Official Cert Guide

Learn, prepare, and practice for exam success

VCP5-DCV
VMware® Certified Professional 5 - Data Center Virtualization

COVERING THE VCP550 EXAM ON VSphere 5.5

- Master the VCP5-DCV exam with this official study guide
- Assess your knowledge with chapter-opening quizzes
- Review key concepts with Exam Preparation Tasks
- Practice with realistic exam scenarios

BILL FERGUSON
VCP5-DCV
Official Cert Guide
VMware Press is the official publisher of VMware books and training materials, which provide guidance on the critical topics facing today's technology professionals and students. Enterprises, as well as small- and medium-sized organizations, adopt virtualization as a more agile way of scaling IT to meet business needs. VMware Press provides proven, technically accurate information that will help them meet their goals for customizing, building, and maintaining their virtual environment.

With books, certification and study guides, video training, and learning tools produced by world-class architects and IT experts, VMware Press helps IT professionals master a diverse range of topics on virtualization and cloud computing and is the official source of reference materials for preparing for the VMware certification exams.

VMware Press is also pleased to have localization partners that can publish its products into more than forty-two languages, including, but not limited to, Chinese (Simplified), Chinese (Traditional), French, German, Greek, Hindi, Japanese, Korean, Polish, Russian, and Spanish.

For more information about VMware Press, please visit vmwarepress.com
VMware® Press is a publishing alliance between Pearson and VMware, and is the official publisher of VMware books and training materials that provide guidance for the critical topics facing today’s technology professionals and students.

With books, eBooks, certification study guides, video training, and learning tools produced by world-class architects and IT experts, VMware Press helps IT professionals master a diverse range of topics on virtualization and cloud computing, and is the official source of reference materials for preparing for the VMware certification exams.

vmwarepress.com
Complete list of products • User Group Info • Articles • Newsletters

Make sure to connect with us!
vmwarepress.com
VCP5-DCV
Official Cert Guide

Bill Ferguson
Contents at a Glance

Introduction xxiv

CHAPTER 1 Planning, Installing, Configuring, and Upgrading vCenter Server and VMware ESXi 3

CHAPTER 2 Planning and Configuring vSphere Networking 75

CHAPTER 3 Planning and Configuring vSphere Storage 175

CHAPTER 4 Deploying and Administering Virtual Machine and vApps 241

CHAPTER 5 Establishing and Maintaining Service Levels 333

CHAPTER 6 Performing Basic Troubleshooting 443

CHAPTER 7 Monitoring a vSphere Implementation 493

CHAPTER 8 What Do I Do Now? 575

APPENDIX A Answers to the “Do I Know This Already?” Quizzes and Chapter Review Questions 581

Index 587
Chapter 2 Planning and Configuring vSphere Networking 75

“Do I Know This Already?” Quiz 75

Foundation Topics 78

Configuring vSphere Standard Switches 78
 Identifying vSphere Standard Switch (vSS) Capabilities 78
 Creating/Deleting a vSphere Standard Switch 79
 Deleting a vSphere Standard Switch 84
 Adding/Configuring/Removing vmnics on a vSphere Standard Switch 85
 Configuring VMkernel Ports for Network Services 91
 Adding/Editing/Deleting Port Groups on a vSphere Standard Switch 93
 Determining Use Cases for a vSphere Standard Switch 97

Configuring vSphere Distributed Switches 97
 Identifying vSphere Distributed Switch Capabilities 98
 Creating/Deleting a vSphere Distributed Switch 101
 Deleting a vDS 104
 Adding/Removing ESXi Hosts from a vSphere Distributed Switch 104
 Adding/Configuring/Removing dvPort Groups 110
 Adding/Removing Uplink Adapters to dvUplink Groups 113
 Creating/Configuring/Removing Virtual Adapters 118
 Migrating Virtual Adapters To/From a vSphere Standard Switch 125
 Migrating Virtual Machines To/From a vSphere Distributed Switch 127

Configuring vSS and vDS Policies 132
 Identifying Common vSS and vDS Policies 132
 Configuring dvPort Group Blocking Policies 138
 Configuring Load Balancing and Failover Policies 139
 Load Balancing 140
 Network Failover Detection 141
 Notify Switches 141
 Failback 142

Configuring VLAN Settings 143
 Configuring VLAN Policy Settings on a vDS 145
 Configuring VLAN Trunking Policies on a VDS 145
 Configuring Private VLAN Policy Settings on a vDS 146

Configuring Traffic Shaping Policies 148
 Traffic Shaping Policies for vSphere Standard Switches 148
 Traffic Shaping Policies for vSphere Distributed Switches 150

Enabling TCP Segmentation Offload Support for a Virtual Machine 150

Enabling Jumbo Frames Support on Appropriate Components 152
 Enabling Jumbo Frames for VMkernel Interface on a vSS 152
 Enabling Jumbo Frames on a vDS 154
 Enabling Jumbo Frame Support on Virtual Machines 155

Determining Appropriate VLAN Configuration for a vSphere Implementation 155
Creating and Deploying vApps 268
 Identifying vApp Settings 268
 Application Properties 269
 Deployment 269
 Authoring 272
 Start Order 273
 Creating/Cloning/Exporting a vApp 274
 Adding Objects to an Existing vApp 282
 Editing vApp Settings 282
 Configuring IP Pools 283
 Suspending/Resuming a vApp 284
 Determining When a Tiered Application Should Be Deployed as a vApp 284
Managing Virtual Machine Clones and Templates 285
 Identifying the vCenter Server, Managed ESXi Hosts, and Virtual Machine Maximums 286
 Identifying Cloning and Template Options 288
 Cloning an Existing Virtual Machine 289
 Creating a Template from an Existing Virtual Machine 290
 Deploying a Virtual Machine from a Template 293
 Updating Existing Virtual Machine Templates 295
 Deploying Virtual Appliances and/or vApps from an OVF Template 298
 Importing and/or Exporting an OVF Template 301
 Creating and Publishing Content Libraries 303
 Determining the Appropriate Development Methodology for a Given Virtual Machine Application 303
Administering Virtual Machines and vApps 303
 Identifying Files Used by Virtual Machines 304
 Identifying Locations for Virtual Machine Configuration Files and Virtual Disks 305
 Identifying Common Practices for Securing Virtual Machines 308
 Hot Extending a Virtual Disk 309
 Configuring USB Passthrough from an ESXi Host 312
 Configuring Serial Port Redirection 313
 Configuring Virtual Machine Options 314
 General Options 315
 VMware Remote Console Options 315
 VMware Tools 316
 Power Management 317
 Advanced 318
 Fibre Channel NPIV 318
 Configuring Virtual Machine Power Settings 319
 Configuring Virtual Machine Boot Options 320
 Configuring Virtual Machine Troubleshooting Options 321
 Assigning a Storage Policy to a VM 321
Verifying Storage Policy Compliance for Virtual Machines 323
Determining When an Advanced Virtual Machine Parameter Is Required 324
Adjusting Virtual Machine Resources (Shares, Limits, and Reservations) Based on Virtual Machine Workloads 324

Summary 324

Exam Preparation Tasks 325
Review All the Key Topics 325

Review Questions 327

Chapter 5 Establishing and Maintaining Service Levels 333

“Do I Know This Already?” Quiz 333

Foundation Topics 336
Creating and Configuring VMware Clusters 336
Describing DRS Virtual Machine Entitlement 336
Creating/Deleting a DRS/HA Cluster 337
Adding/Removing ESXi Hosts from a DRS/HA Cluster 338
Adding or Removing Virtual Machines from a DRS/HA Cluster 344
Configuring Storage DRS 345
Configuring Enhanced vMotion Compatibility 351
Monitoring a DRS/HA Cluster 352
Configuring Migration Thresholds for DRS and Virtual Machines 353
Configuring Automation Levels for DRS and Virtual Machines 355
Enabling and Disabling Host Power Management 356
Enabling BIOS P/C States 357
Creating VM-Host and VM-VM Affinity Rules 358
Enabling/Disabling Host Monitoring 363
Enabling/Configuring/Disabling Virtual Machine and Application Monitoring 364
Enabling/Configuring/Disabling Virtual Machine Monitoring 364
Enabling/Configuring/Disabling Application Monitoring 366
Configuring Admission Control for HA and Virtual Machines 366
Admission Control 367
Admission Control Policy 367
Determining Appropriate Failover Methodology and Required Resources for an HA Implementation 370
Host Failures the Cluster Tolerates 370
Percentage of Cluster Resources as Failover Spare Capacity 371
Specify Failover Hosts 371
Planning and Implementing VMware Fault Tolerance 371
Identifying VMware Fault Tolerance Requirements 372
Configuring VMware Fault Tolerance Networking 373
Enabling/Disabling VMware Fault Tolerance on a Virtual Machine 373
Testing an FT Configuration 375
Determining Use Case for Enabling VMware Fault Tolerance on a Virtual Machine 375
Creating and Administering Resource Pools 375
 Describing the Resource Pool Hierarchy 376
 Defining the Expandable Reservation Parameter 377
 A Description of vFlash Architecture 377
 Creating/Removing a Resource Pool 378
 Configuring Resource Pool Attributes 380
 Adding/Removing Virtual Machines from a Resource Pool 381
 Determining Resource Pool Requirements for a Given vSphere Implementation 381
 Evaluating Appropriate Shares, Reservations, and Limits for Resource Pools Based on
 Virtual Machine Workloads 382

Migrating Virtual Machines 383
 Identifying ESXi Host and Virtual Machine Requirements for vMotion and Storage
 vMotion 383
 ESXi and VM Requirements for vMotion 384
 ESXi and VM Requirements for Storage vMotion 385
 Enhanced vMotion (Cross-Host vMotion) 386
 Identifying Enhanced vMotion Compatibility CPU Requirements 387
 Identifying Snapshot Requirements for vMotion/Storage vMotion Migration 389
 Migrating Virtual Machines Using vMotion/Storage vMotion 390
 Migrating a VM Using vMotion 390
 Migrating a VM's Files Using Storage vMotion 394
 Configuring Virtual Machine Swap File Location 396
 Migrating a Powered-Off or Suspended Virtual Machine 399
 Utilizing Storage vMotion Techniques 399

Backing Up and Restoring Virtual Machines 401
 Identifying Snapshot Requirements 401
 Creating/Deleting/Consolidating Virtual Machine Snapshots 401
 Identifying VMware Data Protection Requirements 408
 Explaining VMware Data Protection Sizing Guidelines 409
 Installing and Configuring VMware Data Protection 410
 Creating a Backup Job with VMware Data Protection 412
 Installing, Configuring, and Managing vSphere Replication 412
 Determining Appropriate Backup Solution for a Given vSphere Implementation 416

Patching and Updating ESXi and Virtual Machines 416
 Identifying Patching Requirements for ESXi Hosts and Virtual Machine Hardware/
 Tools 417
 Creating/Editing/Removing a Host Profile from an ESXi Host 417
 Attach/Apply a Host Profile to an ESXi Host or Cluster 421
 Performing Compliance Scanning and Remediation of an ESXi Host Using Host
 Profiles 423
 Installing and Configuring vCenter Update Manager 425
 Configuring Patch Download Options 429
 Creating/Editing/Deleting an Update Manager Baseline 430
Chapter 6 Performing Basic Troubleshooting 443

“Do I Know This Already?” Quiz 443

Foundation Topics 447

Performing Basic Troubleshooting for ESXi Hosts 447
 Identifying General ESXi Host Troubleshooting Guidelines 447
 Learn How to Access Support Mode 447
 Know How to Retrieve Logs 451
 Troubleshooting Common Installation Issues 453
 Troubleshooting Boot Order 453
 Troubleshooting License Assignment 454
 Troubleshooting Plug-Ins 454
 Monitoring ESXi System Health 455
 Exporting Diagnostic Information 456

Performing Basic vSphere Network Troubleshooting 461
 Verifying Network Configuration 461
 Verifying a Given Virtual Machine Is Configured with the Correct Network Resources 463
 Troubleshooting Virtual Switch and Port Group Configuration Issues 463
 Troubleshooting Physical Network Adapter Configuration Issues 464
 Identifying the Root Cause of a Network Issue Based on Troubleshooting Information 465

Performing Basic vSphere Storage Troubleshooting 466
 Verifying Storage Configuration 467
 Troubleshooting Storage Contention Issues 469
 Troubleshooting Storage Overcommitment Issues 471
 Excessive Reservations Cause Slow Host Performance 471
 Path Thrashing Causes Slow Performance 471
 Troubleshooting iSCSI Software Initiator Configuration Issues 472
 Troubleshooting Storage Reports and Storage Maps 472
 Storage Reports 472
 Storage Maps 475
 Identifying the Root Cause of a Storage Issue Based on Troubleshooting Information 476
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring vCenter Server Timeout Settings</td>
<td>530</td>
</tr>
<tr>
<td>Monitoring/Administering vCenter Server Connections</td>
<td>531</td>
</tr>
<tr>
<td>Creating an Advanced Chart</td>
<td>533</td>
</tr>
<tr>
<td>Determining Host Performance Using Resxtop</td>
<td>536</td>
</tr>
<tr>
<td>Determining Host Performance Using Guest Perfmon</td>
<td>540</td>
</tr>
<tr>
<td>Given Performance Data, Identifying the Affected vSphere Resource</td>
<td>541</td>
</tr>
<tr>
<td>Creating and Administering vCenter Server Alarms</td>
<td>541</td>
</tr>
<tr>
<td>Listing vCenter Default Utilization Alarms</td>
<td>542</td>
</tr>
<tr>
<td>Listing vCenter Default Connectivity Alarms</td>
<td>543</td>
</tr>
<tr>
<td>Listing Possible Actions for Utilization and Connectivity Alarms</td>
<td>543</td>
</tr>
<tr>
<td>Creating a vCenter Utilization Alarm</td>
<td>544</td>
</tr>
<tr>
<td>Creating a vCenter Connectivity Alarm</td>
<td>548</td>
</tr>
<tr>
<td>Configuring Alarm Triggers</td>
<td>551</td>
</tr>
<tr>
<td>Configuring Alarm Actions</td>
<td>552</td>
</tr>
<tr>
<td>For a Given Alarm, Identifying the Affected Resource in a vSphere Implementation</td>
<td>552</td>
</tr>
<tr>
<td>Installing, Configuring, and Administering vCenter Operations Manager</td>
<td>553</td>
</tr>
<tr>
<td>Differentiating Between Major/Minor vCOPs Badges</td>
<td>554</td>
</tr>
<tr>
<td>Explaining vCOPs Architecture</td>
<td>555</td>
</tr>
<tr>
<td>Deploying and Configuring a vCOPs Appliance</td>
<td>556</td>
</tr>
<tr>
<td>Upgrading vCOPs</td>
<td>564</td>
</tr>
<tr>
<td>Understanding Metrics Used by Major/Minor vCOPs Badges</td>
<td>566</td>
</tr>
<tr>
<td>Monitoring Your vSphere Environment</td>
<td>567</td>
</tr>
<tr>
<td>Summary</td>
<td>568</td>
</tr>
<tr>
<td>Exam Preparation Tasks</td>
<td>569</td>
</tr>
<tr>
<td>Review All the Key Topics</td>
<td>569</td>
</tr>
<tr>
<td>Review Questions</td>
<td>571</td>
</tr>
<tr>
<td>Chapter 8 What Do I Do Now?</td>
<td>575</td>
</tr>
<tr>
<td>Foundation Topics</td>
<td>576</td>
</tr>
<tr>
<td>Scheduling the Test</td>
<td>576</td>
</tr>
<tr>
<td>Comparing Your Knowledge to the VCP550 Exam Blueprint Objectives</td>
<td>577</td>
</tr>
<tr>
<td>Studying the Questions at the End of Each Chapter and on the Bonus Material</td>
<td>577</td>
</tr>
<tr>
<td>Taking the Mock Exam on the VMware Website</td>
<td>578</td>
</tr>
<tr>
<td>The Day of the Test</td>
<td>579</td>
</tr>
<tr>
<td>Sending Me an Email When You Pass</td>
<td>579</td>
</tr>
<tr>
<td>Appendix A Answers to the “Do I Know This Already?” Quizzes and Chapter Review Questions</td>
<td>581</td>
</tr>
<tr>
<td>“Do I Know This Already?” Answers</td>
<td>581</td>
</tr>
<tr>
<td>Chapter Review Answers</td>
<td>583</td>
</tr>
<tr>
<td>Index</td>
<td>586</td>
</tr>
</tbody>
</table>
About the Author

Bill Ferguson, VCI 3, 4, 5; VCP 3, 4, 5; CCSI; and MCT Alumni has been in the computer industry for more than 20 years. Originally in technical sales and IT consulting with Sprint, he made his transition to Certified Technical Trainer in 1997 with ExecuTrain. He now runs his own company, Parallel Connections, as an independent contractor and consultant based in Birmingham, Alabama, working worldwide for most of the national training companies and some regional training companies. In addition, he has written and produced many technical training videos and books. Bill's aspiration is as follows: “My job is to understand the material so well that I can make it easier for others to learn than it was for me to learn. Toward that end, I strive to provide an effective learning environment whether in person, in print, or online.”
I am dedicating the original book and this updated book to my wife, who didn’t want me to take on this challenge at first because of the tremendous amount of time that it takes to complete a book of this type; yet she still became my prime source of encouragement and support when I decided to do it anyway. I love you, Wilma, and I couldn’t have done this without you. Thanks!
Acknowledgments

First, I want to thank Joan Murray for giving me the opportunity to write this important book. I am very glad that our paths crossed at VMworld; due entirely to one of the technical editors of this book, John Davidson. Thanks, John and Joan!

