LuzSec, 465

M

M of N Control, 277
MaaS (Monitoring as a Service), 503
MAC (mandatory access control), 398–400
MAC (Message Authentication Code), 269
macro infections, 456, 576
magnetic stripe readers, 383
MAID (massive array of inactive disks), 608
MAID (massive array of inactive hard drives), 513
mail bombing, 447
maintaining, BCP (business continuity plan), 621–622
maintenance hooks, 220, 550
malicious software threats, 456
 APTs (advanced persistent threats), 462
 backdoors, 458–459
 crimeware kits, 461–462
 logic bombs, 457–458
 ransomware, 462–463
 rootkits, 461
 Trojans, 458–459
 viruses, 456–457
 worms, 457
malware
 anti-malware, 509–510
 Sality, 578
managed mode, 348
managing
 accounts, 493–495
 clipping level, 496
 assets. See asset management
data. See data management
 users, 493–495
 controlling access, 495
 privileged entities, 495
 resource protection, 496
mandates, governance, 58–60
mandatory access control (MAC), 398–400
mandatory vacations, security management, 159
man-in-the middle attack, 288
man-made threats, physical security, 74–75
MANs (metropolitan area networks), 325
mantraps, 85
manual authorization input control, 520
Marconi, Guglielmo, 503
MARS, 251
maskable interrupts, 180
massive array of inactive hard drives (MAID), 513, 608
master boot record infection, 456, 576
master license agreements, 50
master mode, 348
maturity levels, CMM (Capability Maturity Model), 559
maximum tolerable downtime (MTD), 598
McCain campaign, security, 348
MD (Message Digest) algorithms, 268–269
MD5, 267–268
mean time between failure (MTBF), 101, 516–517, 606
mean time repair (MTTR), 101
mean time to repair (MTTR), 516–517, 606
mechanical locks, 91
media management, 502–503
media spokesperson, 616–617
media storage, secondary storage, 183
media-rotation strategies, 611–612
meets, 403
Melissa virus, 464
forensics, 479
meme, 576
Memorandum of Understanding (MOU), 118
memory, 177
CAM (content addressable memory), 329
RAM (random access memory), 181–182
ROM (read-only memory), 182
secondary storage, 183
virtual memory, 184–185
memory addressing, 181
memory cards, 384
memory leaks, 182
memory management systems, 180
memory protection, 189
memory-mapped I/O, 180
mergers, risk management, 119–120
Merkle-Hellman Knapsack, 264
mesh size, fences, 81–84
mesh topology, 321
Message Authentication Code (MAC), 269
message digest, 236
Message Digest (MD) algorithms, 268–269
message privacy, 364–365
Message Security Protocol (MSP), 278
metadata, 35–36
metropolitan area networks (MANs), 325
Microsoft Point-to-Point Encryption (MPPE), 55
The Midnight Skulker, 465
military data classification, 47–48
MIME (Object Security Services), 278
mining, data mining, 35–36
mirrored ports, 330–331
Mitnick, Kevin, 465
mixed law, 125
mobile code, 573–574
mobile devices, 186
mobile sites, 604
mobile system vulnerabilities, 225–226
models
access control models. See access control models
business reference model, 215
cloud computing models, 504
CMM (Capability Maturity Model), 558–560
CMMI (Capability Maturity Model Integration), 610–611
data reference model, 215
MPM (Modified Prototype Model), 557
network models, 296–297
OSI (Open Systems Interconnection) model. See OSI (Open Systems Interconnection) model, 297–303
TCP/IP. See TCP/IP, 304–317
performance reference model, 215
product security evaluation models, 206
SABSA (Sherwood Applied Business Security Architecture), 215
security models. See security models
service component reference model, 215
spiral model, 554–555
SSDLC (security software development lifecycle) model, 432
technical reference model, 215
waterfall model, 554
Zachman model, 215
modes of operation
DES (Data Encryption Standard), 252
security, 193–194
Modified Prototype Model (MPM), 557
MOM (Means, Opportunity, and Motive), 466
monitor mode, 348

monitoring
access and usage, 408–409
application transactions, 520–521
BCP (business continuity plan), 621–622
IDS (intrusion detection systems), 409–410
anomaly-based IDS engines, 412
behavioral-based IDS, 412
HIDS (host-based intrusion detection systems), 411
NIDS (network-based intrusion detection systems), 410
rule-based IDS, 412
sensor placement, 413
signature-based IDS engines, 411
IPS (intrusion prevention systems), 414
keystroke monitoring, 415–416, 523
NAC (Network Access Control), 414–415
surveillance, 479
monitoring and auditing controls, 518–519
auditing user activities, 519
controlling physical access, 524–525
emanations, 524
keystroke monitoring, 523
monitoring application transactions, 520–521
NAC (Network Access Control), 522
SIEM (security information and event management), 521–522
monitoring and detection, alarm systems, 107–108
Monitoring as a Service (MaaS), 503
Monsegur, Hector, 466
Morris, Robert T., 167, 457
Morris Jr., Robert, 465, 577
Morris Worm, 456, 457
MOSS (MIME Object Security Services), 278
motherboards, 176
motion detectors, 106
MOU (Memorandum of Understanding), 118
MPLS (Multiprotocol Label Switching), 329, 337
MPM (Modified Prototype Model), 557
MPPE (Microsoft Point-to-Point Encryption), 55
MS-CHAPv2, 404
MSP (Message Security Protocol), 278
MTBF (mean time between failure), 101, 516–517, 606
MTD (maximum tolerable downtime), 598
MTTR (mean time to repair), 101, 516–517, 606
multifactor, 390
multi-level, security modes of operation, 193
multimode fiber, 324
multipartite virus, 457, 576
multipath solutions, SAN (storage area network), 40
multiple-choice questions, 21
multiprocessor, 178–179
multiprogramming, 178
Multiprotocol Label Switching (MPLS), 329
multistate systems, 194
multitasking, 178

