Cert Guide
Learn, prepare, and practice for exam success

CompTIA® Advanced Security Practitioner
CASP
CAS-002

Save 10% on Exam Voucher
See Inside

FREE SAMPLE CHAPTER
SHARE WITH OTHERS
Contents at a Glance

Introduction 1

Part I: Enterprise Security
CHAPTER 1 Cryptographic Concepts and Techniques 31
CHAPTER 2 Enterprise Storage 77
CHAPTER 3 Network and Security Components, Concepts, and Architectures 106
CHAPTER 4 Security Controls for Hosts 189
CHAPTER 5 Application Vulnerabilities and Security Controls 229

Part II: Risk Management and Incident Response
CHAPTER 6 Business Influences and Associated Security Risks 267
CHAPTER 7 Risk Mitigation Planning, Strategies, and Controls 286
CHAPTER 8 Security, Privacy Policies, and Procedures 331
CHAPTER 9 Incident Response and Recovery Procedures 365

Part III: Research, Analysis, and Assessment
CHAPTER 10 Industry Trends 391
CHAPTER 11 Securing the Enterprise 416
CHAPTER 12 Assessment Tools and Methods 431

Part IV: Integration of Computing, Communications, and Business Disciplines
CHAPTER 13 Business Unit Collaboration 461
CHAPTER 14 Secure Communication and Collaboration 477
CHAPTER 15 Security Across the Technology Life Cycle 511

Part V: Technical Integration of Enterprise Components
CHAPTER 16 Host, Storage, Network, and Application Integration into a Secure Enterprise Architecture 533
CHAPTER 17 Authentication and Authorization Technologies 561
Part VI: Appendixes

APPENDIX A Answers 595
APPENDIX B CASP CAS-002 Exam Updates 615
Glossary 619
Index 662

CD-only Elements:
APPENDIX C Memory Tables
APPENDIX D Memory Tables Answer Key
Table of Contents

Introduction 1

Part I: Enterprise Security

Chapter 1 Cryptographic Concepts and Techniques 31

Cryptographic Techniques 32

Key Stretching 32
Hashing 32

MD2/MD4/MD5/MD6 34
SHA/SHA-2/SHA-3 35
HAVAL 36
RIPEMD-160 36

Code Signing 36
Message Authentication Code 36
Pseudo-Random Number Generation 37
Perfect Forward Secrecy 37
Transport Encryption 38
SSL/TLS 38
HTTP/HTTPS/SHTTP 39
SET and 3-D Secure 39
IPsec 39
Data at Rest Encryption 40
Symmetric Algorithms 40
Asymmetric Algorithms 44
Hybrid Ciphers 47
Digital Signatures 47

Cryptographic Concepts 48

Entropy 49
Diffusion 49
Confusion 49
Non-repudiation 50
Confidentiality 50
Integrity 50
Chain of Trust/Root of Trust 50
Cryptographic Applications and Proper/Improper Implementations 51
Advanced PKI Concepts 52
Wildcard 52
OCSP Versus CRL 53
Issue to Entities 53
Users 54
Systems 55
Applications 56
Key Escrow 56
Steganography 56
Implications of Cryptographic Methods and Design 56
Stream Ciphers 56
Block Ciphers 57
Modes 57
Known Flaws/Weaknesses 61
Strength Versus Performance Versus Feasibility to Implement Versus Interoperability 66
Cryptographic Implementations 67
Digital Rights Management (DRM) 67
Watermarking 67
GNU Privacy Guard (GPG) 67
Secure Sockets Layer (SSL) 68
Secure Shell (SSH) 69
Secure Multipurpose Internet Mail Extensions (S/MIME) 69
Review All Key Topics 70
Complete the Tables and Lists from Memory 71
Define Key Terms 71

Chapter 2 Enterprise Storage 77
Storage Types 78
Virtual Storage 78
Cloud Storage 79
Data Warehousing 80
Data Archiving 82
Chapter 3 Network and Security Components, Concepts, and Architectures 106

Advanced Network Design (Wired/Wireless) 107

Remote Access 107
VPNs 107
SSH 108
RDP 109
VNC 109
SSL 110

IPv6 and Associated Transitional Technologies 111
Transport Encryption 113

FTP, FTPS, and SFTP 113

HTTP, HTTPS, and SHTTP 113

Network Authentication Methods 114

Authentication Factors 116

802.1x 118

Mesh Networks 120

Application of Solutions 121

Security Devices 122

UTM 122

NIPS 123

NIDS 124

INE 126

SIEM 126

HSM 127

Placement of Devices 128

UTM 128

NIDS 129

INE 129

NIPS 130

SIEM 131

HSM 131

Application- and Protocol-Aware Technologies 131

WAF 131

NextGen Firewalls 133

IPS 134

Passive Vulnerability Scanners 134

Active Vulnerability Scanners 134

DAM 135

Networking Devices 136

Switches 137

ARP Poisoning 138

VLANs 139
Contents

Firewalls 140
Types 141
Firewall Architecture 143
Wireless Controllers 149
Routers 151
Proxies 152
Ports 152

Virtual Networking and Security Components 153
Virtual Switches 153
Virtual Firewalls 154
Virtual Wireless Controllers 155
Virtual Routers 155
Virtual Proxy Servers 156
Virtual Computing 156

Complex Network Security Solutions for Data Flow 156
SSL Inspection 156
Network Flow Data 157

Secure Configuration and Baselining of Networking and Security Components 158
ACLs 158
Creating Rule Sets 159
Change Monitoring 159
Configuration Lockdown 160
Availability Controls 160

Software-Defined Networking 166
Cloud-Managed Networks 167

Network Management and Monitoring Tools 169
Advanced Configuration of Routers, Switches, and Other Network Devices 171
Transport Security 171
Trunking Security 172
Route Protection 174
Security Zones 174
 Data-Flow Enforcement 175
 DMZ 176
 Separation of Critical Assets 176
Network Access Control 176
 Quarantine/Remediation 177
Operational and Consumer Network-Enabled Devices 178
 Building Automation Systems 178
 IP Video 179
 HVAC Controllers 180
 Sensors 180
 Physical Access Control Systems 181
 A/V Systems 181
 Scientific/Industrial Equipment 182
Critical Infrastructure/Supervisory Control and Data Acquisition (SCADA)/Industrial Control Systems (ICS) 183
Review All Key Topics 184
 Define Key Terms 185

Chapter 4 Security Controls for Hosts 189
Trusted OS 190
Endpoint Security Software 191
 Antimalware 191
 Antivirus 192
 Antispyware 192
 Spam Filters 192
 Patch Management 193
 IPS/IDS 193
 Data Loss Prevention 194
 Host-Based Firewalls 194
 Log Monitoring 196
Host Hardening 198
 Standard Operating Environment/Configuration Baselining 199
 Application Whitelisting and Blacklisting 199
 Security/Group Policy Implementation 200
 Command Shell Restrictions 202
Contents xi

Patch Management 203
Configuring Dedicated Interfaces 203
Out-of-Band NICs 203
ACLs 204
Management Interface 205
Data Interface 205
Peripheral Restrictions 206
USB 206
Bluetooth 207
FireWire 207
Full Disk Encryption 208
Security Advantages and Disadvantages of Virtualizing Servers 209
Type I Hypervisor 210
Type II Hypervisor 211
Container-Based Virtualization 211
Cloud-Augmented Security Services 212
Hash Matching 212
Antivirus 213
Antispam 213
Vulnerability Scanning 214
Sandboxing 216
Content Filtering 216
Boot Loader Protections 217
Secure Boot 217
Measured Launch 218
Integrity Measurement Architecture (IMA) 218
BIOS/UEFI 218
Vulnerabilities Associated with Commingling of Hosts with Different Security Requirements 219
VM Escape 219
Privilege Elevation 220
Live VM Migration 220
Data Remnants 221
Virtual Desktop Infrastructure (VDI) 221
Terminal Services/Application Delivery Services 222
Trusted Platform Module (TPM) 223
Virtual TPM (VTPM) 223
Hardware Security Module (HSM) 224
Review All Key Topics 224
Define Key Terms 225

Chapter 5 Application Vulnerabilities and Security Controls 229

Web Application Security Design Considerations 230
Secure by Design, by Default, by Deployment 230
Specific Application Issues 230
Insecure Direct Object References 231
XSS 231
Cross-Site Request Forgery (CSRF) 232
Click-Jacking 232
Session Management 233
Input Validation 235
SQL Injection 235
Identifying a SQL Attack 236
Improper Error and Exception Handling 237
Privilege Escalation 237
Improper Storage of Sensitive Data 237
Fuzzing/Fault Injection 238
Secure Cookie Storage and Transmission 239
Buffer Overflow 239
Memory Leaks 242
Integer Overflows 242
Race Conditions 242
Time of Check/Time of Use 242
Resource Exhaustion 243
Geotagging 243
Data Remnants 244
Application Sandboxing 244
Application Security Frameworks 245
Standard Libraries 245
Part II: Risk Management and Incident Response

Chapter 6 Business Influences and Associated Security Risks 267

Risk Management of New Products, New Technologies, and User Behaviors 268

New or Changing Business Models/Strategies 268
 Partnerships 269
 Outsourcing 269
 Cloud Computing 270
 Merger and Demerger/Divestiture 271

Security Concerns of Integrating Diverse Industries 272
 Rules 272
 Policies 272
 Regulations 272
 Geography 273

Ensuring That Third-Party Providers Have Requisite Levels of Information Security 273

Internal and External Influences 275
 Competitors 275
 Auditors/Audit Findings 275
 Regulatory Entities 276
 Onsite Assessment 276
 Document Exchange/Review 276
 Process/Policy Review 276
 Internal and External Client Requirements 277
 Top-Level Management 277

Impact of De-perimiterization 278
 Telecommuting 278
 Cloud 278
 BYOD (“Bring Your Own Device”) 278
 Outsourcing 279

Review All Key Topics 280

Define Key Terms 280
Chapter 7 Risk Mitigation Planning, Strategies, and Controls 286

Classify Information Types into Levels of CIA Based on Organization/Industry 287
 Information Classification and Life Cycle 289
 Commercial Business Classifications 289
 Military and Government Classifications 290
 Information Life Cycle 291
Incorporate Stakeholder Input into CIA Decisions 291
Implement Technical Controls Based on CIA Requirements and Policies of the Organization 291
 Access Control Categories 292
 Compensative 292
 Corrective 292
 Detective 292
 Deterrent 293
 Directive 293
 Preventive 293
 Recovery 293
 Access Control Types 293
 Administrative (Management) Controls 294
 Logical (Technical) Controls 295
 Physical Controls 296
 Security Requirements Traceability Matrix (SRTM) 297
Determine the Aggregate CIA Score 298
Extreme Scenario/Worst-Case Scenario Planning 299
Determine Minimum Required Security Controls Based on Aggregate Score 301
Conduct System-Specific Risk Analysis 301
Make Risk Determination 302
 Qualitative Risk Analysis 302
 Quantitative Risk Analysis 303
 Magnitude of Impact 304
 SLE 304
 ALE 304
Likelihood of Threat 305
Motivation 305
Source 306
ARO 306
Trend Analysis 306
Return on Investment (ROI) 307
Payback 308
Net Present Value (NPV) 308
Total Cost of Ownership 309
Recommend Which Strategy Should be Applied Based on Risk Appetite 310
Avoid 310
Transfer 311
Mitigate 311
Accept 312
Risk Management Processes 312
Information and Asset (Tangible/Intangible) Value and Costs 312
Vulnerabilities and Threats Identification 313
Exemptions 313
Deterrence 314
Inherent 314
Residual 314
Enterprise Security Architecture Frameworks 315
Sherwood Applied Business Security Architecture (SABSA) 315
Control Objectives for Information and Related Technology (CobiT) 316
NIST SP 800-53 317
Continuous Improvement/Monitoring 318
Business Continuity Planning 318
Business Continuity Scope and Plan 318
Personnel Components 319
Project Scope 319
Business Continuity Steps 320
IT Governance 320
Chapter 8 Security, Privacy Policies, and Procedures 331

Policy Development and Updates in Light of New Business, Technology, Risks, and Environment Changes 332

ISO/IEC 27000 Series 333

Process/Procedure Development and Updates in Light of Policy, Environment, and Business Changes 336

Support Legal Compliance and Advocacy by Partnering with HR, Legal, Management, and Other Entities 337

Sarbanes-Oxley (SOX) Act 337

Health Insurance Portability and Accountability Act (HIPAA) 338

Gramm-Leach-Bliley Act (GLBA) of 1999 338

Computer Fraud and Abuse Act (CFAA) 338

Federal Privacy Act of 1974 338

Computer Security Act of 1987 339

Personal Information Protection and Electronic Documents Act (PIPEDA) 339

Basel II 339

Payment Card Industry Data Security Standard (PCI DSS) 339

Federal Information Security Management Act (FISMA) of 2002 339

Economic Espionage Act of 1996 339

USA PATRIOT Act 340

Health Care and Education Reconciliation Act of 2010 340
Use Common Business Documents to Support Security 340
 Risk Assessment (RA)/Statement of Applicability (SOA) 340
 Business Impact Analysis (BIA) 341
 Business Impact Analysis (BIA) Development 341
 Interoperability Agreement (IA) 344
 Interconnection Security Agreement (ISA) 345
 Memorandum of Understanding (MOU) 345
 Service-Level Agreement (SLA) 345
 Operating-Level Agreement (OLA) 345
 Nondisclosure Agreement (NDA) 346
 Business Partnership Agreement (BPA) 346
Use General Privacy Principles for Sensitive Information (PII) 347
Support the Development of Various Policies 348
 Separation of Duties 348
 Job Rotation 349
 Mandatory Vacation 350
 Least Privilege 350
 Incident Response 351
 Event Versus Incident 353
 Incident Response Team and Incident Investigations 353
 Rules of Engagement, Authorization, and Scope 354
 Forensic Tasks 354
 Employment and Termination Procedures 356
 Continuous Monitoring 356
 Training and Awareness for Users 357
 Auditing Requirements and Frequency 359
Review All Key Topics 359
 Define Key Terms 360

Chapter 9 Incident Response and Recovery Procedures 365
E-Discovery 366
 Electronic Inventory and Asset Control 366
 Data Retention Policies 367
 Data Recovery and Storage 368
 Data Backup Types and Schemes 369
 Electronic Backup 372
Data Ownership 372
Data Handling 373
Legal Holds 374
Data Breach 374
 Detection and Collection 375
 Data Analytics 376
Mitigation 376
 Minimize 376
 Isolate 376
Recovery/Reconstitution 377
Response 377
Disclosure 377
Design Systems to Facilitate Incident Response 378
 Internal and External Violations 378
 Privacy Policy Violations 379
 Criminal Actions 379
 Insider Threat 379
 Non-Malicious Threats/Misconfigurations 380
 Establish and Review System, Audit and Security Logs 380
Incident and Emergency Response 381
 Chain of Custody 381
 Evidence 381
 Surveillance, Search, and Seizure 382
 Forensic Analysis of Compromised System 383
 Media Analysis 383
 Software Analysis 384
 Network Analysis 384
 Hardware/Embedded Device Analysis 384
 Continuity of Operations Plan (COOP) 384
 Order of Volatility 385
Review All Key Topics 386
 Define Key Terms 387
Part III: Research, Analysis, and Assessment

Chapter 10 Industry Trends 391

Perform Ongoing Research 392
Best Practices 392
New Technologies 393
New Security Systems and Services 394
Technology Evolution 395

Situational Awareness 396
Latest Client-Side Attacks 396
Knowledge of Current Vulnerabilities and Threats 397

Vulnerability Management Systems 398
Advanced Persistent Threats 398
Zero-Day Mitigating Controls and Remediation 398
Emergent Threats and Issues 399

Research Security Implications of New Business Tools 400
Social Media/Networking 401
End-User Cloud Storage 402
Integration Within the Business 403

Global IA Industry/Community 403
Computer Emergency Response Team (CERT) 403
Conventions/Conferences 404
Threat Actors 405
Emerging Threat Sources/Threat Intelligence 406

Research Security Requirements for Contracts 406
Request for Proposal (RFP) 407
Request for Quote (RFQ) 407
Request for Information (RFI) 408
Agreements 408

Review All Key Topics 408
Define Key Terms 409

Chapter 11 Securing the Enterprise 416

Create Benchmarks and Compare to Baselines 417
Prototype and Test Multiple Solutions 418
Contents xxi

Cost/Benefit Analysis 419
 ROI 419
 TCO 419
Metrics Collection and Analysis 419
Analyze and Interpret Trend Data to Anticipate Cyber Defense Needs 420
Review Effectiveness of Existing Security Controls 421
Reverse Engineer/Deconstruct Existing Solutions 422
Analyze Security Solution Attributes to Ensure They Meet Business Needs 422
 Performance 422
 Latency 423
 Scalability 423
 Capability 423
 Usability 424
 Maintainability 424
 Availability 424
 Recoverability 424
Conduct a Lessons-Learned/After-Action Report 425
Use Judgment to Solve Difficult Problems That Do Not Have a Best Solution 425
Review All Key Topics 426
 Define Key Terms 426

Chapter 12 Assessment Tools and Methods 431
Assessment Tool Types 432
 Port Scanners 432
 Vulnerability Scanners 434
 Protocol Analyzer 434
 Network Enumerator 435
 Password Cracker 436
 Fuzzer 438
 HTTP Interceptor 439
 Exploitation Tools/Frameworks 439
 Passive Reconnaissance and Intelligence-Gathering Tools 440
 Social Media 441
Part IV: Integration of Computing, Communications, and Business Disciplines

Chapter 13 Business Unit Collaboration 461

Interpreting Security Requirements and Goals to Communicate with Stakeholders from Other Disciplines 462
Sales Staff 462
Programmer 463
Database Administrator 463
Network Administrator 464
Management/Executive Management 465
Financial 466
Human Resources 467
Emergency Response Team 467
Facilities Manager 468
Physical Security Manager 468
Provide Objective Guidance and Impartial Recommendations to Staff and Senior Management on Security Processes and Controls 469

Establish Effective Collaboration within Teams to Implement Secure Solutions 469

IT Governance 471

Review All Key Topics 471

Define Key Terms 472

Chapter 14 Secure Communication and Collaboration 477

Security of Unified Collaboration Tools 478

Web Conferencing 478
Video Conferencing 479
Instant Messaging 481
Desktop Sharing 481
Remote Assistance 482
Presence 483
Email 484
IMAP 484
POP 484
SMTP 484
Email Spoofing 485
Spear Phishing 485
Whaling 486
Spam 486
Captured Messages 486
Disclosure of Information 487
Malware 487
Telephony 487
VoIP 488
Collaboration Sites 489
Social Media 489
Cloud-Based Collaboration 490

Remote Access 491
Dial-up 491
VPN 492
SSL 495
Remote Administration 495
Mobile Device Management 495
BYOD 495
Over-the-Air Technologies Concerns 497
FHSS, DSSS, OFDM, FDMA, CDMA, OFDMA, and GSM 497
802.11 Techniques 498
Cellular or Mobile Wireless Techniques 498
WLAN Structure 499
Access Point 499
SSID 499
Infrastructure Mode Versus Ad Hoc Mode 499
WLAN Standards 500
802.11a 500
802.11b 500
802.11g 501
802.11n 501
802.11ac 501
Bluetooth 502
Infrared 502
WLAN Security 502
WEP 502
WPA 503
WPA2 503
Personal Versus Enterprise WPA 503
SSID Broadcast 504
MAC Filter 504
Satellites 504
Wireless Attacks 505
Wardriving 505
Warchalking 505
Rogue Access Points 505
Review All Key Topics 506
Define Key Terms 506
Lack of Standards 536
De Facto Standards 536
Interoperability Issues 537
 Legacy Systems/Current Systems 537
 Application Requirements 538
 In-House Developed Versus Commercial Versus Commercial
 Customized Applications 539
Technical Deployment Models 539
 Cloud and Virtualization Considerations and Hosting Options 540
 Public Cloud 540
 Private Cloud 540
 Hybrid Cloud 540
 Community Cloud 541
 Multi-Tenancy Model 541
 Single-Tenancy Model 541
 Vulnerabilities Associated with a Single Physical Server Hosting Multiple
 Companies' Virtual Machines 541
 Vulnerabilities Associated with a Single Platform Hosting Multiple
 Companies' Virtual Machines 542
 Secure Use of On-demand/Elastic Cloud Computing 542
 Data Remnants 543
 Data Aggregation 543
 Data Isolation 543
 Resource Provisioning and Deprovisioning 543
 Users 544
 Servers 544
 Virtual Devices 544
 Applications 545
 Securing Virtual Environments, Services, Applications, Appliances, and
 Equipment 545
 Design Considerations During Mergers, Acquisitions, and Demergers/
 Divestitures 545
 Network Secure Segmentation and Delegation 545
 Logical and Physical Deployment Diagrams of Relevant Devices 546
Chapter 17 Authentication and Authorization Technologies 561

Authentication 562

Identity and Account Management 562
Password Types and Management 563

Characteristic Factors 566

Physiological Characteristics 567
Behavioral Characteristics 568
Biometric Considerations 568

Dual-Factor and Multi-Factor Authentication 570
Certificate-Based Authentication 570

Single Sign-On 571

Authorization 572

Access Control Models 572

Discretionary Access Control 572
Mandatory Access Control 573
Role-Based Access Control 573
Rule-Based Access Control 574
About the Authors

Robin Abernathy, CASP, is a product developer and technical editor for Kaplan IT. She has developed and reviewed certification preparation materials in a variety of product lines, including Microsoft, CompTIA, Cisco, ITIL, (ISC)², and PMI and holds multiple certifications from these vendors. Her work with Kaplan IT includes practice tests and study guides for the Transcender and Self Test Software brands. Robin most recently co-authored Pearson’s CISSP Cert Guide with Troy McMillan. She provides training on computer hardware, software, networking, security, and project management. Robin also presents at technical conferences and hosts webinars on IT certification topics.