I also want to thank John Davidson and Gabrie van Zanten for their “spot-on” technical editing of the book. Because of them, I learned a few things myself while writing this book. In addition, the flow and consistency of the book are the result of efforts by Chris Cleveland and Chuck Hutchinson, who kept me on target with their skilled developmental and copy editing. I would also like to give a special thanks to Joshua Andrews at VMware, whose first-hand knowledge of the latest products and features in vSphere provided me with the most up-to-date information possible. His review of this book makes it a true VMware/Pearson collaboration. It takes a lot of people to create a book, and I am sure that I do not know all the names of the people who were involved in this one, but thank you.

Finally, I want to acknowledge the encouragement and prayers of my family and friends and the students in my technical classes and Sunday school classes. In Him, all things are possible!
About the Reviewers

John A. Davidson, VCI; VCP 3, 4, 5; VCAP4-DCA; MCT; MCSE; CCSI; CCNA; A+; Network+, has been in the computer industry for more than 20 years. With a career that has included roles in technical sales, sales management, system administration, and network engineering, John made his transition to being a Certified Technical Trainer in 1998, and has worked with many leading training organizations. Today, John serves as the VMware course director for Global Knowledge-USA for datacenter and desktop courses. As a lead instructor, John spends his time mentoring new instructors, students, and colleagues, and serves as subject matter expert to design, develop, and implement VMware solutions to support Global Knowledge-USA’s training environment.

Gabrie van Zanten is a virtualization specialist working for Open Line in the Netherlands. As a consultant, he designs and implements virtual infrastructures for customers. Besides being a consultant, Gabrie runs one of the top-ten ranked blogs on VMware at http://www.GabesVirtualWorld.com. He writes about VMware and helps his readers get in-depth understanding on how VMware products work. His blogging activities, the presentations he gives, and the effort he puts in helping members of the VMware community earned him the VMware vExpert award in 2009, 2010, and 2011.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write us directly to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name, email address, and phone number. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: VMwarePress@vmware.com

Mail: VMware Press
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services

Visit our website at www.pearsonitcertification.com/title/9780789753748 and register this book for convenient access to any updates, downloads, or errata that might be available for this book.
Introduction

Welcome to my *VCP5-DCV Official Certification Guide*. I’m excited about sharing this information with you to help you prepare to take and pass the VCP550 exam. My original *VCP5-DCV Official Certification Guide*, for the VCP510 test, has helped many people pass that test. However, because there have been many changes to the vSphere product over the past two years, I decided to update the book to reflect the new information that you need to know for real life as well as for the new test.

I’ve been a technical trainer/consultant for more than 15 years, and I’ve taught thousands of students. Because I teach many of my VMware classes online now, I sometimes tell people that “I teach people I can’t see to use computers that don’t exist in a physical sense.” This book is just an extension of that theme.

Because the test blueprint on VMware’s website, vmware.com/certification, is your best guide for success on the test, I decided, as before, to write this book as directly to the blueprint as possible. This means that we will jump into topics that might seem to be out of place if this is your first look at virtualization. This leads me to my first assumption, which is that this is not your first look at virtualization. The reason I assume this is that you are preparing to take a test that is of a highly technical nature, so it should seem reasonable to assume that you have had prior knowledge and experience with VMware products, either in the workplace or in technical classes like the ones that I teach. It is with this assumption that I can follow the blueprint as it is written, but I will take into account areas where I feel there is a need to backfill information so that you can fully understand the topic that I am discussing.

My second assumption is that you have access to a vSphere 5.5 environment or can build yourself a system on which you can practice what we will discuss so that you will retain it better. We all learn in different ways, but I’ve found that many in the IT world learn by doing even more than by hearing. Because this is the case, and because it fits well with the blueprint, there will be many times throughout this book when I walk you through the steps. Therefore, it would be best for you to have a system with at least vCenter 5.5 and a couple of ESXi 5.5 hosts installed that you can use to follow along. You could even do this using Workstation 10 and all virtual machines.

As to what you need to learn and remember, my third assumption is that you don’t want to know everything there is to know about “all things VMware”—just what is important in your situation and what might be on the test. Based on that assumption, I will try my best not to throw in a lot of additional material that makes you wonder whether you need to know it as well. I will not repeat “this would be good
to know for the test” throughout this book because that would get monotonous; however, if it is in this book, you can assume that it is fair game for the VCP550 test.

Finally, my last assumption is that you don’t really care how much I know, but what you really care about is whether I can help you learn what you need to know. Toward that end, I will use examples, stories, and analogies to help you understand highly technical topics in a more comfortable manner than you might have experienced before in a technical book. The way I see it, “My job is to know this material so well that I can make it easier for you to learn than it was for me to learn.” So, if we are all in agreement, let’s get started!

Who Should Read This Book

The VCP5 certification was listed on http://www.techrepublic.com/ as one of the top-ten certifications to have in 2012. If you are currently working with VMware vSphere virtual datacenters, it could be a valuable certification for you. If you are considering your options in the IT world, you will not go wrong if you learn about virtualization now. In either case, this book will help you obtain the knowledge and the skills toward becoming a VCP5-DCV.

Goals and Methods

My number-one goal of this book is a simple one: to help you pass the VCP550 Certification test and obtain the status of VMware Certified Professional 5-Data Center Virtualization (VCP5-DCV).

To aid you in gaining the knowledge and understanding of key vSphere topics, I use the following methods:

- **Opening topics list**: This list defines the topics to be covered in the chapter. Each chapter is a part of the exam blueprint and the chapters and topics are written in blueprint order.

- **“Do I Know This Already?” quizzes**: At the beginning of each chapter is a quiz. The quizzes, and answers/explanations (found in Appendix A), are meant to gauge your knowledge of the subjects. If the answers to the questions do not come readily to you, be sure to read the entire chapter.

- **Key topics**: The key topics indicate important figures, tables, and lists of information that you should know for the exam. They are interspersed throughout the chapter and are listed in table format at the end of the chapter.
Review questions: All chapters conclude with a set of review questions to help you assess whether you have learned the key material in the chapter.

Exam-type questions: Exam questions are included with the printed and digital editions of this book. They are written to be as close as possible to the types of questions that appear on the VCP550 exam.

How to Use This Book

Although you could read this book cover to cover, I designed it to be flexible enough to allow you to easily move between chapters and sections of chapters to work on the areas that you feel are the most important for you. If you intend to read all the chapters, the order in the book is an excellent sequence to follow.

The core chapters, Chapters 1 through 7, cover the following topics:

- **Chapter 1, “Planning, Installing, Configuring, and Upgrading vCenter Server and VMware ESXi”:** This chapter focuses on installing, upgrading, and securing all of the key components in your vSphere. I discuss ESXi hosts, vCenter, datastores, and network components.

- **Chapter 2, “Planning and Configuring vSphere Networking”:** This chapter focuses completely on networking components in vSphere. I cover both vSphere standard switch and vSphere distributed switch concepts.

- **Chapter 3, “Planning and Configuring vSphere Storage”:** This chapter focuses on storage of virtual datacenters and virtual machines. I discuss configuring and managing all forms of storage, including Fibre Channel, iSCSI, and network-attached storage.

- **Chapter 4, “Deploying and Administering Virtual Machine and vApps”:** This chapter focuses on creating, configuring, and managing virtual machines and vApps. I cover many other topics, including cloning, troubleshooting, and exporting virtual machines and vApps.

- **Chapter 5, “Establishing and Maintaining Service Levels”:** This chapter focuses on keeping your vSphere running smoothly and recovering quickly from any failure. I cover many topics, including services that improve overall utilization and recoverability.

- **Chapter 6, “Performing Basic Troubleshooting”:** This chapter focuses on understanding the key components of your vSphere and how they work together. You learn how to spot a problem and make the necessary corrections. I cover troubleshooting your ESXi hosts, network, storage, and key services.
■ Chapter 7, “Monitoring a vSphere Implementation”: This chapter focuses on the “core four” resources in any computer system: CPU, memory, disk, and network. I cover guidelines for monitoring each of the core four. By knowing how to monitor your resources and knowing what you should expect to see, you will be able to spot any metrics that seem “out of place” and take the necessary action.

■ Chapter 8, “What Do I Do Now?”: This small chapter gives you some additional direction and encouragement to schedule, take, and pass the VCP550 test.

NOTE As I will state again in Chapter 8, I highly recommend that you schedule the test now and then study. Go to Pearson/Virtual University Enterprises (http://vue.com) on the Web and find a testing center close to you. The cost of the exam at the time of this writing is $225. If you put your money down and set the date, you will focus more and study better.

Certification Exam and This Preparation Guide

I wrote this book directly to the VCP550 Exam Blueprint. Each chapter of this book is a section of the blueprint, with all of its objectives in the same order as the blueprint. This way, you can easily identify your strengths and work on your weaknesses. Table I-1 lists the VCP550 Exam Blueprint objectives and the chapter of this book that covers them.

<table>
<thead>
<tr>
<th>Exam Section/Objective</th>
<th>Chapter Where Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1—Plan, Install, Configure, and Upgrade vCenter Server and VMware ESXi</td>
<td></td>
</tr>
<tr>
<td>Objective 1.1—Identify and Explain vSphere Architecture and Solutions</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Objective 1.2—Install and Configure vCenter Server</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Objective 1.3—Install and Configure VMware ESXi</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Objective 1.4—Plan and Perform Upgrades of vCenter Server and VMware ESXi</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Objective 1.5—Secure vCenter Server and ESXi</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Exam Section/Objective</td>
<td>Chapter Where Covered</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Section 2: Plan and Configure vSphere Networking</td>
<td></td>
</tr>
<tr>
<td>Objective 2.1—Configure vSphere Standard Switches</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Objective 2.2—Configure vSphere Distributed Switches</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Objective 2.3—Configure vSS and vDS Policies</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Section 3—Plan and Configure vSphere Storage</td>
<td></td>
</tr>
<tr>
<td>Objective 3.1—Configure Shared Storage for vSphere</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Objective 3.2—Create and Configure VMFS and NFS Datastores</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Section 4—Deploy and Administer Virtual Machines and vApps</td>
<td></td>
</tr>
<tr>
<td>Objective 4.1—Create and Deploy Virtual Machines</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Objective 4.2—Create and Deploy vApps</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Objective 4.3—Manage Virtual Machine Clones and Templates</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Objective 4.4—Administer Virtual Machines and vApps</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Section 5—Establish and Maintain Service Levels</td>
<td></td>
</tr>
<tr>
<td>Objective 5.1—Create and Configure VMware Clusters</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Objective 5.2—Plan and Implement VMware Fault Tolerance</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Objective 5.3—Create and Administer Resource Pools</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Objective 5.4—Migrate Virtual Machines</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Objective 5.5—Backup and Restore Virtual Machines</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Objective 5.6—Patch and Update ESXi and Virtual Machines</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Section 6—Perform Basic Troubleshooting</td>
<td></td>
</tr>
<tr>
<td>Objective 6.1—Perform Basic Troubleshooting for ESXi Hosts</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>Objective 6.2—Perform Basic vSphere Network Troubleshooting</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>Objective 6.3—Perform Basic vSphere Storage Troubleshooting</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>Objective 6.4—Perform Basic Troubleshooting for HA/DRS Clusters and vMotion/Storage vMotion</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>Section 7—Monitor a vSphere Implementation and Manage vCenter Server Alarms</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Objective 7.1—Monitor ESXi, vCenter Server and Virtual Machines</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Objective 7.2—Create and Administer vCenter Server Alarms</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Objective 7.3—Install, Configure, and Administer vCenter Operations Manager</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Section 8—Perform Advanced Troubleshooting</td>
<td></td>
</tr>
<tr>
<td>Objective 8.1—Perform Advanced Troubleshooting for HA/DRS Clusters and vMotion/Storage vMotion</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>Objective 8.2—Perform Advanced vSphere Network Troubleshooting</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>Objective 8.3—Perform Advanced vSphere Storage Troubleshooting</td>
<td>Chapter 8</td>
</tr>
</tbody>
</table>
Book Content Updates

Because VMware occasionally updates exam topics without notice, VMware Press might post additional preparatory content on the web page associated with this book at http://www.pearsonitcertification.com/title/9780789753748. It is a good idea to check the website a couple of weeks before taking your exam, to review any updated content that might be posted online. We also recommend that you periodically check back to this page on the Pearson IT Certification website to view any errata or supporting book files that may be available.

Pearson IT Certification Practice Test Engine and Questions on the DVD

The DVD in the back of this book includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice questions. Using the Pearson IT Certification Practice Test engine, you can either study by going through the questions in Study Mode, or take a simulated exam that mimics real exam conditions. You can also serve up questions in a Flash Card Mode that will display just the question and no answers, challenging you to state the answer in your own words before checking the actual answers to verify your work.

The installation process requires two major steps: installing the software and then activating the exam. The DVD in the back of this book has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam—the database of exam questions—is not on the DVD.

NOTE The cardboard DVD case in the back of this book includes the DVD and a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Install the Software from the DVD

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows Virtual Machine, but it was built specifically for the PC platform. The minimum system requirements are as follows:

- Windows XP (SP3), Windows Vista (SP2), Windows 7, or Windows 8
- Microsoft .NET Framework 4.0 Client
■ Pentium class 1 GHz processor (or equivalent)
■ 512 MB RAM
■ 650 MB disc space plus 50 MB for each downloaded practice exam

The software installation process is pretty routine as compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the DVD sleeve.

The following steps outline the installation process:

Step 1. Insert the DVD into your PC.

Step 2. The media interface that automatically runs allows you to access and use all DVD-based features, including the exam engine and sample content from other Cisco self-study products. From the main menu, click the option to **Install the Exam Engine**.

Step 3. Respond to window prompts as with any typical software installation process.

The installation process will give you the option to activate your exam with the activation code supplied on the paper in the DVD sleeve. This process requires that you establish a Pearson website login. You will need this login in order to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

Once the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process) as follows:

Step 1. Start the Pearson IT Certification Practice Test software from the Windows Start menu or from your desktop shortcut icon.

Step 2. To activate and download the exam associated with this book, from the My Products or Tools tab, select the **Activate Exam** button.

Step 3. At the next screen, enter the Activation Key from the paper inside the cardboard DVD holder in the back of the book. After entering it, click the **Activate** button.

Step 4. The activation process will download the practice exam. Click **Next**; then click **Finish**.
When the activation process is completed, the My Products tab should list your new exam. If you do not see the exam, make sure you have selected the My Products tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the Open Exam button.

To update a particular exam you have already activated and downloaded, simply select the Tools tab and select the Update Products button. Updating your exams will ensure you have the latest changes and updates to the exam data.

If you want to check for updates to the Pearson Cert Practice Test exam engine software, simply select the Tools tab and select the Update Application button. This will ensure you are running the latest version of the software engine.

Activating Other Exams

The exam software installation process, and the registration process, only has to happen once. Then, for each new exam, only a few steps are required. For instance, if you buy another new Pearson IT Certification Cert Guide, extract the activation code from the DVD sleeve in the back of that book—you don’t even need the DVD at this point. From there, all you have to do is start the exam engine (if not still up and running), and perform steps 2 through 4 from the previous list.

Premium Edition

In addition to the free practice exam provided on the DVD, you can purchase two additional exams with expanded functionality directly from Pearson IT Certification. The Premium Edition eBook and Practice Test for this title contains an additional full practice exam and an eBook (in both PDF and ePub format). In addition, the Premium Edition title also has remediation for each question to the specific part of the eBook that relates to that question.

If you have purchased the print version of this title, you can purchase the Premium Edition at a deep discount. A coupon code in the DVD sleeve contains a one-time-use code and instructions for where you can purchase the Premium Edition.

This chapter covers the following subjects:

- Performing Basic Troubleshooting for ESXi Hosts
- Performing Basic vSphere Network Troubleshooting
- Performing Basic vSphere Storage Troubleshooting
- Performing Basic Troubleshooting for HA/DRS Clusters and vMotion/Storage vMotion
Performing Basic Troubleshooting

Troubleshooting is a process of isolating the components of a system from each other to systematically determine what works. That’s right, I said “what works” and not “what doesn’t work.” If you can determine what does work in a system and how “far” it does work, then you can determine the point at which it begins to not work.

