Certified Ethical Hacker (CEH) Cert Guide

Michael Gregg

PEARSON
800 East 96th Street
Indianapolis, Indiana 46240 USA
Contents at a Glance

Introduction xxiii
CHAPTER 1 Ethical Hacking Basics 3
CHAPTER 2 The Technical Foundations of Hacking 39
CHAPTER 3 Footprinting and Scanning 77
CHAPTER 4 Enumeration and System Hacking 137
CHAPTER 5 Linux and Automated Assessment Tools 173
CHAPTER 6 Trojans and Backdoors 213
CHAPTER 7 Sniffers, Session Hijacking, and Denial of Service 251
CHAPTER 8 Web Server Hacking, Web Applications, and Database Attacks 297
CHAPTER 9 Wireless Technologies, Mobile Security, and Attacks 341
CHAPTER 10 IDS, Firewalls, and Honeypots 381
CHAPTER 11 Buffer Overflows, Viruses, and Worms 417
CHAPTER 12 Cryptographic Attacks and Defenses 453
CHAPTER 13 Physical Security and Social Engineering 493
CHAPTER 14 Final Preparation 527
 Glossary 535
 Practice Exam I 561
 Practice Exam II 603
 Index 646
APPENDIX A Answers to the “Do I Know This Already?” Quizzes and Review Questions (CD only)
APPENDIX B Memory Tables (CD only)
APPENDIX C Memory Table Answer Key (CD only)
Table of Contents

Introduction xxiii

Chapter 1 Ethical Hacking Basics 3

“Do I Know This Already?” Quiz 3

Foundation Topics 6

Security Fundamentals 6
 - Goals of Security 7
 - Risk, Assets, Threats, and Vulnerabilities 8
 - Defining an Exploit 10

Security Testing 10
 - No-Knowledge Tests (Black Box) 11
 - Full-Knowledge Testing (White Box) 11
 - Partial-Knowledge Testing (Gray Box) 11
 - Types of Security Tests 12

Hacker and Cracker Descriptions 13
 - Who Attackers Are 15
 - Hacker and Cracker History 16

Ethical Hackers 17
 - Required Skills of an Ethical Hacker 18
 - Modes of Ethical Hacking 19

Test Plans—Keeping It Legal 21
 - Test Phases 23
 - Establishing Goals 24
 - Getting Approval 25
 - Ethical Hacking Report 25

Ethics and Legality 27
 - Overview of U.S. Federal Laws 28
 - Compliance Regulations 30

Chapter Summary 31

Exam Preparation Tasks 32
 - Review All Key Topics 32
 - Hands-On Labs 32
 - Lab 1-1 Examining Security Policies 32
Chapter 3 Footprinting and Scanning 77

“Do I Know This Already?” Quiz 77

Foundation Topics 80

The Seven-Step Information-Gathering Process 80

Information Gathering 80

Documentation 80

The Organization’s Website 81

Job Boards 83

Employee and People Searches 84

EDGAR Database 87

Google Hacking 88

Usenet 92

Registrar Query 93

DNS Enumeration 96

Determine the Network Range 101

Traceroute 101

Identifying Active Machines 104

Finding Open Ports and Access Points 105

Nmap 112

SuperScan 115

THC-Amap 115

Scanrand 116

Hping 116

Port Knocking 117

War Dialers 117

War Driving 118

OS Fingerprinting 118

Active Fingerprinting Tools 120

Fingerprinting Services 122

Default Ports and Services 122

Finding Open Services 123

Mapping the Network Attack Surface 125

Manual Mapping 125

Automated Mapping 125
Chapter Summary 127
Exam Preparation Tasks 127
Review All Key Topics 127
Define Key Terms 128
Command Reference to Check Your Memory 128
Exercises 129
3.1 Performing Passive Reconnaissance 129
3.2 Performing Active Reconnaissance 130
Review Questions 131
Suggested Reading and Resources 134

Chapter 4 Enumeration and System Hacking 137
“Do I Know This Already?” Quiz 137
Foundation Topics 140
Enumeration 140
 Windows Enumeration 140
 Windows Security 142
 NetBIOS and LDAP Enumeration 143
 NetBIOS Enumeration Tools 145
 SNMP Enumeration 148
 Linux/UNIX Enumeration 149
 NTP Enumeration 150
 SMTP Enumeration 150
 DNS Enumeration 151
System Hacking 151
 Nontechnical Password Attacks 151
 Technical Password Attacks 152
 Password Guessing 152
 Automated Password Guessing 153
 Password Sniffing 154
 Keystroke Loggers 155
 Privilege Escalation and Exploiting Vulnerabilities 155
 Exploiting an Application 156
 Exploiting a Buffer Overflow 156
 Owning the Box 157
Chapter 5 Linux and Automated Assessment Tools 173

“Do I Know This Already?” Quiz 173
Foundation Topics 176

Linux 176
 Linux or Windows? Picking the Right Platform 176
 Linux File Structure 177
 Linux Basics 179
 Passwords and the Shadow File 182
 Linux Passwords 183
 Compressing, Installing, and Compiling Linux 185

Hacking Linux 186
 Reconnaissance 186
 Scanning 186
 Enumeration 188
 Gaining Access 188
 Privilege Escalation 190
 Maintaining Access and Covering Tracks 191

Hardening Linux 194
Automated Assessment Tools 196
 Automated Assessment Tools 196
 Source Code Scanners 197
Chapter 7 **Sniffers, Session Hijacking, and Denial of Service** 251

“Do I Know This Already?” Quiz 251

Foundation Topics 254

Sniffers 254

- Passive Sniffing 254
- Active Sniffing 255
- **Address Resolution Protocol** 255
- **ARP Poisoning and Flooding** 256

Tools for Sniffing 260
- Wireshark 260
- Other Sniffing Tools 262

Sniffing and Spoofing Countermeasures 263

Session Hijacking 264

- Transport Layer Hijacking 264
- **Predict the Sequence Number** 265
- **Take One of the Parties Offline** 267
- **Take Control of the Session** 267

Application Layer Hijacking 267

Session Sniffing 267

- **Predictable Session Token ID** 268
- **Man-in-the-Middle Attacks** 268
- **Man-in-the-Browser Attacks** 269
Chapter 7 Web Server Hacking, Web Applications, and Database Attacks 297

“Do I Know This Already?” Quiz 297

<table>
<thead>
<tr>
<th>Foundation Topics</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Server Hacking</td>
<td>300</td>
</tr>
<tr>
<td>Scanning Web Servers</td>
<td>302</td>
</tr>
<tr>
<td>Banner Grabbing and Enumeration</td>
<td>302</td>
</tr>
<tr>
<td>Web Server Vulnerability Identification</td>
<td>306</td>
</tr>
<tr>
<td>Attacks Against Web Servers</td>
<td>307</td>
</tr>
<tr>
<td>IIS Vulnerabilities</td>
<td>308</td>
</tr>
<tr>
<td>Securing IIS and Apache Web Servers</td>
<td>312</td>
</tr>
<tr>
<td>Web Application Hacking</td>
<td>314</td>
</tr>
<tr>
<td>Unvalidated Input</td>
<td>315</td>
</tr>
<tr>
<td>Parameter/Form Tampering</td>
<td>315</td>
</tr>
</tbody>
</table>
Injection Flaws 315
Cross-Site Scripting and Cross-Site Request Forgery Attacks 316
Hidden Field Attacks 317
Other Web Application Attacks 318
Web-Based Authentication 319
Web-Based Password Cracking and Authentication Attacks 320
Cookies 324
URL Obfuscation 324
Intercepting Web Traffic 326
Database Hacking 329
 Identifying SQL Servers 330
 SQL Injection Vulnerabilities 331
 SQL Injection Hacking Tools 333
Summary 334
Exam Preparation Tasks 335
Review All Key Topics 335
Define Key Terms 336
Exercise 336
 8.1 Hack the Bank 336
Review Questions 337
Suggested Reading and Resources 339

Chapter 9 Wireless Technologies, Mobile Security, and Attacks 341
 “Do I Know This Already?” Quiz 341
Foundation Topics 344
Wireless Technologies 344
 Wireless History 344
 Satellite TV 344
 Cordless Phones 346
 Cell Phones and Mobile Devices 346
 Mobile Devices 348
 Smartphone Vulnerabilities and Attack Vectors 349
 Android 350
 iOS 352
 Windows Phone 8 352
Table of Contents

BlackBerry 353
Mobile Device Management and Protection 353
Bluetooh 354

Wireless LANs 355
 - Wireless LAN Basics 355
 - Wireless LAN Frequencies and Signaling 357
 - Wireless LAN Security 358
 - Wireless LAN Threats 361
 - **Eavesdropping** 362
 - Configured as Open Authentication 363
 - Rogue and Unauthorized Access Points 363
 - **Denial of Service (DoS)** 365
 - Wireless Hacking Tools 366
 - Discover WiFi Networks 366
 - Perform GPS Mapping 367
 - Wireless Traffic Analysis 367
 - Launch Wireless Attacks 368
 - **Crack and Compromise the WiFi Network** 368
 - Securing Wireless Networks 369
 - **Defense in Depth** 369
 - Site Survey 371
 - Robust Wireless Authentication 372
 - Misuse Detection 373

Summary 374
Exam Preparation Tasks 374
Review All Key Topics 375
Define Key Terms 375
Review Questions 375
Suggested Reading and Resources 378