Troy McMillan, CASP, is a product developer and technical editor for Kaplan IT as well as a full-time trainer. He became a professional trainer 13 years ago, teaching Cisco, Microsoft, CompTIA, and wireless classes. His recent work includes:

- Contributing subject matter expert for CCNA Cisco Certified Network Associate Certification Exam Preparation Guide (Kaplan)
- Prep test question writer for Network+ Study Guide (Sybex)
- Technical editor for Windows 7 Study Guide (Sybex)
- Contributing author for CCNA-Wireless Study Guide (Sybex)
- Technical editor for CCNA Study Guide, Revision 7 (Sybex)
- Author of VCP VMware Certified Professional on vSphere 4 Review Guide: Exam VCP-410 and associated instructional materials (Sybex)
- Author of Cisco Essentials (Sybex)
- Author of CISSP Cert Guide (Pearson)
- Prep test question writer for CCNA Wireless 640-722 (Cisco Press)

He also has appeared in the following training videos for OnCourse Learning: Security+; Network+; Microsoft 70-410, 411, and 412 exam prep; ICND 1; ICND 2; and Cloud+.

He now creates certification practice tests and study guides for the Transcender and Self-Test brands. Troy lives in Sugarloaf Key, Florida, with his wife, Heike.
Dedication

For my husband, Michael, and my son, Jonas. I love you both!
—Robin

I dedicate this book to my father, who passed away this year. I miss you every day.
—Troy
Acknowledgments

First, I once again thank my heavenly Father for blessing me throughout my life.

I would also like to thank all my family members, many of whom wondered where their acknowledgement was in the *CISSP Cert Guide*. To my siblings, Libby McDaniel Loggins and Kenneth McDaniel: Thanks for putting up with my differences and loving me anyway. To their spouses, Dave Loggins and Michelle Duncan McDaniel, thanks for choosing my siblings and deciding to still stay with them, even when you realized I was part of the package. LOL! To my husband’s family, I thank you for accepting me into your family. James and Sandra Abernathy, thanks for raising such a wonderful man. Cathy Abernathy Bonds and Tony Abernathy, thanks for helping to shape him into the man he is.

I must thank my wonderful husband, Michael, and son, Jonas, for once again being willing to do “guy things” while I was locked away in the world of CASP. You are my world! What a wonderful ride we are on!!!

Thanks to all at Pearson for once again assembling a wonderful team to help Troy and me get through this CASP journey.

To you, the reader, I wish you success in your IT certification goals!

—Robin Abernathy

I must thank my coworkers at Kaplan IT cert prep, who have helped me to grow over the past 10 years. Thank you, Ann, George, Aima, Bob, Josh, Robin, and Shara. I also must as always thank my beautiful wife, who has supported me through the lean years and continues to do so. Finally, I have to acknowledge all the help and guidance from the Pearson team.

—Troy McMillan
About the Reviewers

Chris Crayton, MCSE, is an author, technical consultant, and trainer. Formerly, he worked as a computer technology and networking instructor, information security director, network administrator, network engineer, and PC specialist. Chris has authored several print and online books on PC repair, CompTIA A+, CompTIA Security+, and Microsoft Windows. He has also served as technical editor and content contributor on numerous technical titles for several of the leading publishing companies. He holds numerous industry certifications, has been recognized with many professional teaching awards, and has served as a state-level SkillsUSA competition judge.

Rob Shimonski (www.shimonski.com) is a best-selling author and editor with over 15 years’ experience developing, producing, and distributing print media in the form of books, magazines, and periodicals. To date, Rob has successfully created more than 100 books that are currently in circulation. Rob has worked for countless companies, including CompTIA, Microsoft, Pearson, Elsevier, Wiley, Cisco, the National Security Agency, and Digidesign. Rob has over 20 years’ experience working in IT, networking, systems, and security. He is a veteran of the U.S. military and has been entrenched in security topics and assignments throughout his entire professional career.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com

Mail: Pearson IT Certification
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.pearsonitcertification.com/title/9780789754011 for convenient access to any updates, downloads, or errata that might be available for this book.
It Pays to Get Certified

In a digital world, digital literacy is an essential survival skill.

Certification demonstrates that you have the knowledge and skill to solve technical or business problems in virtually any business environment. CompTIA certifications are highly-valued credentials that qualify you for jobs, increased compensation and promotion.

- **The CompTIA Advanced Security Practitioner (CASP)** certification designates IT professionals with advanced-level security skills and knowledge.
- **The CASP** is the first mastery level certification available from CompTIA. It expands on the widely recognized path of CompTIA Security+ with almost 250,000 certified Security+ professionals.
- **Being CASP certified** demonstrates technical competency in enterprise security; risk management; research and analysis; and integration of computing, communications, and business disciplines.
- **Approved by the U.S. Department of Defense (DoD)** for 4 information assurance job roles in the DoD 8570.01-M directive: IA Technical Level III, IA Manager level II, and IA System Architect & Engineer (IASE) Levels I and II.

<table>
<thead>
<tr>
<th>Steps to Getting Certified and Staying Certified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice for the Exam</td>
</tr>
<tr>
<td>Purchase an Exam Voucher</td>
</tr>
<tr>
<td>Take the Test</td>
</tr>
<tr>
<td>Stay Certified! Continuing Education</td>
</tr>
</tbody>
</table>

How to obtain more information

- **Visit CompTIA online**: http://certification.comptia.org/home.aspx to learn more about getting CompTIA certified.
- **Contact CompTIA**: call 866-835-8020 and choose Option 2 or email questions@comptia.org.
- **Connect with us**:
About the Book

The CompTIA Advanced Security Practitioner (CASP)+ certification is a popular certification for those in the security field. Although many vendor-specific networking certifications are popular in the industry, the CompTIA CASP+ certification is unique in that it is vendor neutral. The CompTIA CASP+ certification often acts as a stepping-stone to more specialized and vendor-specific certifications, such as those offered by ISC².

In the CompTIA CASP+ exam, the topics are mostly generic in that they can apply to many security devices and technologies, regardless of vendor. Although the CompTIA CASP+ is vendor neutral, devices and technologies are implemented by multiple independent vendors. In that light, several of the examples associated with this book include using particular vendors’ configurations and technologies. More detailed training regarding a specific vendor’s software and hardware can be found in books and training specific to that vendor.

Goals and Methods

The goal of this book is to assist you in learning and understanding the technologies covered in the CASP+ CAS-002 blueprint from CompTIA. This book also helps you demonstrate your knowledge by passing the CAS-002 version of the CompTIA CASP+ exam.

To aid you in mastering and understanding the CASP+ certification objectives, this book provides the following tools:

- Opening topics list: This defines the topics that are covered in the chapter.
- Foundation topics: At the heart of a chapter, this section explains the topics from a hands-on and a theory-based standpoint. This includes in-depth descriptions, tables, and figures that build your knowledge so that you can pass the CAS-002 exam. The chapters are each broken into multiple sections.
- Key topics: This indicates important figures, tables, and lists of information that you need to know for the exam. They are sprinkled throughout each chapter and are summarized in table format at the end of each chapter.
- Memory tables: These can be found on the DVD, and in Appendix C, “Memory Tables,” and Appendix D, “Memory Tables Answer Key.” Use them to help memorize important information.
- Key terms: Key terms without definitions are listed at the end of each chapter. Write down the definition of each term and check your work against the Glossary.
For current information about the CompTIA CASP certification exam, visit http://certification.comptia.org/getCertified/certifications/comptia-advanced-security-practitioner-(casp).

Who Should Read This Book?

Readers of this book will range from people who are attempting to attain a position in the IT security field to people who want to keep their skills sharp or perhaps retain their job because of a company policy that mandates they take the new exams.

This book is also for readers who want to acquire additional certifications beyond the CASP+ certification (for example, the CISSP certification and beyond). The book is designed in such a way to offer easy transition to future certification studies.

Strategies for Exam Preparation

Read the chapters in this book, jotting down notes with key concepts or configurations on a separate notepad.

Download the current list of exam objectives by submitting a form at http://certification.comptia.org/examobjectives.aspx.

Use the practice exam, which is included on this book’s CD. As you work through the practice exam, note the areas where you lack confidence and review those concepts. After you review these areas, work through the practice exam a second time and rate your skills. Keep in mind that the more you work through a practice exam, the more familiar the questions become, and the practice exam becomes a less accurate indicator of your skills.

After you work through a practice exam a second time and feel confident with your skills, schedule the real CompTIA CASP+ exam (CAS-002). The following website provides information about registering for the exam: www.pearsonvue.com/comptia/.

CompTIA CASP Exam Topics

Table 1 lists general exam topics (objectives) and specific topics under each general topic (subobjectives) for the CompTIA CASP+ CAS-002 exam. This table lists the primary chapter in which each exam topic is covered. Note that many objectives and subobjectives are interrelated and are addressed in multiple chapters.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>CAS-002 Exam Objective</th>
<th>CAS-002 Exam Subobjective</th>
</tr>
</thead>
</table>
| 1 | 1.1 Given a scenario, select appropriate cryptographic concepts and techniques | ■ Techniques
■ Concepts
■ Implementations |
| 2 | 1.2 Explain the security implications associated with enterprise storage | ■ Storage types
■ Storage protocols
■ Secure storage management |
| 3 | 1.3 Given a scenario, analyze network and security components, concepts and architectures | ■ Advanced network design (wired/wireless)
■ Security devices
■ Virtual networking and security components
■ Complex network security solutions for data flow
■ Secure configuration and baselining of networking and security components
■ Software defined networking
■ Cloud managed networks
■ Network management and monitoring tools
■ Advanced configuration of routers, switches and other network devices
■ Security zones
■ Network access control
■ Operational and consumer network enabled devices
■ Critical infrastructure/Supervisory Control and Data Acquisition (SCADA)/Industrial Control Systems (ICS) |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>CAS-002 Exam Objective</th>
<th>CAS-002 Exam Subobjective</th>
</tr>
</thead>
</table>
| 4 | 1.4 Given a scenario, select and troubleshoot security controls for hosts | ■ Trusted OS (e.g., how and when to use it)
■ Endpoint security software
■ Host hardening
■ Security advantages and disadvantages of virtualizing servers
■ Cloud augmented security services
■ Boot loader protections
■ Vulnerabilities associated with co-mingling of hosts with different security requirements
■ Virtual desktop infrastructure (VDI)
■ Terminal services/application delivery services
■ TPM
■ VTPM
■ HSM |
| 5 | 1.5 Differentiate application vulnerabilities and select appropriate security controls | ■ Web application security design considerations
■ Specific application issues
■ Application sandboxing
■ Application security frameworks
■ Secure coding standards
■ Database activity monitor (DAM)
■ Web application firewalls (WAFs)
■ Client-side processing vs. server-side processing |
| 6 | 2.1 Interpret business and industry influences and explain associated security risks | ■ Risk management of new products, new technologies and user behaviors
■ New or changing business models/strategies
■ Security concerns of integrating diverse industries
■ Ensuring that third party providers have requisite levels of information security
■ Internal and external influences
■ Impact of de-perimeterization (e.g., constantly changing network boundary) |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>CAS-002 Exam Objective</th>
<th>CAS-002 Exam Subobjective</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2.2 Given a scenario, execute risk mitigation planning, strategies, and controls</td>
<td>• Classify information types into levels of CIA based on organization/industry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Incorporate stakeholder input into CIA decisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Implement technical controls based on CIA requirements and policies of the organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determine aggregate CIA scores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Extreme scenario planning/worst case scenario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determine minimum required security controls based on the aggregate score</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conduct system specific risk analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Make risk determination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recommend which strategy should be applied based on risk appetite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Risk management processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enterprise security architecture frameworks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Continuous improvement/monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Business continuity planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IT governance</td>
</tr>
<tr>
<td>8</td>
<td>2.3 Compare and contrast security, privacy policies and procedures based on organizational requirements</td>
<td>• Policy development and updates in light of new business, technology, risks and environment changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Process/procedure development and updates in light of policy, environment and business changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Support legal compliance and advocacy by partnering with HR, legal, management and other entities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use common business documents to support security</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use general privacy principles for sensitive information (PHI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Support the development of policies</td>
</tr>
<tr>
<td>Chapter</td>
<td>CAS-002 Exam Objective</td>
<td>CAS-002 Exam Subobjective</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| 9 Incident Response and Recovery Procedures | 2.4 Given a scenario, conduct incident response and recovery procedures | ■ E-discovery
■ Data breach
■ Design systems to facilitate incident response
■ Incident and emergency response |
| 10 Industry Trends | 3.1 Apply research methods to determine industry trends and impact to the enterprise | ■ Perform ongoing research
■ Situational awareness
■ Research security implications of new business tools
■ Global IA industry/community
■ Research security requirements for contracts |
| 11 Securing the Enterprise | 3.2 Analyze scenarios to secure the enterprise | ■ Create benchmarks and compare to baselines
■ Prototype and test multiple solutions
■ Cost benefit analysis
■ Metrics collection and analysis
■ Analyze and interpret trend data to anticipate cyber defense needs
■ Review effectiveness of existing security controls
■ Reverse engineer/deconstruct existing solutions
■ Analyze security solution attributes to ensure they meet business needs
■ Conduct a lessons-learned/after-action report
■ Use judgment to solve difficult problems that do not have a best solution |
| 12 Assessment Tools and Methods | 3.3 Given a scenario, select methods or tools appropriate to conduct an assessment and analyze results | ■ Tool type
■ Methods |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>CAS-002 Exam Objective</th>
<th>CAS-002 Exam Subobjective</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Business Unit</td>
<td>4.1 Given a scenario, facilitate collaboration across diverse business units to achieve security goals</td>
</tr>
<tr>
<td></td>
<td>Collaboration</td>
<td>■ Interpreting security requirements and goals to communicate with stakeholders from other disciplines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Provide objective guidance and impartial recommendations to staff and senior management on security processes and controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Establish effective collaboration within teams to implement secure solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ IT governance</td>
</tr>
<tr>
<td>14</td>
<td>Secure</td>
<td>4.2 Given a scenario, select the appropriate control to secure communications and collaboration solutions</td>
</tr>
<tr>
<td></td>
<td>Communication and</td>
<td>■ Security of unified collaboration tools</td>
</tr>
<tr>
<td></td>
<td>Collaboration</td>
<td>■ Remote access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Mobile device management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Over-the-air technologies concerns</td>
</tr>
<tr>
<td>15</td>
<td>Security Across the</td>
<td>4.3 Implement security activities across the technology life cycle</td>
</tr>
<tr>
<td></td>
<td>Technology Life</td>
<td>■ End-to-end solution ownership</td>
</tr>
<tr>
<td></td>
<td>Cycle</td>
<td>■ Systems development life cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Adapt solutions to address emerging threats and security trends</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Asset management (inventory control)</td>
</tr>
<tr>
<td>16</td>
<td>Host, Storage,</td>
<td>5.1 Given a scenario, integrate hosts, storage, networks and applications into a secure enterprise architecture</td>
</tr>
<tr>
<td></td>
<td>Network, and</td>
<td>■ Secure data flows to meet changing business needs</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>■ Standards</td>
</tr>
<tr>
<td></td>
<td>Integration into a</td>
<td>■ Interoperability issues</td>
</tr>
<tr>
<td></td>
<td>Secure Enterprise</td>
<td>■ Technical deployment models (Outsourcing/insourcing/managed services/partnership)</td>
</tr>
<tr>
<td></td>
<td>Architecture</td>
<td>■ Logical deployment diagram and corresponding physical deployment diagram of all relevant devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Secure infrastructure design (e.g. decide where to place certain devices/applications)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Storage integration (security considerations)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Enterprise application integration enablers</td>
</tr>
</tbody>
</table>
Chapter 17

Authentication and Authorization Technologies

Objective

5.2 Given a scenario, integrate advanced authentication and authorization technologies to support enterprise objectives

How This Book Is Organized

Although this book could be read cover-to-cover, it is designed to be flexible and allow you to easily move between chapters and sections of chapters to cover just the material that you need more work with. However, if you do intend to read all the chapters, the order in the book is an excellent sequence to use:

- Chapter 1, “Cryptographic Concepts and Techniques,” introduces cryptographic techniques and concepts. It presents the uses of these techniques and describes various implementations that currently exist, such as DRM, watermarking, GPG, SSL, SSH, and S/MIME.

- Chapter 2, “Enterprise Storage,” describes various types of storage mechanisms and their distinguishing characteristics. It describes the major protocols used in a storage solution and storage security and performance techniques such as multipath, snapshots, and deduplication.

- Chapter 3, “Network and Security Components, Concepts, and Architectures,” covers issues driving network design, including virtual networking and security. It introduces various security devices, such as UTM, NIDS, INE, and HSM. It also includes a survey of access control issues, including network access control, and finishes with a discussion of the future of network-enabled devices, including building automation.

- Chapter 4, “Security Controls for Hosts,” focuses on protecting the host in the network. Security software such as antivirus is discussed, along with the concepts and steps taken to harden systems. Security issues in a cloud environment are also covered, along with a discussion of virtual desktop security. Finally, full disk encryption is discussed.

- Chapter 5, “Application Vulnerabilities and Security Controls,” discusses the fact that while securing the network is important, security issues can also exist...
from the applications created by an organization. This chapter details the vari-
ous problems that can be present in application code and the attacks that these
problems can lead to. It also describes mitigation techniques for securing ap-
plications.

■ Chapter 6, “Business Influences and Associated Security Risks,” discusses the
security risks involved when companies are acquired and networks are com-
bined. This chapter introduces concepts such as security concerns when com-
panies are merging, the risks introduced by the deperimeterization of today’s
networks, and the impact of outsourcing.

■ As discussed in Chapter 7, “Risk Mitigation Planning, Strategies, and Con-
trols,” businesses face many types of risk in day-to-day operations. Managing
risk and mitigating the damage caused by various events is the topic of this
chapter. It discusses methods to use to define and quantify risk and covers
methods used to select the proper strategy for handing the risks.

■ As discussed in Chapter 8, “Security, Privacy Policies, and Procedures,” all or-
ganizations should have security policies and procedures in place that address
all conceivable events. This chapter discusses how to create a security policy
and list some of the sections that should always be included.

■ No security policy can protect an organization from all risks. In case a security
breach occurs, there should be formal reaction system in place to address the
incident. Chapter 9, “Incident Response and Recovery Procedures,” describes
an incident response method which ensures that evidence is protected and the
proper information is gathered.

■ In no industry do changes occur faster than in IT. Security professionals
have to keep up with the latest practices and concept. Chapter 10, “Industry
Trends,” looks at some of the coming trends and methods to keep abreast of
the latest and greatest security innovations and attacks.

