Contents at a Glance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xxiv</td>
</tr>
<tr>
<td>Features of This Book</td>
<td>xxvi</td>
</tr>
<tr>
<td>Chapter 1: Introduction to Computer Repair</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2: On the Motherboard</td>
<td>45</td>
</tr>
<tr>
<td>Chapter 3: System Configuration</td>
<td>93</td>
</tr>
<tr>
<td>Chapter 4: Disassembly and Power</td>
<td>119</td>
</tr>
<tr>
<td>Chapter 5: Logical Troubleshooting</td>
<td>183</td>
</tr>
<tr>
<td>Chapter 6: Memory</td>
<td>201</td>
</tr>
<tr>
<td>Chapter 7: Storage Devices</td>
<td>249</td>
</tr>
<tr>
<td>Chapter 8: Multimedia Devices</td>
<td>333</td>
</tr>
<tr>
<td>Chapter 9: Other Peripherals</td>
<td>379</td>
</tr>
<tr>
<td>Chapter 10: Computing Design</td>
<td>449</td>
</tr>
<tr>
<td>Chapter 11: Basic Operating Systems</td>
<td>471</td>
</tr>
<tr>
<td>Chapter 12: Windows XP, Vista, and 7</td>
<td>575</td>
</tr>
<tr>
<td>Chapter 13: Internet Connectivity</td>
<td>695</td>
</tr>
<tr>
<td>Chapter 14: Introduction to Networking</td>
<td>727</td>
</tr>
<tr>
<td>Chapter 15: Computer and Network Security</td>
<td>811</td>
</tr>
<tr>
<td>Glossary</td>
<td>873</td>
</tr>
<tr>
<td>Index</td>
<td>911</td>
</tr>
</tbody>
</table>
Contents

Introduction .. xxiv

Features of This Book .. xxvi

Chapter 1: Introduction to Computer Repair ... 1
 Overview ... 2
 CompTIA A+ Certification .. 2
 Safety Note .. 3
 Technician Qualities ... 3
 Basic Computer Parts .. 5
 External Connectivity ... 11
 Mouse and Keyboard Ports ... 12
 Mice and Keyboards ... 13
 Wireless Input Devices ... 15
 Mouse and Keyboard Preventive Maintenance ... 18
 Keyboard/Mouse Troubleshooting .. 18
 Video Port .. 19
 USB Port .. 22
 Installing Extra USB Ports ... 26
 USB Troubleshooting .. 27
 Parallel Ports ... 28
 Serial Ports ... 29
 Audio Ports ... 29
 IEEE 1394 Ports .. 30
 IEEE 1394 Troubleshooting ... 32
 eSATA Ports ... 33
 Network Ports ... 33
 Modem Ports .. 34
 Pros and Cons of Integrated Motherboards ... 34
 Docking Stations and Port Replicators ... 35

Chapter Summary ... 38

Key Terms ... 38

Review Questions ... 39

Exercises .. 40
 Lab 1.1 Identifying Tower Computer Parts ... 40
 Lab 1.2 Identification of Computer Ports ... 41
 Lab 1.3 Identification of Video Ports .. 42
 Lab 1.4 Port Identification ... 42