Just as with any other product or service, many things can go wrong with vSphere if they are not configured properly or if something unexpected and unaccounted for should happen. When you are a vSphere administrator, part of your job is to minimize the chance of these unexpected issues and to minimize their impact to your organization when they occur. The other part of your job is to understand how to work your way out of an issue so as to provide a solution for yourself and your servers with the least disruption possible to your users.

In this chapter, I will discuss performing basic troubleshooting on your ESXi hosts, virtual networks, and storage. In addition, I will discuss basic troubleshooting for the features that put all these resources to work in an organized manner that makes the vSphere and the virtual datacenter possible. This chapter will assist you in truly understanding more about your vSphere and not just in “having head knowledge” of its components. This understanding will help you troubleshoot your own systems and is essential to successfully navigate the troubleshooting questions on the exam.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read this entire chapter or simply jump to the “Exam Preparation Tasks” section for review. If you are in doubt, read the entire chapter. Table 6-1 outlines the major headings in this chapter and the corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes and Chapter Review Questions.”
Table 6-1 “Do I Know This Already?” Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions Covered in This Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performing Basic Troubleshooting for ESXi Hosts</td>
<td>1–3</td>
</tr>
<tr>
<td>Performing Basic vSphere Network Troubleshooting</td>
<td>4, 5</td>
</tr>
<tr>
<td>Performing Basic vSphere Storage Troubleshooting</td>
<td>6–8</td>
</tr>
<tr>
<td>Performing Basic Troubleshooting for HA/DRS Clusters and vMotion/Storage vMotion</td>
<td>9, 10</td>
</tr>
</tbody>
</table>

1. Which of the following tools is provided by VMware as a last resort to troubleshoot issues that cannot be resolved through more normal means?
 a. vCLI
 b. vSphere Web Client
 c. ESXi Shell
 d. PowerCLI

2. Which of the following should you select in the DCUI to review the system logs?
 a. View Support Information
 b. View System Logs
 c. Troubleshooting Options
 d. System Customization

3. If you are logged directly on to a host with the vSphere Client, which of the following tabs should you select to monitor the system health status of the host?
 a. Health Status
 b. Monitor
 c. Summary
 d. Hardware Status
4. Which of the following is true about the speed of a network connection in vSphere?
 a. The speed of the connection is configurable on the settings for the vNIC.
 b. The speed of the connection is based on the underlying network and is not configurable.
 c. The speed of the connection is configurable on the settings for the vmnic.
 d. The speed of the network connection must be hard-coded and cannot be autonegotiated.

5. Which of the following is true with regard to vSS switch settings and port group settings?
 a. Conflicting port group settings will override switch settings.
 b. Conflicting switch settings will override port group settings.
 c. Port group and switch settings are different, so there is no possibility of a conflict.
 d. If settings conflict, an error will result and the administrator will have to address the issue.

6. Which of the following is not a native VMware path-selection type?
 a. Round-Robin
 b. Load based
 c. Most recently used
 d. Fixed

7. Which of the following is the maximum number of powered-on VMs per VMFS-5 datastore?
 a. 32
 b. 10,000
 c. 2,048
 d. 256
8. Which of the following is true about active-active arrays?
 a. Active-active arrays will often cause path thrashing.
 b. Active-active arrays should never be used with vSphere.
 c. Active-active arrays should always be used with vSphere.
 d. Properly configured active-active arrays do not cause path thrashing.

9. Which of the following is the minimum network speed required for vMotion?
 a. 100 Mbps
 b. 1 Gbps
 c. 10 Gbps
 d. vMotion can work at any speed.

10. Which of the following is not a requirement of HA?
 a. Hosts must be in the same cluster.
 b. Hosts must share the same CPU vendor and family.
 c. Hosts must have shared datastores.
 d. Hosts must have access to the same physical networks.
Performing Basic Troubleshooting for ESXi Hosts

Your ESXi hosts are the most important physical resources in your virtual data-center. They provide the platform upon which all the VMs are supported and from which they obtain their resources. When there is a problem with an ESXi host, that problem will likely affect many VMs.

In this section, I will begin by identifying general troubleshooting guidelines for ESXi hosts. Then I will discuss troubleshooting common installation issues and how you should avoid them. I will continue by discussing the ongoing monitoring of the health of your ESXi host. Finally, I will discuss how you can export diagnostic information to examine for yourself and especially to send to the VMware Technical Support Team.

Identifying General ESXi Host Troubleshooting Guidelines

Your vSphere is unique, just as everyone’s vSphere is unique, but there are some guidelines that you can follow to effectively troubleshoot your ESXi hosts. You can use these general guidelines to determine more specific steps for your own organization. The following sections document some basic troubleshooting guidelines for ESXi.

Learn How to Access Support Mode

Tech Support Mode (TSM) consists of a command-line interface that you can use to troubleshoot abnormalities on ESXi Hosts. You can access it by logging in to the Direct Console User Interface (DCUI) or by logging in remotely using Secure Shell (SSH). It is provided by VMware specifically for the purpose of troubleshooting issues that cannot be resolved through the use of more normal means, such as the vSphere Client, vCLI, or PowerCLI. It is generally used with the assistance of the VMware Technical Support Team.

To enable TSM from the DCUI, follow the steps in Activity 6-1.

Activity 6-1 Enabling TSM from the DCUI

1. Access the DCUI of your ESXi host.
2. Press F2 and enter your username and password, and then press F2 again to proceed, as shown in Figure 6-1.
3. Scroll to Troubleshooting Options, as shown in Figure 6-2, and press Enter.

4. Select Enable ESXi Shell and press Enter. The panel on the right should now show that ESXi Shell Is Enabled, as shown in Figure 6-3.
5. Select **Enable SSH** and press **Enter** to also enable remote TSM through SSH, and then press **Enter** and view the panel on the right to confirm the change.

6. Optionally, you can configure a timeout to enhance security if the logged-in user should walk away. To enable a timeout, select **Modify ESXi Shell Timeout**, press **Enter**, and configure your desired timeout value, as shown in Figure 6-4.

![Figure 6-4 Modifying ESXi Shell Timeout](image)

7. Press **Esc** three times to return to the main DCUI screen.

You can also enable TSM from the security profile of your vSphere Client. To illustrate how these are tied together, I am going to demonstrate that TSM is now enabled, and then you will disable it from the vSphere Web Client. To access the settings of the security profile of your ESXi host, follow the steps outlined in **Activity 6-2**.

Activity 6-2 Configuring TSM from the vSphere Client

1. Log on to your vSphere Web Client and select **Hosts and Clusters**.

2. Select the host on which you want to configure TSM and (if necessary) open the **Summary** tab. Note the warnings that SSH and the ESXi Shell are enabled, as shown in Figure 6-5.

![Figure 6-5 TSM enabled](image)

3. Click the **Manage** tab, then the **Settings** tab, and select **Security Profile**. Scroll down to Services and note that the services of SSH and ESXi Shell are listed, which indicates that they can be controlled from here. Select **Edit** and then **ESXi Shell**; then click **Stop**, as shown in Figure 6-6. (You should also change the startup policy to **Start and Stop Manually**.)
4. Select SSH, click Stop, and then click OK.

5. Click the Summary tab for the host and note that the warnings are no longer there.
Know How to Retrieve Logs

One thing that computers and networking components are good at is keeping up with what has happened to them, who or what made it happen, and when it happened. This information is stored in logs. Although there is generally no need for you to understand all the verbose information that is in every log, it is important that you know where to find logs and how to export them when needed. In this section, I will explore three different locations where you can access logs for your most essential vSphere components.

There are two locations on your ESXi hosts from which you can access logs: your DCUI and your vSphere Web Client. As I said before, it’s not essential that you understand all the information in the log, but what’s important is your ability to access it when working with a VMware Support person. I will briefly describe how to access logs in each of these locations.

To access the logs from your DCUI, you should access your host’s DCUI and then select **View System Logs**. From this screen, you can select from six different logs, as shown in Figure 6-7.

- **Syslog**: Logs messages from the VMkernel and other system components to local files or to the remote host
- **VMkernel**: Used to determine uptime and availability statistics
- **Config**: Potentially useful in the case of a host hang, crash, or authentication issue
- **Management Agent (hostd)**: Logs specific to the host services that connect your vSphere Client to your ESXi host
- **Virtualcenter Agent (vpxa)**: Additional logs that appear when your ESXi host is connected to and managed by a vCenter
- **VMware ESXi Observation Log (vobd)**: Logs changes to the configuration of your host and their result

You can view each of these logs by simply pressing the number associated with it. For example, you can view the vmkernel log by pressing 2. Figure 6-8 is an example of a VMkernel log. When you are finished viewing the log, press Q to return to the previous screen.
To access your host's logs using your vSphere Web Client, log on to your host (not your vCenter). You can log on to your host using its hostname or IP address. After you log on to your vSphere Web Client, click your host, then click **Monitor**, and finally click **Log Browser**, where you can view hostd, VMkernel, and shell logs, as well as others as shown in Figure 6-9.
Troubleshooting Common Installation Issues

For your hosts to function well in your vCenter, you must first install them properly. As discussed in Chapter 1, “Planning, Installing, Configuring, and Upgrading vCenter Server and VMware ESXi,” there are many different ways to install the software for an ESXi host, including interactive installation, USB key, scripted, or even loaded directly into the memory of the host. That makes this objective a very broad one indeed. With that in mind, I will list three of the most common installation issues and how you should address them.

Troubleshooting Boot Order

If you are installing ESXi, you might need to reconfigure BIOS settings. The boot configuration in BIOS is likely to be set to CD-ROM and then ordered by the list of drives available in your computer. You can change this setting by reconfiguring the boot order in BIOS or by selecting a boot device for the selection menu. If you change this in the BIOS, it will affect all subsequent boots. If you change it in the boot selection menu, it will affect only the current boot.
NOTE Some servers do not offer a boot device selection menu. Also, if you’re using ESXi embedded, the BIOS boot configuration determines whether your server boots into the ESXi boot device or another boot device. Generally, the USB flash device is not listed first and requires additional steps (based on the specific vendor) to allow the system to boot from it. Also, other BIOS settings, such as NX/XD, VT, SpeedStep, and so on, should be considered.

Troubleshooting License Assignment

Suppose you have a vSphere key that allows for 16 processors. Now, suppose that you attempt to install that key on a host that has 32 processors. You might assume that the key would install but only enable the host to use the processors covered by the key. In fact, you will not be able to install the key on that host. In addition, you will not be able to install license keys that do not cover all the features that you have enabled for a host (for example, DRS, Host Profile, fault tolerance, and so on). To address the issue, you should do one of the following:

- Obtain and assign the appropriate key with a larger capacity.
- Upgrade your license edition to cover the features that you are using on your host.
- Disable the features that are not covered by the key that you are attempting to assign.

Troubleshooting Plug-Ins

As you might know, plug-ins are used in the vCenter, so it might seem unusual to discuss them under this heading. However, if you think about it, the services to the VMs are actually provided by the hosts and are only controlled by the vCenter. In addition, plug-ins that fail to enable can be frustrating, so troubleshooting them warrants discussion here.

In cases where plug-ins are not working, you have several troubleshooting options. You should first understand that plug-ins that run on the Tomcat server have extension.xml files that contain the URL of the application that can be accessed by the plug-in. These files are located in C:\Program Files\VMware\Infrastructure\VirtualCenter Server\extensions. If your vCenter Server and your vSphere Web Client are not on the same domain, or if the hostname of the plug-in server is changed, the clients will not be able to access the URL, and then the plug-in will not enable. You can address this issue by replacing the hostname in the extension file with the IP address of the plug-in server.
Monitoring ESXi System Health

You can use your vSphere Client to monitor the state of your host hardware components. The host health monitoring tool allows you to monitor the health of many hardware components including CPU, memory, fans, temperature, voltage, power, network, battery, storage, cable/interconnect, software, watchdog, and so on. Actually, the specific information that you will obtain will vary somewhat by the sensors available in your server hardware.

The host health monitoring tool will gather and present data using Systems Management Architecture for Server Hardware (SMASH) profiles. SMASH (isn’t that a fun acronym!) is an industry standard specification. You can obtain more information about SMASH at http://www.dmtf.org/standards/smash. You can monitor the host health status by connecting your vSphere Client directly to your host and selecting **Configuration** and then **Health Status**, as shown in Figure 6-10. As you might imagine, you are looking for a green check mark here. The status will turn yellow or red if the component violates a performance threshold or is not performing properly. Generally speaking, a yellow indicator signifies degraded performance, and a red indicator signifies that the component has either stopped or has tripped the highest (worst) threshold possible.

![Figure 6-10 Viewing Health Status on a Specific Host](image)

You can also monitor your host’s health by logging on to your vCenter with your vSphere Web Client, selecting the host, and then clicking the **Monitor** tab and finally the **Hardware Status** tab, as shown in Figure 6-11.
Exporting Diagnostic Information

If you have an issue that warrants contacting VMware technical support, the technicians might ask you to send them a log or two. If they want to see multiple logs, the easy way to send them “everything you’ve got” is to generate a diagnostic bundle. That sounds like more work for you, doesn’t it? Actually, it’s a very simple task that you can perform on your vCenter through your vSphere Web Client. I will discuss this briefly here and then I will discuss it in more detail in Chapter 7, “Monitoring a vSphere Implementation.”

To export a diagnostic data bundle, you use either a host log-in, as detailed in Activity 6-3, or use a vCenter log-in, as detailed in Activity 6-4.

Activity 6-3 Exporting Diagnostic Information from a Host Log-In

1. Log on to your host with your vSphere Client.

2. Click your ESXi host in the console pane. Then select File, then Export, and finally Export System Logs, as shown in Figure 6-12.
3. Specify the system logs that you want to be exported, likely as directed by the VMware Support Team, as shown in Figure 6-13, and click **Next**.

4. Enter or select **Browse** to find the location to which you want to download the file, as shown in Figure 6-14.
5. You can view the progress of your System Log Bundle as it is downloaded to the destination, as shown in Figure 6-15.

Activity 6-4 Exporting Diagnostic Information from a vCenter Log-In

1. Log on to your vCenter with your vSphere Web Client.

2. Click your root object. Then select **Monitor**, then **System Logs**, and finally **Export System Logs**, as shown in Figure 6-16.
3. Specify the hosts that you want to include in the log bundle and whether you want to include the vCenter and Web Client logs as well, as shown in Figure 6-17, and click Next. These decisions will likely be directed by the VMware Support Team.
4. Choose whether you want to gather performance data, as directed by the VMware Support Team, and select **Generate Log Bundle**, as shown in Figure 6-18.

![Figure 6-18 Generating the Log Bundle](image)

5. Select **Download Log Bundle** and choose the download destination for your logs, as shown in Figure 6-19.

![Figure 6-19 Selecting the Destination Location for Exported Logs](image)
You can view your logs at the download destination, as shown in Figure 6-20.

Performing Basic vSphere Network Troubleshooting

Your vSphere network should connect your VMs to each other and also allow your VMs to connect to physical resources outside your vSphere. In addition, your network should provide a management port (or multiple management ports) that allows you to control your hosts and VMs. Finally, your network might very well be involved with your storage, if you are using IP storage options such as Internet Small Computer System Interface (iSCSI), storage-area networking (SAN), or Network File System (NFS) datastores.

Because your vSphere network is such an integral part of your virtual datacenter, you should understand the network components and their correct configuration so that you can troubleshoot them when necessary. In this section, I will discuss verifying and troubleshooting network configuration including your VMs, port groups, and physical network adapters. In addition, I will discuss identifying the root cause of a network issue based on troubleshooting information.

Verifying Network Configuration

At the very least, your network configuration should include a VMkernel port for management; otherwise, you won’t be able to control the host remotely. In fact, one
is provided for you with the default installation of an ESXi host. If you are using vSSs, you will need at least one VMkernel management port on each host. If you are using a vDS, you will need at least one VMkernel management port on the vDS. Of course, it is possible to configure more than one management port, and that is certainly recommended on a vDS. Another option is to configure one VMkernel port but then configure it to use more than one physical NIC (vmnic). In addition, you might have additional VMkernel ports for a myriad of reasons, including an additional heartbeat network for high availability (HA), an additional port for IP storage (iSCSI or NFS), fault tolerance (FT) logging for vSphere fault tolerance, Virtual SAN, and for vMotion.

Other than the VMkernel ports, the rest of the ports on a switch will be used for uplinks to the physical world or, for VM port groups, most will likely be used for VM port groups. The correct use of VM port groups enables you to get more options out of a single switch (vSS or vDS) by assigning different attributes to different port groups. As you know, with vDSs, you can even assign different attributes at the individual port level. VM port groups give you options on which to connect a VM.

Verifying your network configuration consists of viewing your network with an understanding of how all of these virtual components are linked together. Only by understanding how it should be connected will you be able to troubleshoot any configuration issue. Figure 6-21 shows one of the views you can use through your vSphere Web Client to manage the networking of your host.