■ Chapter 11, “Securing the Enterprise,” takes a more holistic security view of
the enterprise and discusses how to anticipate the effects of certain security
measures and how to mitigate some of these effects.

■ To secure a network, you must be able to monitor the network for evidence of
mischief. Chapter 12, “Assessment Tools and Methods,” looks at tools used to
assess the vulnerability of a network.

■ Security in the network can be enhanced by all parts of the organization work-
ing together. Chapter 13, “Business Unit Collaboration,” looks at the benefits
of including all organizational stakeholders in the development of security
policies.
While data should be protected where it resides in storage on a network, communications crossing the network must also be secured. Chapter 14, “Secure Communication and Collaboration,” looks at securing connections, both remote and local to the enterprise. It also discusses security issues surrounding collaboration tools that are now widely used.

Security is a never-ending process that requires constant examination and adjustment. Chapter 15, “Security Across the Technology Life Cycle,” covers this life cycle and also discusses change management and the benefits that can be derived from a formal change management process.

Virtualization and cloud computing are all the rage these days. Chapter 16, “Host, Storage, Network, and Application Integration into a Secure Enterprise Architecture,” discusses the security issues involved with integrating a virtual and physical infrastructure. It covers cloud computing models and best practices for securing a virtual environment.

Controlling access to resources and the network in general is probably the obvious security function performed by security professionals. Chapter 17, “Authentication and Authorization Technologies,” covers methods of authentication and authorization.

In addition to the 17 main chapters, this book includes tools to help you verify that you are prepared to take the exam. The CD includes practice questions that are an important part of your preparation for certification. The CD also includes a practice test and memory tables that you can work through to verify your knowledge of the subject matter.

Pearson IT Certification Practice Test Engine and Questions on the Disc

The disc in the back of the book includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice questions. Using the Pearson IT Certification Practice Test engine, you can either study by going through the questions in Study Mode or take a simulated exam that mimics real exam conditions.

The installation process requires two major steps: installing the software and then activating the exam. The disc in the back of this book has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam—the database of exam questions—is not on the disc.
NOTE The cardboard disc case in the back of this book includes the disc and a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Install the Software from the Disc

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows Virtual Machine, but it was built specifically for the PC platform.

The software installation process is pretty routine compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the disc sleeve.

The following steps outline the installation process:

1. Insert the disc into your PC.
2. The software that automatically runs is the Pearson software to access and use all disc-based features, including the exam engine and the disc-only appendixes. From the main menu, click the option to Install the Exam Engine.
3. Respond to Windows prompts as with any typical software installation process.

The installation process gives you the option to activate your exam with the activation code supplied on the paper in the disc sleeve. This process requires that you establish a Pearson website login. You need this login to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

After the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process) as follows:

1. Start the Pearson IT Certification Practice Test software from the Windows Start menu or from your desktop shortcut icon.
2. To activate and download the exam associated with this book, from the My Products or Tools tab, select the Activate button.

3. At the next screen, enter the Activation Key from the paper inside the cardboard disc holder in the back of the book. When it’s entered, click the Activate button.

4. The activation process downloads the practice exam. Click Next and then click Finish.

After the activation process finishes, the My Products tab should list your new exam. If you do not see the exam, make sure you have selected the My Products tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam, and click the Open Exam button.

To update a particular exam you have already activated and downloaded, simply select the Tools tab, and select the Update Products button. Updating your exams will ensure you have the latest changes and updates to the exam data.

If you want to check for updates to the Pearson Cert Practice Test exam engine software, simply select the Tools tab, and select the Update Application button. This will ensure you are running the latest version of the software engine.

Activating Other Exams

The exam software installation process, and the registration process, must happen only once. Then, for each new exam, only a few steps are required. For instance, if you buy another new Pearson IT Certification Cert Guide or Cisco Press Official Cert Guide, extract the activation code from the disc sleeve in the back of that book—you don’t even need the disc at this point. From there, all you need to do is start the exam engine (if not still up and running), and perform steps 2–4 from the previous list.

Premium Edition

In addition to the two free practice exams provided on the disc, you can purchase one additional exam with expanded functionality directly from Pearson IT Certification. The Premium Edition eBook and Practice Test for this title contains one additional full practice exam as well as an eBook (in both PDF and ePub format). In addition, the Premium Edition title also has remediation for each question to the specific part of the eBook that relates to that question.

If you have purchased the print version of this title, you can purchase the Premium Edition at a deep discount. There is a coupon code in the disc sleeve that contains a one-time use code as well as instructions for where you can purchase the Premium Edition.
This chapter covers the following topics:

- **The Goal of the CASP Certification**: This section describes CASP’s sponsoring bodies and the stated goals of the certification.

- **The Value of the CASP Certification**: This section examines the career and business drivers that comprise the value of the certification.

- **CASP Exam Objectives**: This section lists the official objectives covered on the CASP exam.

- **Steps to Becoming a CASP**: This section explains the process involved in achieving the CASP certification.

- **CompTIA Authorized Materials Use Policy**: This section provides information on the CompTIA Certification Exam Policies web page.
The CASP Exam

The CompTIA Certified Advanced Security Practitioner (CASP) exam is designed to identify IT professionals with advanced-level security skills and knowledge.

As the number of security threats to organizations grows and the nature of these threats broadens, companies large and small have realized that security can no longer be an afterthought. It must be built into the DNA of the enterprise to be successful. This requires trained professionals that are versed not only in security theory but who can also implement measures that provide enterprisewide security. While no perquisites exist to take the exam, it is often the next step for many security professionals after passing the CompTIA Security+ exam.

The Goals of the CASP Certification

The CASP exam is a vendor-neutral exam created and managed by CompTIA. An update to the CASP certification exam launched November 30, 2014. The new exam, CAS-002, replaces CAS-001, which will retire in May 2015. This book is designed to prepare you for the new exam, CAS-002, but can also be used to prepare for the CAS-001.

In today’s world, security is no longer a one-size-fits-all proposition. Earning the CASP credential is a way security professionals can demonstrate the ability to design, implement, and maintain the correct security posture for an organization, based on the complex environments in which today’s organizations exist.

Sponsoring Bodies

CompTIA is an ANSI-accredited certifier that creates and maintains a wide array of IT certification exams, such as A+, Network+, Server+, and Security+. The credentials obtained by passing these various exams are recognized in the industry as demonstrating the skills tested in these exams.
Other Security Exams

The CASP exam is one of several security-related exams that can validate a candidate’s skills and knowledge. The following are some of the most popular ones, to put the CASP exam in proper perspective:

- **Certified Information Systems Security Professional (CISSP®); ISC²:** This is a globally recognized standard of achievement that confirms an individual’s knowledge in the field of information security. CISSPs are information assurance professionals who define the architecture, design, management, and/or controls that assure the security of business environments. It was the first certification in the field of information security to meet the stringent requirements of ISO/IEC Standard 17024.

- **Security+ (CompTIA):** This exam covers the most important foundational principles for securing a network and managing risk. Access control, identity management, and cryptography are important topics on the exam, as well as selection of appropriate mitigation and deterrent techniques to address network attacks and vulnerabilities.

- **Certified Ethical Hacker (CEH; EC Council):** This exam validates the skills of an ethical hacker. Such individuals are usually trusted people who are employed by organizations to undertake attempts to penetrate networks and/or computer systems using the same methods and techniques as an unethical hacker.

Stated Goals

CompTIA’s stated goal (verbatim from the CompTIA CASP web page) is as follows:

The CASP exam covers the technical knowledge and skills required to conceptualize, design, and engineer secure solutions across complex enterprise environments. It involves applying critical thinking and judgment across a broad spectrum of security disciplines to propose and implement solutions that map to enterprise drivers, while managing risk.

The Value of the CASP Certification

The CASP certification holds value for both the exam candidate and the enterprise. While it is a relatively new exam, already it has been approved by U.S. Department of Defense to meet IA technical and management certification requirements and has been chosen by Dell and HP advanced security personnel. Advantages can be gained by both the candidate and the organization employing the candidate.
To the Security Professional

There are numerous reasons a security professional would spend the time and effort required to achieve this credential. Here are some of them:

- To meet the growing demand for security professionals
- To become more marketable in an increasingly competitive job market
- To enhance skills in a current job
- To qualify for or compete more successfully for a promotion
- To increase one’s salary

Department of Defense Directive 8570 (DoDD 8570)

DoDD 8570 prescribes that members of the military who hold certain job roles must hold security certifications. The directive lists the CASP certification at several levels. Figure I-1 shows job roles that require various certifications, including CASP.

<table>
<thead>
<tr>
<th>IAT Level I</th>
<th>IAT Level II</th>
<th>IAT Level III</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompTIA A+</td>
<td>GSEC</td>
<td>CASP</td>
</tr>
<tr>
<td>CompTIA Network+</td>
<td>CompTIA Security+</td>
<td>CISA</td>
</tr>
<tr>
<td>SSCP</td>
<td>SSCP</td>
<td>CISSP (or Associate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GCIH</td>
</tr>
<tr>
<td>IAM Level I</td>
<td>IAM Level II</td>
<td>IAM Level III</td>
</tr>
<tr>
<td>CAP</td>
<td>CASP</td>
<td>GSLC</td>
</tr>
<tr>
<td>GSLC</td>
<td>CAP</td>
<td>CISM</td>
</tr>
<tr>
<td>CompTIA Security+</td>
<td>GSLC</td>
<td>CISSP (or Associate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CISM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CISSP (or Associate)</td>
</tr>
<tr>
<td>IASAE I</td>
<td>IASAE II</td>
<td>IASAE III</td>
</tr>
<tr>
<td>CASP</td>
<td>CASP</td>
<td>CISSP - ISSAP</td>
</tr>
<tr>
<td>CISSP (or Associate)</td>
<td>CISSP (or Associate)</td>
<td>CISSP - ISSAP</td>
</tr>
</tbody>
</table>

Figure I-1 DoDD 8570

In short, the CASP certification demonstrates that the holder has the knowledge and skills tested in the exam and also that the candidate has hands-on experience and can organize and implement a successful security solution.
To the Enterprise

For the organization, the CASP certification offers a reliable benchmark to which job candidates can be measured by validating knowledge and experience. Candidates who successfully pass this rigorous exam will stand out from the rest, not only making the hiring process easier but also adding a level of confidence in the final hire.

CASP Exam Objectives

The material contained in the CASP exam objectives is divided into five domains. The following pages outline the objectives tested in each of the domains for the CAS-002 exam.

1.0 Enterprise Security

1.1 Given a scenario, select appropriate cryptographic concepts and techniques

- Techniques
 - Key stretching
 - Hashing
 - Code signing
 - Pseudo random number generation
 - Perfect forward secrecy
 - Transport encryption
 - Data at rest encryption
 - Digital signature

- Concepts
 - Entropy
 - Diffusion
 - Confusion
 - Non-repudiation
 - Confidentiality
 - Integrity
 - Chain of trust, Root of trust
- Cryptographic applications and proper/improper implementations
- Advanced PKI concepts
 - Wild card
 - OCSP vs. CRL
 - Issuance to entities
 - Users
 - Systems
 - Applications
 - Key escrow
- Steganography
- Implications of cryptographic methods and design
 - Stream
 - Block
 - Modes
 - ECB
 - CBC
 - CFB
 - OFB
 - Known flaws/weaknesses
 - Strength vs. performance vs. feasibility to implement vs. interoperability
- Implementations
 - DRM
 - Watermarking
 - GPG
 - SSL
 - SSH
 - S/MIME
1.2 Explain the security implications associated with enterprise storage

- Storage types
 - Virtual storage
 - Cloud storage
 - Data warehousing
 - Data archiving
 - NAS
 - SAN
 - vSAN

- Storage protocols
 - iSCSI
 - FCoE
 - NFS, CIFS

- Secure storage management
 - Multipath
 - Snapshots
 - Deduplication
 - Dynamic disk pools
 - LUN masking/mapping
 - HBA allocation
 - Offsite or multisite replication

- Encryption
 - Disk
 - Block
 - File
 - Record
 - Port
1.3 Given a scenario, analyze network and security components, concepts and architectures

- Advanced network design (wired/wireless)
 - Remote access
 - VPN
 - SSH
 - RDP
 - VNC
 - SSL
 - IPv6 and associated transitional technologies
 - Transport encryption
 - Network authentication methods
 - 802.1x
 - Mesh networks

- Security devices
 - UTM
 - NIPS
 - NIDS
 - INE
 - SIEM
 - HSM
 - Placement of devices

- Application and protocol aware technologies
 - WAF
 - NextGen firewalls
 - IPS
 - Passive vulnerability scanners
 - DAM
- Virtual networking and security components
 - Switches
 - Firewalls
 - Wireless controllers
 - Routers
 - Proxies
- Complex network security solutions for data flow
 - SSL inspection
 - Network flow data
- Secure configuration and baselining of networking and security components
 - ACLs
 - Change monitoring
 - Configuration lockdown
 - Availability controls
- Software defined networking
- Cloud managed networks
- Network management and monitoring tools
- Advanced configuration of routers, switches and other network devices
 - Transport security
 - Trunking security
 - Route protection
- Security zones
 - Data flow enforcement
 - DMZ
 - Separation of critical assets
- Network access control
 - Quarantine/remediation
Operational and consumer network enabled devices
- Building automation systems
- IP video
- HVAC controllers
- Sensors
- Physical access control systems
- A/V systems
- Scientific/industrial equipment
- Critical infrastructure/Supervisory Control and Data Acquisition (SCADA)/Industrial Control Systems (ICS)

1.4 Given a scenario, select and troubleshoot security controls for hosts
- Trusted OS (e.g. how and when to use it)
- End point security software
 - Anti-malware
 - Anti-virus
 - Anti-spyware
 - Spam filters
 - Patch management
 - HIPS/HIDS
 - Data loss prevention
 - Host-based firewalls
 - Log monitoring
- Host hardening
 - Standard operating environment/configuration baselining
 - Application whitelisting and blacklisting
 - Security/group policy implementation
 - Command shell restrictions
 - Patch management
- Configuring dedicated interfaces
 - Out-of-band NICs
 - ACLs
 - Management interface
 - Data interface
- Peripheral restrictions
 - USB
 - Bluetooth
 - Firewire
- Full disk encryption
- Security advantages and disadvantages of virtualizing servers
 - Type I
 - Type II
 - Container-based
- Cloud augmented security services
 - Hash matching
 - Anti-virus
 - Anti-spam
 - Vulnerability scanning
 - Sandboxing
 - Content filtering
- Boot loader protections
 - Secure boot
 - Measured launch
 - IMA—Integrity Measurement Architecture
 - BIOS/UEFI
• Vulnerabilities associated with co-mingling of hosts with different security requirements
 • VM Escape
 • Privilege elevation
 • Live VM migration
 • Data remnants
• Virtual Desktop Infrastructure (VDI)
• Terminal services/application delivery services
• TPM
• VTPM
• HSM

1.5 Differentiate application vulnerabilities and select appropriate security controls

• Web application security design considerations
 • Secure: by design, by default, by deployment
• Specific application issues
 • Insecure direct object references
 • XSS
 • Cross-site Request Forgery (CSRF)
 • Click-jacking
 • Session management
 • Input validation
 • SQL injection
 • Improper error and exception handling
 • Privilege escalation
 • Improper storage of sensitive data
 • Fuzzing/fault injection
 • Secure cookie storage and transmission
- Buffer overflow
- Memory leaks
- Integer overflows
- Race conditions
 - Time of check
 - Time of use
- Resource exhaustion
- Geo-tagging
- Data remnants

- Application sandboxing
- Application security frameworks
 - Standard libraries
 - Industry accepted approaches
 - Web services security (WS-security)
- Secure coding standards
- Database Activity Monitor (DAM)
- Web Application Firewalls (WAF)
- Client-side processing vs. server-side processing
 - JSON/REST
 - Browser extensions
 - ActiveX
 - Java applets
 - Flash
 - HTML5
 - AJAX
 - SOAP
 - State management
 - Javascript
2.0 Risk Management and Incident Response

2.1 Interpret business and industry influences and explain associated security risks

- Risk management of new products, new technologies and user behaviors
- New or changing business models/strategies
 - Partnerships
 - Outsourcing
 - Cloud
 - Merger and demerger/divestiture
- Security concerns of integrating diverse industries
 - Rules
 - Policies
 - Regulations
 - Geography
- Ensuring third party providers have requisite levels of information security
- Internal and external influences
 - Competitors
 - Auditors/audit findings
 - Regulatory entities
 - Internal and external client requirements
 - Top level management
- Impact of de-perimeterization (e.g. constantly changing network boundary)
 - Telecommuting
 - Cloud
 - BYOD
 - Outsourcing

2.2 Given a scenario, execute risk mitigation planning, strategies and controls

- Classify information types into levels of CIA based on organization/industry
- Incorporate stakeholder input into CIA decisions
- Implement technical controls based on CIA requirements and policies of the organization
- Determine aggregate score of CIA
- Extreme scenario planning/worst case scenario
- Determine minimum required security controls based on aggregate score
- Conduct system specific risk analysis
- Make risk determination
 - Magnitude of impact
 - ALE
 - SLE
 - Likelihood of threat
 - Motivation
 - Source
 - ARO
 - Trend analysis
 - Return on investment (ROI)
 - Total cost of ownership
- Recommend which strategy should be applied based on risk appetite
 - Avoid
 - Transfer
 - Mitigate
 - Accept
- Risk management processes
 - Exemption
 - Deterrence
 - Inherent
 - Residual
- Enterprise Security Architecture frameworks
- Continuous improvement/monitoring
- Business Continuity Planning
- IT Governance
2.3 Compare and contrast security, privacy policies and procedures based on organizational requirements

- Policy development and updates in light of new business, technology, risks and environment changes
- Process/procedure development and updates in light of policy, environment and business changes
- Support legal compliance and advocacy by partnering with HR, legal, management and other entities
- Use common business documents to support security
 - Risk assessment (RA)/Statement of Applicability (SOA)
 - Business Impact Analysis (BIA)
 - Interoperability Agreement (IA)
 - Interconnection Security Agreement (ISA)
 - Memorandum of Understanding (MOU)
 - Service Level Agreement (SLA)
 - Operating Level Agreement (OLA)
 - Non-Disclosure Agreement (NDA)
 - Business Partnership Agreement (BPA)
- Use general privacy principles for sensitive information (PII)
- Support the development of policies that contain:
 - Separation of duties
 - Job rotation
 - Mandatory vacation
 - Least privilege
 - Incident response
 - Forensic tasks
 - Employment and termination procedures
 - Continuous monitoring
 - Training and awareness for users
 - Auditing requirements and frequency
2.4 Given a scenario, conduct incident response and recovery procedures

- E-Discovery
 - Electronic inventory and asset control
 - Data retention policies
 - Data recovery and storage
 - Data ownership
 - Data handling
 - Legal holds
- Data breach
 - Detection and collection
 - Data analytics
 - Mitigation
 - Minimize
 - Isolate
 - Recovery/reconstitution
 - Response
 - Disclosure
- Design systems to facilitate incident response
 - Internal and external violations
 - Privacy policy violations
 - Criminal actions
 - Insider threat
 - Non-malicious threats/misconfigurations
 - Establish and review system, audit and security logs
- Incident and emergency response
 - Chain of custody
 - Forensic analysis of compromised system
 - Continuity of Operation Plan (COOP)
 - Order of volatility
3.0 Research, Analysis and Assessment

3.1 Apply research methods to determine industry trends and impact to the enterprise

- Perform ongoing research
 - Best practices
 - New technologies
 - New security systems and services
 - Technology evolution (e.g. RFCs, ISO)

- Situational awareness
 - Latest client-side attacks
 - Knowledge of current vulnerabilities and threats
 - Zero day mitigating controls and remediation
 - Emergent threats and issues

- Research security implications of new business tools
 - Social media/networking
 - End user cloud storage
 - Integration within the business

- Global IA industry/community
 - Computer Emergency Response Team (CERT)
 - Conventions/conferences
 - Threat actors
 - Emerging threat sources/threat intelligence

- Research security requirements for contracts
 - Request for Proposal (RFP)
 - Request for Quote (RFQ)
 - Request for Information (RFI)
 - Agreements
3.2 Analyze scenarios to secure the enterprise

