
http://www.facebook.com/share.php?u=http://www.quepublishing.com/title/9780789753861
http://twitter.com/?status=RT: download a free sample chapter http://www.quepublishing.com/title/9780789753861
https://plusone.google.com/share?url=http://www.quepublishing.com/title/9780789753861
http://www.linkedin.com/shareArticle?mini=true&url=http://www.quepublishing.com/title/9780789753861
http://www.stumbleupon.com/submit?url=http://www.quepublishing.com/title/9780789753861/Free-Sample-Chapter

800 East 96th Street,
Indianapolis, Indiana 46240 USA

THE BEAGLEBONE
BLACK PRIMER

Brian McLaughlin

ii The BeagleBone Black Primer

The BeagleBone Black Primer

Copyright © 2016 by Que Publishing
All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-5386-1
ISBN-10: 0-7897-5386-3

Library of Congress Control Number: 2015946119

Printed in the United States of America

First Printing: September 2015

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Que Publishing cannot
attest to the accuracy of this information. Use of a term in this book should
not be regarded as affecting the validity of any trademark or service mark.

This book was not created by and is not endorsed by Texas Instruments.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fi tness is implied. The information provided
is on an “as is” basis. The author and the publisher shall have neither
liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom
cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@
pearsoned.com.

For questions about sales outside the U.S., please contact international@
pearsoned.com.

Editor-in-Chief

Greg Wiegand

Executive Editor

Rick Kughen

Development Editor

Ginny Bess Munroe

Managing Editor

Sandra Schroeder

Project Editor

Seth Kerney

Copy Editor

Bart Reed

Indexer

Tim Wright

Proofreader

Laura Hernandez

Technical Editor

Anton Olsen

Publishing
Coordinator

Kristen Watterson

Interior Designer

Mark Shirar

Cover Designer

Mark Shirar

Compositor

Jake McFarland

Photography

Helene McLaughlin

iiiContents at a Glance

Contents at a Glance
 Introduction 1

CHAPTER 1 Embedded Computers and Electronics 5

CHAPTER 2 Introduction to the Hardware 15

CHAPTER 3 Getting Started 25

CHAPTER 4 Hardware Basics 39

CHAPTER 5 A Little Deeper into Development 57

CHAPTER 6 Trying Other Operating Systems 71

CHAPTER 7 Expanding the Hardware Horizon 81

CHAPTER 8 Low-Level Hardware and Capes 97

CHAPTER 9 Interacting with Your World, Part 1: Sensors 113

CHAPTER 10 Remote Monitoring and Data Collection 127

CHAPTER 11 Interacting with Your World, Part 2: Feedback and Actuators 149

CHAPTER 12 Computer Vision 171

CHAPTER 13 Sniffi ng Out Car Trouble 189

CHAPTER 14 Ground Control to Major Beagle 205

CHAPTER 15 Moving Forward 225

 Index 233

iv The BeagleBone Black Primer

Table of Contents
 Introduction .. 1

Who This Book Is For ..1

How This Book Is Organized ...2

Conventions Used in This Book ...3

Let Me Know What You Think ...3

Chapter 1 Embedded Computers and Electronics 5

What Are Embedded Electronics? ..5

Arduino ...9

What Should Readers Get Out of This Book?12

Chapter 2 Introduction to the Hardware 15

A Short Lineage of the BeagleBone Black15

BeagleBone Black Hardware Specification19

Processor ...20

RAM ..21

Onboard Flash and MicroSD External Storage22

Ethernet ...22

General-Purpose Input/Output ...22

Chapter 3 Getting Started ... 25

Setting Up and Saying “Hello, World!” ..26

Connecting to Ethernet ..32

Chapter 4 Hardware Basics ... 39

Electronics Basics: Voltage, Current, Power, and Resistance39

The Short Circuit ...43

The Resistor ...45

Diodes and LEDs ..48

Build an LED Circuit ...50

Chapter 5 A Little Deeper into Development 57

Interpreted Code ...57

Python—A Step Above Interpreted Language59

Implementing Blinking Lights In Python62

Compiled Code ...65

vTable of Contents

Chapter 6 Trying Other Operating Systems 71

History of the Linux World: Part I ..71

Picking an Operating System ...73

Loading the microSD Card ..73

Chapter 7 Expanding the Hardware Horizon 81

Binary Basics ...81

Hardware Representation ...83

Serial Communications ..91

Inspecting UART ..93

Chapter 8 Low-Level Hardware and Capes 97

Linux Hardware Through The File System97

Hardware in the File System ...100

One Pin, Multiple Functions ..103

Hardware Configuration ..108

Chapter 9 Interacting with Your World, Part 1: Sensors 113

Sensor Basics ..113

Analog Versus Digital ...120

Sample Rates ...124

Chapter 10 Remote Monitoring and Data Collection 127

Project Outline ..127

Wiring Up The Project ...130

Seeing the Light ...134

Publishing the Sensor Data ..137

Start Collecting Data ...142

Chapter 11 Interacting with Your World, Part 2: Feedback and Actuators 149

Controlling Current ...149

Blinking to Fading ...156

Vibration Motors ...159

Servo Motors ..161

Stepper Motors ...165

Chapter 12 Computer Vision ... 171

Connecting a Camera ..171

Utilizing OpenCV Libraries ...177

vi The BeagleBone Black Primer

A Better Photo Booth ..178

Cascade Classifiers ..180

Tracking a Face ...182

Chapter 13 Sniffing Out Car Trouble ... 189

Car Computers ..189

Interfacing to the Car ..191

Reading the Car’s Status ..198

Interpreting the Data ...199

Chapter 14 Ground Control to Major Beagle 205

Radio Data ...205

WiFi ..210

Software Defined Radio ...212

Grabbing Libraries with Git ..215

Radio Testing ..216

Calibrating the Radio ..219

Listening to Aviation Data ...221

BeagleBone Black Air Traffic Control Station..............................223

Chapter 15 Moving Forward .. 225

Project Ideas ...226

Portable Gaming Solutions ...226

Weather Station ...227

In-Car Computer ..227

More Advanced Aircraft “RADAR” ..228

Satellite Ground Station ...228

Tools ..230

Resources ..230

 Index ... 233

viiAbout the Author

About the Author
Brian McLaughlin is an engineer by profession and by hobby. Brian earned a bachelor’s
degree in computer science from North Carolina State University and a masters of
engineering in systems engineering from the University of Maryland. With a solid foundation
in software, Brian was initially exposed to more advanced topics in hardware while working
on the Hubble Space Telescope Project. Over time, Brian began writing for GeekDad and
has become a part of the growing Maker community. Brian lives in Maryland with his beau-
tiful wife and two boys.

viii The BeagleBone Black Primer

Dedication
For Mom & Dad

Acknowledgments
I wish I could acknowledge everyone who ever taught me something about STEAM (science,
technology, engineering, art, and mathematics) topics, but that would be almost every
teacher, instructor, mentor, and co-worker I have ever had to this point in my life. I would
like to start by thanking the Integration and Test and software development teams for
the Wide Field Camera 3 instrument on the Hubble Space Telescope, the first place I
worked where the rubber met the road between hardware and software. I would like to
thank my mentors—specifically Larry Barrett and Curtis Fatig—with whom I worked on the
James Webb Space Telescope project and other projects. From them I was always learning
something about engineering, working in a high-pressure environment, travelling the world,
and finding out about life in general. I would like to thank my friends at GeekDad who
helped me find a passion for writing about technical topics for fun and not just for my
9-to-5 job.

