HOME AUTOMATION Made Easy
Do It Yourself Know How Using UPB, Insteon, X10 and Z-Wave

DENNIS C. BREWER

FREE SAMPLE CHAPTER
SHARE WITH OTHERS
Home Automation Made Easy

Do It Yourself Know How Using UPB, INSTEON, X10, and Z-Wave

Dennis C. Brewer
Contents at a Glance

Introduction 1

Chapter 1 Home Wiring and Electrical Fundamentals 7
Chapter 2 Using a Windows Computer as Your Home Automation Platform 33
Chapter 3 Introduction to Control Protocols and Automation Process 59
Chapter 4 Project 1, Installing HALbasic Software on Your PC 69
Chapter 5 Project 2, Controlling Appliances, Lights, and Devices 89
Chapter 6 Project 3, Controlling Lighting: Indoors and Outdoors 127
Chapter 7 Project 4, Linking Video to Your Security System 157
Chapter 8 Project 5, Upgrading the Home Automation Platform to HALultra 183
Chapter 9 Project 6, Installing a Home Automation Voice Portal Modem in Your Computer 191
Chapter 10 Project 7, Getting Green and Managing Your Home’s Climate 207
Chapter 11 Project 8, Adding New Controllers and Interfaces: Z-Wave, INSTEON, and More 225
Chapter 12 Project 9, Automating the Home Entertainment Center’s Music Management 241
Chapter 13 Project 10, Connecting and Using the Home Automation Platform over the Internet 257
Chapter 14 Controlling Your Home with iOS and Android 273
Chapter 15 Evaluating Broadband and Telecom Home Automation Offerings 287
Chapter 16 Adding Future Self-Designed Home Automation Projects 297

Index 305
Table of Contents

Introduction 1
Value Proposition of a Central Home Automation Platform 2
Solving Place and Time Problems 2
Maximizing Convenience 2
The “Wow!” Factor 2
Neutralize Physical Challenges 2
Going GREEN (Getting to Reduced Energy Expenditure Now) 3
Safety and Security 3
How This Book Brings Automation to Your Home 3
Free HAL Software Download 4
About HALBasic 4

Chapter 1 Home Wiring and Electrical Fundamentals 7
Safety Tips 7
Terms to Know and Understand 10
DC (Direct Current) 11
AC (Alternating Current) 11
Single-Phase AC Circuits 12
Three-Phase AC Circuits 12
Transformer Connections 13
Delta-Connected Three-Phase Transformers 14
Wye-Connected Three-Phase Transformers 14
Ohm’s Law and the Power Formula 15
Voltage (E) 16
Resistance (R) 16
Amperage (I) 16
Watts (P) 16
Watt Hours (kWh) 16
Power Distribution Transformers 17
Inverters 18
Converters 19
Household Electrical Power 19
Household AC Wiring and Devices 19
Hot Wire 20
Neutral Wire 20
Chapter 2 Using a Windows Computer as Your Home Automation Platform 33
Details and Choices 34
First Choice: Shared, Dedicated, or Networked? 35
 Shared Computer Option 35
 Dedicated Computer Option 35
 Networked Computer Option 36
Second Choice: Buy Preconfigured or Build Your Own 36
 Purchase a Preconfigured Home Automation PC 37
 Have a Home Automation System Professionally Installed 37
 Purchase a New or Used PC 37
Most Important Characteristics for Your Home Automation Platform 38
 Computer Case 38
 Computer Operating System 38
 Processor (CPU) 39
 Memory 40
 Storage Drive(s) 41
 I/O Ports 41
 Optical Drive 41
 Video Card 41
<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Project 3, Controlling Lighting: Indoors and Outdoors</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting up Plug-in Control Modules</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Setting up Hard-wired Outlet Control Modules</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Configuring Control Modules Identities in HALbasic</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Control—Time-Based Routines</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Control—Voice Commands</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Project 4, Linking Video to Your Security System</th>
<th>157</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting up Plug-in Control Modules</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Setting up Hard-wired Outlet Control Modules</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Configuring Control Modules Identities in HALbasic</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Control—Time-Based Routines</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Control—Voice Commands</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Project 3, Controlling Lighting: Indoors and Outdoors</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching for Indoor and Outdoor Lighting Circuits</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Existing Multilocation Switching</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Deciphering Existing Home Wiring</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Lighting Fixture Switched from a Single Location</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Lighting Fixture Switched from Two Locations</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Lighting Fixture Switched from Three Locations</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Lighting Fixture Switched from Four or More Locations</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Existing Home Wiring Adapted for UPB Controls</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Single-Location UPB-Controlled Lighting Fixture</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Two-Location UPB-Controlled Lighting Fixture</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Three-Location UPB-Controlled Lighting Fixture</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Making the Wiring Connections</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Connecting the UPB Control Adapter to the PC</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Setting up the UPB Control Modules</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Configuring Control Modules’ Identities in HALbasic</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>The Remote Wall Switches</td>
<td>156</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Project 4, Linking Video to Your Security System</th>
<th>157</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linking in HAL Video Capture Features</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Surveillance Camera Selection</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>USB Cameras</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Internet Protocol Security Cameras</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Deciding How Many Cameras Are Needed</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Installing and Locating the Cameras</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>The One-Web-Camera (USB) Solution</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>USB Camera Installation</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>The Multiple-Camera Solution</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>IP Ethernet Camera Installation</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Assigning IP Addresses for Cameras on Your Network</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>Registering the Cameras in HALdvc Setup</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Setting Up Camera Security Actions with HALultra</td>
<td>178</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 8 Project 5, Upgrading the Home Automation Platform to HALultra 183
 Upgrading to HALultra 184
 Administrative Steps 184
 Back Up HALbasic 184
 Installing 186
 Activating 187
 Testing 187
 Explore New Features 189

Chapter 9 Project 6, Installing a Home Automation Voice Portal Modem in Your
 Computer 191
 Installing the Voice Portal Modem 193
 Connecting the Voice Portal in the Operating System 197
 Voice Portal Installation with the HAL Setup Wizard 199

Chapter 10 Project 7, Getting Green and Managing Your Home’s Climate 207
 Getting Green 207
 Managing Temperature and Energy Consumption 207
 Heating and Cooling System Links 208
 On/Off Devices 208
 Thermostats 208
 Deploying Gauges, “Triggers,” and Sensors 209
 Using Time-Based Heating/Cooling Control 209
 Installing a HALultra-Compatible Thermostat 210
 Installing an In-line Fan/Light Control 216
 Setting up the Interface in HALultra 218

Chapter 11 Project 8, Adding New Controllers and Interfaces: Z-Wave, INSTEON,
 and More 225
 Additional Interfaces for HALultra 225
 ZigBee 225
 Infrared 226
 HVAC 227
 Security 228
 Input/Output 229
 INSTEON 229
 Z-Wave 229
 Setting up a Z-Wave Network 232
 Using a Laptop with the Leviton RF Installer Tool 233
Chapter 12 Project 9, Automating the Home Entertainment Center’s Music Management 241
The Changing Landscape of Home Electronics 241
Select Sound Reproduction Equipment 242
Digital Sound Reproduction Quality 242
Digital Music File Formats 243
Download and Install HALdmc 246
Setting Up HALdmc 246
Using HALdmc 250
Using Voice Commands with the Digital Music Center 254

Chapter 13 Project 10, Connecting and Using the Home Automation Platform over the Internet 257
Preparing the Internet/Intranet Connection for HALultra 257
Internet Service 258
Setup and Tweaks on the Modem-Router-Firewall-Switch 258
Setting up the HomeNet Server 259
Enabling the HomeNet Web Server 259
Logging In to HomeNet 262
Using HAL on the Internet 262
Collecting Internet Data 262
Viewing Internet Data Collected by HAL 268
Controlling HAL over the Web 270

Chapter 14 Controlling Your Home with iOS and Android 273
Interactive Device Server Applications 273
Apple App 274
Android App 274
Using Smart Phones and Tablets to Control HAL 274
Enabling the “Interactive Device Server” 274
Using HALids with iOS 275
Using HALids with Android 281
Checking the IDS Log 285

Chapter 15 Evaluating Broadband and Telecom Home Automation Offerings 287
Selection Criteria for Monitoring and Managed Service Providers 288
Market Service Area 288
Proprietary Technology 288
PC or Controller Based 289
About the Author

Dennis C. Brewer is a technology enthusiast who has been associated with electrical and electronic projects since attending Washington Middle School in Calumet, Michigan.

