Contents at a Glance

Introduction xxii

CHAPTER 1 Introduction to Computers 2
CHAPTER 2 Understanding Computer Math, Measurement, and Processing 40
CHAPTER 3 Motherboards and Buses 76
CHAPTER 4 The CPU 120
CHAPTER 5 Memory and Storage 172
CHAPTER 6 I/O Devices and Ports 222
CHAPTER 7 Computer Operation 276
CHAPTER 8 Operating Systems and Their Characteristics and Interfaces 316
CHAPTER 9 Operating Systems Architecture, Configuration, and Management 350
CHAPTER 10 Networks 404
CHAPTER 11 Virtualization and Cloud Computing 464
CHAPTER 12 Basic Security 488
CHAPTER 13 Computer Troubleshooting 534

Glossary 572
Index 584
Table of Contents

Introduction ... xxii

CHAPTER 1 Introduction to Computers .. 2
 Chapter Outline .. 3
 Objectives .. 3

History of Computers .. 4

The von Neumann Computer Model .. 5

Modern Computers .. 7
 From Tubes to Transistors ... 8
 Integrated Circuits .. 10

History of the PC .. 11
 Birth of the Personal Computer .. 11
 The IBM Personal Computer .. 13
 The PC Industry Today .. 14

What Is a PC? .. 16
 Who Controls PC Software? ... 17
 Who Controls PC Hardware? ... 20
 White-Box Systems .. 22
 PC Design Guides .. 23
 System Components .. 23

What Is a Mobile Computer? ... 25
 Mobile Computer Hardware ... 26
 Differences and Similarities Between Tablets and Laptops ... 27
 Mobile Computer Software .. 27

Chapter Summary .. 29

Chapter Review Activities ... 31
 Define the Key Terms for Chapter 1 ... 31
CHAPTER 2 Understanding Computer Math, Measurement, and Processing .. 40

Chapter Outline .. 41
Objectives .. 41
CompTIA A+ Objectives Covered ... 41

Numbering Systems Used in Computers ... 42
 Decimal Numbering System .. 42
 Binary Numbering System .. 43
 Converting Decimal Numbers to Binary .. 44
 Hexadecimal Numbering System ... 53

Basic Boolean Operations ... 54
 AND .. 55
 OR ... 56
 NOT ... 57
 Mixed Boolean Operations .. 57

Measuring Data Transfer and Frequency ... 57
 Bandwidth ... 58
 Hertz (Hz) .. 60

How Computers Process Information .. 61
 CPU ... 62
 Working Storage ... 62
 Permanent Storage .. 63
 Input Devices .. 63
 Output Devices .. 64
 A Basic Example of Data Transfer Through the Computer .. 64

Chapter Summary ... 66

Chapter Review Activities ... 68
 Define the Key Terms for Chapter 2 .. 68
 Answer These Questions and Case Studies .. 68
 Answers, Explanations, and Solutions .. 73
CHAPTER 3 Motherboards and Buses

Chapter Outline

Objectives

CompTIA A+ Objectives Covered

The Evolution of Motherboards

The 286 PC—Last of the 16-Bit Computers

The 386 PC—and the 32-Bit Age

Today’s 64-Bit Computing

Other Examples of Modern Motherboards

Motherboard Components

The Core Components

The Chipset and Connecting Buses

Form Factors

I/O Ports and Front Panel Connectors

Expansion Buses

Drive Technologies

Installing Motherboards

Step-by-Step Motherboard Removal

Preparing the Motherboard for Installation (ATX)

Step-by-Step Motherboard Installation

Installing Adapter Cards

General Installation

Display Adapters

Video Capture Cards and TV Tuners

Sound Cards

Chapter Summary

Chapter Review Activities

Define the Key Terms for Chapter 3

Answer These Questions and Case Studies

Answers, Explanations, and Solutions
Computer Structure and Logic

Installing and Upgrading Processors
- Installing a CPU: 155
- Removing Older Heat Sinks: 161

Chapter Summary
162

Chapter Review Activities
- Define the Key Terms for Chapter 4: 164
- Answer These Questions and Case Studies: 164
- Answers, Explanations, and Solutions: 169

CHAPTER 5 Memory and Storage
172

Chapter Outline
- Objectives: 173
- CompTIA A+ Objectives Covered: 173

RAM Basics
174

RAM Types
- SRAM Versus DRAM: 177
- SDRAM: 177
- DDR: 178
- DDR2: 180
- DDR3: 180
- DDR4: 182
- Laptop Memory: 182
- RDRAM (Rambus): 183

RAM Technologies
- Single-Channel Versus Dual-Channel Versus Triple-Channel: 183
- Memory Latency: 185
- Single-Sided Versus Double-Sided: 185
- Parity Versus Nonparity: 186
- ECC Versus Non-ECC: 186
- Registered and Fully Buffered: 186
- One Final Note: Make Sure Your RAM Is Compatible!: 186
Understanding I/O Ports

- USB .. 224
- IEEE 1394 (FireWire) .. 228
- Thunderbolt ... 229
- The RJ45 Ethernet Port .. 230
- Audio and Music Ports ... 230
- F Connector .. 232
- Serial Ports ... 234
- SCSI ... 236

Understanding Input Devices

- Keyboard ... 238
- Mice and Other Pointing Devices .. 239
- Game Controllers .. 239
- Bar Code Reader .. 239
- Biometric Devices .. 240
- Voice-Activated Typing ... 240
- Mobile Input Devices ... 241

Display Types

- LCD Monitor ... 241
- LED Monitors ... 242
- OLED .. 243
- Plasma .. 243
- CRT .. 243
- Data Projector ... 243
- PC-based Touchscreens ... 245

Video Connector Types

- VGA ... 246
- DVI ... 247
- HDMI ... 248
- DisplayPort .. 249
- Component/RGB ... 249
- S-Video .. 249
- Composite .. 249
Contents

- Types of Linux Distributions .. 330
- Types of Mobile Operating Systems .. 333
 - iOS ... 333
 - Android ... 335
 - Windows RT and Windows Phone .. 338
 - Other Mobile Operating Systems ... 339
 - Moving Beyond the Mobile Operating System ... 339

Chapter Summary .. 340

Chapter Review Activities .. 342
 - Define the Key Terms for Chapter 8 .. 342
 - Answer These Questions and Case Studies ... 342
 - Answers, Explanations, and Solutions .. 346

CHAPTER 9 Operating Systems Architecture, Configuration, and Management 350

Chapter Outline .. 351
 - Objectives ... 351
 - CompTIA A+ Objectives Covered .. 351

Operating System Architectures .. 352
 - Windows Architecture .. 352
 - Linux Architecture .. 361
 - Android Architecture .. 364
 - OS X and iOS Architectures ... 366
 - OS Architecture Wrap-up .. 368

Disk Partitions, Folders, and Files ... 369
 - Windows Storage Structure ... 369
 - Other Operating System Storage Structures ... 375

Introduction to Working in the Command-Line ... 378
 - Accessing the Command-Line .. 379
 - Working with Folders and Files in the Command-Line ... 381
 - Managing Partitions and File Systems in the Command-Line .. 383
Computer Structure and Logic

Chapter 10

System Management Tools .. 385
 Control Panels and Settings Screens ... 385
 Advanced Configuration Tools .. 389
Chapter Summary ... 391
Chapter Review Activities ... 393
 Define the Key Terms for Chapter 9 ... 393
 Answer These Questions and Case Studies .. 393
 Answers, Explanations, and Solutions ... 399

CHAPTER 10 Networks .. 404
 Chapter Outline ... 405
 Objectives ... 405
 CompTIA A+ Objectives Covered .. 405
Types of Computer Networks ... 406
 Peer-to-Peer .. 406
 Client/Server ... 406
 Local Area Networks ... 408
 Wide Area Networks ... 408
Network Devices .. 409
 Hub .. 410
 Switch .. 410
 Wireless Access Point .. 410
 Bridge ... 411
 Network Attached Storage .. 411
 Modem .. 411
 Internet Appliance .. 411
 Router .. 412
 Firewall ... 412
 VoIP Phones ... 412
Wired and Wireless Network Connections ... 412
 Wired Connections .. 413
 Wireless Connections ... 418
Connecting Computers to the Network

- The Physical Connection .. 420
- The Logical Connection .. 420
- Testing the Network Connection ... 424
- Using the Network Connection .. 427

Understanding and Configuring TCP/IP

- Understanding IPv4: Addressing, IP Classes, and Subnet Masks .. 429
- Configuring IPv4 .. 431
- Understanding IPv6 ... 433
- Configuring IPv6 .. 434

Using Networking Command-Line Tools

- Testing the Networking Connection ... 436
- Configuring a Networking Connection ... 438
- Troubleshooting a Networking Connection ... 440

TCP/IP Suite of Protocols

- Ports ... 443
- HTTP/HTTPS ... 443
- FTP ... 444
- SSH .. 444
- DNS .. 444
- E-mail .. 445
- Remote Desktop .. 446

Internet Connectivity Technologies

- Modems and Dial-Up Internet Connectivity .. 447
- ISDN Internet Connectivity .. 449
- DSL ... 449
- Cable Internet ... 450
- Satellite ... 451
- WiMAX ... 452
- Cellular ... 452

Chapter Summary

- .. 453

Chapter Review Activities

- .. 455
CHAPTER 11 Virtualization and Cloud Computing ... 464
 Chapter Outline .. 465
 Objectives .. 465
 CompTIA A+ Objectives Covered .. 465

Understanding Virtualization ... 466
 Types of Virtualizations ... 466
 Virtual Machine Technology .. 468
 Virtual Machine Vendors .. 469
 VLANs and VPNs .. 474
 Summary of Virtual Technologies ... 476

Cloud Computing Fundamentals ... 477
 Cloud Computing Services ... 478
 Cloud Computing Providers .. 479
 Cloud Computing Examples ... 480

Chapter Summary .. 481

Chapter Review Activities ... 483
 Define the Key Terms for Chapter 11 ... 483
 Answer These Questions and Case Studies .. 483
 Answers, Explanations, and Solutions .. 486

CHAPTER 12 Basic Security .. 488
 Chapter Outline .. 489
 Objectives .. 489
 CompTIA A+ Objectives Covered .. 489

Security Fundamentals .. 490
 Secure and Insecure File Systems ... 490
 Authentication Technologies .. 490
 Protection Against Viruses and Malware ... 492
Software Firewalls. ... 492
Hardware Recycling and Deconstruction ... 493

Data and Physical Security .. 493
Data Access Local Security Policy .. 493
Encryption Technologies ... 494
Backups .. 497
Data Migration .. 497
Data and Data Remnant Removal ... 498
Password Management ... 498
Locking a Workstation .. 499
Locking the Door .. 500
Incident Reporting .. 500
Social Engineering .. 501

Access Control Purposes and Principles .. 502
User Accounts .. 502
Auditing and Event Logging .. 506

Configuring Security Features .. 508
BIOS Security Features ... 508
Firewalls .. 508
File Systems (Converting from FAT32 to NTFS) ... 513
Malicious Software Protection .. 514

Mobile Security .. 517
Protecting Against Stolen or Lost Devices ... 517
Protecting Against Compromised or Damaged Devices .. 517

Wireless Security ... 518
Secure the Administration Interface .. 518
SSID Broadcast .. 519
Wardrivers .. 519
Rogue Access Points .. 519
Evil Twin ... 519
Weak Encryption ... 520
Other Wireless Access Point Security Strategies ... 521
Virtual Computing and Cloud Computing Security ... 522
 Virtual Computing Security .. 522
 Cloud Computing Security .. 523

Chapter Summary ... 524

Chapter Review Activities .. 526
 Define the Key Terms for Chapter 12 ... 526
 Answer These Questions and Case Studies .. 526
 Answers, Explanations, and Solutions .. 531

CHAPTER 13 Computer Troubleshooting ... 534
 Chapter Outline ... 535
 Objectives .. 535
 CompTIA A+ Objectives Covered .. 535

PC Tools .. 536

Preventing Electrostatic Discharge ... 537

Using a Troubleshooting Process ... 538

Determining the Type of Problem ... 539

Troubleshooting Hardware ... 544
 Troubleshooting Motherboards .. 544
 Troubleshooting the CPU ... 546
 Troubleshooting RAM ... 547

Troubleshooting Operating Systems .. 548
 Recovering an Operating System .. 548
 Troubleshooting Noncritical OS Errors ... 553
 Desktop Troubleshooting Example .. 554

Troubleshooting Mobile Devices ... 558
 Turning Off Apps ... 558
 Soft Resets .. 560
 Hard Resets .. 560
 Wi-Fi Troubleshooting .. 560
 E-mail and Internet Troubleshooting .. 561
About the Technical Reviewers

Aubrey Adams is an electronics and computer systems engineering lecturer, and Cisco Networking Academy instructor, at Central Institute of Technology, Perth, Western Australia. With a background in telecommunications design, Aubrey has qualifications in electronic engineering and management, and graduate diplomas in computing and education. He teaches across a broad range of related vocational and education training areas. Since 2007, Aubrey has technically reviewed a number of Pearson Education and Cisco Press publications, including video, simulation, and online projects.

Chris Crayton is an author, a technical consultant, a trainer, and a SkillsUSA technology competition judge. Formerly, he has worked as a computer technology and networking instructor, network administrator, and PC specialist. Chris has authored several print and online books on PC repair, CompTIA A+, CompTIA Security+, and Microsoft Windows. He has also served as technical editor and content contributor on numerous technical titles for several of the leading publishing companies. He holds MCSE, A+, and Network+ certifications.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name, email address, and phone number. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com

Mail: Pearson IT Certification
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.pearsonitcertification.com/register for convenient access to any updates, downloads, or errata that might be available for this book.
Introduction

Welcome to *Computer Structure and Logic*, Second Edition. This text is designed for those who want to learn about computers from the ground up. The book is planned so that each topic you learn builds on the preceding topic. From desktop computers to mobile devices, hardware to operating systems, basic security and networking, this book gives its readers a solid foundation from which to start their IT career.

This book also acts as a stepping stone to certifications from organizations such as CompTIA, Microsoft, and Cisco. Although further study is necessary to attain those certifications, this book creates a basis from which you can begin that process.

It’s a pleasure for us to bring this text to you, and we wish you the best of success in your information technology (IT) endeavors.

Goals and Methods

The number-one goal of this book is to establish a groundwork of computer knowledge and hands-on skills for the reader. To aid you in mastering an extensive list of computer concepts, each chapter first lists the topics to be discussed, thoroughly defines and describes each topic, and finally concludes with chapter review questions and case study problems that test your recall of the concepts.

In this book, we generally use a subsystem approach. Most of the chapters are devoted to a particular component of the computer. Each component discussed builds on the preceding one. Be sure to read the book in order, and don’t skip any parts!

Who Should Read This Book?

This book is for entry-level IT students. The ordinary reader should have a basic understanding of how to navigate through Windows and how to use the Internet. Readers will range from people who are very new to the IT field to people attempting to attain a position in the IT field.

This book is also aimed at the reader who ultimately wants to acquire certifications such as the CompTIA A+ and Network+, or certifications from organizations such as Microsoft or Cisco. The book is designed in such a way to offer easy transition to future certification studies. Each chapter of the book aligns to particular CompTIA A+ exam objectives. These objective numbers are mentioned at the beginning of each chapter as a courtesy so that the reader can begin to see how the topics covered relate to the A+ exams.
How This Book Is Organized

This book is designed to be read in order, and in its entirety. As previously mentioned, the book’s chapters and concepts build on each other as you progress throughout. There are 13 chapters in total, and they cover the following topics:

- History of Computers
- The von Neumann Computer Model
- Modern Computers
- History of the PC
- What Is a PC?
- What Is a Mobile Computer?
- Numbering Systems Used in Computers
- Basic Boolean Operations
- Measuring Data Transfer and Frequency
- How Computers Process Information
- The Evolution of Motherboards
- Motherboard Components
- Installing Motherboards
- Installing Adapter Cards
- The Evolution of the CPU
- How the CPU Operates
- CPU Technology
- Intel and AMD Processors
- Mobile Processors
- Choosing the Best Processor for the Job
- Installing and Upgrading Processors
- RAM Basics
- RAM Types
- RAM Technologies
- The Synergy Between Memory and Programs
- Installing DIMMs
- Hard Drives
- Optical Drives
- Solid-State Media
- Understanding I/O Ports
- Understanding Input Devices
- Display Types
- Video Connector Types
- Video Settings
- Printing Fundamentals
- Understanding Multimedia Devices
- Understanding the BIOS, CMOS, and Firmware
- Configuring and Updating the BIOS
- Power, the POST, and Error Reporting
- Booting and Resetting Mobile Devices
- The Fundamentals of Computer Operation
- Types of Desktop Operating Systems
- Differences in Windows Versions
- Types of Linux Distributions
- Types of Mobile Operating Systems
- Operating System Architectures
- Disk Partitions, Folders, and Files
- Introduction to Working in the Command Line
- System Management Tools
- Types of Computer Networks
- Network Devices
- Wired and Wireless Network Connections
- Connecting Computers to the Network
- Understanding and Configuring TCP/IP
- Using Networking Command-Line Tools
- TCP/IP Suite of Protocols
- Internet Connectivity Technologies
- Understanding Virtualization
- Cloud Computing Fundamentals
- Security Fundamentals
- Data and Physical Security
- Access Control Purposes and Principles
- Configuring Security Features
- Mobile Security
- Wireless Security
- Virtual Computing and Cloud Computing Security
- PC Tools
- Preventing Electrostatic Discharge
- Using a Troubleshooting Process
- Determining the Type of Problem
- Troubleshooting Hardware
- Troubleshooting Operating Systems
- Troubleshooting Mobile Devices
- Where to Go for More Information
Key Pedagogical Features

To begin the chapter:

Each chapter begins with a few features that help direct you as to what the chapter discusses, before getting into the core topics of the chapter:

- **Chapter Introduction** describes the big ideas in the chapter, with perspective on how it fits with the other chapters.
- **Chapter Outline** lists the titles of the (usually three or four) major sections in each chapter, with a short description.
- **Chapter Objectives** list the most important core topics covered within the chapter.
- **CompTIA A+ Objectives Covered** lists the CompTIA A+ objective numbers for each of the 220-801 and 220-802 exams that correspond to the chapter topics.

In the core of the chapter:

The majority of each chapter, following the chapter introduction, uses text, tables, lists, and figures to explain various computing topics. Along with those descriptions, the core topics also use the following features:

- **Key Terms**: Inside the chapter, the key terms are noted in a bold font so that they can be more easily found.
- **Notes**: These notes list topics that the author wants to draw particular attention to, but that you can skip when reading if you want to maintain the flow. Notes typically list some deeper fact about the current topic or some fact that may be a little off-topic. Read these notes at some point, whether during your first read of the chapter or when reviewing and studying.

At the end of each chapter:

The end of each chapter closes with tools and activities that you can use to review the topics from inside the chapter:

- **Chapter Summary**: This gives a brief summary of the big points made inside the chapter.
- **Define the Key Terms**: This section lists the key terms indicated in bold throughout the chapter. It reminds you of the terms, and suggests an activity in which you write the definitions for these terms in your own words. You can then compare your definitions with the definitions in the glossary.
- **Answer These Questions and Case Studies**: This section offers multiple-choice questions that can be used to review the topics in the chapter, as well as real-world case studies that help to solidify the reader’s knowledge from a more hands-on perspective.