I would like to thank the people and companies who provided hardware and parts in
support of this book including Tektronix, Oscium, SparkFun, and Element14.

I would like to offer my apologies to my neighbors in my little cul-de-sac in Columbia,
Maryland. Writing a book while still holding down a full-time job was much harder than
I had anticipated, and my lawn and yard suffered as a consequence. I promise I will keep
them looking better!

I of course need to thank my parents, Glen and Diane, and my brother, Glen. Our parents
always encouraged us to explore, learn, and grow, and my brother, in addition to sharing
systems with me, showed me the Mosaic web browser before most people knew what the
Web even was. I also need to thank my Uncle Lou, who passed along computers as he
upgraded, and always made sure we were working on learning the basics of flying with Flight
Simulator. It was also thanks to my parents and my Uncle Lou that I went to Space Camp in
seventh grade.

Finally, I must acknowledge all of the rest of my loving family, particularly my beautiful wife,
Helene, and my boys, Sean and Liam. Without everyone’s support, patience, understanding,
love, and patience, I never would have finished this book. (Yes, patience needed to be there
twice.)

Reader Services ix

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Que Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at quepublishing.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction
The world is becoming a place where the traditional technical disciplines of science, technology,
engineering, and mathematics (STEM) have boiled over into the world of art to produce STEAM
(that is, STEM with Art thrown in the mix). It is the beginning of a new Renaissance. Just like in Da
Vinci’s time, cross-domain studies in all the STEAM topics are critical, and they are often unified via
some form of electronics.

For example, an art installation may allow for a mechanical, interactive sculpture. This sculpture
may require some “senses” to understand changes in the environment—everything from a change
in temperature to the traditional senses of touch, sight, sound, taste, and smell. These changes are
processed by some electronic means, and then some action is taken with that information. Maybe
the head of a statue “looks” at you when you walk past.

For some, even the most technical work can seem like art. The layout of a circuit on a board, an
elegant programming solution, and the RS-25 rocket engine, among many other technical solutions,
are all like looking at art to me.

This book strives to provide the information necessary for you to find your own art in the world of
STEAM. We will use a very accessible and powerful electronics board for this task—the BeagleBone
Black.

Who This Book Is For
Targeting an audience for a book such as this can be tricky. For example, there are people in the
artistic world—I’ve known many myself—who want to integrate electronics into their art projects, but
they find the task daunting. I wrote this book so that those individuals can start to understand how
electronics work and forge a path forward to bring their artistic creations to life.

There are others out there who have plenty of experience with electronics and building projects, but
want to move toward using the power of the BeagleBone Black. For those readers, many of the sec-
tions of this book will provide quick reference to information on accessing the pins and functionality
of the board and how to accomplish the basic tasks they need to know to build larger projects.

None of the projects are completely finished out in the course of the book. They are left at the level
of the breadboard and still lack the finalized look of a project with a completed enclosure and instal-
lation. This is on purpose. I only give you enough information to be dangerous—and to go out on
your own and build something amazing.

2 Introduction

How This Book Is Organized
I try not to make any assumptions concerning what you may know about electronics and
computers, other than basic familiarity with traditional desktop environments. With that in
mind, I attempt to start off slowly. Here’s what you’ll find in the chapters of this book:

■ Chapters 1–5: These chapters provide you with an overview of embedded electronics
and development platforms. In these chapters, you learn what the BeagleBone Black
represents and what major parts it is made from. You also learn how to procure a
board, hook it up for the first time, and get something running. You learn some basics
of electronics and how to get electrons to obey your will and desires. Well, they won’t
obey, but they will follow the paths you force them down and at the rates you desire.
Finally, you learn how to use programming to make things happen on the board, and
you get some exposure to a couple of the programming languages available and learn
some of the differences between them.

■ Chapters 6–8: These chapters provide some more advanced topics on hardware
interactions and the environments you can use for operating your board. A number of
operating system environments are available to run on the board, and in these chapters
you learn how to switch out an operating system. You also learn some more low-level
hardware interface information and about the ecosystem of standardized hardware
expansion boards for the BeagleBone Black (known as Capes).

■ Chapters 9–14: These chapters offer some insight into building more complex projects
with the BeagleBone Black. You learn about how sensors work, build an environment-
monitoring station for your working area, and find out how to manipulate items in your
environment via motors. Finally, you get into various projects. You’ll learn how to give
your creator’s vision, which can be used to actually track a person’s face. You’ll also tap
into the computer in your car, and even listen to the data sent from aircraft so that you
can track the aircraft in your area.

■ Chapter 15: This chapter leaves you with some room to think about where you can go
after reading the book. You’ll learn about places to start expanding on what you have
learned, a little about securing your BeagleBone Black, and some of my favorite project
resources.

Only you know how much knowledge and experience you have as you begin reading this
book. If you’re completely new to this world, you will probably want to work through the
book sequentially and build your knowledge as you go. If you’re an experienced user who
just wants examples of how to accomplish specific tasks with the BeagleBone Black, you
will probably tend to bounce around and grab the bits you need.

Let Me Know What You Think 3

Conventions Used in This Book
A couple of conventions are used throughout this book. Monospaced font calls out source
code and terminal interactions. For example:

print “This is a line of source code”

~/bbb-primer/$ this is a terminal interaction

Note that source code is called out as a Listing, but terminal interactions are not. Also note
that, in terminal interaction, content the user should enter is in bold mono font.

Let Me Know What You Think
If you want to contact me, feel free to email me at bjmclaughlin@gmail.com. I welcome
questions that clarify points made in the book and constructive criticism.

However, as with many technical topics, there is often more than one way to accomplish a
goal. Therefore, if you offer a comment that just shows a different way to accomplish the
same thing or a quicker, more efficient way when the point of the example was obviously
to be clear and thoughtful and not efficient, I will likely mentally acknowledge your point,
archive the email, and move on with my life. Remember, my goal is to be as clear and acces-
sible to as many levels of interest as possible.

With all of that said, I think you will enjoy the book, and I hope that you will learn how to
accomplish whatever it is you set out to do after reading it. Allons-y!

This page intentionally left blank

3
Getting Started
To get started with the BeagleBone Black, you will want to obtain the board itself and some of
the basic parts. The board is available from a number of resources. The beagleboard.org website
provides some great places to buy the board (see http://beagleboard.org/black). Of course, I have
my favorite suppliers, which are both a major part of the Maker community:

 ■ SparkFun Electronics (http://sparkfun.com)—Boulder, Colorado–based SparkFun Electronics
 was founded on the idea of open source and open hardware. The company has an extensive
catalog of electronics parts and components and consistently supports the community.
SparkFun also has excellent tutorials and active forums where you can always find help on your
projects. If you live in the Boulder area, be sure to watch for the in-person classes and other
events the company sponsors!