- Create benchmarks and compare to baselines
- Prototype and test multiple solutions
- Cost benefit analysis
 - ROI
 - TCO
- Metrics collection and analysis
- Analyze and interpret trend data to anticipate cyber defense needs
- Review effectiveness of existing security controls
- Reverse engineer/deconstruct existing solutions
- Analyze security solution attributes to ensure they meet business needs:
 - Performance
 - Latency
 - Scalability
 - Capability
 - Usability
 - Maintainability
 - Availability
 - Recoverability
- Conduct a lessons-learned/after-action report
- Use judgment to solve difficult problems that do not have a best solution

3.3 Given a scenario, select methods or tools appropriate to conduct an assessment and analyze results

- Tool type
 - Port scanners
 - Vulnerability scanners
 - Protocol analyzer
 - Network enumerator
- Password cracker
- Fuzzer
- HTTP interceptor
- Exploitation tools/frameworks
- Passive reconnaissance and intelligence gathering tools
 - Social media
 - Whois
 - Routing tables
- Methods
 - Vulnerability assessment
 - Malware sandboxing
 - Memory dumping, runtime debugging
 - Penetration testing
 - Black box
 - White box
 - Grey box
 - Reconnaissance
 - Fingerprinting
 - Code review
 - Social engineering

4.0 Integration of Computing, Communications and Business Disciplines

4.1 Given a scenario, facilitate collaboration across diverse business units to achieve security goals
- Interpreting security requirements and goals to communicate with stakeholders from other disciplines
 - Sales staff
 - Programmer
 - Database administrator
 - Network administrator
- Management/executive management
- Financial
- Human resources
- Emergency response team
- Facilities manager
- Physical security manager
- Provide objective guidance and impartial recommendations to staff and senior management on security processes and controls
- Establish effective collaboration within teams to implement secure solutions
- IT governance

4.2 Given a scenario, select the appropriate control to secure communications and collaboration solutions
- Security of unified collaboration tools
 - Web conferencing
 - Video conferencing
 - Instant messaging
 - Desktop sharing
 - Remote assistance
 - Presence
 - Email
 - Telephony
 - VoIP
 - Collaboration sites
 - Social media
 - Cloud-based
- Remote access
- Mobile device management
 - BYOD
- Over-the-air technologies concerns
4.3 Implement security activities across the technology life cycle

- End-to-end solution ownership
 - Operational activities
 - Maintenance
 - Commissioning/decommissioning
 - Asset disposal
 - Asset/object reuse
 - General change management

- Systems Development Life Cycle
 - Security System Development Life Cycle (SSDLC)/Security Development Lifecycle (SDL)
 - Security Requirements Traceability Matrix (SRTM)
 - Validation and acceptance testing
 - Security implications of agile, waterfall and spiral software development methodologies

- Adapt solutions to address emerging threats and security trends
- Asset management (inventory control)
 - Device tracking technologies
 - Geo-location/GPS location
 - Object tracking and containment technologies
 - Geo-tagging/geo-fencing
 - RFID

5.0 Technical Integration of Enterprise Components

5.1 Given a scenario, integrate hosts, storage, networks and applications into a secure enterprise architecture

- Secure data flows to meet changing business needs
- Standards
 - Open standards
- Adherence to standards
- Competing standards
- Lack of standards
- Defacto standards

- Interoperability issues
 - Legacy systems/current systems
 - Application requirements
 - In-house developed vs. commercial vs. commercial customized

- Technical deployment models (Outsourcing/insourcing/managed services/partnership)
 - Cloud and virtualization considerations and hosting options
 - Public
 - Private
 - Hybrid
 - Community
 - Multi-tenancy
 - Single tenancy
 - Vulnerabilities associated with a single physical server hosting multiple companies’ virtual machines
 - Vulnerabilities associated with a single platform hosting multiple companies’ virtual machines
 - Secure use of on-demand/elastic cloud computing
 - Data remnants
 - Data aggregation
 - Data isolation

- Resources provisioning and de-provisioning
 - Users
 - Servers
 - Virtual devices
 - Applications
- Securing virtual environments, services, applications, appliances and equipment
- Design considerations during mergers, acquisitions and demergers/divestitures
- Network secure segmentation and delegation
- Logical deployment diagram and corresponding physical deployment diagram of all relevant devices
- Secure infrastructure design (e.g. decide where to place certain devices/applications)
- Storage integration (security considerations)
- Enterprise application integration enablers
 - CRM
 - ERP
 - GRC
 - ESB
 - SOA
 - Directory Services
 - DNS
 - CMDB
 - CMS

5.2 Given a scenario, integrate advanced authentication and authorization technologies to support enterprise objectives

- Authentication
 - Certificate-based authentication
 - Single sign-on
- Authorization
 - OAUTH
 - XACML
 - SPML
Attestation
Identity propagation
Federation
 • SAML
 • OpenID
 • Shibboleth
 • WAYF
Advanced trust models
 • RADIUS configurations
 • LDAP
 • AD

Steps to Becoming a CASP

To become a CASP, there are certain prerequisite procedures to follow. The following sections cover those topics.

Qualifying for the Exam

While there is no required prerequisite, the CASP certification is intended to follow CompTIA Security+ or equivalent experience and has a technical, hands-on focus at the enterprise level.

Signing up for the Exam

About the Exam

The following are the characteristics of the exam:

• **Launches:** January 20, 2015
• **Number of questions:** 80 (maximum)
• **Type of questions:** Multiple choice and performance based
• **Length of test:** 165 minutes
- **Passing score**: Pass/fail only; no scaled score
- **Recommended experience**: 10 years’ experience in IT administration, including at least 5 years of hands-on technical security experience
- **Languages**: English

CompTIA Authorized Materials Use Policy

CompTIA has recently started a more proactive movement toward preventing test candidates from using braindumps in their pursuit of certifications. CompTIA currently implements the CompTIA Authorized Quality Curriculum (CAQC) program, whereby content providers like Pearson can submit their test preparation materials to an authorized third party for audit. The CAQC checks to ensure that adequate topic coverage is provided by the content. Only authorized partners can submit their material to the third party.

In the current CAS-002 Blueprint, CompTIA includes a section titled “CompTIA Authorized Materials Use Policy” that details how to determine whether the materials you are using are from a legitimate company or a braindump company. This section includes a link for more information and a link to a site that will tell you if a particular provider is legitimate or a braindump, based on analysis of the content. Remember: Just because you purchase a product does not mean that the product is legitimate. Some of the best braindump companies out there charge for their products. Also, keep in mind that using materials from a braindump can result in certification revocation. Please make sure that all products you use are from a legitimate provider rather than a braindump company. Using a braindump is cheating and directly violates the nondisclosure agreement (NDA) you sign at exam time.

NOTE The following CompTIA Authorized Materials Use Policy is copied directly from the CompTIA exam blueprint. If you have any questions regarding the study materials you are considering using for this or any other CompTIA exam, please visit www.certguard.com. When you reach that site, shown in Figure I-2, simply enter the URL of the site from which materials come, and the site will tell you if the materials are authorized.

CompTIA is constantly reviewing the content of our exams and updating test questions to be sure our exams are current and the security of the questions is protected. When necessary, we will publish updated exams based on existing exam objectives. Please know that all related exam preparation materials will still be valid.
CompTIA Certifications, LLC is not affiliated with and does not authorize, endorse or condone utilizing any content provided by unauthorized third-party training sites, aka ‘brain dumps’. Individuals who utilize such materials in preparation for any CompTIA examination will have their certifications revoked and be suspended from future testing in accordance with the CompTIA Candidate Agreement. In an effort to more clearly communicate CompTIA’s exam policies on use of unauthorized study materials, CompTIA directs all certification candidates to the CompTIA Certification Exam Policies webpage:

http://certification.comptia.org/Training/testingcenters/policies.aspx

Please review all CompTIA policies before beginning the study process for any CompTIA exam. Candidates will be required to abide by the CompTIA Candidate Agreement (http://certification.comptia.org/Training/testingcenters/policies/agreement.aspx) at the time of exam delivery.

If a candidate has a question as to whether study materials are considered unauthorized (aka brain dumps), he/she should perform a search using CertGuard’s engine, found here:

http://www.certguard.com/search.asp

Or verify against this list:

NOTE The lists of examples provided in bulleted format below each objective are not exhaustive lists. Other examples of technologies, processes, or tasks pertaining to each objective may also be included on the exam although not listed or covered in this objectives document.
This page intentionally left blank
This chapter covers the following topics:

- **Secure Data Flows to Meet Changing Business Needs**: This section discusses security controls that can be deployed when business needs change.

- **Standards**: This section describes open standards, adherence to standards, competing standards, lack of standards, and de facto standards.

- **Interoperability Issues**: Topics covered include legacy systems/current systems, application requirements, and in-house developed versus commercial versus commercial customized applications.

- **Technical Deployment Models**: This section explains outsourcing/insourcing/managed services/partnerships, including cloud and virtualization, resource provisioning/deprovisioning, and securing and designing solutions.

- **Logical Deployment Diagram and Corresponding Physical Deployment Diagram of All Relevant Devices**: This section explains the differences between logical and physical deployment diagrams.

- **Secure Infrastructure Design**: This section gives examples of different network design models based on the network types included.

- **Storage Integration (Security Considerations)**: This section lists security guidelines for integrating storage solutions.

- **Enterprise Application Integration Enablers**: This section discusses the different options available to the enterprise and when they should be deployed.

This chapter covers CASP objective 5.1.
Host, Storage, Network, and Application Integration into a Secure Enterprise Architecture

Organizations must securely integrate hosts, storage, networks, and applications. It is a security practitioner’s responsibility to ensure that the appropriate security controls are implemented and tested. But this isn’t the only step a security practitioner must take. Security practitioners must also:

- Secure data flows to meet changing business needs.
- Understand standards.
- Understand interoperability issues.
- Understand technical deployment models, including outsourcing, insourcing, managed services, and partnerships.
- Know how to segment and delegate a secure network.
- Analyze logical and physical deployment diagrams of all relevant devices.
- Design a secure infrastructure.
- Integrate secure storage solutions within the enterprise.
- Deploy enterprise application integration enablers.

All these points are discussed in detail in this chapter.
Secure Data Flows to Meet Changing Business Needs

Business needs of an organization may change and require that security devices or controls be deployed in a different manner to protect data flow. As a security practitioner, you should be able to analyze business changes, how they affect security, and then deploy the appropriate controls.

To protect data during transmission, security practitioners should identify confidential and private information. Once this data has been properly identified, the following analysis steps should occur:

1. Determine which applications and services access the information.
2. Document where the information is stored.
3. Document which security controls protect the stored information.
4. Determine how the information is transmitted.
5. Analyze whether authentication is used when accessing the information.
 - If it is, determine whether the authentication information is securely transmitted.
 - If it is not, determine whether authentication can be used.
6. Analyze enterprise password policies, including password length, password complexity, and password expiration.
7. Determine whether encryption is used to transmit data.
 - If it is, ensure that the level of encryption is appropriate and that the encryption algorithm is adequate.
 - If it is not, determine whether encryption can be used.
8. Ensure that the encryption keys are protected.

Security practitioners should adhere to the defense-in-depth principle to ensure that the CIA of data is ensured across its entire life cycle. Applications and services should be analyzed to determine whether more secure alternatives can be used or whether inadequate security controls are deployed. Data at rest may require encryption to provide full protection and appropriate access control lists (ACLs) to ensure that only authorized users have access. For data transmission, secure protocols and...
encryption should be employed to prevent unauthorized users from being able to intercept and read data. The most secure level of authentication possible should be used in the enterprise. Appropriate password and account policies can protect against possible password attacks.

NOTE The defense-in-depth principle is further described in the introduction of this book.

Finally, security practitioners should ensure that confidential and private information is isolated from other information, including locating the information on separate physical servers and isolating data using virtual LANs (VLANs). Disable all unnecessary services, protocols, and accounts on all devices. Make sure that all firmware, operating systems, and applications are kept up-to-date, based on the vendor recommendations and releases.

When new technologies are deployed based on the changing business needs of the organization, security practitioners should be diligent to ensure that they understand all the security implications and issues with the new technology. Deploying a new technology before proper security analysis has occurred can result in security breaches that affect more than just the newly deployed technology. Remember that changes are inevitable! How you analyze and plan for these changes is what will set you apart from other security professionals.

Standards

Standards describe how policies will be implemented within an organization. They are actions or rules that are tactical in nature, meaning they provide the steps necessary to achieve security. Just like policies, standards should be regularly reviewed and revised. Standards are usually established by a governing organization, such as the National Institute of Standards and Technology (NIST).

The following sections briefly discuss open standards, adherence to standards, competing standards, lack of standards, and de facto standards.

Open Standards

Open standards are standards that are open to the general public. The general public can provide feedback on the standards and may use the standards without purchasing any rights to the standards or organizational membership. It is important that subject matter and industry experts help guide the development and maintenance of these standards.

Adherence to Standards

Organizations may opt to adhere entirely to both open standards and those managed by a standards organization. Some organizations may even choose to adopt selected parts of standards, depending on the industry. Remember that an organization should fully review any standard and analyze how its adoption will affect the organization.

Legal implications can arise if an organization ignores well-known standards. Neglecting to use standards to guide your organization’s security strategy, especially if others in your industry do, can significantly impact your organization’s reputation and standing.

Competing Standards

Competing standards most often come into effect between competing vendors. For example, Microsoft often establishes its own standards for authentication. Many times, its standards are based on an industry standard with slight modifications to suit Microsoft’s needs. In contrast, Linux may implement standards, but because it is an open source operating system, changes may have been made along the way that may not fully align with the standards your organization needs to follow. Always compare competing standards to determine which standard best suits your organization’s needs.

Lack of Standards

In some new technology areas, standards are not formulated yet. Do not let a lack of formal standards prevent you from providing the best security controls for your organization. If you can find similar technology that has formal adopted standards, test the viability of those standards for your solution. In addition, you may want to solicit input from subject matter experts (SMEs). A lack of standards does not excuse your organization from taking every precaution necessary to protect confidential and private data.

De Facto Standards

De facto standards are standards that are widely accepted but not formally adopted. De jure standards are standards that are based on laws or regulations and are adopted by international standards organizations. De jure standards should take precedence over de facto standards. If possible, your organization should adopt security policies that implement both de facto and de jure standards.
Let’s look at an example. Suppose that a chief information officer’s (CIO’s) main objective is to deploy a system that supports the 802.11r standard, which will help wireless VoIP devices in moving vehicles. However, the 802.11r standard has not been formally ratified. The wireless vendor’s products do support 802.11r as it is currently defined. The administrators have tested the product and do not see any security or compatibility issues; however, they are concerned that the standard is not yet final. The best way to proceed would be to purchase the equipment now, as long as its firmware will be upgradable to the final 802.11r standard.

Interoperability Issues

When integrating solutions into a secure enterprise architecture, security practitioners must ensure that they understand all the interoperability issues that can occur with legacy systems/current systems, applications, and in-house versus commercial versus commercial customized applications.

Legacy Systems/Current Systems

Legacy systems are old technologies, computers, or applications that are considered outdated but provide a critical function in the enterprise. Often the vendor no longer supports the legacy systems, meaning that no future updates to the technology, computer, or application will be provided. It is always best to replace these systems as soon as possible because of the security issues they introduce. However, sometimes these systems must be retained because of the critical function they provide.

Some guidelines when retaining legacy systems include:

- If possible, implement the legacy system in a protected network or demilitarized zone (DMZ).
- Limit physical access to the legacy system to administrators.
- If possible, deploy the legacy application on a virtual computer.
- Employ access control lists (ACLs) to protect the data on the system.
- Deploy the highest-level authentication and encryption mechanisms possible.

Let’s look at an example. Suppose an organization has a legacy customer relationship application that it needs to retain. The application requires the Windows 2000 operating system (OS), and the vendor no longer supports the application. The organization could deploy a Windows 2000 virtual machine (VM) and move the application to that VM. Users needing access to the application could use Remote Desktop to access the VM and the application.

Let’s look at a more complex example. Say that an administrator replaces servers whenever budget money becomes available. Over the past several years, the
company uses 20 servers and 50 desktops from five different vendors. The management challenges and risks associated with this style of technology life cycle management include increased mean time to failure rate of legacy servers, OS variances, patch availability, and the ability to restore dissimilar hardware.

Application Requirements

Any application installed may require certain hardware, software, or other criteria that the organization does not use. However, with recent advances in virtual technology, the organization can implement a virtual machine that fulfills the criteria for the application through virtualization. For example, an application may require a certain screen resolution or graphics driver that is not available on any physical computers in the enterprise. In this case, the organization could deploy a virtual machine that includes the appropriate screen resolution or driver so that the application can be successfully deployed.

Keep in mind that some applications may require older versions of operating systems that are not available. In recent versions of Windows, you can choose to deploy an application in compatibility mode by using the Compatibility tab of the application’s executable file, as shown in Figure 16-1.
In-House Developed Versus Commercial Versus Commercial Customized Applications

Applications can be developed in-house or purchased commercially. Applications that are developed in-house can be completely customized to the organization, provided that developers have the necessary skills, budget, and time. Commercial applications may provide customization options to the organization. However, usually the customization is limited.

Organizations should fully research their options when a new application is needed. Once an organization has documented its needs, it can compare them to all the commercially available applications to see if any of them will work. It is usually more economical to purchase a commercial solution than to develop an in-house solution. However, each organization needs to fully assess the commercial application costs versus in-house development costs.

Commercial software is well known and widely available and is commonly referred to as commercial off-the-shelf (COTS) software. Information concerning vulnerabilities and viable attack patterns is typically shared within the IT community. This means that using commercial software can introduce new security risks in the enterprise. Also, it is difficult to verify the security of commercial software code because the source is not available to customers in most cases.

NOTE For more information regarding application issues and controls, refer to Chapter 5. For more information on the systems development life cycle, refer to Chapter 15.

Technical Deployment Models

To integrate hosts, storage solutions, networks, and applications into a secure enterprise, an organization may use various technical deployment models, including outsourcing, insourcing, managed services, and partnerships. The following sections discuss cloud and virtualization considerations and hosting options, virtual machine vulnerabilities, secure use of on-demand/elastic cloud computing, data remnants, data aggregation, and data isolation.

NOTE For more information on the risks of the different business models, refer to Chapter 6, “Business Influences and Associated Security Risks.”
Cloud and Virtualization Considerations and Hosting Options

Cloud computing allows enterprise assets to be deployed without the end user knowing where the physical assets are located or how they are configured. Virtualization involves creating a virtual device on a physical resource; physical resources can hold more than one virtual device. For example, you can deploy multiple virtual computers on a Windows computer. But keep in mind that each virtual machine will consume some of the resources of the host machine, and the configuration of the virtual machine cannot exceed the resources of the host machine.

For the CASP exam, you must understand public, private, hybrid, community, multi-tenancy, and single-tenancy cloud options.

NOTE For more information regarding virtualization issues, refer to Chapter 4, “Security Controls for Hosts.” For more information regarding cloud issues, refer to Chapter 6.

Public Cloud

A public cloud is the standard cloud computing model, where a service provider makes resources available to the public over the Internet. Public cloud services may be free or may be offered on a pay-per-use model. An organization needs to have a business or technical liaison responsible for managing the vendor relationship but does not necessarily need a specialist in cloud deployment. Vendors of public cloud solutions include Amazon, IBM, Google, and Microsoft. In a public cloud model, subscribers can add and remove resources as needed, based on their subscription.

Private Cloud

A private cloud is a cloud computing model where a private organization implements a cloud in its internal enterprise, and that cloud is used by the organization’s employees and partners. Private cloud services require an organization to employ a specialist in cloud deployment to manage the private cloud.

Hybrid Cloud

A hybrid cloud is a cloud computing model where an organization provides and manages some resources in-house and has others provided externally via a public cloud. This model requires a relationship with the service provider as well as an in-house cloud deployment specialist. Rules need to be defined to ensure that a hybrid
cloud is deployed properly. Confidential and private information should be limited to the private cloud.

Community Cloud

A community cloud is a cloud computing model where the cloud infrastructure is shared among several organizations from a specific group with common computing needs. In this model, agreements should explicitly define the security controls that will be in place to protect the data of each organization involved in the community cloud and how the cloud will be administered and managed.