Computer Structure and Logic Lab Manual:

Available as a separate title, the *Computer Structure and Logic Lab Manual* offers lab exercises that can be used with each of the chapters in this book.
Conclusion
Computers are a part of almost everyone’s daily lives. They come in all shapes and sizes, and have varying purposes. To understand computers better, you need to study their hardware and software attributes, their design and architecture, how they are networked with each other, how they are secured, and how they can be repaired when necessary. This book lays the foundation of computer knowledge that you can build on and refer to when necessary. The world of computing can be very exciting—hopefully this book will serve to satisfy your quest for knowledge, while being enjoyable as well.
In this chapter, we discuss the **motherboard**—which is the printed circuit board enabling connectivity between all other devices within the computer. We’ll also cover chipsets, the various bus technologies, and the range of interfaces that you might encounter within a motherboard. We discuss the evolution of the motherboard, from its early beginnings to today’s powerful and robust motherboards.

Deciding on a motherboard should be among your first tasks when building a computer. Adapter cards are also vital because they allow video, audio, and network capabilities. It is important to know how many and what type of adapter card slots are available on your motherboard before selecting specific adapter cards.

So within these pages, you’ll learn some of the considerations to take into account when building the core of a PC, but more important, you will learn about the inner workings of the foundation of the computer—the motherboard.
Chapter Outline

The Evolution of Motherboards
Motherboard Components
Installing Motherboards

Installing Adapter Cards
Chapter Summary
Chapter Review Activities

Objectives

■ Explain how motherboards have evolved over the past 40 years and how core motherboard technologies have become more sophisticated over time.

■ Discuss what we term the “foundation” of the computer, plus form factors, integrated ports and interfaces, memory slots, and expansion slots.

■ Demonstrate how to install motherboards.

■ Instruct on how to install video and sound cards.

CompTIA A+ Objectives Covered

This chapter covers a portion of the following CompTIA A+ Examination Objectives:

220-801: 1.2, 1.4, 1.11, 3.1, 5.1
220-802: none
The Evolution of Motherboards

In Chapter 1, “Introduction to Computers,” we discussed the first computers. These were very complex machines with many components, some of which used 8-bit CPUs. These early CPUs could calculate only 1 byte of data per cycle. But in the early 1980s, IBM released the first of the more popular computers known as PCs. The architecture, or form factor, of these computers and motherboards was known simply as PC. This form factor included a basic motherboard that supported the original 16-bit 8086 processors (also known as 186), which could calculate 2 bytes of data per cycle. This was followed up by the XT form factor, but both of these were used only until 1984 when IBM released the Advanced Technology (AT) form factor for the 286 computer, which became the landmark form factor for a long time. Let’s discuss this 286 system as our 16-bit example, and other milestones in computing now.

The 286 PC—Last of the 16-Bit Computers

The AT form factor was designed for the 80286 computer, and remained the form factor standard for 15 years. At the time, this made the 80286 (286 for short) a staple in computing and PC sales were rising quickly. Take a look at Figure 3-1 for an illustration of a 286 motherboard.

FIGURE 3-1
A 286 motherboard.
The Evolution of Motherboards

Note the very small CPU. This motherboard supported the 16-bit 80286 CPU, which ran at 6 to 12 MHz (depending on the model). That’s right—megahertz. So it was much slower than today’s CPUs. Also, the CPU was 16-bit, which meant that the CPU could process only 2 bytes of data per cycle. This would equate to approximately 10 to 20 MB/s of data in total. Although this doesn’t seem like much compared to today’s computers, you have to remember that not much was needed at the time. Most displays were monochrome, meaning one color with a black background (also known as 1-bit color). There usually was no mouse or other peripherals. The applications were not very powerful. At this time, most people used the computer as an extravagant word processor. So the speed and power of the CPU was proportionate with what was needed at the time.

The chipset was a very basic device that helped the CPU to communicate with other devices in the computer. But there were a lot fewer devices than in today’s computers, so the chipset was also very basic. We’ll speak more about chipsets later in this chapter. Memory modules were soldered onto the motherboard. These are shown as Bank 0 and Bank 1 in the figure, and they would often contain 640 KB or 1024 KB of RAM. But on some 286 motherboards, memory could be increased by adding sticks of RAM into slots. In the figure, these would be added to Banks 2 and 3. Back then, 4 MB or so of RAM would be considered a large amount.

You can see that there are two BIOS chips. In a 16-bit system such as this, each chip would be 8-bit, divided up as even/odd, or high and low. In addition, these were often basic read-only memory (ROM) chips that couldn’t be modified. Today’s computers use a single BIOS chip. In addition, it is known as an EEPROM chip, or electrically erasable, programmable ROM chip. This means that today’s BIOS chips can be written to, and completely erased if necessary. We’ll talk more about the BIOS in Chapter 7, “Computer Operation.”

To the right and below the BIOS chips we see some more slots—these are for adapter cards such as modems and sound, and are known as expansion slots. At the time, these slots used the Industry Standard Architecture (ISA) bus to transmit data between the adapter cards and the CPU. ISA was the standard for many years but is rarely seen today. We’ll discuss more about adapter card buses later in this chapter.

On the lower-right side of the figure, you see “KBD,” short for keyboard. This is the controller that accepts input from the keyboard, and sends it to the CPU for processing. During the time when we used AT keyboards and PS/2 keyboards, this chip was essential. If it failed, it would have to be replaced (by soldering) or the user would not be able to interface with the computer. Today, most computer keyboards are connected by way of USB. So the USB controller is in charge of interpreting keyboard commands and sending them to the CPU. However, some specialty computers still use a keyboard controller chip that works with a special keyboard.

The power connector is just above the keyboard controller. It is known as an AT 20-pin power connector, and as part of the form factor for AT, it survived for more than 15 years.
The 16-bit 286 systems were fine as far as they went, but the next system would bring about a new paradigm in technology.

The 386 PC—and the 32-Bit Age

The advent of the 80386 PC (386 for short) in the mid- to late 1980s brought with it the 32-bit CPU. This was a quantum leap in processing. The 386 CPUs generally ran between 12 and 33 MHz—much faster than the 286. But the fact that quickly eclipsed the 286 CPU was that the 386 was 32-bit and could therefore process 4 bytes of data per cycle instead of just two. Now, a CPU could process as much as 133 MB/s (theoretically). CPUs at this time also started to be measured in MIPS, or millions of instructions per second. A 33 MHz 32-bit CPU could process in the neighborhood of 11 MIPS.

Regardless of how you measure it, it was a huge jump in processing power. This was the gateway to the usage of peripherals such as the mouse, 256-color (8-bit) monitors, and graphical user interfaces such as Windows, as well as powerful applications that were point-and-click. Some of the more formidable 286 computers could do some of these things, so there was some overlap; but they couldn’t do them nearly as well as the 386. The 386-based games also grabbed people’s attention. Of course, there was an exponential rise in PC sales.

Although the 386 was far advanced compared to its predecessors, the motherboard for it looks fairly similar. Take a look at Figure 3-2.

NOTE: Arguably, this could be considered the most important technology jump in computers to date.
CPUs really weren’t that much bigger physically. In fact, they had only doubled and tripled in speed. But the underlying technology of having a 32-bit processor, and a correspondingly bigger system bus connecting everything together on the motherboard, leads to the real gains with this system. You will notice more RAM slots. Some 386 computers had as much as 16 MB of RAM, quite a lot at the time. In fact, 4 MB was usually quite enough. For example, Windows 3.1, a common graphical user interface loaded on top of DOS, required only 1 MB of RAM minimum.

You will also notice more expansion slots in the figure, allowing for more adapter cards such as video cards, sound, modems, and network cards. Take heed of the way in which the expansion card slots and memory slots line up, or are parallel, with each other. This is a characteristic of the AT form factor, and one easy way to differentiate it from newer form factors such as ATX.

This 386 CPU was the CPU used during IBM’s release of the Personal System 2 (PS/2). The PS/2 saw many improvements to the architecture of the system, most notably the PS/2 connector for keyboard and mouse.

At this point, 32-bit computing became the standard for PCs and remained so for many years, throughout faster versions such as the 486, and Pentiums—that is, until 64-bit computing arrived on the mainstream around 2006.

Today’s 64-Bit Computing

Today’s PCs are 64-bit computers. That means the CPU can calculate 64 bits (8 bytes) per cycle, doubling that of 32-bit CPUs. But the real advances over the past decade have come in the speed department. As of the writing of this book, one of the fastest CPUs, the Intel Core i7 Extreme, can run as fast as 3.5 GHz (not to mention frequencies obtained by overclocking), and can perform as many as 175,000 MIPS. That’s 18,000 times the calculating power of the 386 CPU. This holds with Moore’s Law (described in Chapter 1), which says that CPU calculation power essentially doubles every two years or so.

But let’s not get too excited. Let’s break it down and take a look, in Figure 3-3, at a typical illustration of a motherboard that houses a 64-bit CPU.

NOTE: Imagine the future. It’s 2030, and an ordinary CPU can perhaps calculate 10 million MIPS (10 trillion instructions per second). Some analysts predict that this breakthrough point will herald a whole new age of technology—one that is, for most people, unimaginable.
As you can see, there’s a lot that is different here compared to the preceding figure we viewed. First of all, the processor area is larger. It is much faster, which in turn requires more power, which in turn makes it run hotter. Power is passed to the CPU via a special four-pin power connector, and a large heat sink and fan combination (not shown) cools the CPU.

The chipset shown, which helps pass data from devices to the CPU, is actually more powerful than some of the 32-bit CPUs from 25 years ago. The increase in RAM speed is commensurate with the increase in CPU speed—this type of RAM is known as double data rate RAM (DDR-RAM).
The entire form factor is different. This motherboard uses the newer ATX form factor. It utilizes a 24-pin power connector, and you will also note that the RAM and the expansion bus slots are perpendicular to each other, or at a 90-degree angle, one of the differentiating characteristics of an ATX board. The expansion bus slots are no longer ISA, but instead we see the newer PCI, in white, and the newest version, PCI Express (PCIe), in blue and in black.

When it comes to permanent storage, older computers used Integrated Drive Electronics (IDE) connections for hard drives, which send data in parallel, but newer systems of today utilize Serial ATA (SATA) connections. Even though they send data in a serial bit stream, today’s SATA drives have gone far beyond IDE drives in terms of data transfer rates. In fact, you’ll observe a paradigm shift from parallel technologies to serial technologies when you compare PCs from 20 years ago to PCs of today. Another example of this is the aforementioned PCIe, a serial technology that took the place of the parallel PCI.

Finally, we see a port cluster that has all kinds of new connectors that were not available on most 32-bit PCs, including USB, FireWire, Thunderbolt, and more. We’ll discuss ports in more depth later in this chapter as well as in Chapter 6, “I/O Devices and Ports.”

So this motherboard is far more advanced than what we saw 25 years ago, but will quickly be overshadowed by new technologies (smaller and more powerful) over and over again, during the next 25 years.

Some of the Apple computers during this time saw a change as well. For many years, the Apple Macintosh computer (known as the Mac) used the PowerPC architecture, a RISC-based system designed by IBM. The CPU and motherboard were based on this architecture. However, in 2005, Apple decided to start making the change to Intel-based hardware. It total, this turned out to be a four-year process. In 2009, Apple released Mac OS v10.6 (also code-named Snow Leopard), which removed support for the PowerPC architecture altogether. Now, as far as hardware goes, there is little that differentiates the Mac from the PC. Software, of course, is another story—one that we will delve into more later in the book.

Other Examples of Modern Motherboards

Of course, PCs aren’t the only computers that have motherboards. Just about any computer has a motherboard—the place where everything connects. This might also be known as a mainboard, or main printed circuit board (PCB). Let’s broaden the topic and show illustrations of server and mobile computer motherboards and describe the differences compared to PCs.

Server Motherboard

A server is a powerful computer that is used as a central location for data and resources. It might store files for an organization, or run a database. It might control e-mail or serve websites. It could be the place everyone on the network logs in to. Regardless of the server’s function, it usually needs more powerful hardware (and
software) than your typical PC. Take a look at Figure 3-4. This illustrates a server motherboard.

FIGURE 3-4
A server motherboard.

The first thing you will notice in the figure is that there are two CPU sockets! True multiprocessing can be accomplished only with two or more physical processors. These processors, working together, create a very powerful collective core for the server. A motherboard such as this might make use of dual Intel Xeon E5 CPUs. Xeon CPUs are quite powerful (and quite expensive) processors designed specifically for the server market. They are intended to work best with a server’s processes that run in the background, and are not meant for foreground applications such as Microsoft Word or games. Of course, for every CPU, we should have an additional set of RAM slots, and that’s exactly what we have in the illustration—eight slots per CPU to be exact.

You’ll also note a large chipset. A powerful chipset is required in this motherboard to aid in transferring data from the CPU(s) to other components. For example, note how many SATA ports there are for hard drives. This is far more than a typical PC motherboard would have. This allows the server to store lots of data, perhaps in special redundant arrays.

Server motherboards get much more advanced than this. You might see a server motherboard that has as many as eight CPUs or more. This of course requires a lot more real estate, and necessitates a larger, more powerful form factor. Servers can inhabit the same cases as typical PCs, but more often they occupy a thin chassis, which slides into a server rack, and saves space. To make a superpowerful server, blades might be used. Each of these is essentially the guts of a motherboard—CPU
and RAM—and they are used collectively to create that superserver. Whether you use a typical computer case, a chassis, or a blade environment, you will need to make sure you acquire a motherboard with the correct form factor.

Mobile Computer Motherboard

Let’s discuss the much smaller motherboards you might find in a mobile computer. Remember, mobile devices are computers too, and can be applied to the von Neumann computer model in much the same way as PCs, but on a more simplified and close-knit level.

The motherboards used within many smartphones and some tablet computers have all of the components soldered directly onto them. Figure 3-5 shows an example of a typical smartphone motherboard.

A motherboard such as this might be only six inches in length, perhaps less depending on the smartphone. Because of the space limitations, there is a need for simplicity. Also, we lose out in computing power in comparison to PCs. For example, a typical smartphone CPU is 32-bit instead of 64-bit, and a typical speed might be 1.7 GHz, and it is soldered directly to the board. Also, the RAM often is embedded with the CPU chip; for this phone, 2 GB worth. Long-term storage in the form of flash memory is usually adjacent to the CPU. It is common to have 32 GB of storage.

A device like this often has several other integrated circuits (or chips). For instance, in the figure we see we have a dedicated chip for Wi-Fi and Bluetooth communications, and a separate chip for GSM voice communications and 4G. Another chip (to the upper left) takes care of amplifying the signal for these wireless communications. Finally, a power management chip is in charge of conserving and controlling power to the core devices (CPU, RAM, and storage), the wireless devices, the display, and the operating system. All of these devices are usually soldered directly onto the motherboard. This can make repairs difficult,
even for authorized repair centers. In some cases, when damage is severe, or if an integrated circuit cannot be removed, the entire motherboard is replaced.

At this point, you get the idea. We said before that a computer is a computer. It really doesn’t matter whether you are dealing with a server, a PC, a handheld computer, a gaming console, or an automobile’s computer. They all use a motherboard of sorts, and they all adhere to the same basic principles, regardless of the size or the design of the motherboard.

Motherboard Components

I have found that if a student is going to lack knowledge in one area, it’s often the motherboard. However, this is one of the key elements in a computer system, so we can’t discount it. It’s the starting point for a quick and efficient computer. Because the motherboard connects to everything in the computer system, you need to know many concepts concerning it. This section concentrates on PC motherboards, and goes into more depth about concepts such as buses, the chipset, and other components within the motherboard. Take a look at Figure 3-6, and refer to this often as you continue reading through the chapter.

![Figure 3-6](image)

A typical modern PC motherboard.
The Core Components

The core of the computer is the CPU and RAM. One does the “thinking” and the other does the “remembering.” These are almost always housed within or on the motherboard.

In the computers of the preceding century, everything was connected together by way of the system bus. A bus is simply a pathway or group of pathways that transmit electrical signals. It could be a single copper circuit (serial technology), or a group of copper circuits (parallel technology), often in multiples of 8. The wider the bus, the more circuits, and subsequently the more bits that can be transmitted simultaneously. For example, a 32-bit bus is 32 copper circuits, each able to transmit 1 bit of information at the same time, allowing for 4 bytes of information per cycle. Collectively, this concept is known as bus width.

Today, we are not as concerned with the system bus as we are with other terms more specific to the connection type, for example, the connection between the CPU and the chipset, and the connection from the chipset to the RAM. Different CPU manufacturers have their own proprietary names for connections between various devices.

Possibly the most important concept of motherboards is the chipset. If you can understand the chipset, you can master motherboards. Let’s discuss that now.

The Chipset and Connecting Buses

In a general sense, the chipset is the motherboard, incorporating all the controllers on the motherboard; many technicians refer to it in this way. But in the more specific sense, the chipset is one or two specific chips. How many depends on the design and the manufacturer of the board. If you refer to Figure 3-6, you see that the chipset is the P67 Express chipset (PCH). PCH stands for Platform Controller Hub, a name Intel uses. This chipset is composed of a single chip. Figure 3-7 illustrates the connections between the P67 chipset and the rest of the motherboard.
The chipset connects to just about everything directly. Starting clockwise from about two o’clock, you can see the Ethernet controller, Serial Peripheral Interface, Serial ATA interface, HD audio controller, IEEE 1394 controller, USB controllers, PCI controller, and PCI Express x1 connectors. You’ve probably heard of most of these, but each one is covered in depth as you continue through this book. The point for now is that the chipset is the central meeting point for many devices. It also has a high-speed point-to-point interconnection to the processor called the **Direct Media Interface (DMI) link**, also known as the DMI bus—an Intel-specific name.

The DMI carries all the traffic from the previous list of controllers to the processor. You can imagine that the DMI needs to be powerful. The original DMI provided a data transfer rate of 10 gigabits per second (10 Gb/s) in each direction. (Note the

NOTE: DMI makes use of **lanes**. A lane is two serial wires that enable the sending and receiving of data simultaneously.
lowercase “b” indicating bits.) The chipset in the figure makes use of a DMI 2.0 connection and can handle 20 Gb/s in each direction. This is equal to approximately 2.5 gigabytes per second (2.5 GB/s; note the uppercase “B” for bytes.) The only things the chipset does not connect to directly are the PCI Express x16 slot and the RAM. These are controlled directly by the processor.

This Intel design differs from previous Intel designs and some Advanced Micro Devices (AMD) designs in that there is only one chip in the chipset instead of two chips. Historically, however, the motherboard chipset consisted of two chips: the northbridge and the southbridge.

- **Northbridge:** In charge of the connection to high data transfer devices such as PCI Express video cards and the RAM.
- **Southbridge:** In charge of the connection to all the secondary controllers: USB, SATA, FireWire, and so on.

In our sample motherboard in Figures 3.6 and 3.7, the northbridge functionality is built directly into the processor; some refer to this as an on-die northbridge. The southbridge functionality is all within the P67 chipset. However, newer AMD designs such as the AMD 990 FX chipset still make use of a northbridge and southbridge. In this scenario, the northbridge controls the PCI Express connections and connects directly to the processor, and the southbridge connects to just about everything else. But the RAM is still controlled directly by the processor, a technique started by AMD.

The AMD connection between the northbridge and the processor is called **HyperTransport**, similar to Intel’s DMI. Version 3.1 of the HyperTransport has a transfer rate of 25.6 GB/s. You might note that this is a lot more than Intel’s DMI. The reason is that the HyperTransport also moves all the PCI Express video data, which accounts for a large chunk.

There is a more powerful version of Intel’s DMI called **Quick Path Interconnect (QPI)**, which can also transfer 25.6 GB/s, similar to HyperTransport. It is used by more powerful workstation and server motherboards.