N

NAC (Network Access Control), 414–415, 522
naming distinctions, 179
Napoleonic law, 125
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS (Network Attached Storage)</td>
<td>325</td>
</tr>
<tr>
<td>NAS (network attached storage)</td>
<td>38–39</td>
</tr>
<tr>
<td>NAT (Network Address Translation)</td>
<td>358</td>
</tr>
<tr>
<td>National Computer Security Center</td>
<td>207</td>
</tr>
<tr>
<td>National Information Assurance Certification and Accreditation Process (NIACAP)</td>
<td>213</td>
</tr>
<tr>
<td>National Institute of Standards and Technology (NIST)</td>
<td>60, 800–37, 213</td>
</tr>
<tr>
<td>National Security Agency (NSA)</td>
<td>207</td>
</tr>
<tr>
<td>natural disasters</td>
<td>77</td>
</tr>
<tr>
<td>Katrina (hurricane)</td>
<td>600</td>
</tr>
<tr>
<td>physical security</td>
<td>73–74</td>
</tr>
<tr>
<td>natural gas</td>
<td>100</td>
</tr>
<tr>
<td>NCSC (National Computer Security Center)</td>
<td>207</td>
</tr>
<tr>
<td>NDA (Nondisclosure Agreement)</td>
<td>119, 157, 495</td>
</tr>
<tr>
<td>negligence</td>
<td>483</td>
</tr>
<tr>
<td>Nessus</td>
<td>427–428</td>
</tr>
<tr>
<td>Network Access Control</td>
<td>305–306</td>
</tr>
<tr>
<td>network access control devices</td>
<td>355</td>
</tr>
<tr>
<td>demilitarized zones</td>
<td>357–358</td>
</tr>
<tr>
<td>NAT (Network Address Translation)</td>
<td>358</td>
</tr>
<tr>
<td>firewall designs</td>
<td>359</td>
</tr>
<tr>
<td>firewalls</td>
<td>355</td>
</tr>
<tr>
<td>Network Access Control (NAC)</td>
<td>522</td>
</tr>
<tr>
<td>network access layer, TCP/IP</td>
<td>305–306</td>
</tr>
<tr>
<td>network access layer controls, TCP/IP</td>
<td>283–284</td>
</tr>
<tr>
<td>Network Address Translation (NAT)</td>
<td>358</td>
</tr>
<tr>
<td>network administrators</td>
<td>494</td>
</tr>
<tr>
<td>Network Access Control</td>
<td>522</td>
</tr>
<tr>
<td>network access control devices, 355</td>
<td></td>
</tr>
<tr>
<td>demilitarized zones, 357–358</td>
<td></td>
</tr>
<tr>
<td>NAT (Network Address Translation), 358</td>
<td></td>
</tr>
<tr>
<td>firewall designs, 359</td>
<td></td>
</tr>
<tr>
<td>firewalls</td>
<td>355</td>
</tr>
<tr>
<td>Network Access Control (NAC), 522</td>
<td></td>
</tr>
<tr>
<td>network access layer, TCP/IP, 305–306</td>
<td></td>
</tr>
<tr>
<td>network access layer controls, TCP/IP, 283–284</td>
<td></td>
</tr>
<tr>
<td>Network Address Translation (NAT), 358</td>
<td></td>
</tr>
<tr>
<td>network protection, 607</td>
<td></td>
</tr>
</tbody>
</table>
network security threats, 439
ARP poisoning, 446
botnets, 443–446
database attacks, 446
DDoS attacks, 443
DNS spoofing, 447
DoS attacks, 442–443
mail bombing, 447
pharming attacks, 447
session hijacking, 440
sniffing, 440–441
traffic analysis, 447
war dialing, 447
war driving, 447
wiretapping, 441
zero-day exploits, 447
network standards, 296–297
network storage, 325–326
network taps, 330–331
network topologies, 319
bus topology, 319
fully connected topology, 322
mesh topology, 321
ring topology, 320–321
star topology, 319–320
network-based intrusion detection systems (NIDS), 410, 526–527
networks
802.11 wireless networks. See 802.11 wireless networks, 346–348
CANs (campus area networks), 325
de-encapsulation, 304
encapsulation, 303–304
GANs (Global Area Networks), 325
MANs (metropolitan area networks), 325
PAN (personal area networks), 325
SANs (storage area networks), 325–326
secure network design, 296
WANs (wide area networks). See WANs (wide area networks), 325
WPANs (wireless PANs), 325, 349
neural networks, 570–571
new-hire agreements and policies, 157
NIACAP (National Information Assurance Certification and Accreditation Process), 213
NIDS (network-based intrusion detection systems), 410, 526, 526–527
Nimda, 498
NIS (Network Information Service), 315
NIST (National Institute of Standards and Technology), 60
NIST 800–37, 213
NIST 800–53, 145
NIST risk framework, 129
NIST SP 800–14, 166–167
NIST SP 800–34, 589
NIST SP 800–34s, 545
NIST-800–115, 431–432
nonce, 247
nondisclosure agreement (NDA), 119, 157, 495
noninterference model, 199
non-maskable interrupts, 180
nonrepudiation, cryptography, 235–236
NSA (National Security Agency), 207
cryptography, 242
O
OAKLEY Protocol, 283
Object Request Broker (ORB), 566
object reuse, 45
object-oriented analysis and design (OOAD), 566
object-oriented design (OOD), 566
object-oriented programming (OOP), 565–566
object-relational database system, 567
ownership