Multi-Tenancy Model

A multi-tenancy model is a cloud computing model where multiple organizations share the resources. This model allows the service providers to manage the resource utilization more efficiently. In this model, organizations should ensure that their data is protected from access by other organizations or unauthorized users. In addition, organizations should ensure that the service provider will have enough resources for the future needs of the organization. If multi-tenancy models are not properly managed, one organization can consume more than its share of resources, to the detriment of the other organizations involved in the tenancy.

Single-Tenancy Model

A single-tenancy model is a cloud computing model where a single tenant uses a resource. This model ensures that the tenant organization’s data is protected from other organizations. However, this model is more expensive than the multi-tenancy model.

Vulnerabilities Associated with a Single Physical Server Hosting Multiple Companies’ Virtual Machines

In some virtualization deployments, a single physical server hosts multiple organizations’ VMs. All of the VMs hosted on a single physical computer must share the resources of that physical server. If the physical server crashes or is compromised, all of the organizations that have VMs on that physical server are affected. User access to the VMs should be properly configured, managed, and audited. Appropriate security controls, including antivirus, antimalware, access control lists (ACLs), and auditing, must be implemented on each of the VMs to ensure that each one is properly protected. Other risks to consider include physical server resource depletion, network resource performance, and traffic filtering between virtual machines.
Driven mainly by cost, many companies outsource to cloud providers computing jobs that require a large amount of processor cycles for a short duration. This situation allows a company to avoid a large investment in computing resources that will be used for only a short time. Assuming that the provisioned resources are dedicated to a single company, the main vulnerability associated with on-demand provisioning is traces of proprietary data that can remain on the virtual machine and may be exploited.

Let’s look at an example. Say that a security architect is seeking to outsource company server resources to a commercial cloud service provider. The provider under consideration has a reputation for poorly controlling physical access to data centers and has been the victim of social engineering attacks. The service provider regularly assigns VMs from multiple clients to the same physical resource. When conducting the final risk assessment, the security architect should take into consideration the likelihood that a malicious user will obtain proprietary information by gaining local access to the hypervisor platform.

Vulnerabilities Associated with a Single Platform Hosting Multiple Companies’ Virtual Machines

In some virtualization deployments, a single platform hosts multiple organizations’ VMs. If all of the servers that host VMs use the same platform, attackers will find it much easier to attack the other host servers once the platform is discovered. For example, if all physical servers use VMware to host VMs, any identified vulnerabilities for that platform could be used on all host computers. Other risks to consider include misconfigured platforms, separation of duties, and application of security policy to network interfaces.

If an administrator wants to virtualize the company’s web servers, application servers, and database servers, the following should be done to secure the virtual host machines: only access hosts through a secure management interface and restrict physical and network access to the host console.

Secure Use of On-demand/Elastic Cloud Computing

On-demand, or elastic, cloud computing allows administrators to increase or decrease the resources utilized based on organizational needs. As demands increase, the costs increase. Therefore, it is important that resource allocation be closely monitored and managed to ensure that the organization is not paying for more resources than needed. Administrators should always use secure tools (such as Secure Shell) and encryption to connect to the host when allocating or deallocating resources.
Data Remnants

Data remnants are data that is left behind on a computer or another resource when that resource is no longer used. The best way to protect this data is to employ some sort of data encryption. If data is encrypted, it cannot be recovered without the original encryption key. If resources, especially hard drives, are reused frequently, an unauthorized user can access data remnants.

Administrators must understand the kind of data that is stored on physical drives. This helps them determine whether data remnants should be a concern. If the data stored on a drive is not private or confidential, the organization may not be concerned about data remnants. However, if the data stored on the drive is private or confidential, the organization may want to implement asset reuse and disposal policies.

NOTE For more information on asset reuse and disposal, refer to Chapter 15.

Data Aggregation

Data aggregation allows data from multiple resources to be queried and compiled together into a summary report. The account used to access the data needs to have appropriate permissions on all of the domains and servers involved. In most cases, these types of deployments will incorporate a centralized data warehousing and mining solution on a dedicated server.

Data Isolation

Data isolation in databases prevents data from being corrupted by two concurrent operations. Data isolation is used in cloud computing to ensure that tenant data in a multi-tenant solution is isolated from other tenants’ data, using a tenant ID in the data labels. Trusted login services are usually used as well. In both of these deployments, data isolation should be monitored to ensure that data is not corrupted. In most cases, some sort of transaction rollback should be employed to ensure that proper recovery can be made.

Resource Provisioning and Deprovisioning

One of the benefits of many cloud deployments is the ability to provision and deprovision resources as needed. This includes provisioning and deprovisioning users, servers, virtual devices, and applications. Depending on the deployment model used, your organization may have an internal administrator that handles these tasks, the
cloud provider may handle these tasks, or you may have some hybrid solution where these tasks are split between the internal administrator and cloud provider personnel. Remember that any solution where cloud provider personnel must provide provisioning and deprovisioning may not be ideal because cloud provider personnel may not be immediately available to perform any tasks that you need.

Users

When provisioning (or creating) user accounts, it is always best to use an account template. This ensures that all of the appropriate password policies, user permissions, and other account settings are applied to the newly created account.

When deprovisioning a user account, you should consider first disabling the account. Once an account is deleted, it may be impossible to access files, folders, and other resources that are owned by that user account. If the account is disabled instead of deleted, the administrator can reenable the account temporarily to access the resources owned by that account.

An organization should adopt a formal procedure for requesting the creation, disablement, or deletion of user accounts. In addition, administrators should monitor account usage to ensure that accounts are active.

Servers

Provisioning and deprovisioning servers should be based on organizational need and performance statistics. To determine when a new server should be provisioned, administrators must monitor the current usage of the server resources. Once a predefined threshold has been reached, procedures should be put in place to ensure that new server resources are provisioned. When those resources are no longer needed, procedures should also be in place to deprovision the servers. Once again, monitoring is key.

Virtual Devices

Virtual devices consume resources of the host machine. For example, the memory on a physical machine is shared among all the virtual devices that are deployed on that physical machine. Administrators should provision new virtual devices when organizational need demands. However, it is just as important that virtual devices be deprovisioned when they are no longer needed to free up the resources for other virtual devices.
Applications

Organizations often need a variety of applications. It is important to maintain the licenses for any commercial applications that are used. When an organization no longer needs applications, administrators must be notified to ensure that licenses are not renewed or that they are renewed at a lower level if usage has simply decreased.

Securing Virtual Environments, Services, Applications, Appliances, and Equipment

When an organization deploys virtual environments, administrators and security practitioners must ensure that the virtual environments are secured in the same manner as any physical deployments of that type. For example, a virtual Windows machine needs to have the same security controls as the host server, including anti-virus/antimalware software, ACLs, operating system updates, and so on. This also applies to services, applications, appliances, and equipment. You should ensure that all of the security controls are deployed as spelled out in the organization’s security policies.

Design Considerations During Mergers, Acquisitions, and Demergers/Divestitures

When organizations merge, are acquired, or split, the enterprise design must be considered. In the case of mergers or acquisitions, each separate organization has its own resources, infrastructure, and model. As a security practitioner, it is important that you ensure that two organizations’ structures are analyzed thoroughly before deciding how to merge them. For demergers, you probably have to help determine how to best divide the resources. The security of data should always be a top concern.

NOTE For more on the risks of these deployments, refer to Chapter 6.

Network Secure Segmentation and Delegation

An organization may need to segment its network to improve network performance, to protect certain traffic, or for a number of other reasons. Segmenting the enterprise network is usually achieved through the use of routers, switches, and firewalls. A network administrator may decide to implement VLANs using switches or deploy a demilitarized zone (DMZ) using firewalls. No matter how you choose to segment the network, you should ensure that the interfaces that connect the segments are as secure as possible. This may mean closing ports, implementing MAC filtering,
using other security controls. In a virtualized environment, you can implement separate physical trust zones. When the segments or zones are created, you can delegate separate administrators who are responsible for managing the different segments or zones.

Logical and Physical Deployment Diagrams of Relevant Devices

For the CASP exam, security practitioners must understand two main types of enterprise deployment diagrams: logical deployment diagrams and physical deployment diagrams. A logical deployment diagram shows the architecture, including the domain architecture, with the existing domain hierarchy, names, and addressing scheme; server roles; and trust relationships. A physical deployment diagram shows the details of physical communication links, such as cable length, grade, and wiring paths; servers, with computer name, IP address (if static), server role, and domain membership; device location, such as printer, hub, switch, modem, router, or bridge, as well as proxy location; communication links and the available bandwidth between sites; and the number of users, including mobile users, at each site. A logical diagram usually contains less information than a physical diagram. While you can often create a logical diagram from a physical diagram, it is nearly impossible to create a physical diagram from a logical one.

An example of a logical network diagram is shown in Figure 16-2.

As you can see, the logical diagram shows only a few of the servers in the network, the services they provide, their IP addresses, and their DNS names. The relationships between the different servers are shown by the arrows between them.
An example of a physical network diagram is shown in Figure 16-3.

A physical network diagram gives much more information than a logical one, including the cabling used, the devices on the network, the pertinent information for each server, and other connection information.
Secure Infrastructure Design

As part of the CASP exam, security practitioners must be able to analyze a scenario and decide on the best placement for devices, servers, and applications. To better understand this, it is necessary to understand the different network designs that can be used. Network designs may include demilitarized zones (DMZs), VLANs, virtual private networks (VPNs), and wireless networks. This section shows examples of how these areas look. It also discusses situations in which you may need to decide where to deploy certain devices.

DMZs

A DMZ contains servers that must be accessed by the general public or partners over an Internet connection. DMZs can also be referred to as screened subnets. Placing servers on a DMZ protects the internal network from the traffic that the servers on the DMZ generate. Several examples of networks with DMZs are shown in Figure 16-4.

Key Topic

![DMZ Examples](Image)

In DMZ deployments, you can configure the firewalls to allow or deny certain traffic based on a variety of settings, including IP address, MAC address, port number, or protocol. Often web servers and external-facing DNS servers are deployed on a
DMZ, with database servers and internal DNS servers being deployed on the internal network. If this is the case, then it may be necessary to configure the appropriate rules on the firewall to allow the web server to communicate with the database server and allow the external-facing DNS server to communicate with the internal DNS servers. Remember that you can also configure access rules on routers. It is important that you deploy access rules on the appropriate devices. For example, if you deny certain types of traffic on the Internet-facing router, all of that type of traffic will be unable to leave or enter the DMZ or internal network. Always analyze where the rules should be applied before creating them.

VLANs

A VLAN is a virtual network that is created using a switch. All computers and devices that are connected to a switch can be divided into separate VLANs, based on organizational needs. An example of a network with VLANs is shown in Figure 16-5.

![VLAN Example](image)

In this type of deployment, each switch can have several VLANs. A single VLAN can exist on a single switch or can span multiple switches. Configuring VLANs helps manage the traffic on the switch. If you have a legacy system that is not scheduled to be decommissioned for two years and requires the use of the standard Telnet protocol, moving the system to a secure VLAN would provide the security needed until the system can be decommissioned.
VPNs

A VPN allows external devices to access an internal network by creating a tunnel over the Internet. Traffic that passes through the VPN tunnel is encrypted and protected. An example of a network with a VPN is shown in Figure 16-6.

Figure 16-6 VPN Example

In a VPN deployment, only computers that have the VPN client and are able to authenticate will be able to connect to the internal resources through the VPN concentrator.

Wireless Networks

A wireless network allows devices to connect to the internal network through a wireless access point. An example of a network that includes a wireless access point is shown in Figure 16-7.
In the deployment shown in Figure 16-7, some devices connect to the wired network, while others connect to the wireless network. The wireless network can be protected using a variety of mechanisms, including disabling the service set identifier (SSID), enabling WPA2, and implementing MAC filtering. For some organizations, it may be necessary to implement more than one wireless access point. If this occurs and all the access points use the same 802.11 implementation, then the access points will need to be configured to use different channels within that implementation. In addition, it may be necessary to adjust the signal strength of the access points to limit the coverage area.

Finally, when deciding where to place certain devices, you need to consider whether a device needs to be stored in a secured location. For example, routers, firewalls, switches, server racks, and servers are usually stored in rooms or data centers that have extra physical security controls in addition to the regular physical building security. Always consider the physical security needs when deploying any new devices.
Storage Integration (Security Considerations)

When integrating storage solutions into an enterprise, security practitioners should be involved in the design and deployment to ensure that security considerations are considered.

The following are some of the security considerations for storage integration that you should consider:

- Limit physical access to the storage solution.
- Create a private network to manage the storage solution.
- Implement ACLs for all data, paths, subnets, and networks.
- Implement ACLs at the port level, if possible.
- Implement multi-factor authentication.

Security practitioners should ensure that an organization adopts appropriate security policies for storage solutions to ensure that storage administrators prioritize the security of the storage solutions.

Enterprise Application Integration Enablers

Enterprise application integration enablers ensure that applications and services in an enterprise are able to communicate as needed. For the CASP exam, the primary concerns are understanding which enabler is needed in a particular situation or scenario and ensuring that the solution is deployed in the most secure manner possible. The solutions that you must understand include customer relationship management (CRM); enterprise resource planning (ERP); governance, risk, and compliance (GRC); enterprise service bus (ESB); service-oriented architecture (SOA); Directory Services; Domain Name System (DNS); configuration management database (CMDB); and content management systems (CMSs).

CRM

Customer relationship management (CRM) identifies customers and stores all customer-related data, particularly contact information and data on any direct contacts with customers. The security of CRM is vital to an organization. In most cases, access to the CRM is limited to sales and marketing personnel and management. If remote access to CRM is required, you should deploy a VPN or similar solution to ensure that the CRM data is protected.
ERP

Enterprise resource planning (ERP) collects, stores, manages, and interprets data from product planning, product cost, manufacturing or service delivery, marketing/sales, inventory management, shipping, payment, and any other business processes. ERP is accessed by personnel for reporting purposes. ERP should be deployed on a secured internal network or DMZ. When deploying ERP, you might face objections because some departments may not want to share their process information with other departments.

GRC

Governance, risk, and compliance (GRC) coordinates information and activity across these three areas to be more efficient, to enable information sharing and reporting, and to avoid waste. This integration improves the overall security posture of any organization. However, the information stored in GRC is tied closely to the organization’s security. Access to this system should be tightly controlled.

ESB

Enterprise service bus (ESB) designs and implements communication between mutually interacting software applications in a service-oriented architecture (SOA). It allows SOAP, Java, .NET, and other applications to communicate. An ESB solution is usually deployed on a DMZ to allow communication with business partners.

ESB is the most suitable solution for providing event-driven and standards-based secure software architecture.

SOA

Service-oriented architecture (SOA) uses software pieces to provide application functionality as services to other applications. A service is a single unit of functionality. Services are combined to provide the entire functionality needed. This architecture often intersects with web services.

Let’s look at an SOA scenario. Suppose a database team suggests deploying an SOA-based system across the enterprise. The chief information officer (CIO) decides to consult the security manager about the risk implications for adopting this architecture. The security manager should present to the CIO two concerns for the SOA system: Users and services are distributed, often over the Internet, and SOA abstracts legacy systems such as web services, which are often exposed to outside threats.
Directory Services

Directory Services stores, organizes, and provides access to information in a computer operating system’s directory. With Directory Services, users can access a resource by using the resource’s name instead of its IP or MAC address. Most enterprises implement an internal Directory Services server that handles any internal requests. This internal server communicates with a root server on a public network or with an externally facing server that is protected by a firewall or other security device to obtain information on any resources that are not on the local enterprise network. Active Directory, DNS, and LDAP are examples of directory services.

DNS

Domain Name System (DNS) provides a hierarchical naming system for computers, services, and any resources connected to the Internet or a private network. You should enable Domain Name System Security Extensions (DNSSEC) to ensure that a DNS server is authenticated before the transfer of DNS information begins between the DNS server and client. Transaction Signature (TSIG) is a cryptographic mechanism used with DNSSEC that allows a DNS server to automatically update client resource records if their IP addresses or hostnames change. The TSIG record is used to validate a DNS client.

As a security measure, you can configure internal DNS servers to communicate only with root servers. When you configure internal DNS servers to communicate only with root servers, the internal DNS servers are prevented from communicating with any other external DNS servers.

The Start of Authority (SOA) contains the information regarding a DNS zone’s authoritative server. A DNS record’s Time to Live (TTL) determines how long a DNS record will live before it needs to be refreshed. When a record’s TTL expires, the record is removed from the DNS cache. Poisoning the DNS cache involves adding false records to the DNS zone. If you use a longer TTL, the resource record is read less frequently and therefore is less likely to be poisoned.

Let’s look at a security issue that involves DNS. An IT administrator installs new DNS name servers that host the company mail exchanger (MX) records and resolve the web server’s public address. To secure the zone transfer between the DNS servers, the administrator uses only server ACLs. However, any secondary DNS servers would still be susceptible to IP spoofing attacks.

Another scenario could occur when a security team determines that someone from outside the organization has obtained sensitive information about the internal organization by querying the company’s external DNS server. The security manager should address the problem by implementing a split DNS server, allowing the external DNS server to contain only information about domains that the outside world...
should be aware and the internal DNS server to maintain authoritative records for internal systems.

CMDB
A configuration management database (CMDB) keeps track of the state of assets, such as products, systems, software, facilities, and people, as they exist at specific points in time, as well as the relationships between such assets. The IT department typically uses CMDBs as data warehouses.

CMS
A content management system (CMS) publishes, edits, modifies, organizes, deletes, and maintains content from a central interface. This central interface allows users to quickly locate content. Because edits occur from this central location, it is easy for users to view the latest version of the content. Microsoft SharePoint is an example of a CMS.

Exam Preparation Tasks
You have a couple of choices for exam preparation: the exercises here and the exam simulation questions on the CD-ROM.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topics icon in the outer margin of the page. Table 16-1 lists these key topics and the page number on which each is found.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paragraph/numbered list</td>
<td>Secure data flow steps</td>
<td>534</td>
</tr>
<tr>
<td>Bulleted list</td>
<td>Legacy system guidelines</td>
<td>537</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Logical versus physical deployment models</td>
<td>546</td>
</tr>
<tr>
<td>Figure 16-4</td>
<td>DMZ example</td>
<td>548</td>
</tr>
<tr>
<td>Figure 16-5</td>
<td>VLAN example</td>
<td>549</td>
</tr>
<tr>
<td>Figure 16-6</td>
<td>VPN example</td>
<td>550</td>
</tr>
<tr>
<td>Figure 16-7</td>
<td>Wireless example</td>
<td>551</td>
</tr>
<tr>
<td>Bulleted list</td>
<td>Storage integration security considerations</td>
<td>552</td>
</tr>
</tbody>
</table>
Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

- open standards
- de facto standards
- de jure standards
- legacy system
- public cloud
- private cloud
- hybrid cloud
- community cloud
- multi-tenancy cloud model
- single-tenancy cloud model
- data remnants
- data aggregation
- data isolation
- logical deployment diagram
- physical deployment diagram
- customer relationship management (CRM)
- enterprise resource planning (ERP)
- governance, risk, and compliance (GRC)
- enterprise service bus (ESB)
- service-oriented architecture (SOA)
- directory services
- Domain Name System (DNS)
- configuration management database (CMDB)
- content management system (CMS)

Review Questions

1. Several business changes have occurred in your company over the past six months. You must analyze your enterprise’s data to ensure that data flows are protected. Which of the following guidelines should you follow? (Choose all that apply.)
 a. Determine which applications and services access the data.
 b. Determine where the data is stored.
 c. Share encryption keys with all users.
 d. Determine how the data is transmitted.

2. During a recent security analysis, you determine that users do not use authentication when accessing some private data. What should you do first?
 a. Encrypt the data.
 b. Configure the appropriate ACL for the data.
 c. Determine whether authentication can be used.
 d. Implement complex user passwords.

3. Your organization must comply with several industry and governmental standards to protect private and confidential information. You must analyze which standards to implement. Which standards should you consider?
 a. open standards, de facto standards, and de jure standards
 b. open standards only
 c. de facto standards only
 d. de jure standards only
4. Your organization has recently experienced issues with data storage. The servers you currently use do not provide adequate storage. After researching the issues and the options available, you decide that data storage needs for your organization will grow exponentially over the new couple years. However, within three years, data storage needs will return to the current demand. Management wants to implement a solution that will provide for the current and future needs without investing in hardware that will no longer be needed in the future. Which recommendation should you make?
 a. Deploy virtual servers on the existing machines.
 b. Contract with a public cloud service provider.
 c. Deploy a private cloud service.
 d. Deploy a community cloud service.