 ■ Adafruit (http://adafruit.com)—Based i n New York City, Adafruit was founded by Limor
“Ladyada” Fried, a true celebrity in the Maker community. The company is another great source
for all the components and parts you might need for your projects and for taking the steps to
move your projects beyond the introductory ones in this book. Adafruit also has an extensive
tutorial section on its website.

When I am shopping for parts, I am often torn between these two suppliers. They are both excellent
companies that have provided great support to me and countless others. Determining which to
use, however, shouldn’t be as much of a struggle as I might make it seem. The two companies work
well together, participate in events together, and are both friendly. They represent the best of the
community because they aren’t there to compete against each other; they support the community
and make sure we have what we need to get our projects off the ground. If you have questions on
electronics basics or more complicated techniques, you can generally find a tutorial on one of the
two sites or find willing support in the forums and via email.

In each chapter, I will outline the parts you will need for that chapter’s project. We will take a
practice run with this chapter and look at getting your BeagleBone Black set up and running. First,
note some of the parts you’ll need:

 ■ BeagleBone Black
 ■ USB cable (USB A to USB Mini B)
 ■ +5 volt DC power supply (at least 1,000 milliamps)
 ■ Ethernet cable

http://beagleboard.org/black
http://sparkfun.com
http://adafruit.com

26 CHAPTER 3: Getting Started

The USB cable should come with the BeagleBone Black; if it does not, make sure you inform
your supplier. If a friend gave you the board, then just ask nicely. To get started, you also
need a way to communicate with the board. In this chapter I’m going to discuss how to
connect the BeagleBone Black to another computer and also how to connect remotely via
Ethernet. Another option is to connect a monitor, keyboard, and mouse directly.

Setting Up and Saying “Hello, World!”
The big moment has arrived, and it is time to power up your BeagleBone Black and start
working! We start with a direct computer connection via USB. This is a simple step. Simply
plug the USB cable into the BeagleBone Black and the other end into a USB port on the
computer.

As soon as the board is connected to your computer, you should see the lights on the
board come to life. Four lights should start blinking on the board. These are four “user”
lights, labeled USR0, USR1, USR2, and USR3, as shown in Figure 3.1. There is also a power
light labeled PWR. The power light should stay constantly lit. The user lights will blink
with different activities. At the default boot on a clean board, you will find the user lights
configured as follows:

■ USR0—This light blinks in a heartbeat pattern: two quick flashes, a pause, and then
repeat.

■ USR1—This light is configured to blink on activity from the microSD card. Because the
board isn’t plugged in a microSD card yet, you shouldn’t see any activity on this light yet.

■ USR2—This light flashes on CPU activity.
■ USR3—This light flashes when the built-in flash memory is accessed. The default operat-

ing system should be installed in this embedded Multi-Media Card, or eMMC, memory,
so you should see activity as the board is accessing the built-in, default operating system
and file system.

FIGURE 3.1 The BeagleBone Black user lights, power light, and USB port
highlighted.

Setting Up and Saying “Hello, World!” 27

Next, you’re going to have to install the drivers necessary for your computer to talk to the
BeagleBone Black. On a Windows 7 laptop, you just plug the board in via USB to allow a
drive to mount from the board that contains driver files. Use these files directly so that you
don’t have to look for them. You also have the option of downloading the drivers from the
BeagleBoard organization website (http://beagleboard.org/getting-started). Drivers are
available for Windows 32- and 64-bit environments, OS X, and Linux. You should refer to
the specific setup instructions for your machine.

Now that you have your BeagleBone Black up and operating and have the drivers installed,
what can you do? Your BeagleBone Black is already running a web server! You can use the
Chrome or Firefox web browser to navigate to the board’s web server at http://192.168.7.2.

NOTE
Web Browser Warning

The web server is not compatible with Microsoft Internet Explorer. Just stick with
Chrome- or Firefox-compatible browsers. You really shouldn’t use Internet Explorer
anyway. For anything. Take this as a public service message. You can get Chrome or
Firefox at the following links:

http://www.google.com/chrome/browser

http://www.mozilla.org/en-US/firefox/new

Navigate to the BeagleBone Black website at http://192.168.7.2. Your browser should
present a very colorful and active website, and you should see something like the banner
shown in Figure 3.2.

FIGURE 3.2 Banner from the BeagleBone built-in website letting you know
everything is working just fine.

This banner gives you information about your BeagleBone Black. First, the banner is green
and has a check mark. That must mean everything is good, right? Also, the banner tells
you that the board is connected. These are all good indications that all is right with your
BeagleBone Black’s world. Table 3.1 explains the other information that is supplied.

http://www.google.com/chrome/browser
http://www.mozilla.org/en-US/firefox/new
http://beagleboard.org/getting-started
http://192.168.7.2.
http://192.168.7.2.

28 CHAPTER 3: Getting Started

TABLE 3.1 Default Website Banner Information

Listed Information Description

BeagleBone Black You bought a BeagleBone Black, right? This is a good sign that
you bought what you thought you were buying.

Rev 000C This tells you that, in this case, version 000 of the revision C
BeagleBone Black hardware is running.

S/N 2314BBBK0577 This is the serial number of the specific BeagleBone Black.

Running BoneScript 0.2.4 The board runs BoneScript version 0.2.4. BoneScript is a version
of JavaScript for the BeagleBone environments.

At 192.168.7.2 This is the IP address of the board on the virtualized network
over the USB connection. It should match the address you
typed into the address bar of the browser.

Congratulations! You’ve now successfully powered up, connected to, and communicated
with your board! That was easy, wasn’t it? Let’s make a couple changes and use one of the
user lights we discussed before to make it flash. About halfway down the page is a section
titled “Cloud9 IDE” (IDE stands for integrated development environment). Click the header,
and the Cloud9 IDE will launch in a new browser window or tab (see Figure 3.3). This is a
powerful IDE running directly on the BeagleBone Black through a web interface.

So, what is an IDE? In short, an IDE is used as an all-in-one place where you can write
software directly on the BeagleBone Black. It includes an editor, a way to execute code, and
many other useful features.

When a person is just starting out with a new programming language, there is a tradition
that the first program they write simply displays “Hello, World!” in some manner that
fits into the environment. In many languages, this is accomplished by simply printing the
message, whereas in some Windows environments, an alert message is displayed. That
tradition has been extended into the hardware world with a program that makes a light
blink once a second.

In our case, we are approaching a board for the first time and trying out a language for the
first time, so why don’t we try both displaying a message and blinking a light? Follow these
steps to create a new file, write the code to accomplish our task, execute the code, and get
blinking:

 1. In the main window of the Cloud9 environment you’ll find a + button. Click this button
and select New File. This will open a blank text file where you can enter code. If there are
other tabs open, you can close them. Feel free to peruse any “getting started” informa-
tion on those pages.