objects, 376
 TCB (trusted computer base), 191
obsolete information, 48
OFB (Output Feedback) mode, 254
OFDM (orthogonal frequency division multiplexing), 346
OLA (Operating Level Agreement), 119
OLTP (online transaction processing), 569–570
on-demand backups, 512
one-time pad, stream ciphers, 248
one-time passwords (OTPs), 379–380, 381
online transaction processing (OLTP), 569–570
OOAD (object-oriented analysis and design), 566
OOB (out-of-band) signaling, 508–509
OOD (object-oriented design), 566
OOP (object-oriented programming), 565–566
open networks, VoIP (voice over IP), 344
Open Source Security Testing Methodology Manual (OSSTMM), 431
open system authentication (OSA), 352
open systems, 192
Open Systems Interconnection model. See OSI (Open Systems Interconnection) model
Open Web Application Security Project, 431
Operating Level Agreement (OLA), 119
operating states, security management, 194–195
operational security incidents, responding to, 530
operations and maintenance, SDLC (System Development Life Cycle), 552–553
operations management, 553
operations recovery, 606–608
optical media, 183
Orange Book, 500
 TCSEC (Trusted Computer System Evaluation Criteria), 207–209
trusted recovery, 500–501
orange box, phreakers, 508
ORB (Object Request Broker), 566
organization processes, risk management, 119–120
organizational unique identifier (OUI), 305
organized crime members, 436
organizing, data, 35
orthogonal frequency division multiplexing (OFDM), 346
OSA (open system authentication), 352
OSI (Open Systems Interconnection) model, 297–298
 application layer, 302
 data link layer, 299–300
 network layer, 300
 overview, 302–303
 physical layer, 299
 presentation layer, 301–302
 session layer, 301
 transport layer, 300–301
OSI Layer 2, 329–330
OSPF (Open Shortest Path First), 335
OSSTMM (Open Source Security Testing Methodology Manual), 431
OTPs (one-time passwords), 381
OUI (organizational unique identifier), 305
outbound dialing systems, 615–616
out-of-band, 242
output controls, 520, 521
Output Feedback mode, 254
outsider testing, 429
outsiders, threat actors, 435
ownership
 data governance policies, 31
 data ownership, 33–34
PaaS (Platform-as-a-Service), 342, 503
packers, 459–460
packet filters, 355–356, 359
packet switching, WANs (wide area networks), 336
 ATM (asynchronous transfer mode), 337
 Frame Relay, 337
 X.25, 336
PACs (Privilege Attribute Certificates), 396
PAIN (privacy, authentication, integrity, and nonrepudiation), 235
palm scans, 97, 387
PAN (personal area networks), 325
panic bars, 79
PAO (public affairs officer), 616
PAP (Password Authentication Protocol), 360, 404
parallel operations, 553
parallel tests, 552
 BCP (business continuity plan), 620
Pass the Hash, 449–450
passive infrared sensors, 107
passive sniffing, 440
passphrases, 379
password aging, 379
password attacks, 449–450
 brute-force crack, 451
 dictionary crack, 450–451
 rainbow tables, 452
password attempts, 379
Password Authentication Protocol (PAP), 360, 404
password complexity, 378–379
password composition, 378
password guessing, 449
password history, 449
password length, 378
password management, 391
password sharing, 449
password storage, 379
password synchronization, 374, 391
passwords, 377–379
 assisted password reset, 391
 cognitive passwords, 380
 dynamic passwords, 379–380
 password synchronization, 391
 self-service password reset, 391
 static passwords, 379–380
PAT (Port Address Translation), 358
patch management, 511
patches, 572
 verifying, 511
patents, 34
pattern-based, signature-based IDS engines, 528
payback analysis, 546
payload, steganography, 244
Payment Card Industry Data Security Standard (PCI-DSS), 41, 218
PBX, 507–508
PCI (Peripheral Component Interconnect), 184
PCI-DSS (Payment Card Industry Data Security Standard), 41, 218
PCle (Peripheral Component Interface Express), 184
PDU (protocol data unit), 303, 304
PEAP (Protected EAP), 361
peer-to-peer, 348
PEM (Privacy Enhanced Mail), 278
penetration, 439
penetration test teams, 430
penetration testing, 428–432
 generic model of, 430–431
performance reference model, 215
perimeter controls, 83
 bollards, 85–86
 CCTV (closed-circuit television), 87
 fences, 83–84
gates, 84–85
guards and dogs, 89
lighting, 88–89
lock picking, 92–94
locks, 89–92
perimeter intrusion and detection assessment system (PIDAS), 83
perimeters, security perimeters, 192
Peripheral Component Interconnect (PCI), 184
Peripheral Component Interface Express (PCle), 184
permanent virtual circuits (PVCs), 337
personal area networks (PAN), 325
personal information, protecting, 121–122
personal information websites, 122
personnel mobilization, BCP (business continuity plan), 615–616
personnel security, implementing, 156–157
personnel security attacks, 126
PERT (Program Evaluation and Review Technique), 560
PGP (Pretty Good Privacy), 242, 278, 317
pharming attacks, 447
phased changeover, 553
phishing, 454
photoelectric sensors, 107
phreakers, 127, 345–346, 508, 508–509
FEMA (Federal Emergency Management Administration), 508
phreaking, Van Eck phreaking, 524
physical access controlling, 524–525
password attacks, 449
physical controls, 155
physical destruction, 503
physical layer, OSI (Open Systems Interconnection) model, 299
physical port controls, 82
physical security, 72
alarm systems, 106
IDS (intrusion detection systems), 106–107
monitoring and detection, 107–108
disaster recovery, 534
equipment lifecycle, 101
facilities, 76
area concerns, 77–78
asset placement, 82
construction, 78
CPTED (Crime Prevention Through Environmental Design), 76–77
electrical power, 99–100
employee access control. See employee access control
environmental controls, 98
heating, ventilating, and air conditioning, 98–99
location, 78
perimeter controls. See perimeter controls
UPS (uninterruptible power supplies), 100
fire prevention, 101–102
fire suppression, 103
fire-detection equipment, 102–103
water sprinklers, 104–105
man-made threats, 74–75
natural disasters, 73–74
perimeter controls, CCTV (closed-circuit television), 87
physical port controls, 82
risks, 72–73
technical problems, 75
physical security attacks, 126
physical security testing, 429
PIA (privacy impact analysis), 42
picks, 93
PID (process ID), 178–179
PIDAS (perimeter intrusion and detection assessment system), 83
piggybacking, 85
pilot tests, 551
ping of death, 442
PINs, 377–379