5. Management expresses concerns about using multi-tenant public cloud solutions to store organizational data. You explain that tenant data in a multi-tenant solution is quarantined from other tenants’ data using a tenant ID in the data labels. What is this condition referred to?
 a. data remnants
 b. data aggregation
 c. data purging
 d. data isolation

6. You have been hired as a security practitioner for an organization. You ask the network administrator for any network diagrams that are available. Which network diagram would give you the most information?
 a. logical network diagram
 b. wireless network diagram
 c. physical network diagram
 d. DMZ diagram

7. Your organization has recently partnered with another organization. The partner organization needs access to certain resources. Management wants you to create a perimeter network that contains only the resources that the partner organization needs to access. What should you do?
 a. Deploy a DMZ.
 b. Deploy a VLAN.
 c. Deploy a wireless network.
 d. Deploy a VPN.
8. Your organization has recently started allowing sales people to access internal resources remotely. Management wants you to configure the appropriate controls to provide maximum security for these connections. What should you do?
 a. Deploy a DMZ.
 b. Deploy a VLAN.
 c. Deploy a wireless network.
 d. Deploy a VPN.

9. Recently, sales people within your organization are having trouble managing customer-related data. Management is concerned that sales figures are being negatively affected as a result of this mismanagement. You have been asked to provide a suggestion to fix this problem. What should you recommend?
 a. Deploy an ERP solution.
 b. Deploy a CRM solution.
 c. Deploy a GRC solution.
 d. Deploy a CMS solution.

10. As your enterprise has grown, it has become increasingly hard to access and manage resources. Users often have trouble locating printers, servers, and other resources. You have been asked to deploy a solution that will allow easy access to internal resources. Which solution should you deploy?
 a. Directory Services
 b. CMDB
 c. ESB
 d. SOA
This page intentionally left blank
Index

Numerics

3-D Secure, 39
3DES (Triple DES), 41
modes, 61
6 to 4, 112
802.1x, 118

A

accept strategy for risk analysis, 312
acceptance testing, 522
access control models, 572-575
access control matrix, 574
ACLs, 575
administrative controls, 294
compensative controls, 292
content-dependent access control, 574
corrective controls, 292
DAC, 572-573
defaulting to no access, 575
detective controls, 292
deterrent controls, 293
directive controls, 293
logical controls, 295
MAC, 573
physical controls, 296
policies, 575
preventive controls, 293
RBAC, 573-574
recovery controls, 293
rule-based access control, 574
access points, 499
account lockout, 565-566
account management, 562-563
ACLs (access control lists), 204, 575
configuring, 158-159
acquisition phase (SDLC), 518
acquisitions
design considerations during, 545
security issues, 271
active fingerprinting, 452-453
active vulnerability scanners, 134-135
ActiveX, 257
AD (Active Directory), 586-587
identity propagation, 580
ad hoc mode (WLANs), 499
Adams, Carlisle, 43
adherence to standards, 536
Adleman, Leonard, 45-46
administrative controls, 294
Adobe Flash, 257
advanced trust systems, 585-587
 AD, 586-587
 LDAP, 586
 RADIUS, 585-586
advancements in technology, communicating, 395-396
advising staff and senior management, 469
AES (Advanced Encryption Standard), 42
aggregate CIA score, determining, 298-299
Agile development, 253, 523
agreements, 408
 BPA, 346-347
 NDA, 346
 OLA, 345
 SLA, 345
AH (Authentication Header), 40
AIK (attribution identity key), 208
AJAX (Asynchronous JavaScript and XML), 258
ALE (annualized loss expectancy), calculating, 304-305
algebraic attacks, 64
algorithms
 asymmetric algorithms
 Diffie-Hellman, 45
 ECC, 46
 El Gamal, 46
 Knapsack, 46
 private keys, 44
 public keys, 44
 RSA, 45-46
 weaknesses of, 61
 Zero Knowledge Proof, 47
 implementing, 66
 Rijndael algorithm, 42
symmetric algorithms, 40-43
 3DES, 41
 AES, 42
 Blowfish, 42
 CAST, 43
 DES, 41
 IDEA, 42
 RC algorithms, 43
 session keys, 41
 Skipjack, 42
 Twofish, 43
 weaknesses of, 61
analyzing
 data flows, 534-535
metrics, 419-420
security solutions
 availability, 424
 capability, 423
 latency, 423
 maintainability, 424
 performance, 422
 recoverability, 424-425
 scalability, 423
trend data, 420-421
anomaly-based IDS, 124-125
anticipating
 cyber defense needs, 420-421
 risk changes, 332
antimalware, 191-192
antispam services for the cloud, 213
antispyware, 192
antivirus software, 192
cloud antivirus, 213

applications. See also software
client-based application virtualization, 222
frameworks, 245-247
standard libraries, 245
industry-accepted development practices, 245-247
BSI initiative, 246
ISO/IEC 27000, 246
OWASP, 246
WASC, 245-246
WS-Security, 246-247
interoperability requirements, 538-539
sandboxing, 244-245

security issues
buffer overflow attacks, 239-241
click-jacking, 232-233
CSRF, 232
fuzzing, 238-239
geotagging, 243
improper error and exception handling, 237
improper storage of sensitive data, 237-238
input validation, 235
insecure direct object references, 231
integer overflows, 242
memory leaks, 242
privilege escalation, 237
race conditions, 242
session hijacking attacks, 233-235
SQL injection, 235-236
time of check/time of use attacks, 242-243
XSS, 231-232

server-based application virtualization, 222
session management, 233-235
software development methods
Agile model, 253
build and fix, 248
Cleanroom model, 254
incremental model, 250
JAD, 254
prototyping, 250
RAD model, 252
spiral model, 251
V-shaped model, 249
Waterfall method, 248-249

web applications
browser extensions, 256-259
client-side processing, 255-260
cookies, storing, 239
JavaScript, 260
JSON, 256
REST, 256
security issues, 230
server-side processing, 255-260
state management, 260

whitelisting, 199

APTs (advanced persistent threats), 398-406
CERT, 403-404
emergent threats, 399-400
intelligence, 406
sources of, 406
threat actors, 405-406
zero-day attacks, mitigating, 398-399

ARAT (active reader/active tag), 527
archive bits, 369
ARO (annualized rate of occurrence), 306

ARP poisoning, 138-139

ARPT (active reader/passive tag), 527

assessment methods. See also code review, 454-455
fingerprinting, 452-454
 active fingerprinting, 452-453
 passive fingerprinting, 453-454
malware sandboxing, 446-447
memory dumping, 447-448
penetration testing, 448-450
 black box testing, 451
 gray box testing, 451
 selecting method, 452
 strategies, 450
 white box testing, 451
reconnaissance, 452
Retina, 449
runtime debugging, 447-448
social engineering attacks, 455-456
vulnerability assessment, 445-446

assessment tools
exploit kits, 439-440
fuzzers, 438
HTTP interceptors, 439
network enumerators, 435-436
passive reconnaissance tools, 440-444
 routing tables, 443-444
 social media, 441
 Whois, 441-442
password crackers, 436-438
port scanners, 432-433
protocol analyzers, 434-435
vulnerability scanners, 434

asset disposal, 514-515

asset management
device-tracking technologies, 526
geolocation, 526
geotagging, 527
object tracking, 526-527
RFID, 527-528

asymmetric algorithms, 44-47
 Diffie-Hellman, 45
 ECC, 46
 El Gamal, 46
 Knapsack, 46
 private keys, 44
 public keys, 44
 RSA, 45-46
 weaknesses of, 61
 Zero Knowledge Proof, 47

attacks
 algebraic attacks, 64
 analytic attacks, 65
 birthday attacks, 64
 brute-force attacks, 63
 buffer overflow attacks, 239-241
 chosen ciphertext attacks, 62
 chosen plaintext attacks, 62
 cipher-only attacks, 62
 click-jacking, 232-233
 client-side attacks, 396-397
 CSRF, 232
dictionary attacks, 65
factoring attacks, 65
fault injection attacks, 238-239
frequency analysis, 64
known plaintext attacks, 62
man-in-the-middle attacks, 66
implementations of session hijacking attacks, 233-235
side-channel attacks, 63
social engineering attacks, 63, 455-456
SQL injection, 235-236
statistical attacks, 65
VLAN hopping attacks, 140
VM escape attacks, 219
wireless attacks, 505
XSS attacks, 231-232
zero-day attacks, mitigating, 398-399

attribution, 579-580
ID-FF, 582
SAML, 581-582

audit trails, monitoring, 196-198

authentication, 562-572
802.1x, 118
access control models, defaulting to no access, 575
certificate-based authentication, 570-571
characteristic factor authentication, 117, 566-570
behavioral characteristics, 568
physiological characteristics, 567-568
dual-factor authentication, 570
EAP, 114-115
identity and account management, 562-563
knowledge factor authentication, 116
MAC, 33
multi-factor authentication, 570
ownership factor authentication, 117
RADIUS, 118-120, 585-586
SSO, 571-572
TACACS+, 118-120

authorization, 572-578
access control models, 572
access control policies, 575
ACLs, 575
content-dependent access control, 574
context-dependent access control, 574
DAC, 572-573
MAC, 573
RBAC, 573-574
rule-based access control, 574
OAUTH, 575-576
SPML, 578
XACML, 577-578

automation systems, building, 178
A/V (audio/visual) systems, 181-182
availability, 160-166, 424
avoid strategy for risk analysis, 310-311

B

backups, 369-372
archive bits, 369
daily backups, 370
differential backups, 369
electronic backups, 372
full backups, 369
incremental backups, 370
rotation schemes, 370-371
transaction log backups, 370
Base II, 339
baselining, 199, 417-418
bastion hosts, 144
bcrypt, key stretching, 32
behavioral authentication systems, 568
benchmarks, creating, 417-418
best practices
industry-accepted development practices, 245-247
BSI initiative, 246
ISO/IEC 27000, 246
OWASP, 246
WASC, 245-246
WS-Security, 246-247
researching, 392-393
for SANs, 84
BIA (business impact analysis), 341-344
biometric scanning devices, 567-570
birthday attacks, 64
black box testing, 451
Black Hat convention, 405
black hats, 406
blacklisting
applications, 199
character blacklisting, 235
blind tests, 450
block ciphers, 57
Blowfish, 42
IDEA, 42
Skipjack, 42
block-level encryption, 96-97
Blowfish, 42
Bluesnarfing, 207
Bluetooth, 502
restricting, 207
boot loader protections
IMA, 218
measured launch, 218
Secure Boot, 217-218
UEFI, 218-219
bottom-up policy development, 332
boundary errors, 241
BPA (business partnership agreement), 346-347
bridge model, 581
browser extensions, 256-259
ActiveX, 257
AJAX, 258
Flash, 257
HTML5, 257
Java applets, 257
brute-force attacks, 63
BSI (Build Security In) initiative, 246
buffer overflows, 239-241
build and fix software development approach, 248
building automation systems, 178
business continuity planning, 318-320
business tools, security implications of, 400-403
dead-end user cloud storage, 402-403
social media/networking, 401
BYOD ("bring your own device"), 278-279, 495-497
Cain and Abel, 437

calculating
ALE, 304-305
NPV, 308-309
payback, 308
ROIs, 307-309
SLE, 304
TCO, 309-310
CANVAS, 440
capability, analyzing, 423
captured email messages, 486
CAs (certificate authorities), 51
root CAs, 51
CAST, 43
CBC (cipher block chaining) mode, 58-59
CBC-MAC (cipher block chaining MAC), 37
CC (Common Criteria), 190
CDMA (Code Division Multiple Access), 498
CDP (Cisco Discovery Protocol), 443
centralized VDI model, 221
CER (crossover error rate), 569
CERT (Computer Emergency Response Team) secure coding standards, 247
certificate-based authentication, 570-571
certificates
classes of, 55
CRL, 53
issuance to entities, 53-54
OCSP, 53
wildcard certificates, 52-53
X.509, 54-55
certification, advantages of, 625-626
CFAA (Computer Fraud and Abuse Act), 338
CFB (cipher feedback) mode, 59
chain of trust, 50-51
change control policies, 159-160
change management, 516-517
CHAP (Challenge-Handshake Authentication Protocol), 444
characteristic factor authentication, 117, 566-570
behavioral characteristics, 568
physiological characteristics, 567-568
characters, blacklisting/whitelisting, 235
chosen ciphertext attacks, 62
chosen plaintext attacks, 62
chroot, 210
CIA (confidentiality, integrity, and authentication), 30, 287-289
aggregate score, determining, 298-299
confidentiality, 30, 50
incorporating stakeholder input, 291
integrity, 50
chain of trust, 50-51
CIFS (Common Internet File System), 90
cipher-only attacks, 62
ciphers
block ciphers, 57
Blowfish, 42
IDEA, 42
Skipjack, 42
concealment ciphers, 56
stream ciphers, 56-57
classes of digital certificates, 55
Cleanroom development model, 254
click-jacking, 232-233
client-based application virtualization, 222
client-side attacks, identifying, 396-397
client-side processing, 255-260
clipping level, 566
cloud computing, 167-168
collaboration, 490-491
communities, 80
elastic cloud computing, 542
hybrid cloud model, 79, 540
multi-tenancy model, 541
private cloud model, 79, 540
public cloud model, 79, 540
resource provisioning, 543-544
security issues, 270
 antispen services, 213
 antivirus products, 213
 content filtering, 216
 hash matching, 212-213
 sandboxing, 216
 vulnerability scanning, 214-215
services, 80
storage, 79-80
clustering, 165
CMAC (cipher-based MAC), 37
CMDB (configuration management database), 555
CMS (content management system), 555
cobiT (Control Objectives for Information and Related Technology), 316
code review, 454-455
code signing, 36
cognitive passwords, 564
collaborating with teams, 469-470
collecting metrics, 419-420
collisions, 33
combination passwords, 563
command shell, restricting, 202-203
commercial business data classifications, 289-290
commercial software, interoperability with in-house developed software, 539
commissioning an asset, 514
communities, 80
compensative controls, 292
competing standards, 536
complex passwords, 564
CompTIA career pathway, 625-626
Computer Security Act of 1987, 339
concealment ciphers, 56
conducting
 lessons-learned/after action review, 425
 risk analysis, 301-310
 accept strategy, 312
 ALE, calculating, 304-305
 ARO, 306
 avoid strategy, 310-311
 magnitude of impact, 304
 mitigate strategy, 311
 NPV, 308-309
cryptography 671

qualitative risk analysis, 302-303
quantitative risk analysis, 303
SLE, calculating, 304
TCO, calculating, 309-310
transfer strategy, 311
trend analysis, 306

confidentiality, 30, 50
configuration lockdown, 160
configuring
 ACLs, 158-159
dedicated interfaces, 203
confusion, 49
container-based virtualization, 211
containment technologies, 526-527
content filtering, 216
content-dependent access control, 574
dedicated interfaces, 203
dedicated interfaces, 203
context-dependent access control, 574
continuity planning, 318-320
contracts, researching security requirements, 406-408
agreements, 408
RFIs, 408
RFPs, 407
RFQs, 407
control plane, 166
corrective controls, 292
cost/benefit analysis, performing, 419
crackers, 406
crime card transactions, securing, 39
PCI DSS, 339
criminal actions, responding to, 379
CRL (certificate revocation list), 53
CRM (customer relationship management), 552
cross-certification model, 581
cryptanalysis
differential cryptanalysis, 63
linear cryptanalysis, 63-64
CryptoAPI, 49
cryptography, 30, 40-47. See also encryption
 algorithms, implementing, 66
 applications
 S/MIME, 69
 SSH, 69
asymmetric algorithms, 44
 Diffie-Hellman, 45
 ECC, 46
 El Gamal, 46
 Knapsack, 46
 RSA, 45-46
 Zero Knowledge Proof, 47
chain of trust, 50-51
CIA
 confidentiality, 30
code signing, 36
confidentiality, 50
confusion, 49
diffusion, 49
digital signatures, 47-48
DRM, 67
encryption, 30
entropy, 49
GPG, 67-68
hashing, 32-36
 hash value, identifying, 34
 HAVAL, 36
 limitations of, 33
 MAC, 33
 MD2 algorithm, 34-35
 MD4 algorithm, 34-35
 MD5 algorithm, 34-35
 MD6 algorithm, 34-35
 message digests, 34
 one-way hash function, 33
 RIPEMD-160, 36
 SHA, 35-36
 vulnerabilities, 33
hybrid ciphers, 47
integrity, 50
key stretching, 32
MAC, 36
 CBC-MAC, 37
 CMAC, 37
 HMAC, 37
non-repudiation, 50
PFS, 37-38
PKCS, 69
PKI, 50-51
 CAs, 51
 CRL, 53
 issuance of certificates to entities, 53-54
 OCSP, 53
 systems, 55
 users, 54-55
 wildcard certificates, 52-53
 X.509 standard, 50, 54-55
PNRG, 37
symmetric algorithms, 40
 3DES, 41
 AES, 42
 Blowfish, 42
 CAST, 43
 DES, 41
 IDEA, 42
 RC algorithms, 43
 session keys, 41
 Skipjack, 42
 Twofish, 43
 weaknesses of, 61
technique, selecting, 32
transport encryption, 38
watermarking, 67

CSRF (cross-site request forgery), 232
CTR (counter) mode, 60
cyber defense needs, anticipating, 420-421

D

DAC (discretionary access control), 572-573
DAI (dynamic ARP inspection), 138
daily backups, 370
DAM (database activity monitoring), 135-136, 254
data aggregation, 543
data archiving, 82-83
data at rest encryption, 40-47
 asymmetric algorithms, 44
 Diffie-Hellman, 45
 ECC, 46
El Gamal, 46
Knapsack, 46
RSA, 45-46

weaknesses of, 61

Zero Knowledge Proof, 47

symmetric algorithms, 40

3DES, 41
AES, 42
CAST, 43
DES, 41
IDEA, 42
RC algorithms, 43
session keys, 41
Skipjack, 42
Twofish, 43

weaknesses of, 61

data backups. See backups

data breaches, incident response, 374-378

facilitating, 378-381

data clearing, 244

data encryption. See encryption

data flows
analyzing, 534-535
enforcing, 175
SSL inspection, 156

data handling, 373-374

data interfaces, 205-206

data isolation, 543

data ownership, 372-373

data plane, 166

data purging, 244, 515

data remnants, 221, 244, 543

remanence, 515

data warehousing, 80-82

database administrators, security requirements, 463-464

DDPs (dynamic disk pools), 93-94
de facto standards, 536-537
de jure standards, 536
decommissioning an asset, 514
decryption, key escrow, 56
deduplication, 92
defaulting to no access, 575
DEFCON conferences, 405
defense-in-depth principle, 535
degaussing, 244
de-perimeterization, impact of

BYOD, 278-279
cloud computing, 278
outsourcing, 279
telecommuting, 278
deprovisioning resources, 543-544

DES (Digital Encryption Standard), 41

modes, 58-60
desktop sharing, securing, 481-482
detective controls, 292
deterrence, 314
deterrent controls, 293
developing applications

CERT secure coding standards, 247
frameworks, 245-247
industry-accepted development practices, 247