His early technology experience included testing for and receiving an FCC commercial radio broadcast engineer license that allowed him to become a solo station operator announcer/engineer for WMPL AM/FM radio in Hancock, Michigan, and finished service as a Chief Petty Officer Interior Communications Electrician to pursue a Bachelor of Science degree.

Dennis attended Michigan Technological University (MTU) and served simultaneous membership in the Michigan Army National Guard as a communication Sergeant First Class and a Cadet in the Michigan Technological University Army ROTC program. Upon graduation he was commissioned and a first Lieutenant, Combat Engineer Branch US Army Reserve.

Mr. Brewer's employment in government service included the State of Michigan as a computer technology specialist with assignments in the Department of Military and Veterans Affairs, Department of Management and Budget, and Department of Information Technology. During his 12-year career in State of Michigan Government as a Novell (CNE) certified network engineer and information technology specialist, his experience included hands-on hardware, administration, network management and troubleshooting, consulting and planning services for state agencies, establishment of enterprise-level standards and procedures implementation, data security, and identity management. After retiring from state government, Dennis continued to pursue his interests in technology as an author and independent consultant.

Published books by Dennis C. Brewer include:

- *Wiring Your Digital Home For Dummies*, by Dennis C. Brewer and Paul A. Brewer (For Dummies/Wiley: Oct 9, 2006)
- *Picture Yourself Networking Your Home or Small Office*, by Dennis C. Brewer (Course Technology PTR: Dec 2, 2008)

His magazine writing credits include topics on disaster recovery, defining adequate security controls, free satellite TV, and Sarbanes-Oxley controls.

For more information about this author and his current technology and writing projects, visit http://www.DennisCBrewer.info.
Dedication

This book is dedicated to individuals who face mobility challenges of any kind with everyday living; particularly those individuals who sacrificed for their nation during times when leadership, foreign policy, and diplomacy failed.
Acknowledgments

I'd especially like to thank the persons, instructors, and professors who made a positive impact on my education as a writer and as a critically thinking person. There are many, but among the many are a few who made a significant and memorable contribution. The first of these is my mother, Verna W. (Sembla) Brewer [1910–2006], who taught me to read as a very young child from the pages of the Daily Mining Gazette while sitting on her knee. My father, Leslie Brewer [1903–1951], who sacrificed to make sure I had access to volumes of the classics at home. Fast-forward to my time at Michigan Technological University (MTU) to thank and recognize the person from whom I received the first sincerely positive and constructive feedback on a piece of my writing: Arlene Jara Strickland, an instructor in a freshman Humanities class. I also wish to confer thanks to Professor George Love (MTU), who taught me to appreciate the full communicative power of the words found in our English language. Sincere thanks are also due to Melissa Ford Lucken, who provided post-college lessons in creative writing and taught me the intricate anatomy of good stories and the elements necessary for a respectable book, and provided a personal example as someone who not only professes the skills of writing but also is a very accomplished author in her own right.

My thanks go out to, and this book is dedicated to, those who helped in so many ways to make it a success. My agent Carole Jelen at Waterside Productions. Tim Schriver, the CEO at Home Automated Living and Technical Editor of this text. Rick Kughen, the acquisition editor for knowing there was a need for this book. Many thanks to the entire Pearson/Que editing and production team, including: Mandie Frank, Project Editor; Todd Brakke, Development Editor; Brandon Cackowski-Schnell, Development Editor; Cheri Clark, Copy Editor; Jake McFarland, Layout; Debbie Williams, Proofreader; and so on for turning my rambling text into a respectable book. Thanks everyone.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book's title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Que Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at quepublishing.com/register for convenient access to any updates, downloads, or errata that might be available for this book.
Introduction

The term “home automation” or its inverse “automated home” may mean different things to each reader. Some homeowners would think of one-off devices such as time clocks controlling a lamp as home automation. Others would consider home automation to be a managed service, essentially a virtual “big brother” that monitors events in the home and makes adjustments when necessary. Others would envision high-end systems where a virtual Jeeves handles all of the repetitious chores. None of these views would be wrong. However for the purpose of this book, home automation is made easy for the do-it-yourselfer by employing computer software that will become the artificial intelligence to manage controllable tasks through currently available technologies. The projects in this book will allow a DIYer the opportunity to have that high-end home automation system one increment at a time and expand his or her system as time and budget permits.

There are about four million households in the United States using some level of partially to fully integrated home automation features.

This is a surprisingly small number given how long these features have been available to the consumer. We use our voice to control our phones, so why not use it to control the entire home?

For many decades it has been possible, even easy, to control one-off devices such as lights, thermostats, and appliances with single, non-integrated automatic and remote controls. On the one hand, these one-off automation devices save effort and energy, but on the other hand, even modest adjustments are inconvenient and require the user to be present and knowledgeable enough to make the change. In the past consumers have expressed a reluctance to adopt home automation technologies because of a lack of a standard solution that can be extended to perform every task they might envision. Implementing twenty-first-century home automation with the projects described in this book can eliminate a majority of the negative issues associated with one-off remote control devices and bring full automation and increased levels of control to nearly all the fixtures, equipment, and appliances in the home. Best of all, this platform is centralized and extensible, and it can interface with nearly all the latest control technologies.
Value Proposition of a Central Home Automation Platform

Home automation features are no longer reserved only for the wealthy or highly technical. Anyone with a few hundred dollars, a Windows computer, and some time can leverage this technology into their living space. Why take this step? What's to gain? The benefits, as you're about to read, are numerous and wide-ranging!

Solving Place and Time Problems

Have you ever wanted to make your home look lived in while you were away on vacation for a week? The old solution was a lamp and a clock timer switch to turn the lamp on and off at preset times. Over a few days this routine turning on and off can be noted by someone with ill intent, leaving your home vulnerable with little psychological deterrent to trespass or break into your home. It is difficult with ordinary controls to overcome the problem of being away from home. Automation allows you to manage many aspects of your home environment, from any location in the world, with phone/cell phone service, by speaking simple voice commands.

Maximizing Convenience

Some home dwellers do not mind the drill of operating everything manually, whereas others want to maximize convenience and save time. After your home automation platform is in place, you can eventually control nearly every electrical appliance and electronic convenience in the home. Security systems, watering systems, entertainment systems, and more can all be conveniently controlled by programmed routine or modified as needed by an event or a voice command.

The “Wow!” Factor

Being the first in your neighborhood to automate your home might be more fun than being the first one in the area to install a home theater system. This is technology that brings “oohs” and “aahs” from viewers who have seen it on TV. Just imagine how your guests will be impressed when you say a command such as, “House: TV on,” or, “House: tune to Weather Channel,” and it happens in an instant. There is a perception, however, that something this cool and technologically involved must be way too difficult or expensive to do. It is not difficult or expensive, and readers of this book will learn that anyone who can handle a pair of pliers and a screwdriver, operate a computer keyboard, and pay attention to some details and safety rules can easily implement this technology in their home or office by following the projects covered in this book.

