THE INTERNET OF THINGS

HOW SMART TVs, SMART CARS, SMART HOMES, AND SMART CITIES ARE CHANGING THE WORLD

MICHAEL MILLER

FREE SAMPLE CHAPTER

SHARE WITH others
The Internet of Things
How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World

MICHAEL MILLER
CONTENTS AT A GLANCE

Introduction ... 1
1 Smart Connectivity: Welcome to the Internet of Things 5
2 Smart Technology: How the Internet of Things Works 15
3 Smart TVs: Viewing in a Connected World 43
4 Smart Appliances: From Remote Control Ovens to Talking Refrigerators ... 61
5 Smart Homes: Tomorrowland Today 77
6 Smart Clothing: Wearable Tech .. 117
7 Smart Shopping: They Know What You Want Before You Know You Want It .. 145
8 Smart Cars: Connecting on the Road 157
9 Smart Aircraft: Invasion of the Drones 179
10 Smart Warfare: Rise of the Machines 203
11 Smart Medicine: We Have the Technology... 223
12 Smart Businesses: Better Working Through Technology 247
13 Smart Cities: Everyone’s Connected 263
14 Smart World: The Global Internet of Everything 281
15 Smart Problems: Big Brother Is Watching You 297
Index ... 309
TABLE OF CONTENTS

Introduction ... 1

1 Smart Connectivity: Welcome to the Internet of Things ... 5
 Welcome to the Future ... 6
 What Is the Internet of Things? 6
 What Kinds of Things Can Be Connected to the
 Internet of Things? ... 7
 What Do All Those Connected Things Do? 9
 When Will the Internet of Things Arrive? 11
 How Important Is the Internet of Things? 12
 Smart Connectivity and You 13

2 Smart Technology: How the Internet of Things Works ... 15
 Understanding the Internet of Things: The Big Picture 16
 Building the Internet of Things 17
 Stage One: Device Proliferation and Connection 18
 Stage Two: Making Things Work Together 18
 Stage Three: Developing Intelligent Applications 19
 Understanding Smart Devices 19
 What’s a Thing? ... 20
 Building Blocks ... 20
 Deconstructing a Device 21
 Store and Forward ... 22
 Understanding Network Connections 23
 How Traditional Networks Work 23
 Transferring Data Over a Network 23
 Understanding IP Addresses 26
 Examining Wireless Technologies 27
 Understanding RF Technology 27
 Wi-Fi .. 29
Table of Contents

- Bluetooth and Bluetooth Smart 30
- Cellular Networks .. 31
- Mesh Networks ... 33
- Proprietary Cellular Networks 34
- Which Technologies Are Best? 35
- Understanding the Data ... 35
- Understanding Intelligent Applications 36
- Understanding Big Data .. 37
 - Data Harvesting ... 37
 - Data Storage .. 37
 - Data Analysis .. 38
- Profiting from the Internet of Things 38
- Resources .. 39
- Smart Technology and You .. 40

3 Smart TVs: Viewing in a Connected World 43

- What Exactly Is Smart TV? 44
- What’s Inside a Smart TV? 44
- What You Need to Use a Smart TV 46
- What a Smart TV Does .. 46
- Considering Smart TV Operating Systems 47
- Examining a Typical Smart TV 48
- Exploring Smart TV Set-Top Devices 51
- How to Choose a Smart TV or Device 53
- How Secure Are Smart TVs? 54
 - Hacking Into the System 54
 - An Eye Into Your Living Room 55
 - Official Snooping ... 56
- Integrating Smart TVs into the Internet of Things 57
- Smart TVs and You .. 59

4 Smart Appliances: From Remote Control Ovens to Talking Refrigerators 61

- Understanding Smart Appliances Today 62
- Smart Operation .. 62
- Smart Monitoring .. 63
Smart Energy Savings ... 64
Smart Maintenance ... 66
Smarter Food Storage with Smart Refrigerators 66
Smarter Cooking with Smart Ovens 69
Smarter Cleaning with Smart Washers and Dryers 70
Smarter Dishwashing with Smart Dishwashers 72
Smart Appliances and You 73

5 Smart Homes: Tomorrowland Today 77

Automating the Home ... 78
Convenience ... 78
Security .. 80
Efficiency ... 81
Tying It All Together .. 81
A Short History of Smart Homes 81
Smart Steps to a Smart Home 83
Step 1: Basic Communications 83
Step 2: Simple Commands 83
Step 3: Automating Basic Functions 84
Step 4: Tracking and Taking Action 84
Step 5: Prompting Activities and Answering Questions
Step 6: Automating Tasks 85
Simple Components for a Smart Home 85
Sensors ... 85
Controllers .. 86
Actuators ... 86
Buses .. 86
Interfaces ... 86
Networks .. 87
Smarter Living with Smart Furniture 87
Smarter Environment with Smart Lighting 88
Smarter Views with Smart Windows 90
Motorized Window Coverings 90
Smart Glass ... 91
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Smart Clothing: Wearable Tech.</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Wearable Technology Today—and Tomorrow</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Watching the Smartwatches</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Smart Heating and Cooling with Smart Thermostats</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Nest Learning Thermostat</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Other Smart Thermostats</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Using Nest with Other Smart Devices</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Data Collection and Control Issues</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Smarter Protection with Smart Security Systems</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Smarter Security Systems</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Smart Locks</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Smart Security Cameras</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Smarter Sensing with Smart Monitors</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Smart Smoke Detectors</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Smart Air Quality Monitors</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Smarter Information with Amazon Echo</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Reimagining the Smart Network</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>INSTEON</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Z-Wave</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>ZigBee</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Controlling the Smart Home</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Control4</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Crestron</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>HomeSeer</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Iris</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>mControl</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Quirky</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>SmartThings</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Vera</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Vivint</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>WeMo</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Wink</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>X10</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Where Can You Find Smart Home Devices?</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Smart Homes and You</td>
<td>114</td>
</tr>
<tr>
<td>8</td>
<td>Smart Cars: Connecting on the Road</td>
<td>157</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Smart Cars Today—and Tomorrow</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Smart Functionality</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Smart Diagnostics</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Smarter Driving</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Smart Communications</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Smart Entertainment</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Smart Climate Control</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Hacking a Smart Car</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Cars That Drive Themselves</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>How Self-Driving Cars Work</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>What’s Coming</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Levels of Automation</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Introducing Google’s Self-Driving Car</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Pros and Cons of Autonomous Autos</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>The Good</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>The Bad</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>The Ugly</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Navigating the Legal Landscape</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>Smart Cars and You</td>
<td>177</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Smart Aircraft: Invasion of the Drones</th>
<th>179</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What Drones Are—and What They Aren’t</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Understanding Radio-Controlled Aircraft</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>What Makes a Drone a Drone?</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Different Kinds of Drones</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>How Drones Are Used Today</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Military Drones</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Intelligence Drones</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Surveillance Drones</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Civilian Drones</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>The Future of Drone Aircraft</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Smarterer Drone</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Delivery Drones</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Regulating Drone Aircraft</td>
<td>195</td>
</tr>
</tbody>
</table>
The Internet of Things

Fly the Scary Skies: The Problems with Drones 196
Collison and Liability Concerns 196
Security Concerns 197
Privacy Concerns 198
Other Smart Aircraft Technologies 198
Smart Structures 198
Smart Skin .. 199
Smart Maintenance 199
Smart Cabins .. 200
Smart Aircraft and You 201

10 Smart Warfare: Rise of the Machines 203
The Past, Present, Future of Tech-Based Warfare 204
Three Generations of Warfare 204
The Fourth Generation 205
Smart Aircraft 206
Smart Bombs .. 208
Smart Weapons 209
Robot Soldiers 212
Today’s Army Robots 212
Robotic Armor and Super Soldiers 214
Autonomous Fighting Robots 217
Smart Strategy .. 219
Smart Combat and You 220

11 Smart Medicine: We Have the Technology 223
Welcome to the Internet of Medical Things 224
Connecting Devices 224
Centralizing Records 224
Realizing Benefits 225
Smart Medical Devices and Monitoring 226
Examining Smart Medical Devices 226
Monitoring the Monitors 229
Smart Monitoring for Seniors 230
Smart Meds .. 232
Table of Contents

Smart Hospitals ... 234
 Everything’s Monitored, and Nothing’s Monitored 235
 Smarter Devices .. 236
 Smarter Standards 237
 Other Smart Equipment 238
Smart Medical Records 241
 Apple HealthKit ... 242
 Dossia .. 242
 FollowMyHealth ... 242
 MediConnect .. 243
 Microsoft HealthVault 244
Smart Medicine and You 245

12 **Smart Businesses: Better Working Through Technology** 247

 Smart Offices ... 248
 Smart Connectivity 248
 Smart Environment 250
 Virtual Meetings .. 252
Smart Stores ... 253
Smart Inventory Management 255
 Smart Manufacturing 256
 Smart Transportation 258
 Smart Warehousing 259
 Smart Management 260
Smart Businesses and You 261

13 **Smart Cities: Everyone’s Connected** 263

 Understanding the Smart City 264
 Smart Infrastructure 265
 Smart Communication and Emergency Management 266
Smart Roads and Traffic Management 268
 Smart Parking .. 269
 Smart Traffic Management 270
 Smart Roads .. 270
 Smart Public Lighting 273
The Internet of Things

Smart Utilities .. 274
Smart Waste Management 274
Smart Water Management 274
Smart Grid ... 275
Understanding the Smart Grid 275
Smarter Energy Management 276
A Self-Healing Grid ... 276
Collecting and Using the Data 277
Building the Smart Grid 277
Smart Cities and You ... 279

14 Smart World: The Global Internet of Everything . . . 281
Scaling the Internet of Things Globally 282
Connecting Cities, States, and Countries 283
The Rural Internet of Things 284
The Agricultural Internet of Things 286
 Smart Irrigation ... 286
 Pest Control ... 286
 Smart Tractors .. 287
 Self-Driving Tractors 288
The Environmental Internet of Things 289
Battling Climate Change 291
Impediments to the Global Internet of Things 292
 Technological Challenges 293
 Security Challenges 293
 Bureaucratic and Political Challenges 294
The Smart World and You 295

15 Smart Problems: Big Brother Is Watching You . . . 297
Privacy Issues .. 298
 What Do They Really Know About You? 298
 Your Government Is Spying On You 300
Privacy Versus the IoT 301
Security Issues ... 302
 Data Security .. 302
 System Security ... 303
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Data Issues</td>
<td>304</td>
</tr>
<tr>
<td>Autonomy and Control Issues</td>
<td>305</td>
</tr>
<tr>
<td>Smart Machine Issues</td>
<td>306</td>
</tr>
<tr>
<td>Smart Problems and You</td>
<td>307</td>
</tr>
</tbody>
</table>

Index ... 309
About the Author

Michael Miller has written more than 150 nonfiction how-to books over the past two decades, as well as a variety of web articles. His best-selling books include Que’s Absolute Beginner’s Guide to Computer Basics, The Ultimate Guide to Bitcoin, and Is It Safe? Protecting Your Computer, Your Business, and Yourself Online. Collectively, his books have sold more than 1 million copies worldwide.