![Figure 6-21 Managing the Networking of a vSS](image)
Verifying a Given Virtual Machine Is Configured with the Correct Network Resources

As I mentioned earlier, port groups give you options on which to connect a VM. In my opinion, you can really see this more clearly from the VM’s standpoint. In Figure 6-22, I right-clicked a VM and then selected **Edit Settings**. As you can see, I have a list of port groups from which to choose for the virtual network interface card (vNIC) on this VM called Network adapter 1. These port groups are all VM port groups on this switch or on the vDS to which this host is connected. Also, note the Device Status check boxes at the top right of the screen. These should be selected on an active connection. When the VM is connected to the appropriate port group, it can be configured with the correct network resources. If it is not on the correct port group, many issues could result, including having the wrong security, traffic shaping, NIC teaming options, or even having a total lack of connectivity.

![Figure 6-22 Viewing a VM's Network Configuration](image)

Troubleshooting Virtual Switch and Port Group Configuration Issues

Just connecting the VM to a port group does not guarantee that you get the desired configuration. What if the port group itself is not configured properly? You should understand that any configuration options on a vSS will be overridden by conflicting options on a port group of the same switch. In addition, any options on a port group of a vDS will be overridden by conflicting options on a specific port. I covered these options in Chapter 2, “Planning and Configuring vSphere Networking,” so I will
not go into great detail about security, traffic shaping, NIC teaming, and so on, but Figure 6-23 shows the general area in which you can find them on a vDS. The main point here is to verify that you have set the properties appropriately for the VMs that are connected to the port group.

![Figure 6-23 Port Group Settings on a vDS](image)

Troubleshooting Physical Network Adapter Configuration Issues

It can't all be virtual! At some point, you have to connect your vSphere to the physical world. The point at which the data moves out of the host and into the physical world can be referred to as a physical network adapter, a vmnic, or an up-link. Because the configuration of this point of reference is for a piece of physical equipment, the available settings are what you might expect for any other physical adapter, namely speed, duplex, wake on LAN, and so on, as shown in Figure 6-24.

NOTE If the autonegotiate setting will work in your organization, you should use it for convenience. You should check it carefully though, because, in my experience, two different vendors will often autonegotiate to an unacceptable option, such as 100 Mbps half-duplex.
Identifying the Root Cause of a Network Issue Based on Troubleshooting Information

I’ve seen and written about many different models of troubleshooting that look great on paper, but might be overkill for the real world. Also, VMware doesn’t subscribe to a certain five-step or seven-step model of troubleshooting with regard to the exam. That said, you should be able to “think through” a troubleshooting question based on what you know about virtual networking.

In general, a VM’s network performance is dependent on two things: its application workload and your network configuration. Dropped network packets indicate a bottleneck in the network. Slow network performance could be a sign of load-balancing issues or the lack of load balancing altogether.

You’ll know if you have high latency and slow network performance; there is no hiding that! How will you know if you have dropped packets? You can use esxtop, resxtop, or the Advanced performance charts to examine dropped transmit (droppedTx) and dropped receive (droppedRx) packets. (These should be zero, or very close to it, if you don’t have a bottleneck on this resource.) I will discuss the use of resxtop in the next chapter, “Monitoring a vSphere Implementation.”
If these utilities indicate that there is an issue, you can verify or adjust each of the following to address the issue:

- Verify that each of the VMs has VMware Tools installed.
- Verify that vmxnet3 vNIC drivers are being used wherever possible.
- If possible, place VMs that communicate to each other frequently onto the same host on the same switch in the same subnet so they can communicate without using the external network at all.
- Verify that the speed and duplex settings on your physical NICs are what you expected.
- Use separate physical NICs to handle different types of traffic, such as VM, iSCSI, VMotion, and so on.
- If you are using 1 Gbps NICs, consider upgrading to 10 Gbps NICs or using Link Aggregation Groups (LAGs).
- Use vNIC drivers that are TSO-capable (as I discussed in Chapter 2).

Of course, this is not an exhaustive list, but it’s a good start toward better virtual network performance. You should apply each of these potential solutions “one at a time” and retest. In this way, you can determine the root cause of your network issue, even as you are fixing it.

Performing Basic vSphere Storage Troubleshooting

As you know, it’s possible for a VM to be given visibility to its actual physical storage locations, as with a physical compatibility raw device mapping (RDM). That said, it should not be the norm in your virtual datacenter. In most cases, you will use either a Virtual Machine File System (VMFS) datastore or an NFS datastore, either of which hides the specifics of the actual physical storage from the VM. Also, you may begin to use a Virtual SAN.

Regardless of what type of storage you use, you will need to configure it properly to get your desired result. In this section, I will discuss verifying storage configuration. I will also cover troubleshooting many aspects of storage, including storage contention issues, overcommitment issues, and iSCSI software initiator issues. In addition, I will discuss storage reports and storage maps that you can use for troubleshooting. Finally, you will learn how to identify the root cause of a storage issue based on troubleshooting information.
Verifying Storage Configuration

Your vCenter includes two views that will assist you in verifying your storage configuration: the Manage, Storage link in Hosts and Clusters view and the Storage view. Each of these tools lists information about your storage, and there is some overlap with regard to what these tools list. If you are focusing on what a host can see, then you might use the Manage, Storage link, as shown in Figure 6-25.

Click Refresh to make sure that you are seeing the latest information. You can use the Manage, Storage link to quickly identify the storage adapters and storage devices that are accessible to that host. In addition, you can view the status, type, capacity, free space, and so on, for each one. You can even customize what you show by right-clicking at the top of a column and selecting only what you want to see, as shown in Figure 6-26.

The Storage view allows you to see some of the same information as the Manage, Storage link, but also much, much more detail about datastores. You can determine which hosts are connected to each datastore, but that is not the primary focus. Instead, the primary focus is detailed information about the datastores to which the hosts are connected.
You should click the **Refresh** link to make sure that you are seeing the latest information. Figure 6-27 shows the Storage view with a datastore selected in the Navigator (left pane) and the Summary tab selected in the details pane. As you can see, you can also show many more tabs. For example, the Related Objects tab in Figure 6-28 shows the hosts that have visibility to this datastore.
Troubleshooting Storage Contention Issues

To troubleshoot storage contention issues, you should focus on the storage adapters that connect your hosts to their datastores. As you know from Chapter 3, “Planning and Configuring vSphere Storage,” you can provide multipathing for your storage to relieve contention issues. The settings for multipathing of your storage are in the Storage view. Click Manage and then Settings and then Connectivity and Multipathing; finally, click your host to show the Multipathing Details, as shown in Figure 6-29. You can change path selection policy after clicking Edit Multipathing, as shown in Figure 6-30.
Figure 6-29 Settings for Multipathing of Storage

Figure 6-30 Configuring Multipathing in the Storage View
Troubleshooting Storage Overcommitment Issues

As you continue to grow your vSphere, and your hosts and VMs are competing for the same resources, many factors can begin to affect storage performance. They include excessive SCSI reservations, path thrashing, and inadequate LUN queue depth. This section briefly discusses each of these issues.

Excessive Reservations Cause Slow Host Performance

Some operations require the system to get a file lock or a metadata lock in VMFS. They might include creating or expanding a datastore, powering on a VM, creating or deleting a file, creating a template, deploying a VM from a template, creating a new VM, migrating a VM with vMotion, changing a vmdk file from thin to thick, and so on. These types of operations create a short-lived SCSI reservation, which temporarily locks the entire LUN or at least the metadata database. As you can imagine, excessive SCSI reservations caused by activity on one host can cause performance degradation on other servers that are accessing the same VMFS. Actually, ESXi 5.x does a much better job of handling this issue than legacy systems did, because only the metadata is locked and not the entire LUN.

If you have older hosts and you need to address this issue, you should ensure that you have the latest BIOS updates installed on your hosts and that you have the latest host bus adapter (HBA) firmware installed across all hosts. You should also consider using more small logical unit numbers (LUNs) rather than less large LUNs for your datastores. In addition, you should reduce the number of VM snapshots because they can cause numerous SCSI reservations. Finally, follow the Configuration Maximums document and reduce the number of VMs per LUN to the recommended maximum, even if you have seen that you can actually add more than that figure.

Path Thrashing Causes Slow Performance

Path thrashing is most likely to occur on active-passive arrays. It’s caused by two hosts attempting to access the same LUN through different storage processors. The result is that the LUN is often seen as not available to both hosts. The default setting for the Patch Selection Policy (PSP) of Most Recently Used will generally keep this from occurring. In addition, ensure that all hosts that share the same set of
LUNs on the active-passive arrays use the same storage processor. Properly configured active-active arrays do not cause path thrashing.

Troubleshooting iSCSI Software Initiator Configuration Issues

If your ESXi host generates more commands to a LUN than it can possibly handle, the excess commands are queued by the VMkernel. This situation causes increased latency, which can affect the performance of your VMs. It is generally caused by an improper setting of LUN queue depth, the setting of which varies by the type of storage. You should determine the proper LUN queue depth for your storage from your vendor documentation and then adjust your Disk.SchedNumReqOutstanding parameter accordingly.

Troubleshooting Storage Reports and Storage Maps

As you have already noticed, you can use a great number of reports and tools for troubleshooting vSphere. In most cases, you are going to be better off learning how to use the vSphere Web Client. Many of the latest features are available only through the Web Client, such as Cross-Host vMotion. Also, the Windows-based vSphere Client is “on its way out.”

That said, there are a few exceptions. For example, at the time of this writing, you cannot view maps of any kind through the vSphere Web Client. Because of this, I will present this section on the Windows-based vSphere Client.

You can use the Storage Views tab on the vSphere Client in reports view to gather a tremendous amount of data about your storage. You can get this same data from the vSphere Web Client, but vSphere Client offers just another location to see a lot of data. In addition, on your Windows-based vSphere Client, you can use the maps view to see a graphical representation of the relationships between the objects in your vSphere. In fact, you can view storage reports and maps for every object in your datacenters except for the networking objects, which have their own reports and maps. This section briefly discusses the use of these storage reports and maps.

Storage Reports

Using your Storage Views tab, you can display storage reports to view storage information for any object except networking. For example, you can view datastores and LUNs used by a VM, the adapters that are used to access the LUN, and even the status of the paths to the LUNs. To access storage reports from the Storage Views tab, follow the steps outlined in Activity 6-5.
Activity 6-5 Viewing Storage Reports

1. Log on to your vCenter with your vSphere Client.

2. In the console pane, select the object on which you want to view connected storage (in this case, VM-02), and then open the Storage Views tabs and click the Reports button, as shown in Figure 6-31.

Figure 6-31 The Storage Views Tab and Reports Button

3. Select View and then Filtering to display the Show All [Category of Items] or click the amazingly small drop-down arrow, as shown in Figure 6-32.

4. Move the cursor over the column heading to the description of each attribute, as shown in Figure 6-33.
Figure 6-32 Choosing the Display on the Storage Views Tab

Figure 6-33 Viewing Column Descriptions
Storage Maps

As you can see, Storage Reports can give you a lot of information about your datastores, but all the information is in the form of text. The problem is that we (people) don’t think in text; we think in pictures. We can generally understand a situation better if someone will take the time to “draw us a picture.”

In essence, that’s just what VMware has done with the Maps view of the Storage Views tab. You can use the view to display a graphical representation of every object that relates to your storage. For example, you can tell whether a specific VM has access to a host that has access to a storage processor that has access to a LUN, and whether or not there is a datastore on the LUN. To use your Maps view on your Storage Views tab, follow the steps outlined in Activity 6-6.

Activity 6-6 Viewing Storage Maps

1. Log on to your vCenter with your vSphere Client.

2. In the console pane, select the object on which you want to view connected storage objects (in this case, VM-03), and then open the Storage Views tab and click the **Maps** button, as shown in Figure 6-34.

![Figure 6-34 Viewing Maps in Storage Views](image)

3. You can choose the objects that you would like to display on your map.

4. You can also hover your mouse pointer over an object for a few seconds to see the “callout” that gives a detailed description of that object.
Identifying the Root Cause of a Storage Issue Based on Troubleshooting Information

After you have obtained information from the reports and maps provided by your vCenter, you can use your knowledge of your systems to compare what you are viewing to what should be occurring. One “catch-22” is that the time that you are most likely to need the information is also the time at which it is most likely to be unavailable. For this reason, consider printing a copy of your storage maps when everything is running smoothly to be kept on hand for a time when you need to troubleshoot. Then if you have access to the current maps, you can compare what you are seeing with what you have in print. However, if you can no longer use the tools, you have the printed map to use as an initial guide until you can access the current configuration.

Performing Basic Troubleshooting for HA/DRS Clusters and vMotion/Storage vMotion

If you think about it, the technologies that are engaged when you use vMotion, Storage vMotion, HA, and DRS are amazing! These are reliable technologies and services as long as they are configured properly with all that is required and as long as that configuration stays in place. Troubleshooting them is therefore just a matter of knowing what is required in order for them to operate properly and then verifying that the correct configurations still exist in your vSphere. In this section, I will discuss the steps involved in verifying the configurations of vMotion, Storage vMotion, HA, and DRS. In addition, I will discuss how to troubleshoot the most common issues associated with these services and how to identify the root cause of the issue so as to make only the appropriate changes.

Identifying HA/DRS and vMotion Requirements

HA/DRS and vMotion requirements might seem at first to be too many topics to discuss all at once, but the reason that I can cover them all “rather simultaneously” is that the requirements are much the same for each of these features. At least the host requirements are much the same, but the VM requirements vary some from feature to feature. First, I will discuss the requirements that are the same, and then I will discuss some requirements that apply to only one or two of these features, but not all three.

The requirements for all of HA, DRS, and vMotion are the following:

- All hosts must have at minimum 1 Gbps NICs.
- All hosts must share the same datastores or data space. These can be VMFS, NFS, or even RDMs.
- All hosts must have access to the same physical networks.
Additional requirements that apply to vMotion and DRS, but not to HA, are as follows:

- All hosts must have compatible CPUs.
- The VMs on the hosts must not have any locally attached CD-ROMs or ISOs that are loaded.
- The VMs cannot have a connection to an internal switch with no uplinks.
- The VMs’ swap file must either be shared by the hosts or must be created before migration can begin. Solid state drives (SSDs) can now be used for the swap files.
- If the VM uses an RDM, it must be accessible to the source and destination hosts.

None of this should really seem any different than what I discussed previously in Chapter 5, “Establishing and Maintaining Service Levels,” but the main point here is that the second bulleted list does not apply to HA. I want to make this clear: HA does not use vMotion in any way, shape, or form!

HA provides for the automatic restart of VMs when the host that they were on has failed. At that point, the VMs can be restarted on another host as long as the host meets the requirements in the first set of bullet points. It doesn’t matter at that point whether the CPUs of the host are compatible. All that matters is that the VMs are protected and that the hosts are in the same HA cluster with a shared datastore and 1 Gbps or higher links.

That leaves us with Storage vMotion. You should clearly understand that when you Storage vMotion a VM’s files, the VM’s state is not moved from one host to another. Therefore, to have a list of requirements for “all hosts” is not needed because only one host is involved.

For Storage vMotion to be successful, the following requirements must be met:

- The host must have access to both the source and the destination datastores.
- A minimum of one 1 Gbps link is required.
- The VM’s disks must be in persistent mode or be RDMs.

Verifying vMotion/Storage vMotion Configuration

Now that I have identified what you must have configured in order for vMotion to be successful versus what you must have configured in order for Storage vMotion to be successful, I’ll examine where you would look to verify that the proper configuration exists. Because these are two different types of migration, I continue to treat
them independently of each other. I will first discuss verifying vMotion configuration and then verifying Storage vMotion configuration.

Verifying vMotion Configuration

As you might remember, to succeed with vMotion, you will need to have a VMkernel port on a switch that is associated to each of the hosts that are involved in the vMotion. In addition, the VMkernel port will need to be enabled for vMotion, and the IP addresses of the hosts should be in the same subnet (point-to-point is best). In addition, consistency is a key factor, so unless you are using a vDS (which guarantees consistency of port group naming), you should ensure that your port group names are identical, including correct spelling and case sensitivity.

In addition to the networking requirement, your hosts must have shared datastores. You can verify whether two hosts share the same datastore by looking at the Related Objects for the datastore in Storage view and then selecting Hosts, as shown in Figure 6-35.

Verifying HA Network Configuration

To verify the requirements for HA to function, you should start with the cluster settings. Because the purpose of the cluster is to provide for HA, DRS, or both, it
would seem logical that you should check those settings first. However, because I’m following the exam blueprint “to the letter,” I will discuss that in our next topic.

What else should you verify to assure that HA should be able to function? You should look at the vmnics used on the hosts and assure that they are 1 Gbps or better. As you should remember from Chapter 2, you can modify the properties of the switch by opening the Manage, Network connection. After you have done this, you can click the Physical Adapters tab, as shown in Figure 6-36. You will need at least 1 Gbps (1000 Mb) vmnics to have an effective HA cluster. You should also verify that the hosts share a datastore, as you did with vMotion requirements.