Neutralize Physical Challenges

If you are an able-bodied adult, it might be difficult to fully appreciate how difficult it can be for some physically challenged home occupants to perform a task as simple as
turning on a light switch. For those readers who are faced with mobility or dexterity challenges the idea of living in a fully automated home can add extra value. Voice-controlled home automation features can bring efficiency and added independence.

Going GREEN (Getting to Reduced Energy Expenditure Now)

All the functions intrinsic to home life use costly energy either directly or indirectly. Each home and the occupants' lifestyles set a baseline of energy consumption that cannot be reduced without modifications to the home or drastic changes in the occupants' habits. The remaining margin of energy consumption contains a usually substantial portion that can be more efficiently managed with home automation features. Within the automated home, energy costs can be minimized by leveraging all the home automation features that directly or indirectly impact energy use. These features are used to ensure that the energy used in the household does not go unnecessarily wasted.

Safety and Security

Achieving the maximum level of safety and security in a home has moved way beyond the timer and lamp stage to give a home a lived-in look. Smart phones and the Internet can now be tied into the home automation communications loop to allow for system control from anywhere in the world for nearly instantaneous feedback when something goes awry.

How This Book Brings Automation to Your Home

This book is written for the total novice to home automation.

This book covers wiring basics and safety before moving on to preparing your PC for home automation software, installing the HALbasic home automation platform, and leveraging this software to control X-10, UPB, and other devices for various home automation needs. If you don't know what all of that means, don't worry. You will. After you have your projects complete, I cover touch-controlling your home from your smart phone and tablet, as well as automation services offered by telecom and broadband companies.

This book concentrates on being a reference for the ordinary homeowner to understand home automation technology and provides hands-on instruction for 10 do-it-yourself home automation projects.

With HAL Automated Living software as the core control software, anyone with a computer and a modest budget for controls should be able to begin the tasks necessary to automate some functions in their home. This title is focused on getting the information, getting the parts/pieces together, and getting home automation projects done. Hopefully you'll have some fun along the way and the taste of home automation that this book provides will spur your imagination on to further automation projects.
Free HAL Software Download

Congratulations! Your purchase of this book entitles you to a FREE, no obligation, fully functional home automation program, HALBasic—an $89 value!

To download your free copy, visit http://www.automatedliving.com/QueBasic.aspx and then follow the on-screen directions.

Note There is a Time Limit You have two minutes from the time the challenge question is asked to enter the correct answer. If you do not enter the correct answer, you are redirected to the main HAL page and must start over.

About HALBasic

Home Automated Living (HAL) provides consumers with the freedom to control their homes and all the wonderful technology within by voice or by Internet from anywhere.

To achieve that goal, HAL produces software and hardware at affordable prices that enable the consumer to speak to the technologies in the home—whether traditional technologies like lights, appliances, security, and thermostats—or new technologies like IP Cameras, digital music, and Energy management hardware.

HAL software taps the power of your existing PC to control your home. Once HAL is installed on your PC, it can send commands all over your house using the existing highway of electrical wires inside your home's walls or wirelessly using radio signals. No new wires means HAL is easy and inexpensive to install.

HAL's voice interface makes HAL easy to use. You can pick up any phone in the home, press the # key, and then tell HAL to dim the dining room lights or close the garage door. It's a two-way conversation, with HAL confirming that it has, indeed, performed the requested action.

HAL turns your PC into a personal Voice Portal. Is there an easier way to turn on the front door lights when you're returning home late at night than to call ahead and tell HAL, “Turn on the front door lights”? With HAL, any phone—anywhere in the world—enables you to step inside your home and control it as if you were there. And you can ask HAL to read you your email, give you a stock quote, or a sports score or a TV listing—because HAL automatically harvests Internet information for use when you want it.

HAL makes home control affordable for everyone. Users can choose the HAL product with the appropriate feature set to deploy as little or as much home control as they want. Choose among products that will allow users to control lights, appliances, devices, telephones, home theatre, security, and the Internet. HAL will schedule your house to suit the way you live.
HAL's HomeNet web interface enables you to control and interact with your home from any browser. HAL also has interfaces for Android and Apple iOS devices, giving you added control from anywhere.

HAL has been featured on popular television shows and networks, such as *Modern Marvels*, *Extreme Makeover*, *Oprah*, *Man Cave*, *Home & Garden TV*, *The Learning Channel* and others.

HAL software has won numerous awards such as “Best of CES,” “Mark of Excellence,” and “Coolest Product” to name a few.

HAL is also part of the Smithsonian Institution's Permanent Research Collection on Information Technology Innovation.
This page intentionally left blank
This page intentionally left blank
The home automation process involves changing the existing state or condition of a device, an appliance, a system, or an electronic component from an internal or external stimulus or event, by a person taking an action, or as the result of the movement of time. To achieve that state change through automation, a control message must be sent to the device to be acted on. The condition or state changes can be a simple switching to an on-or-off status, or can be a more complex adjustment such as dimming to a preset level; and that device modification can be an incremental on or variable or both. The control messages are sent via any one of a number of defined home automation protocols.

Control Methods

From infancy we test various methods and learn ways to control others to meet our needs. Crying is typically the first, then sounds, and before long we are crawling and moving about and can begin to make things happen on our own. Over time our individual skill set builds and we can interact with all the things around us. The simplest control method is human intervention, flipping a switch to turn on a light, for example. You know which switch to use, what it controls, and which direction to turn the target device, in this case a light, on or off. The process or steps for turning a light on or off includes the following mental and physical steps: disturbed–decide–poise–act–receive feedback–adjust if needed–feedback–satisfied. The nonhuman intervention automation process mirrors the steps a person would take. The total home automation process is similar except that the system can do everything but decide what to do. The deciding is left to the human, who must set up parameters in advance for consistent automated operation.
Humans as Automation Devices

Literally each of the steps a person would do to control something can be automated:

- A human would → the home automation platform does
- Receive stimulus → receive event trigger
- Decide to act → check data base for instructions
- Poise to act → build control message for appropriate protocol controller
- Act to control → send out control message
- Receive feedback → wait for acknowledgment
- Adjust if needed → send new or repeat message from new event trigger.

One-off devices to perform some of many home automation steps or functions have been around for some time, but with limitations that are not present in a completely automated computer-controlled environment. This chapter gives a basic understanding of how a novice home automation hobbyist can leverage diverse protocols and choose from myriad available products and technologies to control all the automation functions on one central home automation platform.

Reasons for Using Automated Control

The need for home automation technology comes from wanting to make a change in the condition of something: turning on a light or lowering the thermostat, for example. This need for change arises from four basic categories: time, need, event, and communication. In many cases, your home automation platform can take these actions based on the same stimuli that would spur a human to action with little or no need for human interaction.

Time Based

Time-based actions include actions based on a set amount of time passing, such as turning off a bedroom television after an hour of use so that the viewers can nod off and not worry, or actions based on a set time of day, such as turning on the coffee maker at the same time each morning. Time-based controls can be employed on any recurring interval, whether hours, day, week, day of week, and so on.

Need Based

Need-based events are just that, events that have to happen simply because we want them to. When your home gets too cold, you raise the temperature on the thermostat; when it gets too dark, you turn on a light. Not all events can be scheduled, so your home automation platform has to be able to process need-based actions as well. Human participation in initiating the control action can be an easy mouse click or two away or can be done by voice command with the HAL platform.
Event Based

Event-based actions are triggered based on an event, either predetermined or accidental. For example, you might set your thermostat to turn on the heat when the temperature dips too low, or have a trigger on your air handler shut off power to the unit if water is detected in the water pan.