Miller has established a reputation for clearly explaining technical topics to non-technical readers and for offering useful real-world advice about complicated topics. More information can be found at the author’s website, located at www.millerwriter.com. His Twitter handle is @molehillgroup.

Dedication

To my six wonderful grandchildren, who will inherit the future we’re creating—Collin, Alethia, Hayley, Judah, Lael, and Jackson.

Acknowledgments

Thanks to the usual suspects at Que, including but not limited to Rick Kughen, Greg Wiegand, Tonya Simpson, Anne Goebel, and technical editor Gareth Branwyn.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Que Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at quepublishing.com/register for convenient access to any updates, downloads, or errata that might be available for this book.
This page intentionally left blank
You’ve probably heard about the Internet of Things, sometimes called the Internet of Everything. You might not know what it is (and, frankly, the definition is a little fuzzy), but you’ve heard about it and you’re interested in it enough to pick up this book. Good for you.

Like you, I was curious about the Internet of Things (which we’ll abbreviate to IoT from here on out). I wasn’t quite sure about what it was or where I could find it or even what it consisted of. All I knew is that everybody was talking about it, in the tech world at least, and thus it attracted my attention.

So, as is my wont, I went out and learned about the IoT. Then I wrote about what I learned, and the result is the book you hold in your hands, The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World. Read along and you’ll learn as I did what this IoT thing is all about.
Spoiler alert: It isn’t quite as clear cut as you’d think by the name. Yes, the Internet of Things is literally about things connected to the Internet, but it’s both more and less than that.

In many ways, the IoT is marketing hype, a buzz phrase used to describe all manner of new devices and services that various manufacturers would very much like for you to purchase. There are a lot of companies adding the word “smart” to the devices they sell in the hope of tagging along on the IoT bandwagon. That’s to be expected; remember all the “cyber” and “e-” things back in the early days of the Internet? Everybody wants to be on top of the latest trend. That’s where the money is.

The technical definition of the IoT involves small devices, each with their own Internet Protocol (IP) address, connected to other such devices via the Internet. In other words, lots of little “things” connected to lots of other little “things” over the Internet. Instead of connecting people to other people, as does the current Internet, the new Internet of Things connects things to things. That sounds simple.

Except, a lot of the so-called smart devices ballyhooed as part of the IoT don’t have their own IP addresses, don’t connect to the existing Internet, and don’t even connect to other devices. Which means the IoT isn’t just about connecting things to things; it’s also about autonomous operation—things that can operate pretty much on their own, without a lot of human interaction.

And even those devices that do connect to other devices don’t connect to all other devices. A lot of what I found about the IoT involves industry-specific applications, where concepts of thing-to-thing connectivity and autonomous operation are applied to solve very specific problems. There’s a distinct IoT for the healthcare industry, and another for the automotive industry, and another for the warehousing/distribution chain, and so on. The smart medical devices you’ll find in your local hospital have nothing at all to do with the smart cars you might find parked in the hospital parking lot, or the smart systems employed to put food in the hospital cafeteria. Chances are they don’t even use the same network to connect.

For that reason, you have to look at the IoT as multiple networks of things, each dedicated to specific industries or applications. That’s how I approached it in this book, which is why you’ll find separate chapters for smart homes, smart clothing, smart cars, smart medicine, and such. In a way, each of these areas will have its own Internet of Things, to which its own devices and services will be connected.

Like I said, it’s not just one thing. It’s lots of things.

This will all make more sense to you as you read through the book. We start with a general introduction to the IoT and its underlying technologies, then move into examinations of the many different approaches to the IoT, from the most personal (smart homes and smart clothing) to the more universal (smart medicine, smart
cities, smart warfare). We end with a chapter describing the potential problems associated with the IoT, of which there are several.

By the end of the book, you should be a lot better versed in the various things that are likely to comprise the Internet of Things. And you’ll know how all of this is likely to affect you, personally. It’s really quite thrilling.

What You Need to Know to Use This Book

How much prior knowledge of the Internet of Things do you need before starting this book? Absolutely none. I assume that you, like me when I first got started, don’t know much of anything about the Internet of Things. This isn’t a really technical book, so you don’t have to come into it with a bunch of detailed technical knowledge either. In other words, this book is written for—and can be read by—anyone who’s curious about the IoT. If I do my job right, this book will assuage that curiosity.

One More Thing

There’s one more thing you need to know about the Internet of Things before you start reading. That is this—like all emerging technologies, the Internet of Things is in the process of defining itself. There’s a lot of change happening, and it’s happening every single day. What I write about the IoT today may be superseded tomorrow. It’s an exciting time full of rapid development and constant discoveries, so don’t expect things to stay the same for long. Read this book to get a general overview of what’s happening, but then keep your ear to the ground to stay on top of ongoing developments.

I’m guessing, however, that you’ll find plenty of IoT-related stories in your day-to-day news reading. Like I said, it’s a big buzzword, which means it’s getting an increasing amount of coverage, even in the mainstream press. Just keep your eyes and ears open and you’ll hear more about it.
Smart TVs: Viewing in a Connected World

For many people, today’s so-called “smart TVs” represent the first foray into the connected world of the Internet of Things. Just what is a smart TV, and how smart is it, really?

Whether or not today’s smart TVs are truly part of the Internet of Things is an open question, but there’s no question that these connected viewing devices are changing the way people watch TV and movies. Read on to learn more.
What Exactly Is Smart TV?

Let’s be honest. “Smart TV,” as the term is used today, is nothing more than marketing hype. The appellation refers to television sets or set-top boxes that offer connectivity to the Internet, typically via Wi-Fi wireless technology, as well as built-in Web 2.0 apps that enable viewing of various streaming video services, such as Netflix and Hulu. There’s nothing inherently smart about a smart TV; it’s a marketing term used to convey the ability to view Internet-based programming.

The concept of the smart TV isn’t particularly new. Smart TVs have been around since 2007 or so, under many different labels, including “connected” TV, “hybrid” TV, “IPTV,” and “Internet” TV. (One could even argue that the concept has actually been around since 1995’s WebTV box, which served as an Internet client for traditional TVs.)

Note that a smart TV doesn’t actually have to be a TV. Streaming media boxes and dongles that connect to a TV and offer the requisite streaming video connectivity also fit under the broad category of smart TV devices. So Roku and Apple TV set-top boxes are smart TV devices, as are the Google Chromecast, Roku Streaming Stick, and Amazon Fire Stick. For that matter, Blu-ray players and videogame consoles that offer streaming video connectivity are also classified as smart TV devices.

What’s Inside a Smart TV?

At its most basic, a smart TV is a television set that can connect to and interact with the Internet. In practical terms, that means the television must include the following:

- Wi-Fi radio or Ethernet connection, for connecting to your home network.
- Central processing unit (CPU), the computer brain that manages all the device’s operations and commands.
- Operating system (OS) that serves as the interface between the CPU and software-based applications.
- Graphical user interface (GUI) for displaying menus and other options.
- Software-based apps that enable connection to various web-based services. For example, a smart TV might have built-in apps for Netflix, Hulu, and Pandora. Most smart TVs come with several apps pre-installed; some smart TVs enable additional apps to be installed after purchase.

Some smart TVs also include apps and associated technologies that enable the device to play back media stored on your home network. In some cases, this
capability is built into the OS, as with the Apple TV; in other cases, this capability is enabled by DNLA or UPnP compatibility.

Note

DNLA stands for Digital Network Living Alliance, an industry trade group that promotes interoperability between different devices. In practical use, the DNLA specification indicates that a device is capable of playing digital media (video, music, and photos) from computers and other devices connected to the same network. UPnP stands for Universal Plug and Play and is a set of networking protocols that enabled connected devices to discover each other’s presence on a network.

Some smart TVs include a built-in camera and microphone, like the one shown in Figure 3.1, for connecting with video-sharing and chat services, such as Skype. Some more advanced smart TVs use the built-in camera/microphone to navigate the onscreen menus, via a series of hand gestures or voice commands.

Figure 3.1 The integrated camera on a Samsung smart TV.

Naturally, a smart television set (not a set-top box) will also include a traditional television tuner for viewing broadcast, cable, or satellite programming. You typically switch from the normal viewing screen to a GUI menu for the web-based services and apps.