Older Intel motherboard designs used the northbridge/southbridge concept, but during that time, Intel gave names to each chip. The northbridge was known as the Memory Controller Hub (MCH) and the southbridge was known as the I/O Controller Hub (ICH).

Figure 3-8 shows an example of a P35 chipset, and gives a rough idea of the connections between these and the rest of the motherboard.
In Figure 3-8, you can see that there are three major buses (you can think of them as highways) that lead to and from the MCH: **front-side bus**, **memory bus**, and **PCI Express x16**.

- **Front-side bus (FSB):** This connects the MCH to the processor (CPU) socket. A common speed for this type of motherboard would be between 800 and 1300 MHz, which depends on what type of processor is used. When deciding on a processor, make sure that it can run at one of the FSB speeds prescribed by the motherboard. It also needs to be compatible with, and adhere to, the wattage maximum of the motherboard’s socket.

- **Memory bus:** This set of wires connects the MCH to the RAM slots. It has also been referred to as the address bus.

- **PCI Express x16 interface:** This connects the MCH to the PCIe x16 slot used for video; usually there is only one of these slots on a motherboard.

The FSB and memory bus are parallel; however, PCI Express works in groups of serial buses called lanes, similar to the DMI bus mentioned previously.

The ICH provides connectivity to all the secondary buses, some of which are parallel buses (IDE and Audio) and some of which are serial buses (USB, SATA, IEEE 1394, and lesser PCIe slots).

Let’s sum up the types of chipsets starting with the oldest:

- **Older Intel motherboards:** These utilize a northbridge and southbridge, which Intel called the MCH and ICH. The northbridge controls the connections to RAM and PCI Express x16 devices such as video cards. The southbridge connects to controllers such as SATA, IDE, USB, and PCI.
• **Today’s AMD-based motherboards:** These also have a northbridge/southbridge chipset design. The main difference is that the northbridge controls only the connection to PCIe x16 devices; RAM is controlled by the processor.

• **Newer Intel designs:** These basically do away with the northbridge altogether, incorporating its functionality into the processor. The main chipset takes care of all secondary functions such as SATA and USB.

A last word about chipsets: Certain applications prefer or even require specific chipsets, usually applications on the high-end side. Graphics, music, engineering, and even gaming applications recommend specific chipsets. So before designing your computer, think about which applications you will use and whether they prefer certain chipsets. This will in turn suggest to you what type of motherboard will be best.

Form Factors

A computer form factor specifies the physical dimensions of some of the components of a computer system. It pertains mainly to the motherboard but also identifies compatibility with the computer case and power supply. The form factor defines the size and layout of components on the motherboard. It also specifies the power outputs from the power supply to the motherboard. Some of the most common form factors are ATX, microATX, ITX, and BTX. Let’s discuss these a little further now.

ATX

Advanced Technology Extended (ATX) was originally designed by Intel in the mid-1990s to overcome the limitations of the now-deprecated AT form factor. It has been one of the most popular standards for PCs ever since. Figure 3-9 shows a typical example of an ATX motherboard.
The motherboard in Figure 3-9 is a full-size ATX board. Full-size ATX motherboards measure 12 inches × 9.6 inches (305 mm × 244 mm). ATX motherboards have an integrated port cluster on the back and normally ship with an I/O plate that snaps into the back of the case, which fills the gaps between ports and keeps airflow to a minimum. One identifying characteristic of ATX is that the RAM slots and expansion bus slots are perpendicular to each other. Generally, ATX has seven expansion slots. For example, the motherboard in the figure has four PCIe slots and three PCI slots. The ATX specification calls for the power supply to produce +3.3 V, +5 V, +12 V, and –12 V outputs and a 5 V standby output. The original ATX specification calls for a 20-pin power connector (often referred to as P1), and the newer ATX12 Version 2.x specification calls for a 24-pin power connector. The additional four pins are rated at +12 V, +3.3 V, +5 V, and ground, as shown in Table 3-1. Those pins are numbered 11, 12, 23, and 24.

TABLE 3-1

ATX Pin Specification of the Main Power Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Signal</th>
<th>Pin</th>
<th>Color</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orange</td>
<td>+3.3 V</td>
<td>13</td>
<td>Orange</td>
<td>+3.3 V</td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
<td>+3.3 V</td>
<td>14</td>
<td>Blue</td>
<td>–12 V</td>
</tr>
<tr>
<td>3</td>
<td>Black</td>
<td>Ground</td>
<td>15</td>
<td>Black</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>Red</td>
<td>+5 V</td>
<td>16</td>
<td>Green</td>
<td>Power on</td>
</tr>
<tr>
<td>5</td>
<td>Black</td>
<td>Ground</td>
<td>17</td>
<td>Black</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>Red</td>
<td>+5 V</td>
<td>18</td>
<td>Black</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>Black</td>
<td>Ground</td>
<td>19</td>
<td>Black</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>Grey</td>
<td>Power good</td>
<td>20</td>
<td>White</td>
<td>–5 V (optional)</td>
</tr>
<tr>
<td>9</td>
<td>Purple</td>
<td>+5 V standby</td>
<td>21</td>
<td>Red</td>
<td>+5 V</td>
</tr>
<tr>
<td>10</td>
<td>Yellow</td>
<td>+12 V</td>
<td>22</td>
<td>Red</td>
<td>+5 V</td>
</tr>
<tr>
<td>11</td>
<td>Yellow</td>
<td>+12 V</td>
<td>23</td>
<td>Red</td>
<td>+5 V</td>
</tr>
<tr>
<td>12</td>
<td>Orange</td>
<td>+3.3 V</td>
<td>24</td>
<td>Black</td>
<td>Ground</td>
</tr>
</tbody>
</table>

It’s important to know these voltages, or at least keep a table of them handy, when testing a computer’s power supply and main power connection on the motherboard. In that vein, always keep a good digital multimeter nearby.

microATX

microATX (or mATX) was introduced as a smaller version of ATX; these motherboards can be a maximum size of 9.6 inches × 9.6 inches (244 mm × 244 mm) but can be as small as 6.75 inches by 6.75 inches (171.45 mm × 171.45 mm). In comparison, microATX boards are usually square, whereas full-size ATX boards
are rectangular. microATX is backward compatible with ATX, meaning that most microATX boards can be installed within an ATX form factor case, and they use the same power connectors as ATX. Often, they have the same chipsets as ATX as well. The motherboard shown in Figure 3-6 is microATX. One reason to use this is that this smaller form factor is common for multimedia PCs and home theater PCs (HTPCs).

ITX

ITX is a group of form factors developed by VIA Technologies, Inc., between 2001 and now for use in small, low-power motherboards. The ITX group includes the following:

- **Mini-ITX:** Designed in 2001, this 6.7-inch × 6.7-inch (17 × 17 cm) motherboard is a bit smaller than microATX and is screw-compatible with it, enabling it to be used in microATX and ATX cases if so desired. It uses passive cooling to keep it quiet and conserve power, making it ideal for HTPCs. The first version of these boards came with one expansion slot: PCI. The second version comes with a single PCIe x16 slot.

- **Nano-ITX:** Released in 2005, this measures 4.7 × 4.7 inches (120 mm × 120 mm). It boasts low-power consumption and is used in media centers, automotive PCs, set-top boxes (STBs), and personal video recorders (PVR).

- **Pico-ITX:** Designed and released in 2007, this is half the area of Nano-ITX, measuring 3.9 × 2.8 inches (10 × 7.2 cm). It uses powerful processors and RAM, and thus requires active cooling. It is used in extremely small PCs and ultra-mobile PCs (UMPCs).

- **Mobile-ITX:** Released in 2010, this is the smallest of the four ITX form factors, measuring 60 mm × 60 mm. There are no ports, and it requires a secondary I/O board. It is intended for military, surveying, transportation, and medical markets and is used in UMPCs and smartphones.

BTX

Balanced Technology Extended (BTX) was designed by Intel in 2004 to combat some of the issues common to ATX. More powerful processors require more power and therefore release more heat. BTX was designed with a more efficient thermal layout. There is a lower profile, and the graphics card is oriented differently than ATX, so heat is generally directed out of the case in a more efficient manner. BTX did not receive mainstream attention because Intel and AMD processors, and most video cards’ processors, are designed to use less power (and therefore generate less heat). BTX devices are not compatible with ATX devices. One of the ways to identify a BTX motherboard is that the RAM slots and expansion buses are parallel to each other. Also, the port cluster is situated differently on a BTX board. In addition, BTX boards are slightly wider than ATX boards; they measure 12.8 inches × 10.5 inches (325 mm × 267 mm). BTX is less common today, but you will probably still see these motherboards in existence in the field, so you should at least know the basic differences between the ATX and BTX form factors.
Table 3-2 compares the ATX, microATX, ITX, and BTX form factors, supplying the sizes of these motherboards and some of the characteristics that set them apart.

TABLE 3-2

Comparison of Motherboard Form Factors

<table>
<thead>
<tr>
<th>Form Factor</th>
<th>Width</th>
<th>Depth</th>
<th>Identifying Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATX</td>
<td>12 inches</td>
<td>9.6 inches</td>
<td>RAM slots and expansion slots are perpendicular to each other (90-degree angle).</td>
</tr>
<tr>
<td>microATX</td>
<td>9.6 inches</td>
<td>9.6 inches</td>
<td>Smaller than ATX but backward compatible to it.</td>
</tr>
<tr>
<td>ITX</td>
<td>From 60 mm to 6.7 inches depending on the type</td>
<td>From 60 mm to 6.7 inches depending on the type</td>
<td>Designed for HTPCs, UMPCs, and smartphones.</td>
</tr>
<tr>
<td>BTX</td>
<td>12.8 inches</td>
<td>10.5 inches</td>
<td>RAM slots and expansion slots are parallel to each other.</td>
</tr>
</tbody>
</table>

Riser Cards and Daughterboards

Riser cards and daughterboards provide two different methods for providing access to motherboard-based resources. In current slim-line or rack-mounted systems based on ATX technologies, riser cards are used to make expansion slots usable that would otherwise not be available because of limited space inside the case. Riser card designs can include one or more expansion slots, and are available in PCI Express and PCI designs. Figure 3-10 shows two typical implementations of riser card designs.
Motherboard Components

1. Single-slot riser card
2. PCI modem inserted into riser card slot
3. Multi-slot riser card
4. Motherboard

The term *daughterboard* is sometimes used to refer to riser cards, but *daughterboard* can also refer to a circuit board that plugs into another board to provide extra functionality. For example, some small form factor motherboards support daughterboards that add additional serial or Ethernet ports, and some standard-size motherboards use daughterboards for their voltage regulators. Daughterboards might be used for other purposes by proprietary PC manufacturers. The use of riser cards and daughterboards can help to create an efficient design and increase airflow throughout the computer.

I/O Ports and Front Panel Connectors

Without input and output ports, you could not communicate with the computer. These ports also take care of displaying information, printing it, and communicating with other computers. Ports can be found on individual adapter cards, or as integrated connection on the motherboard. Figure 3-11 shows some typical integrated ports as found on an ATX motherboard.

![I/O port cluster on the back panel of an ATX motherboard.](image)
Starting at the left and continuing counterclockwise, you see the following in the figure:

- **IEEE 1394a**: Also known as a FireWire or i.Link, this port is used for devices that demand the low-latency transfer of data, usually concerning music or video.

- **USB**: Universal Serial Bus ports are used by many devices, including keyboards, mice, printers, cameras, and much more. Most of today’s motherboards come with a couple of USB 3.0 ports that have a maximum data transfer rate of 5 Gbps but also come with several USB 2.0 ports that have a maximum data rate of 480 Mbps.

- **Audio cluster**: There are six ports in this audio cluster, including an optical digital output, microphone in, line in, and speaker outs.

- **RJ45 LAN port**: This is the wired network connection. On this particular motherboard, it is a Gigabit Ethernet LAN controller and is rated for 10/100/1000 Mbps. This means that it can connect to any of those speed networks and function properly.

Quite often, cases come with front panel ports that are usually wired to the motherboard. These include USB ports, audio ports, memory card readers, external SATA ports, and more. The front panel also has connections for the power button, reset button, power LED light, and hard drive activity LED light. On the motherboard, these are referred to as case connectors. These ports, buttons, and lights are of utmost importance when it comes to HTPCs and gaming computers.

Some integrated motherboard ports use header cables to provide output. Figure 3-12 shows an example of 5.1 surround audio ports on a header cable. The header cable plugs into the motherboard and occupies an empty expansion slot.

Figure 3-12
Example of a header cable.
Remember that integrated ports on a motherboard are very common and extremely convenient. However, to achieve the best performance possible, separate adapter cards (and therefore separate ports) will be necessary. The most important of these is the video card, followed up by audio and network cards, and possibly USB or FireWire cards.

Expansion Buses

There are five expansion buses and their corresponding adapter card slots/connections used in PCs that you should know. They include the following:

- **PCI**: The Peripheral Component Interconnect (PCI) bus was developed in the 1990s by Intel as a faster, more compatible alternative to the deprecated ISA bus. It allows for connections to modems and to video, sound, and network adapters; however, PCI connects exclusively to the southbridge, or the main chipset if there is only one chip involved. Because of this, other high-speed video alternatives were developed that could connect directly to the northbridge, or directly to the processor. The PCI bus is used not only by devices that fit into the PCI slot, but also by devices that take the form of an integrated circuit on the motherboard. Originally rated at 33 MHz, today’s PCI version 2.1 cards are rated at 66 MHz, and their corresponding PCI bus is 32 bits wide, allowing for a maximum data transfer rate of 266 MB/s. Derivates of PCI include PCI-X, which was designed for servers, using a 64-bit bus and rated for 133 MHz/266 MHz, and Mini-PCI used by laptops. PCI slots are still found on a few of today’s motherboards (as shown in Figure 3-13) but for the most part have been overtaken by PCIe technology. A comparison of PCI, AGP, and AMR is shown in Figure 3-14. A comparison of PCI and other expansion buses is shown in Table 3-3 at the end of this list of expansion buses.
AGP: The Accelerated Graphics Port (AGP) was developed for the use of 3D accelerated video cards and alleviated the disadvantages of PCI for video. Originally designed as a 32-bit 66 MHz bus (known as 1x), it had a maximum data transfer rate of 266 MB/s. Additional versions were delivered, for example, 2x, with a data rate of 533 MB/s, effectively doubling the fastest PCI output. (To do this, the 66 MHz bus was double-pumped to an effective 133 MHz.) Two more versions included 4x (quad-pumped) offering 1 GB/s, and 8x with a maximum data rate of 2 GB/s. The AGP bus connects directly to the northbridge, addressing one of the limitations of PCI. Although there is some compatibility between cards, different slots (1x, 4x, and 8x) use different voltages. You should verify that the AGP card is compatible with the stated voltage in the motherboard documentation. An example of an AGP slot is shown in Figure 3-14. AGP has been virtually eliminated in new computers by PCI Express.

PCIe: Currently the king of expansion buses, PCI Express (PCIe) is the high-speed serial replacement of the older parallel PCI standard. The most powerful PCIe slots with the highest data transfer rates connect directly to the northbridge, or directly to the processor; the lesser PCIe slots connect to the southbridge, or, for newer Intel boards, the main chipset. This expansion bus sends and receives data within lanes. These lanes are considered full-duplex, meaning they can send and receive data simultaneously. PCIe version 1 has a data rate of 250 MB/s per lane, version 2 is 500 MB/s, and version 3 is 1 GB/s. Remember, those numbers are for each direction, so PCIe version 3 can send 1 GB/s and receive 1 GB/s at the same time. The number of lanes a PCIe bus uses is indicated with an x and a number; for example, x1 (pronounced “by one”) or one lane. Commonly, PCIe video cards are x16 (16 lanes). They have taken the place of AGP video cards due to their improved data transfer rate. For example, a Version 2 PCIe x16 video card can transfer 8 GB of data per second (500 MB x 16 = 8 GB), which is far greater than AGP could hope to accomplish. And Version 3 PCIe x16 video cards take it even further, doubling that to 16 GB/s. Most other PCIe adapter cards are x1, although you might find some x4 cards as well. Of course, compatibility is key. A x1 card can go in a x1 slot or larger, but a x16 card currently fits...
only in a x16 slot. So, for example, a PCIe x4 card doesn’t fit in a x1 slot, but it does fit in a x4 slot. It also fits in a x16 slot but with no increase in performance. Figure 3-13 displays a x16 slot and a x1 slot. Keep in mind that x4 and x16 slots are controlled by the northbridge, or by the processor, whereas x1 slots are controlled by the southbridge (refer to Figures 3-7 and 3-8). Table 3-3 shows a comparison of PCIe and other expansion buses.

- **AMR and CNR:** Intel’s audio/modem riser expansion slot was designed to offer a slot with a small footprint that had the capability to accept sound cards or modems. The idea behind this was to attain Federal Communications Commission (FCC) certification (which is a time-consuming and detailed endeavor) for the adapter card once, instead of having to attain FCC certifications for integrated components on motherboards over and over again with each new motherboard released. This way, the card could be transferred from system to system. The idea was flawed from the start, because adapter cards so quickly progress. This technology and its successor CNR are not used in today’s motherboards, but you still could see them in use in the field. Figure 3-14 shows an example of AMR. Quite often, expansion buses are labeled on the motherboard just above the slot. You can see the letters “AMR1” just above the AMR slot toward the left in Figure 3-14. The Communications and Networking Riser (CNR) was Intel’s adaptation of AMR and was meant for specialized networking, audio, and modem technologies. It was superior to AMR because it could be software or hardware controlled but had the same result as AMR and has been obsolete since about 2007. Though these are the least important of the expansion buses mentioned so far, you should still be able to identify them in case you work on computers that are a few years older.

TABLE 3-3

Comparison of PCI, AGP, and PCIe

<table>
<thead>
<tr>
<th>Expansion Bus</th>
<th>Bus Width</th>
<th>Frequency</th>
<th>Max. Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI</td>
<td>32-bit</td>
<td>33 MHz</td>
<td>133 MB/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66 MHz</td>
<td>266 MB/s</td>
</tr>
<tr>
<td>AGP</td>
<td>32-bit</td>
<td>1x = 66 MHz</td>
<td>266 MB/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x = 66 MHz</td>
<td>533 MB/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(double-pumped to 133 MHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4x = 66 MHz (quad-pumped to 266 MHz)</td>
<td>1 GB/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8x = 66 MHz (octo-pumped to 533 MHz)</td>
<td>2 GB/s</td>
</tr>
<tr>
<td>PCIe</td>
<td>Serial, consists of between 1 and 16 full-duplex lanes</td>
<td>Version 1 = 2.5 GHz*</td>
<td>250 MB/s per lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version 2 = 5 GHz</td>
<td>500 MB/s per lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version 3 = 8 GHz</td>
<td>1 GB/s per lane</td>
</tr>
</tbody>
</table>

This is also measured in transfers per second, referring to the number of operations that send and receive data per second. It is often closely related to frequency. For example, PCIe v1 is 2.5 gigatransfers per second (2.5 GT/s).
In addition, there are three expansion buses used by laptops that are also important. The most common types of external expansion buses are called PC Card, CardBus, and ExpressCard; I’m talking about those 2-inch-wide slots on the side of the laptop. These expansion buses accept credit card–size devices that can be added to a laptop to increase memory, or add functionality in the form of networking, hard disks, and more. They are hot-swappable, meaning they support hot plugging into the expansion slot while the computer is powered on. Let’s talk about them in a little more depth.