Chapter 10 IDS, Firewalls, and Honeypots 381
“Do I Know This Already?” Quiz 381
Intrusion Detection Systems 385
 - **IDS Types and Components** 385
 - Pattern Matching and Anomaly Detection 387
Snort 388
IDS Evasion 392
IDS Evasion Tools 394
Firewalls 395
Firewall Types 395
Network Address Translation 395
Packet Filters 396
Application and Circuit-Level Gateways 398
Stateful Inspection 399
Identifying Firewalls 400
Bypassing Firewalls 402
Honeypots 407
Types of Honeypots 408
Detecting Honeypots 409
Summary 410
Exam Preparation Tasks 411
Review All Key Topics 411
Define Key Terms 411
Review Questions 412
Suggested Reading and Resources 414

Chapter 11 Buffer Overflows, Viruses, and Worms 417

“Do I Know This Already?” Quiz 417
Foundation Topics 420
Buffer Overflows 420
What Is a Buffer Overflow? 420
Why Are Programs Vulnerable? 421
Understanding Buffer-Overflow Attacks 423
Common Buffer-Overflow Attacks 426
Preventing Buffer Overflows 427
Viruses and Worms 429
Types and Transmission Methods of Viruses 429
Virus Payloads 431
History of Viruses 432
Well-Known Viruses 434
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Late 1980s</td>
<td>434</td>
</tr>
<tr>
<td>The 1990s</td>
<td>434</td>
</tr>
<tr>
<td>2000 and Beyond</td>
<td>435</td>
</tr>
<tr>
<td>Virus Tools</td>
<td>438</td>
</tr>
<tr>
<td>Preventing Viruses</td>
<td>439</td>
</tr>
<tr>
<td>Antivirus</td>
<td>440</td>
</tr>
<tr>
<td>Malware Analysis</td>
<td>442</td>
</tr>
<tr>
<td>Static Analysis</td>
<td>442</td>
</tr>
<tr>
<td>Dynamic Analysis</td>
<td>445</td>
</tr>
<tr>
<td>Summary</td>
<td>446</td>
</tr>
<tr>
<td>Exam Preparation Tasks</td>
<td>447</td>
</tr>
<tr>
<td>Review All Key Topics</td>
<td>447</td>
</tr>
<tr>
<td>Define Key Terms</td>
<td>447</td>
</tr>
<tr>
<td>Exercises</td>
<td>448</td>
</tr>
<tr>
<td>11.1 Locating Known Buffer Overflows</td>
<td>448</td>
</tr>
<tr>
<td>11.2 Review CVEs and Buffer Overflows</td>
<td>449</td>
</tr>
<tr>
<td>Review Questions</td>
<td>449</td>
</tr>
<tr>
<td>Suggested Reading and Resources</td>
<td>451</td>
</tr>
<tr>
<td>Chapter 12 Cryptographic Attacks and Defenses</td>
<td>453</td>
</tr>
<tr>
<td>“Do I Know This Already?” Quiz</td>
<td>453</td>
</tr>
<tr>
<td>Foundation Topics</td>
<td>456</td>
</tr>
<tr>
<td>Functions of Cryptography</td>
<td>456</td>
</tr>
<tr>
<td>History of Cryptography</td>
<td>457</td>
</tr>
<tr>
<td>Algorithms</td>
<td>459</td>
</tr>
<tr>
<td>Symmetric Encryption</td>
<td>460</td>
</tr>
<tr>
<td>Data Encryption Standard (DES)</td>
<td>461</td>
</tr>
<tr>
<td>Advanced Encryption Standard (AES)</td>
<td>463</td>
</tr>
<tr>
<td>Rivest Cipher (RC)</td>
<td>463</td>
</tr>
<tr>
<td>Asymmetric Encryption (Public Key Encryption)</td>
<td>464</td>
</tr>
<tr>
<td>RSA</td>
<td>465</td>
</tr>
<tr>
<td>Diffie-Hellman</td>
<td>465</td>
</tr>
<tr>
<td>ElGamal</td>
<td>466</td>
</tr>
<tr>
<td>Elliptic Curve Cryptography (ECC)</td>
<td>466</td>
</tr>
<tr>
<td>Hashing</td>
<td>466</td>
</tr>
</tbody>
</table>
Digital Signature 467
Steganography 468
Steganography Operation 469
Steganographic Tools 470
Digital Watermark 472
Digital Certificates 473
Public Key Infrastructure 474
Trust Models 475
Single Authority 475
Hierarchical Trust 476
Web of Trust 476
Protocols, Standards, and Applications 477
Encryption Cracking and Tools 479
Weak Encryption 481
Encryption-Cracking Tools 482
Summary 483
Exam Preparation Tasks 484
Review All Key Topics 484
Define Key Terms 484
Exercises 485
12.1 Examining an SSL Certificate 485
12.2 Using PGP 486
12.3 Using a Steganographic Tool to Hide a Message 487
Review Questions 487
Suggested Reading and Resources 490

Chapter 13 Physical Security and Social Engineering 493

“Do I Know This Already?” Quiz 493
Foundation Topics 496
Physical Security 496
Threats to Physical Security 496
Equipment Controls 499
Locks 499
Fax Machines 504
Area Controls 505
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Data and Geotagging</td>
<td>506</td>
</tr>
<tr>
<td>Facility Controls</td>
<td>508</td>
</tr>
<tr>
<td>Personal Safety Controls</td>
<td>510</td>
</tr>
<tr>
<td>Fire Prevention, Detection, and Suppression</td>
<td>510</td>
</tr>
<tr>
<td>Physical Access Controls</td>
<td>511</td>
</tr>
<tr>
<td>Authentication</td>
<td>511</td>
</tr>
<tr>
<td>Defense in Depth</td>
<td>512</td>
</tr>
<tr>
<td>Social Engineering</td>
<td>513</td>
</tr>
<tr>
<td>Six Types of Social Engineering</td>
<td>513</td>
</tr>
<tr>
<td>Person-to-Person Social Engineering</td>
<td>514</td>
</tr>
<tr>
<td>Computer-Based Social Engineering</td>
<td>514</td>
</tr>
<tr>
<td>Reverse Social Engineering</td>
<td>515</td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>515</td>
</tr>
<tr>
<td>Employee Hiring and Termination Policies</td>
<td>516</td>
</tr>
<tr>
<td>Help Desk Procedures and Password Change Policies</td>
<td>516</td>
</tr>
<tr>
<td>Employee Identification</td>
<td>516</td>
</tr>
<tr>
<td>Privacy Policies</td>
<td>517</td>
</tr>
<tr>
<td>Governmental and Commercial Data Classification</td>
<td>518</td>
</tr>
<tr>
<td>User Awareness</td>
<td>519</td>
</tr>
<tr>
<td>Summary</td>
<td>519</td>
</tr>
<tr>
<td>Exam Preparation Tasks</td>
<td>520</td>
</tr>
<tr>
<td>Review All Key Topics</td>
<td>520</td>
</tr>
<tr>
<td>Define Key Terms</td>
<td>521</td>
</tr>
<tr>
<td>Exercises</td>
<td>521</td>
</tr>
<tr>
<td>13.1 Biometrics and Fingerprint Recognition</td>
<td>521</td>
</tr>
<tr>
<td>Review Questions</td>
<td>522</td>
</tr>
<tr>
<td>Suggested Reading and Resources</td>
<td>524</td>
</tr>
</tbody>
</table>

Chapter 14 Final Preparation 527

Tools for Final Preparation 527

- Pearson Cert Practice Test Engine and Questions on the CD 527
 - Install the Software from the CD 527
 - Activate and Download the Practice Exam 528
 - Activating Other Exams 529
 - Premium Edition 529
About the Author

Michael Gregg (CISSP, SSCP, CISA, MCSE, MCT, CTT+, A+, N+, Security+, CCNA, CASP, CISA, CISM, CEH, CHFI, and GSEC) is the founder and president of Superior Solutions, Inc., a Houston, Texas-based IT security consulting firm. Superior Solutions performs security assessments and penetration testing for Fortune 1000 firms. The company has performed security assessments for private, public, and governmental agencies. Its Houston-based team travels the country to assess, audit, and provide training services.

Michael is responsible for working with organizations to develop cost-effective and innovative technology solutions to security issues and for evaluating emerging technologies. He has more than 20 years of experience in the IT field and holds two associate’s degrees, a bachelor’s degree, and a master’s degree. In addition to co-authoring the first, second, and third editions of Security Administrator Street Smarts, Michael has written or co-authored 14 other books, including Build Your Own Security Lab: A Field Guide for Network Testing (Wiley, 2008); Hack the Stack: Using Snort and Ethereal to Master the 8 Layers of an Insecure Network (Syngress, 2006); Certified Ethical Hacker Exam Prep 2 (Que, 2006); and Inside Network Security Assessment: Guarding Your IT Infrastructure (Sams, 2005).

Michael has been quoted in newspapers such as the New York Times and featured on various television and radio shows, including NPR, ABC, CBS, Fox News, and others, discussing cyber security and ethical hacking. He has created more than a dozen IT security training security classes. He has created and performed video instruction on many security topics, such as cyber security, CISSP, CISA, Security+, and others.

When not consulting, teaching, or writing, Michael enjoys 1960s muscle cars and has a slot in his garage for a new project car.

You can reach Michael by email at MikeG@thesolutionfirm.com.
Dedication

In loving memory of my mother-in-law, Elvira Estrello Cuellar, who always stood behind me, encouraged me, and prayed that all my dreams would come true.
Advocacy

I would like to offer a big “thank you” to Christine, for her help and understanding during the long hours that such a project entails. I also want to thank Curley, Betty, Gen, Alice, and all of my family. A special thanks to the people of Pearson IT Certification, who helped make this project a reality, including Betsy Brown. I would also like to thank my technical editors, Brock Pearson and Tatyana Zidarov.