![Figure 6-36 Verifying the Speed of the Underlying Network](image)

Verifying HA/DRS Cluster Configuration

Speaking of the cluster configuration, the most general verification that you can make is whether HA/DRS are turned on in the cluster settings. To do this, click your cluster in Hosts and Clusters view and then look under Services for vSphere DRS and vSphere HA. This will allow you to view the current settings of these services, as shown in Figure 6-37. In addition, even if HA is turned on, you should check to make sure that HA monitoring is enabled because it’s possible to turn it off for a maintenance event. Finally, ensure that the policies that are configured for HA/DRS are what you configured and that you have followed the guidelines mentioned in Chapter 5. For example, check Admission Control Policies for HA and VM affinity rules for DRS.
Troubleshooting HA Capacity Issues

This title is kind of “funny” because I took it straight from the blueprint. What it should say is “Troubleshooting Cluster Capacity Issues That Are Due to HA.” As you know, Admission Control Policy in HA causes each host to reserve enough resources to recover VMs in the case of a host’s failure. This means that if you set your Admission Control Policy too conservatively, you might not be able to start as many VMs as you may have thought possible. For example, changing from a policy that allows for only one host failure to one that allows two host failures can have a dramatic affect on the VM capacity of your cluster, especially in a small cluster. Therefore, without rehashing all of Chapter 5, just verify that the settings that you expect to see are still there.

Troubleshooting HA Redundancy Issues

As you know, HA stands for high availability. This high availability is maintained by the heartbeats that are exchanged between hosts in an HA cluster. When the cluster determines that a host is isolated or has failed, it will follow the isolation response that you have configured. The default isolation response in vSphere 5.x is Leave Powered On, which will leave the VMs powered on with the assumption that they still have the resources that they need. Other options are power off or shut down. If you have a separate management network or a separate heartbeat network, you can
Chapter 6: Performing Basic Troubleshooting

give the host another tool with which to make a more accurate decision with regard to whether to leave powered on or to shut down. If you are troubleshooting the configuration of this network, you should examine your network settings to ensure that the network is in place. As a small example, my Management network is on vSwitch0 and vmk0, and my RedundantHeartbeat network is on vSwitch3 and vmk3, as shown in Figure 6-38. Also, (not shown) each of these VMkernel ports has its own vmnic.

Figure 6-38 A Small Example of HA Network Redundancy

Interpreting the DRS Resource Distributing Graph and Target/Current Host Load Deviation

VMware used to just say, “Set DRS at Fully Automated, set the Migration Threshold in the center, and trust us.” Then they really didn’t give you native tools to check how well they were doing for you. Now, VMware has given us some very cool tools indeed! In fact, you can tell a lot about DRS from just the Summary tab of the cluster, as shown in Figure 6-39.

If that’s not big enough, you can even expand the view by clicking the upper-right corner of the vSphere DRS panel. The result will be a large “carpenter’s level” that leaves no room for misinterpretation as to whether or not the cluster is balanced, as shown in Figure 6-40. Can you tell whether or not the cluster is balanced?
Figure 6-39 Viewing the Summary Tab of a Cluster

Figure 6-40 Viewing the DRS Panel on the Summary Tab for a Cluster
Troubleshooting DRS Load Imbalance Issues

If you notice a load imbalance, you will want to determine why the imbalance was allowed to happen. It could be that the cluster or some of the VMs in it are not set to Fully Automated. It could also be that it was “intentionally” allowed by the system based on your Migration Threshold or VM-VM-Host affinity configuration.

In addition, check to make sure that there are no VMs that are using a large amount of resources and that cannot be vMotioned, as that will stop DRS from being effective, especially if they are all on the same host. Finally, you might want to check to see if there is one huge VM that must be on one host or another and seems to throw off the balance no matter where DRS places it. You can view the resources of VMs and compare on the Virtual Machines tab within the Related Objects of your cluster as shown in Figure 6-41. As you can see, I don’t have much running right now.

![Figure 6-41 Viewing the Resources of VMs in a Cluster](image)

Troubleshooting vMotion/Storage vMotion Migration Issues

If your vSphere and your VMs meet all the requirements for vMotion, you should be able to vMotion. If you can vMotion, you should also be able to Storage vMotion because vMotion has all of the configuration requirements of Storage vMotion and more. If you cannot vMotion or Storage vMotion, go back through the list of re-
requirements to see what you are missing. You can refresh your memory by reviewing the “Migrating Virtual Machines” section of Chapter 5.

Interpreting vMotion Resource Maps

As I mentioned earlier, people don’t really think in text form, so wouldn’t it be great to have a tool that shows an easy-to-read picture, whether your vSphere meets all the requirements to vMotion a VM from one host to another? That’s what the vMotion Resource Map does. You can access a vMotion Resource Map for a VM by simply selecting the VM on the console pane and then opening the Maps tab on the Windows-based vSphere Client, as shown in Figure 6-42. The vMotion Resources Map will show you what resources are currently connected to the VM and whether those resources would be available if the VM were to be vMotioned to another host. If you can “read between the lines,” you will see what is missing and why the VM might not be able to vMotion to another host. In this case, VM-02 is now powered on and connected to a local ISO image on datastore1 of esxi01 and would not have a connection to the same ISO from esxi02.

![Figure 6-42 A vMotion Map with an Error](image)

Identifying the Root Cause for a DRS/HA Cluster or Migration Issue Based on Troubleshooting Information

If you know all the configuration pieces that are supposed to be there, you can just start checking them off one by one to determine whether they are present. The nice
thing about Storage vMotion and especially about vMotion is that the wizard will validate most of the configuration for you and give you a list of changes that you must make to perform the migration, as shown in Figure 6-43.

![Figure 6-43 An Easy-to-Interpret Error Message](image)

By carefully reading the information under Compatibility, you can determine the root cause of the issue that is keeping you from being able to vMotion or Storage vMotion. This intuitive wizard tells you exactly what you need to know, as long as you understand enough about your vSphere to interpret what it’s telling you. Once you fix the issue, you can refresh the map. Figure 6-44 shows the map after the ISO file was unmounted from VM-02; the vMotion should succeed now.

![Figure 6-44 A vMotion Map That Indicates Success](image)
Summary

The main topics covered in this chapter are the following:

- I began this chapter by discussing basic troubleshooting techniques for ESXi hosts. In particular, I discussed how you can enable the tools that you can use along with the VMware Support Team as a last resort when more conventional tools are not working. In addition, I discussed how you can monitor an ESXi host’s health on the host itself as well as through your vCenter. Finally, I discussed how you can easily export a diagnostic bundle to assist the VMware Support Team in assisting you.

- I then covered basic vSphere network troubleshooting tools and techniques. In particular, I discussed how to verify your network configuration and the configuration of the VMs on your network. In addition, I discussed troubleshooting port group issues and issues with physical network cards. Finally, I covered how to identify the root cause of a network issue based on troubleshooting information.

- I then turned my attention toward troubleshooting vSphere storage. I discussed the tools and techniques that you can use to verify your vSphere storage. In addition, I discussed troubleshooting storage contention issues, overcommitment issues, and iSCSI software initiator configuration issues. I also discussed the proper use of storage reports and storage maps. Finally, I discussed how to identify the root cause of a storage issue based on troubleshooting information.

- I ended this chapter with a discussion of basic troubleshooting for HA/DRS clusters and vMotion/Storage vMotion. In particular, I identified the requirements for each of these features and compared and contrasted them. In addition, I discussed how you can verify the configuration of each of these requirements using the tools provided by your vCenter. Finally, I discussed troubleshooting issues with regard to HA and DRS by using the reports and maps provided by your vCenter.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from inside the chapter, noted with the Key Topic icon in the outer margin of the page. Table 6-2 lists these key topics and the page numbers where each is found. Know how to perform basic troubleshooting on ESXi hosts, vSphere networks, vSphere storage, and HA/DRS clusters.

<table>
<thead>
<tr>
<th>Key Topic</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 6-1</td>
<td>Enabling TSM from the DCUI</td>
<td>447</td>
</tr>
<tr>
<td>Activity 6-2</td>
<td>Configuring TSM from the vSphere Client</td>
<td>449</td>
</tr>
<tr>
<td>Figure 6-7</td>
<td>Viewing Logs on the DCUI</td>
<td>452</td>
</tr>
<tr>
<td>Figure 6-8</td>
<td>Viewing the VMkernel Log</td>
<td>452</td>
</tr>
<tr>
<td>Figure 6-9</td>
<td>Viewing Logs on a Single Host</td>
<td>453</td>
</tr>
<tr>
<td>Bullet List</td>
<td>Troubleshooting License Issues</td>
<td>454</td>
</tr>
<tr>
<td>Figure 6-10</td>
<td>Viewing Health Status on a Specific Host</td>
<td>455</td>
</tr>
<tr>
<td>Figure 6-11</td>
<td>Viewing Hardware Status on a Host Through vCenter</td>
<td>456</td>
</tr>
<tr>
<td>Activity 6-3</td>
<td>Exporting Diagnostic Information from a Host Log-In</td>
<td>456</td>
</tr>
<tr>
<td>Activity 6-4</td>
<td>Exporting Diagnostic Information from a vCenter Log-In</td>
<td>458</td>
</tr>
<tr>
<td>Figure 6-21</td>
<td>Managing the Networking of a vSS</td>
<td>462</td>
</tr>
<tr>
<td>Figure 6-22</td>
<td>Viewing a VM's Network Configuration</td>
<td>463</td>
</tr>
<tr>
<td>Figure 6-23</td>
<td>Port Group Settings on a vDS</td>
<td>464</td>
</tr>
<tr>
<td>Figure 6-24</td>
<td>Settings for a Physical Adapter</td>
<td>465</td>
</tr>
<tr>
<td>Bullet List</td>
<td>Troubleshooting Virtual Networking Issues</td>
<td>466</td>
</tr>
<tr>
<td>Figure 6-25</td>
<td>The Manage, Storage Link in Hosts and Clusters View</td>
<td>467</td>
</tr>
<tr>
<td>Figure 6-26</td>
<td>Customizing the Manage, Storage Link</td>
<td>468</td>
</tr>
<tr>
<td>Figure 6-27</td>
<td>The Storage View Summary Tab</td>
<td>468</td>
</tr>
<tr>
<td>Figure 6-28</td>
<td>The Related Objects Tab</td>
<td>469</td>
</tr>
<tr>
<td>Figure 6-29</td>
<td>Settings for Multipathing of Storage</td>
<td>470</td>
</tr>
<tr>
<td>Figure 6-30</td>
<td>Configuring Multipathing in the Storage View</td>
<td>470</td>
</tr>
</tbody>
</table>
Key Topic Element Description Page Number

Note Configuration Maximum of VMs per VMFS-5 Datastore 471

Activity 6-5 Viewing Storage Reports 473

Activity 6-6 Viewing Storage Maps 475

Bullet List Requirements Common to HA, DRS, and vMotion 476

Bullet List Requirements That Apply to vMotion and DRS, but Not to HA 477

Bullet List Requirements for Storage vMotion 477

Figure 6-35 Verifying Whether Hosts Share the Same Datastore 478

Figure 6-36 Verifying the Speed of the Underlying Network 479

Figure 6-37 Verifying Cluster Settings for HA and DRS 480

Figure 6-38 A Small Example of HA Network Redundancy 481

Figure 6-39 Viewing the Summary Tab of a Cluster 482

Figure 6-40 Viewing the DRS Panel on the Summary Tab for a Cluster 482

Figure 6-41 Viewing the Resources of VMs in a Cluster 483

Figure 6-42 A vMotion Map with an Error 484

Figure 6-43 An Easy-to-Interpret Error Message 485

Figure 6-44 A vMotion Map That Indicates Success 485

Review Questions

The answers to these review questions are in Appendix A.

1. Which of the following is designed by VMware to be used as a last resort?

 a. vSphere Client

 b. PowerCLI

 c. vCLI

 d. ESXi Shell
2. In which of the following locations can you enable ESXi Shell? (Choose two.)
 a. The Administration tab
 b. DCUI
 c. The firewall properties of a host
 d. Security profile

3. Which of the following logs cannot be retrieved from a DCUI?
 a. Syslog
 b. vCenter
 c. VMkernel
 d. Config

4. Which of the following is an absolute network requirement to manage an ESXi host remotely?
 a. A VMkernel port configured for vMotion
 b. A separate vSS or vDS for Management
 c. A VMkernel port configured for Management
 d. A VM port group configured for Management

5. Which type of vNIC driver is a best practice to use whenever possible?
 a. vmxnet3
 b. e1000
 c. vmxnet1
 d. You should never use a vnic driver.

6. Which of the following is not a possible view of the Storage Views tab of the Windows-based vSphere Client?
 a. Show All Virtual Machines
 b. Show All VMkernel Ports
 c. Show All Clusters
 d. Show All SCSI Adapters
7. Which of the following path selection policies cannot cause path thrashing?
 a. MRU on an active-passive array
 b. Fixed on an active-active array
 c. All path selection policies can cause path thrashing.
 d. Path thrashing in no longer a concern with any path selection policy.

8. Which of the following is a requirement for DRS, but not a requirement for HA?
 a. All hosts must have shared datastores.
 b. All hosts must be in the same cluster.
 c. All hosts must share the same processor vendor and family.
 d. All hosts must have access to the same physical networks.

9. Which of the following is not a requirement for Storage vMotion?
 a. VMs must have compatible CPUs.
 b. The host must have access to both the source and destination datastores.
 c. A minimum of 1 Gbps link.
 d. VMs must be in persistent mode or be RDMs.

10. What vSphere Web Client tool should you use to get detailed information about the CPU and memory in use on your DRS clusters?
 a. Admission Control
 b. Tasks and Events
 c. Resource Distribution Chart
 d. DRS Panel on Cluster Resources tab of host
Index

A

Active Directory (vCenter Servers)
 configuring, 511-512
 Query Limit setting, 512
 Query Limit Size setting, 512
 User Directory Timeout setting, 512
 Validation Period setting, 512
 Validation setting, 512
active guest memory, 506
administering
 vCenter Server connections, 531-532
 VM
 advanced VM parameters, 324
 BIOS files, 304
 configuration files, 304-308
 configuration options, 314-321
 Disk Data files, 304
 Disk Descriptor files, 304
 locating virtual disks, 304-308
 Log files, 304
 Raw Device Map files, 304
 redirecting serial ports, 313
 security, 308-309
 Snapshot Data files, 304
 Snapshot Disk files, 304
 Snapshot State files, 304
 storage, 306, 321-324
 Suspend State files, 304
 swap files, 304, 306-307
 Template files, 304
 USB passthrough configuration from ESXi hosts, 312
 workload adjustments based on resources, 324
Administrator system role (vCenter Server security), 52
Admission Control
 DRS/HA clusters, 366-370
 Host Failures the Cluster Tolerates policy, 368, 370
 Host Isolation Response policy, 369-370
 Percentage of Cluster Resources Reserved as Failover Spare Capacity policy, 368, 371
 Specify Failover Hosts policy, 368, 371
 VM Restart Priority policy, 369
Advanced charts, 509, 533-534
alarms (vCenter Servers), 541-542
 configuring actions, 552
 connectivity alarms, 542
 creating, 548-550
 list of possible actions, 543
 triggers, 549
identifying affected vSphere resource by a given alarm, 552
triggers
configuring, 551
connectivity alarms, 549
utilization alarms, 546-547
utilization alarms, 542
creating, 544-548
list of possible actions, 543
triggers, 546-547
Anomalies badge (vCOP), 566
antivirus software, 308-309
API (Application Programming Interface)
Storage API for multipathing and array thin provisioning, 204-205
vSphere switch API and vDS, 99
App HA (High Availability), 7, 9
Application Properties section (vApps), 269
applied permissions, vCenter Server security, 53-56
array thin provisioning, 186, 204-205
author correspondence, 579
Authoring setting (vApps), 272
auto deploy, 7, 9, 31-32
availability requirements of vCenter Servers, determining, 27-28
VM, 401
consolidating snapshots, 407
creating snapshots, 401-406
deleting snapshots, 406-407
determining appropriate backup solution, 416
snapshot requirements, 401
VDP, 408-412
tVSphere Replication, 412-416
badges (vCOP), 554-555
Anomalies badge, 566
Capacity Remaining badge, 566-567
Density badge, 567
Efficiency badge, 567
Faults badge, 566
Health badge, 566
Reclaimable Waste badge, 567
Risk badge, 566-567
Stress badge, 567
Time Remaining badge, 566
Workload badge, 566
balloon drivers for memory management (vmmemctl), 246, 503-504
ballooned memory, 506
Beacon Probing option (failover policies), 141
BIOS files (VM administration), 304
BIOS P/C states, DRS/HA clusters, 357
blocking policies, dvPort groups in vDS, 138-139
Blueprint reviews (exams), 577
Boot Delay setting (VM boot options), 320
backing up/restoring
vDS configurations, 100
VLAN configurations, 157
boot order (ESXi hosts), troubleshooting, 453-454
bundles (log), creating in vCenter Servers, 515-518