All smart TVs are controlled by some sort of remote control. Some remotes are basic affairs, with just enough buttons to navigate the onscreen menus. Others include keyboards (useful for typing in search terms), trackpads, even game
controllers. Most smart TVs can be controlled by universal remotes, such as those in the Logitech Harmony line. Some smart TVs can be controlled by smartphone or tablet apps.

Remember, too, that a smart TV doesn’t have to be a literal TV. A smart TV device, like the aforementioned Roku box, contains the same circuitry and apps as a literal smart TV, but without the TV part. Instead, the set-top box connects to a regular TV (typically via high-definition multimedia interface [HDMI]), enabling the TV to display media played on the external device.

What You Need to Use a Smart TV

Right out of the box, a smart TV has little or no functionality. To utilize all the features of a smart TV, you need to provide the following:

- An Internet connection.
- A home network that interfaces with your Internet connection. This can be a wireless (Wi-Fi) or wired (Ethernet) network.
- Electricity. Duh.

If you have a smart TV set-top box, you’ll also need an HDMI cable to connect the device to your traditional television set.

What a Smart TV Does

So a smart TV is a TV or set-top box that integrates Internet capabilities. What exactly does that mean?

Most smart TVs can perform the following functions:

- Connect to the Internet via a local network. That means connecting to your home network and sharing your Internet connection. Most smart TVs connect via Wi-Fi, although some can connect via Ethernet.
- Play video content from web-based streaming video services, such as Netflix, Hulu Plus, and Amazon Instant Video.
- Play music from web-based streaming audio services, such as Pandora and Spotify.
- Play digital media stored on other devices connected to your home network.
- Access selected websites and web-based services, such as Facebook, Twitter, and AccuWeather. Some smart TVs offer full-fledged web browsers, although it’s more common to find discrete apps for specific sites and services.
Note
Not everyone who owns a current-generation smart TV is actually using the “smart” aspects of the TV. According to NPD In-Stat, about 25 million U.S. households own a smart TV of one sort or another, but only about half of these homes (12 million) have their sets connected to the Internet. In other words, they’re using their smart TVs just as TVs, nothing more. Unused functionality, it is.

Considering Smart TV Operating Systems
All smart TVs and smart TV devices are like mini computers, in that they include a built-in OS and the appropriate software or middleware to run the necessary apps. Now, these devices don’t run a full-blown consumer OS, such as Windows, but rather smaller, more stripped down OS’s developed specifically for these purposes.

Note
Middleware is a layer of software on a device that acts as a bridge between the OS and the main apps.

There are a number of smart TV OS’s in use today, many proprietary to a specific company or device. These include the following:

- Android TV, used in the Google Chromecast and selected Sony smart TVs
- Fire OS, used in Amazon’s streaming devices
- Firefox OS, used on Panasonic devices
- iOS, Apple’s mobile OS used in the Apple TV box (and iPhones and iPads, of course)
- Roku OS, used by Roku
- Tizen, a Linux-based OS used by Samsung
- webOS, a Linux derivative used by LG

Note
webOS has an interesting history. It’s a Linux kernel-based OS initially developed by Palm back in 2009 as a successor to their once-popular Palm OS platform. Hewlett Packard (HP) acquired Palm in 2010, and webOS was considered one of the key assets in that transaction; HP intended to use the OS in a variety of new products, including smartphones, tablets,
and printers. That didn’t really pan out, and by the end of 2011, HP had halted all webOS development. In 2013, HP sold webOS to LG Electronics, which uses it as the company’s primary smart TV operating system.

This proliferation of OS’s means that no two brands of smart TVs look or work exactly alike. While all these OS’s do pretty much the same thing, they do it all differently; every company puts its own spin on onscreen menus, navigation, and operation. For this reason, you want to spend some time with a given interface when you’re shopping for a smart TV or device.

Examining a Typical Smart TV

Most of today’s smart TVs offer similar features and functionality. In addition to the normal TV features (screen, tuner, remote control, and so on), you get the Wi-Fi or Ethernet connectivity, onscreen GUI menus, and built-in apps that are part and parcel of the “smart” experience. Naturally, the onscreen menus and included apps differ from manufacturer to manufacturer and model to model, but all offer the same general approach.

Let us take, for our example, a typical higher-end smart TV, as of late 2014. We’ll look at the Samsung UN50H6350, shown in Figure 3.2, a 50” diagonal LED-LCD model that sells for a little under $1,000. This model has all the bells and whistles that you’d expect from a TV in this price range, including smart TV functionality in the form of what Samsung calls its Smart Hub. It also includes a built-in camera and microphone, for live social networking and video chatting.

Figure 3.2 Samsung’s UN50H6350 smart TV.
Before you can access the Smart Hub, you first have to connect the TV to your home network. This particular model includes both wireless and wired connectivity, so there is an Ethernet connection on the back if you want to use it.

Note

If you have the option (and a convenient Ethernet cable), connecting a smart TV via Ethernet is a better option than using Wi-Fi. A wired connection is not only more reliable than a wireless one (you don’t have to deal with weak or flakey Wi-Fi signals), but also faster—which is a godsend when you’re watching high definition (HD) streaming video.

Assuming that you’ll be connected via Wi-Fi, like the vast majority of users do (it’s just easier), you have to configure the TV to recognize and connect to your home network. You do this from the Network Settings setup screen, shown in Figure 3.3. Select the type of network (Wireless); then select your network from the Wireless Network list. You’ll be prompted to enter your network’s password, and then you’re ready to rock and roll.

![Network Settings](image)

Figure 3.3 Configuring the TV to connect to your Wi-Fi network.

To access the Smart Hub, press the Smart Hub button on the TV’s remote. This displays a First Screen bar of your most-used apps along the bottom of the screen. You can select an app from here or display the full Smart Hub by pointing to and then clicking the Smart Hub icon within this bar.
The Smart Hub consists of multiple screens for different types of entertainment:

- On TV, which offers suggestions for currently available programming on traditional television. You can use this page to quickly click to view specific programs or to display a more traditional onscreen programming guide.
- Samsung Apps, which is where you access all available web-based content, including streaming video services, social networks, and Skype.
- Games, which provides access to various online games (both free and paid).
- Multimedia, which enables you to access your own digital media stored elsewhere on your home network.
- Movies & TV Shows, which provides suggestions for streaming web-based content.

You’ll do most of your browsing via the Samsung Apps screen, shown in Figure 3.4. Here you find apps for all the major streaming services, including Netflix, Hulu Plus, Amazon Instant Video, HBO Go, Vudu, YouTube, Vimeo, Pandora, Spotify, TuneIn Radio, and more. There are also apps for Facebook, Twitter, and Skype (using the TV’s built-in camera and microphone). Click to open an app, sign into the service (if necessary), and then start watching or listening or communicating or whatever.

![SAMSUNG APPS](image)

Figure 3.4 *Browsing web-based media from the Samsung Apps screen.*

This screen comes preloaded with some of the more popular apps. You can download additional apps via the Samsung Store, which you also access from this screen.
Operation is via the TV’s included remote control, the accompanying smartphone/tablet app, voice command (the set has a built-in microphone, remember?), or hand gestures. This last one is an interesting application of the set’s built-in camera; just point and “grab” to select an item onscreen.

It’s all very high tech. The bottom line is that this set, like most other current-generation smart TVs, makes it relatively easy to view just about any type of programming you can think of. It takes a little time and effort to get everything set up properly, but then it’s a matter of pointing and clicking to get to what you want to watch.

Exploring Smart TV Set-Top Devices

If you have an older TV (or even a lower-priced newer one without built-in connectivity), you can add similar smart TV features by purchasing a streaming media set-top device. There are lots of these devices, with the most popular being the Roku models, Apple TV, WDTV Live, and Amazon Fire TV. All of these devices are small enough to hold in your hand and sell for $100 or less.

Consider the Roku 2, shown in Figure 3.5. This one’s smack dab in the middle of the Roku line (between Roku 1 and Roku 3, naturally), and sells for $69.99. It connects to your home network via Wi-Fi and to your TV via HDMI, and includes its own remote control. Configuration is as easy as navigating through a handful of setup screens.

![Figure 3.5](Roku 2 streaming media player.

Like all Roku models, the Roku 2 comes with a number of popular apps (they call them “channels”) preinstalled, including Netflix, Hulu Plus, Amazon Instant Video, HBO Go, Vudu, YouTube, Vevo, Pandora, Spotify, and TuneIn Radio. You can download a plethora of additional channels online for a variety of different
streaming services; because of its popularity, Roku has the most available third-party apps of any of the currently available smart TV devices. (Figure 3.6 shows some of the most popular Roku channels.)

![Figure 3.6 Navigating online content on the Roku 2.](image)

Note

If you want to access digital media stored elsewhere on your home network, install the Plex channel. Plex is a streaming media server application you install on the host PC, which then streams your media to the Plex app on your Roku box. (Learn more at www.plex.tv.)

If one of these little boxes is too big for you to deal with, consider a smart TV on a stick. These are streaming media devices in the form factor of a universal serial bus (USB) dongle, such as Google’s Chromecast, the Roku Streaming Stick, and Amazon’s Fire TV Stick. As you can see in Figure 3.7, these devices plug into any open HDMI connector on your TV and provide similar app functionality for web-based streaming media services. There are fewer cables to worry about, plus the cost is lower, ranging from $35 for the Chromecast to $49.99 for the Roku Streaming Stick. The Roku and Fire sticks come with their own remotes, while you operate the Chromecast with the accompanying smartphone app. It’s a nifty way to add smart TV functionality to any TV set that has an HDMI connection.
How to Choose a Smart TV or Device

If you’re considering the purchase of a new smart TV or device, there are several factors you want to consider—once you get past the basic TV-related stuff, of course.