 2. Enter the code shown in Listing 3.1 into the document.

 3. Save the file on the board. In this case, the file’s name is blink.js.

 4. In the environment, click the Run button.

Setting Up and Saying “Hello, World!” 29

FIGURE 3.3 The Cloud9 IDE running on the BeagleBone Black.

LISTING 3.1 blink.js

1: /*

2: * blink.js - BoneScript File to blink the USR1 LED on the BeagleBone Black.

3: *

4: * Example script for “The BeagleBone Black Primer”

5: *

6: */

7: var bbb = require(‘bonescript’); // Declare a bbb variable, board h/w object

8: var state = bbb.LOW; // Declare a variable to represent LED state

9:

10:

11: bbb.pinMode(‘USR1’, bbb.OUTPUT); // Set the USR1 LED control to output

12: setInterval(blink, 1000); // Call blink fn the LED every 1 second

13: console.log(‘Hello, World!’); // Output the classic introduction

14:

15: /*

30 CHAPTER 3: Getting Started

16: * Function - blink

17: *

18: * Toggle the value of the state variable between high and low when called.

19: */

20: function blink() {

21: if(state == bbb.LOW) { // If the current state is LOW then...

22: state = bbb.HIGH; // ...change the state to HIGH

23: } else { // Otherwise, the state is HIGH...

24: state = bbb.LOW; // ...change the state to LOW

25: }

26:

27: bbb.digitalWrite(‘USR1’, state); // Update the USR1 state

28: }

It will take a couple of seconds, but the code will start executing. You should see a light just
next to the heartbeat light blinking on for a full second and then off for a second. Success!

Let’s step through the code you just blindly put into the environment and executed. Glad
you trust me! The source starts with these six lines of code:

1: /*

2: * blink.js - BoneScript File to blink the USR1 LED on the BeagleBone Black.

3: *

4: * Example script for “The BeagleBone Black Primer”

5: *

6: */

These lines look fairly readable to a human and not like source code. That’s because
this code is what’s called a comment. A comment starts with /* and ends with the */ and
includes everything in between. The extra asterisks at the beginning of the other lines are
just to make things look good. There is another way to signify comments in BoneScript/
JavaScript, and that is using //. These are used to describe what is occurring on a line
of code. Everything from the // to the end of the line is a comment. Comments are not
executed or even seen for execution. You will see a couple of different styles of commenting
in different languages throughout the book.

Line 7 accesses a shared library of source code, called bonescript, that is provided to you as
part of the environment:

7: var bbb = require(‘bonescript’); // Declare a bbb variable, board h/w object

This code accomplishes many tasks behind the scene that you don’t need to worry about
for now. Access to the library is assigned to variable bbb. This means that we can use the
variable bbb to access resources in that special library, as you will see on the following lines:

8: var state = bbb.LOW; // Declare a variable to represent LED state

Setting Up and Saying “Hello, World!” 31

Line 8 declares another variable called state. We are going to use state to track whether we
set our signal for the USR1 light to HIGH or LOW. When the state is set to HIGH, the voltage
on the electronics attached to that light is set to +5V, and it is set to 0V for LOW. When the
voltage is set HIGH at +5V, the electrical potential on the light is increased, which means the
light can do work. What happens when a light can do work? It lights up!

Something important to remember here is that setting the state variable to HIGH or
LOW doesn’t actually change the power supplied. We do that using a function called
digitalWrite, which is a part of the bonescript library we can now access through the
bbb variable. More on that function later. Now we hit a line that does something with the
electricity on the board:

11: bbb.pinMode(‘USR1’, bbb.OUTPUT); // Set the USR1 LED control to output

With this line, we are calling a function called pinMode, which is part of the bonescript
library, and using another bonescript library constant called OUTPUT. This means we
are configuring the USR1 pin to output the voltage rather than sensing a voltage from
somewhere else in a circuit. In total, this line says, “Take the pin attached to the light USR1
and get it ready to output, please.”

The next line utilizes a function called setInterval to run the meat of the program:

12: setInterval(blink, 1000); // Call blink fn the LED every 1 second

This line of code tells the system to execute the function blink once every second. Line 13
has nothing to do with blinking our light. This is a simple statement that prints our classic
first-time program announcement out to a console:

13: console.log(‘Hello, World!’); // Output the classic introduction

In the Cloud9 IDE environment, you will see this printed on a lower tab labeled “/blink.js –
Running,” as shown in Figure 3.4.

FIGURE 3.4 The “Hello, World!” statement written to the console log.

The final lines define a function called blink. This function simply checks the status of
the state variable and changes it to the opposite state. This function is called once every

32 CHAPTER 3: Getting Started

second by the setInterval function. The real meat of the function is on line 27. The call to
digitalWrite makes the actual change to the hardware to change the status of the physical
circuit attached to the USR1 light:

27: bbb.digitalWrite(‘USR1’, state); // Update the USR1 state

That is all the code required to use BoneScript to blink a light and print a message to the
console! It is important to remember that BoneScript is defined only by the bonescript
library. The underlying syntax and structure is just JavaScript, a scripting language used in
many places on the Web . This means that you can use JavaScript tutorial and reference
resources to help you understand or to get any clarification.

For simple examples throughout the book, I will stick to BoneScript just to make it easy.
For more complex code and functionality, I use other programming languages such as C/
C++ and Python. I will comment the code to help with readability if you are not familiar
with those languages; however, I highly encourage you to seek out other resources to learn
those languages in depth because that is not the focus of this book. The next chapter will
delve into some more complex development with BoneScript and the Cloud9 IDE to enable
your own explorations. It will also introduce you to the basics of programming with other
languages.

Connecting to Ethernet
Thus far, we have talked to the BeagleBone Black through a USB connection to a computer.
This is all fine and well, but the power of the BeagleBone Black is that it’s a standalone
computer capable of working on its own. Our next step is to cut the cord from our
computer and connect the BeagleBone Black to a network.

In accomplishing this, we can drop the USB cable from our setup and exchange it for an
Ethernet cable. We also need to power our board. Ethernet, unlike USB, does not provide
power in normal configurations. There’s an option called Power over Ethernet, abbreviated
PoE, but this is not a normal network configuration, so we will assume you need a separate
power supply. I purchased the power supply I am using from SparkFun. It has a 5V output
and can provide up to 1A of current.

Most home networks use a system called Dynamic Host Configuration Protocol (DHCP).
In this configuration, a component on a network is assigned an address on the network
automatically. To make this easy on ourselves, we know when the BeagleBone Black is
connected via USB that it has an address of 192.168.7.2. We can use this to our advantage
and connect to both Ethernet and USB at the same time and see what address our board
is assigned for the Ethernet connection. So, with your board already connected to the USB,
plug your Ethernet cable into the board and into your network.