pipelining, 177
piracy, software piracy, 50
PKI (public key infrastructure, 95, 272
CA (Certificate Authority), 272–273
client’s role, 276–277
CRL (Certificate Revocation List), 273–274
digital certificates, 274–276
RA (Registration Authority), 273
Plain Old Telephone Service (POTS), 337–338
plaintext, 236, 249
plan design and development, BCP
(business continuity plan), 615
employee services, 617
insurance, 617–618
interacting with external groups, 616–617
personnel mobilization, 615–616
Platform-as-a-Service (PaaS), 342, 503
Please Do Not Throw Sausage Pizza
Away, 297–298
plenum-grade cable, 324
Point-to-Point Protocol (PPP), 360
Point-to-Point Tunneling Protocol
(PPTP), 55, 283
poison reverse, 334–335
policies
data governance policies, 30–31
new-hire agreements and policies, 157
security policies, 150–151
advisory policies, 151
developing/implementing, 149–150
informative policies, 151–152
regulatory policies, 152
polyalphabetic cipher, 238–239
polyinstantiation, OOP
(object-oriented programming), 565–566
polymorphic viruses, 457, 576
polymorphism, OOP (object-oriented
programming), 565
POP3, 505
Port Address Translation (PAT), 358
port mirroring, 330–331
port-mapped I/O, 180
ports
application layer, TCP/IP, 314
physical port controls, 82
TCP/IP, 317
potential loss, assessing, 595–598
POTS (Plain Old Telephone Service), 337–338
power
electrical power, 99–100
generators, 100
PP (Protection Profile), 212
PPP (Point-to-Point Protocol), 360
PPTP (Point-to-Point Tunneling
Protocol), 55, 283
pre-action, water sprinklers, 104
presentation layer, OSI (Open
Systems Interconnection) model, 301–302
pressure sensitive sensors, 106
pretexiting, 454
Pretty Good Privacy (PGP), 242, 278,
317
preventative access controls, 155
preventative controls, 550–551
preventing
buffer overflows, 574–575
social engineering attacks, 496
PRI (Primary Rate Interface), 338
primary images, 478
primary keys, databases, 568
Primary Rate Interface (PRI), 338
principle, Kerberos, 394
principle of least privilege, 374–375, 495
print servers, 186
priorities, criticality prioritization, 594
privacy
cryptography, 235
HIPAA (Health Insurance Portability and Accountability Act), 58–59
message privacy, 364–365
privacy controls, 43
Privacy Enhanced Mail (PEM), 278
privacy impact assessment, 42–43
privacy laws, 121–122
private, public/private data classification, 48
private key cryptography, 259
Privilege Attribute Certificates (PACs), 396
privilege creep, 448–449
privileged entities, 495
privileged mode, 188
probabilistic risk assessment, 130
probabilistic approach, knowledge extraction, 37
problem mode, 188
problem state, CPU (central processing unit), 177
procedures
forensics, 473
risk management, 153
process activation, 189
process activity, 179
process control, 218, 520
process ID (PID), 178–179
process isolation, 195–196
process isolation techniques, 179
process spoofing, 453
processes
audit processes, 37–38
change control process, 561–562
data governance policies, 31
incident response, 469–470
processor speed, 178
product security evaluation models, 206
ITSEC (Information Technology Security Evaluation Criteria), 210
Rainbow Series, 207
professional ethics, 163–164
profile management, 391
Program Evaluation and Review Technique (PERT), 560
programmable locks, 91–92
programmed I/O, 180
programming languages, 562–565
ActiveX, 564
C, 564
C#, 564
C++, 564
COBOL (Common Business Oriented Language), 564
FORTRAN, 564
HTML, 564
Java, 564
Ruby, 564
scripting languages, 565
Visual Basic, 564
XML (Extensible Markup Language), 565
project initiation, SDLC (System Development Life Cycle), 546–547
project management, BCP (business continuity plan), 591–593
promiscuous mode, 440
Protected EAP (PEAP), 361
protection of data, 28
intellectual property, 121
resources, 496
protection of personal information, 121–122
Protection Profile (PP), 212
protection rings, 187–189
protocol data unit (PDU), 303, 304
protocol translators, 333
protocol-based, anomaly-based IDS engines, 528
protocols
ARP (Address Resolution Protocol), 306, 310
BootP (Bootstrap Protocol), 315
CHAP (Challenge Handshake Authentication Protocol), 360, 404
communication protocols, 318–319
distance-vector protocols, 334
DNS (Domain Name Service), 315
EAP (Extensible Authentication Protocol), 360–361, 404
EGP (Exterior Gateway Protocol), 336
Ethernet II protocol, 318
exterior gateway protocols, 336
FTP (File Transfer Protocol), 314
HTTP (Hypertext Transfer Protocol), 315–316
ICMP, 306
ICMP (Internet Control Message Protocol), 309–310
IGMP (Internet Group Management Protocol), 310–311
IGRP (Internet Gateway Routing Protocol). See IGRP (Internet Gateway Routing Protocol)
IMAP (Internet Message Authentication Protocol), 316
IP (Internet Protocol), 306–309
LDAP (Lightweight Directory Access Protocol), 316, 404
Line Printer Daemon, 316
link-state protocols, 335
MS-CHAPv2, 404
OSPF (Open Shortest Path First), 335
PAP (Password Authentication Protocol), 360, 404
PGP (Pretty Good Privacy), 317
PPP (Point-to-Point Protocol), 360
RIP (Routing Information Protocol), 316–317
RIPsplit horizon, 334–335
routed protocols, 333
routing protocols, 333–334, 335
SMTP (Simple Mail Transfer Protocol), 314–315
SNMP (Simple Network Management Protocol), 316
SSL (Secure Sockets Layer), 316
STP (Spanning Tree Protocol), 331
TCP (Transmission Control Protocol), 312–313
Telnet, 314
TFTP (Trivial File Transfer Protocol), 315
trunking protocols, 331
UDP (User Datagram Protocol), 313
prototyping, development methods, 556–557
proxy servers, 356–357
pseudorandom, 247
public, public/private data classification, 48
public affairs officer (PAO), 616
public key cryptography, 259
public key encryption, 260–261
public key infrastructure. See PKI (public key infrastructure)
public-key cryptosystem, 265
public/private data classification, 48
PVCs (permanent virtual circuits), 337
QoS (quality of service), VoIP (voice over IP), 343
qualitative assessment, 596–597
versus quantitative assessments, 145–146
qualitative ranking, 597
quality assurance specialists, 493
quantitative assessments
versus qualitative assessment, 145–146
risk assessment, 139–142
quantum cryptography, 242
question-handling strategies, 24–25
questionnaires, BIA (business impact analysis), 595–597
questions
drag and drop questions, 21
hotspot question format, 22–23
multiple-choice questions, 21