- **PC Card (PCMCIA):** The Personal Computer Memory Card International Association (PCMCIA) originally developed the PC Card technology used in laptops; it is not an expansion bus, though you might see it referred to that way. PC Cards (originally called PCMCIA cards) were first designed for additional storage and later for modems, network cards, combo cards, and hard drives. You have probably seen these credit card–sized devices in the past; however, they are superseded by another technology known as ExpressCard. PC Cards have a 16-bit bus width and can be used in PC Card slots and CardBus slots.

- **CardBus:** These have a 32-bit bus width (essentially they are PCI); they look similar to PC Cards but cannot be used in a PC Card slot.

- **ExpressCard:** ExpressCard (also known as PCI ExpressCard), a faster expansion bus for laptops, is a separate technology altogether and not compatible with PC Card or CardBus (without an adapter). There are two form factors of ExpressCard: /34, which is 34 mm wide, and /54, which is 54 mm wide and can be identified by a cutout in one corner of the card. Also, PC Cards and CardBus cards have a 68-pin connector, whereas ExpressCard has a 26-pin connector. PC Card and CardBus were the most-used expansion cards in laptops for many years but since 2006 have lost ground to ExpressCard, especially in higher-end laptops. This is yet another example of a technology that is moving from parallel to serial data transfer. A manufacturer of ExpressCard devices can elect to design them using the PCI Express technology or USB 3.0/2.0 technology depending on what type of card they make. For example, an ExpressCard soundcard wouldn’t need the speed of PCI Express, so it would probably be designed from a USB 3.0/2.0 standpoint.

Table 3-4 breaks down the characteristics of PC Card, CardBus, and ExpressCard expansion buses.

<table>
<thead>
<tr>
<th>TABLE 3-4</th>
<th>PC Card, CardBus, and ExpressCard Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Type</td>
</tr>
<tr>
<td>PC Card</td>
<td>Type I (3.3 mm thick)</td>
</tr>
<tr>
<td>PC Card/CardBus</td>
<td>Type II (5 mm thick)</td>
</tr>
<tr>
<td>PC Card/CardBus</td>
<td>Type III (10.5 mm thick)</td>
</tr>
</tbody>
</table>
Drive Technologies

Remember the von Neumann model. Long-term storage is imperative. Usually, data is stored over the long term to one or more hard drives. The two most common types of drive technologies that have ports on motherboards are SATA and IDE. These always connect to the southbridge, or simply the chipset if there is only one chip. SATA and IDE support the connection of not only hard drives, but also optical drives such as CD-ROMs, DVD-ROMs, and Blu-ray drives.

- **SATA**: Serial ATA has eclipsed IDE as the most common type of mass storage technology. As you can see in Figure 3-9, there is only one IDE port, but there are six seven-pin SATA ports (one of which is for external connections). And the newer motherboard in Figure 3-6 has no IDE ports whatsoever. The reason for this is speed. Even though SATA sends data in a serial fashion, or one bit at a time, it is faster than IDE. The first generation of SATA is rated at 1.5 Gb/s (once again, note the lowercase “b” indicating bits), equal to roughly 150 MB/s. Second-generation SATA offers a 3.0 Gb/s data rate. Third-generation SATA runs at 6 Gb/s. Most of today’s motherboards are compatible with second- and third-generation SATA. Again, hard drives, CD-ROMs, DVDs, and Blu-ray drives can be connected to a SATA port.

- **IDE**: Integrated Drive Electronics interfaces (refer to Figure 3-9) have 40 pins. They utilize the Parallel ATA (PATA) standard that currently specifies a maximum data transfer rate of 133 MB/s. These bytes of information are transferred in parallel; for example, 8 bits at a time. Hard drives, CD-ROM drives, and DVD drives can connect to IDE ports. The IDE connector is 40 pins, but depending on the version, the cables used can have 40 or 80 conductors.

Installing Motherboards

As an IT person, you might find that you need to build a computer, or perhaps replace or upgrade the motherboard in a current computer. So knowing how to install motherboards is an important skill. Motherboard installation works in a similar fashion whether you are dealing with PCs, laptops, or servers. However,
mobile devices require a bit more finesse. For the bulk of this section, we will be referring to the PC. We’ll discuss a bit about mobile computers toward the end of the section.

If you look at an unmounted motherboard from the top, you can see that motherboards have several holes around the edges and one or two holes toward the middle of the motherboard. Most ATX-family motherboards are held in place by screws that are fastened to brass spacers which are threaded into holes in the case or a removable motherboard tray. Before you start working with motherboards or other static-sensitive parts, be sure to implement antistatic measures. This usually means an antistatic strap and mat. See Chapter 13, “Computer Troubleshooting,” for more about antistatic measures and other precautions you should follow.

Step-by-Step Motherboard Removal

This section shows how to properly remove a motherboard step-by-step. To remove ATX family motherboards from standard cases, follow these steps:

Step 1. Turn off the power switch and disconnect the AC power cable from the power supply. (If your computer is equipped with a kill switch on the power supply, you can turn that off instead of removing the power cable.)

Step 2. Disconnect all external and internal cables attached to add-on cards and label them as you go for easy reconnection later.

Step 3. Disconnect all ribbon cables attached to built-in ports on the motherboard: I/O, storage, and so on.

Step 4. Disconnect all cables leading to internal speakers, key locks, case connectors, speed switches, and other front-panel cables. Most recent systems use clearly marked cables, as shown in Figure 3-15, but if the cables are not marked, mark them before you disconnect them so you can easily reconnect them later.

FIGURE 3-15
Case connectors attached to a typical motherboard.
Step 5. Remove all add-on cards and place them in antistatic bags.

Step 6. Disconnect header cables from front- or rear-mounted ports and remove them from the system (see Figure 3-16).

Step 7. Disconnect the power-supply leads from the motherboard. The new motherboard must use the same power-supply connections as the current motherboard.

Step 8. Remove the heat sink and the processor before you remove the motherboard and place them on an antistatic mat. Removing these items before you remove the motherboard helps prevent excessive flexing of the motherboard and makes it easier to slip the motherboard out of the case. However, skip this step if the heat sink requires a lot of downward pressure to remove and if the motherboard is not well supported around the heat sink/processor area.

Step 9. Unscrew the motherboard mounting screws and store for reuse; verify that all screws have been removed. Consider using a tub to store the screws. Another option is to use a pillbox. Each day of the week in the pillbox can store a different type of screw.

Step 10. Lift the motherboard and plastic standoff spacers out of the case and place them on an antistatic mat. Remove the I/O shield (the metal plate on the rear of the system that has cutouts for the built-in ports; refer to Figure 3-17) and store it with the old motherboard.

NOTE: You can remove the memory if you wish, but it can be done after the motherboard has been taken out of the computer.

NOTE: Use non-powered screwdrivers to avoid ESD and/or damage to the motherboard.
Preparing the Motherboard for Installation (ATX)

Before you install the new motherboard into the computer, perform the following steps:

Step 1. Review the manual supplied with the new motherboard to determine correct sizes of memory supported, processor types supported, and configuration information.

Step 2. Install the desired amount of memory. See Chapter 5 for details.

Step 3. Install the processor (CPU) and heat sink as described in Chapter 4.

Step 4. Configure CPU speed, multiplier, type, and voltage settings on the motherboard if the motherboard uses jumpers or DIP (Dual Inline Pin) switches. Note that most recent motherboards use BIOS configuration options instead.

Step-by-Step Motherboard Installation

After you have prepared the motherboard for installation, follow these steps to install the motherboard:

Step 1. Place the new motherboard over the old motherboard to determine which mounting holes should be used for standoffs (if needed) and which should be used for brass spacers. Matching the motherboards helps you determine that the new motherboard fits correctly in the system.

Step 2. Move brass spacers as needed to accommodate the mounting holes in the motherboard.
Step 3. Place the I/O shield near the motherboard and identify which port cut-outs are required. The I/O shield is marked to help you determine the port types on the rear of the motherboard. If the port cutouts on some I/O shields are not completely removed, remove them. Then install the shield.

Step 4. Determine which holes in the motherboard have brass standoff spacers beneath them, and secure the motherboard using the screws removed from the old motherboard (refer to Figure 3-17).

Step 5. Reattach the wires to the speaker, reset switch, power button, and power lights.

Step 6. Reattach cables from the SATA drives to the SATA ports on the motherboard.

Step 7. Reattach the power supply connectors to the motherboard.

Step 8. Insert the add-on cards you removed from the old motherboard; make sure your existing cards don’t duplicate any features found on the new motherboard (sound, video, and so on). If they do, and you want to continue to use the card, you must disable the corresponding feature on the motherboard.

Step 9. Mount header cables that use expansion card slot brackets into empty slots and connect the header cables to the appropriate ports on the motherboard.

Step 10. Attach any cables used by front-mounted ports such as USB or IEEE 1394 ports to the motherboard and case.

Installing Adapter Cards

Although most desktop systems are equipped with a variety of I/O ports and integrated adapters, it is still often necessary to install adapter cards to enable the system to perform specialized tasks or to achieve higher performance. The following sections show you how to perform typical installations.

General Installation

Before installing an adapter card, you should determine the following:

- Does the adapter card perform the same task as an integrated adapter on the motherboard? For example, if you are installing a display adapter (also called a graphics card or video card), does the system already have an integrated adapter? If you are installing a sound card, does the system already have a sound card? Depending on the type of card you are installing, it might be necessary to disable the comparable onboard feature first to avoid hardware resource conflicts.
CHAPTER 3 Motherboards and Buses

What type(s) of expansion slots are available for expansion cards? A typical system might have two or three types of expansion slots, such as PCI Express x16, PCI Express x4 (less common), PCI Express x1, and perhaps a legacy PCI slot (for backward compatibility). You can use PCI Express x1 and PCI slots for a variety of adapter cards, but PCI Express x16 slots are designed for display adapters only. The adapter card you select must fit into an available slot.

When PCI and PCI Express x1 slots are available, which slot should be used? PCI Express x1 slots provide higher performance than PCI slots, and you should use them whenever possible.

The general process of installing an adapter card works like this:

Step 1. Shut down the system.

Step 2. Disconnect it from AC power, either by unplugging the system or by turning off the power supply with its own on/off (kill) switch.

Step 3. Remove the system cover.

Step 4. Locate the expansion slot you want to use. If the slot has a header cable installed in the slot cover, you need to move the header cable to a different slot. Refer to Figures 3-13 and 3-14 for examples of expansion bus slots.

Step 5. Remove the slot cover corresponding to the slot you want to use for the adapter card. Most slot covers are held in place by set screws that fasten the slot cover to the rear of the case, as shown in Figure 3-18. However, some systems use different methods.

![FIGURE 3-18](image)

Expansion bus slots, covers, and screws.

1. Available slots and slot covers
2. Not available; too close to neighboring card
3. Available for header cable only; no matching slot
4. Not available; header cable blocks slot

NOTE: If you are unable to remove the slot cover after removing the set screw, loosen the set screw on the adjacent slot cover. Sometimes the screw head overlaps the adjacent slot cover.

Step 6. Remove the card from its antistatic packaging. Hold the card by the bracket, not by the circuit board, chips, or card connector. Figure 3-19 illustrates a typical card and where to hold it safely.
1. Card bracket – hold card here
2. Card circuits and chips – do not touch
3. Card connector – do not touch

Step 7. Insert the card into the expansion slot, lining up the connector on the bottom.

Step 8. Push the card connector firmly into the slot.

Step 9. Secure the card bracket; on most systems, you secure the card bracket by replacing the set screw. See Figure 3-20.

A Incorrect installation B Correct installation

1. Bracket not secured to rear of system
2. Card connector not completely inserted
3. Bracket secured
4. Card connector completely inserted

FIGURE 3-19
Typical adapter card.

FIGURE 3-20
Incorrect and correct adapter card installation.
Step 10. Connect any cables required for the card.

Step 11. Reconnect AC power and restart the system.

Step 12. When the system restarts, provide drivers as prompted.

The following sections discuss some special installation considerations that apply to some types of adapter cards.

Display Adapters

More powerful computers require better video cards—most likely PCIe x16. When you install a video card into a slot, make sure the card-locking mechanism on the front of the slot is open before you install the card. Locking mechanisms sometimes use a lever that is moved to one side, flips up and down, or has a locking tab that is pulled to one side.

After installing the display adapter, install the drivers provided by the graphics card vendor. If possible, use updated drivers downloaded from the vendor’s website rather than the ones provided on disc.

When connecting the monitor(s) to the display adapter, keep in mind that DVI is a very common connector, but sometimes you might need to make use of DisplayPort, HDMI, or even VGA. If your monitor and video card for some reason don’t have the same connectors, you can find video adapters that convert from one standard to the next.

Video Capture Cards and TV Tuners

Video capture cards are used to capture video from analog or digital video sources. Video capture card types include the following:

- **IEEE 1394 (FireWire) cards**: These capture video from DV camcorders.
 You can also use these cards for other types of 1394 devices, such as hard disks and scanners. You can use an onboard IEEE 1394 port for video capture.

- **Analog video capture cards**: These capture video from analog sources, such as cable or broadcast TV, composite video, or S-video. Many of these cards also include TV tuners. Examples include the Hauppauge WinTV PVR series and the ATI Theater Pro series.

- **Digital video capture card**: These capture digital video from HDMI sources, such as HDTV.

- **TV tuners**: These cards allow your computer to tune into TV stations, either over the air or by way of cable, display to a monitor, and store TV content the way a DVR would.

After installing any type of video capture card or TV tuner, you need to install the drivers provided with the card, connect the card to video sources, and set up the TV tuner feature.
Sound Cards
After installing a sound card, your speakers and microphones require 1/8-inch mini-jack connections. Most sound cards use the same PC99 color-coding standards for audio hardware that are used by onboard audio solutions, as described in Table 3-5.

<table>
<thead>
<tr>
<th>Usage</th>
<th>Color</th>
<th>Jack Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone input (mono)</td>
<td>Pink</td>
<td>Mini-jack</td>
</tr>
<tr>
<td>Line in (stereo)</td>
<td>Light blue</td>
<td>Mini-jack</td>
</tr>
<tr>
<td>Speaker or headphone (front/stereo)</td>
<td>Lime green</td>
<td>Mini-jack</td>
</tr>
<tr>
<td>Speaker out/subwoofer</td>
<td>Orange</td>
<td>Mini-jack</td>
</tr>
<tr>
<td>Game port/MIDI out</td>
<td>Gold</td>
<td>15-pin DIN</td>
</tr>
</tbody>
</table>

After installing the sound card, you are prompted to install drivers when you restart the system. The driver set might also include a customized mixer program that is used to select speaker types and speaker arrangement (stereo, 5.1, and so on), and provides speaker testing and diagnostics. Be sure to test the speakers to ensure they are plugged into the correct jack(s) and are working properly.

We’ll discuss audio and video more as we progress through this book, especially in Chapter 6.

Chapter Summary
Chapter 3 was chock-full of important information. We learned that the motherboard is the foundation of the computer—everything connects to it. In addition, we learned that the motherboard has internal connections, known as buses, that connect the various components within the motherboard such as the CPU, RAM, and expansion slots.

Motherboards have been at the core of computers since their inception. From the 16-bit computers of the 1970s and 1980s to 32-bit systems starting in the mid-1980s, to today’s 64-bit systems, the motherboard has played a vital role in transferring information between all components.

We discussed how different motherboards are similar, regardless of what type of computer they are a part of—PCs, servers, mobile computers, gaming consoles, and so on. Remember that the motherboard’s most important function is to interconnect and relay power to those core components: the CPU and RAM. But it also interconnects permanent storage (hard drives and optical drives), input devices (keyboard and mouse), and output devices (monitors and printers), and relays power to some of those devices as well.
The core components of a computer are the CPU and RAM, which are connected by a variety of buses (depending on the manufacturer), and are aided by the chipset—which incorporates all of the other controllers on the motherboard. The chipset is the most important component of the motherboard itself. The chipset might be a single chip, or might be broken down into two parts: the northbridge and the southbridge. This depends on the manufacturer of the motherboard, the type of CPU used, and the age of the system.

Motherboards must comply with a form factor standard. This architecture dictates power requirements, size, and connector types. Although AT was the standard for PCs for many years, today’s PCs often use ATX. However, servers, mobile computers, and other computing devices use different form factors. Some of the other common form factors include microATX, ITX, and BTX. The form factor also often determines what kind of ports are in the integrated port cluster. These can include USB, FireWire, video and audio, and of course networking ports. USB is the connection of choice for many devices today, including keyboards, mice, microphones, printers, web cameras, and much more.

If a motherboard’s integrated components are not satisfactory to a user, the computer can be upgraded with expansion cards. These adapter cards are plugged into one of several buses, with PCI Express (PCIe) being the most prevalent. You might also see legacy devices that use older expansion buses such as PCI, AGP, AMR, and CNR. Because PCIe is much faster and easier to work with, and in general a superior technology, the changes of this grow less and less over time. Laptops cannot incorporate the same expansion buses that are used in PCs. To facilitate the use of adapter cards on laptops, smaller expansion buses were developed, including PC Card, CardBus, and today’s most common, ExpressCard. These allow a person to insert special adapter cards directly into the side or back of the laptop.

The installation of motherboards varies from system to system, but you should remember a few basic rules whenever installing a new motherboard, or upgrading a motherboard. Remember to employ antistatic measures, verify that any motherboard purchased is compatible with the rest of the system, and verify whether onboard peripherals are required, or whether separate adapter cards should be used.

The installation of adapter cards is usually pretty easy. However, you should plan beforehand, and make sure that there is an open adapter card slot on the motherboard for the device you plan to install. Also, make sure that the adapter card is of the correct type; for example, PCIe x1, x4, or x16. As always, employ antistatic measures such as an antistatic strap and antistatic mat, and always keep adapter cards inside an antistatic bag until they are ready to be installed.

There are all kinds of specialized peripherals and adapter cards such as video capture cards, TV tuners, and sound cards. Depending on the computer’s purpose, you might need to install one or more of these devices. Be sure to plan the customization of the computer before purchase and installation.
Chapter Review Activities

Use the features in this section to study and review the topics in this chapter.

Define the Key Terms for Chapter 3

The following key terms cover the most important concepts in this chapter. To review, without looking at the book or your notes, write a definition for each term, focusing on the meaning, not the wording. Then review your definition compared to your notes, this chapter, and the glossary.