Connecting to Ethernet 33

When you connect the Ethernet cable, you should see the lights on the Ethernet port of your
board light up. This means you’ve connected! Now, to see the IP address that has been
assigned, we are going to break out to a new piece of software and connect via Secure Shell
(SSH). We are about to delve into the world of the Linux command line.

There are many ways to connect via SSH. If your computer runs Linux or OS X, getting to
a terminal is as easy as opening a Terminal session. The commands to use are the same as
you would see working on the command line of a Linux or OS X machine. Following is an
example of connecting via SSH from the Linux command line first. The process is the same
for OS X. We will get to Windows in a moment.

From the Terminal, execute the following command:

[brian@mercury-fedora-vm]$ ssh root@192.168.7.2

With this command, you ask the system to use the ssh command to connect as root to the
computer at 192.168.7.2, which we know is our BeagleBone Black’s USB connection. When
you execute this command and you have all the connections set right, you are presented
with the following prompt:

The authenticity of host ‘192.168.7.2 (192.168.7.2)’ can’t be established.

ECDSA key fingerprint is c0:81:1a:f4:58:b9:51:15:00:df:ee:71:c4:d9:fd:54.

Are you sure you want to continue connecting (yes/no)?

This prompt is associated with security (referring to the first S in SSH). Your computer
has never connected to this host via SSH before, and it wants to validate that this is the
computer you mean to connect with. What does this buy you? It allows you to be sure that
the computer you are connecting to in the future is the one you intended to, with no hacker
interference. You should accept this by entering yes. The ssh program will let you know that
it has accepted the security key and that it is added to the list of known servers.

The authenticity of host ‘192.168.7.2 (192.168.7.2)’ can’t be established.

ECDSA key fingerprint is c0:81:1a:f4:58:b9:51:15:00:df:ee:71:c4:d9:fd:54.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ‘192.168.7.2’ (ECDSA) to the list of known hosts.

Now, you request to log in as the root user. The root account is a powerful account and
should be password protected by default, but the BeagleBone Black has a blank root
password by default. We will change this later before we set the board up to be on a
network doing a job.

In the Windows environment, I recommend PuTTY for SSH connections. It is easy to find
with a Google search, and installation is a breeze. When you start the application, you are
presented with the configuration window shown in Figure 3.5. Notice in the hostname that
I’ve entered the USB assigned address of your BeagleBone Black, 192.168.7.2. Just below
the Host Name text entry, you select the connection type, which is SSH in this case. Once
you’ve entered these settings, click the Open button.

34 CHAPTER 3: Getting Started

FIGURE 3.5 The PuTTY Configuration window.

Another window will pop up that looks a lot like the information you saw the first time you
tried to connect in the Linux terminal, and it serves the same function (see Figure 3.6). Click
the Yes button to accept the security key and continue by logging on.

FIGURE 3.6 The PuTTY Security Alert window.

From here on, regardless of the operating system or Terminal application you are using, the
output will be the same. That is because what you’ll see now is actually on the BeagleBone
Black.

From now on, if you log in with SSH via the USB default connection, you will not see the
prompt for the security key. The session will now present you with the following command
prompt:

root@beaglebone:#

Connecting to Ethernet 35

This is the default prompt for the default user. If you are familiar with Linux or a similar
operating system, then you’ll know you’re in a Bash shell. The information provided by the
prompt can be very useful and even customized. The information in Table 3.2 is presented
in the default prompt.

TABLE 3.2 Default Prompt Information

Prompt Information Description

root The information in this first block tells us the username for
the shell. In our case, we logged in as root.

beaglebone The hostname, on the network, we are logged in to.

This represents the directory we’re currently working in on
the file tree. In this case, the tilde is shorthand for the user’s
home directory.

Now, we are going to enter our second command. This command, called ifconfig, is used
to report the current network status of the system. Let’s go ahead and enter it and then see
the response:

root@beaglebone:# ifconfig

eth0 Link encap:Ethernet HWaddr 7c:66:9d:58:bd:41

 inet addr:192.168.1.161 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80::7e66:9dff:fe58:bd41/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:4059 errors:0 dropped:2 overruns:0 frame:0

 TX packets:147 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:616100 (601.6 KiB) TX bytes:18322 (17.8 KiB)

 Interrupt:40

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

usb0 Link encap:Ethernet HWaddr e6:8c:89:9a:b6:c8

 inet addr:192.168.7.2 Bcast:192.168.7.3 Mask:255.255.255.252

 inet6 addr: fe80::e48c:89ff:fe9a:b6c8/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

36 CHAPTER 3: Getting Started

 RX packets:1717 errors:0 dropped:0 overruns:0 frame:0

 TX packets:136 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:200409 (195.7 KiB) TX bytes:31059 (30.3 KiB)

The results provided tell us about three different network adapters represented on the
system: eth0, lo, and usb0. We can ignore lo for now; it’s the local loopback connection.
The two of interest to us are eth0 and usb0. The default USB connection is usb0. There are
a lot of fields here, but the field we are interested in is labeled inet addr. Here is the usb0
interface information again, with that field highlighted in bold:

usb0 Link encap:Ethernet HWaddr e6:8c:89:9a:b6:c8

 inet addr:192.168.7.2 Bcast:192.168.7.3 Mask:255.255.255.252

 inet6 addr: fe80::e48c:89ff:fe9a:b6c8/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:1717 errors:0 dropped:0 overruns:0 frame:0

 TX packets:136 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:200409 (195.7 KiB) TX bytes:31059 (30.3 KiB)

The value associated with this address should look familiar. It is the same address we
used to access the website and to log in to the board. Now, what we are looking for is the
address that has been given to the board via DHCP. The Ethernet port is represented by
interface eth0, and by looking at its inet addr field, we know that, in this case, the DHCP
has assigned the board an address of 192.168.1.161, as shown here:

eth0 Link encap:Ethernet HWaddr 7c:66:9d:58:bd:41

 inet addr:192.168.1.161 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80::7e66:9dff:fe58:bd41/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:4059 errors:0 dropped:2 overruns:0 frame:0

 TX packets:147 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:616100 (601.6 KiB) TX bytes:18322 (17.8 KiB)

 Interrupt:40

Unless you have changed the IP address space in your network, and if you have I trust that
you know what you are doing with your network, your board will have an IP Address in one
of the public IP Address spaces, either 192.168.x.x or 10.0.x.x.

Now, with the board connected to Ethernet and assigned an address on the network, you
can unplug the USB connection and plug in the +5V power adapter. You’ve now put your
BeagleBone Black on the network, independent of the computer you were using before. You
are ready to be an active member of your home’s network ecosystem!

Connecting to Ethernet 37

Let’s check the website connection via your network connection. Using your browser,
navigate to the address provided earlier for eth0. In the case of my network, that’s
192.168.1.161, as you can see in Figure 3.7.

FIGURE 3.7 Banner from the BeagleBone built-in website letting you know
everything is working just fine—this time, via the Ethernet connection.