Communication Based

Threaded through all of these prior circumstances to one degree or another is the desire we all have to stay informed. Some conditions, events, and actions we want to know about as fast as possible. Other events we don't need to know about but want handled as efficiently as possible and without our knowledge. In some circumstances we want to be able to find out later, by looking at a log entry, that the situation was handled. For example, we might want to be notified by email to our smartphone if an aging parent called during our absence from the house.

The feedback loop is a very desirable and important feature of a modern home automation system for those of us who want or need to stay informed. Fortunately, unlike many products currently in use for home automation, the HAL platform has the capacity to keep us informed not only of those things happening in and about the home, but also of financial, weather, and communication information gathered from the Internet or localized weather equipment. We live in an age when the speed of access to information and communication is unparalleled, so leaving some of the recurring chores of keeping informed and in touch though leveraging some artificial intelligence in our home automation can increase our own communication productivity and at the same time free us to focus on other important matters.

The true beauty of the core automation product line discussed in this book is that the HAL software “communicates commands and processes device feedback” in enough of the commonly popular home automation protocols that it is possible to automate nearly every electrical, mechanical, and electronic device in your home environment.

The next section introduces highlights of the four very popular home device control protocols and standards. As a hobbyist, you’ll find that it is important to know that there are differing protocols and that some are more suitable for certain tasks. By bringing diverse protocols into your home automation solution, you can have the best overall system with the lowest overall cost of implementation. Because the HAL software operates at the application layer in the control model, you are not locked into any particular protocol, brand of hardware products, or technology. It is truly a solution that allows combining best of the protocol breeds.

Protocols and Standards

When setting up processes to be completed with home automation technology, there are some relevant details to deal with for whatever protocol your control devices are using, but only during the initial setup or installation phase. After you have completed the
device setups within the HAL software you will interact with HAL with language and words not protocols, but some readers will want to know about how those interactions take place. This section gives an idea of what is going on in the background to accomplish your control strategy.

Home automation standards are the set criteria for how home automation devices respond to a control signal and perform a function. There are many home automation standards, some of an open nature and others proprietary in nature.

Many consumers believe that implementing home automation is too expensive and available only to the very wealthy or technologically literate. Fortunately, the reality is that a complete home automation system is well within the reach of the ordinary home owner, provided that they have some spare time and a budget to build out a system. HAL software makes for a cohesive platform by integrating these various standards and protocols under one digital “roof.” Not only does it act as the protocol communicator, but it also translates the users' needs into actions. After the devices and protocol interfaces are properly set up to work with HAL, the HAL software does the machine-level translating of the command to the physical. By using HAL software to control the various physical-layer communications, a home can have multiple types of devices installed and working together, even to the point of having a switch of one type activate a device of another, each using different control protocols.

The next few sections highlight some details of how the protocol adapters communicate with the devices.

Physical-Layer Communication

Because everything in home automation relies on electrical signals of one sort or another that carry a message to make the changes for us, we are limited somewhat by the physical properties of electricity as discussed in Chapter 1, “Home Wiring and Electrical Fundamentals.” Electrical signals can be of an analog or a digital nature. By using electrical, radio waves, or infrared light signals as our avenue or method of communication along the home automation control pathways, we are limited only by the physical properties of those signals. With electric power we can channel it to do work. By manipulating the properties of electricity we have the ability to communicate information to our advantage. We can use this communication property not only to control electrical and electronic things but also mechanical things like doors, locks, vents, and valves. This is accomplished by using the electrical controls and solenoids as our assistants to do the work from simple but highly defined message packets to control that work.

To borrow a page from biology, the control communication (electrical or wireless) pathway has to either sense and react to stimulus with a response or initiate a communication that will elicit a response or an action from a controlled device. Therefore, at the control pathway level or sensory level at the most primitive layer, there are only a few things that can happen with an electrical current to initiate or convey messages:

- It can be turned off or on. Example: Voltage/no voltage.
It can be off, variable in voltage and/or current or frequency, or full on to the maximum. Example: high/low voltage; high to low frequency.

It can be measured within a low or high range for voltage, current, or frequency to compare or match desired presets. Example: 95 VAC to 130 VAC: Normal household voltage.

The sensed changes can be associated with time or timing cues to identify message start or end points.

These changes in the physical state are detected at the physical level (hardware, media level) and are interpreted as coded messages high up the application stack. They are used within the devices to execute the state change defined in the message.

Imposing Messages on the Physical Media

At the most basic physical level of the electrical wires or a wireless communication path, the medium used can carry an imposed signal of either an analog or a digital nature. The communication can be a one-way street; that is, sent only and received, or it can be two-way, with returned or reverse-direction message packets sent over the transmission medium from controller to device and back from the device to the controller. When an analog mode is used to communicate, the signal can be made to vary in amplitude or frequency so the resultant signal changes can carry frames of data.

In digital communications mode the signal can be chopped into time slices in which the amplitude of the signal is measured and is considered on or off in that time frame based on its strength, or measured as high or low in a time frame. These on/off states or high/low states of the electrical current or radio signal in digital mode are sensed or sent as changes in voltage, current, or frequency. They are used to represent zeros and ones or other numbers and are used as binary values that translate into data or information or are used as timing pulses to separate and keep track of chunks of the message. These representations of zeros and ones (or numbers) can be used at the distant end to represent anything necessary to perform the desired actions or convey the sought-after information. Parts of the message packets identify the target devices or all the devices or a group of devices through the encoding scheme used in the protocol. Timing pulses are used to define the beginning and end of the object communication so the communication packets maintain whole message integrity or are resent in two-way systems until the whole data packet is acknowledged.

One-way protocols cannot guarantee whole message delivery. A feature called “checksum” can be implemented as a part of a protocol to test the message for completeness and integrity by running a math formula against the packet's data bit and comparing that to the checksum value sent with the message packet. These fundamentals are implemented in various innovative ways, but at the most basic level the communication occurs because of these simple property state changes at the electrical signal level regardless of the physical media (wire, wireless, infrared, or fiber) used for the transmission of data. In the OSI seven-layer networking model this media layer is referred to as the physical layer. To do the home automation projects in this book, you do not have to delve too deeply
into how networking and communications are accomplished or understand them fully. Awareness of some features of protocols covered in this rapid overview should be sufficient for trusting that unique control messages can be sent and received successfully to make the home automation device-level processes function to your benefit.

The four protocols of primary interest used in this book's projects include X-10, UPB, INSTEON, and Z-Wave. There are other protocols as well and likely there might be innovators in the future that will create other useful ways to communicate from controller to device. Some people talk about the network of things, a concept in which everything in your personal universe is identified by a unique communication's address, such as an IPV6 address, and everything is connected and reachable though that address. We are not quite there yet, even though many of the pieces are in place. We can, however, communicate right now to the components that matter most to us by using these protocols.

X-10

In X-10 the data message frames are imposed on an AC current carrying wire at the point where the electrical power is dropping from 120 volts positive down to zero and before the second half of the sine wave that is moving in the opposite direction begins its half cycle.

The frequency of the transmission is 120KHz, and it occurs for only a very short span of time at a specific point in the 60-hertz current cycle, known as the zero crossing point.

There are 16 available House codes A through P, and 16 available Device codes 01 through 16, allowing for a maximum device count of 256 for X-10 devices.

There are seven change state commands to issue to one-way X-10 devices—on, off, dim, bright, all lights on, all lights off, and all units off—which are all sent via a 4-bit code.

There are seven additional command/info settings available to use in the devices and controllers capable of two-way X-10 communication: status on, status off, status request, pre-set dim, hail, hail acknowledge, and the extension code (or extension code itself).

The minimalist data messages sent as X10 communications are referred to as data frames and must include a start code signifying that an X10 command is about to be sent, a one-letter code signifying the "house" the command belongs to, and one function code. The binary for that could look like 1110 01001011 0001, carrying the information message start, house code letter K, and command "all lights on." It is a simple but limited protocol but is credited with beginning a trend in home automation implementation that did not require rewiring or additional control wiring.