Activities ... 43

Chapter 2: On the Motherboard ... 45

Processor Overview .. 46

Processor Basics ... 46

Intel Processors .. 48
<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Addresses</td>
<td>108</td>
</tr>
<tr>
<td>Adapter Configuration</td>
<td>109</td>
</tr>
<tr>
<td>Soft Skills—A Good Technician Quality: One Thing at a Time</td>
<td>109</td>
</tr>
<tr>
<td>Chapter Summary</td>
<td>111</td>
</tr>
<tr>
<td>Key Terms</td>
<td>111</td>
</tr>
<tr>
<td>Review Questions</td>
<td>111</td>
</tr>
<tr>
<td>Exercises</td>
<td>113</td>
</tr>
<tr>
<td>Lab 3.1 Configuration Method Exercise and Review</td>
<td>113</td>
</tr>
<tr>
<td>Lab 3.2 System Resource Configuration Through the Setup Program</td>
<td>114</td>
</tr>
<tr>
<td>Lab 3.3 Examining System Resources by Using Windows</td>
<td>115</td>
</tr>
<tr>
<td>Lab 3.4 Device Drivers</td>
<td>116</td>
</tr>
<tr>
<td>Activities</td>
<td>116</td>
</tr>
<tr>
<td>Chapter 4: Disassembly and Power</td>
<td>119</td>
</tr>
<tr>
<td>Disassembly Overview</td>
<td>120</td>
</tr>
<tr>
<td>Electrostatic Discharge (ESD)</td>
<td>120</td>
</tr>
<tr>
<td>EMI (Electromagnetic Interference)</td>
<td>122</td>
</tr>
<tr>
<td>Disassembly</td>
<td>122</td>
</tr>
<tr>
<td>Tools</td>
<td>122</td>
</tr>
<tr>
<td>Opening the Case</td>
<td>124</td>
</tr>
<tr>
<td>Cables and Connectors</td>
<td>124</td>
</tr>
<tr>
<td>Storage Devices</td>
<td>128</td>
</tr>
<tr>
<td>Motherboards</td>
<td>129</td>
</tr>
<tr>
<td>Mobile Device Issues</td>
<td>130</td>
</tr>
<tr>
<td>Reassembly</td>
<td>132</td>
</tr>
<tr>
<td>Preventive Maintenance</td>
<td>132</td>
</tr>
<tr>
<td>Basic Electronics Overview</td>
<td>134</td>
</tr>
<tr>
<td>Electronics Terms</td>
<td>134</td>
</tr>
<tr>
<td>Power Supply Overview</td>
<td>137</td>
</tr>
<tr>
<td>Power Supply Form Factors</td>
<td>138</td>
</tr>
<tr>
<td>Purposes of a Power Supply</td>
<td>141</td>
</tr>
<tr>
<td>Power Supply Voltages</td>
<td>143</td>
</tr>
<tr>
<td>Mobile Device Travel and Storage</td>
<td>144</td>
</tr>
<tr>
<td>Mobile Device Power</td>
<td>144</td>
</tr>
<tr>
<td>ACPI (Advanced Configuration and Power Interface)</td>
<td>147</td>
</tr>
<tr>
<td>Replacing or Upgrading a Power Supply</td>
<td>151</td>
</tr>
<tr>
<td>Symptoms of Power Supply Problems</td>
<td>152</td>
</tr>
<tr>
<td>Solving Power Supply Problems</td>
<td>153</td>
</tr>
<tr>
<td>Adverse Power Conditions</td>
<td>154</td>
</tr>
<tr>
<td>Adverse Power Protection</td>
<td>155</td>
</tr>
<tr>
<td>Surge Protectors</td>
<td>155</td>
</tr>
<tr>
<td>Line Conditioners</td>
<td>157</td>
</tr>
<tr>
<td>Uninterruptible Power Supply (UPS)</td>
<td>158</td>
</tr>
<tr>
<td>Standby Power Supply (SPS)</td>
<td>160</td>
</tr>
<tr>
<td>Phone Line Isolator</td>
<td>161</td>
</tr>
</tbody>
</table>
Contents

1. Electrical Fires .. 161
2. Computer Disposal/Recycling .. 162
3. Soft Skills—Written Communications Skills ... 162
4. Chapter Summary .. 164
5. Key Terms .. 165
6. Review Questions .. 165
7. Exercises .. 168
 - Lab 4.1 Performing Maintenance on an Antistatic Wrist Strap .. 168
 - Lab 4.2 Computer Disassembly/Reassembly ... 169
 - Lab 4.3 Amps and Wattage .. 172
 - Lab 4.4 Continuity Check .. 172
 - Lab 4.5 Pin-Out Diagramming ... 173
 - Lab 4.6 Fuse Check ... 174
 - Lab 4.7 Using a Multimeter .. 174
 - Lab 4.8 Wall Outlet and Power Cord AC Voltage Check ... 176
 - Lab 4.9 Device DC Voltage Check ... 177
 - Lab 4.10 Windows XP Power Options ... 178
 - Lab 4.11 Windows Vista/7 Power Options .. 179
8. Activities .. 180

Chapter 5: Logical Troubleshooting .. 183
 1. Troubleshooting Overview .. 184
 2. Identify the Problem .. 184
 3. Establish a Theory of Probable Cause ... 185
 4. Test the Theory to Determine Cause .. 190
 5. Establish a Plan of Action and Implement the Solution .. 191
 6. Verify Full System Functionality and Implement Preventive Measures 191
 7. Soft Skills—Document Findings, Actions, and Outcomes and Provide Feedback 192
 8. Chapter Summary .. 194
 9. Key Terms .. 194
 10. Review Questions .. 194
 11. Exercises ... 196
 - Lab 5.1 Logical Troubleshooting ... 196
 12. Activities .. 197

Chapter 6: Memory .. 201
 1. Memory Overview .. 202
 2. Memory Physical Packaging ... 203
 3. Planning the Memory Installation ... 204
 4. Planning the Memory Installation—Memory Technologies .. 205
 5. Mobile Device Memory ... 207
 6. Planning the Memory Installation—Memory Features .. 207
 7. Planning for Memory—The Amount of Memory to Install ... 209
 8. Planning for Memory—How Many of Each Memory Type? 212
 9. Planning for Memory—Researching and Buying Memory ... 216
<table>
<thead>
<tr>
<th>Chapter 8: Multimedia Devices</th>
<th>333</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimedia Overview</td>
<td>334</td>
</tr>
<tr>
<td>Optical Disk Drive Overview</td>
<td>334</td>
</tr>
<tr>
<td>Optical Drive Features</td>
<td>335</td>
</tr>
<tr>
<td>Optical Drive Interfaces and Connections</td>
<td>338</td>
</tr>
<tr>
<td>Optical Drive Installation</td>
<td>339</td>
</tr>
<tr>
<td>Troubleshooting Optical Drive Issues</td>
<td>341</td>
</tr>
<tr>
<td>Preventive Maintenance for ODDs and Discs</td>
<td>342</td>
</tr>
<tr>
<td>Theory of Sound Card Operation</td>
<td>345</td>
</tr>
</tbody>
</table>
Chapter 9: Other Peripherals