Now, let’s log in via SSH to the eth0 connection. It is going to look familiar:

[brian@mercury-fedora-vm]$ ssh root@192.168.1.161

The authenticity of host ‘192.168.1.161 (192.168.1.161)’ can’t be established.

ECDSA key fingerprint is c0:81:1a:f4:58:b9:51:15:00:df:ee:71:c4:d9:fd:54.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ‘192.168.1.161’ (ECDSA) to the list of known hosts.

Debian GNU/Linux 7

BeagleBoard.org BeagleBone Debian Image 2014-04-23

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

Last login: Fri Jul 18 15:06:44 2014 from mercury-win.local

root@beaglebone:#

As you can see, it is the same process for logging in as before, but with a different address.
This example is from a Linux machine, but the process is identical as the one we used
previously for PuTTY, but with a different address.

Something interesting to note is that if you run the ifconfig command, the usb0 adapter is
still available. That’s because we haven’t actually changed anything in the operating system
configuration; we just used a different connection. The USB option is still there waiting for
us to connect, and it will be unless we turn it off in the operating system. We will get into
more detail about the underlying operating system and some of the options we have for
alternate operating systems on the BeagleBone Black. In our next chapter, we delve into
the hardware and discuss some basics of electronics that will be necessary for many of the
remaining chapters.

This page intentionally left blank

This page intentionally left blank

Symbols
12-bit converter, 120

A
actuators, 149
Adafruit, 25
Adafruit_BBIO PWM library,

162
Adafruit Industries, 24
ADS-B

adsbSCOPE, 223
listening to aviation data,

221-223
adsbSCOPE, 223
aircraft tracking system, 228
alert.py project, 161
AM (amplitude modulation),

207
amps, 40-41
analog signals

pulse sensors, 122-124
analog-to-digital converters,

120-121
counts, 121

and operator, 87
aplay command, 218

APT (Automatic Picture
Transfer), 228

apt-get command, 59-60
Arduino, 9

Microcontroller, 10-11
arguments, 86
ARM

TI Sitara processor, 20
ARM architecture, 15
array indexes, 89
Artificial Intelligence, 175
Atmel ATMega 328P, 11
aviation data, listening to,

221-223
adsbSCOPE, 223

B
Babbage, Charles, 71
bandwidth, 217
Bash shell, 35
baud, 92
bbbservo.py project, 183-185
BB-View LCD Capes, 111
BeagleBoard, 15-16
BeagleBoard.org website, 73
BeagleBoard-xM, 16
BeagleBone, 17

OpenROV project, 17-18
BeagleBone Black

connecting to computer, 26
Sitara processor, 19
TI Sitara processor, 20

binary
baud, 92
bits, 81

parity bit, 92
bytes, 82-83
counting in, 82
hardware representation,

83-89
LSB, 85
MSB, 85

bits, 81-82
baud, 92
parity bit, 92

bitwise shift left, 86
BJT (bi-junction transistor),

151
blink.js, 30-32
blink.py project, 154
blinking lights

implementing in Python,
62-65

bonescript, 30
pinMode function, 31

Index

234 BoneScript

BoneScript, 57
blink.js, 32

breadboard, 50
brightness of LEDs

controlling, 158
browsers

compatibility, 27
default website banner

information, 27
building

LED circuit, 50-55
button circuits, 114

pull-down resistor,
114-115

pull-up resistor, 116
buttons

finger graphic, 150
bytes, 82-83

C
calculating

pulse durations, 162
calibrating the radio,

219-221
capacitors, 130

smoothing capacitors,
130

CapeManager, 108
Capes, 108, 111

BB-View LCD Capes, 111
CryptoCape, 110
ProtoCape, 109

capturing
photographs, 178-179
pictures, 173
video, 175

car computers, 189
MIL, 190
OBD, 190

OBD-II, 190
commands, 198
connecting to UART,

191-198
PIDs, 190

status
interpreting the data,

199-203
reading, 198-199

car_monitor.py program,
202-203

CascadeClassifier object,
181

cat command, 99
chmod command, 142-144
choosing

operating systems, 73
circuits

building, 50-55
clock, 7

RTC, 19
updating, 59

cmake command, 176, 215
code

commenting, 30
collectors, 151
command() method, 196
commands

aplay, 218
apt-get, 59-60
cat, 99
chmod, 142-144
cmake, 176, 216
echo, 98
git, 176
grep, 99
ipconfig, 35, 210
lsusb, 210
make, 216
man, 97-99

mkdir, 62
more, 99
OBD-II, 198
pip, 61
pipe, 99
print, 194

comments, 30
docstrings, 132-133

communications protocols
ADS-B

listening to aviation
data, 221-223

communications_test.py
project, 194

comparing
laptops and BeagleBone

Black, 8
microcontrollers and

microprocessors, 10
NPN and PNP

transistors, 152
compatibility

web browsers, 27
compiled code, 65-69
computers

clock, 7
embedded computers,

5, 8
Arduino, 9

microcontroller,
10-11

GPIO ports, 8
Computer Vision, 175
connecting

board to computer, 26
to Ethernet, 32-37
to WiFi, 210-212
UART to OBD-II, 191,

197-198
webcam, 171

flow control 235

controlling
current, 152-154
LED brightness, 158

copying
image file, 74-75

counting in binary, 82
bits, 81
bytes, 82-83
hardware representation,

84-89
counts, 121
CPU clock, updating, 59
creating

portable gaming
environment, 226

weather station, 227
CryptoCape, 110
current

controlling, 152-154
fading LEDs, 156-158

cycles per second, 124

D
datasheets, 118
dd, 75
decimal counting, 81
default website banner

information, 27
demodulation, 212
desktops

comparing with
BeagleBone Black, 8

Device Tree, 108
DHCP, 32
digital multimeters, 230
digital signals, 120
diodes, 48-50, 160

flow control, 160
LEDs, 48-49

circuit, building,
50-55

disk image, 73
copying, 74-75

distributions, 71
Ubuntu, 73

docstrings, 132-133
drivers

installing on your
computer, 27

dump1090, 223
duration of pulses,

calculating, 162
duty cycle, 157

E
EasyDriver, 165
echo command, 98
ECM

car status
interpreting the data,

199-203
reading, 198-199

ECM (Engine Control
Module), 189

electricity
capacitors, 130

electromagnetic spectrum,
205

radio waves, 205-206
electronics

actuators, 149
amps, 40-41
diodes, 48-50
ground, 50
jumper wires, 52
oscilloscope, 54
resistance, 41-42
resistors, 45-48, 154
short circuit, 43-45
transducers, 113
transistors, 149-154

BJT, 151

LEDs, fading, 156-158
NPN, 151-152
PNP, 152
turn-on voltage, 152

voltage, 39-41
Watts, 40-41
work, 41-42

Element14 website, 66
embedded computers, 5, 8

Arduino, 9
microcontroller, 10-11

GPIO ports, 8
emitters, 151
eMMC, 74
ENIAC, 71
environment_monitor.py,

137
results, publishing,

137-138, 142
EOBD (European OBD),

190
Ethernet, 22

connecting, 32-33, 36-37

F
faces

identifying, 179-181
tracking, 182, 185, 188

face_tracker.py project,
180-181

fading LEDs, 156-158
file systems

GPIO
memory locations,

100-103
files, transferring, 62
FileZilla, 62
finger graphic, 150
flash memory, 22
flow control, 160