Finally, I would like to acknowledge all the dedicated security professionals who contributed “In the Field” elements for this publication. They include Darla Bryant, Guy Bruneau, Ron Bandes, Jim Cowden, Laura Chappell, Rodney Fournier, Pete Herzog, Bryce Gilbrith, George Mays, Mark “Fat Bloke” Osborn, Donald L. Pipkin, Shondra Schneider, and Allen Taylor.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com
Mail: Pearson IT Certification
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.pearsonitcertification/register for convenient access to any updates, downloads, or errata that might be available for this book.
Introduction

The EC-Council Certified Ethical Hacker (CEH) exam has become the leading ethical hacking certification available today. CEH is recognized by both employers and the industry as providing candidates with a solid foundation of hands-on security testing skills and knowledge. The CEH exam covers a broad range of security concepts to prepare candidates for the technologies that they are likely to be working with if they move into a role that requires hands-on security testing.

Let’s talk some about what this book is. It offers you a one-stop shop for what you need to know to pass the exam. You do not have to take a class in addition to buying this book to pass the exam. However, depending on your personal study habits or learning style, you might benefit from buying this book and taking a class.

Cert Guides are meticulously crafted to give you the best possible learning experience for the particular characteristics of the technology covered and the actual certification exam. The instructional design implemented in the Cert Guides reflects the nature of the CEH certification exam. The Cert Guides provide you with the factual knowledge base you need for the exams, and then take it to the next level with exercises and exam questions that require you to engage in the analytic thinking needed to pass the CEH exam.

EC-Council recommends that the typical candidate for this exam have a minimum of 2 years of experience in IT security. In addition, EC-Council recommends that candidates have preexisting knowledge of networking, TCP/IP, and basic computer knowledge.

Now let’s briefly discuss what this book is not. It is not a book designed to teach you advanced hacking techniques or the latest hack. This book’s goal is to prepare you for the CEH 312-50 exam, and it is targeted to those with some networking, OS, and systems knowledge. It provides basics to get you started in the world of ethical hacking and prepare you for the exam. Those wanting to become experts in this field should be prepared for additional reading, training, and practical experience.

Goals and Methods

The most important and somewhat obvious goal of this book is to help you pass the CEH exam (312-50). In fact, if the primary objective of this book was different, the book’s title would be misleading; however, the methods used in this book to help you pass the CEH exam are designed to also make you much more knowledgeable about how penetration testers do their job. While this book and the accompanying CD together have more than enough questions to help you prepare for the actual exam, the method in which they are used is not to simply make you memorize as many questions and answers as you possibly can.
One key methodology used in this book is to help you discover the exam topics and tools that you need to review in more depth. Remember that the CEH exam will not only expect you to understand hacking concepts but also common tools. So, this book does not try to help you pass by memorization, but helps you truly learn and understand the topics and when specific tools should be used. This book will help you pass the CEH exam by using the following methods:

- Helping you discover which test topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises and scenarios that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the CD

Who Should Read This Book?

This book is not designed to be a general security book or one that teaches network defenses. This book looks specifically at how attackers target networks, what tools attackers use, and how these techniques can be used by ethical hackers. Overall, this book is written with one goal in mind: to help you pass the exam.

So, why should you want to pass the CEH exam? Because it’s one of the leading entry-level hacking certifications. It is also featured as part of DoD 8570, and having the certification might mean a raise, a promotion, or other recognition. It’s also a chance to enhance your résumé and to demonstrate that you are serious about continuing the learning process and that you’re not content to rest on your laurels. Or one of many other reasons.

Strategies for Exam Preparation

Although this book is designed to prepare you to take and pass the CEH certification exam, there are no guarantees. Read this book, work through the questions and exercises, and when you feel confident, take the practice exam and additional exams provided in the test software. Your results should tell you whether you are ready for the real thing.

When taking the actual certification exam, make sure that you answer all the questions before your time limit expires. Do not spend too much time on any one question. If you are unsure about the answer to a question, answer it as best as you can, and then mark it for review.
Remember that the primary objective is not to pass the exam but to understand the material. When you understand the material, passing the exam should be simple. Knowledge is a pyramid; to build upward, you need a solid foundation. This book and the CEH certification are designed to ensure that you have that solid foundation.

Regardless of the strategy you use or the background you have, the book is designed to help you get to the point where you can pass the exam with the least amount of time required. For instance, there is no need for you to practice or read about scanning and Nmap if you fully understand the tool already. However, many people like to make sure that they truly know a topic and therefore read over material that they already know. Several book features will help you gain the confidence that you need to be convinced that you know some material already, and to also help you know what topics you need to study more.

How This Book Is Organized

Although this book could be read cover to cover, it is designed to be flexible and allow you to easily move between chapters and sections of chapters to cover just the material that you need more work with. Chapter 1 provides an overview of ethical hacking and reviews some basics. Chapters 2 through 13 are the core chapters. If you do intend to read them all, the order in the book is an excellent sequence to use. The core chapters, Chapters 2 through 13, cover the following topics:

- **Chapter 2, “The Technical Foundations of Hacking”**—This chapter discusses basic techniques that every security professional should know. This chapter reviews TCP/IP and essential network knowledge.

- **Chapter 3, “Footprinting and Scanning”**—This chapter discusses the basic ideas behind target selection and footprinting. The chapter reviews what type of information should be researched during footprinting and how passive and active footprinting and scanning tools should be used.

- **Chapter 4, “Enumeration and System Hacking”**—This chapter covers enumeration, and it is a final chance to uncover more detailed information about a target before system hacking. System hacking introduces the first step at which the hacker is actually exploiting a vulnerability systems.

- **Chapter 5, “Linux and Automated Assessment Tools”**—This chapter examines the role of Linux in the hacking community and how Linux distributions such as Backtrack are used. This chapter also reviews automated security tools such as Metasploit and Canvas.
Chapter 6, “Trojans and Backdoors”—This chapter covers the ways in which Trojans and backdoors function. It reviews the methods in which the tools are deployed and used.

Chapter 7, “Sniffers, Session Hijacking, and Denial of Service”—This chapter covers sniffing tools such as Wireshark. The chapter examines the difference in passive and active sniffing. It also reviews session hijacking and DoS, DDoS, and botnet techniques.

Chapter 8, “Web Server Hacking, Web Applications, and Database Attacks”—This chapter covers the basics of web hacking, application attacks, and how SQL injection works.

Chapter 9, “Wireless Technologies, Mobile Security, and Attacks”—This chapter examines the underlying technology of wireless technologies, mobile devices, Android, IOS, and Bluetooth.

Chapter 10, “IDS, Firewalls, and Honeypots”—This chapter discusses how attackers bypass intrusion detection systems and firewalls. This chapter also reviews honeypots and honeynets and how they are used to jail attackers.

Chapter 11, “Buffer Overflows, Viruses, and Worms”—This chapter covers the fundamentals of buffer overflows. The chapter also examines basic types of malware such as viruses and worms, and examines static and active analysis of malicious code.

Chapter 12, “Cryptographic Attacks and Defenses”—This chapter covers the fundamentals of attacking cryptographic systems and how tools such as encryption can be used to protect critical assets.

Chapter 13, “Physical Security and Social Engineering”—This chapter covers the fundamentals of social engineering attacks and introduces the concept that not all attacks are technical in nature. Attacks can be technical, social, or even physical. Finally, this chapter reviews important concepts of penetration testing.
This page intentionally left blank
This page intentionally left blank
This chapter covers the following topics:

- **Enumeration**: The process of counting off or listing what services, applications, and protocols are present on each identified computer.

- **System Hacking**: The process of gaining access, escalating privileges, maintaining control, and covering tracks.
This chapter introduces Windows enumeration and system hacking. It gives you the knowledge you need to prepare for the Certified Ethical Hacker exam, and it broadens your knowledge of Windows security controls and weaknesses. However, this chapter addresses only the basic information, as it would require an entire book to cover all Windows hacking issues. If you are seriously considering a career as a penetration tester, this chapter should whet your appetite for greater knowledge.

The chapter begins by introducing enumeration and discusses what kind of information can potentially be uncovered. Enumeration is the final pre-attack phase in which you probe for usernames, system roles, account details, open shares, and weak passwords. This chapter also reviews some basics of Windows architecture. A review of Windows users and groups is discussed. The last topic is system hacking. This section discusses the tools and techniques used for gaining access to computer systems. Although many of the tools introduced are specific to Windows systems, the steps are the same no matter what the platform, as evident in Chapter 5, “Linux and Automated Assessment Tools,” when Linux is discussed.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess whether you should read this entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 4-1 lists the major headings in this chapter and their corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes and Review Questions.”

Table 4-1 “Do I Know This Already?” Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enumeration</td>
<td>2, 3, 4, 5, 10</td>
</tr>
<tr>
<td>System Hacking</td>
<td>1, 6, 7, 8, 9</td>
</tr>
</tbody>
</table>
CAUTION The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you correctly guess skews your self-assessment results and might provide you with a false sense of security.