R
RA (Registration Authority), 273
race conditions, 220
RAD (Rapid Application Development), 556
radio frequency interference (RFI), 99
Radio Shack, 154
RADIUS (remote authentication dial-in user service), 362, 404–405
RAID (Redundant Array of Inexpensive Disks), 514–516, 606–607
Rainbow Series, 207
Orange Book, 207–209
Red Book, 209
rainbow tables, 452
RAIT (redundant array of independent tapes), 513
raking, 93
RAM (random access memory), 181–182
RAM-resident, 576–577
random access memory (RAM), 181–182
range check, 544
ransomware, 462–463
Rapid Application Development (RAD), 556
Rapid Spanning Tree Protocol (RSTP), 331
RAT (remote access Trojan), 458
RBAC (role-based access controls), 401–402
RC2, 258
RC4 (Rivest Cipher 4), 251, 258–259
WEP (Wired Equivalent Privacy), 352
RC5 (Rivest Cipher 5), 251, 259
RC6, 259
RDBMS (relational database management system), 567
read-only memory (ROM), 182
ready state, CPU (central processing unit), 177
realms, Kerberos, 393
reasonably prudent person rule, 497
reciprocal agreements, facility and supply recovery, 604–605
reciprocalation, social engineering, 163
recovery access controls, 155
recovery controls, 516–518
recovery point objective (RPO), 613
recovery procedures, 195
recovery strategies, BCP (business continuity plan), 599–600
backup and restoration, 609–611
business process recovery, 600–601
data and information recovery, 608–609
facility and supply recovery, 601
operations recovery, 606–608
user recovery, 605
recovery time objective (RTO), 613
recovery times, 610
Red Book, 209
red box, phreakers, 508
red teams, 430
Reduced Instruction Set Computing (RISC), 178
redundancy (location), SAN (storage area network), 40
Redundant Array of Inexpensive Disks (RAID), 514–516
redundant array of independent tapes (RAIT), 513
redundant routing, 607
redundant sites, 603–604
reference monitors, TCB (trusted computer base), 189–191
referential integrity, 569
Regional Internet Registry (RIR), 333
Registration Authority (RA), 273
regression tests, 552
regulatory compliance, 218
regulatory law, 124
regulatory policies, 152
regulatory requirements, ethics, 167–168
relation, databases, 568
relational database management system (RDBMS), 567
relative addressing, 181
religious law, 125
remote access, 502
CHAP (Challenge Handshake Authentication Protocol), 360
EAP (Extensible Authentication Protocol), 360–361
PAP (Password Authentication Protocol), 360
PPP (Point-to-Point Protocol), 360
remote access Trojan (RAT), 458
remote authentication dial-in user service (RADIUS), 362
remote journaling, 612
remote meetings, 365
removable media, endpoint security, 56
repeaters, 328
replay attack, 288
reports, risk management teams, 148
reputation, 599
residual information, 554
resource protection, 496
resources, governance, 58–60
international resources, 61–63
United States, 60–61
responding to operational security incidents, 530
responsibilities
BCP (business continuity plan), 622
data custodians, 34–35
data ownership, 33–34
data security, 32–33
restoration from backups, 609–611
results, incident response, 470–471
retina patterns, 388
retina scans, 97
reverse engineering, 551
RFC (Request for Comments), 165–166
RFI (radio frequency interference), 99
RFID tags, 95–96
Rijndael, 251, 257, 258
ring topology, 320–321
RIP (Routing Information Protocol), 316–317, 334–335
RIR (Regional Internet Registry), 333
RISC (Reduced Instruction Set Computing), 178
risk
defined, 130
exposed risk, 138
risk acceptance, 146
risk assessment, 130–133
counter measure selection, 146–149
qualitative assessment, 142–146
quantitative assessments, 139–142
security policies, developing/implementing, 149–150
risk avoidance, 137
risk factor analysis, 130
risk management, 117, 128
asset identification and valuation, 133–135
baselines, 152
frameworks, 129–130
guidelines, 153
organization processes, 119–120
procedures, 153
risk assessment, 130–133
counter measure selection, 146–149
security policies, 150–151
standards, 152
threat analysis, 135–139
risk management teams, 131–132
reports, 148
risk matrix, 149
risk mitigation, 147
risk registers, 130
risk tolerance, 147
risk transference, 147
risks, physical security, 72–73
Rivest cipher, 258–259
rogue security software, 463
role-based access control (RBAC), 401–402
roles
data custodians, 34–35
data ownership, 33–34
data security, 32–33
rollback plans, 499
ROM (read-only memory), 182
rootkits, 461
ROT3, 237
rotation cipher, 237
routed protocols, 333
routers, 332–333
routing, 332
alternate routing, 607
diverse routing, 607
routings by rumor, 334
Routing Information Protocol (RIP), 316–317
routing protocols, 333–334, 335
Royce, Winston, 554
RPO (recovery point objective), 613
RSA, 262–263
RSTP (Rapid Spanning Tree Protocol), 331
RTM worm, 577
RTO (recovery time objective), 613
rubber hose attack, 288
Ruby, 564
rule-based access controls, 402, 412
rule-based IDS, 528–529
running key cipher, 241
S
SA (Security Association), 282
SaaS (Software-as-a-Service), 341, 504
SABSA (Sherwood Applied Business Security Architecture), 215
SAFER (Secure and Fast Encryption Routine), 251
salami attacks, 575
Sality, 578
salvage teams, 533–534
SAML (Security Association Markup Language), 377
SAN (storage area network), 38–41, 613
SAN snapshots, 40, 326
sandboxes, 509
sanitization, 44, 502
SANs (storage area networks), 325–326, 513–514
Sarbanes-Oxley Act (SOX), 60, 168, 497
SAS 70 report, 119
SASD (sequential access storage device), 513
SATA (Serial ATA), 184
SATAN (Security Administrator Tool for Analyzing Networks), 164
scanning, 438
scarcity, social engineering, 162
scheduling, tasks, 560–561
scarecrow, 572
scheduling, tasks, 153
scheduling, tasks, 153
schemas, databases, 568
scoping, 58
screened host firewalls, 359
screened hosts, 357–358, 359
script kiddies, 127, 435
scripting languages, 565
scrubbing, 93
scrum, 558
SCSI (Small Computer Systems Interface), 184
scytale, 237
SDL (Security Development Lifecycle), 545
SDLC (Synchronous Data Link Control), 341
SDLC (System Development Life Cycle), 545–546
acceptance testing and implementation, 551–552
disposal, 553
functional requirements and planning, 547–548
operations and maintenance, 552–553
project initiation, 546–547
separation of duties, 550
software design specifications, 548
software development and build, 549–551
SDRAM (synchronous DRAM), 182
SDSL (symmetric digital subscriber line), 340
sealing configurations, 53
secondary evidence, 482
secondary storage, 183
secret, military data classification, 47
Secure Electronic Transaction (SET), 280
Secure European System and Applications in a Multivendor Environment (SESAME), 396
Secure FTP (SFTP), 280
secure hashing algorithms (SHA), 269
Secure Hypertext Transfer Protocol (S-HTTP), 280
Secure Multipurpose Internet Mail Extensions (S/MIME), 278
secure network design, 296
secure real-time transport protocol (SRTP), 344
Secure Shell (SSH), 280, 440
Secure Socket Tunneling Protocol (SSTP), 281
Secure Sockets Layer (SSL), 281, 316
secure storage management and replication, SAN (storage area network), 40
Secure Trusted Operating Program (STOP), 194
security
asset security, 28
availability, 29
baselines, 57–58
CIA (confidentiality, integrity, and availability), 28
confidentiality, 28
data governance policies, 30–31
data security. See data security governance, 214–215
guidelines, 214–215
integrity, 29
modes of operation, 193–194
operating states, 194–195
physical security, 72
facilities. See facilities
man-made threats, 74–75
natural disasters, 73–74
risks, 72–73
technical problems, 75
roles and responsibilities, 32–33
security governance, third party governance, 118–119
of software environments, 571–573
Security Administrator Tool for Analyzing Networks (SATAN), 164
security advisory groups, roles and responsibilities, 32
security and risk management domains, 116
security architects, 494
security architecture, 187
 closed systems, 192
 open systems, 192
 protection rings, 187–189
 TCB (trusted computer base), 189–192
vulnerability, 218
 back doors, 220
 buffer overflows, 219–220
 covert channels, 220–221
 emanations, 222–223
 incremental attacks, 221–222
 mobile system vulnerabilities, 225–226
 state attacks, 220
 web-based vulnerabilities, 223–225
security assessments
 audits, 426–427
 penetration testing, 428–432
 vulnerability assessments, 427–428
Security Association Markup Language (SAML), 377
Security Association (SA), 282
security awareness, 161–162
security checkpoints, 88–89
Security Development Lifecycle (SDL), 545
Security DNS (DNSSEC), 315
Security Event Management (SEM), 414, 522
security governance, 116–117
 third party governance, 118–119
security information and event management (SIEM), 521–522
Security Information Management (SIM), 414, 522
security kernels, 191
security labels, reference monitors, 191
security logs, 434
security management
 awareness, 161–162
 computer crime and hackers, 125–128
 ethics, 163–164
 common computer ethics fallacies, 167
 Computer Ethics Institute, 165
 IAB (Internet Architecture Board), 165–166
 ISC2, 164
 NIST SP 800–14, 166–167
 regulatory requirements, 167–168
 governance, 116–117
 international law, 124–125
 job rotation, 158
 laws, 123
 common law, 123
 least privilege, 158–159
 mandatory vacations, 159
 new-hire agreements and policies, 157
 personnel security, implementing, 157–158
 privacy laws, 121–122
 protection of intellectual property, 121
 protection of personal information, 121–122
 risk assessment, 132–133
 separation of duties, 157
 sexual harassment, 128
 social engineering, 162–163
 termination, 159–160
 training, 160–161
security models, 176, 196–197
Bell-LaPadula model, 199–201
Biba model, 202–203
Brewer and Nash model, 205
Clark-Wilson model, 204
collection, 179
BCP (business continuity plan), 202–203
senior management
project management and initiation, 176–180
roles and responsibilities, 32
sensitive but unclassified or restricted
military data classification, 47
public/private data classification, 48
sensitivity, 48
data governance policies, 31
sensitivity labels, 400
sensor placement, IDS (intrusion detection systems), 413, 529
separation of duties, 157–158, 401, 494
SDLC (System Development Life Cycle), 550
sequence check, 543
sequential access storage device (SASD), 513
sequential storage, 183
Serial ATA (SATA), 184
server rooms, 82
service component reference model, 215
service packs, 572
Service Provisioning Markup Language (SPML), 392
Service Set ID (SSID), 351
service-level agreements (SLAs), 75, 101, 118, 606
service-oriented architecture (SOA), 392
SESAME (Secure European System and Applications in a Multivendor Environment), 396
session hijacking, 440
session keys, 265
session layer, OSI (Open Systems Interconnection) model, 301
SET (Secure Electronic Transaction), 280
sexual harassment, 128
security policies, 150–151
advisory policies, 151
developing/implementing, 149–150
informative policies, 151–152
regulatory policies, 152
security software development lifecycle (SSDLC) model, 432
Security Target (ST), 212
security teams, 534
security threats. See threats
Security-Enhanced Linux, 195
SEDS (self-encrypting hard drives), 53–54
self-service password reset, 391
SEM (Security Event Management), 414, 522
semantic integrity, 569
SOA (service-oriented architecture)