First, determine whether you really want a new TV or whether a streaming media player connected to your old TV will do the job. You get pretty much the same functionality with a sub-$100 set-top box as you do a $1,000 top-of-the-line smart TV set, so the streaming media player route is a more affordable one. In addition, it’s a lot easier to upgrade (re: throw out and buy a new one) a $50 set-top box than it is to replace a $500 or more TV when things change. And things always change.

Whether you’re looking at a TV or a set-top box, you want to make sure that the device includes access to those streaming media services you use the most. While virtually all such devices include access to Netflix, Hulu, and YouTube, only a few let you connect to Amazon Instant Video. Most include access to Pandora and Spotify, but less-popular streaming music services aren’t always included. Check the available apps or channels to make sure you’re happy with the selection.

Next, consider whether or not you want to access media stored on your own home network. If all you do is stream movies and TV shows from the web, this functionality isn’t a big deal. But if you have a large library of digital music, recorded TV shows, or DVD rips, you want to make sure your new smart device can access and play everything you own. Check to see if the device offers streaming over a local network (typically via DNLA), and that it can play back media in the file formats
The Internet of Things

you use. This is particularly important if you have a lot of DVD rips, but can also trip you up with some less-popular digital music format—especially high-resolution formats, such as Flac and Windows Media Audio (WMA) Lossless.

Almost all of these TVs and devices offer Wi-Fi connectivity, which is fine for most households. If you prefer the reliability and speed of a wired connection, however, look for a device that includes Ethernet connectivity.

You should probably look at any additional features offered by a given device. Some smart TVs (but no current set-top boxes) come with built-in cameras and microphones for live video chatting and gesture- or voice-based operation. If this sort of thing is important to you, take it into account.

Now it’s time to consider how the thing works—the interface and basic operation. Make sure the device’s onscreen menu system makes sense to you, and that you can easily get to where you want to go. Make sure you like how the remote works, or that there’s a smartphone app available if you prefer using that. Also, if you have a universal remote for your larger home theater system, make sure it’s compatible with the device you’re considering.

Finally, there’s the price. A streaming stick like Chromecast is the most affordable option, and set-top boxes aren’t much more expensive. If you’re in the market for a true smart TV, however, be prepared to spend a little more for the “smart” features than you would for a non-connectible model.

And don’t forget the cost of the streaming services themselves. You’ll pay around $10 a month for Netflix, Hulu Plus, Spotify, and the like. While ten bucks doesn’t sound like a lot, it starts adding up when you subscribe to multiple services. Go with a half-dozen services and pretty soon you’re spending as much for your online entertainment as you would on a traditional cable bill.

How Secure Are Smart TVs?

Here’s a side issue worth considering. Since a smart TV or smart TV device connects to the Internet and has a CPU and an OS, it’s just as capable of being hacked as is your typical desktop or notebook computer. You don’t think of your smart TV as a computer, but it really is. And just like a computer can be hacked or attacked over the Internet, so can your smart TV.

Hacking Into the System

Why would anybody want to hack your smart TV? For starters, because it stores some interesting personal information, in the form of user names and passwords for all the services you subscribe to, such as Netflix and Hulu. And if you subscribe
to Amazon Instant Videos, that’s the user name and password for your entire Amazon account. See where that might lead?

And hacking doesn’t have to be that malicious. So-called man-in-the-middle attacks place the attacker between the Internet service or broadcaster and the smart TV, enabling the attacker to feed his own content to the victim’s screen. Instead of getting the service’s normal commercials, then, you may receive commercials from the attacker’s company. Not necessarily world endangering, but still not desirable.

In case this seems too theoretical, consider this real-world example of smart TV hacking. In June 2014, Columbia University researchers Yossef Oren and Angelos Keromytis exposed a flaw in the Hybrid Broadcast-Broadband Television Standard (HbbTV) used on millions of European smart TVs. HbbTV has been adopted by 90% of smart TV manufacturers in Europe to add interactive HTML content to terrestrial, cable, and satellite signals. Oren and Keromytis revealed that the HbbTV standard is vulnerable to large-scale exploitations that would be “remarkably difficult to detect.”

This so-called “red button” attack, named after the red button on a user’s remote control, would enable a hacker to intercept the sound, picture, and accompanying data sent by a broadcast. The attacker then becomes the broadcaster, feeding whatever content he wants to the victim—and receiving data sent by the victim to various smart TV apps. A hacker could use this exploit to display bogus commercials on a victim’s TV screen, or log into the victim’s Facebook account and post with that person’s name.

What this type of attack reveals is the paltry amount of security inherent in this new generation of connected devices. A smart TV (or any smart device) needs to be every bit as secure as your computer system, and most aren’t. Where your computer is protected (somewhat) by a firewall application, most smart TVs do not have even this basic level or protection. This leaves them vulnerable to attacks that wouldn’t be near as successful on a more secure personal computer.

An Eye Into Your Living Room

Then there are the security issues presented by those smart TVs that include built-in cameras. Imagine a man-in-the-middle attack where an attacker gains control of your TV’s camera, and uses it to spy on whatever you’re doing in your living room or bedroom. This could be simply voyeuristic or it could let the attacker know when you’re out of the house, thus setting you up for potential burglary.

Again, this isn’t a theoretical issue. Researchers Aaron Grattafori and Josh Yavor, security engineers at the firm ISEC Partners, recently discovered a security hole in some Samsung smart TVs (like the one we examined earlier in this chapter) that
enabled attackers to hack into the Skype application and remotely turn on and control the TV’s built-in camera. That’s scary stuff.

Now, to the company’s benefit, Samsung promptly sent out updates to its devices to patch this security flaw. And if you’re really concerned about your TV spying on you, you can always put duct tape over the built-in camera. Not very elegant, but effective.

Official Snooping

Unsolicited snooping doesn’t have to be the province of black hat hackers and the criminal element. It’s equally likely that your smart TV’s manufacturer is spying on you.

In November 2013, British tech blogger Doctorbeet discovered that his then-new LG smart TV was keeping track of everything he watched. Every time he changed the channel, the activity was logged and transmitted back to the LG mothership. LG then knew every program he watched and could use that data however it saw fit.

LG calls this “service” Smart Ad, because it sells the collected data to advertisers. According to LG, Smart Ad “analyses user’s favorite programs, online behavior, search keywords, and other information to offer relevant ads to target audiences.” Hoo boy.

Now, there’s a setting on that particular LG model called Collection of Watching Info. It’s toggled on by default, no surprise, and most people would never get that deep into the menu system to turn it off. Well, Doctorbeet did tiptoe into the menus and deactivated this setting. Unfortunately, it had no effect on the data collection, which continued unabated. So much for viewer choice.

You know what’s even worse? This information is sent back to LG in unencrypted form. That means any reasonably tech-savvy monkey could intercept the data and know what programs you’re watching when. That could be relatively harmless, unless you’re watching something that you don’t want your spouse or employer or pastor to know about. Scary, eh?

By the way, LG later responded to Doctorbeet’s publicizing this issue by changing their terms of service, but not in a good way. Now, if you opt not to agree to this invasion of privacy, LG disables most of the “smart” functionality in your smart TV. That’s one way of dealing with the issue, I suppose, but it’s not really 21st-century privacy savvy.
Integrating Smart TVs into the Internet of Things

Okay, so it’s pretty obvious that the current generation of smart TVs has very little to connect it to the Internet of Things. Just because a TV or set-top device lets you watch both broadcast and Internet-based programming doesn’t make it hyper-intelligent or even moderately clever. It just adds more types of programming to what is still more or less a non-participatory device. A TV that can play old episodes of *Doctor Who* on Netflix is still just a TV.

For a smart TV to become truly smart, it needs to do more. Not surprisingly, there are people working on this.

The first thing smart TV manufacturers are likely to do is make it easier to control the smart TVs themselves. Let’s face it, picking through the choices on Hulu or searching for your favorite movie on Netflix isn’t easily accomplished with a traditional four-arrow remote control. Some manufacturers have experimented with including a full-fledged keyboard in a handheld remote, but that’s a little too cumbersome. A better solution might be a touchscreen tablet-like controller, a remote app on a smartphone or iPad, or even Siri-like voice control. Samsung, if you recall, uses its built-in camera to enable rudimentary gesture commands, which is another way to go. Whatever the approach, the smart TV companies need to make it easier to find all the various programming they enable.

Beyond the control issue, future generations of smart TVs are likely to get smarter about what you like to watch. These new smart TVs will collect data about what you watch and when (and, if you have multiple viewers in the same household, which you probably do, what each viewer likes to watch) and make assumptions about your future viewing habits. Even better, your smart TV might connect to your Facebook or Twitter account to discover what shows your friends are watching.

All this data will be assembled and collated, and your smart TV will start making recommendations for future viewing. The set might even go the next step and create a new “just for you” screen with one-click access to the recommended programming, or just set the onboard DVR to record these programs for your viewing convenience. With your smart TV making smart choices about what you want to watch, you’ll no longer have to deal with the increasingly Byzantine program guide. You won’t have to think about what you want to watch at all; your smart TV will do your thinking for you.

Of course, this type of viewing information can go both ways, so expect your smart TV to feed details of what you watch back to the programming sources—and, more importantly, their advertisers. (As you’ve read, this is already happening with some
manufacturers, such as LG.) This will let them feed more relevant commercials to you and other viewers, so those hip twenty-somethings in the audiences will no longer be subjected to commercials for miracle socks and reverse mortgages. It’s all about targeted advertising, based on the data collected by your smart TV.

Future smart TVs may also use their Internet connectivity to overlay related information on the main viewing screen. If you’re watching a sporting event, for example, you may see team or player stats superimposed on the screen, or displayed in a side window. If you’re viewing a classic movie, you might see bios of the director and stars, with links to other similar movies you might like.