1. Which of the following is considered a nontechnical attack?
 a. Password sniffing
 b. Dumpster diving
 c. Password injection
 d. Software keylogger

2. A RID of 500 is associated with what account?
 a. A user account
 b. The first users account
 c. The guest account
 d. The administrator account

3. During enumeration what ports may specifically indicate SMB on a Windows computer?
 a. 110
 b. 111
 c. 389
 d. 445

4. During enumeration what ports may specifically indicate portmapper on a Linux computer?
 a. 110
 b. 111
 c. 389
 d. 445

5. Which of the following is a tool commonly used for enumeration?
 a. GetAcct
 b. John
6. Which type of password cracking makes use of the space/time memory trade-off?
 a. Dictionary attack
 b. Rainbow table
 c. Rule
 d. Hybrid

7. The second layer of security on the SAM file is known as what?
 a. Encoding
 b. Obscuring
 c. SYSKEY
 d. Salting

8. Windows passwords that are stored in seven-character fields are known as what?
 a. NTLMv2
 b. Kerberos
 c. Salted
 d. LAN Manager

9. Which of the following matches the common padding found on the end of short Windows passwords?
 a. 1404EE
 b. EE4403
 c. EEEEEEE
 d. 1902DD

10. If you were going to enumerate DNS, which of the following tools could be used?
 a. Route print
 b. ARP -A
 c. Nslookup
 d. IPconfig
Foundation Topics

Enumeration

Enumeration can be described as an in-depth analysis of targeted computers. Enumeration is performed by actively connecting to each system to identify the user accounts, system accounts, services, and other system details. Enumeration is the process of actively querying or connecting to a target system to acquire information on: NetBIOS/LDAP, SNMP, UNIX/Linux operation, NTP servers, SMTP servers, and DNS servers. These topics are discussed next.

Windows Enumeration

The object of Windows enumeration is to identify a user account or system account for potential use. You might not have to find a system administrator account because escalation of privilege may be possible. At this point, we are simply seeking the knowledge to gain some level of access.

To better target Microsoft Windows computers, you should understand how they function. Windows ships with both client and server versions. Client systems that are still being supported as of this writing include the following: Windows XP, Vista, 7, and 8. On the server side, Microsoft supports Windows 2003, 2008, and 2012. Each of these operating systems shares a somewhat similar kernel. The kernel is the most trusted part of the operating system. How does the operating system know who and what to trust? The answer is by implementing rings of protection. The protection ring model provides the operating system with various levels at which to execute code or restrict its access. It provides a level of access control and granularity. As you move toward the outer bounds of the model, the numbers increase, and the level of trust decrease. Figure 4-1 shows the basic model that Windows uses for protective rings.

With the Windows architecture, you can see that there are two basic modes: user mode (ring 3) and kernel mode (ring 0). User mode has restrictions, whereas kernel mode allows full access to all resources. This is an important concept for the ethical hacker to contemplate because antivirus and analysis tools can detect hacking tools and code that run in user mode. However, if code can be deployed on a Windows system to run in kernel mode, it can hide itself from user mode detection and will be harder to detect and eradicate. All the code that runs on a Windows computer must run in the context of an account. The system account has the capability to perform kernel mode activities. The level of the account you hold determines your ability to execute code on a system. Hackers always want to run code at the highest possible privilege. Windows uses the following two things to help keep track of a user’s security rights and identity:
■ Security identifiers (SIDs)
■ Relative identifiers (RIDs)

SIDs are a data structure of variable length that identifies user, group, and computer accounts. For example, a SID of S-1-1-0 indicates a group that includes all users. Closely tied to SIDs are RIDs. A RID is a portion of the SID that identifies a user or group in relation to the authority that user has. Let’s look at an example:

S-1-5-21-1607980848-492894223-1202660629-500
S for security id
1 Revision level
5 Identifier Authority (48 bit) 5 = logon id
21 Sub-authority (21 = nt non unique)
1607980848 SA
492894223 SA domain id
1202660629 SA
500 User id

Figure 4-1 Windows architecture.
Focus your attention on the last line of text in this example. The user ID specifies the specific user, as shown in Table 4-2.

<table>
<thead>
<tr>
<th>User ID</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin</td>
<td>500</td>
</tr>
<tr>
<td>Guest</td>
<td>501</td>
</tr>
<tr>
<td>Kerberos</td>
<td>502</td>
</tr>
<tr>
<td>First user</td>
<td>1000</td>
</tr>
<tr>
<td>Second user</td>
<td>1001</td>
</tr>
</tbody>
</table>

This table shows that the administrator account has a RID of 500 by default, the guest has a RID 501, and the first user account has a RID of 1000. Each new user gets the next available RID. This information is important because simply renaming an account will not prevent someone from discovering key accounts. This is similar to the way that Linux controls access for users and system processes through an assigned user ID (UID) and a group ID (GID) that is found in the /etc/passwd file.

On a related topic, let’s look at some other important security components of Microsoft Windows that will help you understand the enumeration process.

TIP Be able to correlate specific user accounts and RIDs for the exam, such as 501 = guest.

Windows Security

On a standalone Windows computer, user information and passwords are stored in the Security Account Manager (SAM) database. If the system is part of a domain, the domain controller stores the critical information in Active Directory (AD). On standalone systems not functioning as domain controllers, SAM contains the defined local users and groups, along with their passwords and other attributes. The SAM database is stored in Windows/System32/config folder in a protected area of the Registry under HKLM\SAM.

AD is a directory service, which contains a database that stores information about objects in a domain. AD keeps password information and privileges for domain users and groups that were once kept in the domain SAM. Unlike the old NT trust model, a domain is a collection of computers and their associated security groups.
that are managed as a single entity. AD was designed to be compatible to Light-weight Directory Access Protocol (LDAP); you can get more background information from RFC 2251.

Another important Windows security mechanism is Local security authority subsystem (Lsass). It might sound familiar to you: Lsass is what the Sasser worm exploited by buffer overflow in 2004. Lsass is a user mode process that is responsible for the local system security policy. This includes controlling access, managing password policies, user authentication, and sending security audit messages to the event log.

NetBIOS and LDAP Enumeration

NetBIOS was a creation of IBM. It is considered a legacy protocol today but may still be found on some older systems. On local-area networks (LANs), NetBIOS systems usually identify themselves by using a 15-character unique name. Because NetBIOS is nonroutable by default, Microsoft adapted it to run over Transmission Control Protocol/Internet Protocol (TCP/IP). NetBIOS is used in conjunction with Server Message Blocks (SMBs). SMB allows for the remote access of shared directories and files. These services are provided through the ports shown in Table 4-3.

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>TCP</td>
<td>MS-RPC endpoint mapper</td>
</tr>
<tr>
<td>137</td>
<td>UDP</td>
<td>NetBIOS name service</td>
</tr>
<tr>
<td>138</td>
<td>UDP</td>
<td>NetBIOS datagram service</td>
</tr>
<tr>
<td>139</td>
<td>TCP</td>
<td>NetBIOS session service</td>
</tr>
<tr>
<td>445</td>
<td>TCP</td>
<td>SMB over TCP</td>
</tr>
</tbody>
</table>

This table lists key ports and protocols that Microsoft systems use. When performing a port scan or attempting to identify a system, finding these open ports will signal that you might be dealing with a Microsoft system. After these ports have been identified, you can begin to further enumerate each system.

TIP Make sure that you can identify key Windows ports.

SMB was designed to make it possible for users to share files and folders, although InterProcess Communication (IPC) offers a default share on Windows systems.
This share, the \IPC$, was used to support named pipes that programs use for interprocess (or process-to-process) communications. Because named pipes can be redirected over the network to connect local and remote systems, they also enable remote administration. As you might think, this can be a problem.

A null session occurs when you log in to a system with no user ID and password at all. In legacy Windows versions 2000, XP, and Windows 2003, a null session could be set up using the \net command.

There’s an entire host of \net commands. A few are discussed here, but for a more complete list, just type \net from the command line and the /? syntax after any of the commands you see that you would like more information on.

Even though you may not see the \IPC$ share when looking for shared drives and folders, that doesn’t mean that it is not there. For example, if you have identified open ports of 135, 139, and 445 on some targeted systems, you might attempt the \net view /domain command:

```
C:\>net view /domain
Domain
SALES
MARKETING
ACCOUNTING
The command completed successfully.
```

Notice that these \net commands are quite handy. They have identified the sales, marketing, and accounting groups. To query any specific domain group, just use the \net command again in the form of \net view /domain:domain_name:

```
C:\>net view /domain:accounting
Server Name               Remark
\Mickey
\Pluto
\Donald
The command completed successfully.
```

You can take a closer look at any one system by using the \net view \ \system_name command:

```
C:\>net view \Donald
Shared resources at \DONALD
Sharename   Type   Comment
-----------------------------------------------------
CDRW Disk
D Disk
Payroll Disk
```
Printer Disk
Temp Disk

The command was completed successfully.

Now that you have completed some basic groundwork, let’s move on to enumerating user details, account information, weak passwords, and so on. IPC$ is further exploited for these activities. Specifically, you will need to set up a null session. You can do so manually with the net command:

\C:\net use \\donald\ipc$ " " /u:"

NOTE Setting up a null session to take advantage of Windows underlying communication protocols has been secured with newer operating systems such as Server 2012, Windows 7, and Windows 8, but you might still find a few old systems on which this is possible.

NetBIOS Enumeration Tools

With a `net use \computer name\ipc$ " " /u:"" command executed, you’re primed to start hacking at the system. The tools discussed in this section, such as DumpSec and GetAcct, require that you have a null session established before you attempt to use them.

DumpSec is a Windows-based graphical user interface (GUI) enumeration tool from SomarSoft. It enables you to remotely connect to Windows machines and dump account details, share permissions, and user information. It is shown in Figure 4-2. Its GUI-based format makes it easy to take the results and port them into a spreadsheet so that holes in system security are readily apparent and easily tracked. It can provide you with usernames, SIDs, RIDs, account comments, account policies, and dial-in information.