BSI initiative, 246
ISO/IEC 27000, 246
OWASP, 246
WASC, 245-246
software development methods, 247-254
 Agile model, 253, 523
 build and fix, 248
 Cleanroom model, 254
 incremental model, 250
 JAD, 254
 prototyping, 250
 RAD model, 252
 spiral model, 251, 524
 V-shaped model, 249
 Waterfall method, 248-249, 523-524
standard libraries, 245
WS-Security, 246-247
device-tracking technologies, 526
DHCP snooping, 139
diagrams
 logical deployment diagrams, 546
 physical network diagrams, 547
dial-up access, 491-492
dictionary attacks, 65
differential backups, 369
differential cryptanalysis, 63
Diffie-Hellman, 45
diffusion, 49
digital certificates, classes of, 55
digital signatures, 47-48
directive controls, 293
directory services, 554
disk-level encryption, 96
disposal phase (SDLC), 519
diverse industry integration, security concerns
 geography, 273
 policies, 272
regulations, 272-273
rules, 272
divestitures, design considerations during, 545
DLP (data loss prevention) software, 194
DMCA (U.S. Digital Millennium Copyright Act of 1998), 67
DMZs (demilitarized zones), 176, 548-549
DNS (Domain Name System), 554-555
document exchange/reviews, 276
documentation
 BIA, 341-344
 BPA, 346-347
 IA, 344
 ISA, 345
 MOU, 345
 NDA, 346
 NIST SP 800-30, risk management processes, 312-314
 OLA, 345
 RAs, 340-341
 SLA, 345
 SOA, 340-341
double tagging, 140
double-blind tests, 450
downstream liability, 273
DRM (digital rights management), 67
Dropbox, 212-213
DSS (Digital Signature Standard), 48
DSSS (Direct Sequence Spread Spectrum), 498
DSV (dynamic signature verification), 568
DTP (Dynamic Trunking Protocol), 172
Dual Stack, 112
dual-factor authentication, 570
dual-homed firewalls, 145
dual-key cryptography. See asymmetric algorithms
due care, 274
due diligence, 274
dumpster diving, 456
dynamic packet-filtering firewalls, 142
dynamic routing protocols, 174, 443

E

e-discovery, 366-374
 backups, 369-372
daily backups, 370
differential backups, 369
electronic backups, 372
full backups, 369
incremental backups, 370
rotation schemes, 370-371
data ownership, 372-373
data recovery and storage, 368
electronic inventory and asset control, 366-367
legal holds, 374
transaction log backups, 370
EALs (Evaluation Assurance Levels), 190
EAP (Extensible Authentication Protocol), 114-115
EC-Council (International Council of Electronic Commerce Consultants), 403
ECB (electronic code book) mode, 58
ECC (Elliptic Curve Cryptosystem), 46
ECDSA (Elliptical Curve DSA), 48
Economic Espionage Act of 1996, 339
effectiveness of existing security controls, reviewing, 421
EK (endorsement key), 208
El Gamal, 46
elastic cloud computing, 542
Elastic Sandbox, 446-447
electronic backups, 372
electronic inventory and asset control, 366-367
electronic vaulting, 372
email
 antispam services for the cloud, 213
captured messages, 486
disclosure of information, 487
IMAP, 484
securing, 484-487
spam filters, 192-193
spear phishing, 485
whaling, 486
emergency response
 chain of custody, 381
evidence, 381-382
search and seizure, 382-383
emergent threats, 399-400, 525-526
employment policies, 356
encryption, 30
block-level encryption, 96-97
ciphers
 block ciphers, 57
 stream ciphers, 56-57
confusion, 49
data at rest encryption, 40-47
 asymmetric algorithms, 44-47
 symmetric algorithms, 40-43
disk-level encryption, 96
full disk encryption, 208-209
hybrid ciphers, 47
key escrow, 56
port-level encryption, 98
record-level encryption, 98
steganography, 56
transport encryption
 3-D Secure, 39
 HTTP, 39
 HTTPS, 39
 IPsec, 39-40
 SET, 39
 SHTTP, 39
 SSL, 38, 68-69
 TLS, 38, 68-69
end-to-end solution ownership
 asset disposal, 514-515
 change management, 516-517
 commissioning an asset, 514
 maintenance, 513
 object reuse, 515
 operational activities, 512-513
end-user cloud storage
 integrating into your business, 403
 security implications of, 402-403
endpoint security software, 191-198
 antimalware, 191-192
 antispyware, 192
 antivirus software, 192
 DLP software, 194
 host-based firewalls, 194-196
 IDS, 193
 log monitoring, 196-198
 patch management, 193
 spam filters, 192-193
enforcing data flows, 175
enrollment time, 568
enterprise application integration
 enablers, 552-555
 CMDB, 555
 CMS, 555
 CRM, 552
 directory services, 554
 DNS, 554-555
 ERP, 553
 ESB, 553
 GRC, 553
 SOA, 553
enterprise security
 baselining, 417-418
 benchmarks, creating, 417-418
 CASP exam objectives, 6-13
 cost/benefit analysis, performing, 419
 cyber defense needs, anticipating, 420-421
 effectiveness of existing security controls, reviewing, 421
 lessons-learned/after action review, 425
 metric collection and analysis, 419-420
 multiple solutions, testing, 418-419
FATKit 677

prototyping, 418-419
reverse engineering existing solutions, 422
security solutions, analyzing
availability, 424
capability, 423
lateness, 423
maintainability, 424
performance, 422
recoverability, 424-425
scalability, 423
enterprise security architecture frameworks, 315-318
CobIT, 316
NIST SP 800-53, control families, 317
SABSA, 315
enterprise storage
cloud storage, 79-80
data archiving, 82-83
data warehousing, 80-82
DDPs, 93-94
deduplication, 92
encryption
block-level encryption, 96-97
disk-level encryption, 96
port-level encryption, 98
record-level encryption, 98
HBA allocation, 95
LUN masking, 94
multipathing, 90-91
multisite replication, 95-96
NAS, 84-86
offsite replication, 95-96
SANs, 83-84
snapshots, 91-92
virtual storage, 78-79
VSANs, 86
entropy, 49
ERP (enterprise resource planning), 553
ESB (enterprise service bus), 553
ESP (Encapsulating Security Payload), 40
establishing partnerships, security issues, 269
events versus incidents, 353-354
evidence, 381-382
forensic analysis, 383-384
order of volatility, 385-386
exam
preparing for, 628
topics, 628-638
examples of TOS, 191
executive management, security requirements, 465-466
exemptions, 313
exploitation tools, 439-440
external violations, 378-379
extreme scenario planning, 299-301

F

facilitating incident response, 378-381
facilities manager, security requirements, 468
factoring attacks, 65
failover, 165
failsoft, 165
FAR (false acceptance rate), 569
FATKit, 448
fault injection, 238-239
FCoE (Fiber Channel over Ethernet), 88-89
FDMA (Frequency Division Multiple Access), 498
feasibility of cryptographic algorithms, 66
feature extraction, 568
Federal Privacy Act of 1974, 338
federated identity management, 581
 OpenID, 583
 Shibboleth, 583-584
FHSS (Frequency Hopping Spread Spectrum), 498
FIFO (first in, first out) rotation scheme, 370-371
financial staff, security requirements, 466-467
fingerprinting, 452-454
 active fingerprinting, 452-453
 passive fingerprinting, 453-454
FIPS (Federal Information Processing Standard Publication 199), 288
firewalls, 140-143
 architecture, 143-144
 bastion hosts, 144
 dual-homed firewalls, 145
 host-based firewalls, 194-196
 kernel proxy firewalls, 142
 multihomed firewalls, 146
 NGFWs, 133-134
 packet-filtering firewalls, 141
 placement of, 143
 proxy firewalls, 141-142
 screened host firewalls, 147-148
 screened subnets, 148-149
 stateful firewalls, 141
 virtual firewalls, 154-155
 WAFs, 131-132, 255
FireWire, restricting, 207-208
FISMA (Federal Information Security Management Act), 339
forensic analysis, 383-384
 hardware/embedded device analysis, 384
 media analysis, 383
 network analysis, 384
 software analysis, 384
 forensic tasks for incident response team, 354-356
 formal code review, 454
 frameworks, 245-247
 standard libraries, 245
 frequency analysis, 64
 FRR (false rejection rate), 569
 FTP (File Transfer Protocol), 113
 full backups, 369
 full disk encryption, 208-209
 full-knowledge tests, 450
 fuzzing, 238-239, 438

G

generation-based fuzzing, 238
geofencing, 527
geolocation, 526
geotagging, 243, 527
GFS (grandfather/father/son) rotation scheme, 370-371
horizontal privilege escalation

global IA industry, 403-405
CERT, 403-404
certifications, 404-405
government data classifications, 290
GPG (GNU Privacy Guard), 67-68
GPMC (Group Policy Management Console), 201
GPOs (Group Policy Objects), 200
GPRS (General Packet Radio Service), 499
GPS (Global Positioning System) location, 526
Gramm-Leach-Bliley Act of 1999, 338
graphical passwords, 564
grey box testing, 451
grey hats, 406
GRC (governance, risk, and compliance), 553
GRE (Generic Routing Encapsulation) tunnels, 112
Group Policy, 199
GPMC, 201
GPOs, 200
implementing, 200-202
GSM (Global System Mobile Communication), 499
guidelines, 324

H

hackers, 406
hacktivists, 406
hardening, host hardening, 198-209
ACLs, 204
applications, blacklisting/whitelisting, 199
baselining, 199
command shell restrictions, 202-203
data interfaces, 205-206
dedicated interfaces, configuring, 203
full disk encryption, 208-209
Group Policy, implementing, 200-202
management interfaces, 205
OOB NICs, 203-204
peripheral restrictions, 206-208
hardware/embedded device analysis, 384
hash matching, 212-213
hashing, 32-36
hash value, identifying, 34
HAVAL, 36
limitations of, 33
MAC, 33
MD2 algorithm, 34-35
message digests, 34-35
one-way hash function, 33
RIPEMD-160, 36
SHA, 35-36
vulnerabilities, 33
HAVAL, 36
HBA (host bus adapter) allocation, 95
Health Care and Education
Reconciliation Act of 2010, 340
high availability, 162-166
HIPAA (Health Insurance Portability and Accountability Act), 338
hiring policies, 356
HMAC (hash MAC), 37
horizontal privilege escalation, 237
host security

boot loader protections, 217-219
IMA, 218
measured launch, 218
Secure Boot, 217-218
UEFI, 218-219

endpoint security software, 191-198
antimalware, 191-192
antispyware, 192
antivirus software, 192
DLP software, 194
host-based firewalls, 194-196
IDS, 193
log monitoring, 196-198
patch management, 193
spam filters, 192-193

hardening, 198-209
ACLs, 204
applications, blacklisting/whitelisting, 199
baselining, 199
command shell restrictions, 202-203
data interfaces, 205-206
dedicated interfaces, configuring, 203
full disk encryption, 208-209
Group Policy, implementing, 200-202
management interfaces, 205
OOB NICs, 203-204
peripheral restrictions, 206-208
TOS, 190-191
CC, 190
examples, 191
TCSEC, 190
VDI, 221

virtualization
client-based application virtualization, 222
container-based virtualization, 211
server virtualization, 209-211
server-based application virtualization, 222
VTM, 223-224
vulnerabilities of hosts with differing security requirements, 219-221
data remnants, 221
live VM migration, 220
privilege elevation, 220
VM escape attacks, 219

host-based firewalls, 194-196
hosted VDI model, 221
hot fixes, 193
HSM (hardware security module), 127-128
HSM (hierarchical storage management), 372
HTML5, 257
HTTP (Hypertext Transfer Protocol), 39
HTTP interceptors, 439
HTTPS (HTTP Secure), 39
human resources, security requirements, 466-467
HVAC controllers, 180
hybrid ciphers, 47
hybrid cloud model, 79, 540
hypervisor
Type I hypervisor, 210
Type II hypervisor, 211
IA (interoperability agreement), 344
IaaS (Infrastructure as a Service), 80
ICANN (Internet Corporation for Assigned Names and Numbers), 442
ICS (industrial control systems), 183
IDEA (International Data Encryption Algorithm), 42
identifying
client-side attacks, 396-397
hash values, 34
SQL attacks, 236-237
vulnerabilities, 397-398
identity management, 562-563
identity propagation, 580-581
identity theft, 456
ID-FF (Liberty Identity Federation Framework), 582
IDS (intrusion detection system), 193
anomaly-based, 124-125
IETF (Internet Engineering Task Force), RFCs, 395-396
IMA (Integrity Measurement Architecture), 218
IMAP (Internet Message Access Protocol), 484
IMPACT, 440
implementation phase (SDLC), 518
implementing
cryptographic algorithms, 66
Group Policy, 200-202
in-house developed software, interoperability with commercial software, 539
in-line deduplication, 92
incident response, 351-356, 364, 374-378. See also e-discovery auditing, 380-381
CASP exam objectives, 15-18
chain of custody, 381
COOP, 384-385
criminal actions, 379
evidence, 381-382
facilitating, 378-381
forensic analysis, 383-384
 hardware/embedded device analysis, 384
 media analysis, 383
 network analysis, 384
 software analysis, 384
forensic tasks, 354-356
insider threats, 379-380
investigations, 353-354
non-malicious threats, responding to, 380
order of volatility, 385-386
rules of engagement, 354
search and seizure, 382-383
incremental backups, 370
incremental software development model, 250
industry-accepted development practices
BSI initiative, 246
ISO/IEC 27000, 246
OWASP, 246
WASC, 245-246
WS-Security, 246-247
INE (in-line network encryptor), 126
influences on security policies
audits, 275
client requirements, 277
competitors, 275
document exchange/review, 276
onsite assessments, 276
process/policy reviews, 276
regulatory entities, 276
top-level management, 277

information classification, 289-290
commercial business classifications, 289-290
military and government classifications, 290

infrared wireless, 502

infrastructure mode (WLANs), 499

inherent risk, 314

initiation phase (SDLC), 517-518
input validation, 235

insecure direct object references, 231
insider threats, 379-380
instant messaging, securing, 481

integer overflows, 242

integrating
diverse industries, security concerns
 geography, 273
 policies, 272
 regulations, 272-273
 rules, 272
end-user cloud storage into your business, 403
storage into an enterprise, 552

integrity, 50
chain of trust, 50-51

intended audience for this book, 628

interfaces
 data interfaces, 205-206
 dedicated interfaces, configuring, 203
 loopback interfaces, 205
 management interfaces, 205
 OOB, 203-204

internal violations, 378-379

interoperability
 application requirements, 538-539
 of cryptographic algorithms, 66
 of legacy and current systems, 537-538

inventory control
device-tracking technologies, 526
electronic inventory and asset control, 366-367
geolocation, 526
geotagging, 527
object tracking, 526-527
RFID, 527-528

IP video systems, 179-180

IPS (intrusion protection system), 193

iptables, 195
IPv6, 111-113
IrTran-P protocol, 502

ISA (interconnection security agreement), 271, 345

ISAKMP (Internet Security Association and Key Management Protocol), 40

ISC2 (International Information Systems Security Certification Consortium), 403
iSCSI (Internet Small Computer System Interface), 87-88
ISO/IEC 27000 series standards, 246, 333-336
issuance of certificates to entities, 53-54
issue-specific security policies, 323
IT governance, 320-324, 471
 baselines, 324
guidelines, 324
issue-specific security policies, 323
organizational security policy, 322-323
policies, 321-322
procedures, 324
standards, 324
system-specific security policies, 323

J

JAD (Joint Analysis Development), 254
Java applets, 257
JavaScript, 260
job rotation, 349
John the Ripper, 438
JSON (JavaScript Object Notation), 256
JVM (Java Virtual Machine), 257

K

kernel proxy firewalls, 142
key escrow, 56
key recovery, 56
key stretching, 32
keystroke dynamics, 568
Knapsack, 46
knowledge factor authentication, 116
known plaintext attacks, 62
KnTTools, 448

L

L2TP (Layer 2 Tunneling Protocol), 492-493
latency, 423
LDAP (Lightweight Directory Access Protocol), 586
least privilege, 350-351
legacy systems, interoperability with current systems, 537-538
legal holds, 374
legislation
 CFAA, 338
 Computer Security Act of 1987, 339
 DMCA, 67
 Economic Espionage Act of 1996, 339
 Federal Privacy Act of 1974, 338
 FISMA, 339
 Gramm-Leach-Bliley Act of 1999, 338
 Health Care and Education Reconciliation Act of 2010, 340
 HIPAA, 338
 PIPEDA, 339
 SOX, 337
 USA PATRIOT Act, 340
lessons-learned/after action review, 425
liability

downstream liability, 273
due diligence, 274

lightweight code review, 454-455
limitations of hashing, 33
linear cryptanalysis, 63-64

Linux

custom shell restrictions, 202-203
iptables, 195
password storage, 566

load balancing, 165

logical controls, 295
logical deployment diagrams, 546
logs, monitoring, 196-198
loopback interfaces, 205
LUN (logical unit number) masking, 94

managing

passwords, 563-566
reset policies, 565-566
software patches, 193

storage

DDPs, 93-94
deduplication, 92
HBA allocation, 95
LUN masking, 94
multisite replication, 95-96
offsite replication, 95-96
storage solutions, 90-98
snapshots, 91-92
user accounts, 562-563

mandatory vacation policies, 350

MD2 (message digest 2) algorithm, 34-35
MD2 algorithm, 34-35
MD4 algorithm, 34-35
MD5 algorithm, 34-35
MD6 algorithm, 34-35

MDM (mobile device management), 400, 495-497

measured launch, 218

media analysis, 383

meet-in-the-middle attacks, 66
Memdump, 448

memory

buffer overflows, 239-241
leaks, 242
on TPM chips, 208-209

memory dumping, 447-448

mergers

design considerations during, 545
security issues, 271

M

MAC (mandatory access control), 573
MAC (message authentication code), 33, 36-37
CBC-MAC, 37
CMAC, 37
HMAC, 37
maintainability, analyzing, 424
maintenance, 513
malware sandboxing, 446-447
MAM (mobile application management), 400
management controls, 294
management interfaces, 205
management plane, 166
mesh networks, 120
message digests, 34-35
messaging framework (SOAP), 259
Metasploit, 440
metrics
 analyzing, 419-420
 collecting, 419-420
military data classifications, 290
MIME (Multipurpose Internet Mail Extensions), 69
mitigate strategy for risk analysis, 311
mitigating zero-day attacks, 398-399
MITM (man-in-the-middle) attacks, 66
modes
 3DES, 61
 DES, 58-60
monitoring
 DAM, 254
 log files, 196-198
 networks, 169-171
MOU (memorandum of understanding), 345
MPLS (Multiprotocol Label Switching), 108
MTBF (mean time between failures), 162
MTTR (mean time to repair), 162
multi-factor authentication, 570
multihomed firewalls, 146
multipathing, 90-91
multiple solutions, testing, 418-419
multisite replication, 95-96
multi-tenancy model, 541
mutation fuzzing, 238

N

NAC (network access control), 176-178
NAS (network-attached storage), 84-86
NDA (nondisclosure agreement), 346
Nessus, 434
network administrators, security requirements, 464-465
network enumerators, 435-436
network flows, 157-158
network infrastructure design, 548-551
 DMZs, 548-549
 VLANs, 549
 VPNs, 550
 wireless networks, 550-551
new technologies
 business tools, security implications of, 400-403
 end-user cloud storage, 402-403
 social media/networking, 401
 communicating, 395-396
 researching, 393-395
 risk management, 268
NFS (Network File System), 89
NFS (Number Field Sieve), 46
NGFWs (next-generation firewalls), 133-134
NICs (network interface cards), OOB, 203-204
NIDS (network intrusion detection system), 124-125
NIPS (network intrusion prevention system), 123
NIST (National Institute of Standards and Technology), 35
NIST SP 800-30, risk management processes, 312-314
NIST SP 800-53, control families, 317
non-malicious threats, 380
non-repudiation, 50
NPV (net present value), calculating, 308-309
numeric passwords, 564

O

OAKLEY, 40
OAUTH (Open Authorization), 575-576
object reuse, 515
object tracking, 526-527
objectives
chapter coverage, 628-638
enterprise security, 6-13
incident response, 15-18
integration of computing, communications, and business disciplines, 21-23
research, analysis, and assessment, 19-21
risk management, 15-18
technical integration of enterprise components, 23-26
OCSP (Online Certificate Status Protocol), 53
OFB (output feedback) mode, 60
OFDM (Orthogonal Frequency Division Multiplexing), 498
OFDMA (Orthogonal Frequency Division Multiple Access), 498
OLA (operating-level agreement), 345
on-demand cloud computing, 542
one-way hash function, 33
onsite assessments, 276
OOB (out-of-band) NICs, 203-204
open standards, 536
OpenID, 583
operate/maintain phase (SDLC), 518-519
operational activities, 512-513
optical jukebox, 372
Orange Book, 190
order of volatility, 385-386
organizational security policy, 322-323
OTPs (one-time passwords), 564
outsourcing
downstream liability, 273
due diligence, 274
security issues, 269-270
OWASP (Open Web Application Security Project), 438
ownership factor authentication, 117