- motherboard
- bus width
- chipset
- Direct Media Interface (DMI) link
- northbridge
- southbridge
- HyperTransport
- Quick Path Interconnect (QPI)
- front-side bus (FSB)
- memory bus
- PCI Express x16
- Advanced Technology Extended (ATX)
- microATX
- ITX
- Balanced Technology Extended (BTX)
- Peripheral Component Interconnect (PCI)
- Accelerated Graphics Port (AGP)
- PCI Express (PCIe)
- Personal Computer Memory Card International Association (PCMCIA)
- ExpressCard adapter cards

Answer These Questions and Case Studies

1. Which computer system uses a 64-bit CPU?
 - A. 286
 - B. 386
 - C. 486
 - D. Core i7

2. Which of the following are considered expansion slots? (Choose all that apply.)
 - A. PCI
 - B. FireWire
 - C. AGP
 - D. USB
3. Which of the following can you use with SATA connections? (Choose all that apply.)
 A. Hard drives
 B. Scanners
 C. Laser printers
 D. DVD-ROMs
 E. Dot-matrix printers

4. Which of the following are examples of motherboards that might be used in an HTPC? (Choose all that apply.)
 A. ATX
 B. micro-ATX
 C. Mini-ITX
 D. BTX
 E. Pico-ATX

5. Which of the following are considered integrated I/O ports?
 A. Serial port
 B. Parallel port
 C. USB port
 D. PS/2 mouse and keyboard
 E. Audio port
 F. Ethernet port
 G. All of these options

6. To connect speakers to the sound card, which of the following must you use?
 A. 1/2-inch jack
 B. 1 1/4-inch jack cable
 C. 2/3-inch jack cable
 D. 1/8-inch mini-jack cable
 E. None of these options

7. How many instructions per second is common for an Intel Core i7 CPU?
 A. 11 MIPS
 B. 133 MB/s
 C. 100,000 MIPS
 D. 3.5 GHz
8. Which of the following is a common speed for PCI?
 A. 33 MHz
 B. 133 MHz
 C. 266 MHz
 D. 1066 MHz

9. Which of the following expansion bus technologies would be described as x16 (spoken as “by sixteen”)?
 A. PCI
 B. AGP
 C. PCIe
 D. PCI-X

10. Which of the following expansion buses has the fastest data transfer rate?
 A. PCIe x1
 B. AGP 4x
 C. PCIe x16
 D. PS/2

11. What is the most important job of the chipset on Intel motherboards?
 A. Transfer data to the CPU
 B. Transfer data to the RAM
 C. Transfer data to the PCIe
 D. Transfer data to the secondary devices

12. Which of the following should you do first before disconnecting all ribbon cables that are attached to built-in ports on the motherboard? (Select the two best answers.)
 A. Turn off the power switch and disconnect the AC power cable from the power supply
 B. Disconnect all cables leading to internal speakers, key locks, speed switches, and other front-panel cables
 C. Disconnect all external and internal cables attached to add-on cards after labeling them for easy reconnection
 D. Remove all add-on cards and place them on an antistatic mat or in (not on top of) antistatic bags
13. What type of CPU might a server use?
 A. Intel Core i7
 B. Intel Xeon
 C. ARM 32-bit CPU
 D. DDR

14. If the sound ports are color-coded, what color should the headphone connection be?
 A. Pink
 B. Lime green
 C. Light blue
 D. Gold

15. When installing an adapter card, what should you do just prior to reconnecting power?
 A. Restart the system
 B. Push the card firmly into the slot
 C. Connect any cables required for the card
 D. Secure the card bracket

16. What is a common speed for a 386 computer’s CPU?
 A. 10 MHz
 B. 33 MHz
 C. 33 GHz
 D. 133 MB/s

17. What is the older type of hard drive connector, replaced by SATA?
 A. PCIe
 B. SCSI
 C. IDE
 D. AGP

18. Where will the network adapter usually be on a smartphone?
 A. In the PCIe slot
 B. Connected to USB
 C. Soldered onto the motherboard
 D. Embedded within the CPU
19. What bus connects the chipset to the CPU on newer Intel-based motherboards?
 A. Northbridge
 B. DMI
 C. HyperTransport
 D. Southbridge

20. What is the data transfer rate of a QPI connection?
 A. 1 GB/s
 B. 25.6 GB/s
 C. 20 Gb/s
 D. 266 MB/s

Case Study 1
As discussed earlier in this chapter, a motherboard can have many different connections. They can include connections for power, hard drives, optical drives, and much more.

Examine your home computer, and identify the various ports and connections of your motherboard. Diagram what you see on the motherboard and list each of the connections and their distinguishing characteristics.

For example, your motherboard probably has a main power connection with 24 wires (pins) bundled together, as well as PCIe expansion slots.

Case Study 2
Different adapter cards use different expansion buses. Define which expansion buses today’s adapter cards would normally utilize, including video cards, sound cards, and network adapters.

Use the Internet to help define which expansion buses would most often be used. Manufacturers’ websites and online computer pricing guides can be helpful in finding out what is commonly used in the field.

Case Study 3
Examine your mobile device. Find out the manufacturer name and the model name. If you do not have one, examine another student’s mobile device, or select a new one that is easily available online.

Now, access the Internet and research that model in an attempt to find a picture or illustration of its motherboard. Try going to the manufacturer’s website and locating the specifications for the device. Or you could try using Google (or your favorite search engine) and searching for the term “xxx smartphone motherboard” or “xxx tablet motherboard diagram” where xxx is the mobile computer’s manufacturer/model name. Define where the CPU, RAM, and long-term storage are located on the motherboard.
Answers, Explanations, and Solutions

1. D. The only CPU listed that is available in a 64-bit version is the Intel Core i7. The 286 (for the most part) was a 16-bit CPU. The 386 and 486 were 32-bit CPUs.

2. A and C. Motherboards use expansion slots to provide support for additional I/O devices and high-speed video/graphics cards. Expansion slots include PCI, AGP, and PCI-Express (also known as PCIe). Some systems also feature AMR or CNR slots for specific purposes.

3. A and D. Serial ATA (SATA) allows for connections to hard drives and optical drives. Scanners and printers usually connect locally to the PC by way of USB. However, they might also connect directly to the network.

4. B and C. Home theater PCs (HTPCs) often use the micro-ATX or Mini-ATX form factors due to their small size. ATX and BTX are too big for a typical HTPC. Pico-ATX is too small and is used for smaller mobile computers.

5. G. Motherboards in both the ATX and the BTX families feature a variety of integrated I/O ports, including serial, parallel, USB, PS/2, audio, and Ethernet. These are found in as many as three locations. All motherboards feature a rear port cluster, and many motherboards also have additional ports on the top of the motherboard that are routed to header cables that are accessible from the front and rear of the system.

6. D. After installing a sound card, you must connect 1/8-inch mini-jack cables from speakers and the microphone to the sound card. Most sound cards use the same PC99 color-coding standards for audio hardware that are used by onboard audio solutions.

7. C. An Intel Core i7 CPU can typically calculate 100,000 MIPS (millions of instructions per second) or more. The rate of 11 MIPS was common for a 386 computer, as was the separate measurement 133 MB/s. The speed or frequency of a CPU such as the Intel Core i7 is 3.5 GHz.

8. A. A common speed for PCI is 33 MHz. PCI might also operate at 66 MHz depending on several factors. Other faster expansion buses can operate at speeds of 133 MHz and beyond.

9. C. PCIe (PCI Express) has four main types: x1, x4, x8, and x16. PCI (and its derivative PCI-X) and AGP are not described in this manner. AGP shows the x after the number.

10. C. PCIe x16 (version 3) has the fastest data transfer rate at 1 GB/s per lane for a total of 16 GB/s. AGP 4x can transmit 1 GB/s, whereas PCIe x1 transmits only 1 GB/s total, because there is only one lane. PS/2 sends a very small amount of information, only what is needed to input information from a keyboard or mouse.

11. A. The most important job of the chipset on Intel motherboards is to transfer data to the CPU. Although it does do the rest of the jobs listed in the answers, they are all secondary compared to the CPU. However, to make the computer work properly, the chipset should efficiently transfer data to all components: CPU, RAM, the PCIe expansion bus, secondary devices, and everything else.

12. A and C. Before disconnecting the ribbon cables, you should turn off the power switch and disconnect the AC power cable from the power supply (or turn off the kill switch on the power supply if so equipped), and disconnect all external and internal cables attached to add-on cards after labeling them for easy reconnection.
Chapter Review Activities

13. B. A server most often uses an Intel Xeon CPU. These are designed specifically for the intense workload a server will encounter. The Intel Core i7 definitely works for servers, but is not as common, and is used more for PCs. ARM 32-bit CPUs are used in mobile computers. DDR (double data rate) is a type of RAM used in PCs and many other types of computers.

14. B. The headphone connection should be lime green according to the PC99 color-coding standard. Pink is the microphone input, light blue is the line in, and gold is the game port.

15. C. Just prior to reconnecting the AC power, you should connect any cables required for the card. Previous to this, the card should be inserted and pushed firmly into the slot, and any card brackets should be secured. Restarting (or starting) the system should be the last thing you do.

16. B. A common speed for a 386 computer’s CPU is 33 MHz. A speed of 10 MHz was common for 286 computers, and 33 GHz hasn’t been obtained in the PC market as of yet. The final option, 133 MB/s, is a typical example of the amount of data that a 386 CPU can calculate.

17. C. Integrated Drive Electronics (IDE) is the older type of hard drive connector that was replaced by SATA. PCIe is a current expansion bus, often used by video cards, as is AGP. The Small Computer System Interface (SCSI) standard is also used by hard drives, but it has been around since during the IDE era, and is still used today.

18. C. The network adapter, or adapters such as Wi-Fi and GSM, are soldered onto the motherboard of a mobile device. This is true for most mobile computers. Smartphones don’t have PCIe slots. Though it is possible to connect a variety of things to a smartphone’s USB port, the network adapter more often is integrated into the mainboard. RAM is embedded into the CPU in some smartphone designs.

19. B. The Direct Media Interface (DMI) bus connects the chipset to the CPU on Intel-based motherboards. The northbridge and southbridge are components of AMD and older Intel chipsets. Newer Intel chipsets have a single chip. HyperTransport is the CPU to chipset connection on AMD-based boards.

20. B. A Quick Path Interconnect (QPI) bus can handle a maximum of 25.6 GB/s. This is the same amount as AMD’s HyperTransport. The rate of 1 GB/s is the maximum data transfer rate of PCIe (version 3), 20 Gb/s is the maximum for DMI, and 266 MB/s is the maximum for the PCI expansion bus.

Case Study 1 Solution

Refer to Figure 3-21. This shows a typical ATX form factor motherboard. All of the components are labeled. If you haven’t already, memorize the components you see in the figure. Then compare them to your motherboard components.
Case Study 2 Solution

Although there are lots of different scenarios when it comes to adapter cards, the following shows some common expansion buses used by adapter cards. Keep in mind that these technologies are constantly being updated!

- **Video cards**: PCIe x16
- **Sound cards**: PCIe x1 or PCI (could also be integrated into the motherboard)
- **Network cards**: PCIe x1 or PCI (could also be integrated into the motherboard)

Some websites that can offer some more information include these manufacturers’ websites:

- www.intel.com
- http://us.creative.com
- www.nvidia.com

Online computer pricing guides that can be of assistance include the following:

- www.pricewatch.com
- www.cyberguys.com
- www.amazon.com
Case Study 3 Solution

A mobile computer’s diagram should be available at the manufacturer’s website. However, if it is not, you can most likely find an image within a popular search engine.

For example, the HTC One smartphone specifications can be found at this link:
www.htc.com/www/smartphones/htc-one/#specs

Or you can try searching for the phrase “HTC One specifications” within a search engine. An example of a typical smartphone’s motherboard layout is shown in Figure 3-22.

In the figure, you can see that the CPU, RAM, and permanent storage are clearly marked. Verify that you have found these components for your mobile computer.
NUMERICS

1/8 inch audio mini-jack, 231
8.3 rule, 375
16-bit computers, motherboards, 78-80
32-bit computers
 CPUs, 137-138
 motherboards, 80-81
64-bit computers
 CPUs, 137-138
 Linux, 363
 motherboards, 81-83
286/16-bit computers,
 motherboards, 78-80
386/32-bit computers,
 motherboards, 80-81
8080 CPUs, 122. See also CPUs

SYMBOLS

\ (backslash), 362
\\ (double backslash), 428
/ (slash), 362

A

A+ Exam Cram series, 562
ABC (Atanasoff-Berry Computer), 4
AC (alternating current), 60, 294
Accelerated Graphics Port. See AGP
access
 BIOS setup programs, 282
 command-lines, 379-381
 file systems/partitions, 383-385
 files/folders, 381-383
 control, 502-506
 Local Security Policy, 493-494
 NTFS, 373
 RAM, 174-176
 compatibility, 186
 technologies, 183-186
 types of, 177-183
 system information, 285
 WAPs, 410
access points
 rogue, 519
 security strategies, 521-522
accounts
 UAC, 503
 user, 502-506
ACPI (Advanced Configuration
 and Power Interface), 288
actions, 504-506
adapter cards, installing, 105-109
adapters
 hosts (SCSI), 236
 TAs, 449
adding
 RAM, 175
 USB ports, 227
add-on card modems, 447
addresses
 buses, 174
 I/O port, 235
 IPv4, 429-431
 IPv6, 434
 MAC, 410
administration interfaces, 518
administrator accounts, 503
Administrator version, Command
 Prompt, 379
ADSL (Asymmetrical Digital
 Subscriber Line), 450
Advanced BIOS Settings/Features
 menu, 285-286
Advanced Boot Options menu, 548
Advanced Configuration and
 Power Interface. See ACPI
advanced configuration tools, 389-391
Advanced Encryption Standard.
 See AES
Advanced Micro Devices. See AMD
Advanced Power Management.
 See APM
Advanced RISC Machine. See ARM
Advanced Technology. See AT
Advanced Technology Extended.
 See ATX
adware, 514
AES (Advanced Encryption Standard), 496
AGP (Accelerated Graphics
 Port), 15, 21, 98
Altair kit, 11
alternating current. See AC
Amazon Web Services, 479
AMD (Advanced Micro Devices), 89, 123
connections, 89
modern PCs, 14
processors, 147-148
differences (from Intel), 149-150
installing, 155-162
selecting, 152-155
upgrading, 155
AMD Drivers + Support, 562
American Megatrends (AMI), 19
American Standard Code for Information Interchange. See ASCII
AMI (American Megatrends), 19
analog video capture cards, 108
AnandTech (anandtech.com), 563
AND operator, 5, 55-57
Android, 28, 335-338
apps, turning off, 558
architecture, 364-366
SDKs, 366
Settings screens, 388
storage, 377-378
Support, 562
Wi-Fi connections, 425
Android Open-Source Project (AOSP), 28
antistatic wrist straps, 537
AOSP (Android Open-Source Project), 28
APIPA (automatic private IP addressing), 433, 437
APM (Advanced Power Management), 21, 288
Apple, 12
BIOS/OS combination licenses, 20
iOS, 28, 333-334, 562
Mac OS, 318-319
motherboards, 83
Partition Maps, 375
Support, 562
Thunderbolt, 229-230
Apple I, 12
Apple II, 12
applications
backups, 497
BIOS setup, accessing, 282
closing, 558
CPU-Z, 159
executing, 359-361
firewalls, 492-493
Google Play, 29
malware/virus protection, 492
memory, synergy between, 187-190
mobile computers, 27-29
RAM, 175
Remote Desktop, 446
applying
command-line, 436
configuring network connections, 438-440
testing network connections, 436-438
troubleshooting network connections, 440-442
division method, 44
network connections, 427-429
subtraction method, 45
TCP/IP, 429-435
architecture
OSs, 352
Android, 364-366
iOS, 366-368
Linux, 361-364
Mac OS X, 366-368
Windows, 352-361
PowerPC, 83
RAM
channels, 183-184
compatibility, 186
ECC/non-ECC, 186
memory latency, 185
parity/nonparity, 186
registered memory, 186
single-sided/double-sided, 185
Ubuntu, 363
von Neumann, 7
Windows 8, 326
arithmetic unit (von Neumann model), 5
ARM (Advanced RISC Machine), 26, 150-152
ASCII (American Standard Code for Information Interchange), 6
aspect ratios, 253
Asus, 21
Asymmetrical Digital Subscriber Line. See ADSL
AT (Advanced technology) form factor, 78
Atanasoff, John V., 4
Atanasoff-Berry Computer (ABC), 4
Athlon processors, 147
ATX (Advanced Technology Extended) form factors, 91, 104, 224, 294
audio
clusters, 96
ports, 230-232
processors, 153
auditing, 506
authentication
multifactor, 500
technologies, 490
biometrics, 491
passwords/PINs/usernames, 491
smart cards, 491
user accounts, 502-506
automatic configuration settings, 290-293
automatic private IP addressing. See APIPA
backdoors, 516
backslash (\), 362
Backup and Restore, 554
backups, 497
bags, antistatic, 537
baiting, 501
Balanced Technology Extended. See BTX
bandwidth, 58
parallel data transfers, 59-60
serial data transfers, 59
bank of memory, 176. See also memory
bar code readers, 239
Bardeen, John, 8
BASIC (Beginners All-purpose Symbolic Instruction Code), 11
basic input/output system. See BIOS
Basic Rate Interface. See BRI
batteries
CR2032 lithium watch, 280
motherboards, 280
BCD (Boot Configuration Data), 305
BD (Blu-ray disc) drives, 206-207
beep codes, 297
Beginners All-purpose Symbolic Instruction Code. See BASIC
Bell Laboratory, 8
Berkeley Software Distribution. See BSD
Berry, Clifford, 4
binary digits, 8. See also bits
binary numbering systems, 43-52, 431
biometrics, 240, 491
BIOS (basic input/output system), 15-17, 276-280
automatic configuration settings, 290-293
booting, 302
clearing, 291
configuring, 134, 281-290
exiting, 290
flashing, 292-293
operating systems, bootstrapping, 303-305
POST, 296-299
RAID, 202
SCSI, 199
security, 289, 508
Setup, 18
turbo boost overclocking function (Intel), 134
updating, 291-292
birth of PCs, 11-12
bit depth, 251
BitLocker Drive Encryption Service, 389
BitLocker encryption, 496
bits, 8, 43-44
AND operator, 55
bandwidth, 58
NOT operator, 57
OR operator, 56
blades, 84. See also servers
block diagrams, 130
Blu-ray disc drives. See BD drives
board support package. See BSP
Boole, George, 54
Boolean operators, 5, 54
AND, 55-56
mixed, 57
NOT, 57
OR, 56
Boot Configuration Data. See BCD
booting, 300-306
mobile devices, 299
sequences, 508
bootmgr, 304
bootstrapping, 280, 303-305
bottlenecks, 6, 131
Brattain, Walter, 8
BRI (Basic Rate Interface), 449
bridges, 411
broadband cable, 450
broadcasts, SSID, 519
BSD (Berkeley Software Distribution), 367
BSP (board support package), 362
BTX (Balanced Technology Extended) form factors, 93
buffered memory, 186
buses, 76, 87
address, 174
connections, 87-91
DMI, 88. See also DMI
expansion, 97-100
hubs, 227
motherboards, 133
width, 87
bytes, 49, 58
C
cable Internet, 450
cables. See also connections
coxial, 417
fiber-optic, 416
header, 97
modem, 235
networks, 420
null-modem, 235
plenum, 417
PVC, 417
serial, 235
STP, 414-416
UTP, 413
caches
disks, 17
memory, 6, 127
SATA, 198
CAD (computer-aided design) workstations, 153
Calculator (Windows), 47
calibration, G-Sensor, 337
CAM (computer-aided manufacturing) workstations, 153
commands