GetAcct enables you to input the IP address or NetBIOS name of a target computer and extract account information. It can extract SID, RID, comments, full name, and so on. From our discussion earlier about SIDs on Windows machines, you know that the administrator account on the machine ends in 500. Therefore, you can use GetAcct to discover the SID for the usernames found in your enumeration and discover who has administrative access.
Many tools can be used for enumeration. The ones listed here should give you an idea of what this category of tool can do. Listed here are some other tools that perform the same type of enumeration:

- **SuperScan**: Released by Foundstone, SuperScan retrieves all available information about any known user from any vulnerable Windows system.
- **GetUserInfo**: Created by JoeWare, this command-line tool extracts user info from a domain or computer.
- **Ldp**: This executable is what you need if you’re working with AD systems. After you find port 389 open and authenticate yourself using an account (even guest will work), you will be able to enumerate all the users and built-in groups.
- **User2sid**: This program can retrieve a SID from the SAM from the local or a remote machine. Sid2user.exe can then be used to retrieve the names of all the user accounts and more. For example, typing `user2sid \computer name` returns the name and corresponding SID.

Other tools are available to enumerate a Windows system. For example, if you are local to the system, you can also use NBTStat. Microsoft defines NBTStat as a tool
designed to help troubleshoot NetBIOS name resolution problems. It has options such as local cache lookup, WINS server query, broadcast, LMHOSTS lookup, Hosts lookup, and DNS server query. Typing `nbtstat` at a Windows command prompt will tell you all about its usage:

```
C:\ nbtstat
Displays protocol statistics and current TCP/IP connections using
NBT(NetBIOS over TCP/IP).
NBTSTAT [-a RemoteName] [-A IP address] [-c] [-n]
   [-r] [-R] [-s] [S] [interval]
```

One of the best ways to use NBTstat is with the `-A` option. Let’s look at what that returns:

```
C:\ >NBTstat -A 192.168.13.10
```

```
NetBIOS Remote Machine Name Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DONALD</td>
<td>&lt;00&gt;</td>
<td>UNIQUE</td>
</tr>
<tr>
<td>WORKGROUP</td>
<td>&lt;00&gt;</td>
<td>GROUP</td>
</tr>
<tr>
<td>DONALD</td>
<td>&lt;20&gt;</td>
<td>UNIQUE</td>
</tr>
<tr>
<td>WORKGROUP</td>
<td>&lt;1E&gt;</td>
<td>GROUP</td>
</tr>
<tr>
<td>WORKGROUP</td>
<td>&lt;1D&gt;</td>
<td>UNIQUE</td>
</tr>
<tr>
<td>..<strong>MSBROWSE</strong>.</td>
<td>&lt;01&gt;</td>
<td>GROUP</td>
</tr>
</tbody>
</table>

MAC Address = 00-19-5D-1F-26-68
```

A name table that provides specific hex codes and tags of unique or group is returned. These codes identify the services running on this specific system. For example, do you see the code of `1D UNIQUE`? This signifies that the system Donald is the master browser for this particular workgroup. Other common codes include the following:

<table>
<thead>
<tr>
<th>Title</th>
<th>Hex Value</th>
<th>User/Group</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>1B</td>
<td>U</td>
<td>Domain master browser</td>
</tr>
<tr>
<td>domain</td>
<td>1C</td>
<td>G</td>
<td>Domain controllers</td>
</tr>
<tr>
<td>domain</td>
<td>1D</td>
<td>U</td>
<td>Master browser</td>
</tr>
<tr>
<td>domain</td>
<td>1E</td>
<td>G</td>
<td>Browser service elections</td>
</tr>
</tbody>
</table>

You can find a complete list of NetBIOS name codes at www.cotse.com/nbcodes.htm or by searching for NetBIOS name codes.
SNMP Enumeration

Simple Network Management Protocol (SNMP) is a popular TCP/IP standard for remote monitoring and management of hosts, routers, and other nodes and devices on a network. It works through a system of agents and nodes. SNMP is designed so that requests are sent to agents, and the agents send back replies. The requests and replies refer to configuration variables accessible by agent software. Traps are used to signify an event, such as a reboot or interface failure. SNMP makes use of the Management Information Base (MIB). The MIB is the database of configuration variables that resides on the networking device.

SNMP version 3 offers data encryption and authentication, but version 1 and 2 are still in use. Both version 1 and 2 are clear-text protocols that provides only weak security through the use of community strings. The default community strings are public and private and are transmitted in clear text. If the community strings have not been changed or if someone can sniff the community strings, that person then has more than enough to enumerate the vulnerable devices.

NOTE

SNMP version 1 and 2 use default community strings of public and private.

Devices that are SNMP enabled share a lot of information about each device that probably should not be shared with unauthorized parties. SNMP enumeration tools can be found in both Windows and Linux. Several are mentioned here:

- **snmpwalk**: A Linux command-line SNMP application that uses SNMP GETNEXT requests to query a network entity for a tree of information.
- **IP Network Browser**: A GUI-based network discovery tool from www.solarwinds.net that enables you to perform a detailed discovery on one device or an entire subnet.
- **SNScan**: A free GUI-based SNMP scanner from Foundstone, shown in Figure 4-3.

The best defense against SNMP enumeration is to turn it off if it is not needed. If it is required, make sure that you block ports 161 and 162 at network chokepoints, and ensure that an upgrade to SNMPv3 is possible. Changing the community strings is another defensive tactic as is making them different in each zone of the network.
Linux/UNIX Enumeration

Even though Linux might not offer the opportunities that Windows systems do, there are still some enumeration techniques you can perform. Tools such as rpcclient can be used to enumerate usernames on those operating systems just like on a Windows system. Some other tools are shown here:

- **Rpcclient**: Using the `rpcclient` command, the attacker can enumerate usernames (for example, `rpcclient $> netshareenum`).
- **Showmount**: The `showmount` command displays a list of all clients that have remotely mounted a file system from a specified machine in the host parameter.
- **Finger**: The `finger` command enumerates the user and the host. It enables the attacker to view the user’s home directory, login time, idle times, office location, and the last time they both received or read mail.
- **Rpfinfo**: The `rpfinfo` command helps to enumerate Remote Procedure Call (RPC) protocol. It makes an RPC call to an RPC server and reports what it finds.
- **Enum4linux**: The `enum4linux` command is used for enumerating information from Windows and Samba systems. The application basically acts as a wrapper around the Samba commands `smbclient`, `rpclient`, `net`, and `nmblookup`.

NTP Enumeration

Network Time Protocol (NTP) is a protocol designed to synchronize clocks of networked computers. Networks using Kerberos or other time-based services need a time server to synchronize systems. NTP uses UDP port 123. Basic commands that can be attempted include the following:

- **Ntpdate**: Used to collect time samples
- **Ntptrace**: Follows time servers back up the chain to primary time server
- **Ntpdc**: Used to query about the state of the time server
- **Ntpq**: Used to monitor performance

NTP enumeration tools include the following:

- PresenTense Time Server
- NTP Server Scanner
- LAN Time Analyzer

SMTP Enumeration

Simple Mail Transfer Protocol (SMTP) is used for the transmission of email messages. SMTP operates on TCP port 25. SMTP is something that a hacker will be interested in because it can potentially be used to perform username enumeration via the `EXPN`, `RCPT`, and `VRFY` commands. Penetration testers can also leverage the usernames that have been obtained from this enumeration to conduct further attacks on other systems. SMTP enumeration can be performed with utilities like Netcat.

From the command line, you type the following:

```
nc -v -z -w 2 IP Address 1-1024
```

Other common SMTP enumeration tools include the following:

- NetScan Tools Pro
- Nmap
- Telnet
DNS Enumeration

Domain Name System (DNS) enumeration is the process of locating all information about DNS. This can include identifying internal and external DNS servers and performing lookups of DNS records for information such as usernames, computer names, and IP addresses of potential target systems and performing zone transfers. Much of this activity was done in Chapter 3, “Footprinting and Scanning.” The most straightforward way is to use Nslookup, but you can also use other tools. Tools for enumeration include the following:

- DigDug
- WhereIsIP
- NetInspector
- Men and Mice Management Console

System Hacking

System hacking is a big step in the fact that you are no longer simply scanning and enumerating a system. At this point, you are attempting to gain access. Things start to change because this stage is about breaking and entering into the targeted system. Previous steps, such as footprinting, scanning, and enumeration, are all considered pre-attack stages. As stated, before you begin, make sure that you have permission to perform these activities on other people’s systems.

The primary goal of the system hacking stage is to authenticate to the remote host with the highest level of access. This section covers some common nontechnical and technical password attacks against authentication systems.

Nontechnical Password Attacks

Attackers are always looking for easy ways to gain access to systems. Hacking authentication systems is getting harder because most organizations have upped their game, using strong authentication and improving auditing controls. That is one reason why nontechnical attacks remain so popular. Basic techniques include the following:

- Dumpster diving: Dumpster diving is the act of looking through a company’s trash to find information that may help in an attack. Access codes, notes, passwords, and even account information can be found.

- Social engineering: We spend much more time discussing social engineering later in the book, but for now what is important to know is that social engineering is the manipulation of people into performing actions or divulging confidential information.
Shoulder surfing: The act of watching over someone’s shoulder to get information such as passwords, logins, and account details.

Technical Password Attacks

Technical password attacks require some use of technology. These attacks also build on the information you have obtained in the previous steps. Tools used during enumeration, such as Getacct, IP Network Browser, and net view, may have returned some valuable clues about specific accounts. By now, you may even have account names, know who is the administrator, know whether there is a lockout policy, and even know the names of open shares. Technical password attack techniques discussed here include the following:

- Password guessing
- Automated password guessing
- Password sniffing
- Keyloggers

Many of today’s most successful attacks involve both technical and nontechnical elements.