C

Capacity Remaining badge (vCOP), 566-567
CHAP (Challenge-Handshake Authentication Protocol) and iSCSI CHAP, 201-203
client server plug-ins
 enabling/disabling, 26
 installing, 25-26
 removing, 25-26
Clipboard, security, 309
cloning
 security roles in vCenter Servers, 64-66
 vApps, 278-282
 VM, 288-290
clouds
 concept of, 13
 explaining, 12-13
 hybrid clouds, 14
 private clouds, 13-14
 public clouds, 14
clusters, 336
 DRS VM entitlement, 336
 DRS/HA clusters
 adding ESXi hosts, 338-342
 adding/removing VM, 344-345
 Admission Control, 366-371
 application monitoring, 364, 366
 BIOS P/C states, 357
 creating, 337-338
 DRS automation levels, 355-356
 DRS migration thresholds, 353-354
 EVC, 351-352
 failover methodologies, 370-371
 host monitoring, 363-364
 Host Power Management, 356
 monitoring, 352
 removing ESXi hosts, 342-344
 SDRS, 345-350
 VM monitoring, 364-365
 VM-Host rules, 358-362
 VM-VM Affinity rules, 358-362
 ESXi hosts, removing, 342-344
 Host Profiles, attaching to, 421-422
 troubleshooting, 476
 HA/DRS requirements, 476-477
 identifying root cause of a cluster issue, 484-485
 verifying cluster configuration, 479
 VM fault tolerance, 374
 VM placement in, 249
community PVLAN (Private Virtual Local-Area Networks), 147
compressed memory, 506
 ESXi hosts, 35-36
 performance monitoring, 504
Config logs, 452
configuration files (VM)
 administering, 304
 locating within VM, 304-308
configuring
 Active Directory (vCenter Servers), 511-512
 alarms (vCenter Servers)
 actions, 552
 triggers, 551
configuring

DNS, ESXi hosts, 33-34
dvPort groups in vDS, 111-112
fault tolerance networking in VM, 373
logging options (vCenter Servers), 514
NTP, ESXi hosts, 33
port groups in VM, 95
Resource Pools, 380-381
routing, ESXi hosts, 33-34
swap file locations in VM migrations, 396-397
vCenter appliances, 19
vCenter Servers, 22-23
virtual adapters in vDS, 120-123
VM configurations
 advanced options, 318
 boot options, 320
 Fibre Channel NPIV options, 318
 power management options, 317
 power settings, 319
 troubleshooting, 321
VMkernel adapters in vDS, 122-123
vmnic, vSS configuration, 87-90
VUM, 429-430
connectivity alarms (vCenter Servers)
creating, 548-550
default connectivity alarms, 542
list of possible actions, 543
triggers, 549
consumed memory, 506
content libraries, creating/publishing, 303
corresponding with the author, 579
CPU (Central Processing Unit)
 performance monitoring, 501, 506-507
 VM CPU, configuring/modifying, 263-264

Cross-Host vMotion, 385-389
customer requirements, determining
 vSphere editions by, 14

D

data protection, 6-8
datacenter-level management services and vDS (Virtual Distributed Switches), 99
datastores
 NFS datastores, 193, 205
 identifying datastore properties, 205-206
 managing, 206
 mounting, 216-220
 unmounting, 216-220
 use cases, 232
 runtime names, accessing, 183-184
 VM, 307
 VM datastores, 248, 267-268
 VMFS datastores, 195, 205, 207
 creating, 208-211
 deleting, 212-214
 disabling paths, 231-232
 expanding, 220, 223-226
 extending, 220-223
 identifying datastore properties, 205-206
 Maintenance mode, 228-229
 managing, 206
 mounting, 216
 renaming, 211-212
 selecting paths, 229-233
unmounting, 214-216
upgrading VMFS-3 datastores to VMFS-5, 226-227
use cases, 232
VMFS-5 capabilities, 207
DCUI (Direct Console User Interface)
log retrieval, 451-452
troubleshooting options, 530
TSM, 447-449
Density badge (vCOP), 567
dependent hardware adapters, iSCSI and ESXi host configuration, 197
dependent hardware initiators and iSCSI storage, 185, 204
Deployment section (vApps), 269-271
DHCP setting (vApps), 271
diagnostic information (ESXi), exporting, 456-461
Directory Services, adding ESXi hosts, 68-69
disaster recovery, SRM, 9-10
Discovery process, iSCSI storage, 184
Disk Data files (VM administration), 304
Disk Descriptor files (VM administration), 304
distributed switches. See vDS
DNS (Domain Name Systems), configuring on ESXi hosts, 33-34
DRS (Distributed Resource Scheduler)
antomation levels in DRS/HA clusters, 355-356
DPM and, 7-8
DRS/HA clusters
adding ESXi hosts, 338-342
adding/removing VM, 344-345
Admission Control, 366-371
application monitoring, 364, 366
BIOS P/C states, 357
creating, 337-338
DRS automation levels, 355-356
DRS migration thresholds, 353-354
EVC, 351-352
failover methodologies, 370-371
host monitoring, 363-364
Host Power Management, 356
identifying root cause of a cluster issue, 484-485
monitoring, 352
removing ESXi hosts, 342-344
requirements for, 476-477
SDRS, 345-350
troubleshooting, 476-485
VM monitoring, 364-365
VM-Host rules, 358-362
VM-VM Affinity rules, 358-362
migration thresholds in DRS/HA clusters, 353-354
Resource Distributing Graph, 481-482
troubleshooting
load imbalance issues, 483
Resource Distributing Graph, 481-482
VM entitlement, 336
dvPort groups and vDS
adding to vDS, 110-112
configuring
blocking policies, 138-139
in vDS, 111-112
removing from vDS, 112-113
dvUplink groups
adding to, 113-116
removing from, 117-118
Efficiency badge (vCOP), 567
email
 connectivity alarms (vCenter Servers), 550
 corresponding with the author, 579
 utilization alarms (vCenter Servers), 547-548
end of chapter questions, reviewing, 577
Enterprise edition (vSphere 5.5), 6-11
Enterprise Plus edition (vSphere 5.5), 6-11
Error option (vCenter Server logs), 514
ESXi
 explaining, 11
hosts
 adding to Directory Services, 68-69
 adding to DRS/HA clusters, 338-342
 adding to vDS, 104-108
 applying permissions via Host Profiles, 69
 auto deploying, 31-32
 BIOS P/C states, 357
 compliance scanning, 423-425, 434
 configuring DNS, 33-34
 configuring NTP, 33
 configuring routing, 33-34
 Host Agent status, 529-530
 Host Profiles, 7, 9, 69, 417-425
 hyperthreading, 34-35
 iSCSI dependent hardware adapter configuration, 197
 iSCSI independent hardware adapter configuration, 197
 licensing, 36-37
 memory compression cache, 35-36
 patching requirements, 417
 remediation, 423-425, 434
 removing from DRS/HA clusters, 342-344
 removing from vDS, 108-110
 scanning/rescanning storage, 190
 SNMP, 510-511
 troubleshooting, 447-461
 updating, 416-425
 upgrades, 37-39, 45-50
 USB passthrough configuration, 312
 VM configuration maximums, 287
 VM placement in, 249
installing, 28-31
security, 50-51
 adding ESXi hosts to Directory Services, 68-69
 authentication, 68-69
 firewalls, 57-58
 Lockdown Mode, 58-59
troubleshooting, 447
 boot order, 453-454
 exporting diagnostic information, 456-461
 identifying general guidelines, 447
 license assignments, 454
 log retrieval, 451-452
 monitoring system health, 455
 plug-ins, 454
 TSM, 447-450
vMotion and VM migration requirements, 383-385
VMware ESXi Observation Log (vobd), 452
EVC (Enhanced vMotion Compatibility), DRS/HA clusters, 351-352
Events (vCenter Servers)
filtering output, 499
viewing, 497-498
Exams
author correspondence, 579
cost of, 576
preparing for
end of chapter questions, 577-578
Exam Blueprint reviews, 577
examination day strategies, 579
Mock Exam, 578
“twisting/untwisting” questions, 577-578
scheduling, 576
Expandable Reservation attribute (Resource Pools), 377, 381
Exporting/importing
OVF templates, 301-303
resource maps, 526
vDS configurations, 100
VLAN configurations from vDS, 157
failover policies, 141, 368, 370-371
fault tolerance, 7-8
logging, 309
VM fault tolerance
architecture, 371
configuring fault tolerance networking, 373
enabling/disabling, 373-374
identifying requirements, 372-373
testing configurations, 375
use cases, 375
VMkernel ports, 79
Faults badge (vCOP), 566
FCoE (Fibre Channel over Ethernet), 180, 191
Fibre Channel, 180, 318
firewalls (ESXi), 57-58
Firmware setting (VM boot options), 320
Fixed path selection policy (VMFS datastores), 232
Flash memory, 377-378
Flash Read Cache, 7, 9
Force BIOS Setup setting (VM boot options), 320
forged transmits and network security, 61-62
Fully Automated DRS automation mode, DRS/HA clusters, 355

G - H
HA (High Availability)
DRS/HA clusters
adding ESXi hosts, 338-342
adding/removing VM, 344-345
Admission Control, 366-371
application monitoring, 364, 366
BIOS P/C states, 357
creating, 337-338
DRS automation levels, 355-356
DRS migration thresholds, 353-354
EVC, 351-352
failover methodologies, 370-371
host monitoring, 363-364
Host Power Management, 356
identifying root cause of a cluster issue, 484-485
monitoring, 352
removing ESXi hosts, 342-344
requirements for, 476-477
SDRS, 345-350
troubleshooting, 476-485
VM monitoring, 364-365
VM-Host rules, 358-362
VM-VM Affinity rules, 358-362
troubleshooting
capacity issues, 480
network configurations, 478-479
redundancy issues, 480-481
VM overrides, 369-370
hardware adapters, iSCSI and ESXi
host configuration, 197
hardware initiators and iSCSI storage
dependent hardware initiators, 185, 204
independent hardware initiators, 185, 204
Health badge (vCOP), 566
high availability, 6, 8
Horizon, 10
Host Failures the Cluster Tolerates
policy (Admission Control), 368, 370
Host Isolation Response policy
(Admission Control), 369-370
Host memory, 506
Host Power Management
BIOS P/C states, 357
DRS/HA clusters, 356
Host Profiles (ESXi), 7, 9, 69, 417
clusters, attaching to, 421-422
creating, 418-420
ESXi hosts, 422
attaching to, 421-422
compliance scanning, 423-425
remediation, 423-425
Host Rescan Filters, 195
hostd (Management Agent) logs, 452
hot adds, 7-8
hot extending virtual disks in VM
(Virtual Machines), 309-312
hot plugs
VM CPU, 264
VM memory, 266
hybrid clouds, 14
hyperthreading ESXi hosts, 34-35

I/O (Input/Output)
I/O control and vDS, 100
Network I/O control, 7-8, 100
Storage I/O control, 7-8
sync drivers for quiescing I/O, 246
importing/exporting
OVF templates, 301-303
vDS configurations, 100
inbound traffic shaping and vDS, 99
independent hardware adapters, iSCSI and ESXi host configuration, 197
independent hardware initiators and iSCSI storage, 185, 204
Information (Normal Logging) option (vCenter Server logs), 515
inherited permissions, vCenter Server security, 53-56
in-place upgrades, 50
interactive installations, ESXi, 29-31
inventory objects (vCenter), permissions and security, 62-63
IP Allocation Policy setting (vApps), 270
IP pools, configuring in vApps, 283-284
IP storage, VMkernel ports, 79
iSCSI (Internet Small Computer System Interface), 181
CHAP, 201-203
dependent hardware adapter configuration, 197
Discovery process, 184
independent hardware adapter configuration, 197
initiators
identifying requirements, 184-185
use cases, 204
port binding, 199-201
software initiators, 197-199
TCP Offload process, 184
iSCSI Software Initiator configuration issues, troubleshooting, 472
isolated PVLAN (Private Virtual Local-Area Networks), 147

J - K - L

jumbo frames, 152
vDS, 154-155
VM, 155
tSS, 152-153

LACP (Link Aggregation Control Protocol)
uplink port group configuration, 159-165
vDS, 100
LAG (Link Aggregation Groups), LACP and uplink port group configuration, 159-165
licensing
ESXi hosts, 36-37, 454
license entitlement, 6
vCenter Servers, 26-27
Limit attribute (Resource Pools), 381
Link Status Only option (failover policies), 141
LLDP (Link Layer Discovery Protocol) and vDS (Virtual Distributed Switches), 100
load balancing policies, 140-141
load-based teaming and vDS (Virtual Distributed Switches), 99
local storage
naming conventions, 182-183
shared storage versus, 179
Lockdown Mode (ESXi), 58-59
Log files (VM administration), 304
logging (vCenter Servers)
 configuring logging options, 514
 Error option, 514
 Information (Normal Logging) option, 515
 log bundles, 515-518
 None (Disable Logging) option, 514
 Trivia option, 515
 Verbos option, 515
 Warning (Errors and Warnings) option, 515
LUN masking, 188-189

MAC Addresses
 network security, 61
 notify switches, 141
Maintenance mode
 clusters, removing ESXI hosts from, 342-344
 VMFS datastores, 228-229
Management Agent (hostd) logs, 452
management services
 datacenter-level management services and vDS, 99
 VMkernel ports, 79
Manual DRS automation mode, DRS/HA clusters, 355
masking, 188-189
memory, 246
 active guest memory, 506
 ballooned memory, 506
 compressed memory, 506
 ESXi hosts, 35-36
 performance monitoring, 504
 consumed memory, 506
 Flash memory, 377-378
 guest OS writes to, 309
 Host memory, 506
 memory compression cache, 35-36, 504
 overhead, 506
 performance monitoring, 500-501
 balloon drivers for memory management (vmmemctl), 503-504
 memory compression cache, 504
 memory shell game, 501-502
 swap files, 505
 TPS, 502
 private memory, 506
 security, 309
 shared memory, 506
 swapped memory, 506
 unaccessed memory, 506
 VM memory, configuring modifying, 263-266
migrating
 Cross-Host vMotion, 386-389
 storage vMotion
 requirements, 385-386
 snapshot requirements, 389-390
 troubleshooting, 483-485
 VM migration, 394-396, 399-401
 VM, 383
 configuring swap file locations, 396-397
 powered off/suspended VM, 399
 storage vMotion VM migration, 394-396, 399-401
 vMotion VM migration, 389-390
vMotion
 requirements, 383-385
 snapshot requirements, 389-390
 troubleshooting, 483-485
 VM migration, 389-390
mobility and Horizon, 10
Mock Exam, 578
monitoring, 567
 alarms (vCenter Servers), 541-542
 action configuration, 552
 connectivity alarms, 543-544, 548-550
 identifying affected vSphere resource by a given alarm, 552
 trigger configuration, 551
 utilization alarms, 542-548
 DRS/HA clusters, 352
 ESXi system health, 455
performance
 Advanced charts, 509, 533-534
 alarms (vCenter Servers), 541-552
 CPU, 501, 506-507
 critical performance metrics, 500-501
 host performance, 536-540
 identifying affected vSphere resource, 541
 memory, 500-506
 networks, 501, 507
 Overview charts, 508
 Perfmon, 540
 Resxtop, 536-540
 storage, 501, 507-508
vCenter Servers
 Active Directory configuration, 511-512
 alarms, 541-552
 connections, 531-532
 ESXi Host Agent status, 529-530
 filtering event output, 499
 filtering task output, 499
 log bundles, 515-518
 logging options, 514
 Perfmon and host performance, 540
 resource maps, 524-526
 Resxtop and host performance, 536-540
 scheduling tasks, 518-523
 services, 527-528
 SMTP configuration, 512-514
 timeout settings configuration, 530
 viewing events, 497-498
 viewing tasks, 497-498
vCOP, 553-554
 architecture, 555-556
 deploying vCOP appliances, 556-564
 major/minor vCOP badges, 554-555, 566-567
 upgrades, 564-565
Most Recently Used path selection policy (VMFS datastores), 232
mouse (peripherals), VMware Tools device drivers, 246

N

NAS (Network Attached Storage), 181
Navigator (vServer Web Client), 498
NetFlow and vDS (Virtual Distributed Switches), 100
network adapters (physical), troubleshooting, 464-465
Network I/O control, 7-8, 100
network vMotion and vDS (Virtual Distributed Switches), 99
networks
performance monitoring, 501, 507
security
 forged transmits, 61-62
 MAC addresses, 61
 Promiscuous Mode, 60-61
 security policies, 59-62
troubleshooting, 461
determining the root cause of a network issue, 465-466
physical network adapters, 464-465
port groups, 463-464
speeds, 479
verifying configurations, 461-462
verifying VM network configurations, 463
vSS, 463-464
NFS datastores, 205
 identifying datastore properties, 205-206
 managing, 206
 mounting, 216-220
 unmounting, 216-220
 use cases, 232
NFS shares
 creating, 191-192
 datastores, 193-194
 NAS device connections, 192-194
 shared storage, vCenter Server storage filters, 195-197
 NIC (Network Interface Cards) and vmnic, 85-91, 139, 142-143
 No Access system role (vCenter Server security), 52
 None (Disable Logging) option (vCenter Server logs), 514
 notify switches, 141
 NSX, 10
 NTP (Network Time Protocol), configuring on ESXi hosts, 33