- camera-based bar code readers, 240
- cameras, 264, 543
- capacitive touchscreens, 245
- capacitors, refreshing, 177
- capacity, SATA, 198
- CardBus, 100
- cards
 - adapters, 105-109
 - CF, 210-211
 - FM radio tuner, 232-233
 - POST card testers, 298
 - riser, 94-95
 - SD, 209
 - smart, 491
 - sound, 109, 264
 - video, 98, 108, 265
- cartridges
 - ink, 259
 - toner, 256
- CAS (Column Address Strobe) latency, 185
- cascading, 56
- cases, 24
- cathode-ray tubes. See CRTs
- CCD (charge-coupled device) readers, 240
- CD command, 381
- CD (compact disc) drives, 203-205
- Celeron processors, 144. See also Intel processors
- cells, RAM, 6
- cellular Internet, 452
- central processing units. See CPUs
- certifications, 562-563
- CF cards, 210
- chains, 128-129
- Challenge-Handshake Authentication Protocol. See CHAP
- channels, RAM, 183-184
- CHAP (Challenge-Handshake Authentication Protocol), 476
- characters, counting, 52
- charge-coupled device readers. See CCD readers
- chassis, 24
- Chassis Intrusion, 288-290
- Check Disk, 554
 - BIOS. See BIOS
 - motherboard
- chips
 - ROMs
 - memory controllers, 174
 - RFID, 491
- chipsets, 84, 87-91. See also motherboards
- chmod command, 506
- cipher.exe command, 496
- circuits, integrated, 10-11
- CISC (complex instruction set computing), 152
- Citrix, 479
- clamps, 536
- classes, IP, 429-431
- clean-room approach, 18
- clearing BIOS, 291
- Client Hyper-V, 328
 - clients
 - networks, 406-408
 - VPN, 476
 - Windows Server, 330
- CLIs (command-line interfaces), 379-381
 - configuring connections, 438-440
 - testing connections, 436-438
 - troubleshooting connections, 440-442
- command-line interfaces. See CLIs
- Command Prompt, 553
 - accessing, 379-381
 - file systems/partitions, 383-385
 - files/folders, 381-383
 - networks, 436
- clocks, 120, 132-135
- closed-source software, 28
- closing apps (applications), 558
- cloud computing, 464, 477-478
 - examples, 480-481
 - security, 523-524
 - services, 478
 - vendors, 479
 - virtualization, 523-524
- clusters, audio, 96
- CMOS (complementary metal-oxide semiconductor), 63, 278-280
- automatic configuration settings, 290-293
- main menus, 283-284
- memory, 280
- CNR (Communications and Networking Riser), 99
- coaxial cables, 417
- code
 - bar code readers, 239
 - BIOS, 19
 - ECC, 176
 - source, 18
- color depth, 251
- Colossus, 4
- Column Address Strobe latency. See CAS latency
- COM ports, 234-236
- command-line, 378
 - accessing, 379-381
 - file systems/partitions, 383-385
 - files/folders, 381-383
 - networks, 436
 - configuring connections, 438-440
 - testing connections, 436-438
 - troubleshooting connections, 440-442
- command-line interfaces. See CLIs
- Command Prompt, 553
 - accessing, 379-381
 - Windows 8, 328
- commands
 - CD, 381
 - chmod, 506
 - cipher.exe, 496
 - copy, 383
 - del, 383
 - dir, 382
 - fdisk, 376
 - ifconfig, 436-440
 - ipconfig, 332, 436-437
 - ls, 383
MD, 381-382
nbtstat, 442
nbtstat -A, 358
net, 439
netsh, 439
netstat, 441-442
ping, 438
RD, 381
tracert, 440-441
tree, 383

Communications and Networking Riser. See CNR
compact disc drives.
See CD drives
CompactFlash. See CF cards
companies
semiconductors, 22
white-box systems, 22-23
Compaq, 17
compatibility
of memory, 177
RAM, 186
complementary metal-oxide semiconductor. See CMOS
complex instruction set computing. See CISC
components
adapter cards, 105-109
basic triode vacuum tube, 8
CPUs, 62, 120
64-bit, 137-138
AMD processors, 147-148
ARM processing, 152
cache memory, 127
clock rates, 132-135
cooling, 141-143
evolution of, 122-125
Hyper-Threading (HT), 135
installing, 155-162
Intel processors, 143-147
MMX/SSE, 136
mobile processors, 150-152
multicore, 136
operations, 125, 132
power consumption, 140
processing, 131
processors, 136, 149-150
registers, 128-129
selecting processors, 152-155
sockets, 138
storing data, 129-131
technologies, 132
upgrading, 155
VRM, 137
data transfer example, 64-65
hard drives, 195
input devices, 63-64
motherboards, 86
64-bit computers, 81-83
286/16-bit computers, 78-80
386/32-bit computers, 80-81
chipsets, 87-91
core, 87
drive technologies, 101
evolution of, 78
expansion buses, 97-100
form factors, 91-95
front panel connectors, 95-96
installing, 101-105
I/O ports, 95-96
modern, 83-86
optical drives, 203
BD, 206-207
CD, 203-205
DVD, 205-206
output devices, 64
PATA, 198
PCs, 16-25
permanent storage, 63
processing, 61
programs, 187
RAID drives, 200-203
SATA, 196-198
SCSI drives, 199-200
solid-state drives, 199
solid-state storage media, 207
CF cards, 210-211
SD cards, 209
SSDs, 207
USB flash drives, 208
subsystems, 540
von Neumann computer model, 5
working storage, 62

composite signals, 249
compression, NTFS, 373
compromised/damaged mobile devices, 517
CompTIA website, 562
computer-aided design. See CAD
computer-aided manufacturing. See CAM
Computer Management, 554
Computer Systems Research Group. See CSRG
computers. See PCs
Computing Now (computer.org/portal/web/computingnow), 563
configuring
BIOS, 134, 281-293
cable Internet, 450
cellular Internet, 452
COM ports, 236
DSL, 449-450
IPv4, 431-433
IPv6, 433-435
ISDN, 449
mobile security, 517
multimedia devices, 264-265
networks
command-line, 436-442
connecting, 438-440
e-mail, 445-446
Internet connectivity, 447-452
Remote Desktop, 446
TCP/IP, 442-445
PCs, 153-155
printing, 254-255
impact printers, 261-263
inkjet printers, 258-260
laser printers, 255-258
thermal printers, 260-261
RAID, 202
satellite Internet, 451
security, 508
BIOS, 508
cloud computing, 523-524
file systems, 513
firewalls, 508-513
malware protection, 514-517
virtualization, 522-523
TCP/IP, 429-435
video, 251
color depth, 251
refresh rates, 254
resolutions, 252-254
WiMAX, 452
wireless security, 518
evil twins, 519-520
passwords, 518
rogue access points, 519
SSID broadcasts, 519
strategies, 521-522
wardrivers, 519
weak encryption, 520-521
connections
AMD, 89
busses, 87-91
cable Internet, 450
cellular Internet, 452
chipsets, 90
computers to networks, 419
applying, 427-429
logical connections, 420-424
physical connections, 420
testing, 424-427
DSL, 449-450
e-mail, 561
front panel connectors, 95-96
IDE, 83
Internet, 447
cable Internet, 450
cellular Internet, 452
DSL, 449-450
DUN/modems, 447-448
ISDN, 449
satellite, 451
troubleshooting, 561
WiMAX, 452
I/O ports, 224
audio, 230-232
F-connectors, 232-233
IEEE 1394 (FireWire), 228-229
RJ45, 230
SCSI, 236-238
serial, 234-236
Thunderbolt, 229-230
USB, 224-228
ISDN, 449
L2TP, 476
multiple devices, 227
networks
configuring, 438-440
startup, 303
testing, 436-438
troubleshooting, 440-442
SATA, 83
satellite Internet, 451
Wi-Fi, 560-561
WiMAX, 452
connectors
fiber-optic cables, 416
video, 246
DisplayPort, 249
DVI, 247
HDMI, 248
S-Video, 249
VGA, 246
core components, 87
core technologies, multicore, 136
counting characters in text, 52
cOUNTING CHARACTERS IN TEXT, 52
cPUs central processing units, 5-6, 62, 87, 120
AMe processors, 147-148
evolution of, 122-125
Intel, 20
Intel processors, 143-147
mobile processors, 150-152
motherboards
64-bit computers, 81-83
286/16-bit computers, 78-80
386/32-bit computers, 80-81
chipsets, 87-91
components, 86
core components, 87
drive technologies, 101
expansion buses, 97-100
form factors, 91-95
front panel connectors, 95-96
control
access, 502-506
UAC, 503
Control Panel, 385-388
core components, 87
cPUs central processing units, 5-6, 62, 87, 120
AMe processors, 147-148
evolution of, 122-125
Intel, 20
Intel processors, 143-147
mobile processors, 150-152
motherboards
64-bit computers, 81-83
286/16-bit computers, 78-80
386/32-bit computers, 80-81
chipsets, 87-91
components, 86
core components, 87
drive technologies, 101
expansion buses, 97-100
form factors, 91-95
front panel connectors, 95-96
I/O ports, 95-96
modern, 83-86
operations, 125, 132
cache memory, 127
processing, 131
registers, 128-129
storing data, 129-131
OS architecture, 352-361
power, 296
processors
installing, 155-162
overview of differences, 149-150
selecting, 152-155
upgrading, 155
RAM
compatibility, 186
operations, 174-176
technologies, 183-186
types of, 177-183
technologies, 132
64-bit, 137-138
clock rates, 132-135
cooling, 141-143
Hyper-Threading (HT), 135
MMX/SSE, 136
multicore, 136
power consumption, 140
processor throttling, 136
sockets, 138
VRM, 137
troubleshooting, 546
CPU-Z, 159, 194
CR2032 lithium watch battery, 280
CRTs (cathode-ray tubes), 243
CSRG (Computer Systems Research Group), 367
customizing PC configurations, 153-155. See also configuring
D
Dalvik VMs, 365
damaged mobile devices, 517
Darwin, 367
data access, 493-496. See also access
data/data remnants, removing, 498
data migration, 497
data projectors, 243-244
data storage, 52, 129-131
data transfers
examples, 64-65
rates, 178, 198
DataMaster, 13
daughterboards, 94-95. See also motherboards
DAWs (digital audio workstations), 153
DC (direct current), 294
DDR (Double Data Rate), 178-182
Debugging Mode, 549
decimal numbering systems, 42-52, 431
decoding, 4, 131
De Forest, Lee, 8
defragmenting disks, 384
del command, 383
depth, color, 251
design. See also configuring
DataMaster, 13
memory controllers, 175
PCs, 23
desktop computers, 145
AMD processors, 148
examples, 554-557
Intel processors, 145
OSs, 318
Linux, 319, 330-332
Mac OS, 318-319
Windows, 320-330
USB ports, 224-228
Desktop Management Interface (DMI), 21
destroying hardware, 493
detecting errors, 186
Device Manager, 226, 553
devices
BIOS, 278
cameras, 543
input, 63-64, 238
bar code readers, 239
biometric devices, 240
game controllers, 239
keyboards, 238
mobile input, 241
mouse, 239
voice-activated typing, 240
mobile
booting/resetting, 299
security, 517
troubleshooting, 558-561
multimedia, 264
digital cameras, 264
microphones, 265
MIDI, 264
sound cards, 264
video capture cards, 265
webcams, 264
networks, 409
bridges, 411
firewalls, 412
hubs, 410
Internet appliances, 411
modems, 411
NAS, 411
routers, 412
switches, 410
VoIP phones, 412
WAPs, 410
output, 64
rooting, 378
routers, 409
USB, 226
diagnosing computer problems, 539. See also troubleshooting

diagrams, block, 130
dialog boxes
Folder Options, 354
Internet Properties, 433
IPv6, 435
dial-up networking. See DUN
dictating documents, 240
digital audio workstations. See DAWs
digital cameras, 264
Digital Linear Tape. See DLT
digital micromirror device (DMD), 244
Digital Research, 13
digital signal processor. See DSP
digital subscriber line. See DSL
digital versatile disc drives. See DVD drives
digital video capture cards, 108
Digital Visual Interface. See DVI
digits, 43
DIMMs (dual inline memory modules), 176-178
installing, 190-194
SO-DIMM, 182
dir command, 382
direct current. See DC
Direct Media Interface. See DMI
direct memory access. See DMA
Directory Services Restore Mode, 549
directory structures, 382
Disable Automatic Restart on System Failure, 550
Disable Driver Signature Enforcement, 550
Disk Defragmenter, 554
Disk Management utility, 371, 383
disk operating system. See DOS
DISKPART, 383
disks
caches, 17
defragmenting, 384
partitions, 369
Android storage structure, 377-378
iOS storage structure, 377-378
Linux storage structure, 375-376
Mac OS X storage structure, 375-376
Windows storage structure, 369-375
quota support, 374
display adapters, installing, 108
display types, 241
CRTs, 243
data projectors, 244-245
LCD monitors, 242
LED monitors, 242-243
plasma, 243
touchscreens, 245-246
DisplayPort, 249
distributions, Linux, 330, 332
division method, 44
DLL (dynamic link library) files, 355
DLT (Digital Linear Tape), 200
DMA (direct memory access), 13, 18
DMD (digital micromirror device), 244
DMI (Desktop Management Interface), 21
DMI (Direct Media Interconnection), 133
DMI (Direct Media Interface), 88
DNS (domain name system), 444-445
documentation, troubleshooting, 543
domains
dictating, 240
PC design guides, 23
domain name system. See DNS
doors, locking, 500
DOS (disk operating system), 17.
See also Microsoft
double backslash (\), 428
Double Data Rate. See DDR
double-sided RAM, 185
DPMA (Dynamic Power Management Architecture), 21
Dragon Naturally Speaking, 241
DRAM (dynamic RAM), 127, 177
DR-DOS/OpenDOS Enhancement Project, 19
drivers, kernel mode, 355
drives, 196. See also hard drives
hot-swapping, 374
mounting, 373
optical, 203
BD, 206-207
CD, 203-205
DVD, 205-206
SATA, 83
SSDs, 207
technologies, 101
USB flash, 208
DSL (digital subscriber line), 449-450
DSP (digital signal processor), 448
dual-channel RAM, 183-184
dual inline memory modules. See DIMMs
DUN (dial-up networking), 447-448
DVD (digital versatile discs) drives, 205-206
DVI (Digital Visual Interface), 247
dynamic link library. See DLL
Dynamic Power Management Architecture (DPMA), 21
dynamic RAM. See DRAM
EB (exabyte), 377
ECC (error-checking code), 176, 186
editing video, 153
EEPROM (electrically erasable programmable ROM), 279
EFS (Encrypting File System), 321, 373, 490
electric current, 293
electric power, 293. See also power
Electrical Numerical Integrator and Calculator. See ENIAC
electrically erasable programmable ROM. See EEPROM
electromagnetic interference. See EMI
electrostatic discharge (ESD), 27, 155
elevated mode, 379
e-mail, 445
protocols, 446
troubleshooting, 561
EMI (electromagnetic interference), 414
emulation, 467
Enable Boot Logging, 549
Enable Low-Resolution Video, 549
Encrypting File System. See EFS
cryptography. See also security
BitLocker, 496
technologies, 494–496
weak, 520-521
ENIAC (Electrical Numerical Integrator and Calculator), 4
Entry Systems Division, 13
environmental subsystems (Windows), 358
error-checking code. See ECC
detecting, 186
fatal, 297
reporting, 296-299
ESD (electrostatic discharge), 27, 155, 190, 537
Estridge, Don, 13
Ethernets, 408
ev event logs, 506
Event Viewer, 553
evil twins, 519-520
evolution
of CPUs, 122-125
of motherboards, 78
64-bit computers, 81-83
286/16-bit computers, 78-80
386/32-bit computers, 80-81
modern, 83-86
exabyte. See EB
e xamples
application execution (Windows), 359-361
cloud computing, 480-481
troubleshooting, 554-557
executing
applications, 359-361
processing, 131
WordPad, 188
executive layer, 356
Executive Services, 356
exFAT file system, 374
exiting BIOS, 290
expansion buses, 97-100
expansion slots, 81-83
ExpressCard, 100, 447
extended partitions, 370
extensions, files, 375
external clock speed, 133
external modems, 447
eyebrow tweezers, 536
F
Faggin, Federico, 122
Fairchild, 10
fans, 142
FAT (File Allocation Table) security, 490
FAT32 file systems, 373, 513
data errors, 297
FCC (Federal Communications Commission), 99
F-connectors, 232-233
disk command, 376
Federal Communications Commission. See FCC
fetching instructions, 131
fiber-optic cables, 416
file systems
command-line, 383-385
EFS, 495. See also EFS
security, 490, 513
Windows, 373
File Transfer Protocol. See FTPiles, 369
auditing, 506
backups, 497
bootmgr, 304
command-line, 381-383
DLL, 355
extensions, 375
moving, 506
ntoskrnl.exe, 356
.rtf, 52
firewalls, 412, 492, 508-513
FireWire, 96, 108, 228-229
firmware, 134, 278-280
first true digital electronic computer, 4. See also history
five-wire resistive technology, 245
flash drives, 208, 303
flashing (BIOS), 292-293
Flowers, Tommy, 4
FM radio tuner cards, 232-233
Folder Options dialog box, 354
folders, 369. See also files
auditing, 506
backups, 497
command-line, 381-383
moving, 506
sharing, 428
form factors, 91. See also architecture
 64-bit computers, 83
 AT, 78
 ATX, 91
 BTX, 93
 ITX, 93
 microATX, 92
power supplies, 294
formatting, 52
four steps of processing, 131
four-wire resistive technology, 245
Foxconn, 21, 150
frames (cases), 24
FreeDOS Project, 19
frequency, clock rates, 132-135
front panel connectors, 95-96
FSB (front-side bus), 90, 133
FTP (File Transfer Protocol), 444
fully buffered memory, 186

G
gadgets (Windows Vista), 324
game controllers, 239
gaming PCs, 154
GDIs (graphics device interfaces), 357
GHz (gigahertz), 6, 60
Gigabyte, 21
gigahertz. See GHz
Globally Unique Identifier. See GUID

H
hackers, 12
HAL (hardware abstraction layer), 354-355
handshaking, 418
hard drives, 24
 data storage to, 129-131
 differences between RAM and, 175
 operations, 195
 PATA, 198
 RAID, 200-203
 RAM, 195
 SATA, 196-198
 SCSI, 199-200
 solid-state, 199
hard resets, 299, 560
hardware
 Android storage structure, 377-378
 CPUs, troubleshooting, 546
 destroying/recycling, 493
 examples, 554-557
 firewalls, 512-513
 iOS storage structure, 377-378
 ISDN, 449
 Linux storage structure, 375-376
 Mac OS X storage structure, 375-376
 mobile computers, 26
 monitoring, 288
 motherboards, 544
 OSs, 548-554
 PC standards, 16, 20-22
 POST, 296-299
 RAM, 547
 troubleshooting, 544
 Windows storage structure, 369-375
hardware abstraction layer. See HAL
Haswell microarchitecture, 145
HDMI (High-Definition Multimedia Interface), 248
header cables, 97
heat sinks, 141, 161-162
hemostat clamps, 536
hertz. See Hz
hex drivers, 536
hex error codes (POST), 298
hexadecimal numbering systems, 53-54
High-Definition Multimedia Interface. See HDMI
history
 of computers, 4-5
 of CPUs, 122-125
 of motherboards, 78
 64-bit computers, 81-83
594 history