Password Guessing

Guessing usernames and passwords requires that you review your findings. Remember that good documentation is always needed during a penetration test, so make sure that you have recorded all your previous activities. When password guessing is successful, it is usually because people like to use easy to remember words and phrases. A diligent penetration tester or attacker will look for subtle clues throughout the enumeration process to key in on—probably words or phrases the account holder might have used for a password. What do you know about this individual, what are his hobbies? If the account holder is not known to you, focus on accounts that

- Haven’t had password changes for a long time
- Have weakly protected service accounts
- Have poorly shared accounts
- Indicate the user has never logged in
- Have information in the comment field that might be used to compromise password security
If you can identify such an account, you can issue the `net use` command from the command line to attempt the connection:

```
net use * \IP_address\share * /u:name
```

You'll be prompted for a password to complete the authentication:

```
C:\ > net use * \192.188.13.10\c$ * /u:jack
Type the password for \172.20.10.79\c$:
The command completed successfully
```

Automated Password Guessing

Because you may want to set up a method of trying each account once or twice for weak passwords, you might consider looping the process. Automated password guessing can be performed by constructing a simple loop using the Windows command shell. It is based on the standard `net use` syntax. The steps are as follows:

1. Create a simple username and password file.
2. Pipe this file into a `FOR` command as follows:

```
C:\ > FOR /F "token=1, 2" * %i in (credentials.txt) do net use \target\IPC$ %i /u:%j
```

Many dedicated software programs automate password guessing. Some of the more popular free tools include NAT, Brutus, THC Hydra, and Venom. NetBIOS Auditing Tool (NAT) is a command-line automated password guessing tool. Just build a valid list of users from the tools discussed during enumeration. Save the usernames to a text file. Now create a second list with potential passwords. Feed both of these into NAT, as follows:

```
nat [-o filename] [-u userlist] [-p passlist] <address>
```

NAT attempts to use each name to authenticate with each password. If it is successful, it halts the program at that point. Then you want to remove that name and start again to find any additional matches. You can grab a copy of NAT at www.tux.org/pub/security/secnet/tools/nat10/.

NOTE Make sure that you identify whether there is a password lockout policy, because you might have only two or three tries before the account is locked. Otherwise, you might inadvertently cause a denial of service (DoS) if you lock out all the users.
Password Sniffing

If your attempts to guess passwords have not been successful, sniffing or keystroke loggers might offer hope. Do you ever think about how much traffic passes over a typical network every day? Most networks handle a ton of traffic, and a large portion of it might not even be encrypted. Password sniffing requires that you have physical or logical access to the device. If that can be achieved, you can simply sniff the credentials right off the wire as users log in.

One such tool is Pass-The-Hash. This application allows an attacker to authenticate to a remote server using the LM/NTLM hash of a user’s password, eliminating the need to crack/brute-force the hashes to obtain the clear-text password. Because Windows does not salt passwords, they remain static from session to session until the password is changed. If an attacker can obtain a password hash, it can be functionally equivalent to obtaining the clear-text password. Rather than attempting to crack the hash, attackers can simply replay them to gain unauthorized access. You can download Pass-The-Hash at http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Pass-The-Hash_Toolkit. ScoopLM is another tool designed to sniff password hashes; it sniffs for Windows authentication traffic. When passwords are detected and captured, it features a built-in dictionary and brute-force cracker.

Besides capturing Windows authentications, there are also tools to capture and crack Kerberos authentication. Remember that the Kerberos protocol was developed to provide a secure means for mutual authentication between a client and a server. It enables the organization to implement single sign-on (SSO). You should already have a good idea if Kerberos is being used, as you most likely scanned port 88, the default port for Kerberos, in an earlier step.

KerbCrack, a tool from NTSecurity.nu, can be used to attack Kerberos. It consists of two separate programs. The first portion is a sniffer that listens on port 88 for Kerberos logins, and the second portion is used as a cracking program to dictionary or brute-force the password. If all this talk of sniffing has raised your interest in the topic, you’ll enjoy Chapter 7, “Sniffers, Session Hijacking, and Denial of Service,” which covers sniffers in detail.

TIP If none of the options discussed previously are feasible, there is still keystroke logging, which is discussed next.
Keystroke Loggers

Keystroke loggers can be software or hardware devices used to monitor activity. Although an outsider to a company might have some trouble getting one of these devices installed, an insider is in a prime position.

Hardware keystroke loggers are usually installed while users are away from their desks and are completely undetectable, except for their physical presence. When was the last time you looked at the back of your computer? Even then, they can be overlooked because they resemble a keyboard extension cable or adapter; www.keyghost.com has a large collection. Some hardware keyloggers use WiFi, which means that once it is deployed the attacker does not have to retrieve the device and can communicate with it remotely via wireless or Bluetooth connection.

Software keystroke loggers sit between the operating system and the keyboard. Most of these software programs are simple, but some are more complex and can even email the logged keystrokes back to a preconfigured address. What they all have in common is that they operate in stealth mode and can grab all the text a user enters. Table 4-4 shows some common keystroke loggers.

<table>
<thead>
<tr>
<th>Product</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I SpyNow</td>
<td>www.ispynow.net</td>
</tr>
<tr>
<td>PC Activity Monitor</td>
<td>PCActivityMonitor.org</td>
</tr>
<tr>
<td>RemoteSpy</td>
<td>www.remotespy.com</td>
</tr>
<tr>
<td>Spector</td>
<td>www.spectorsoft.com</td>
</tr>
<tr>
<td>KeyStrokeSpy</td>
<td>www.keylogger-software.com</td>
</tr>
</tbody>
</table>

TIP Keystroke loggers are one way to obtain usernames and passwords.

Privilege Escalation and Exploiting Vulnerabilities

If the attacker can gain access to a Windows system as a standard user, the next step is privilege escalation. This step is required because standard user accounts are limited; to be in full control, administrator access is needed. This might not always be an easy task because privilege-escalation tools must be executed on the victim’s
system. How do you get the victim to help you exploit a vulnerability? Common techniques include the following:

- Exploiting an application
- Tricking the user into executing the program
- Copying the privilege escalation tool to the targeted system and schedule the exploit to run at a predetermined time, such as the AT command
- Gaining interactive access to the system, such as Terminal Server, pcAnywhere, and so on

Exploiting an Application

Sometimes a hacker can get lucky and exploit a built-in application. For example, when you press the Shift key five or more times Windows opens StickyKeys options for you. The resulting dialog box that appears is an interface to enable the use of StickyKeys, which is a Windows feature to aid handicapped users. There is nothing wrong with the use of this feature. The only problem is how it is implemented. If an attacker can gain access, it might be possible to replace sethc.exe with cmd.exe. After replacing the file, you can invoke the command prompt and execute explorer.exe and commands with full access to the computer.

The reason this attacks works is because it slips through all of Windows protection checks. Windows first checks whether the .exe is digitally signed, which cmd.exe is. Next, it checks that the .exe is located in the system directory (%systemroot%\system32), thus validating integrity level and administrator permissions. Windows then checks to make sure the executable is on its internal list of Windows protected system files and known to be part of the OS, which cmd.exe is and therefore passes. Therefore, Windows thinks that it is launching the accessibility feature StickyKeys, but instead it is launching shellcode running as LocalSystem.

Exploiting a Buffer Overflow

It’s important to realize that buffer overflows, memory corruption, heap attacks are patched over time. Therefore, these exploits work only for specific versions of operating system or application. An example of this can be seen with the Aurora exploit. This exploit was used to gain access on vulnerable Windows systems running Internet Explorer 6. The exploit caused a memory corruption flaw in Internet Explorer. This flaw was found in the wild and was a key component of the Operation Aurora attacks used against Google and others. The attack works by spraying the heap with a large amount of data. Heap spraying is the act of loading a large amount of data in the heap along with some shellcode. The aim of placing all of this data onto the
heap is to create the right conditions in memory to allow the shellcode to be executed.

Java is another application that has been exploited in several attacks. One example is the Java watering hole attacks in 2013. Stack-based buffer overflows in the Java Stored Procedure infrastructure allows remotely authenticated users to execute arbitrary code by leveraging certain CONNECT and EXECUTE privileges. Some well-known privilege-escalation tools are shown here:

- **Billybastard.c**: Windows 2003 and XP
- **ANI Exploit**: Windows Vista
- **Getad.exe**: Windows 2003 and XP
- **ERunAs2X.exe**: Windows 2000

TIP Keeping systems and applications patched is one of the best countermeasures you can do to defend against privilege-escalation tools.

Owning the Box

One of the first activities an attacker wants to do after he owns the box is to make sure that he has continued access and that he has attempted to cover his tracks. One way to ensure continued access is to compromise other accounts. Stealing SAM is going to give the attacker potential access to all the passwords. SAM contains the user account passwords stored in their hashed form. Microsoft raised the bar with the release of NT Service Pack 3 by adding a second layer of encryption called SYSKEY. SYSKEY adds a second layer of 128-bit encryption. After being enabled, this key is required by the system every time it is started so that the password data is accessible for authentication purposes.

Attackers can steal the SAM through physical or logical access. If physical access is possible, the SAM can be obtained from the NT ERD (Emergency Repair Disk) from C:\winnt\repair\sam. Newer versions of Windows place a backup copy in C:\winnt\repair\regback\sam, although SYSKEY prevents this from easily being cracked. One final note here is that you can always just reset the passwords. If you have physical access, you can simply use tools such as LINNT and NTFSDOS to gain access. NTFSDOS can mount any NTFS partition as a logical drive. NTFSDOS is a read-only network file system driver for DOS/Windows. If loaded onto a CD or thumb drive, it makes a powerful access tool. Logical access presents some easier possibilities. The Windows SAM database is a binary format, so it's not
easy to directly inspect. Tools such as PWdump and LCP can be used to extract and crack SAM. Before those programs are examined, let’s briefly review how Windows encrypts passwords and authenticates users.