In addition, expect smart TVs to include more interactive chat capabilities. When you’re watching a movie or show, you’ll be able to tweet or post to Facebook about what you’re watching, and participate in group chats about the show. These might be video chats, conducted in a pop-up window and enabled by your set’s built-in camera.

Future iterations of smart TV will turn the TV set into a hub for a variety of household activities. For example, you might feed video from your home’s security cameras to your smart TV, so you can see who is ringing your doorbell or if your baby is asleep in her crib. (To be fair, this capability exists today in a lot of high-end, whole-house audio/video/security systems but is sure to trickle down to more affordable systems in the future.)

You can use that big TV screen to view all sorts of information. Why not click an onscreen button to view a graph of your home’s water or energy usage? Or display a map that shows where all the members of your family are at the moment? Or a diagram that shows which rooms are occupied and where the lights are still on? Or a live feed from inside your refrigerator that tells you if you have a cold beer waiting for you?

Imagine using your living room TV to control various household operations. Just point and click at the screen to turn on the lights in a given room, start the oven or dishwasher, even enable your outdoor sprinkler system. You’re in front of that screen a lot of hours during the day; why not use it as an interactive household controller?

There’s no reason why your smart TV can’t be the main controller for all your household operations. It’s right there in front of your couch, where you’re no doubt sacked out. There’s no reason to get up to turn up the heat or turn down the lights; you can do it all from the controller interface built into your smart TV.

And your TV can alert you when things are amiss anywhere in your house or on your property.

The security angle is key. Not only can you use your smart TV to view real-time data collected from your home security system and live feeds from various security
cameras, it can also interact with other devices to provide more intelligent analyses. Imagine a system that uses face recognition to learn what each member of your family looks like; the system could then look at the faces in the security cameras and alert you when a stranger is at the door or in the house. (And, conversely, not bother you if it’s a known person raiding the fridge.)

In short, there’s a lot more that your smart TV can do than what it’s capable of doing today. Just wait for it.

SMART TVS AND YOU

Now that you know all about the past, present, and future of smart TVs, it’s time to decide whether a smart TV or smart TV device fits in your current lifestyle. Should you buy a smart TV today—or wait for some future iteration?

Let’s face it, today’s smart TVs are just a way to obtain more and varied programming than you get from your cable or satellite company. Whether you want to completely cut the cable cord or supplement your 400+ cable channels with a similarly large assortment of Internet-streaming sources, a smart TV lets you do it.

The primary selling point of today’s smart TVs is that they integrate programming across multiple sources. No longer are you limited to just broadcast or cable programming; with a smart TV, you can easily switch from watching your daily fix of Jimmy Fallon on *The Tonight Show* on network television to binge-watching the latest season of *Orange Is the New Black* on Netflix.

If you want the additional programming that’s available online, a smart TV is a better way to go than watching the same programs on your notebook or desktop computer screen. Yes, you can view Netflix and Hulu on your handy dandy PC or tablet or smartphone, but movies and TV shows are made to be watched on big screens. Computer- or tablet-based viewing, while fine for college students in their dorm rooms, doesn’t cut it for a modern family accustomed to widescreen entertainment.

So if you’re a Netflix or Amazon or YouTube junkie, you need some sort of smart TV device. That doesn’t have to be a literal smart TV, of course; it could also be a smart TV device in the form of a set-top box or streaming media stick. These add-on devices are a lot lower-priced than even a 32” smart TV and can easily be replaced when they break or become outmoded. As long as you have an open HDMI connector on your TV, it’s easy to connect one of these little devils.

That said, a full-fledged smart TV can offer more functionality than what you get in a set-top box or dongle. A built-in camera lets you use your smart TV for Skype
and other video chat, and that’s kind of cool to do from your living room couch. In addition, easy as the add-on devices are to use, it’s just a little simpler to do everything from the TV itself. Some people value that ease of use.

Of course, if you’re happy with broadcast or cable television and don’t care about Netflix and those other services, a smart TV doesn’t make a lot of sense. Save your bucks and stick to a conventional TV, at least for the nonce.

Flash forward three or five years, however, and those future smart TVs will offer a lot more functionality than just an easy way to watch shows on Netflix. Truly smart viewing recommendations, interfacing with and controlling other household devices and so forth, offer the type of promise inherent with the Internet of Things. When your smart TV becomes more than just a passive viewing device, things get really interesting—and worth your active consideration.
Index

Numbers

2.4GHz band, 28
5GHz band, 28
6LoWPAN, 265 - 267

A

ACA (Affordable Care Act), 139
action cams, 129
activity trackers, 122-125
actuators, 86
addresses
 host addresses, 26
 IP addresses, 26-27
Advanced Driver Assistance System (Continental), 169
Advanced Metering Infrastructure (AMI), 278
AeroVironment Raven, 187
Affordable Care Act (ACA), 139
agricultural Internet of Things, 286-289
 pest control, 286-287
 smart irrigation, 287-288
 tractor technology, 287-289
AiQ Smart Clothing, Inc., 126, 141
Air Quality Egg, 291
air quality monitors, 102-103
Airbus Concept Cabin, 200
aircraft
drones. See drones
 impact on consumers, 201
 military aircraft, 206-208
smart cabins, 200
smart maintenance,
 199-200
smart skin, 199
smart structures, 198-199
All Covered, 37, 39
Allan, Alasdair, 113
AlphaDog, 213-214

Amazon
 Echo, 103-104, 113
 Fire TV, 51-52
 Kiva robots, 259-260
 Prime Air, 192-193
 Redshift, 37, 40
ambient intelligence, 9
AMI (Advanced Metering Infrastructure), 278
analyzing big data, 38
Android Auto, 165
Android TV, 47
Android Wear, 120-121, 141
Apple, 40
 Apple Pay, 151-152
 Apple TV, 51
 Apple Watch, 121-122, 141
 CarPlay, 163-164
 HealthKit, 138, 242
 iBeacon, 150
appliances. See also TVs
 choosing, 73-75
 cost, 73-74
 dishwashers, 72-73
 energy savings, 65
 explained, 61-62
 global sales of, 73
 maintenance, 66-67
 monitoring, 64-65
 operation, 62-64
 ovens, 69-72
 refrigerators, 67-69
apps
 Brillion, 62-63
 Dossia Health Manager, 242-243
 FollowMyHealth, 243
 HomeChat, 63-64
 intelligent applications, 19, 36
 My Smart Appliance, 64-65
 Smart Diagnosis, 66-67
armor (military), 214-217
Asimov, Isaac, 306
ASTM F2276-2009, 237-238
Atlas robot (DARPA), 217-218
Audi, 169
August, 99, 113
Autographer, 130, 141
autonomous fighting soldiers, 217-219
Autonomous Tractor Company Spirit, 289
autonomy and control issues, 305
autos. See cars
Ava 500 Video Collaboration Robot, 252-253

B

Bali, 90, 113
BAM Labs Smart Bed Technology Solution, 238-240
barcoded prescription containers, 232
base stations, 31
BeClose, 231
Belkin WeMo Smart LED Bulbs, 89, 113
benefits of IoT (Internet of Things), 13-14
big data, 10, 37
 data analysis, 38
 data harvesting, 37
 data storage, 37-38
 problems with, 304-305
BigBelly, 274-275
BioMan t-shirt, 126
biometric smartware, 126, 142
biomimetics, 199
Birdi, 102-103, 113
BlackSocks Smarter Socks, 135, 141
Blitzer railgun, 210-211
Bluetooth, 30-31
Bluetooth Smart, 31
Bluetooth Special Interest Group, 40
BodyMan shirt, 141
Boeing GPU-31 Joint Direct Attack Munition (JDAM), 208
bomb-squad robots, 212
bombs, 208-209
Boston Dynamics LS3 (Legged Squad Support System), 213-214
Bradbury, Ray, 81
bridges, 265
Brillion app, 62-63
bring your own device (BYOD), 248
building IoT (Internet of Things), 17
data sharing automation, 18-19
device proliferation and connection, 18
intelligent applications, 19
bullets, 209-211
bureaucratic challenges to global IoT, 294-295
buses, 86
business technology. See EIoT (Enterprise Internet of Things)
BYOD (bring your own devices), 248
C

- cabins (aircraft), 200
- Cadillac, 169
cameras
 - smart security cameras, 100
 - in smart TVs, 55-56
 - wearable cameras, 129-130
CarPlay, 163-164
cars, 157-158
 - climate control, 165-166
 - entertainment systems, 163-165
 - hacking, 166-167
self-driving cars, 167-172
 - consumer options, 177-178
 - explained, 167-168
 - Google self-driving car, 170-172
levels of automation, 170
liability issues, 176-177
pros and cons, 172-176
technology in development, 168-170
smart communications, 162-163
smart diagnostics, 160-161
smart driving systems, 161-162
smart functionality, 158-159