236 FM

FM
bandwidth, 217
wideband FM, 217

FM (frequency modulation),
207

functions
(), 200
obd_read, 194
pinMode, 31
read_adc, 123
strip(), 201
wait for edge(), 116

functrions
arguments, 86

funtions, 86

G
gain, 217
gaming

portable gaming
environment,

creating, 226
git, 176
Git, 215
GitHub, 215
goal of this book, 225
GPIO, 23, 24

current, controlling,
152-154

headers, 23
memory locations,

100-103
pins, 102

default state for
BeagleBone Black,
105, 108

mapping to GPIO
memory locations,
100-102

mux, 103-105
slew rate, 105

GPIO (general-purpose
input/output) ports, 5

GPIO ports, 8
grep command, 99
ground, 50

H
Hakko FX888D soldering

station, 230
hardware

actuators, 149
Capes, 108, 111

 BB-View LCD Capes,
111

 CryptoCape, 110
ProtoCape, 109

digital multimeters, 230
diodes, 48-50

LED circuit, building,
50-55

LEDs
representing binary,

83-89
mux, 103-105
oscilloscope, 54
radio, testing, 216-219
resistors, 45-48
soldering irons, 230
voltage regulator, 94
webcam

connecting, 171
testing, 172

webcams
snapshot.py project,

173-175
GPIO, 23-24

headers, 23

processor, 20
RAM, 21, 22

hardware specifications for
BeagleBone Black

Ethernet, 22
flash memory, 22
MicroSD, 22

headers, 23
heartbeats, 120
“Hello World!”, 28-31
Hertz, 124
history

of Linux, 71-72

I
IDE (integrated

development
environment), 28

identifying
faces, 179-181

image file
copying, 74-75

images
capturing, 173, 178-179
faces, identifying,

180-181
faces, tracking, 182, 185,

188
in-car computer, 227-228
inspecting

UART, 93-96
insserv program, 144-146
installing

drivers, 27
Kalibrate, 219-220
OpenCV libraries,

175-176
operating system, 76-79
packages, 61
streamer, 172

237motors

Internet radio, 205
interpreted code, 57-58

Python, 59-60
blinking lights,

implementing, 62-65
functions, 86

interpreting
OBD-II data, 199-203

int() funtion, 200
ipconfig command, 35, 210

J
JavaScript, 32
joysticks, 118
jumper wires, 52

K
Kalibrate

installing, 219-220

L
laptops

comparing with
BeagleBone Black, 8

LBP (Local Binary Pattern),
180

LED circuit
building, 50-55

LEDs, 48-49
binary, representing,

83-89
fading, 156-158
polarity sensitive, 51

libraries
Adafruit_BBIO PWM

library, 162
Git, 215
libusb-1.0, 215

OpenCV, 177-178
installing, 175-176

RCS, 215
twisted, 61

libusb-1.0, 215
Linux

Bash shell, 35
cat command, 99
distributions, 71
echo command, 98
grep command, 99
history of, 71-72
man command, 97-99
more command, 99
pipe command, 99
redirects, 99

listening
to aviation data,

221-223
adsbSCOPE, 223

list indexes, 89
loading

microSD card, 74-77
logic analyzers

Oscium LogiScope, 230
logic-level converter, 192
logic states, 120
loss in waveform resolution,

125
LSB (least-significant bit),

85
lsusb command, 210

M
machine code, 57
make command, 216
man command, 97-99
mapping

pins to GPIO memory
locations, 100-102

memory
flash memory, 22
MicroSD external

storage, 22
RAM, 7

in BeagleBone Black,
21-22

paging, 22
registers, 104
volatile memory, 21

methods
command(), 196
speed(), 201

microcontrollers, 10-11
Atmel ATMega 328P, 11

microprocessors
ARM

TI Sitara processor, 20
ARM architecture, 15
TI Sitara, 19

microSD card
loading, 74-77

MicroSD external storage,
22

MIL (Malfunction Indicator
Lamp), 190

mkdir command, 62
modes, 198
modifying

permissions, 142-144
modulation, 207

demodulation, 212
phase modulation, 209

more command, 99
motors

diodes, 160
servo motors, 161-163
stepper motors, 165-166

stepper.py project,
167, 170

winding inductance,
167

238 motors

vibration motors, 159
alert.py project, 161

MSB (most-significant bit),
85

mux, 103-105

N
networking

Ethernet, 22
NOAA, 228
NPN transistors, 151-152
NTP (Network Time

Protocol), 59
Nyquist sampling, 125

O
OBD-II, 190

car status
interpreting the data,

199-203
reading, 198-199

car status, reading, 198
commands, 198
connecting to UART,

191, 197-198
PIDs, 190

OBD (On-Board
Diagnostics), 190

obd.py project, 195-196
obd_read function, 194
onboard computers, 189

ECM status
interpreting received

data, 199-203
 reading, 198-199

MIL, 190
OBD, 190
OBD-II, 190

commands, 198

connecting to UART,
191, 197-198

PIDs, 190
online resources, 230-231
on/off sensors, 113-116
OpenCV, 175

bbbservo.py project,
183-185

face_tracker.py project,
180-181

libraries, 177-178
libraries, installing,

175-176
photobooth.py project,

178-179
system installation, 177
tracker.py project,

185, 188
OpenCV (Open Computer

Vision), 175
OpenROV project, 17-18
operating system

installing on BeagleBone
Black, 76-79

operating systems
Linux

cat command, 99
distributions, 71
echo command, 98
grep command, 99
history of, 71-72
man command, 97-99
more command, 99
pipe command, 99

selecting, 73
VMS, 72

operators
and, 87
bitwise shift left, 86

oscilloscope, 54

oscilloscopes
Oscium iMSO-104, 230
 Tektronix MSO2024B,

230
Oscium iMSO-104, 230
Oscium LogiScope, 230

P
packages, installing, 61
paging, 22
parallel communications

ribbon cables, 91
parity bit, 92
permissions

changing, 142-144
Phant, 138
phase modulation, 209
photobooth.py project,

178-179
photocells, 127, 134-136
photo_collection.py, 136
pictures

capturing, 173
PIDs, 198
PIDs (parameter IDs), 190
pinMode function, 31
pins, 102

default state, 105, 108
mapping to GPIO

memory locations,
100-102

mux, 103-105
slew rate, 105
UART, 96

pip command, 61
pipe command, 99
PNP transistors, 152
polarity sensitive, 51

239radio

portable gaming
environment,

creating, 226
ported operating systems,

71
potentiometers, 118-120
power, 40-41

short circuit, 43-45
ppm (parts per million),

219
print command, 194
print statement, 133
programming languages

compiled code, 65-66, 69
interpreted code, 57-58
Python, 59-60

programs
blink.js, 30
car_monitor.py program,

202-203
dd, 75
dump1090, 223
environment_monitor.