Authentication Types

Windows supports many authentication protocols, including those used for network authentication, dialup authentication, and Internet authentication. For network authentication and local users, Windows supports Windows NT Challenge/Response, also known as NTLM. Windows authentication algorithms have improved over time. The original LAN Manager (LM) authentication has been replaced by NTLMv2. Windows authentication protocols include the following:

- **LM authentication**: Used by 95/98/Me and is based on DES
- **NTLM authentication**: Used by NT until Service Pack 3 and is based on DES and MD4
- **NTLM v2 authentication**: Used post-NT Service Pack 3 and is based on MD4 and MD5
- **Kerberos**: Implemented first in Windows 2000 and can be used by all current versions of Windows, including Server 2012 and Windows 8

Because of backward compatibility, LM can still be used. These encrypted passwords are particularly easy to crack because an LM password is uppercased, padded to 14 characters, and divided into two 7-character parts. The two hashed results are concatenated and stored as the LM hash, which is stored in SAM. To see how weak this system is, consider the following example. Let’s say that an LM password to be encrypted is Dilbert!:

1. When this password is encrypted with an LM algorithm, it is converted to all uppercase: DILBERT!
2. Then the password is padded with null (blank) characters to make it a 14-character length: DILBERT!___
3. Before encrypting this password, the 14-character string is divided into two seven character pieces: DILBERT and !_ ___
4. Each string is encrypted individually, and the results are concatenated together.

With the knowledge of how LM passwords are created, examine the two following password entries that have been extracted from SAM with PWdump:
Notice how each entry has been extracted in two separate character fields? Can you see how the first half of each portion of the hash ends with 1404EE? That is the padding, and this is how password-cracking programs know the length of the LM password. It also aids in password-cracking time. Just consider the original Dilbert example. If extracted, one seven-character field will hold Dilbert, whereas the other only has one character (!).

Cracking 1 character or even 7 is much easier than cracking a full 14. Fortunately, Windows has moved on to more secure password algorithms. Windows can use six levels of authentication now, as shown in Table 4-5. Using longer passwords, greater than 14 characters, and using stronger algorithms is one of the best defenses against cracking passwords.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>LM</th>
<th>NTLM</th>
<th>NTLMv2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hash</td>
<td>DES</td>
<td>MD4</td>
<td>MD5</td>
</tr>
<tr>
<td>Algorithm</td>
<td>DES</td>
<td>DES</td>
<td>HMAC</td>
</tr>
</tbody>
</table>

TIP Kerberos authentication started with Windows 2000 and is the default authentication on all current versions of Microsoft Windows products. Kerberos is considered a strong form of authentication.

Cracking the Passwords

One direct way to remove the passwords from a local or remote system is by using L0phtcrack. L0phtcrack is a Windows password-cracking tool. LC6 is the current version. It can extract hashes from the local machine, a remote machine, and can sniff passwords from the local network if you have administrative rights.
Tools like FGdump and PWdump are other good password-extraction tools. You can get a copy of this tool at www.openwall.com/passwords/nt.shtml. This command-line tool can bypass SYSKEY encryption if you have administrative access. PWdump works by a process of dynamic link library (DLL) injection. This allows the program to hijack a privileged process. PWdump7, the current version, was expanded to allow remote access to the victim system. The program is shown here:

```bash
C:\ pwdump>pwdump7 192.168.13.10 password.txt
Completed.
```

For PWdump7 to work correctly, you need to establish a session to an administrative share. The resulting text file reveals the hashed passwords:

```bash
C:\ pwdump>type password.txt
Jack: 500: A34A4329AAD3MFEB435B51404EE:
       FD02A1237LSS80CC22D98644FFE0:
Ben:  1000: 466C097A37B26C0CA5A5B51404EE:
       F2477A14L49F4F2AC3E3207FE0:
Guest: 501: NO PASSWORD*********************:
       NO PASSWORD*********************:
Martha: 1001: D79135112A3EC2AAD3B431404EE:
        EEAC47322ABERT67D9C08A7958A:
Curley: 1002: D83A4FB0461F70A3B435B51404EE:
         BF4WERTB7FFE33E43A2402D8DA37
```

With the hashed passwords safely stored in the text file, the next step is to perform a password crack. Historically, three basic types of password cracking exist: dictionary, hybrid, and brute-force attacks.

A dictionary password attack pulls words from the dictionary or word lists to attempt to discover a user’s password. A dictionary attack uses a predefined dictionary to look for a match between the encrypted password and the encrypted dictionary word. Many times, dictionary attacks will recover a user’s password in a short period of time if simple dictionary words are used.

A hybrid attack uses a dictionary or a word list and then prepends and appends characters and numbers to dictionary words in an attempt to crack the user’s password. These programs are comparatively smart because they can manipulate a word and use its variations. For example, take the word `password`. A hybrid password audit would attempt variations such as `1password`, `password1`, `p@ssword`, `pa44w0rd`, and so on. Hybrid attacks might add some time to the password-cracking process, but they increase the odds of successfully cracking an ordinary word that has had some variation added to it.
A brute-force attack uses random numbers and characters to crack a user’s password. A brute-force attack on an encrypted password can take hours, days, months, or years, depending on the complexity and length of the password. The speed of success depends on the speed of the CPU’s power. Brute-force audits attempt every combination of letters, numbers, and characters.

Tools such as L0phtcrack, LCP, Cain and Abel, and John the Ripper can all perform dictionary, hybrid, and brute-force password cracking. The most popular are explained in the following list:

- **Cain and Abel** is a multipurpose tool that can perform a variety of tasks, including password cracking, Windows enumeration, and Voice over IP (VoIP) sniffing. The password-cracking portion of the program can perform dictionary/brute-force attacks and can use precomputed rainbow tables. It is shown in Figure 4-4. Notice the many types of password cracking it can perform.

- **John the Ripper** is another great password-auditing tool. It is available for 11 types of UNIX systems, plus Windows. It can crack most common passwords, including Kerberos AFS and Windows hashes. Also, a large number of add-on modules are available for John the Ripper that can enable it to crack OpenVMS passwords, Windows credentials cache, and MySQL passwords. Just
remember that the cracked passwords are not case sensitive and might not represent the real mixed-case password. A determined attacker can overcome this small hindrance.

Years ago, dictionary, hybrid, and brute-force attacks were the primary methods used to recover passwords or attempt to crack them. Many passwords were considered secure just because of the time it would take to crack them. This time factor was what made these passwords seem secure. If given enough time, the password could be cracked, but it might take several months. A relatively new approach to password cracking has changed this belief. It works by means of a rainbow table. The RainbowCrack technique is the implementation of Philippe Oechslin’s faster time-memory trade-off technique. It works by precomputing all possible passwords in advance. After this time-consuming process is complete, the passwords and their corresponding encrypted values are stored in a file called a rainbow table. An encrypted password can be quickly compared to the values stored in the table and cracked within a few seconds. RainbowCrack and Ophcrack are examples of two such programs.

Ophcrack is a password-cracking tool that implements the rainbow table techniques previously discussed. What’s most important to note here is that if a password is in the rainbow table, it will be cracked quickly. Its website also lets you enter a hash and reveal the password in just a few seconds.

Hiding Files and Covering Tracks

Before moving on to other systems, the attacker must attend to a few unfinished items. According to Locard’s exchange principle, “Whenever someone comes in contact with another person, place, or thing, something of that person is left behind.” This means that the attacker must disable logging, clear log files, eliminate evidence, plant additional tools, and cover his tracks. Listed here are some of the techniques that an attacker can use to cover his tracks.

- **Disabling logging:** Auditpol was originally included in the NT Resource Kit for administrators. It works well for hackers, too, as long as they have administrative access. Just point it at the victim’s system as follows:

  ```
  C:\>auditpol \ 192.168.13.10 /disable
  Auditing Disabled
  ```

- **Clear the log file:** The attacker will also attempt to clear the log. Tools such as Winzapper, Evidence Eliminator, and ELSave can be used. ELSave will remove all entries from the logs, except one entry that shows the logs were cleared. It is used as follows:

  ```
  elsave -s \192.168.13.10 -l "Security" -C
  ```
One way for attackers to cover their tracks is with rootkits. Rootkits are malicious codes designed to allow an attacker to get expanded access and hide his presence. Rootkits were traditionally a Linux tool, but they are now starting to make their way into the Windows environment. Rootkits such as FU, Vanquish, Hacker Defender, and AFX are all available for Windows systems.

Rootkits can be classified as hypervisor, kernel level, application level, hardware/firmware, boot loader, and library level. Some of these rootkits, such as kernel level, are particularly dangerous because they take control of the operating system kernel. If you suspect that a computer has been rootkitted, you need to use an MD5 hashing utility or a program, such as Tripwire, to determine the viability of your programs. The only other alternative is to rebuild the computer from known good media.

File Hiding

Various techniques are used by attackers to hide their tools on the compromised computer. Some attackers might just attempt to use the `attribute` command to hide files, whereas others might place their files in low traffic areas. A more advanced method is to use NTFS alternate data streams (ADS). NTFS ADS was developed to provide for compatibility outside of the Windows world with structures, such as the Macintosh Hierarchical File System (HFS). These structures use resource forks to maintain information associated with a file, such as icons and so on.