- Casio OmniSync STR1000 fitness watch, 123, 141
cells, 31
cellular networks, 31-32
centralized medical records, 224-225
Chamberlain garage door opener, 97
checkout process (online shopping), 151-153
choosing
 - smart appliances, 73-75
 - smart TVs, 53-54, 59-60
Chromecast, 52
Chui, 100, 113
CIA drones, 187-188
Cisco, 40
city technology
 - benefits of, 279-280
 - electric grid and energy management, 275-279
 - explained, 264
 - parking, 269
 - public lighting, 268-273
 - roads and traffic management, 268-273
smart communication and emergency management, 267-268
smart infrastructure, 265-267
utilities, 274-275
 - waste management, 274-275
 - water management, 275

civilian drones, 189
CleanSpeak technology (GE), 71-72
climate change, 291-292
climate control (cars), 165-166
clothing. See wearable tech
Cloudera Enterprise, 37, 40
Cognitive Technology Threat Warning System (CT2WS), 216-217
collision and liability issues
 - drones, 196-197
 - self-driving cars, 176-177
communications
 - emergency management, 267-268
 - in smart cars, 162-163
 - Concept Cabin (Airbus), 200
 - Cone, Robert, 212
 - Connected by TCP lighting system, 88-90
connectivity. See smart connectivity
Continental Advanced Driver Assistance System, 169
Continental Emergency Steer Assist, 168
Contour+2, 129, 141
ContourRoam2, 129, 141
Control4, 106-107, 113
controllers, 86
controlling smart homes, 106
Control4, 106-107
Crestron, 107
HomeSeer, 108
Iris, 108-109
mControl, 109
open source controllers, 113
Quirky, 109
smart home technology websites, 113-114
SmartThings, 109-110
Vera, 110
Vivint, 111
WeMo, 111
Wink, 112
X10 system, 112-113
convenience of smart homes, 78-79
COOKOO Connected Watch, 121, 141
Corning, 92
cost
 - smart appliances, 73-74
 - smart lighting, 90
 - smart smoke detectors, 102
 - smart TVs, 53
Crestron, 107, 113
cruise control, 161
CT2WS (Cognitive Technology Threat Warning System), 216-217
Cuff, 129, 141
CurrentC, 152
customer data collection. See
cybernetic soldiers, 216-217

data collection, 35-36, 298-302
big data, 37
data analysis, 38
data harvesting, 37
data storage, 37-38
medical devices, 226-232
security issues, 56
thermostats, 98
wearable tech, 136-141
data harvesting, 37
data ingestion, 37
data security, 302-303
data sharing between devices, 18-19
data storage, 37-38
data transfer, 24-25
DBaaS (database as a service), 37
Defense Advanced Research Projects Agency (DARPA)
Atlas robot, 217-218
delivery drones, 153, 191-194, 284-285
developing intelligent applications, 19
devices. See also specific devices
(for example, appliances)
as building blocks for larger devices, 20-21
common components, 21-22
explained, 20
store and forward capability, 22
diagnostics
smart appliances, 66-67
smart cars, 160-161
diapers, Smart Diapers, 135
Digital Health Feedback System, 234
Digital Network Living Alliance (DNLA), 45
digital payment systems, 151-153
dishwashers (smart), 72-73
DNLA (Digital Network Living Alliance), 45
Doctorbeet, 56
Domino’s DomiCopter, 192
doorbells, 100
Dossia PHR service, 242-243
driving systems, 161-162
drones, 181
civilian drones, 189
collision and liability issues, 196-197
delivery drones, 153, 191-194, 284-285
explained, 179-184
FAA regulations, 195-196
functional classification, 184
helicopters, 180
impact on consumers, 201
intelligence drones, 187-188
military drones, 185-187, 206-208
privacy issues, 198
quadrotor helicopters, 181
range classification, 184
security issues, 197
smart technology, 190-191
surveillance drones, 188-189
dryers, 71-72
dynamic glass, 91-92

E

Echo (Amazon), 103-104, 113
Ecobee3 Smart Thermostat, 95, 113
ECUs (engine control units), 159
efficiency of smart homes, 81
EIoT (Enterprise Internet of Things), 247-248
impact on workers and consumers, 261-262
inventory management, 255-261
benefits of smart systems, 255-256
smart management, 260-261

F

FAA regulations for drones, 195-196
factories, 256-257
FarmSight technology (John Deere), 288-289
Fire OS, 47
Fire TV, 51-52
Firefox OS, 47
Fitbit Zip, 124
fitness trackers, 122-125
Flac, 54
FollowMyHealth, 243
Freedom for Kids, 128, 142
Freescale Home Health Hub, 229-230
fridges, 67-69
functional classification (drones), 184
furniture, 87-88
future of connectivity, 6
FX Luminaire, 89, 113

G

G Watch, 142
Galaxy Gear (Samsung), 119-120, 142
Garmin VIRB Elite, 129, 141
Garmin Vivofit, 123, 141
GBU-39 Small-Diameter Bomb (SDB), 208
GE (General Electric)
Brillion app, 62-63
CleanSpeak technology, 71-72
smart ovens, 69-70
smart washers/dryers, 71-72
General Atomics
Blitzer railgun, 210-211
MQ-1 Predator, 186
MQ-9 Reaper, 206
General Electric. See GE (General Electric)
glass, smart/dynamic, 91-92
global IoT, 281-283
agricultural Internet of Things, 286-289
pest control, 286-287
smart irrigation, 286
tractor technology, 287-289
challenges, 292-295
bureaucratic and political challenges, 294-295
security challenges, 293-294
technological challenges, 293
cross-country interconnectivity, 283-284
environmental Internet of Things, 289-291
impact on consumers, 295-296
rural Internet of Things, 284-285
glow-in-the-dark road markings, 271
GlowCap (Vitality), 233
Goji Smart Lock, 99-100, 113
Google, 40
Android Auto, 165
Android Wear, 120-121
Chromecast, 52
Google Fit, 138
Google Glass, 131-134, 141
Google Health, 245
Google Pay, 152
Project Wing, 193-194
self-driving cars, 170-172
GoPro, 129, 141
government surveillance, 300-301
GPS-enabled devices, 128-129
GPU-31 Joint Direct Attack Munition (JDAM), 208
Grattafiori, Aaron, 55
guns, 209-211

H

hacking
smart cars, 166-167
smart TVs, 54-55
harvesting data, 37
HbbTV (Hybrid Broadcast-Broadband Television Standard), 55
HDT Global Dynamics Protector, 212-213
Health Insurance Portability and Accountability Act (HIPAA), 137
healthcare. See IoT-MD (Internet of Things for Medical Devices)
HealthID Band, 126, 142
HealthKit (Apple), 138, 242
Healthsense eNeighbor, 230
HealthVault (Microsoft), 244-245
helicopters, remote-controlled, 180
Hewlett Packard (HP) webOS, 47-48
HIPAA (Health Insurance Portability and Accountability Act), 137
holographic technology, 253
Home Health Hub (Freescale), 229-230
home technology, 77
actuators, 86
Amazon Echo, 103-104
buses, 86
buying tips, 114-115
controllers, 86
controlling, 106
Control4, 106-107
Crestron, 107
HomeSeer, 108
Iris, 108-109
mControl, 109
open source controllers, 113
Quirky, 109
SmartThings, 109-110
Vera, 110
Vivint, 111
WeMo, 111
Wink, 112
X10 system, 112-113
convenience, 78-79
efficiency, 81
furniture, 87-88
history of, 81-83
home automation, 78
interfaces, 86
levels of smart features, 83-85
lighting, 88-90
monitors, 100-103
air quality monitors, 102-103
smoke detectors, 101-102
networks, 87, 104-106
INSTEON, 105
ZigBee, 106
Z-Wave, 106
proprietary networking technologies, 81
security issues, 80
security systems, 98-100
smart locks, 99-100
smart security cameras, 100
sensors, 85-86
smart home technology websites, 113-114
thermostats, 92-98
data collection, 98
Ecobee3 Smart Thermostat, 95
Honeywell Lyric Thermostat, 94
Honeywell Wi-Fi Smart Thermostat, 94
Nest Learning Thermostat, 92-94, 96-97
windows, 90-92
motorized window coverings, 90-91
smart glass, 91-92
HomeChat app, 63-64
HomeSeer, 108, 113
Honeywell Lyric Thermostat, 94
Nest Protect, 101-102
website, 113
Wi-Fi Smart Thermostat, 94
Hortonworks, 37
hospitals, 234-240. See also IoT-MD (Internet of Things for Medical Devices)
device connectivity, 235-236
equipment, 238-240
Integrated Clinical Environment (ICE) standard, 237-238
patient monitoring, 235-236
host addresses, 26
HP (Hewlett Packard) webOS, 47-48
hub-and-spoke configuration, 23-24
Hue Connected Bulbs (Philips), 90
HULC (Human Universal Load Carrier), 215
HunterDouglas, 90, 113

Hybrid Broadcast-Broadband Television Standard (HbbTV), 55
Hyundai Livart, 87

I-Bell, 100, 113
iBeacon, 150
IBM, 40
ICE (Integrated Clinical Environment) standard, 237-238
IEEE (Institute of Electrical and Electronics Engineers), 29
iHealth BP7, 126, 142
importance of IoT (Internet of Things), 12-13
Independa Remote Care, 231-232
infrastructure, 265-267
INSTEON, 33, 40, 105, 113
Institute of Electrical and Electronics Engineers (IEEE), 29
insurance companies, wearable tech and, 139-140
Integrated Clinical Environment (ICE) standard, 237-238
patient monitoring, 235-236
impact on consumers, 245-246
personal health record (PHR), 241-242
Apple HealthKit, 242
Dossia PHR service, 242-243
FollowMyHealth, 243
MediConnect, 243-244
Microsoft HealthVault, 244-245
PHR (personal health record), 224-225
prescription and medication tracking systems, 232-234
smart medical devices and monitoring, 226-232
wearable healthcare devices, 126-127
IoTera, 40
IP addresses, 26-27
IPv4, 27
IPv6, 27
IPv6 over Low power Wireless Personal Area Networks (6LoWPAN), 265-267
Iris, 108-109, 114
iRobot, 113
Ava 500 Video Collaboration Robot, 252-253
RP-VITA Remote Presence Robot, 240
irrigation, 286-287
ISEC Partners, 55
J

Jawbone, 97, 123, 142
JDAM (Joint Direct Attack Munition), 208
Jet (Recon), 132, 142
Jobs, Steve, 121
John Deere FarmSight technology, 288-289
Joint Direct Attack Munition (JDAM), 208