286/16-bit computers, 78-80
386/32-bit computers, 80-81
modern, 83-86
of PCs, 11-16
home theater PC. See HTPC
host adapters (SCSI), 236
host signal processing. See HSP
hot-swapping drives, 374
HSP (host signal processing), 448
HT (Hyper-Threading), 135
HTPC (home theater PC), 321
HTTP (Hypertext Transfer Protocol), 443
HTTPS (Secure HTTP), 443
ICs (integrated circuits), 10-11, 175
IDE (Integrated Drive Electronics), 83, 198
IDS (intrusion detection system), 508-513
IEEE (Institute of Electrical and Electronics Engineers), 410
802.11x, 418
1394, 228-229. See also FireWire
1394a, 96
ieee.org, 563

ifconfig command, 436-440
i.Link, 96
images, aspect ratios, 253
IMAP (Internet Message Access Protocol), 446
impact printers, 261-263
impedance, 293
incident reports, 500-501
Indexing service, 374
Industry Standard Architecture. See ISA
infrared (IR), scanning, 246
Infrastrucutre as a Service. See IaaS
ink cartridges, 259
inkjet printers, 258-260
input devices, 63-64, 238
bar code readers, 239
biometric devices, 240
game controllers, 239
keyboards, 238
mobile input, 241
mouse, 239
voice-activated typing, 240
installing
adapter cards, 105-109
DIMMs, 190-194
display adapters, 108
memory modules, 176
motherboards, 101-105
processors, 155-162
RAM, 193-194
SO-DIMMs, 192
sound cards, 109
Institute of Electrical and Electronics Engineers. See IEEE
instructions, fetching, 131
integral subsystems (Windows), 357
integrated circuits. See ICs
Integrated Drive Electronics. See IDE
Intel
8085 CPUs, 13
Core i7 Extremute CPU, 81
CPUs
64-bit, 137-138
cache memory, 127
clock rates, 132-135
cooling, 141-143
Hyper-Threading (HT), 135
MMX/SSE, 136
multicore, 136
operations, 125, 132
power consumption, 140
processing, 131
processor throttling, 136
registers, 128-129
sockets, 138
storing data, 129-131
technologies, 132
VRM, 137
Download Center, 562
microprocessors, 11
modern PCs, 14
older motherboards, 90
P67 chipset, 87
PC design guides, 23
processors, 143-147
differences (from AMD), 149-150
installing, 155-162
selecting, 152-155
upgrading, 155
Support, 562
Thunderbolt, 229-230
turbo boost overclocking function, 134
interfaces
386/32-bit computers, 80
ACPI, 288
administration, 518
BRI, 449
command-line, 378
accessing, 379-381
file systems/partitions, 383-385
files/folders, 381-383
layers
 executive, 356
 HAL, 354-355
LCD (liquid crystal display)
 monitors, 242
least significant bit (LSB), 44
LEDs (light-emitting diodes), 230, 240
levels, 200, 504-506
LGA (Land Grid Array) sockets, 139
libraries
 GNU C (glibc), 362
 libSystem, 367
libSystem, 367
light-emitting diodes. See LEDs
links, DMI, 88
Linux, 319
 Android, 335-338
 architecture, 361-364
 distributions, 330-332
 ifconfig, 436-437, 440
 MAN Pages, 562
 recovery tools, 552
 Red Hat Support, 562
 storage, 375-376
 Ubuntu Support, 562
liquid cooling systems, 142
liquid crystal display. See LCD
loading programs, 187
local area networks. See LANs
Local Group Policy Editor (gpedit.msc), 499
Local Security Policy, 493-494, 500-501
locations
 memory, 130
 memory controllers, 175
locking. See also security
 doors, 500
 workstations, 499
logical connections, 420-424
logs, events, 506
lost/stolen mobile devices, 517
LSB (least significant bit), 44
ls command, 383
M
MAC (media access control), 410
Mac OS X, 318
 architecture, 366-368
 recovery tools, 552
 storage, 375-376
Mach, 367
Macintosh, 15. See also Apple
 magnetic drives, 63
 magnifiers, 536
main menus, BIOS, 283-284
malware protection, 492, 514-517
MAN (manual) pages, 376
Man pages, 385
MAN (metropolitan area networks), 409
managers
 mobile processors, 150-152
 websites as resources, 561-562
 white-box systems, 22-23
Master Boot Record. See MBR
math, 40
 division method, 44
 numbering systems, 42
 binary, 43-44
 converting binary to decimal, 48-52
 converting decimal to binary, 44-48
 decimal, 42-43
 hexadecimal, 53-54
 subtraction method, 45
Windows Calculator, 47
mats, antistatic, 537
maximum clock rates, 132
Maximum PC (maximumpc.com), 563
MBR (Master Boot Record), 303, 375, 552
MBs (megabytes), 6
MCH (Memory Controller Hub), 89, 175
MD command, 381-382
measurements, 40, 49
 bandwidth, 58-60
 Hz, 60-61
media
 impact printers, 263
 inkjet printers, 260
 laser printers, 256
 solid-state storage, 207
 CF cards, 210-211
 SD cards, 209
 SSDs, 207
 USB flash drives, 208
media access control. MAC, 410
megabytes. See MBs
megahertz. See MHz
memory, 5, 24, 172
 BIOS, 279
 buses, 90
 caches, 6, 127
 chains, registers, 128-129
 CMOS, 280
 compatibility, 177
 controllers, 174
 data storage, 129-131
 DIMMs, installing, 190-194
 fully buffered, 186
 hard drives, 195
 operations, 195
 PATA, 198
 RAID, 200-203
 SATA, 196-198
 SCSI, 199-200
 solid-state, 199
laptops, 182
locations, 130
modules, 176
nonvolatile, 280
programs, synergy between, 187-190
RAM, 87, 174-183. See also RAM
registered, 186
ROM, 79
Memory Controller Hub. See MCH
menus
Advanced BIOS Settings/Features, 285-286
Advanced Boot Options, 548
main (BIOS), 283-284
Power Management, 287-288
Standard Features/Settings, 285
Start (Windows Vista), 324
messages, POST error, 297-299
Metal Oxide Semiconductor Field Effect Transistor. See MOSFET
methodologies, troubleshooting, 538-539
MHz (megahertz), 60, 79
Micro Instrumentation and Telemetry Systems, 11
microATX form factor, 92
microkernels, 356
microphones, 265
microprocessors, 11. See also CPUs
Microsoft. See also OSs; Windows (all versions)
cloud computing, 479
Management Console, 554
modern PCs, 14
operating systems, 17-20
PC design guides, 23
Support, 562
Surface, 151, 338
System Configuration utility, 389
TechNet, 562
Windows RT, 28
Word, 52
MIDI (Musical Instrument Digital Interface)
devices, 264
ports, 232
migration, data, 497
Mini-ITX form factors, 93
minimum requirements, Windows, 328-329
mini-PCI card modems, 447
MITS, 11
mixed Boolean operations, 57
MMX (MultiMedia eXtensions), 136
mobile computers, 25-26
comparing, 27
hardware, 26
motherboards, 85-86
OSs, 333
Android, 335-338
iOS, 333-334
Windows Phone, 338-339
Windows RT, 338
software, 27-29
mobile devices
cameras, 543
troubleshooting, 558-561
mobile input devices, 241
Mobile-ITX form factors, 93
Mobile Magazine (mobilemag.com), 563
mobile processors, 150
ARM processing, 152
manufacturers, 150-152
mobile security, 517
Model 5100 (IBM), 12
models, von Neumann, 5-7, 61, 101
modems, 411
cables, 235
Internet connectivity, 447-448
modern computers, 7-11
modern motherboards, 83-86
modern PCs, 14-16
modes
elevated, 379
kernel, 354-355
user, 354
modules
DIMMs, 176-178
memory, 176
SIMMs, 178
sizes, 176
TPM, 496
monitoring hardware, 288
monitors, 24, 246
286/16-bit computers, 79
386/32-bit computers, 80
DisplayPort, 249
DVI, 247
HDMI, 248
S-Video, 249
VGA, 246
Moore, Gordon, 14
Moore’s Law, 14, 81, 127
MOSFET (Metal Oxide Semiconductor Field Effect Transistor), 9
most significant bit (MSB), 44
motherboard-integrated modems, 447
motherboards, 15, 24, 76
batteries, 280
BIOS, 18. See also BIOS
bus speed, 133
components, 86
chipsets, 87-91
core, 87
drive technologies, 101
expansion buses, 97-100
form factors, 91-95
front panel connectors, 95-96
I/O ports, 95-96
dual-channel memory, 184

64-bit computers, 81-83
286/16-bit computers, 78-80
386/32-bit computers, 80-81
modern, 83-86

form factors, 21
installing, 101-105
memory, compatibility, 177
mobile computers, 85-86
older Intel, 90
power, 295
servers, 83-85
troubleshooting, 544
USB ports, 224
white-box systems, 22-23

mounting drives, 373
mouse, 24, 80, 239
movies, playing, 207. See also video
moving files, 506
MSB (most significant bit), 44
MS-DOS (Microsoft-DOS), 19. See also DOS
Mueller, Scott, 562
multicore technologies, 136
multifactor authentication, 500
multimedia devices, 264
digital cameras, 264
microphones, 265
MIDI, 264
sound cards, 264
video capture cards, 265
webcams, 264
multi-mode fiber-optic cables, 416
multiple devices, connecting, 227
multiprocessing, 84
music. See also audio
MIDI, 264
ports, 230-232

Musical Instrument Digital Interface. See MIDI

N

naming
DNS, 444-445
UNC, 428
usernames, 491. See also authentication

Nano-ITX form factors, 93
NAS (network attached storage), 408, 411

navigating BIOS
Advanced BIOS Settings/Features menu, 285-286
main menus, 283-284
monitoring hardware, 288
Power Management menu, 287-288
security, 289
Standard Features/Settings menu, 285

nbstat -A command, 358
nbstat command, 442

net command, 439
netsh command, 439
netstat command, 441-442
network attached storage. See NAS
Network Computing (network-computing.com), 563

Network Connections window, 422

network operating systems. See NOSs

Network window, 426

networks, 404
cards, 24
command-line, 436
configuring connections, 438-440
testing connections, 436-438
troubleshooting connections, 440-442
connecting, 419

applying, 427-429
logical connections, 420-424
physical connections, 420
at startup, 303
testing, 424-427
deVICES, 409
bridges, 411
firewalls, 412
hubs, 410
Internet appliances, 411
modems, 411
NAS, 411
routers, 412
switches, 410
VoIP phones, 412
WAPs, 410
DUN, 447-448
e-mail, 561
Internet, 561
TCP/IP, 442
configuring, 429-435
DNS, 444-445
FTP, 444
HTTP/HTTPS, 443
ports, 443
SSH, 444
types of, 406
client/server, 406-408
LANs, 408
P2P, 406
WANs, 408-409
Wi-Fi, 560-561
wired, 413-417
wireless, 418-419, 518-522

New Technology File System. See NTFS
NMOS transistors, 9
Nobel Prize in Physics (1956), 8
noncritical OS errors, troubleshooting, 553-554
nonelectronics, 127
nonparity, RAM, 186
nonvolatile memory, 280
nonvolatile RAM, 175
northbridge chips, 89
AGP connections, 98
heat sinks, 141
memory, 130
NOSs (network operating systems), 408
NOT operator, 5, 57
notebooks, 27. See also laptops
Noyce, Robert, 10
NT architecture, 352. See also Windows, architecture
NTBackup.exe, 497
NTFS (New Technology File System), 355, 373
FAT32, converting, 513
security, 490
ntoskrnl.exe file, 356
null-modem cables, 235
numbering systems used in computers, 42
binary, 43-44
converting binary to decimal, 48-52
converting decimal to binary, 44-48
decimal, 42-43
hexadecimal, 53-54
numbers, converting, 44-52, 431
O
OEMs (original equipment manufacturers), 551
older Intel motherboards, 90
OLED (organic light-emitting diodes) monitors, 243
OpenGL, 365
open-source software, 28
operating systems. See OSs
operations
BIOS, 278-280
automatic configuration settings, 290-293
configuring, 281-290
booting, 299-306
computers, 276
of CPUs, 125, 132
cache memory, 127
processing, 131
registers, 128-129
storing data, 129-131
hard drives, 195
PATA, 198
RAID, 200-203
SATA, 196-198
SCSI, 199-200
solid-state, 199
multimedia devices, 264
digital cameras, 264
microphones, 265
MIDI, 264
sound cards, 264
video capture cards, 265
webcams, 264
optical drives, 203
BD, 206-207
CD, 203-205
DVD, 205-206
OSs, 316, 339-340
desktop computers, 318
Linux, 319, 330-332
Mac OS, 318-319
mobile, 333-339
Windows, 320-330
POST, 296-299
power, 293-296
printing, 254-255
impact printers, 261-263
inkjet printers, 258-260
laser printers, 255-258
thermal printers, 260-261
RAM, 174-176
resetting, 299
solid-state storage media, 207
CF cards, 210-211
SD cards, 209
SSDs, 207
USB flash drives, 208
operators, 54
AND, 5, 55-56
mixed, 57
NOT, 5, 57
OR, 5, 56
optical drives, 24, 203
BD, 206-207
booting, 302
CD, 203-205
DVD, 205-206
OR operator, 5, 56-57
Oracle VirtualBox, 471
organic light-emitting diodes. See OLED
original equipment manufacturers. See OEMs
OSs (operating systems), 15, 316, 339-340
architecture, 352
Android, 364-366
iOS, 366-368
Linux, 361-364
Mac OS X, 366-368
Windows, 352-361
backdoors, 516
bootstrapping, 303-305
command-line, 378
accessing, 379-381
file systems/partitions, 383-385
files/folders, 381-383
desktop computers, 318
Linux, 319, 330-332
Mac OS, 318-319
mobile, 333-339
Windows, 320-330
Microsoft, 17-20. See also Windows (all versions)
mobile computers, 27-29, 333
Android, 335-338
iOS, 333-334
Windows Phone, 338-339
Windows RT, 338
networks, connecting, 420-424
NOS, 408
PC standards, 17-20
security, 490. See also security
startup, 305-306
system management tools, 385-391
troubleshooting, 548-554
virtualization, 466
output devices, 64
overclocking, 134, 289
overhead, 52