SFTP (Secure FTP), 280
SHA (secure hashing algorithms), 269
SHA-1, 269
SHA-2, 269
SHA-3, 269
shared key authentication (SKA), 352
Sherwood Applied Business Security Architecture (SABSA), 215
shielded twisted pair (STP), 322–323
shoulder surfing, 453
shrink-wrap license agreements, 51
S-HTTP (Secure Hypertext Transfer Protocol (S-HTTP), 280
side channel attack, 288
SIEM, 414
SIEM (security information and event management), 521–522
signature scanning, 509
signature-based, anomaly-based IDS engines, 528
signature-based IDS engines, 411, 528
signatures, 577
digital signatures. See digital signatures
signing speeds, 271
silent hostage alarms, 95
SIM (Security Information Management), 414, 522
simple integrity property, 202
Simple Key Management for Internet Protocol (SKIP), 283
Simple Mail Transfer Protocol (SMTP), 314–315, 504
Simple Network Management Protocol (SNMP), 316
simple security property (ss property), 199–200
simple tape-rotation schemes, 611
simplex, 327
simulation, BCP (business continuity plan), 620
single loss expectancy (SLE), 139
single point of failure (SPOF), 195–196, 517
single sign-on (SSO), 374, 392–393
Kerberos, 393–396
SESAME (Secure European System and Applications in a Multivendor Environment), 396
single-mode fiber, 324
single-state systems, 194
single-use passwords, 379–380
SKA (shared key authentication), 352
skilled hackers, 436
SKIP (Simple Key Management for Internet Protocol), 283
Skipjack, 251
slamming, 509
SLAs (service-level agreements), 75, 101, 118, 606
SLDC (System Development Life Cycle), 545
SLE (single loss expectancy), 139
Small Computer Systems Interface (SCSI), 184
smart cards, 95, 383
smartphones, 186
SMDS (Switched Multimegabit Data Service), 341
S/MIME (Secure Multipurpose Internet Mail Extensions), 278
smishing, 454
SMTP (Simple Mail Transfer Protocol), 314–315, 357, 504
smurf, 442
SNIA (Storage Network Industry Association), 39
sniffers, 440
sniffing, 440–441
sniffing password hashes, 449–450
SNMP (Simple Network Management Protocol), 316
Snowden, Edward, 286
SOA (service-oriented architecture), 392
sociability tests, 552
social engineering, 176
 preventing attacks, 496
 security management, 162–163
social engineering attacks, 126, 454–455
 techniques for, 455
social engineering testing, 429
social networking, background checks, 157
social validation, social engineering, 163
social-based threats, 454–455
SOCKS, 357
software design specifications, SDLC (System Development Life Cycle), 548
software development, 542–543
 agile development methods, 557–558
 CASE (Computer-Aided Software Engineering), 557
 change control process, 561–562
CMM (Capability Maturity Model), 558–560
CMMI (Capability Maturity Model Integration), 610–611
CORBA (Common Object Request Broker Architecture), 566
development methods, 554
 JAD (Joint Application Development), 555–556
 MPM (Modified Prototype Model), 557
 prototyping, 556–557
 RAD (Rapid Application Development), 556
 spiral model, 554–555
 waterfall model, 554
OOP (object-oriented programming), 565–566
programming languages, 562–565
scheduling, tasks, 560–561
SDLC (System Development Life Cycle)
 acceptance testing and implementation, 551–552
 disposal, 553
 functional requirements and planning, 547–548
 operations and maintenance, 552–553
 project initiation, 546–547
 software design specifications, 548
 software development and build phase, 549–551
 security, 571–573
software development and build phase, SDLC (System Development Life Cycle), 549–551
software encryption, 54
software forensics, 472
Software IP Encryption (SwIPe), 283
software keystroke loggers, 416, 523
software licensing, 50–51, 183
software piracy, 50
Software-as-a-Service (SaaS), 341, 504
something you are (Type 3), authentication, 376, 385–390
something you have (Type 2), authentication, 376, 381
 asynchronous token devices, 382–383
 cards, 383–384
 certificates, 384–385
 synchronous tokens, 381–382
something you know (Type 1), 377–379
 authentication, 376
SONET (Synchronous Optical networking), 336
SOX (Sarbanes-Oxley Act), 60, 168, 497
spam, 457
Spam over Internet Telephony (SPIT), 344
Spanning Tree Protocol (STP), 331
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong authentication</td>
<td>212</td>
</tr>
<tr>
<td>spear phishing</td>
<td>454</td>
</tr>
<tr>
<td>SPI (Security Parameter Index)</td>
<td>282</td>
</tr>
<tr>
<td>spiral model</td>
<td>554–555</td>
</tr>
<tr>
<td>SPIT (Spam over Internet Telephony)</td>
<td>344</td>
</tr>
<tr>
<td>SPML (Service Provisioning Markup Language)</td>
<td>392</td>
</tr>
<tr>
<td>SPOF (single point of failure)</td>
<td>195–196, 517</td>
</tr>
<tr>
<td>spokespersons</td>
<td>616–617</td>
</tr>
<tr>
<td>spoofing</td>
<td>453</td>
</tr>
<tr>
<td>spread-spectrum technology</td>
<td>346</td>
</tr>
<tr>
<td>SQL injection</td>
<td>224–225</td>
</tr>
<tr>
<td>SRAM (Static Random Access Memory)</td>
<td>181</td>
</tr>
<tr>
<td>SRTP (secure real-time transport protocol)</td>
<td>344</td>
</tr>
<tr>
<td>SSD (static separation of duty)</td>
<td>401</td>
</tr>
<tr>
<td>SSDLC (security software development lifecycle)</td>
<td>432</td>
</tr>
<tr>
<td>SSH (Secure Shell)</td>
<td>280, 440</td>
</tr>
<tr>
<td>SSID (Service Set ID)</td>
<td>351</td>
</tr>
<tr>
<td>SSL (Secure Sockets Layer)</td>
<td>281, 316</td>
</tr>
<tr>
<td>SSO (single sign-on)</td>
<td>374, 392–393</td>
</tr>
<tr>
<td>SSTP (Secure Socket Tunneling Protocol)</td>
<td>281</td>
</tr>
<tr>
<td>ST (Security Target)</td>
<td>212</td>
</tr>
<tr>
<td>standards</td>
<td></td>
</tr>
<tr>
<td>Common Criteria</td>
<td>210–212</td>
</tr>
<tr>
<td>communication</td>
<td>327</td>
</tr>
<tr>
<td>data standards</td>
<td>37–140</td>
</tr>
<tr>
<td>governance</td>
<td>58–60</td>
</tr>
<tr>
<td>I/O bus standards</td>
<td>183–184</td>
</tr>
<tr>
<td>network standards</td>
<td>296–297</td>
</tr>
<tr>
<td>risk management</td>
<td>152</td>
</tr>
<tr>
<td>wireless standards</td>
<td>348–349</td>
</tr>
<tr>
<td>WLANs (wireless LANs)</td>
<td>349</td>
</tr>
<tr>
<td>standby lighting</td>
<td>88</td>
</tr>
<tr>
<td>star * security property</td>
<td>200</td>
</tr>
<tr>
<td>star topology</td>
<td>319–320</td>
</tr>
<tr>
<td>start * integrity property</td>
<td>202</td>
</tr>
<tr>
<td>state attacks</td>
<td>220</td>
</tr>
<tr>
<td>state machine model</td>
<td>197–199</td>
</tr>
<tr>
<td>stateful firewalls</td>
<td>356</td>
</tr>
<tr>
<td>static NAT</td>
<td>358</td>
</tr>
<tr>
<td>static passwords</td>
<td>379–380</td>
</tr>
<tr>
<td>Static Random Access Memory (SRAM)</td>
<td>181</td>
</tr>
<tr>
<td>static routing</td>
<td>334</td>
</tr>
<tr>
<td>static routing (SSD)</td>
<td>401</td>
</tr>
<tr>
<td>static WEP</td>
<td>352</td>
</tr>
<tr>
<td>statistical approach, knowledge extraction</td>
<td>37</td>
</tr>
<tr>
<td>statistical based, anomaly-based IDS engines</td>
<td>528</td>
</tr>
<tr>
<td>steganography</td>
<td>243–244</td>
</tr>
<tr>
<td>digital watermarks</td>
<td>245–246</td>
</tr>
<tr>
<td>steganography operations</td>
<td>244–245</td>
</tr>
<tr>
<td>stegomedium</td>
<td>244</td>
</tr>
<tr>
<td>Stoll, Clifford</td>
<td>466</td>
</tr>
<tr>
<td>STOP (Secure Trusted Operating Program)</td>
<td>194</td>
</tr>
<tr>
<td>storage</td>
<td></td>
</tr>
<tr>
<td>data storage</td>
<td></td>
</tr>
<tr>
<td>network storage</td>
<td>325–326</td>
</tr>
<tr>
<td>storage area networks (SANs)</td>
<td>325–326</td>
</tr>
<tr>
<td>storage media</td>
<td>181</td>
</tr>
<tr>
<td>RAM (random access memory)</td>
<td>181–182</td>
</tr>
<tr>
<td>ROM (read-only memory)</td>
<td>182</td>
</tr>
<tr>
<td>Storage Network Industry Association (SNIA)</td>
<td>39</td>
</tr>
<tr>
<td>store-and-forward switches</td>
<td>330</td>
</tr>
<tr>
<td>STP (shielded twisted pair)</td>
<td>322–323</td>
</tr>
<tr>
<td>STP (Spanning Tree Protocol)</td>
<td>331</td>
</tr>
<tr>
<td>strategies for taking exams</td>
<td>24–25</td>
</tr>
<tr>
<td>question-handling strategies</td>
<td>24–25</td>
</tr>
<tr>
<td>stream ciphers</td>
<td>237, 240, 248</td>
</tr>
<tr>
<td>boolean operators</td>
<td>248</td>
</tr>
<tr>
<td>strict source routing</td>
<td>307</td>
</tr>
<tr>
<td>striping</td>
<td>606–607</td>
</tr>
<tr>
<td>strong authentication</td>
<td>390</td>
</tr>
</tbody>
</table>
strong star * property, 200
structured walkthrough, BCP (business continuity plan), 620
subjects, 375
TCB (trusted computer base), 191
subscription services, 601–603
substitution box (s-box), 248
superscalar processors, 178
supervisor state, CPU (central processing unit), 177
suppliant, 362
supplies teams, 534
suppressing fires, 101–102
surveillance, 479
SVCs (switched virtual circuits), 337
swap partitions, 185
SwIPe (Software IP Encryption), 283
Switched Multimegabit Data Service (SMDS), 341
switched virtual circuits (SVCs), 337
switches, 329–330
 application switches, 330
 content switches, 330
 content-services switches, 330
 higher-layer switches, 330
symmetric algorithms, 247, 250–251
symmetric cryptography, 236
symmetric digital subscriber line (SDSL), 340
symmetric encryption, 237, 249–252, 272
 versus asymmetric encryption, 264–265
 block ciphers, 247–248
 confidentiality, 250
 stream ciphers, 248
symmetric keys, distribution of, 249–250
symmetric mode, 178–179
symmetric substitution ciphers, 240
SYN flood, 442
Synchronous Data Link Control (SDLC), 341
Synchronous DRAM (SDRAM), 182
Synchronous optical networking (SONET), 336
synchronous replication, 611
synchronous tokens, 381–382
synthetic transactions, 434
system analysts, 494
System Cold Start, 195
 Orange Book, 501
System Compromise, 195
system development. See software development
System Development Life Cycle (SLDC). See SDLC (System Development Life Cycle)
system failures
 avoiding, 543, 544
 checks and application controls, 543–544
 recovery procedures, 195
system hardening, 497–498
system high, security modes of operation, 193
system logs, 434
System Reboot, 195
system reboot, Orange Book, 501
system resilience, 511
System Restart, 195
system testing, 551
system validation, 213
 certification, 213–214
systems administrators, 493
T
T1, 339
T3, 339
table lookups, 544
TACACS (Terminal Access Controller Access Control System), 362, 406
TACACS+, 362
tailgating, 85
tailoring, 58
Take-Grant model, 205
tamper protection, 108
tangible assets, 496	TCSEC (Trusted Computer System Evaluation Criteria), 207, 500
 Orange Book, 207–209
teams
 administrative support teams, 534
 BCP (business continuity plan) teams, 591–593
 communications teams, 534
 coordination teams, 534
 damage assessment teams, 534
 disaster recovery teams, 533–534
 emergency management teams, 534
 emergency operations teams, 534
 emergency response teams, 534
 finance teams, 534
 penetration test teams, 430
 risk management teams, 131–132
 reports, 148
 security teams, 534
 supplies teams, 534
 transportation teams, 534
teadrop, 442
technical controls, 155
technical problems, physical security, 75
technical reference model, 215
technical support, equipment lifecycle, 52
Tejon Crypter, 460
Telco gear, 472
telecommunication controls, 503
 blacklists, 506
 cloud computing, 503–504
 email, 504–506
 fax, 506–507
graylists, 506
 whitelists, 506
telecommunications equipment, \(328\)