K

Keromytis, Angelos, 55
Kiva robots, 259-260
Kurzweil, Ray, 306
Kwikset, 99, 114

L

lane assist, 161
laser funs, 211
Learning Thermostat (Nest), 92-98
LED lighting, 89
legal issues. See liability issues
Legg, Ashley, 68
Legged Squad Support System, 213-214
levels of automation, 170
LG Electronics, 47-48
G Watch, 142
HomeChat app, 63-64
Smart Ad, 56
Smart Diagnosis app, 66-67
Smart Grid technology, 65
liability issues
drones, 196-197
self-driving cars, 176-177
Libelium Smart Water, 290
LIDAR, 167
lifelogging, 130
LIFX, 97
lighting
home lighting, 88-90
public lighting, 268-273
road lights, 271
wind-powered lighting, 272
Link Labs, 35, 40

M

Littmann Electronic Stethoscope, 238-239
Lockheed Martin Human Universal Load Carrier (HULC), 215
Lockitron, 99, 114
locks, 99-100
Logbar Inc. Ring, 134-135, 142
Logitech Harmony remote, 97
Lok8U Freedom for Kids, 128, 142
Lowes, Iris, 114
Lowes, Iris home system, 108-109
LS3 (Legged Squad Support System), 213-214
Luno Lift, 126, 142
LumoBodyTech, 142
Luna mattress cover, 88, 114
Lutron, 89-90, 114
Lyric Thermostat (Honeywell), 94

Microsoft, 40
HealthVault, 244-245
Microsoft Band, 125
military aircraft, 206-208
military drones, 185-187, 206-208
military technology. See warfare
Misfit, 123, 142
monitors, 100-103
air quality monitors, 102-103
appliances, 64-65
medical devices, 226-232
smoke detectors, 101-102
Moto 360 smartwatch, 142
motorized window coverings, 90-91
MQ-1 Predator, 186
MQ-9 Reaper, 206
MSPs (managed service providers), 37
My Smart Appliances app, 64-65
MyriaNed, 266

N

Narrative Clip, 130, 142
Navia, 169
near-field communication (NFC), 150
Nest Learning Thermostat, 72, 92-94, 114
Nest Protect, 101-102
networks, 104-106
cellular networks, 31-32
data transfer, 24-25
INSTEON, 105
IP addresses, 26-27
M2M (machine-to-machine) networks, 34
mesh networks, 33-34
PANs (personal area networks), 30
peer-to-peer networking, 30
proprietary cellular networks, 34-35
smart homes, 87
traditional networks, 23-24
WSN (wireless sensor network), 265-267
ZigBee, 106
Z-Wave, 106
NFC (near-field communication), 150
Nike+ FuelBand, 125
Nike+ SportWatch, 125
Notifier (Martian Watches), 121, 142

Obamacare, 139
OBD (On-Board Diagnostic) systems, 167
office technology, 247-248
connectivity, 248-250
environment, 250-251
virtual meetings, 252-253
OmniSync STB1000 fitness watch (Casio), 123, 141
OMsignal, 126, 142
On-Board Diagnostic (OBD) systems, 167
On-Ramp Wireless, 35, 40
online shopping, 145
Apple iBeacon, 150
delivery by drone, 153
digital payment systems, 151-153
eliminating need to shop, 146-147
inventory management, 153-154
NFC (near-field communication), 150
personalized shopping experience, 147-149
privacy and security issues, 154-155
RFID (radio frequency identification) tags, 149
open source controllers, 113
operating systems (OSs) for smart TVs, 47-48
Oren, Yossef, 55
OSs (operating systems) for smart TVs, 47-48
ovens, 69-71

Palm webOS, 47-48
PANs (personal area networks), 30
parking assist, 161-162, 269
Parrot Bebop Drone, 182-183
payment systems, 151-153
Pebble Smartwatch, 121, 142
peer-to-peer networking, 30
personal area networks (PANs), 30
personal health record. See PHR (personal health record)
personalized shopping experience, 147-149
pest control, 286-287
Petraeus, David, 300-301
Philips Hue Connected Bulbs, 90, 114
PHR (personal health record), 224-225, 241-242
Apple HealthKit, 242
Dossia PHR service, 242-243
FollowMyHealth, 243
MediConnect, 243-244
Microsoft HealthVault, 244-245
Pico Electronics X10, 82
piconet, 30
Pixie Scientific Smart Diapers, 135, 142
Plex channel, 52
PocketFinder Personal GPS Locator, 128, 142
Polar, 123
political challenges to global IoT, 294-295
prescription tracking systems, 232-234
Prime Air (Amazon), 192-193
priority lanes for electric vehicles, 272
privacy issues, 298-302
drones, 198
Google Glass, 133
online shopping, 154-155
wearable tech, 136-141
Privacy Rights Clearing House, 302
profiting from IoT (Internet of Things), 38-39
Project Wing (Google), 193-194
proliferation of smart devices, 18
proprietary cellular networks, 34-35
Protector (HDT Global Dynamics), 212-213
Proteus Digital Health Feedback System, 234
public lighting, 268-273
Pulse O2, 123, 142
Qardio Qardiarm, 126, 142
QR (Quick Response) code, 135, 152
quadrotor helicopters, 181
quads, 26
Qualcomm Toq, 40, 121, 142
Quick Response (QR) code, 135, 152
Quirky, 109, 114
radio frequency identification (RFID) tags
inventory management, 153-154, 256-257
medication tracking systems, 232-234
online shopping, 149
radio frequency (RF) signals, 27-28
radio-controlled aircraft, 179-184
radios, 21
railguns, 210-211
range classification (drones), 184
Raven drone, 187
Raytheon GBU-39
Small-Diameter Bomb (SDB), 208
Raytheon XOS, 215
Razer Nabu, 134, 142
Recon Jet, 132, 142
Recon Snow2, 132, 142
records (medical), centralizing, 224-225, 241-242
Apple HealthKit, 242
Dossia PHR service, 242-243
FollowMyHealth, 243
records (medical), centralizing

MediConnect, 243-244
Microsoft HealthVault, 244-245
red button attacks, 55
refrigerators, 67-69
Remote Care (Independa), 231-232
Responsive Surface Technology
ReST bed, 88, 114
retail technology, 253-255
returns (store), 255
RF (radio frequency) signals, 27-28
RFID (radio frequency identification) tags
inventory management, 153-154, 256-257
medication tracking systems, 232-234
online shopping, 149
Ring, 100, 114, 134-135, 142
road lights, 271
roads and traffic management, 268-273
roadway displays, 272-273
Robin, 251
robot soldiers, 212-219
armor, 214-217
autonomous fighting soldiers, 217-219
current technology, 212-214
cybernetic soldiers, 216-217
Roku OS, 47
Roku streaming media player, 51-52
Roomba, 113
Rose, Marshall T., 113
routers, 23-24
RP-VITA Remote Presence Robot, 240
rural Internet of Things, 284-285