The streams are a security concern because an attacker can use these streams to hide files on a system. ADS provides hackers with a means of hiding malware or hacking tools on a system to later be executed without being detected by the systems administrator. Because the streams are almost completely hidden, they represent a near-perfect hiding spot on a file system. It allows the attacker the perfect place to hide his tools until he needs to use them at a later date. An ADS stream is essentially files that can be executed. To delete a stream, its pointer must be deleted first (or copy the pointer file to a FAT file system). That will delete the stream because FAT cannot support ADS. To create an ADS, issue the following command:

```
Type certguide.zip > readme.txt:certguide.zip
```

This command streamed certguide.zip behind readme.txt. This is all that is required to stream the file. Now the original secret file can be erased:

```
Erase certguide.zip
```

All the hacker must do to retrieve the hidden file is to type the following:

```
Start c:\readme.txt:certguide.zip
```
This will execute ADS and open the secret file. Tools that can detect streamed files include the following:

- **Streams**: A Microsoft tool
- **Sfind**: A Foundstone forensic tool for finding streamed files
- **LNS**: Another tool used for finding streamed files, developed by ntsecurity.nu

Linux does not support ADS, although an interesting slack space tool is available called Bmap, which you can download from www.securityfocus.com/tools/1359. This Linux tool can pack data into existing slack space. Anything could be hidden there, as long as it fits within the available space or is parsed up to meet the existing size requirements.

One final step for the attacker is to gain a command prompt on the victim’s system. This allows the attacker to actually be the owner of the box. Tools that allow the attacker to have a command prompt on the system include Psexec, Remoxec, and Netcat. Netcat is covered in detail in Chapter 6, “Trojans and Backdoors.” After the attacker has a command prompt on the victim’s computer, he will usually restart the methodology, looking for other internal targets to attack and compromise. At this point, the methodology is complete. As shown in Figure 4-5, you can see that the attacker has come full circle.

![Figure 4-5](Image)
Figure 4-5 Methodology overview.
Chapter Summary

In this chapter, you learned about Windows enumeration and system hacking. Enumeration of Windows systems can be aided by SMB, the IPC$ share, SMTP, SNMP, and DNS. Each offers opportunities for the attacker to learn more about the network and systems he is preparing to attack. The goal of enumeration is to gather enough information to map the attack surface, which is a collection of potential entry points. It might be a buffer overflow, an unsecure application, such as SNMPv1 or 2, or even a weak password that is easily guessed.

System hacking represents a turning point, which is the point at which the attacker is no longer probing but is actually attacking the systems and attempting to break in. System hacking might start with a low-level account. One key component of system hacking is escalation of privilege, which is the act of exploiting a bug, design flaw, or configuration oversight to gain elevated access. The attacker’s overall goal is to own the system. After spending time gaining access, the attacker will want long-term control of the computer or network. After an attacker penetrates and controls one computer, he rarely stops there. He will typically work to cover his tracks and remove any log entries. Besides redirecting sensitive information, stealing proprietary data, and establishing backdoors, attackers will most likely use the compromised system to spread their illegal activities to other computers. If any one system is compromised, the entire domain is at risk. The best defense is a good offense. Don’t give the attacker any type of foothold.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the Introduction, you have a couple of choices for exam preparation: the exercises here; Chapter 14, “Final Preparation”; and the exam simulation questions on the CD-ROM.

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topic icon in the outer margin of the page. Table 4-6 lists a reference of these key topics and the page numbers on which each is found.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Explains how enumeration works</td>
<td>140</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>User ID and corresponding RID code</td>
<td>142</td>
</tr>
</tbody>
</table>
Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

Active Directory, brute-force attack, dictionary attack, hybrid attack, Inter-Process Communication, kernel, kernel mode, keystroke loggers, local security authority subsystem, NetBIOS, RainbowCrack techniques, relative identifiers, Security Accounts Manager, security identifiers, Server Message Block, Simple Network Management Protocol, and user mode

Command Reference to Check Your Memory

The CEH exam focuses on practical, hands-on skills that are used by a security professional. Therefore, you should be able to identify common net use commands.

Table 4-7 net use Commands

<table>
<thead>
<tr>
<th>Task</th>
<th>Command Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null session</td>
<td>net use \ip address\ipc$ "" /u:""</td>
</tr>
<tr>
<td>Map a drive</td>
<td>net use * \ip address\share * /u:username</td>
</tr>
<tr>
<td>View open shares</td>
<td>net view \ipaddress</td>
</tr>
</tbody>
</table>

Exercise

4.1 NTFS File Streaming

By using NTFS file streaming, you can effectively hide files in an NTFS environment.

Estimated Time: 15 minutes.

2. Create a temporary folder on the root of your NTFS drive. Name the folder test, or give it another suitable name.

3. Copy notepad.exe into the test folder and rename it hack.exe. You will use this file to simulate it as the hacking tool.

4. Next, create a text file called readme.txt. Place some text inside the readme file, something like hello world will work.

5. Open a command prompt and change directories to place yourself in the test folder. By performing a directory listing, you should see two files: hack.exe and readme.txt. Record the total free space shown after the directory listing:

6. From the command line, issue the following command:

 Type hack.exe > readme.txt:hack.exe

7. Now run a directory listing again and record the free space results:

8. Has anything changed? You should have noticed that free space has been reduced. That is because you streamed hack.exe behind readme.txt.

9. Execute the following from the command line:

 Start c:\ test\ readme.txt:hack.exe

10. Did you notice what happened? Your hacked file, notepad.exe, should have popped open on the screen. The file is completely hidden, as it is streamed behind readme.txt.

11. Finally run both Sfind and LNS from the command line. Both programs should detect the streamed file hack.exe. File streaming is a powerful way to hide information and make it hard to detect.

Review Questions

1. How can you determine whether an LM hash you extracted contains a password that is fewer than eight characters long?
 a. There is no way to tell because a hash cannot be reversed.
 b. The rightmost portion of the hash is always the same.
2. Which of the following is a well-known password-cracking program?
 a. L0phtcrack
 b. Netcat
 c. Jack the Ripper
 d. NetBus

3. What did the following commands determine?

 C:\ user2sid \ \ truck guest
 S-1-5-21-343818398-789336058-1343024091-501
 C:\ sid2user 5 21 343818398 789336058 1343024091 500
 Name is Joe
 Domain is Truck

 a. These commands demonstrate that the Joe account has a SID of 500.
 b. These commands demonstrate that the guest account has not been disabled.
 c. These commands demonstrate that the guest account has been disabled.
 d. These commands demonstrate that the true administrator is Joe.

4. What is the RID of the true administrator?
 a. 0
 b. 100
 c. 500
 d. 1000

5. What is the best alternative if you discover that a rootkit has been installed on one of your computers?
 a. Copy the system files from a known good system.
 b. Perform a trap and trace.
 c. Delete the files and try to determine the source.
 d. Rebuild from known good media.
6. To increase password security, Microsoft added a second layer of encryption. What is this second layer called?
 a. Salt
 b. SYSKEY
 c. SYS32
 d. SAM

7. SNMP is a protocol used to query hosts and other network devices about their network status. One of its key features is its use of network agents to collect and store management information, such as the number of error packets received by a managed device. Which of the following makes it a great target for hackers?
 a. It’s enabled by all network devices by default.
 b. It’s based on TCP.
 c. It sends community strings in cleartext.
 d. It is susceptible to sniffing if the community string is known.

8. Which of the following is the best way to prevent the use of LM authentication of your legacy Windows 2003 servers?
 a. Use the LMShut tool from Microsoft.
 b. Use the NoLMHash Policy by Using Group Policy.
 d. Use a password that is at least 10 characters long.

9. Which of the following tools can be used to clear the Windows logs?
 a. Auditpol
 b. ELSave
 c. PWdump
 d. Cain and Abel

10. What is one of the disadvantages of using John the Ripper?
 a. It cannot crack NTLM passwords.
 b. It separates the passwords into two separate halves.
 c. It cannot differentiate between uppercase and lowercase passwords.
 d. It cannot perform brute-force cracks.
11. You found the following command on a compromised system:

\texttt{Type nc.exe > readme.txt:nc.exe}

What is its purpose?
 a. This command is used to start a Netcat listener on the victim’s system.
 b. This command is used to stream Netcat behind readme.txt.
 c. This command is used to open a command shell on the victim with Netcat.
 d. This command is used to unstream Netcat.exe.

12. Which of the following uses the faster time-memory trade-off technique and works by precomputing all possible passwords in advance?
 a. Rainbow tables
 b. Dictionary cracks
 c. Hybrid cracks
 d. Brute-force crack

13. Why would an attacker scan for port 445?
 a. To attempt to DoS the NetBIOS SMB service on the victim system
 b. To scan for file and print sharing on the victim system
 c. To scan for SMB services and verify that the system is Windows 2000 or greater
 d. To scan for NetBIOS services and verify that the system is truly a Windows NT server

14. You have downloaded a tool called SYSCracker, and you plan to use it to break SYSKEY encryption. The first thing the tool prompts you for is to set the level of SYSKEY encryption. How many bits are used for SYSKEY encryption?
 a. 40 bits
 b. 64 bits
 c. 128 bits
 d. 256 bits
15. You are trying to establish a null session to a target system. Which is the correct syntax?

 a. `net use \ IP_address\IPC$ " /u:"`

 b. `net use //IP_address/IPC$ " /u:"`

 c. `net use \ IP_address\IPC$ * /u:"`

 d. `net use \ IP_address\IPC$ * /u:"`

Suggested Reading and Resources

 - www.systemtools.com/cgi-bin/download.pl?DumpAcl: DumpSec home page

 - http://evgenii.rudnyi.ru/programming.html#overview: SID2USER enumeration tools

 - www.governmentsecurity.org/articles/ExploitingTheIPCShare.php: Exploiting the IPC$ share

 - [www.netbus.org/keystroke logger.html](www.netbus.org/keystroke-logger.html): Keystroke loggers

 - www.theregister.co.uk/2003/03/07/windows_root_kits_a_stealthy: Windows rootkits

 - www.hnc3k.com/hackingtutorials.htm: Hacking Windows