UPB

Universal Powerline Bus is considered much more reliable than X-10. UPB communication messages are sent at speeds of a range of 120 to 240 bits per second.

In 60-cycle AC circuits each half cycle takes 8 1/3 milliseconds to occur. The UPB pulses are spikes in voltage placed on the power line at a precise time in each half cycle, the
Chapter 3: Introduction to Control Protocols and Automation Process

Timing of which conveys a value from 0 to 3. Two bits of data are contained in each half cycle, and the data bits from four half cycles are grouped together and carry 8 bits of digital data, a UPB byte.

These bytes are combined into UPB communications packets sized between 7 and 25 bytes for interpretation and use by the device. Each message packet contains a preamble, a packet header, the data message, and a checksum byte followed by an acknowledgment frame. The header packets contain the information about network ID, device ID, source ID, and a packet control word. The data messages also contain the instructions for the device to perform.

One interesting element and what makes UPB different is that the information about the device ID, network ID, and so forth is stored in nonvolatile memory registers within the device.

INSTEON

INSTEON products operate by two communications over the media: over the home's wiring system and over a preset radio frequency. The devices forward the INSTEON protocol signals, extending the network range for up to three hops; the signal originally sent is hop count zero (0). The three-hop limit prevents endless looping of the command signals.

If the original signal is 0, then the first rebroadcast is hop 1; if the next device adds hop count 2, and the next device hop count 3, there are no more hop counts. So the original signal sent from the first device can travel though three layers of devices to the fourth device layer out in the distant network.

The RF signals are sent at frequencies of 915MHz in the US. The power-line protocol is transmitted at 131.65KHz over the wire.

INSTEON plays well with X10 devices although their protocols are different.

INSTEON is a dual-band communications protocol, meaning that its digital signals can travel over the home's wiring system and over radio frequencies.

There are about 200 available products that speak and understand INSTEON communications. Not that anyone would ever use that many but the core protocol can support more than 16 million devices per network.

The standard and smallest INSTEON message is composed of the following: from address (3 bytes), to address (3 bytes), flag (1 byte), command (2 bytes), and redundancy check (1 byte).

Z-Wave

Z-Wave is a wireless protocol and is very much a networking protocol supporting quality two-way communication, much like the Wi-Fi that supports your computers' connections to wireless networks. It operates at frequencies below 1GHz so it is mostly free from
interference from the higher frequency Wi-Fi networks. A level of encryption of the data is supported to keep the communication between the devices secure and intact. Because it is at its core a networking protocol, it can support a version of IPV6 device addressing. It is a proprietary protocol but is supported by nearly 160 manufacturers making Z-Wave-compatible devices worldwide. There are nearly 700 available devices that speak and/or understand Z-Wave wireless messages.

A home Z-Wave network can support 232 devices, and more than one network can be bridged together at a higher layer to support more than 232 devices. This is rarely done in automated homes for two reasons. First, controlled device counts above 100 are rare, and second, other technologies can be used and might offer advantages in specific applications. When using HAL software as the hub command center, you are not limited to a specific technology as your home automation solution.

The Network ID (or Home ID) uses 4 bytes (32 bits) of the control message.

The Node ID uses 1 byte (8 bits) of the control message.

A single Network or Home ID can contain a total of only 232 nodes because some of what would be node IDs are co-opted for messages or performing exceptional functions. One has to accept that node IDs are identified from 000001 to 11101000 in binary or 0x1 to 0xe8 in hexadecimal.

Z-Waves approved radio frequency operating range for the U.S. and Canada is set to 908.4MHz.

The devices emit low-power radio waves and the maximum transmit/receive ranges are considered to be 90 feet in buildings to 300 feet outdoors in the clear. Z-Wave presents a good option for controlling something located in outbuildings supplied or powered by a different electrical service because of the potential to send signals via radio wave to 300 feet.

Each Z-Wave network begins with at least one primary controller and a controlled node. New devices are brought into the network by a process called inclusion (or taken out by exclusions). After the network is set up, secondary controllers can join and can be brought into the network.

Two types of device nodes can take on one or more of three characteristics:

- **Controllers**—Control other Z-Wave devices.
- **Slaves**—Are controlled by other Z-Wave devices.
- **Routing Slaves**—Pass messages to nearby neighbors, thereby extending the range of control of the entire network but adding modest time delays for the routing table lookups and retransmissions to each next available neighbor in turn.

Z-Wave presents two clear advantages because it is wireless. The first advantage is that you can control devices that are on nearby alternative wiring systems. The second is that you can use a handheld remote to control Z-Wave devices, again thanks to its wireless communication media.
Automation Processes are Trigged by an Event

Events that are common and vital to home automation process include these:

- Elapsed Time
- Arrived Time
- Occurring and Recurring Events
- Temperature Changes
- Voice Commands
- Proximity Sensing:
 - Motion Sensor
 - Heat Sensor
- Incoming Information Processing
- Outgoing Information Processing

After that the processes or pseudo-processes must be known and stored in the database for human like or referred control to occur from actions to be taken by the automation platform.

The object of control must have a name or an ID such as “Bedroom Lamp” that not only acts as a label for the process but also identifies the device or appliance being controlled. That name is then attached to the device name that is identified by the control interface within the protocol such as house and unit ID in X10.

The desired conditions or desired outcome of the automation process must be known and stored in the automation setup's database. One example would be that the desired new condition is to dim the lamp to a preset variable.

Any variable condition must be articulated and defined in the database, such as dim the lamp to 33 percent of total possible brightness.

A trigger or stimulus to set off the automation process is defined. This could be the ringing of the doorbell or the arrival of a clock time.

A human stimulus or automated sensor or predefined action then presses the predefined and stored steps into action through the controller sending out signals in various protocols to the devices that will be acted on.

Process Actions

When the control stimulus occurs, the automation process goes through these primary action steps:

1. Finds the named object device in the database.
2. Finds or collects the desired state or predefined condition.

3. Converts the device name to a recognized protocol name in the physical layer address scheme being used (example: X10).

4. Combines the object's physical-layer address with the control parameters.

5. Sends the control signal and parameters over a serial port or USB port, or to another type of control interface. It can also use the computer's own communications bus to convey commands such as playing music over the sound card.

6. The interface module converts the control signal into a physical layer message and sends it out on the wire (or RF) at the appropriate time.

7. The physical media (house wiring or wireless or infrared) carries the control signal over the media to the connected devices.

8. The target device receives the control signal and the device or module sets the new condition called for in the message and creates the new state or condition of the object of control.

9. The control device in two-way protocols sends back feedback if the device is capable and feedback is needed, warranted, or requested by the controller.

In later project chapters you will see examples of this process in the setup phase and at work when you follow the examples for your own projects. The control framework pieces for each technology are well defined, and all you have to do is drop your control identities, types, and unique naming information into the framework.

There is a lot more to learn about the protocols mentioned in this chapter, but luckily, for those looking to implement a home automation system, you can use these products successfully without knowing any additional information. To be successful with your project, be it your own project or a project that follows the examples in this book, you only have to keep track of some details and load them in the setup screens and application windows. Later chapters show in detail how these setups are handled. The HAL software is designed to make it as easy as possible on you, the end user, to successfully set up your system. If you can keep track of details and make accurate entries in the HAL setup screens, you can harness the power of these protocols to control any controllable object in your home.