- bridges, \(328\)
- gateways, \(333\)
- hubs, \(328\)
- mirrored ports, \(330\)
- network taps, \(330–331\)
- repeaters, \(328\)
- routers, \(332–333\)
- switches, \(329–330\)
- VLANs (virtual LANs), \(331\)

Telnet, \(305, 314\)

temperatures, data centers, \(98\)

TEMPEST, \(222, 524\)

Temporal Key Integrity Protocol (TKIP), \(353\)

tension wrenches, \(93\)

Terminal Access Controller Access Control System (TACACS), \(362\)

terminated employees

- data access, \(33\)
- security management, \(159–160\)

terrorism, physical security, \(74\)

test classifications, \(550–551\)

test types, \(551–552\)

testing

- application security testing, \(429\)
- BCP (business continuity plan), \(619–621\)
- blackbox testing, \(428\)
- blind tests, \(429\)
- denial-of-service (DoS) testing, \(429\)
- garbage in, garbage out testing, \(552\)
- graybox testing, \(428\)
- importance of, \(435\)
- interface testing, \(551\)
- outsider testing, \(429\)
- penetration testing, \(428–432\)
- physical security testing, \(429\)
- social engineering testing, \(429\)
- system testing, \(551\)
- unit testing, \(551\)
- war dialing, \(429\)
- whitebox testing, \(428\)
- wireless network testing, \(429\)

testing techniques, \(432–435\)

tests

- alpha tests, \(551\)
- blackbox tests, \(552\)
- double-blind tests, \(429\)
- final tests, \(552\)
- function tests, \(552\)
- parallel tests, \(552\)
- pilot tests, \(551\)
- regression tests, \(552\)
- sociability tests, \(552\)
- whitebox tests, \(552\)

TFTP (Trivial File Transfer Protocol), \(315\)

TGTs (ticket-granting tickets), \(394\)

theft, physical security, \(74\)

thin clients, \(393\)

third party governance, \(118–119\)

thread, \(178–179\)

threat actors, \(435–437\)

threat agents, \(136\)

threat modeling, \(448, 571\)

threats, \(130, 131, 138, 435\)

- access control threats, \(448\)
- access aggregation, \(448–449\)
- eavesdropping, \(453\)
- identity theft, \(453–454\)
- password attacks, \(449–450\)
- shoulder surfing, \(453\)
- spoofing, \(453\)
- unauthorized access, \(448\)
- analyzing, \(135–139\)
- attack methodologies, \(437–439\)
- to business operations, \(588–589\)
- malicious software threats, \(456\)
- APTs (advanced persistent threats), \(462\)
- backdoors, \(458–459\)
- crimeware kits, \(461–462\)
- logic bombs, \(457–458\)
ransomware, 462–463
rootkits, 461
Trojans, 458–459
viruses, 456–457
worms, 457
network security threats, 439
ARP poisoning, 446
botnets, 443–446
database attacks, 446
DDoS (distributed denial of service) attacks, 443
DNS spoofing, 447
DoS attacks, 442–443
mail bombing, 447
pharming attacks, 447
session hijacking, 440
sniffing, 440–441
traffic analysis, 447
war dialing, 447
war driving, 447
wiretapping, 441
zero-day exploits, 447
to physical security, 72–73
social-based threats, 454–455
threat actors, 435–437
Tibetan monks, Biba model, 203
ticket-granting service, KDC (Key Distribution Center), 394
ticket-granting tickets (TGTs), 394
tickets, Kerberos, 393
tidal waves, 73
time multiplexing, 179
time of check (TOC), 220
time of use (TOU), 220
TKIP (Temporal Key Integrity Protocol), 353
TLS (Transport Layer Security), 281, 354
TNI (Trusted Network Interpretation), 209
TOC (time of check), 220
TOE (Target of Evaluation), 210
token ring, 318–319
tokens, 318–319
asynchronous token devices, 382–383
employee access control, 94–95
reference monitors, 191
synchronous tokens, 381–382
top secret, military data classification, 47
topologies, network topologies, 319
bus topology, 319
fully connected topology, 322
mesh topology, 321
ring topology, 320–321
star topology, 319–320
tornadoes, 73
TOU (time of use), 220
Tower of Hanoi, 612
TP (transformation procedures), 204
TPM (trusted platform module), 53
trace evidence, 482
trade secrets, 34
trademarks, 34
traffic analysis, 447
traffic padding, 285
traffic-based, anomaly-based IDS engines, 528
training
BCP (business continuity plan), implementing, 619
ethics, 163–164
security management, 160–161
transaction processing, 569–570
transformation procedures (TP), 204
Transmission Control Protocol. See TCP (Transmission Control Protocol)
transport and tunnel modes, 283
transport layer, OSI (Open Systems Interconnection) model, 300–301
Transport Layer Security (TLS), 281
transport layer security (TLS), 354
transport mode, IPSec, 363
transportation teams
transposition ciphers, 240
trap doors, 260–261
trials, for crimes, 482–483
Triangle Shirtwaist factory, 79
Triple-DES (3DES), 255–257
Trivial File Transfer Protocol (TFTP), 315
Trojans, 458–459
tropical cyclones, 73
trunking protocols, 331
trusted computer base (TCB), 189–192
Trusted Computer System Evaluation Criteria (TCSEC), 207, 500
Trusted Network Interpretation (TNI), 209
trusted platform modules (TPM), 53
trusted recovery, 500–501
TrustedBSD, 195
tsunamis, 73
tubular picks, 93–94
tumbler locks, 91
tumbling, 345–346
tunnel mode, IPSec, 363
tunnels
Host-to-LAN tunnels, 55
LAN-to-LAN tunnels, 55
tuple, databases, 568
turnstiles, 85
twisted pair, 322–323
Twofish, 250
Type I errors, 386
Type II errors, 386
typhoons, 73