O
OS (guest), configuring/deploying in VM (Virtual Machines), 249-251
 overhead (memory), 506
 Overview charts, 508
OVF (Open Virtualization Format)
templates
 deploying vCenter appliances, 16-20
 importing/exporting, 301-303
 vApp deployments, 298-301
 VM deployments, 298-301
 Unrecognized OVF Sections setting (vApps), 270

P
Partially Automated DRS automation mode, DRS/HA clusters, 355, 421-422
patching
 ESXi host patching requirements, 417
 VUM patch download options, 429-430
 path thrashing and slow performance, troubleshooting, 471-472
Percentage of Cluster Resources
Reserved as Failover Spare Capacity
policy (Admission Control), 368, 371

Perfmon and host performance monitoring, 540

performance
critical performance metrics, 500
CPU, 501, 506-507
memory, 500-506
networks, 501, 507
storage, 501, 507-508

monitoring
Advanced charts, 509, 533-534
alarms (vCenter Servers), 541-552
CPU, 501, 506-507
host performance, 536-540
identifying affected vSphere resource, 541
memory, 500-506
networks, 501, 507
Overview charts, 508
Perfmon, 540
Resxtop, 536-540
storage, 501, 507-508

troubleshooting
excessive reservations and slow host performance, 471
network speeds, 479
path thrashing and slow performance, 471-472

permissions
ESXi hosts, applying permissions via Host Profiles, 69
vCenter Server security, 53-56

per-port policy settings, vDS (Virtual Distributed Switches), 99

physical machines, converting to VM via VMware Converter, 259-262

physical network adapters, troubleshooting, 464-465

plug-ins
client server plug-ins
 enabling/disabling, 26
 installing, 25-26
 removing, 25-26
ESXi host plug-ins, troubleshooting, 454

policies
vDS policies
 configuring dvPort group blocking policies, 138-139
 failover policies, 141-143
 identifying common port group policies, 135-137
 load balancing policies, 140-141
 overriding port group policies, 137-138
 policy exceptions, 139-143
 PVLAN, 146-148
 traffic shaping policies, 150
 VLAN, 144-148

vSS policies
 failover policies, 141-143
 identifying common policies, 132-136
 load balancing policies, 140-141
 policy exceptions, 139-143
 traffic shaping policies, 140-141

ports
dvPort groups
 adding to vDS, 110-112
 configuring in vDS, 111-112
 removing from vDS, 112-113
ports, troubleshooting, 463-464

serial ports, redirecting, 313

vDS

 configuring dvPort group blocking policies, 138-139

 identifying common port group policies, 135-137

 inbound traffic shaping, 99

 overriding port group policies, 137-138

 per-port policy settings, 99

 port mirroring, 100

 port state monitoring, 100

 VM network port blocks, 99

power management options in VM, configuring, 317

powered off/suspended VM (Virtual Machines), migrating, 399

practice tests, 578

private clouds, 13-14

private memory, 506

profile-driven storage, 7, 9

Promiscuous Mode (network security policies), 60-61

promiscuous PVLAN (Private Virtual Local-Area Networks), 147

public clouds, 14

PVLAN (Private Virtual Local-Area Networks)

 community PVLAN, 147

 isolated PVLAN, 147

 promiscuous PVLAN, 147

 vDS, 99

 configuring policy settings, 146-148

Q

QoS (Quality of Service) and vDS (Virtual Distributed Switches), 100

Query Limit setting (Active Directory), 512

Query Limit Size setting (Active Directory), 512

questions

 end of chapter questions, reviewing, 577-578

 examination day strategies, 579

 "twisting/untwisting" concept, 577-578

quiescing I/O, sync drivers, 246

R

Raw Device Map files (VM administration), 304

RDM filters, 195

Read Only system role (vCenter Server security), 52

Reclaimable Waste badge (vCOP), 567

Reservation attribute (Resource Pools), 381

reservations and slow host performance, troubleshooting, 471

resource allocation in VM (Virtual Machines), monitoring, 505

Resource Distributing Graph (DRS), troubleshooting, 481-482

resource maps, 484, 524-526

Resource Pools, 375-376

 configuring, 380-381

 creating, 378-380

 determining requirements for, 381
Expandable Reservation attribute, 381
expandable reservation parameter, 377
hierarchy of, 376-377
Limit attribute, 381
Reservation attribute, 381
Shares attribute, 380
VM
adding/removing from, 381
placement in, 249
Resources setting (vApps), 269
restoring
vDS configurations, 100
VLAN configurations in vDS, 157
resuming vApps after suspension, 284
Resxtop and host performance monitoring, 536-540
reviewing
end of chapter questions, 577-578
Exam Blueprint, 577
right-clicking to access VM (Virtual Machines), 246-247
Risk badge (vCOP), 566-567
roles (security)
cloning, 64-66
creating, 63-64
ingesting, 66-68
Round Robin path selection policy (VMFS datastores), 233
routing, configuring on ESXi hosts, 33-34
SAN (Storage-Area Networks)
LUN masking, 188-189
naming conventions, 182-183
zoning, 188
scheduling
tasks in vCenter Servers, 518-523
tests, 576
SDRS (Storage Distributed Resource Scheduler), DRS/HA clusters, 345-350
security
antivirus software, 308-309
Clipboard, 309
ESXi, 50-51
adding ESXi hosts to Directory Services, 68-69
applying permissions via Host Profiles, 69
authentication, 68-69
firewalls, 57-58
Lockdown Mode, 58-59
fault tolerance logging, 309
networks
forged transmits, 61-62
MAC Addresses, 61
Promiscuous Mode, 60-61
security policies, 59-62
SSO architectures, 56-57
vCenter Servers, 50-51
cloning roles, 64-66
creating roles, 63-64
custom roles, 53
determining appropriate privileges, 69
ingesting roles, 66-68
identifying common privileges/roles, 51
 Same Host and Transport filters, 195
SAML tokens, SSO (Single Sign-On) requirements, 15
inventory object permissions, 62-63
permissions, 53-56
sample roles, 52
system roles, 52
VDP, 408-412
VM, 308-309
serial ports, redirecting, 313
services (vCenter Servers), 527-528
shared memory, 506
shared storage
FCoE, 180, 191
Fibre Channel, 180
identifying storage adapters/devices, 179
iSCSI, 181
 CHAP, 201-203
 dependent hardware adapter configuration, 197
 Discovery process, 184
 identifying hardware/software initiator requirements, 184-185
 independent hardware adapter configuration, 197
 initiator use cases, 204
 port binding, 199-201
 software initiators and iSCSI storage, 197-199
 TCP Offload process, 184
local storage versus, 179
LUN masking, 188-189
naming conventions
 accessing runtime names for datastores, 183-184
 identifying, 182
 SAN, 182-183
NAS, 181
NFS shares
 creating, 191-192
 datastores, 193-194
 NAS device connections, 192-194
overview of, 179
SAN
 LUN masking, 188-189
 naming conventions, 182-183
 zoning, 188
scanning/rescanning, 189-190
thin provisioning, 185-188
 array thin provisioning, 186, 204-205
 virtual disk thin provisioning, 186-187
vCenter Server storage filters, 193-194
 disabling, 195-197
 Host Rescan Filters, 195
 RDM filters, 195
 Same Host and Transport filters, 195
 VMFS filters, 195
VSAN, 181
zoning, 188
Shares attribute (Resource Pools), 380
SMTP (Simple Mail Transfer Protocol), vCenter Server configuration, 512-514
Snapshot Data files (VM administration), 304
Snapshot Disk files (VM administration), 304
Snapshot State files (VM administration), 304
snapshots
VM backups, 401
 consolidating snapshots, 407
 creating snapshots, 401-406
 deleting snapshots, 406-407
VM migration
 storage vMotion snapshot requirements, 389-390
 vMotion snapshot requirements, 389-390
SNMP (Simple Network Management Protocol), vCenter Server configuration, 510-511
software (antivirus), 308-309
software initiators and iSCSI storage, 197-199, 204
Specify Failover Hosts policy
 (Admission Control), 368, 371
SRM (Site Recovery Manager), 9-10
SSD (Solid State Drives), 305, 377-378
SSO (Single Sign-On)
 architectures, 56-57
 identifying requirements, 15
Standard edition (vSphere 5.5), 6-7, 10-11
Start Order settings (vApps), 273-274
storage
datastores
 accessing runtime names, 183-184
 VM, 307
 VM datastores, 267-268
local storage
 naming conventions, 182-183
 shared storage versus, 179
NFS datastores, 205
 identifying datastore properties, 205-206
 managing, 206
 mounting, 216-220
 unmounting, 216-220
 use cases, 232
performance monitoring, 501, 507-508
SDRS and DRS/HA clusters, 345-350
shared storage
 accessing runtime names for datastores, 183-184
 FCoE, 180, 191
 Fibre Channel, 180
 identifying naming conventions, 182
 identifying storage adapters/devices, 179
 iSCSI, 181, 184-185, 197-204
 local storage versus, 179
 LUN masking, 188-189
 NAS, 181
 NFS shares, 191-194
 overview of, 179
 SAN, 182-183
 scanning/rescanning, 189-190
 thin provisioning, 185-188, 204-205
 vCenter Server storage filters, 195-197
 VSAN, 181
 zoning, 188
storage

troubleshooting, 466
 excessive reservations and slow host performance, 471
 identifying root cause of a storage issue, 476
 iSCSI Software Initiator configuration issues, 472
 path thrashing and slow performance, 471-472
 storage contention issues, 469
 storage maps, 472, 475
 storage overcommitment issues, 471
 storage reports, 472-474
 verifying storage configuration, 467-468

VM
 datastores, 267-268, 307
 storage policy assignments, 321-323
 storage policy compliance verification, 323-324
 storage resources, 248

VMFS datastores, 205, 207
 creating, 208-211
 deleting, 212-214
 disabling paths, 231-232
 expanding, 220, 223-226
 extending, 220-223
 identifying datastore properties, 205-206
 Maintenance mode, 228-229
 managing, 206
 mounting, 216
 renaming, 211-212
 selecting paths, 232-233
 unmounting, 214-216
 upgrading VMFS-3 datastores to VMFS-5, 226-227
 use cases, 232
 VMS-5 capabilities, 207

vMotion
 migration issues, 483-485
 troubleshooting, 476-478
 VM migration, 385, 389-390, 394-396, 399-401

Storage API (Application Programming Interface)
 array integration, 7-8
 data protection, 6, 8
 multipathing, 7-8, 204-205

Storage DRS (Distributed Resource Scheduler), 7, 9

Storage I/O control, 7-8

Storage vMotion, 7-8

Stress badge (vCOP), 567

Summary tab, accessing VM (Virtual Machines), 247

SUSE Linux Enterprise Server for VMWare, 6

Suspend State files (VM administration), 304

suspended VM (Virtual Machines), migrating, 399

suspending/resuming vApps, 284

SVGA (Super Video Graphics Array) displays, 246

swap files
 memory and performance monitoring, 505

VM
 administering, 304
 locating within, 306-307
 migration, 396-397
swapped memory, 506
switches
 vDS, 97-98
 adding dvPort groups to vDS, 110-112
 adding ESXi hosts, 104-108
 adding uplink adapters to dvUplink groups, 113-116
 backing up configurations, 100
 backing up VLAN configurations, 157
 configuring dvPort group blocking policies, 138-139
 configuring dvPort groups in vDS, 111-112
 configuring virtual adapters, 120-123
 consistency and, 100
 creating, 101-104
 creating virtual adapters, 118-121
 datacenter-level management services, 99
 deleting, 104
 exporting VLAN configurations, 157
 failover policies, 141-143
 identifying capabilities of, 98-100
 identifying common port group policies, 135-137
 importing/exporting configurations, 100
 inbound traffic shaping, 99
 jumbo frames, 154-155
 LACP, 100
 LACP and uplink port group configuration, 159-165
 LLDP, 100
 load balancing policies, 140-141
 load-based teaming, 99
 migrating virtual adapters to/from, 125-127
 migrating VM to/from, 127-131
 monitoring dvPort state in VLAN configurations, 157
 NetFlow, 100
 network I/O control (user-defined), 100
 network vMotion, 99
 overriding port group policies, 137-138
 per-port policy settings, 99
 policy exceptions, 139-143
 port mirroring, 100
 port state monitoring, 100
 PVLAN, 99, 146-148
 QoS, 100
 removing dvPort groups from vDS, 112-113
 removing ESXi hosts, 108-110
 removing uplink adapters from dvUplink groups, 117-118
 removing virtual adapters, 123-124
 restoring configurations, 100
 restoring VLAN configurations, 157
 traffic shaping policies, 150
 use cases, 166
 VLAN, 139-148
 VM network port blocks, 99
 VMkernel adapters, 119, 122-124
 vSphere switch API, 99
 vSS capabilities versus, 98-100
vSS, 78
 configuring VLAN, 156
 creating, 79-84
 deleting, 84-85
diagram of, 78
failover policies, 141-143
identifying capabilities of, 78-79
identifying common policies, 132-136
jumbo frames, 152-153
load balancing policies, 140-141
policy exceptions, 139-143
traffic shaping policies, 148-149
use cases, 97
vDS capabilities versus, 98-100
VLAN, 139-145
VM port groups, 79, 93-96
VMkernel ports, 79, 91-93
vmnic, 85-90
sync drivers for quiescing I/O, 246
Syslog, 452
system roles, vCenter Server security, 52

T

tasks (vCenter Servers)
filtering output, 499
scheduling, 518-523
viewing, 497-498
TCP Offload process, iSCSI storage, 184
Template files (VM administration), 304
templates
content libraries, creating/publishing, 303
OVF templates
importing/exporting, 301-303
VM deployments, 298-301
VM templates, 288-289
converting a template to a VM, 296-298
creating templates from existing VM, 290-293
deploying a VM from a template, 293-295
updating, 295-298
tests
author correspondence, 579
cost of, 576
preparing for
don of chapter questions, 577-578
Exam Blueprint reviews, 577
examination day strategies, 579
Mock Exam, 578
“twisting/untwisting” questions, 577-578
scheduling, 576
thick provisioning, VM (Virtual Machines), 252
thin provisioning, 6-7, 185, 187-188
array thin provisioning, 186, 204-205
virtual disk thin provisioning, 186-187
VM, 252
tiered applications, deploying as vApps, 284-285
Time Remaining badge (vCOP), 566
time synchronization
clusters, attaching to, 421-422
Time Synchronization drivers, 246
VM, 258-259
TPS (Transparent Page Sharing), 502
traffic shaping policies, 148
 vDS, 150
 vSS, 148-149

triggers (alarms)
 configuring, 551
 connectivity alarms, 549
 utilization alarms, 546-547