See the author's website www.homeautomationmadeeasy.info to find sources of additional information about protocols and process information.
This page intentionally left blank
AC (alternating current), 11-12
 delta-connected three-phase transformers, 14
household AC wiring and devices, 19
single-phase AC circuits, 12
three-phase AC circuits, 12-13
transformer connections, 13
wye-connected three-phase transformers, 14-15
acquiring HALbasic software, 69
action logic, defining, 299
actions
 automation processes, 67-68
 testing, 299
activating
 HALbasic software, 82-84
 HALultra, 187
adding new automation actions to existing systems, 297-299
ADT, 294
aHomeNet app, 274
air conditioners, 210. See also heating and cooling systems
Alarm Relay, 294
all-in-one computers, 38
alternating current. See AC (alternating current)
alternative power sources, 30
aluminum, 10
amperage, 16
amps, 16
Android apps, HALids (Interactive Device Server), 274
Android devices, controlling HAL, 281-284
APC battery backup, 56
Apple apps, HALids (Interactive Device Server), 274
appliance modules, configuring, 108
apps
 aHomeNet app, 274
 Droid app, 274
 iOS app, HALids (Interactive Device Server), 274
arc fault breakers, 24
assigning IP addresses for cameras, 171-181
AT&T, Digital Life Service, 287, 295
audio CDs, 243
automated control, 60
communication based events and actions, 61
event-based actions, 61
need-based events, 60
time-based actions, 60
AutomatedLiving.com, 37
automatic updates, installing HALbasic, 69
automation actions, adding to your existing system, 297-299
automation processes
actions, 67-68
events, 67
Automation Setup Screen, 101
Aux, 211
backing up HALbasic, 184
backup generators, 30
backup power sources, 30
Backup/Restore, 184
battery backup, 56-57
power supplies, 30
benefits of home automation, 2-3
bonding wire, 20-21
Bright House, 295
bundled services, 288

C
C (return path), 211
cable TV/satellite, 25
call screening, 202
caller ID, 202
cameras
deciding how many are needed, 162
installing, 162
IP Ethernet cameras, 164-171
multiple-cameras, 163-164
one-USB-camera solution, 162
USB cameras, 163
IP addresses, assigning, 171-181
IP cameras, 164
registering in HALdvc setup, 173
security actions, 178
surveillance cameras. See surveillance cameras
card brackets, 195
CDD (cooling degree day), 209
CDs
copying, 251
sound reproduction quality, 243
Checking
IDS logs, 285-286
temperature, 215
checksum, 63
children, smoke alarms, 158
choosing computers, 2
dedicated computer option, 35-36
having home automation systems professionally installed, 37
networked computer options, 36
purchasing new or used PCs, 37
purchasing preconfigured home automation PC, 37
shared computer option, 35
circuit breakers, household electrical power, 23
circuit loading, 21
circuits, turning off, 8
clock timers, 29
collecting data from Internet, 262-268
coloring, wire colors, HVAC, 211-212
COM ports, 90
 voice portal modems, 200
Comcast Xfinity, 295
comments, 103
commitment terms, monitoring services, 291
Common Connections, HVAC, 210
communication based events and actions, 61
computer cases
desktop, 38
small form factor, 38
towers, 38
computer operating systems, 38-39
computers
 all-in-one, 38
 choosing, 34-35
 dedicated computer option, 35-36
 having home automation systems professionally installed, 37
 networked computer options, 36
 purchasing new or used PCs, 37
 purchasing preconfigured home automation PC, 37
 shared computer option, 35
Ethernet ports, 42
I/O ports, 41
memory, 40
monitors, 42
optical drives, 41
processors (CPU), 39-40
setting up, 45
 battery backup, 56-57
 creating recovery media and diagnostics, 56
 surge protection, 56-57
 updating operating system software, 45
 updating security software, 51-54
sound cards, 42
storage drives, 41
video cards, 41-42
Windows-based computers, 33-34
Configuration Properties window, 108
configuring
 control module identities in
 HALbasic, 148
 voice mail, 202
connecting
 control adapters to the PC, 90-92
 UPB control adapters to PCs, 145
 voice portal modems to operating systems, 197-199
connections, wiring UPB controls, 143
contracts, monitoring services, 291
control adapters, connecting to the PC, 90-92
control communication, 62
control devices
 installing, 299
 selecting, 298
control methods, 59-60
automated control, 60
 communication based events and actions, 61
event-based actions, 61
need-based events, 60
time-based actions, 60
protocols, 62
 imposing messages on physical media, 63-64
INSTEON, 65
physical-layer communication, 62-63
UPB (Universal Powerline Bus), 64-65
X-10, 64
Z-Wave, 65-66
standards, 62
control module identities, configuring in HALbasic, 148
control modules
costs, 94
hard-wired outlet control modules, setting up, 98-100
plug-in control modules, setting up, 95-98
setting up, X-10, 93
control points for lighting, taking inventory of, 130
controllers, 236
controlling HAL
 enabling HALids, 274-275
 with smart phones, 274
 smart phones
 Android devices, 281-284
 iOS, 275-280
with tablets, 274
over the Web, 270-271
controls
time-based routines, 115-121
voice commands, 122-125
converters, 19
 alternative power sources, 30
household electrical power, 19
 AC wiring and devices, 19
 arc fault breakers, 24
cable TV/satellite, 25
 circuit breakers, 23
circuit loading, 21
 fuses, 23
GFCI (ground-fault circuit interrupter), 21-22
GFI (ground-fault interrupter), 21-22
ground/bonding wire, 20-21
hot wire, 20
household low-voltage wiring types and devices, 24
infra-red remotes, 24
microphones, 25
 motors (electric), 24
neutral wire, 20
phones, 24-25
 relays, 23
 solenoids, 23
 surge suppressors, 22
thermostats, 25
legacy electric controls
 clock timers, 29
dimmer switches, 25-29
dimmers, 25-29
 heat sensor switches, 30
motion sensor switches, 30
switches, 25-28
timers, 29
cooling degree day (CDD), 209

copper, wiring, 10

copying
 CDs, 251
 music and sound to hard drives, 243-245

costs
 control modules, 94
 HALdmc (Digital Music Center), 242
 headsets, 122
 installation costs, monitoring services, 289-291
 of installing thermostats, 216
 sound reproduction equipment, 242
 voice modem, 192
 Z-Wave, 231

crimp tool, 160

cross talk, 18

customizing playlists, 253

data
 collecting from Internet, 262-268
 viewing Internet data collected by HAL, 268-270

data setups, 299
DC (direct current), 11

dedicated computer option, 35-36

degree day, 209

delta-connected three-phase transformers, AC (alternating current), 14

Design and Do list, 297-299

design steps for adding new automation actions, 297-299

desktop cases, 38

Device Control, 271

Device Controller window, 221

device installation, testing, 105-106

Device Manager, 197

Device Wizard, 101

diagnostics, creating, 56

dialing options, 204-205

dials, rotating, 103

Digital Life Service, AT&T, 287

Digital Music Center. See HALdmc (Digital Music Center)

digital music file formats, 243

digital sound reproduction quality, 242-243

digital music file formats, 243

dimmer switches, 25-29

dimmers, 25-29

dimming, 105-108
 lights, types of lights, 129

direct current (DC), 11

downloading music, legally, 244

Droid app, 274

E

E, 211

electrical currents, 10
 AC (alternating current). See AC (alternating current)
 DC (direct current), 11

ELK Products M1, 302

energy costs, X-10 adapters, 92

Ethernet ports, 42

event-based actions, 61

events, automation processes, 67

extended warranties, 37
fans, installing (in-line fan controls), 216-217
feedback, voice feedback, 107
feedback loops, communication based events and actions, 61
firewalls, 258
four-way switches, 28, 134
furnaces, 210
fuses, 23

gang boxes, 129
gauges, heating and cooling systems, 209
GE Concord Hardware/Wireless kit, 302
GE Home Security, 295
General screen, Telephone Config window, 201
GFCl (ground-fault circuit interrupter), 21-22
GFI (ground-fault interrupter), 21-22
Global Cache, 302
GREEN (Getting to Reduced Energy Expenditure Now), 3
ground wires, 20-21
ground-fault circuit interrupter. See GFCl (ground-fault circuit interrupter)