P

PaaS (Platform as a Service), 80
packet-filtering firewalls, 141
PAP (Password Authentication Protocol), 444
partial-knowledge tests, 450
partnerships, establishing
 BPAs, 346-347
 security issues, 269
passive fingerprinting, 453-454
passive reconnaissance tools, 440-444
 routing tables, 443-444
 social media, 441
 Whois, 441-442
passive vulnerability scanners, 134
passphrase passwords, 564
password crackers, 436-438
passwords. See also authentication; authorization
 key stretching, 32
 managing, 563-566
 reset policies, 565-566
patch management, 193
payback, calculating, 308
PBKDF2 (Password-Based Key Derivation Function 2), key stretching, 32
PCI DSS (Payment Card Industry Data Security Standard), 339
PCR (platform configuration register) hash, 209
PDP (policy decision point), 577
Peach, 438
penetration testing, 448-450
 black box testing, 451
 gray box testing, 451
 Retina, 449
 selecting method, 452
 strategies, 450
 white box testing, 451
PEP (policy enforcement point), 577
performance
 analyzing, 422
 of cryptographic algorithms, 66
performing ongoing research
 best practices, 392-393
 new technologies, 393-394
 evolution of technology, 395-396
 security systems and services, 394-395
peripherals, restricting, 206-208
permutation, 49
PFS (perfect forward secrecy), 37-38
pharming, 455-456
phishing, 455-456
physical access control systems, 181
physical controls, 296
physical network diagrams, 547
physical security manager, security requirements, 468
physiological authentication systems, 567-568
PII (personally identifiable information), 347
PIPEDA (Personal Information Protection and Electronic Documents Act), 339
PKCS (Public Key Cryptography Standards), 69
PKI (public key infrastructure)
 CAs, 51
 root CAs, 51
 certificates
 classes of, 55
 issuance to entities, 53-54
 CRL, 53
OCSP, 53
systems, 55
users, 54-55
wildcard certificates, 52-53
X.509 standard, 50, 54-55
placement of security devices, 128-131
plaintext attacks
chosen plaintext attacks, 62
known plaintext attacks, 62
PLCs (programmable logic controllers), 183
PNRG (pseudo-random number generator), 37
policies
access control policies, 575
audit policies, 198, 359
change control policies, 159-160
continuous monitoring, 356-357
developing, 332
ISO/IEC 27000 series standards, 333-336
legal compliance, 337-340
hiring policies, 356
incident response, 351-356
forensic tasks, 354-356
investigations, 353-354
rules of engagement, 354
issue-specific security policies, 323
IT governance, 321-322
job rotation, 349
mandatory vacation policies, 350
organizational security policies, 322-323
principle of least privilege, 350-351
separation of duties, 348-349
system-specific security policies, 323
termination procedures, 356
training policies, 357-359
POP (Post Office Protocol), 484
port scanners, 432-433
port-level encryption, 98
ports, 152
post-process deduplication, 92
PPP (Point-to-Point Protocol), 444
PPTP (Point-to-Point Tunneling Protocol), 492-493
preparing for exam, 628
presence, securing, 483-484
preventing
fault injection attacks, 239
privilege escalation, 237
preventive controls, 293
principle of least privilege, 350-351
privacy, 347
PIAs, 379
private cloud model, 79, 540
private keys, 44
privilege elevation, 220
privilege escalation, 237
procedure development, 336
process/policy reviews, 276
programmers, security requirements, 463
protocol analyzers, 434-435
prototyping, 250, 418-419
provisioning
servers, 544
user accounts, 544
virtual devices, 544
proxies, 152
proxy firewalls, 141-142
PSTN (public switched telephone network), 491
public cloud model, 79, 540
public keys, 44
public-key cryptography. See asymmetric algorithms

Q

QoS (quality of service), 158
qualitative risk analysis, 302-303
quantitative risk analysis, 303

R

race conditions, time of check/time of use attacks, 242-243
RAD (Rapid Application Development), 252
RADIUS (Remote Access Dial-In User Service), 118-120, 585-586
RAID (redundant array of inexpensive disks), 162-164
rainbow table attacks, 33
RAs (registration authorities), 51
RAs (risk assessments), 340-341
RBAC (role-based access control), 573-574
RC algorithms, 43
RDP (Remote Desktop Protocol), 109
read-only snapshots, 92
reconnaissance, 452
passive reconnaissance tools, 440-444
routing tables, 443-444
social media, 441
Whois, 441-442
record-level encryption, 98
recoverability, analyzing, 424-425
recovering data, 368
daily backups, 370
differential backups, 369
full backups, 369
incremental backups, 370
transaction log backups, 370
recovery controls, 293
regulations, 272-273
influence on security policies, 276
remanence, 515
remote access
authentication methods, 114-120
characteristic factor authentication, 117
EAP, 114-115
knowledge factor authentication, 116
ownership factor authentication, 117
dial-up, 491-492
RDP, 109
SSH, 108
SSL, 110-111
VNC, 109-110
VPNs, 107-108, 492-494
site-to-site VPNs, 494
SSL, 495
remote administration, 495
remote assistance, securing, 482-483
remote journaling, 372
remote virtual desktops model (VDI), 221
removing data from magnetic storage media, 244
replay attacks, 65
replication, 372
researching
best practices, 392-393
new technologies, 393-394
advancements in technology, communicating, 395-396
end-user cloud storage, 402-403
security systems and services, 394-395
social media/networking, security implications of, 401
security requirements for contracts, 406-408
agreements, 408
RFIs, 408
RFPs, 407
RFQs, 407
residual risk, 314
resource provisioning, 543-544
REST (Representational State Transfer), 256
restricting
command shell, 202-203
peripherals, 206-208
Retina, 449
reverse engineering attacks, 65
reverse engineering existing solutions, 422
reviewing effectiveness of existing security controls, 421
RFCs (requests for comments), 395-396
RFI (request for information), 408
RFID, 527-528
RFP (request for proposal), 407
RFQ (request for quote), 407
Rijndael algorithm, 42
RIPEMD-160, 36
risk analysis, performing, 301-310
accept strategy, 312
ALE, calculating, 304-305
ARO, 306
avoid strategy, 310-311
magnitude of impact, 304
mitigate strategy, 311
motivation of risk, 305
NPV, calculating, 308-309
qualitative risk analysis, 302-303
quantitative risk analysis, 303
ROI, 307-309
SLE, calculating, 304
TCO, calculating, 309-310
transfer strategy, 311
trend analysis, 306
risk management, 268
anticipating changes, 332
CASP exam objectives, 15-18
continuous improvement, 318
due care, 274
Rivest, Ron, 43-46
rogue access points, 505
ROI (return on investment), 419
calculating, 307-309
root CAs, 51
rotation schemes, 370-371
routers, 151-152
routing protocols, 174
routing tables, 443-444
RSA (Rivest, Shamir, and Adleman), 45-46
RSA conference, 404
RTUs (remote terminal units), 183
rule sets, 159, 195
rule-based access control, 574
rules, 272
runtime debugging, 447-448

S

SaaS (Software as a Service), 80
vulnerability scanning, 214-215
SABSA (Sherwood Applied Business Security Architecture), 315
sales staff, security requirements, 462
SAML (Security Assertion Markup Language), 581-582
sandboxing, 216, 244-245
SANs (storage area networks), 83-84
SANS (SysAdmin, Audit, Networking, and Security) Institute, 403
satellite Internet connections, 504
SCADA (Supervisory Control and Data Acquisition), 183
scalability, analyzing, 423
screened host firewalls, 147-148
screened subnets, 148-149
scrubbing, 197
scrypt, key stretching, 32
SDL (Security Development Life Cycle), 519-521
SDLC (system development life cycle), 517-519
 acquisition phase, 518
 disposal phase, 519
 implementation phase, 518
 initiation phase, 517-518
 operate/maintain phase, 518-519
sealing, 208
search and seizure, 382-383
Secure Boot, 217-218
SecureCode, 39
SecureSessionModule, 235
security policies, 272
 Group Policy
 GPMC, 201
 GPOs, 200
 implementing, 200-202
influences on
 audits, 275
 client requirements, 277
 competitors, 275
 document exchange/review, 276
 onsite assessments, 276
 process/policy reviews, 276
 regulations, 276
 top-level management, 277
security zones
 DMZs, 176
 separation of critical assets, 176
segmentation, 545-546
selecting
 cryptographic technique, 32
 penetration testing method, 452
sensitive data, storing, 237-238
sensors, 180
separation of critical assets, 176
separation of duties, 348-349
server-based application virtualization, 222
server-side processing, 255-260
servers
 provisioning, 544
 virtualization, 209
 Type I hypervisor, 210
 Type II hypervisor, 211
service packs, 193
services (cloud), 80
session keys, 41
session management, 233-235
SET (Secure Electronic Transaction), 39
SFTP (SSH File Transfer Protocol), 113
SHA (Secure Hash Algorithm), 35-36
SHA-2, 35
SHA-3, 35
Shamir, Adi, 45-46
Shibboleth, 583-584
shoulder surfing, 456
SHTTP (Secure HTTP), 39
side-channel attacks, 63
SIEM (security information and event management), 126-127
site-to-site VPNs, 494
situational awareness, 396-398
 of client-side attacks, 396-397
 of vulnerabilities, 397-398
Skipjack, 42
SLA (service-level agreement), 162-164, 345
SLE (single loss expectancy), calculating, 304
S/MIME (Secure Multipurpose Internet Mail Extensions), 69
SMTP (Simple Mail Transfer Protocol), 484
snapshots, 91-92
sniffing, 434-435
SNMP (Simple Network Management Protocol), 205
SOA (service-oriented architecture), 553
SOA (statement of applicability), 340-341
SOAP (Simple Object Access Protocol), 246-247, 259
social engineering attacks, 63, 455-456
social media/networking, security implications of, 401
SOEs (standard operating environments), 279
software
 antivirus software, cloud antivirus, 213
development methods, 247-254
 Agile model, 253, 523
 build and fix, 248
 Cleanroom model, 254
 incremental model, 250
 JAD, 254
 prototyping, 250
 RAD model, 252
 spiral model, 251, 524
V-shaped model, 249

Waterfall method, 248-249, 523-524

endpoint security software, 191-198

anti-malware, 191-192

antispyware, 192

antivirus software, 192

DLP software, 194

host-based firewalls, 194-196

IDS, 193

log monitoring, 196-198

patch management, 193

spam filters, 192-193

in-house developed software, interoperability with commercial software, 539

secure coding standards, 247

solving difficult problems, 425

sources of emerging threats, 406

SOX (Sarbanes-Oxley) Act, 337

spam filters, 192-193

antispam services for the cloud, 213

spear phishing, 485

SPI (Security Parameter Index), 40

spin-offs, security issues, 271

spiral software development model, 251, 524

SPML (Service Provisioning Markup Language), 578

SPOF (single point of failure), 166

SQL injection, 235-236

SRK (storage root key), 208

SRTM (Security Requirements Traceability Matrix), 297, 522

SSDLC (Security System Development Life Cycle), 519-521

SSH (Secure Shell), 69, 108

SSID (service set identifier), 499

SSL (Secure Sockets Layer), 38, 68-69, 110-111

SSL inspection, 156

SSO (single sign-on), 571-572

AD, 586-587

advanced trust systems, 585-587

LDAP, 586

RADIUS, 585-586

Shibboleth, 583-584

WAYF, 584-585

stakeholders

incorporating input into CIA decisions, 291

security requirements, 290

database administrators, 463-464

facilities manager, 468

financial staff, 466-467

human resources, 466-467

management/executive management, 465-466

network administrators, 464-465

physical security manager, 468

programmers, 463

sales staff, 462

standard libraries, 245

standard word passwords, 563

standards

adherence to, 536

competing standards, 536

de facto standards, 536-537

ISO/IEC 27000 series standards, 333-336

lack of, 536
open standards, 536
PCI DSS, 339
PKCS, 69
WLAN standards, 500-501

state management, 260

stateful firewalls, 141

static passwords, 564

statistical attacks, 65

steganography, 56
 watermarking, 67

storage. See also storage keys; storage protocols
 cloud storage, 79-80
 * antivirus products, 213
 * content filtering, 216
 * hash matching, 212-213
 * sandboxing, 216
 * vulnerability scanning, 214-215
 cookies, storing, 239
 data archiving, 82-83
 data warehousing, 80-82
 DDPs, 93-94
 deduplication, 92
 encryption
 * block-level encryption, 96-97
 * disk-level encryption, 96
 * port-level encryption, 98
 * record-level encryption, 98
 HBA allocation, 95
 HSM, 372
 integrating into an enterprise, 552
 LUN masking, 94
 magnetic storage media, removing data from, 244
 multipathing, 90-91
 multisite replication, 95-96
 NAS, 84-86
 offsite replication, 95-96
 password storage, 566
 SANs, 83-84
 sensitive data, storing, 237-238
 snapshots, 91-92
 virtual storage, 78-79
 VSANs, 86

storage keys, 209

storage protocols, 87-90
 CIFS, 90
 FCoE, 88-89
 iSCSI, 87-88
 NFS, 89

strategies for penetration testing, 450

stream ciphers, 56-57

strength of cryptographic algorithms, 66

subobjectives
 of enterprise security objective, 6-13
 of integration of computing, communications, and business disciplines objective, 21-23
 of research, analysis, and assessment objective, 19-21
 of risk management objectives, 15-18
 of technical integration of enterprise components objective, 23-26

switch spoofing, 140

switches, 137-138
 trunking security, 172-173
symmetric algorithms, 40-43
 3DES, 41
 modes, 61
AES, 42
Blowfish, 42
CAST, 43
DES, 41
 modes, 58-60
RC algorithms, 43
session keys, 41
Skipjack, 42
Twofish, 43
weaknesses of, 61
systems (PKI), 55
system-specific security policies, 323

t technical deployment models, 539-546
 Teredo, 112
testing
 multiple solutions, 418-419
 validation testing, 522
third-party outsourcing
 security issues, 269-270
 downstream liability, 273
 due care, 274
 due diligence, 274
threat actors, 405-406
threats
 APTs
 CERT, 403-404
 emergent threats, 399-400
 intelligence, 406
 sources of, 406
 threat actors, 405-406
 zero-day attacks, mitigating, 398-399
 insider threats, 379-380
 non-malicious threats, 380
 situational awareness, 397-398
 UTM, 122-123
throughput rate, 568
time of check/time of use attacks, 242-243
TLS (Transport Layer Security), 38, 68-69
top-down policy development, 332
top-level management, influence on security policies, 277
topics covered on exam, 628-638

T

TACACS+ (Terminal Access Controller Access Control System +), 118-120
tampering, 367
tape vaulting, 372
target tests, 450
Tavares, Stafford, 43
TCA (third-party connection agreement), 269
TCO (total cost of ownership), 419
calculating, 309-310
TCSEC (Trusted Computer System Evaluation Criteria), 190
TDMA (Time Division Multiple Access), 498
TOS (trusted operating system), 190-191
CC, 190
extamples, 191
TCSEC, 190
TPM (Trusted Platform Module) chips, 208-209
atstitution, 579-580
IMA, 218
VTPM, 223-224
training policies, 357-359
transaction log backups, 370
transfer strategy for risk analysis, 311
transport encryption
3-D Secure, 39
FTP, 113
HTTP, 39
HTTPS, 39
IPSec, 39-40
SET, 39
SHTTP, 39
SSL, 38, 68-69
TLS, 38, 68-69
transposition, 49
trends
analyzing, 420-421
vulnerability cycle, 525-526
trunking security, 172-173
trusted third-party model, 581
TSIG (Transaction Signature), 554
Twofish, 43
Type I errors, 569
Type I hypervisor, 210
Type II errors, 569

UEFI (Unified Extensible Firmware Interface), 218-219
UMTS (Universal Mobile Telecommunications System), 499
unified collaboration tools, securing
desktop sharing, 481-482
e-mail, 484-487
instant messaging, 481
presence, 483-484
remote assistance, 482-483
social media, 489
telephony, 487-489
video conferences, 479-480
web conferences, 478-479
Unix
chroot, 210
command shell restrictions, 202-203
password storage, 566
updates, 193
US-CERT (U.S. Computer Emergency Readiness Team), 404
USA PATRIOT Act, 340
USB devices, restricting, 206
user accounts
lockout policies, 565-566
managing, 562-563
provisioning, 544
user behaviors, risk management, 268
UTM (unified threat management), 122-123
V

V-shaped software development model, 249
validation testing, 522
VDI (virtual desktop infrastructures), 221
vertical privilege escalation, 237
video conferences, securing, 479-480
virtual devices, provisioning, 544
virtual storage, 78-79
virtualization
client-based application virtualization, 222
container-based virtualization, 211
server virtualization, 209-211
 Type I hypervisor, 210
 Type II hypervisor, 211
server-based application virtualization, 222
VDI, 221
virtual computing, 156
virtual environments, securing, 545
virtual firewalls, 154-155
virtual proxy servers, 156
virtual routers, 154-155
virtual switches, 153-154
virtual wireless controllers, 155
VMs, 209
 live migration, 220
VTPM, 223-224
vulnerabilities
 single physical server hosting multiple companies' VMs, 541-542
 single platform hosting multiple companies' VMs, 542
VLANs, 139-140, 549
VM escape attacks, 219
VMs (virtual machines), 209
 live migration, 220
VNC (Virtual Network Computing), 109-110
VoIP, securing, 488-489
VPNs, 107-108, 492-494, 550
 MPLS, 108
 site-to-site VPNs, 494
 SSL, 495
VSANs (virtual storage area networks), 86
VTPM (virtual TPM), 223-224
VTY ports, 205
vulnerabilities
 of hashing, 33
 of hosts with differing security requirements, 219-221
 data remnants, 221
 live VM migration, 220
 privilege elevation, 220
 VM escape attacks, 219
 of virtualization
 single physical server hosting multiple companies' VMs, 541-542
 single platform hosting multiple companies' VMs, 542
 situational awareness, 397-398
vulnerability assessment, 445-446
vulnerability cycle, 525-526
vulnerability management systems, 398
vulnerability scanning, 434
 for the cloud, 214-215
WAFs (web application firewalls), 131-132, 255
Walt Disney Magic Band, 527
warchalking, 505
wardriving, 505
warehousing, 80-82
WASC (Web Application Security Consortium), 245-246
Waterfall software development method, 248-249, 523-524
watermarking, 67
WAYF (Where Are You From?), 584-585
weaknesses
of asymmetric algorithms, 61
of symmetric algorithms, 61
weaknesses of industry-accepted development practices, OWASP, 246
web applications
browser extensions, 256-259
ActiveX, 257
AJAX, 258
Flash, 257
HTML5, 257
Java applets, 257
client-side processing, 255-260
industry-accepted development practices
WASC, 245-246
WS-Security, 246-247
JavaScript, 260
JSON, 256
REST, 256
security issues, 230
cookies, storing, 239
server-side processing, 255-260
SOAP, 259
state management, 260
WAFs, 255
web conferences, securing, 478-479
WEP (Wired Equivalent Privacy), 502-503
whaling, 486
WhatsUp Gold, 436
white box testing, 451
white hats, 406
whitelisting
application whitelisting, 199
character whitelisting, 235
Whois, 441-442
wildcard certificates, 52-53
Windows
Group Policy, 199-202
password storage, 566
WIPS (wireless intrusion prevention systems), 505
wireless controllers, 149-150
wireless networks, 550-551
WLANs (wireless LANs), 497-505
802.11 standard, 498
access points, 499
ad hoc mode, 499
Bluetooth, 502
CDMA, 498
FDMA, 498
GPRS, 499
GSM, 499
infrared, 502
infrastructure mode, 499
MAC filters, 504
OFDMA, 498
rogue access points, 505
satellite connections, 504
SSID, 499
standards, 500-501
TDMA, 498
UMTS, 499
wardraking, 505
wardriving, 505
WEP, 502-503
wireless attacks, 505
WPA, 503
WPA2, 503
worst-case scenario planning, 299-301
WPA (Wi-Fi Protected Access), 503
WPA2, 503
WS-Security, 246-247
WSUS (Windows Server Update Service), 203

X

X.500 standard, 586
X.509 standard, 50, 54-55
XACML (Extensible Access Control Markup Language), 577-578
XML, AJAX, 258
XOR operation, 56
XSS (cross-site scripting), 231-232

Y-Z

Zenmap, 432
Zero Knowledge Proof, 47
zero-day attacks, mitigating, 398-399
zero-knowledge tests, 450