S

SageGlass, 92, 114
SAMI (Samsung), 138
Samsung, 40
Galaxy Gear, 119-120, 142
SAMI, 138
UN50H6350 smart TV, 48
Schlage, 99, 114
SDB (Small-Diameter Bomb), 208
security, 302-304
data security, 302-303
drones, 197
global IoT security challenges, 293-294
online shopping, 154-155
security cameras, 100
security systems, 98-100
smart locks, 99-100
smart security cameras, 100
smart homes, 80
smart TVs, 54-56
camera issues, 55-56
customer data collection, 56
hacking, 54-55
system security, 303-304
wearable tech, 136-141
workplace security, 250
selecting. See choosing
self-driving cars, 167-172
consumer options, 177-178
explained, 167-168
Google self-driving car, 170-172
levels of automation, 170
liability issues, 176-177
pros and cons, 172-176
technology in development, 168-170
self-driving tractors, 289
Sengupta, Partho, 253
seniors, smart medical devices and monitoring, 230-232
Sensor Revolution, 9
sensors in smart homes, 85-86
Serena, 90, 114
set-top smart TV devices, 51-52
sharing data between devices, 18-19
Shine monitor, 142
SHM (structural health monitoring) systems, 199
shopping. See online shopping
Sigfox, 34-35, 40
Singularity University, 285
SK Telecom, 87, 114
skin (aircraft), 199
SkyBell, 100, 114
Small-Diameter Bomb (SDB), 208
Smart Ad (LG), 56
Smart Bed Technology Solution (BAM Labs), 238-240
smart connectivity, 7-9
ambient intelligence, 9
appliances
big data, 10, 37
data analysis, 38
data harvesting, 37
data storage, 37-38
capabilities of, 7-9
cars, 157-158
climate control, 165-166
communications, 162-163
consumer options, 177-178
diagnosics, 160-161
driving systems, 161-162
entertainment systems, 163-165
hacking, 166-167
self-driving cars, 167-177
smart functionality, 158-159
city technology
benefits of, 279-280
communication and emergency management, 267-268
electric grid and energy management, 275-279
explained, 264
infrastructure, 265-267
parking, 269
public lighting, 268-273
roads and traffic management, 268-273
utilities, 274-275
data collection, 35-36
devices. See devices
drones. See drones
EIoT (Enterprise Internet of Things), 247-248
impact on workers and consumers, 261-262
inventory management, 255-261
office technology, 248-253
store/retail technology, 253-255
emergence of, 11-12
explained, 6-9
future of, 6
global connectivity. See global IoT
home technology, 77
actuators, 86
Amazon Echo, 103-104
buses, 86
buying tips, 114-115
controllers, 86
controlling, 106-113
convenience, 78-79
efficiency, 81
furniture, 87-88
history of, 81-83
home automation, 78
interfaces, 86
levels of smart features, 83-85
lighting, 88-90
monitors, 100-103
networks, 87, 104-106
proprietary networking technologies, 81
security issues, 80
security systems, 98-100
sensors, 85-86
thermostats, 92-98
windows, 90-92
intelligent applications, 19, 36
IoT development
data sharing automation, 18-19
device proliferation and connection, 18
IoT-MD (Internet of Things for Medical Devices), 224
benefits of, 225-226
benefits of smart technology, 225-226
centralized records, 224-225
device connectivity, 224
medical records, centralizing, 224-225
smart medical devices and monitoring,
226-232
wearable healthcare devices, 126-127
networks. See networks
online shopping, 145
Apple iBeacon, 150
delivery by drone, 153
digital payment systems, 151-153
eliminating need to shop, 146-147
inventory management, 153-154
NFC (near-field communication), 150
personalized shopping experience, 147-149
privacy and security issues, 154-155
RFID (radio frequency identification) tags, 149
overview, 15-17
potential problems
autonomy and control issues, 305
big data issues, 304-305
consumer response, 307-308
privacy issues, 298-302
security issues, 302-304
smart machine issues, 306-307
profiting from, 38-39
technology. See technology TVs
capabilities, 46-47
choosing, 53-54, 59-60
cost, 53
explained, 43-44
features, 44-46, 48-51
integrating into IoT (Internet of Things), 57-59
OSs (operating systems), 47-48
security, 54-56
set-top devices, 51-52
wired versus wireless connections, 49
warfare
bombs, 208-209
history of, 204-206
impact of smart technology on civilians, 220-221
military drones, 206-208
robot soldiers, 212-219
strategy, 219-220
weapons, 209-211
wearable tech
benefits of, 143-144
cameras, 129-130
explained, 117-119
eyewear, 130-134
fitness trackers, 122-125
GPS-enabled devices, 128-129
healthcare devices, 126-127
privacy and security issues, 136-141
Razer Nabu, 134
Ring, 134-135
Smart Diapers, 135
Smartwatches, 135
Smarter Socks, 135
wearable tech company websites, 141-142
wireless technologies, 27
Bluetooth, 30-31
Bluetooth Smart, 31
cellular networks, 31-32
comparison of, 35
mesh networks, 33-34
proprietary cellular networks, 34-35
RF (radio frequency) signals, 27-28
Wi-Fi, 29-30
Smart Diagnosis app, 66-67
Smart Diapers, 135, 142
Smart Front Load Washer and Dryer (Whirlpool), 71-72
Smart Grid technology (LG), 65
Smart Transportation Systems (STS), 270
Smart Watch SW2 (Sony), 121
smart watches, 119
Android Wear, 120-121
Apple Watch, 121-122
less fully featured smart watches, 121
Samsung Galaxy Gear, 119-120
Smart Water, 290
Smarter Socks, 135, 141
SmartThings, 109-110, 114
smoke detectors, 101-102
Snow2 (recon), 132, 142
socks, Smarter Socks, 135
solar roadways, 272
soldiers, robotic, 212-219
Somfy, 90, 114
Sony, 142
POV Action Cam, 129
Smart Watch SW2, 121
Spensa Technologies Z-Trap, 287
Spirit (Autonomous Tractor Company), 289
spy cams, 130
Spy Spot TT8850 Micro Tracker, 128, 142
spying, 300-301
Square, 151
stethoscopes, Littmann
Electronic Stethoscope, 238-239
store and forward capability, 22
store/retail technology, 253-255
storing big data, 37-38
strategy (warfare), 219-220
Streetline, 269
structural health monitoring (SHM) systems, 199

structures (aircraft), 198-199
STS (Smart Transportation Systems), 270
SunFriend, 126, 142
surveillance drones, 188-189
switchable glass, 91-92
system security, 303-304

TCP lighting, 114
TCP/IP (Transmission Control Protocol/Internet Protocol), 24
technological challenges of global IoT, 293
technology
big data, 37
data analysis, 38
data harvesting, 37
data storage, 37-38
consumer impact, 40
data collection, 35-36
data sharing automation, 18-19
device proliferation and connection, 18
intelligent applications, 19, 36
networks. See networks overview, 15-17
websites, 39-40
wireless technologies, 27
Bluetooth, 30-31
Bluetooth Smart, 31
Cellular networks, 31-32
comparison of, 35
mesh networks, 33-34
proprietary cellular networks, 34-35
RF (radio frequency) signals, 27-28

Teller, Astro, 133
thermostats, 92-98
data collection, 98
Ecobee3 Smart Thermostat, 95
Honeywell Lyric Thermostat, 94
Honeywell Wi-Fi Smart Thermostat, 94

Nest Learning Thermostat
compatable devices, 96-97
explained, 92-94

Thing System, 113
“things.” See devices
ThinQ smart appliances, 69
Three Laws of Robotics, 306
Tizen, 47
Toq (Qualcomm), 121, 142
Toyota, 169
Trackimo GPS Tracker, 128, 142
tracking
fitness/activity, 122-125
people, 128-129
TrackingPoint, 210
tractor technology, 288-289
Trade Show Holograms, 253
traffic management, 268-273
transferring data over networks, 24-25
Transmission Control Protocol/Internet Protocol (TCP/IP), 24
transportation, 258
Trax tracker, 128, 142
Treasure Data, 37, 40
tunnels, 265
TVs
capabilities, 46-47
choosing, 53-54, 59-60
cost, 53
explained, 43-44
features, 44-46, 48-51
integrating into IoT (Internet of Things), 57-59
OSs (operating systems), 47-48
security, 54-56
camera issues, 55-56
customer data collection, 56
hacking, 54-55
set-top devices, 51-52
wired versus wireless connections, 49

Uber, 173-174
Up & Running Kit (OMsignal), 127
utilities, 274-275
waste management, 274-275
water management, 275

V

V.A.LRT Personal Emergency Alert Device, 129, 142
Vera, 110, 114
View, 92, 114
virtual meetings, 252-253
Vitality GlowCap, 233
Vivint, 111, 114
Vivofit (Garmin), 123, 141
Voice Command (Martian Watches), 121, 142
VSN Mobil, 142

W

Walmart, 254
warehousing, 259-260
warfare
bombs, 208-209
history of, 204-206
impact of smart technology on civilians, 220-221
military drones, 206-208
robot soldiers, 212-219
armor, 214-217
autonomous fighting soldiers, 217-219
current technology, 212-214
cybernetic soldiers, 216-217
strategy, 219-220
weapons, 209-211
washers/dryers, 71-72
waste management, 274-275
watches, 119
Android Wear, 120-121
Apple Watch, 121-122
less fully featured smart watches, 121
Samsung Galaxy Gear, 119-120
Smarter Socks, 135
wearable tech
websites, 209-211
wearable tech
benefits of, 143-144
cameras, 129-130
explained, 117-119
eyewear, 130-134
Google Glass, 131-134
Recon Jet, 132
fitness trackers, 122-125
GPS-enabled devices, 128-129
healthcare devices, 126-127
privacy and security issues, 136-141
Razer Nabu, 134
Ring, 134-135
Smart Diapers, 135
smart watches, 119
Android Wear, 120-121
Apple Watch, 121-122
less fully featured smart watches, 121
Samsung Galaxy Gear, 119-120
Smarter Socks, 135
wearable tech company websites, 141-142
webOS, 47-48
websites
smart home technology websites, 113-114
smart technology websites, 39-40
wearable tech company websites, 141-142
WeMo, 89, 111, 113-114
Whirlpool
My Smart Appliances app, 64-65
Nest Learning Thermostat, 72
smart dishwashers, 72-73
Smart Front Load Washer and Dryer, 71-72
ThinQ smart appliances, 69
touchscreen cooktop prototype, 70-71
Wi-Fi, 29-30
Wi-Fi Alliance, 29, 40
Wi-Fi Smart Thermostat (Honeywell), 94
wind-powered lighting, 272
windows, 90-92
motorized window coverings, 90-91
smart glass, 91-92
Windows Media Audio (WMA) Lossless, 54
Wink, 112, 114
Wireless Fidelity. See Wi-Fi
wireless sensor network (WSN), 265-267
wireless technologies, 27
Bluetooth, 30-31
Bluetooth Smart, 31
cellular networks, 31-32
comparison of, 35
mesh networks, 33-34
proprietary cellular networks, 34-35
Wi-Fi, 29-30
wireless transmitter/receiver, 21
Withings, 123, 142
WMA (Windows Media Audio) Lossless, 54
workplace technology. See EIoT
(Enterprise Internet of Things)
WSN (wireless sensor network), 265-267

X

X10 system, 82, 112-114
XM25 Counter Defilade Target Engagement (CDTE) System, 209-210
XOS, 215

Y

Yanko Design, 68
Yavor, Josh, 55

Z

Z-Trap, 287
Z-Wave, 33, 40, 106, 114
ZigBee, 33, 40, 106, 114
REGISTER THIS PRODUCT
SAVE 35%*
ON YOUR NEXT PURCHASE!

How to Register Your Product

- Go to quepublishing.com/register
- Sign in or create an account
- Enter the 10- or 13-digit ISBN that appears on the back cover of your product

Benefits of Registering

- Ability to download product updates
- Access to bonus chapters and workshop files
- A 35% coupon to be used on your next purchase – valid for 30 days
 To obtain your coupon, click on “Manage Codes” in the right column of your Account page
- Receive special offers on new editions and related Que products

Please note that the benefits for registering may vary by product. Benefits will be listed on your Account page under Registered Products.

We value and respect your privacy. Your email address will not be sold to any third party company.

* 35% discount code presented after product registration is valid on most print books, eBooks, and full-course videos sold on QuePublishing.com. Discount may not be combined with any other offer and is not redeemable for cash. Discount code expires after 30 days from the time of product registration. Offer subject to change.

quepublishing.com