HAL
controlling over the Web, 270-271
controlling with smart phones, 274
controlling with tablets, 274
Internet and, 262
collecting data, 262-268
registering, 86
viewing Internet data collected by HAL, 268-270
HAL DVC (Digital Video Center), 159
HAL HomeNet, 259
HAL Remote Telephone Services configuration window, 200
HAL Setup Type window, 78
HAL Setup window, 77, 227
HAL Setup Wizard, 147
installing voice portal modems, 199
HAL Telephone Services screen, 200
HAL voice portal, 43, 191
HAL VP300 modem, 192
HAL2000 PhonePad, 205-206
HALbasic
acquiring, 69
activating, 82-84
backing up, 184
configuring control module identities, 148
automatic updates, 69
modifying OS security settings, 72-73
pre-installation, 70
security software, 70-71
steps, 75-82
installing, 71-72
navigating, 86
waking, 125

HA management, 293-294. See also monitoring services
future offering, 294
HALdmc (Digital Music Center), 241-242
 copying music and sound to hard drive, 243-245
digital sound reproduction quality, 242-243
 digital music file formats, 243
installing as an add-on to HALultra, 246
playlists, customizing, 253
Record/CD Player feature, 250-251
setting up, 246
sound reproduction equipment, 242
sound reproduction quality, audio CDs, 243
using, 250-253
voice commands, 254
 testing, 254-256
HALdvc, 246
cameras, registering, 173
HALhms (Home Manager System), 37
HALids (Interactive Device Server), 273
 Android apps, 274
 checking logs, 285-286
 enabling, 274-275
 iOS app, 274
 logs, checking, 285-286
HALultra, 183
 activating, 187
 camera security actions, 178
 installing, 186
 potential energy savings, 189
 testing, 187-189
 upgrading to, 184
 video, 157
HALultra Automation Setup Screen window, 237
HALultra-compatible thermostats, installing, 210-216
HALvoices, 43
 hard drives, copying music and sound to hard drive, 243-245
 hard-wired outlet control modules, setting up, 98-100
HDD (heating degree day), 209
headsets, 122-123
heat sensor switches, 30
heating and cooling systems
 deploying gauges, triggers, and sensors, 209
 HALultra-compatible thermostats, installing, 210-216
 on/off devices, 208
 thermostats, 208-209
 time-based controls, 209-210
heating degree day (HDD), 209
home automation
 benefits of, 2-3
 defined1
 having systems professionally installed, 37
 security software, 302
HomeNet servers, 259
 enabling, 259-262
 logging in, 262
hot wire, 20
House identifiers, 95
household electrical power
 AC wiring and devices, 19
 arc fault breakers, 24
 cable TV/satellite, 25
 circuit breakers, 23
 circuit loading, 21
 fuses, 23
GFCI (ground-fault circuit interrupter), 21-22
GFI (ground-fault interrupter), 21-22
ground/bonding wire, 20-21
hot wire, 20
household low-voltage wiring types and devices, 24
infra-red remotes, 24
microphones, 25
motors (electric), 24
neutral wire, 20
phones, 24-25
relays, 23
solenoids, 23
surge suppressors, 22
thermostats, 25
household low-voltage wiring types and devices, 24
HP Compaq small form factor 4000 Pro SSF PC, 43-45
human intervention, 59
HVAC, 210, 227
Common Connections, 210
wire colors, 211-212

installing
cameras, 162
IP Ethernet cameras, 164-171
multiple-cameras, 163-164
one-USB-camera solution, 162
USB cameras, 163
devices, testing installation, 105-106
HALbasic software, 71-72
automatic updates, 69
modifying OS security settings, 72-73
pre-installation, 70
security software, 70-71
steps, 75-82
HALdmc (Digital Music Center), as an add-on to HALultra, 246
HALultra, 186
HALultra-compatible thermostats, 210-216
in-line fan/light controls, 216-217
UPB controls, 141-142
voice portal modems, 193-195
with HAL Setup Wizard, 199

INSTEON, 65
interfaces, 229
setting up interfaces, 218-223
system add-ons, 300-301

INSTEON USB control, 219
Interactive Device Server. See HALids (Interactive Device Server)
interface modules, selecting, 298
interfaces
HVAC, 227
infrared, 226-227
input/output devices, 229
installation costs, monitoring services, 289-291
installation location, planning, 43
installer competence, monitoring services, 291-292

incoming calls, 202-203
infrared, 226-227, 302
infra-red remotes, 24
initiating events, 298
in-line fan controls, installing, 216-217
input/output devices, interfaces, 229
installation costs, monitoring services, 289-291
installer competence, monitoring services, 291-292
setting up INSTEON devices, 218-223
ZigBee, 225-226
Z-Wave, 229-232
costs, 231
Internet, 257-258
controlling HAL over the Web, 270-271
HAL and, 262
collecting data, 262-268
HAL HomeNet, 259
modem-router-firewall-switch, setting up, 258-259
viewing data collected by HAL, 268-270
Internet connections, 45
Internet protocol security cameras, 160-161
inverters, 18-19
I/O ports, 41
iOS app, HALids (Interactive Device Server), 274
iOS devices, controlling HAL, 275-280
IP addresses, 259
assigning for cameras, 171-181
IP Camera Finder tool, 171
IP cameras, 161, 164
IP Ethernet cameras, installing, 164-171

J
jack ports, 242

K
Kanda.com, ProBee, 226
logging in to HomeNet servers, 262
logs, IDS logs, 285-286

M
macros, camera security actions, 178
market service areas, monitoring services, 288
memory, 40
messages, imposing on physical media, 63-64
microphones, 25
modem-router-firewall-switch, setting up, 258-259
modems, 192, 258
testing, 205
voice portal modems, installing, 193-195
modes, 115, 120
modifying OS security settings, 72-73
monitoring services, 294-295
commitment terms, 291
future offering, 294
installation costs, 289-291
installer competence and tech support, 291-292
location of monitoring center, 292
market service areas, 288
monthly service fees, 291
PC or controller based, 289
proprietary technology, 288-289
support, 291
what do they monitor, 292
what is managed versus what is offered, 293-294
monitors, 42
monthly service fees, monitoring services, 291
motion sensor switches, 30
motors (electric), household electrical power, 24
MP3, 243
multilocation switching, 129
multimeters, 8-9
multiple-cameras, installing, 163-164
music
copying to hard drives, 243-245
downloading, legally, 244

N
National Electrical Code (NEC), 30, 129
navigating HALbasic software, 86
NEC (National Electrical Code), 30, 129
need-based events, 60
networked computer options, 36
networks, setting up Z-Wave, 233-238
neutral wire, 20
nonhuman intervention, 59
nonmetallic sheathed cable, 19
Norton Internet Security, 51
Norton LiveUpdate window, 52
Norton products, 71

O
O & B terminals, 211
Ohm's Law, power formula and, 15-17
one-off devices, 60
one-USB-camera solution, 162
one-way protocols, 63
on/off devices, heating and cooling systems, 208
on-off sensors, 158
on/off switches, 25
operating system software, updating, 45
operating systems, 38-39
security settings, modifying, 72-73
voice portal modems, connecting, 197-199
optical drives, 41
outlets, adding to the system, 112-114