U

UA (Uptime Agreement), 119
UDIs (unconstrained data items), 204
UDP (User Datagram Protocol), 311, 313
comparing to TCP, 313
UEFI (Unified Extensible Firmware Interface), 182
unauthorized access, 448
unauthorized phone use, VoIP (voice over IP), 344
uncappers, 340
unclassified or official, military data classification, 47
unconstrained data items (UDIs), 204
unicode encoding, 223
Unified Extensible Firmware Interface (UEFI), 182
uninterruptible power supply (UPS), 100
unit testing, 551
United States
laws, 123–124
methods government can use to defeat encryption, 286
privacy laws, 122
United States resources, 60–61
United States Securities Act of 1933, 496–497
unshielded twisted pair (UTP), 322–323
UPS (uninterruptible power supplies), 100
Uptime Agreement (UA), 119
URL encoding, 223
U.S. Child Pornography Prevention Act of 1996, 123
U.S. Patriot Act of 2001, 123
usage patterns, monitoring, 408–409
USB, 82
user activities, auditing, 519
User Datagram Protocol. See UDP (User Datagram Protocol)
user mode, 188
user provisioning, 391
user recovery, 605
user spoofing, 453

users
managing, 493–495
controlling access, 495
privileged entities, 495
resource protection, 496
roles and responsibilities, 32
terminated employees, data access, 33

utilities, facilities, 77
utility loss, physical security, 75

UTP (unshielded twisted pair), 322–323

V

vacations, mandatory vacations, 159
validity check, 544
Van Eck phreaking, 222, 524
vandalism, physical security, 74
Venema, Wietse, 427
ventilating, facilities, 98–99
verifying, patches, 511
Vernam, Gilbert, 241–242
Vernam cipher, 241–242
vertical privilege escalation, 439
very high data rate digital subscriber line (VDSL), 340
vibration sensors, 106
views, databases, 568
Vigenere cipher, 238–239
virtual LANs (VLANs), 329
virtual machines, 184–185
virtual mapping, 179
virtual memory, 184–185
virtual private networks (VPNs), 55
virtual SAN (VSAN), 39

virtualization, 185
viruses, 456–457, 576–577
fast infection viruses, 576–577
I Love You virus, 464
Melissa virus, 464
forensics, 479
RAM-resident, 576–577

visibility, facilities, 77–78
Visual Basic, 564
VLAN hopping, 331
VLANs (virtual LANs), 329, 331
voice communication recovery, 607
voice recognition, 388
VoIP (voice over IP), 343
QoS (quality of service), 343
UDP (User Datagram Protocol), 313
vulnerability, 343–344
VPNs (virtual private networks), 55
VSAN (virtual SAN), 39
vulnerability, 130, 131, 138
security architecture, 218
back doors, 220
buffer overflows, 219–220
covert channels, 220–221
emanations, 222–223
incremental attacks, 221–222
mobile system vulnerabilities, 225–226
state attacks, 220
web-based vulnerabilities, 223–225

VoIP (voice over IP), 343–344
vulnerability assessments, 427–428
BIA (business impact analysis), 595
vulnerability scanners, 427–428

W

wait state, CPU (central processing unit), 177
walls, 79–81
WANs (wide area networks), 325, 336
 circuit switching, 337
 cable modems, 340–341
 DSL (digital subscriber line), 339–340
 ISDN (Integrated Services Digital Network), 338
 POTS (Plain Old Telephone Service), 338
 T-carriers, 338–339
 HDLC (High-Level data Link Control), 341
 high-speed serial interface, 341
 packet switching, 336
 ATM (asynchronous transfer mode), 337
 Frame Relay, 337
 X.25, 336
 SDLC (Synchronous Data Link Control), 341
 SMDS (Switched Multimegabit Data Service), 341

WAP (Wireless Application Protocol), 354
 war chalking, 354
 war dialing, 429, 447
 war driving, 354, 447
 warded locks, 91
 warm sites, 602
 warning banners, 510, 519
 Wassenaar Arrangement, 285
 water sprinklers, 104–105
 waterfall model, 554
 watermarks, digital watermarks, 245–246
 Watson, 570
 web conferencing, 364
 web servers, 186
 Web Services Security, 392
 web-based vulnerabilities, 223–225
 websites, personal information websites, 122

Weev, 436
WEP (Wired Equivalent Privacy), 258–259, 352
 static WEP, 352
Wesson, Rick, 444–445
wet pipes, water sprinklers, 104
whaling, 454
whitebox testing, 428
whitebox tests, 552
whitelists, 506
wide area networks (WANs), 325
Wi-Fi Protected Access (WPA), 353
windows
 of facilities, 79–81
 physical security, 81
wire area networks. See WANs (wide area networks)
Wired Equivalent Privacy (WEP), 258–259, 352
 static WEP, 352
wireless access points, 351
Wireless Application Protocol (WAP), 354
wireless devices, 347
wireless LANs (WLANs), 347
 components of, 351
 standards, 349
wireless markup language (WML), 354
wireless network testing, 429
wireless networking cards, 351
wireless networks, topologies, 348
wireless PANs (WPANs), 325, 349
wireless protection mechanisms, 352–354
wireless sniffers, 351
wireless standards, 348–349
wireless topologies, 348
Wireless Transport Layer Security (WTLS), 281–282
wiretapping, 441
WLANs (wireless LANs), 347
 components of, 351
 standards, 349
WML (wireless markup language), 354
work factor, 286, 288
work recovery time (WRT), 615
workflow, business process recovery, 600–601
worms, 457, 577–578
WPA (Wi-Fi Protected Access), 353
WPA2-Enterprise, 284
WPANs (wireless PANs), 325, 349
wrappers, 459
WRT (work recovery time), 615
WTLS (Wireless Transport Layer Security), 281–282, 354

X-Y
X.25, 336
X.509 certificate, 275, 385
XML (Extensible Markup Language), 392, 565
XOR (exclusive-or), 352
XP (extreme programming), 558
XSS (cross-site scripting), 223
XTACACS (Extended TACACS), 406
XTR, 263
XTS-400, 194

Z
Zachman Framework, 214–215
Zachman model, 215
zero knowledge proof, 260
zero-day exploits, 447
zeroization, 44, 502
ZigBee, 350
Zimmermann, Phil, 278