py, 137
results, publishing,

137-138, 142
insserv, 144-146
snapshot.py, 173-175

project ideas
aircraft tracking system,

228
in-car computer,

227-228
portable gaming

environment, 226
satellite ground station,

228-230
weather station, 227

projects
bbbservo.py, 183-185
blink.py, 154

communications_test.py,
194

face_tracker.py, 180-181
obd.py, 195-196
photo_collection.py, 136
photobooth.py, 178-179
pwm_blink.py, 156-157
pwm_fade.py, 158
servo.py, 162-163
snapshot.py, 173-175
tracker.py, 185, 188
video.py, 177-178

ProtoCape, 109
publishing

environment_monitor.py
results, 137, 142

pull-down resistors,
114-115

pull-up resistors, 116
pulse sensors, 122-124
pushbutton circuit with LED

indicator, 116-118
PuTTY, 33
PWM, 156-158

Adafruit_BBIO PWM
library, 162

duty cycle, 157
pulse durations,

calculating, 162
pwm_blink.py, 156-157
pwm_fade.py, 158
PWM (pulse-width

modulation), 156
Python, 59-60

alert.py project, 161
bbbservo.py project,

183-185
binary counter program,

84-89
blinking lights,

implementing, 62-65

blink.py project, 154
chmod command,

142-144
communications_test

project, 194
face_tracker.py project,

180-181
functions, 86
obd.py project, 195-196
photobooth.py project,

178-179
projects

car_monitor.py,
202-203

photo_collection.py,
136

pwm_blink.py,
156-157

pwm_fade.py, 158
tmp36_collection.py,

130-132
servo.py project,

162-163
snapshot.py project,

173-175
stepper.py project,

167, 170
tracker.py project,

185, 188

R
radio

AM, 207
calibrating, 219-221
FM, 207

bandwidth, 217
gain, 217
Internet radio, 205
listening to aviation data,

221-223
adsbSCOPE, 223

240 radio

phase modulation, 209
SDR, 212

RTL-SDR, 212-213
testing, 216-219
WiFi, 210-211

connecting to,
210-212

radio waves, 205-206
RAM, 7

in BeagleBone Black,
21-22

paging, 22
RCS (revision control

system), 215
read_adc function, 123
reading

ECM status, 198-199
reconstructing waveforms,

125
redirects, 99
registers, 104
repository, 176
representing binary, 83-89
resistance, 41-42

short circuit, 43-45
resistors, 45-48, 154
ribbon cables, 91
rotation

sensing, 118-120
RTC (real-time clock), 19
RTL-SDR, 212-213

testing, 217-219

S
sample rates, 124-125

loss in waveform
resolution, 125

Nyquist sampling, 125
sampling, 217
satellite ground station,

228-230

schematics
collectors, 151
emitters, 151
finger graphic, 150

SDR
listening to aviation

data, 221-223
adsbSCOPE , 223

RTL-SDR, 212-213
SDR (software-defined

radio), 212
security

permissions
changing, 142-144

selecting
operating systems, 73

sensors, 113-116
analog-to-digital

converters, 120-121
buttons, 118
joysticks, 118
on/off sensors, 113
photocells, 127, 134-136
pulse sensors, 122-124
pushbutton circuit with

LED indicator, 116-118
variable resistors,

118-120
serial communication

baud, 92
serial communications, 91

UART, 91-93
inspecting, 93-96
pins, 96

servo motors, 161-163
servo.py project, 162-163
shell scripts, 142
short circuit, 43-45
Sitara processor, 19-20

slew rate, 105
smoothing capacitors, 130
snapshot.py project,

173-175
SNES, 77
soldering irons

Hakko FX888D soldering
station, 230

SparkFun
CryptoCape, 110
ProtoCape, 109
publishing environment_

monitor.py results,
137-138, 142

SparkFun EasyDriver
Stepper Motor Driver, 165

SparkFun Electronics, 25
SparkFun Pulse Sensor kit,

122-124
spectrum, 206
speed() method, 201
SSD (solid-state drive), 22
SSH

PuTTY, 33
SSH (Secure Shell), 33
start bits, 92
step angle, 165
stepper motors, 165-166

stepper.py project, 167,
170

winding inductance, 167
stepper.py project, 167, 170
stop bits, 92
streamer, 172

installing, 172
strip() function, 201
suppliers, 25
system disk

microSD card
loading, 74-77

241work

T
Tektronix MSO2024B

oscilloscope, 230
testing

radio hardware, 216-219
webcam, 172

TI Sitara processor, 19-20
tmp36_collection.py,

130-132
Torvalds, Linus, 72
tracker.py project, 185-188
tracking

faces, 182-188
transducers, 113

sensors
analog-to-digital

converters, 120-121
buttons, 118
joysticks, 118
pulse sensors,

122-124
variable resistors,

118-120
transferring files, 62
transistors, 49, 149-154

BJT, 151
LEDs, fading, 156-158
NPN, 151-152
PNP, 152
turn-on voltage, 152

truth tables, 87
turn-on voltage, 152
twisted library, 61

U
UART

baud, 92
connecting to OBD-II,

191, 197-198
parity bit, 92
pins, 96

UART (Universal
Asynchronous, 93-96

UART (Universal
Asynchronous Receiver/
Transmitter), 91-93

Ubuntu, 73
Unix, 72
updating the clock, 59
USB Audio Adapter

(Adafruit), 218
user lights, 26
utilities

cmake, 215
rtl_fm, 217

V
variable resistors, 118-120
vibration motors, 159

alert.py project, 161
video

capturing, 175
video camera

connecting, 171
testing, 172

video cameras
OpenCV

bbbservo.py project,
183-185

face_tracker.py
project, 180-181

libraries, 177-178
library installation,

176
photobooth.py

project, 178-179
system installation,

177
tracker.py project,

185, 188
video.py project, 177-178
VMS, 72

volatile memory, 21
voltage, 39-41

brightness, 136
capacitors, 130
turn-on voltage, 152

voltage divider circuit, 119
voltage regulator, 94

W
wait for edge() function,

116
Watts, 40-41
waveforms

loss in resolution, 125
reconstructing, 125

weather station
creating, 227

web browsers
compatibility, 27
default website banner

information, 27
webcam

connecting, 171-172
webcams

snapshot.py project,
173-175

websites
Adafruit, 25
BeagleBoard.org, 73
Element14, 66
GitHub, 215
online resources,

230-231
SparkFun Electronics, 25

wideband FM, 217
WiFi, 210-211

connecting to, 210-212
Win32 Disk Imager, 74
winding inductance, 167
work, 41-42

	Table of Contents
	Introduction
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	Let Me Know What You Think
	Chapter 3 Getting Started
	Setting Up and Saying “Hello, World!”
	Connecting to Ethernet

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