PCs
connecting control adapters to, 90-92
connecting UPB control adapters, 145
extended warranties, 37
purchasing new or used PCs, 37
phones
caller ID, 202
dialing options, 204-205
household electrical power, 24-25
incoming calls, handling, 202-203
landlines, 191
modems, 192
requirements for voice modem, 202
speakerphone mode, 204
voice mail, configuring, 202
physical-layer communication, 62-63
pigtails, 139
planning installation location, 43
playlists, creating, 253
plug-in control modules, setting up, 95-98
power consumption, 16
power distribution transformers, 17-18
power formula, Ohm's Law and, 15-17
power sources, alternative power sources, 30
preconfigured home automation PCs, purchasing, 37
pre-installation considerations, 70
primary controllers, Z-Wave, 232
ProBee, 225-226
process actions, 67-68
processors (CPU), 39-40
processors comparison tools, 40
professionally installed home automation systems, 37
professionals, 208
proprietary technology, monitoring services, 288-289
Protect America, 295
protocols, 62
imposing messages on physical media, 63-64
INSTEON, 65
one-way protocols, 63
physical-layer communication, 62-63
UPB (Universal Powerline Bus), 64-65
X-10, 64
Z-Wave, 65-66
prototype computer for this book, 43-45
punch-down tool, 160
purchasing
new or used PCs, 37
preconfigured home automation PCs, 37
quality
monitoring services, installer competence and tech support, 291-292
sound reproduction, 242-243
digital music file formats, 243
sound reproduction quality
audio CDs, 243

copying music and sound to hard drive, 243-245

RAM (random access memory), 40
Record/CD Player feature, HALdmc (Digital Music Center), 250-251
recovery media, creating, 56
registering
- cameras, in HALdvc setup, 173
- HAL, 86
relays, household electrical power, 23
remote wall switches, UPB controls, 156
remoting with IR, 302
resistance, 16
Romex, 19, 211
rotating dials, 103
routers, 258
runners, switches, 27

safety, 98
- indoor use products, 128
tips for, 7-9

SaskTel, 37, 295
Scan All Drives, 254
Schedule Wizard, 115-117
schedules, time-based routines, 115-121
schematic diagrams, 31
security, 228
security actions, cameras, 178
security settings, modifying in operating systems, 72-73
security software, 70-71
- home automation, 302
- updating, 51-54
SecurTek, 37
SaskTel, 295
semi-proprietary, 288
sensors
- heating and cooling systems, 209
- on-off sensors, 158
serial port connections, 91
Setup Wizard, 302
shared computer option, 35
signal limits, UPB controls, 156
single-location UPB-controlled lighting fixtures, 135
single-phase AC circuits, 12
single-point switches, 26
small form factor PCs, 38
smart phones, controlling HAL, 274
- Android devices, 281-284
- enabling HALids, 274-275
- iOS, 275-280
smoke alarms, children, 158
software upgrades, 183
solenoids, household electrical power, 23
sound, copying to hard drives, 243-245
sound cards, 42
sound reproduction equipment, HAL.dmc (Digital Music Center), 242
sound reproduction quality, 242-243
 audio CDs, 243
 copying music and sound to hard drive, 243-245
 digital music file formats, 243
speakerphone mode, 204
standard two-way switches, 131
standards, control methods, 62
storage drives, 41
support, monitoring services, 291
surge protection, 56-57
surge suppressors, 22
surveillance cameras, 159
 deciding how many are needed, 162
 Internet protocol security cameras, 160-161
 USB cameras, 159
switch drop, 26
switches, 25-28, 258
 four-way switches, 28
 heat sensor switches, 30
 motion sensor switches, 30
 on/off switches, 25
 runners, 27
 single-point switches, 26
 three-way switches, 26-27
switching
 for indoor and outdoor lighting circuits, 128-129
 multi-location switching, 129
 three-way switches, 130
system add-ons
 INSTEON devices, 300-301
 Setup Wizard, 302
 UPB devices, 299-300
 Z-Wave, 301
tablets, controlling HAL, 274
 enabling HALids, 274-275
technical support, monitoring services, 291-292
 Telephone Config window, General screen, 201
 Telephone Volume Adjustment, 202
terminal connections, thermostats, 214
 terminal designations, thermostats, 210
testing
 actions, 299
 device installation, 105-106
 HALultra, 187-189
 voice commands, HAL.dmc (Digital Music Center), 254-256
 voice portal modems, 205
thermostats, 25
 costs of installing, 216
 HALultra-compatible thermostats, installing, 210-216
 heating and cooling systems, 208-209
 terminal connections, 214
 voltage, 214-215
three switch locations, 133
three-location UPB-controlled lighting fixtures, 139-141
three-phase AC circuits, 12-13
three-way switches, 26-27, 130
Time Warner Cable, 295
time-based actions, 60
time-based controls, heating and cooling systems, 209-210

time-based routines, 115-121

timers, 29

times, initiating, 298

tools

crimp tool, 160

IP Camera Finder tool, 171

Leviton RF Installer tool, 233-238

punch-down tool, 160

Vizia installer tool, 233

tower cases, 38

transformer connections, AC (alternating current), 13

transformers, 18

power distribution transformers, 17-18

triggers

for automation processes, events, 67

heating and cooling systems, 209

troubleshooting, 114

turning off circuits, 8

two-location UPB-controlled lighting fixtures, 138-139

two-switch locations, 132-133

UPB (Universal Powerline Bus), 64-65

UPB control adapters, connecting to PCs, 145

UPB control modules, 127

configuring identities in HALbasic, 148

setting up, 147-148

UPB controls, 127

adapting existing wiring, 135

single-location, 135

three-location fixtures, 139-141

two-location fixtures, 138-139

installing, 141-142

remote wall switches, 156

signal limits, 156

wiring connections, 143

UPB devices, system add-ons, 299-300

updates, automatic updates, installing HALbasic, 69

upgrading to HALultra, 183-184

USB cameras, 159

installing, 163

user comments, 103

V

verizon Home Monitoring and Control, 295

VGA input jacks, 42

video, HALultra, 157

video cards, 41-42

viewing Internet data collected by HAL, 268-270

Vizia installer tool, 233

voice commands, 122-125

HALdmc (Digital Music Center), 254

testing, 254-256

voice feedback, 107

voice mail, configuring, 202
voice portal modems
connecting to operating systems, 197-199
installing, 193-195
with HAL Setup Wizard, 199
testing, 205
voltage, 16
checking, 215
thermostats, 214-215

W

W1, 211
W2, 211
waking HALbasic, 125
warranties, extended warranties, PCs, 37
watt hours (kWh), 16-17
watts, 16
Wi-Fi, 274
Wi-Fi cameras, 161
Wi-Fi mode, cameras, 167
Windows 7, updating operating system software, 46
Windows installer flag, 218
Windows-based computers, 33-34
wire colors, HVAC, 211-212
wire nuts, 90
wires, labeling, 212
wiring
adapted for UPB controls, 135
single-location, 135
three-location fixtures, 139-141
two-location fixtures, 138-139
connections, UPB controls, 143
existing wiring
fixtures switched from four or more locations, 134
fixtures switched from three locations, 133
lighting fixtures switched from a single location, 131-132
lighting fixtures switched from two locations, 132-133
wiring labels, thermostats, 210
wizards
Device Wizard, 101
HAL Setup Wizard, 147
installing voice portals, 199
Schedule Wizard, 115-117
WMA file types, 243
wye-connected three-phase transformers, AC (alternating current), 14-15

X

X-10, 64, 89, 211
adapters, energy costs, 92
connecting control adapters to the PC, 90-92
control modules
hard-wired outlet control modules, 98-100
plug-in control modules, 95-98
setting up, 93

Y

Y1, 211
Y2, 211
zero crossing point, 64
ZigBee, 225-226, 289
Z-Wave, 65-66, 229-232
 costs, 231
 Leviton RF Installer tool, laptops, 233-238
 primary controllers, 232
 system add-ons, 301
Z-Wave lamp module node, 237