P
P2P (peer-to-peer) networks, 406
P67 chipset (Intel), 87
PaaS (Platform as a Service), 478
paper, 256, 261-263
Parallel ATA. See PATA drives
parallel data transfers, 59-60
parity, RAM, 186
partitions, 373
Android storage structures, 377-378
command-line, 383-385
iOS storage structures, 377-378
Linux storage structures, 375-376
Mac OS X storage structures, 375-376
Windows storage structures, 369-375
passcodes, mobile devices, 517
passwords, 491
BIOS, 289
managing, 498-499
wireless security, 518
PATA (Parallel ATA) drives, 198
PC 99 System Design Guide, 23
PC Cards. See PCMCIA
PC Magazine (pcmag.com), 563
PCB (printed circuit board), 83, 177
PCH (Platform Controller Hub), 87
PCI Express x16, 90
PCI (Peripheral Component Interconnect), 15, 97
PCI-SIG (pcisig.com), 563
PCIe (PCI Express), 86, 98
PCMCIA (Personal Computer Memory Card International Association), 100
PCs (personal computers), 10
cloud computing, 477-478
examples, 480-481
services, 478
vendors, 479
components, 23-25
customizing, 153-155
design guides, 23
ESD, preventing, 537
gaming, 154
hardware, troubleshooting, 544-557
history of, 11-16
IBM, 12-13
mobile security, 517
modern, 14-16
networks, 404-406
applying, 427-429
bridges, 411
client/server, 406-408
command-line, 436-442
configuring TCP/IP, 429-435
connecting to, 419
devices, 409
e-mail, 445-446
firewalls, 412
hubs, 410
Internet appliances, 411
Internet connectivity, 447-452
LANs, 408
logical connections, 420-424
modems, 411
NAS, 411
P2P, 406
physical connections, 420
Remote Desktop, 446
routers, 412
switches, 410
TCP/IP, 442-445
testing, 424-427
VoIP phones, 412
WANs, 408-409
WAPs, 410
wired connections, 413-417
wireless connections, 418-419
numbering systems used in, 42
binary, 43-44
converting binary to
decimal, 48-52
converting decimal to
binary, 44-48
decimal, 42-43
hexadecimal, 53-54
operations, 300-306
OSs, 318
Linux, 319-332
Mac OS, 318-319
Windows, 320-330
overview of, 16-25
RAM, 191
security, 488-490
access control, 502-506
authentication, 490-491
backups, 497
cloud computing, 523-524
configuring, 508
data migration, 497
destroying/recycling hard-
ware, 493
encryption, 494-496
file systems, 490-513
firewalls, 492-513
Local Security Policy, 493-494
locking workstations, 499
malware protection, 492, 514-517
password management, 498-499
physical, 500
removing data/data remnants, 498
reporting incidents, 500-501
social engineering, 501-502
virtualization, 522-523
standards, 16
hardware, 20-22
operating systems, 17-20
tools, 536-537
touchscreens, 245-246
troubleshooting, 538-543
virtualization, 466
types of, 466-467
VLANs, 474
VMs, 468-476
VPNs, 475-476
wireless security, 518
evil twins, 519-520
passwords, 518
rogue access points, 519
SSID broadcasts, 519
strategies, 521-522
wardrivers, 519
weak encryption, 520-521
PCWorld (pcworld.com), 563
PDAs (personal digital assistants), 25. See also mobile computers
peer-to-peer networks. See P2P networks
pen-based bar code readers, 239
penlights, 536
Pentium processors, 144. See also Intel performance
adapter cards, 105-109
processors, 155
RAM, 175
Performance Monitor, 553
Peripheral Component Interconnect. See PCI
permanent storage, 63
permissions, 504-506
Personal Computer Memory Card International Association. See PCMCIA
personal computers. See PCs
personal video recorders (PVRs), 93
Pertec, 11
PGA (Pin Grid Array), 123, 139
Phillis screwdrivers, 536
phishing, 501
Phoenix Software (Phoenix Technologies), 18
physical connections. See connections
physical security, 500. See also security
physical tools, 536. See also tools
Pico-ITX form factors, 93
PID (Process ID), 190
piggybacking, 501
PIN (personal identification number), 491, 517
Pin Grid Array. See PGA
Pin Grid Array (PGA) sockets, 139
ping command, 438
pixels, resolutions, 252-254
plain old telephone system. See POTS
plasma displays, 243
Platform as a Service. See PaaS
Platform Controller Hub. See PCH
playing movies, 207
PlayStation 3, 206
plenum cables, 417
pliers, 536
plugs, USB ports, 225
PMOS transistors, 10
Point-to-Point Tunneling Protocol. See PPTP
pointing devices, 239
policies
Local Group Policy Editor (gpedit.msc), 499
Local Security Policy, 493-501
POP3 (Post Office Protocol version 3), 446
Popular Electronics, 11
portmanteaus, 151
ports
I/O, 95-96, 224
audio, 230-232
F-connectors, 232-233
IEEE 1394 (FireWire), 228-229
RJ45, 230
SCSI, 236-238
serial, 234-236
Thunderbolt, 229-230
USB, 224-228
MIDI, 264
RJ45 LAN, 96
Serial ATA, 27
TCP/IP, 443
POST (power-on self-test), 18, 193, 276, 296-302
Post Office Protocol version 3. See POP3
POTS (plain old telephone system), 447
power, 293-296
286/16-bit computers, 79
booting, 301-302
CPUs, 140
resetting, 299
supplies, 24
USB ports, 227
Power Management menu, 287-288
power-on self-test. See POST
PowerPC architecture, 83
powers of 10, 42
PowerShell, 379
PPTP (Point-to-Point Tunneling Protocol), 475
Preboot eXecution Environment. See PXE
pretexting, 501
preventing
ESD, 537
malware, 515
PRI (Primary Rate Interface), 449
primary partitions, 370
Primary Rate Interface. See PRI
printed circuit board. See PCB
printers, auditing, 506
printing, 254-263
problems, diagnosing. See troubleshooting
Process ID. See PID
process VMs, 466. See also VMs
processes
laser printers, 257
troubleshooting, 538-539
processing, 40, 61
ARM CPU, 152
Boolean operators, 54
AND, 55-56
mixed, 57
NOT, 57
OR, 56
CPUs, 62
data transfer example, 64-65
dependents of, 131
input devices, 63-64
measurements, 49
memory, 172. See also memory
output devices, 64
permanent storage, 63
working storage, 62
processors, 6, 11, 20, 24
AMD, 147-148
ARM, 26
differences, 149-150
installing, 155-162
Intel, 143-147
mobile, 150-152
multicore technologies, 136
selecting, 152-155
throttling, 136
upgrading, 155
programmable ROM. See PROM
programs. See also applications
backups, 497
BIOS setup, accessing, 282
firewalls, 492-493
loading, 187
malware/virus protection, 492
memory, synergy between, 187-190
RAM, 175
Remote Desktop, 446
PROM (programmable ROM), 279
prompts
Command Prompt
accessing, 379-381
Windows 8, 328
Run, 188
protection. See also security
boot sector virus, 508
malware, 514-517
protocols
CHAP, 476
e-mail, 446
FTP, 444
HTTP, 443
HTTPS, 443
IMAP, 446
IP classes, 429-431
IPv4, 429-433
IPv6, 433-435
L2TP, 476
PPTP, 475
RDP, 446
SMTP, 446
TCP/IP, 442
configuring, 429-435
dns, 444-445
FTP, 444
HTTP/HTTPS, 443
ports, 443
SSH, 444
PS/2 keyboards, 79. See also keyboards
punch cards, 4
PVC (polyvinyl chloride) cables, 417
PVRS (personal video recorders), 93
PXE (Preboot eXecution Environment), 423
Q
QPI (Quick Path Interconnect), 89
Qualcomm, 150
quality, color, 251
quantum computers, 143
Quartz, 368
qubits, 143
Quick Path Interconnect. See QPI
quota support, disks, 374
R
Rackspace, 479
radio, F-controllers, 232-236
radio-frequency identification. See RFID
RADIUS (Remote Authentication Dial In User Service), 476
RAID (Redundant Array of Inexpensive Disks), 200-203, 408
RAM (random access memory), 6, 24, 87, 172
 386/32-bit computers, 81
 adding, 175
 BIOS, 279
 cells, 6
 data storage to, 129-131
 hard drives, 195
 installing, 190-194
 laptops, 192
 operations, 174-176
 PCs, 191
 programs, synergy between, 187-190
 technologies, 183
 channels, 183-184
 compatibility, 186
 ECC/non-ECC, 186
 memory latency, 185
 parity/nonparity, 186
 registered memory, 186
 single-sided/double-sided, 185
 troubleshooting, 547
 types of, 177
 DDR, 178-182
 DRAM, 177
 RDRAM, 183
 SDRAM, 177-178
 SO-DIMM, 182
 SRAM, 177
 Rambus DRAM. See RDRAM
 ranges, internal clock speed, 133
 rates
 clock, 120, 132-135
 DDR, 178-182
 refresh, 254
 transfer, 58
 ratios, aspect, 253
 RATs (remote access Trojans), 514
 RD command, 381
 RDP (Remote Desktop Protocol), 446
 RDRAM (Rambus DRAM), 183
 read-only memory. See ROM
 real-time clock. See RTC
 recording
 CD technologies, 204
 DVD drives, 205
 records
 MBR, 303, 375, 552
 OR operator, 56
 recovering OSs, 548-553
 Recovery Console, 551
 recycle bins, NTFS, 373
 recycling hardware, 493
 Red Hat Enterprise (Linux) distribution, 331
 reduced instruction set computing. See RISC
 Redundant Array of Inexpensive Disks. See RAID
 reference websites, 563
 refresh rates, 177, 254
 registered memory, 186
 registers, 128-129
 Registry Editor, 389-390, 553
 regular user accounts, 503
 rotation speed, SATA, 198
 rotational speed, S-Video, 249
 routers, 409-412, 449
 RS-232 ports, 234-236
 RTC (real-time clock), 281
 .rtf (Rich Text Format) files, 52
 Run prompt, 188
 S
 S-Video, 249
 SaaS (Software as a Service), 478
 Safe Mode, 549
 Salesforce, 479
 Sandy Bridge (third generation), 145
 SANs (storage area networks), 480
 SAS (Serial Attached SCSI), 199, 238
 SATA (Serial ATA), 83, 101, 131, 196-198
 mobile devices, 299
 soft resets, 560
 resolution, 252-254
 resources, troubleshooting, 561-563
 RFID (radio-frequency identification), 491
 ribbons
 impact printers, 263
 thermal printers, 260
 Rich Text Format. See .rtf files
 rights, 504-506
 RISC (reduced instruction set computing), 152
 riser cards, 94-95
 RJ45 ports, 96, 230
 Roberts, Ed, 11
 rogue access points, 519
 ROM (read-only memory), 18, 79, 172
 root user accounts, 503
 rootkits, 514-515
 rotating speed, SATA, 198
 routers, 409-412, 449
 .rtf (Rich Text Format) files, 52
 rules, 8.3, 375
 Run prompt, 188
satellite Internet, 451
saving
changes to BIOS, 290
web pages, 543
scanners, laser, 240
scanning infrared, 246
Scorpion, 150
screen captures, 543
screwdrivers, 536
SCSI (Small Computer System Interface) drives, 199-200, 236-238
SDK (Software Development Kit), 366
SDRAM (synchronous DRAM), 177-178
SDSL (Symmetrical Digital Subscriber Line), 450
search engines as troubleshooting resources, 563
searching records (OR operator), 56
Secure HTTP. See HTTPS
Secure Shell. See SSH
security, 488-490
authentication, 490-491
BIOS, 289
file systems, 490, 513
firewalls, 412, 492, 508-513
malware/virus protection, 492
virtualization, 522-523
wireless networks, 418
SecurityFocus (securityfocus.com/), 563
selecting processors, 152-155
self-powered hubs, 227
semiconductors, 22
sequences, booting, 508
Serial ATA. See SATA
Serial Attached SCSI. See SAS
serial cables, types of, 235
serial communication, 447
serial data transfers, 59
serial ports, 234-236
servers
motherboards, 83-85
networks, 406-408
Windows Server, 330
service packs, 328
service set identifier. See SSID
services
BitLocker Drive Encryption Service, 389
cloud computing, 478
DSL, 449-450
Executive Services, 356
Indexing, 374
ISDN, 449
RADIUS, 476
Services console (Windows 7), 357
sets, 55
settings. See configuring
Settings screens, 385-388
set-top boxes (STBs), 93
sharing folders, 428
shielded twisted pair. See STP
Shockley, William, 8
shoulder surfing, 501
signals, composite, 249
SIMD (single instruction, multiple data), 136
SIMMs (single in-line memory modules), 178
Simple Mail Transfer Protocol. See SMTP
simulation, 467
single-channel RAM, 183-184
single in-line memory modules. See SIMMs
single instruction, multiple data. See SIMD
single-mode fiber-optic cables, 416
single-sided RAM, 185
sizes
memory modules, 176
partitions (NTFS), 373
slash (/), 362
Small Computer System Interface. See SCSI drives
small-office/home-office.
See SOHO
Small Outline DIMM.
See SO-DIMM
smart cards, 491
smartphones, 25. See also mobile computers
Android, 335-338
Windows Phone, 338-339
SMD (surface-mounted device) technology, 242
SMTP (Simple Mail Transfer Protocol), 446
Snow Leopard, 83. See also OSs
SoC (system on a chip), 150
social engineering, 501-502
Socket 370, 144
Socket 423, 144
sockets
CPUs, 138
PGA, 123
USB ports, 225
SO-DIMM (Small Outline DIMM), 182, 192
soft resets, 299, 560
software
backups, 497
closed-source, 28
firewalls, 492-493, 509
mobile computers, 27-29
open-source, 28
Software as a Service. See SaaS
Software Development Kit. See SDK
SOHO (small-office/home-office), 410, 418, 449
solid-state drives. See SSDs
solid-state storage media, 207
CF cards, 210-211
SD cards, 209
SSDs, 207
USB flash drives, 208
Sony/Philips Digital Interconnect Format. See SPDIF
sound cards, 24, 109, 264
source code, 18
southbridge chips, 89
heat sinks, 141
PCI connections, 97
PCIe connections, 98
SPDIF (Sony/Philips Digital Interconnect Format), 231
specifications
Blu-ray, 206
SATA, 198
speed
clock rates, 132-135
compatibility, 177
CPUs, 120. See also CPUs
motherboard buses, 133
SATA, 198
USB ports, 225
spyware, 514
SQLite, 365
SRAM (static random access memory), 127, 177
SSDs (solid-state drives), 63, 207
SSH (Secure Shell), 444
SSID (service set identifier) broadcasts, 519
Standard Features/Settings menu, 285
standard user accounts, 503
standardization organization websites, 563
standards
AES, 496
APM, 288
COM ports, 236
IEEE 802.11x, 418
PCs, 16
hardware, 20-22
operating systems, 17-20
SATA, 197
SCSI, 200, 237
Start menu (Windows Vista), 324
Start Windows Normally, 550
starting. See also booting
operating systems, 305-306
Windows Explorer, 322
static RAM. See SRAM
sticks, DIMM version of SDRAM, 178
stolen mobile devices, 517
storage, 172
Android, 377-378
data, 52, 129-131
iOS, 377-378
Linux, 375-376
Mac OS X, 375-376
measurements, 49
NAS, 408
solid-state media, 207-211
Windows, 369-375
working, 62
storage area networks. See SANs
STP (shielded twisted pair), 413-416
straight-blade screwdrivers, 536
strong passwords, 498
subnet masks, 429-431
subnetworking, 430
subsystems
components, 540
environmental (Windows), 358
integral (Windows), 357
troubleshooting, 542
user mode, 354
subtraction method, 45
superpositions, 143
superservers, 85
SuperSpeed, 226
supplies, power, 293-296
support
BIOS, 278
EFS, 373
Surface (Microsoft), Windows RT, 338
surface-mounted device.
See SMD
surface waves, 245
switches, 409-410
Symmetrical Digital Subscriber Line. See SDSL
synchronous DRAM. See SDRAM
synergy between memory and programs, 187-190
system administrator user accounts, 503
system components, 23-25
System Configuration (msconfig), 389, 553
System File Checker, 554
system information, BIOS, 285
system management tools, 385
advanced configuration, 389-391
Control Panel, 385-388
system on a chip. See SoC
System Properties, 193
System Recovery Options window, 551
System Restore, 553
system VMs, 466. See also VMs
T
tables, 25-29
Task Manager, 189, 193, 553
TAs (terminal adapters), 449
TCP/IP (Transmission Control Protocol/Internet Protocol), 429
configuring, 429-435
protocols, 442
DNS, 444-445
FTP, 444
HTTP/HTTPS, 443
ports, 443
SSH, 444
TDP (thermal design power), 140
TechNet Forums, 562
technologies
 authentication, 490-491
 CD recording, 204
 CPUs, 132
 64-bit, 137-138
 clock rates, 132-135
 cooling, 141-143
 Hyper-Threading (HT), 135
 MMX/SSE, 136
 multicore, 136
 power consumption, 140
 processor throttling, 136
 sockets, 138
 VRM, 137
display types, 241
 CRTs, 243
 data projectors, 243-244
 LCD monitors, 242
 LED monitors, 242
 OLED monitors, 243
 plasma, 243
 touchscreens, 245-246
drives, 101
 DVDs, 205
encryption, 494-496
input devices, 238
 bar code readers, 239
 biometric devices, 240
 game controllers, 239
 keyboards, 238
 mobile input, 241
 mouse, 239
 voice-activated typing, 240
I/O ports, 224
 audio, 230-232
 F-connectors, 232-233
 IEEE 1394 (FireWire), 228-229
 RJ45, 230
 SCSI, 236-238
 serial, 234-236
 Thunderbolt, 229-230
 USB, 224-228
RAM, 183
 channels, 183-184
 compatibility, 186
 ECC/non-ECC, 186
 memory latency, 185
 parity/nonparity, 186
 registered memory, 186
 single-sided/double-sided, 185
 video connectors, 246
 DisplayPort, 249
 DVI, 247
 HDMI, 248
 S-Video, 249
 VGA, 246
 VMs, 468, 476
TechRepublic (techrepublic.com), 563
terminals. See TAs
terminals, 380
testing
 network connections, 424-427, 436-438
 POST card testers, 298
 processor installations, 158
 RAM installations, 193-194
Texas Instruments, 10
text, counting characters, 52
TFT (thin-film transistor), 242
thermal compounds, 141
thermal design power. See TDP
thermal printers, 260-261
thin-film transistor (TFT), 242
third-party websites as troubleshooting resources, 563
threads, Hyper-Threading (HT), 135
three-claw parts retrieval tool, 536
throttling processors, 136
Thunderbolt, 229-230
Tom’s Hardware (tomshardware.com), 563
toner cartridges, 256
tools, 536-537
 Disk Management, 371, 383
 firewalls, configuring, 508-513
 Local Security Policy, 493-494
 NTBackup.exe, 497
 System Configuration utility, 389
 system management, 385-391
 troubleshooting, 553
 Windows Snipping Tool, 543
 WOL, 423
torx drivers, 536
 touch-on-tube, 246
touchscreens, 245-246
TPM (Trusted Platform Module), 496
tracert command, 440-441
transfers
 data transfer example, 64-65
 parallel data, 59-60
 rates, 58
 serial data, 59
transistors, 8, 126
Transmission Control Protocol/Internet Protocol. See TCP/IP
tree command, 383
tri-gate transistors, 126
triodes, 8
triple-channel RAM, 183-184
Trojan horses, 514
troubleshooting
computers
 CPUs, 546
 diagnosing problems, 539-543
 examples, 554-557
 hardware, 544
 motherboards, 544
 OSs, 548-554
 RAM, 547
ESD, preventing, 537
malware/virus protection, 492
methodologies, 538-539
mobile devices, 558-561
networks, 440-442
overclocking, 289
resources, 561-563
system management tools, 385-391
tools, 536-537, 553

Trusted Platform Module. See TPM
tubes to transistors (modern computers), 8-10
turbo boost overclocking function (Intel), 134
turning off apps, 558
TV tuners, 108
F-connectors, 232-233
video capture cards, 265
tweezers, 536
types, 504-506
of cables (network), 413
coaxial, 417
fiber-optic, 416
plenum, 417
PVC, 417
STP, 414-416
UTP, 413
of disk partitions, 370
of displays, 241
CRTs, 243
data projectors, 243-244
LCD monitors, 242
LED monitors, 242
OLED monitors, 243
plasma, 243
touchscreens, 245-246
of IPv6 addresses, 434
of ISDN connections, 449
of malware, 514
of modems, 447
of networks, 406
client/server, 406-408
LANs, 408
P2P, 406
WANs, 408-409
of OSs
for desktop computers, 318
Linux, 319, 330-332
Mac OS, 318-319
mobile, 333-339
Windows, 320-330
of printers, 255-258
impact, 261-263
inkjet, 258-260
thermal, 260-261
of RAM, 175-177
DDR, 178-182
DRAM, 177
RDRAM, 183
SDRAM, 177-178
SO-DIMM, 182
SRAM, 177
of serial cables, 235
of user accounts, 503
of virtualization, 466-467
of VMs, 473

U

UAC (User Account Control), 503
UART (universal asynchronous receiver transmitter), 448
Ubuntu, 331
architecture, 363
command-line, 380
Network screens, 423
Support, 562
UEFI (Unified Extensible Firmware Interface), 279, 328
UFS (Unix File System), 376
UIs (user interfaces), 363
UMPCs (ultra-mobile PCs), 93

UNC (universal naming convention), 428
undesirable software, 514
Unified Extensible Firmware Interface. See UEFI
UNIVAC (Universal Automatic Computer), 5
universal asynchronous receiver transmitter. See UART
Universal Automatic Computer. See UNIVAC
universal naming convention. See UNC
Universal Serial Bus. See USB
Unix, 352
Unix File System. See UFS
unshielded twisted pair. See UTP
upgrading BIOS, 291-292
upgrading processors, 155
Upgrading and Repairing PCs, 562
USB (Universal Serial Bus), 96. See also ports
flash drives, 208, 303
I/O ports, 224-228
User Account Control. See UAC
user accounts, 502-506
user interfaces. See UIs
user mode, 354
usernames, 491
utilities. See tools
UTP (unshielded twisted pair), 413-416

V

vacuum tubes, 4, 8
VDI (virtual desktop infrastructure), 467
vendors
cloud computing, 478-479
VMs, 469-474
hypervisor, 469
VirtualBox, 471
VMware, 471-472
virtualization, 464-466
security, 522-523
types of, 466-467
VMs, 468-476. See also VMs
Windows 8, 328
Virtualization Technology.
See VT
totalization workstations, 154
viruses, 514
boot sector protection, 508
protection, 492
VLANs (virtual local area networks), 474
VMM (virtual machine manager), 469
VMs (virtual machines), 154, 466, 467
Dalvik, 365
security, 522-523
technologies, 468, 476
types of, 473
vendors, 469-474
hypervisor, 469
VirtualBox, 471
VMware, 471-472
VirtualBox, 471
VMware, 471-472
Windows Virtual PC, 470
Windows XP Mode, 471
VMware, 471-472, 479
voice-activated typing, 240
VoIP (Voice over IP), 363, 412
volatile RAM, 175. See also RAM
voltage, 178, 293
voltage identification (VID), 137
voltage regulator module.
See VRM
volumes, 369
von Neumann, John, 5
von Neumann computer model, 5-7, 61, 101
VPNs (virtual private networks), 475-476
VRM (voltage regulator module), 137
VT (Virtualization Technology), 154
W
Wake on LAN. See WOL
WANs (wide area networks), 408-412
WAPs (wireless access points), 410, 418
wardrivers, 519
wattage, 293
waves, surface, 245
WDM (Windows Driver Model), 355
weak encryption, 520-521
weak passwords, 498
web pages, saving, 543
webcams, 264
Welcome Center (Windows Vista), 324
white-box systems, 22-23
wide area networks. See WANs
width, busses, 87
Wi-Fi Alliance (www.wi-fi.org/), 563
Wi-Fi connections, 425, 560-561.
See also wireless networks
WiMAX (Worldwide Interoperability for Microwave Access), 452
windows
Network, 426
Network Connections, 422
System Recovery Options, 551
Windows, 320. See also specific Windows versions
architecture, 352-354
application execution ex-
ample, 359-361
environmental subsystems, 358
executive layer, 356
HAL, 354-355
integral subsystems, 357
kernel mode drivers, 355
microkernels, 356
color depth, 251
ipconfig command, 436-437
nbtstat command, 442
net command, 439
netsh command, 439
netstat command, 441-442
Registry Editor, 390
resolutions, 252-254
storage, 369-375
tracert command, 440-441
versions, 320-321
requirements, 328-329
Windows 7, 372
Windows 8, 327
Windows XP, 322
Windows Hardware Certification Program, 23
Windows Phone, 338-339
Windows Recovery Environment. See WinRE
Windows Registry, 389
Windows RT, 28, 338
Windows Sidebar (Windows Vista), 324
Windows Snipping Tool, 543
Windows Vista, 370, 432
Windows XP, 370, 432
Winmodems, 448
WinRE (Windows Recovery Environment), 550
wired networks, 413-417
wireless access points. See WAPs
wireless LANs. See WLANs
wireless networks, 418-419
wireless security, 518
 evil twins, 519-520
 passwords, 518
 rogue access points, 519
 SSID broadcasts, 519
 strategies, 521-522
 wardrivers, 519
 weak encryption, 520-521
WLANs (wireless LANs), 27, 411, 419
WOL (Wake on LAN), 423
Word (Microsoft), 52
WordPad (Windows), 52, 188
workarounds, 543. See also troubleshooting
working storage, 62
workstations, locking, 499. See also PCs
World War II, 4
Worldwide Interoperability for Microwave Access. See WiMAX
worms, 514
write.exe, 189
writeback (processing), 132
x
xTerm, 380