Trivia option (vCenter Server logs), 515

troubleshooting
 clusters, 476
 HA/DRS requirements, 476-477
 identifying root cause of a cluster issue, 484-485
 verifying cluster configuration, 479
 DCUI, 530
 log retrieval, 451-452
 TSM, 447-449
 DRS
 load imbalance issues, 483
 Resource Distributing Graph, 481-482
 ESXi hosts, 447
 boot order, 453-454
 exporting diagnostic information, 456-461
 identifying general guidelines, 447
 license assignments, 454
 log retrieval, 451-452
 monitoring system health, 455
 plug-ins, 454
 TSM, 447-450
 HA
 capacity issues, 480
 network configurations, 478-479
 redundancy issues, 480-481
 network adapters (physical), 464-465
 network speeds, 479
 performance
 excessive reservations and slow host performance, 471
 network speeds, 479
 path thrashing and slow performance, 471-472
 physical network adapters, 464-465
 port groups, 463-464
 Resource Distributing Graph (DRS), 481-482
 storage, 466
 excessive reservations and slow host performance, 471
 identifying root cause of a storage issue, 476
 iSCSI Software Initiator configuration issues, 472
 path thrashing and slow performance, 471-472
 storage contention issues, 469
 storage maps, 472, 475
 storage overcommitment issues, 471
 storage reports, 472-474
 verifying storage configuration, 467-468
 storage vMotion
 migration issues, 483-485
 requirements for, 477
 verifying storage vMotion configurations, 477-478
 VM
 configuring troubleshooting options, 321
 verifying VM network configurations, 463
vMotion, 477-478
 migration issues, 483-485
 requirements for, 476-477
 resource maps, 484
 verifying vMotion configurations, 477-478
 vSphere networks, 461
 determining the root cause of a network issue, 465-466
 physical network adapters, 464-465
 port groups, 463-464
 verifying configurations, 461-462
 verifying VM network configurations, 463
 vSS, 463-464
 TSM (Tech Support Mode), ESXi hosts, 447-450
 TSO (TCP Segmentation Offload), configuring VM support for, 150

unaccessed memory, 506
 Unrecognized OVF Sections setting (vApps), 270
 Update Manager, 6
 ESXi hosts
 compliance scanning, 434
 remediation, 434
 VM
 compliance scanning, 434
 remediation, 434
 VUM, Update Manager baselines, 430-434

updating
 ESXi hosts, patching requirements, 417
 VM
 patching requirements, 417
 templates, 295-298
 VUM
 installing, 425-428
 patch download options, 429-430
 Update Manager baselines, 430-434

upgrades
 ESXi hosts, 37-39, 45-50
 in-place upgrades, 50
 vCenter Servers, 38-39
 vCOP, 564-565
 vDS, 39-40
 VM hardware, 44-45
 VMFS-3 datastores to VMFS-5, 226-227
 VMFS-3 to VMFS-5, 40-41
 VMware Tools, 41, 256-257
 vSphere 5.5, 38-39
 VUM, 39

uplink adapters
 adding to, 113-116
 removing from, 117-118

uplink port groups, LACP configuration, 159-165

USB passthroughs, configuring from ESXi hosts, 312

User Directory Timeout setting (Active Directory), 512

utilization alarms (vCenter Servers)
 creating, 544-548
 default utilization alarms, 542
 list of possible actions, 543
 triggers, 546-547
 Validation Period setting (Active Directory), 512
 Validation setting (Active Directory), 512
 vApps, 268
 adding objects to, 282
 administering. See VM
 cloning, 278-282
 creating, 274-278
 deploying from OVF templates, 298-301
 importing/exporting OVF templates, 301-303
 IP pools, configuring, 283-284
 settings, editing, 282
 settings, identifying, 268
 Application Properties section, 269
 Authoring setting, 272
 Deployment section, 269-271
 DHCP setting, 271
 IP Allocation Policy setting, 270-271
 Resources setting, 269
 Start Order settings, 273-274
 Unrecognized OVF Sections setting, 270
 suspending/resuming, 284
 tiered applications, deploying as vApps, 284-285
 vCenter appliances
 benefits of, 16
 browser logons, 19
 configuring, 19
 consoles, 18
 deploying, 15-20
 obtaining, 16
 unsupported features, 16

 vCenter Servers
 Active Directory configuration, 511-512
 alarms, 541-542
 action configuration, 552
 connectivity alarms, 543-544, 548-550
 identifying affected vSphere resource by a given alarm, 552
 trigger configuration, 551
 utilization alarms, 542-548
 architectures, explaining, 11
 availability requirements, determining, 27-28
 client server plug-ins
 enabling/disabling, 26
 installing, 25-26
 removing, 25-26
 configuring, 22-23
 connections, monitoring/administrating, 531-532
 ESXi Host Agent status, 529-530
 events
 filtering output, 499
 viewing, 497-498
 installing
 additional components, 24
 as a VM, 20
 licensing, 26-27
 logging
 configuring logging options, 514
 Error option, 514
 Information (Normal Logging) option, 515
log bundles, 515-518
None (Disable Logging) option, 514
Trivia option, 515
Verbose option, 515
Warning (Errors and Warnings) option, 515

Perfmon and host performance, 540

performance monitoring
Advanced charts, 509, 533-534
Overview charts, 508
Perfmon and host performance, 540
Resxtop and host performance, 536-540

requirements for, 21
resource maps, 524-526
Resxtop and host performance, 536-540

security, 50-51

cloning roles, 64-66
creating roles, 63-64
custom roles, 53
determining appropriate privileges, 69
ingating roles, 66-68
identifying common privileges/roles, 51
inventory object permissions, 62-63
permissions, 53-56
sample roles, 52
system roles, 52

services, 527-528
sizing databases, 24
SMTP configuration, 512-514
SNMP configuration, 510-511
storage filters, 193-194
disabling, 195-197
Host Rescan Filters, 195
RDM filters, 195

Same Host and Transport filters, 195
VMFS filters, 195
tasks
filtering output, 499
scheduling, 518-523
viewing, 497-498
timeout settings configuration, 530
upgrades, 38-39
VM
configuration maximums, 286
installing vCenter Servers as, 20
VMware Services, 23
vSphere Client connections, 28
vSphere Web Client
connections, 28
use cases, 28

vCenter Update Manager, ESXi host
upgrades, 45-50

vCOP (vCenter Operations Manager), 553-554
architecture, 555-556
deploying vCOP appliances, 556-564
major/minor vCOP badges, 554-555, 566-567
upgrades, 564-565

vCPU entitlement, 6

VDP (VMware Data Protection), 408-412

vDS (Virtual Distributed Switches), 7-8, 97-98
backing up configurations, 100
consistency and, 100
creating, 101-104
datacenter-level management services, 99
deleting, 104
dvPort groups
- adding to vDS, 110-112
- configuring in vDS, 111-112
- removing from vDS, 112-113

ESXi hosts
- adding to vDS, 104-108
- removing from vDS, 108-110
- identifying capabilities of, 98-100
- importing/exporting configurations, 100

inbound traffic shaping, 99
jumbo frames, 154-155
LACP, 100, 159-165
LLDP, 100
load-based teaming, 99
NetFlow, 100
network I/O control (user-defined), 100
network vMotion, 99
per-port policy settings, 99

policies
- configuring dvPort group blocking policies, 138-139
- exceptions, 139-143
- failover policies, 141-143
- identifying common port group policies, 135-137
- load balancing, 140-141
- overriding port group policies, 137-138
- traffic shaping policies, 150

port mirroring, 100
port state monitoring, 100
PVLAN, 99
QoS, 100
restoring configurations, 100

upgrades, 39-40

uplink adapters
- adding to dvUplink groups, 113-116
- removing from dvUplink groups, 117-118

use cases, 166

virtual adapters
- configuring, 120-123
- creating, 118-121
- migrating to/from vDS, 125-127
- removing, 123-124

VLAN
- backing up configurations, 157
- configuring policy settings, 145
- exceptions, 139-143
- exporting configurations, 157
- monitoring dvPort state, 157
- restoring configurations, 157
- trunking policies, 145

VM
- migrating to/from vDS, 127-131
- network port blocks, 99

VMkernel adapters
- adding to vDS, 119
- configuring in vDS, 122-123
- removing, 123-124

vSphere switch API, 99
vSS capabilities versus, 98-100

Verbose option (vCenter Server logs), 515

vFlash architectures, 377-378
virtual adapters and vDS (Virtual Distributed Switches)
- configuring, 120-123
- creating in, 118-121
migrating to/from vDS, 125-127
removing from vDS, 123-124

virtual disks
- hot extending, 309-312
- locating within VM, 304-308
- provisioning
 - thin provisioning, 186-187
 - VM and, 251-252

virtual serial port concentrator, 7-8

Virtualcenter Agent (vpxa) logs, 452

VLAN (Virtual Local-Area Networks), 143
- determining appropriate configuration, 155-156

PVLAN
- community PVLAN, 147
- isolated PVLAN, 147
- promiscuous PVLAN, 147
- vDS, 99, 146-148

vDS
- backing up configurations, 157
- configuring policy settings, 145
- exporting configurations, 157
- monitoring dvPort state, 157
- PVLAN policies, 146-148
- restoring configurations, 157
- trunking policies, 145

vSS, 144, 156

VM (Virtual Machines)
- access methods, 246-247
- administering
 - advanced VM parameters, 324
 - BIOS files, 304
 - configuration files, 304
 - configuration options, 314-321
 - Disk Data files, 304
 - Disk Descriptor files, 304
 - locating configuration files, 304-308
 - locating swap files, 306-307
 - locating virtual disks, 304-308
 - Log files, 304
 - Raw Device Map files, 304
 - redirecting serial ports, 313
 - security, 308-309
 - Snapshot Data files, 304
 - Snapshot Disk files, 304
 - Snapshot State files, 304
 - storage, 307
 - storage policy assignments, 321-323
 - storage policy compliance verification, 323-324
 - Suspend State files, 304
 - swap files, 304
 - Template files, 304
 - USB passthrough configuration from ESXi hosts, 312
 - workload adjustments based on resources, 324
- backing up/restoring, 401
- consolidating snapshots, 407
- creating snapshots, 401-406
- deleting snapshots, 406-407
- determining appropriate backup solution, 416
- snapshot requirements, 401
- VDP, 408-412
- vSphere Replication, 412-416
- cloning, 288-290
clusters
- adding/removing VM, 344-345
- VM monitoring, 364-365
- VM placement in, 249

compliance scanning, 434
configuring, 314
- advanced options, 318
- boot options, 320
- ESXi configuration maximums, 287
- Fibre Channel NPIV options, 318
- general options, 315
- power management options, 317
- power settings, 319
- troubleshooting, 321
- vCenter Server configuration maximums, 286
- VM configuration maximums, 288
- VMware Remote Console options, 315
- VMware Tool options, 316

CPU
- configuring/modifying, 263-264
- performance monitoring, 501, 506-507
datastores, 267-268
development methodologies, determining, 303
disk shares, configuring, 253-255

DRS
- automation levels, 355-356
- migration thresholds, 353-354
- VM entitlement, 336

ESXi hosts
- configuration maximums, 287
- VM placement in, 249

fault tolerance
- architecture, 371
- configuring fault tolerance networking, 373
- enabling/disabling, 373-374
- identifying requirements, 372-373
- testing configurations, 375
- use cases, 375

guest OS, configuring/deploying, 249-251

hardware
- identifying capabilities of each version, 244-245
- upgrades, 44-45

installing vCenter Servers as, 20
jumbo frames, 155

memory
- configuring/modifying, 263-266
- performance monitoring, 500-506

migrating, 383
- configuring swap file locations, 396-397
- Cross-Host vMotion, 386-389
- powered off/suspended VM, 399
- storage vMotion, 394-396
- storage vMotion requirements, 385-386
- storage vMotion snapshot requirements, 389-390
- storage vMotion VM migration, 399-401
to/from vDS, 127-131
- vMotion requirements, 383-385
vMotion snapshot requirements, 389-390
vMotion VM migration, 390-394
monitoring via VM Heartbeat, 246
network port blocks and vDS, 99
networks
configuring resource connections, 267
performance monitoring, 501, 507
overrides
Host Isolation Response policy (Admission Control), 369-370
VM Restart Priority policy (Admission Control), 369
performance monitoring
CPU, 501, 506-507
memory, 500-506
networks, 501, 507
storage, 501, 507-508
port groups, 79
adding VM port groups to vSS, 93-95
configuring VM port groups in vSS, 95
removing from vSS, 96
remediation, 434
resource allocation, 505
Resource Pools, adding/removing VM, 381
security, 308-309
shutting down, 246
storage
datastores, 267-268
performance monitoring, 501, 507-508
storage policy assignments, 321-323
storage policy compliance verification, 323-324
storage resources, 248
templates, 288-289
converting a template to a VM, 296-298
creating templates from existing VM, 290-293
deploying a VM from a template, 293-295
deploying VM from OVF templates, 298-301
importing/exporting OVF templates, 301-303
updating, 295-298
time synchronization, 258-259
troubleshooting, 463
TSO support, configuring, 150
updating patching requirements, 417
upgrades, hardware, 44-45
vCOP, 556
time synchronization, 258-259
troubleshooting, 463
TSO support, configuring, 150
updating patching requirements, 417
upgrades, hardware, 44-45
vCOP, 556
vDS
migrating to/from, 127-131
network port blocks, 99
verifying VM network configurations, 463
virtual disks
hot extending, 309-312
provisioning, 251-252
VMware Converter
converting physical machines to VM, 259-262
importing support rdf VM sources, 262
modifying virtual hardware settings, 262
VMware Tools
device drivers, 246
installing, 256-257
mounting, 257
upgrades, 256-257
version checks, 257
vNIC, configuring/modifying, 267
VM Heartbeat, 246
VM Restart Priority policy (Admission Control), 369
VMFS datastores, 195, 205, 207
creating, 208-211
deleting, 212-214
expanding, 220, 223-226
extending, 220-223
identifying datastore properties, 205-206
Maintenance mode, 228-229
managing, 206
mounting, 216
paths
disabling, 231-232
selecting, 229, 232-233
renaming, 211-212
unmounting, 214-216
upgrading VMFS-3 datastores to VMFS-5, 226-227
use cases, 232
VMS-5 capabilities, 207
VMFS filters, 195
VMFS-3 (VMware Virtual Machine File System version 3), 40-41
VMFS-5 (VMware Virtual Machine File System version 5), upgrading to, 40-41
VM-Host rules, DRS/HA clusters, 358-362
VMkernel
DRS VM entitlement, 336
logs, 451-452
VMkernel adapters
vDS
adding to, 119
configuring in, 122-123
removing from, 123-124
vmnic, removing, 123-124
VMkernel ports, 79
fault tolerance logging, 79
IP storage, 79
management services, 79
network service configuration, 91-93
services, 79
vMotion, 79
VSAN, 79
vmmemctl (balloon drivers for memory management), 246, 503-504
vmnic
VMkernel adapters, removing from, 123-124
vSS
adding vmnic to, 85-87
configuring vmnic, 87-90
removing vmnic from, 90
vmnics, 139, 142-143
vMotion, 6, 8
Cross-Host vMotion, 386-389
EVC, DRS/HA clusters, 351-352
network vMotion, vDS, 99
storage vMotion
 migration issues, 483-485
 troubleshooting, 477-478
VM migration, 385, 389-390, 394-396, 399-401
 troubleshooting, 477-478
 migration issues, 483-485
 requirements for, 476-477
 resource maps, 484
 verifying vMotion configurations, 477-478
VM migration, 389-390
 requirements, 383-385
 vMotion snapshot requirements, 389-390
VMkernel ports, 79
VM-VM Affinity rules, DRS/HA clusters, 358-362
VMware Converter
 physical machines, converting to VM, 259-262
 supported VM sources, importing, 262
 virtual hardware settings, modifying, 262
VMware ESXi Observation Log (vobd), 452
VMware Remote Console options in VM, configuring, 315
VMware Services, 23
VMware Tools, 24
 balloon drivers for memory management (vmmemctl), 246
 device drivers, 246
 installing, 256-257
 mounting, 257
 mouse support drivers, 246
 SVGA displays, 246
 sync drivers for quiescing I/O, 246
 Time Synchronization drivers, 246
 upgrades, 41, 256-257
 version checks, 257
 VM configuration, 316
 VM Heartbeat, 246
 vmxnet - vmxnet3 vNIC drivers, 246
VMware vCenter Orchestrations Configuration, 23
VMware VCMSDS, 24
VMware VirtualCenter Web Management Services, 23
VMware vsphere Update Manager, 24
VMware vsphere Web Client, 24
vmxnet - vmxnet3 vNIC drivers, 246
vNIC (Virtual Network Interface Cards), configuring/modifying, 267
vobd (VMware ESXi Observation Log), 452
vpxa (Virtualcenter Agent) logs, 452
VSAN (Virtual Storage-Area Networks), 79, 181
vServer Web Client, Navigator, 498
vShield zones, 7-8
vSphere 5.5
 architecture, 11
 editions
determining via customer requirements, 14
 identifying, 10-11
Enterprise edition, 6-11
Enterprise Plus edition, 6-11
SSO architectures, 56-57
SSO requirements, identifying, 15
Standard edition, 6-11
upgrades, 38-39
determining the root cause of a network issue, 465-466
physical network adapters, 464-465
port groups, 463-464
verifying configurations, 461-463
vSS, 463-464
vSphere networks, troubleshooting, 461
vSphere Replication, 412-416
vSphere switch API and vDS (Virtual Distributed Switches), 99
vSphere Web Client
plug-ins
enabling/disabling, 26
installing, 25-26
removing, 25-26
use cases, determining, 28
vCenter Server connections, 28
vSS (vSphere Standard Switches), 78
creating, 79-84
deleting, 84-85
diagram of, 78
identifying capabilities of, 78-79
policies
exceptions, 139-143
failover policies, 141-143
identifying common policies, 132-136
load balancing, 140-141
troubleshooting, 463-464
use cases, 97
vDS capabilities versus, 98-100
VLAN, 143-144, 156
VM port groups, 79
adding to vSS, 93-95
configuring in vSS, 95
removing from vSS, 96
VMkernel ports, 79
fault tolerance logging, 79
IP storage, 79
management services, 79
network service configuration, 91-93
services, 79
tMotion, 79
VSAN, 79
vmnic
adding to vSS, 85-87
configuring in vSS, 87-90
removing from vSS, 90
vSS
jumbo frames, 152-153
traffic shaping policies, 148-149

VUM (vCenter Update Manager)
configuring, 429-430
installing, 425-428
patch download options, 429-430
Update Manager baselines, 430-434
upgrades, 39
W

Warning (Errors and Warnings) option (vCenter Server logs), 515

Web Client

plug-ins

 enabling/disabling, 26
 installing, 25-26
 removing, 25-26

use cases, determining, 28
vCenter Server connections, 28

Workload badge (vCOP), 566

X - Y - Z

zoning, 188