Chapter Overview ... 379
Video Overview ... 380
Types of Video Output Devices ... 380
Video Terminology and Theory ... 385
LCD (Liquid Crystal Display) .. 386
Video Ports and Cables .. 390
Multiple Displays .. 392
Projectors .. 394
Monitor Preventive Maintenance .. 395
Monitor Energy Efficiency ... 396
Privacy ... 397
Video Adapters ... 397
Specialized Video Cards ... 398
Video Memory .. 399
Installing a Video Adapter ... 401
Troubleshooting Video ... 402
Printers Overview .. 404
Printer Ports ... 405
Networked Printers ... 405
Chapter 10: Computer Design

Design Overview ... 450
Computer System Design .. 450
Motherboard and Associated Component Design 453
Power Supply and Case Design ... 454
Storage Subsystem Design .. 456
Audio Subsystem Design .. 458
Display Subsystem Design ... 459
Mobility Design ... 460
Soft Skills—Dealing with Irate Customers 461
Contents

Chapter Summary ... 463
Key Terms .. 464
Review Questions .. 464
Exercises ... 465
 Lab 10.1 Computer System Design 465
 Lab 10.2 Design Components 467
 Lab 10.3 Subsystem Design Components 468
Activities ... 469

Chapter 11: Basic Operating Systems 471

Basic Operating Systems Overview 472
Basic Windows Usage Overview .. 474
Basic Mobile Device Usage .. 480
Managing Windows Files and Folders 484
Attributes, Compression, and Encryption 488
Determining the Windows Version 490
Windows Registry ... 490
Editing the Windows Registry ... 491
Recovering the Windows OS .. 492
Recovering a Mobile OS .. 493
Virtualization Basics ... 493
Recovery Console/WinRE ... 494
Command Prompt Overview ... 495
Command Prompt Basics ... 496
Moving Around from a Command Prompt 498
The TYPE Command .. 498
Copying Files ... 499
The ATTRIB Command .. 500
Why Learn Commands? .. 500
Command Format .. 500
Soft Skills—Staying Current .. 516
Chapter Summary .. 517
Key Terms .. 517
Review Questions .. 518
Exercises ... 519
 Lab 11.1 XP Basic Usage ... 519
 Lab 11.2 Windows Vista/7 Basic Usage 526
 Lab 11.3 Introduction to Mobile Operating Systems 536
 Lab 11.4 Windows XP/Vista/7 Taskbar Options 537
 Lab 11.5 Windows XP/Vista/7 File and Folder Management ... 540
 Lab 11.6 Managing Files on a Mobile Device 545
 Lab 11.7 Windows XP/Vista/7 File Extension 546
 Lab 11.8 Windows XP/Vista/7 Attributes, Compression, and Encryption ... 547
 Lab 11.9 Using REGEDIT in Windows XP/Vista/7 550
Lab 11.10 Modifying the Windows XP Start Button ... 551
Lab 11.11 Modifying the Windows Vista/7 Start Button.................................... 553
Lab 11.12 Basic Commands at a Command Prompt ... 555
Lab 11.13 The COPY, MD, DEL, and RD Commands ... 558
Lab 11.14 The ATTRIB Command and Moving Around in the Directory Structure ... 561
Lab 11.15 Backup Software and the Archive Bit ... 566
Lab 11.16 Creating a Boot Floppy Disk in Windows XP 567
Lab 11.17 Installing and Exploring Windows XP Recovery Console 568
Lab 11.18 Creating a Windows 7 System Repair Disc 569
Lab 11.19 Creating a Windows 7 System Image Disc 570
Activities ... 571

Chapter 12: Windows XP, Vista, and 7 ... 575
Windows XP Overview ... 576
Windows Vista/7 Overview .. 577
Logging on to Windows .. 580
Pre-Installation of Windows ... 580
Viruses .. 585
Installation/Upgrade of Windows ... 587
Corporate Windows Deployment .. 588
Verifying the Installation .. 590
Troubleshooting a Windows Installation ... 591
Dual-Boot Installation of Windows ... 592
Virtualization .. 593
Reloading Windows .. 594
Updating Windows ... 595
Backing Up/Restoring the Windows Registry .. 597
Backing Up and Restoring the Windows System State 598
Configuring Windows Overview .. 599
Configuring Windows .. 600
Adding Devices ... 600
System Restore ... 603
Installing/Removing Software ... 605
Microsoft Management Console .. 606
Advanced Boot Options Menu .. 610
Overview of the Windows Boot Process .. 611
Speeding Up the Windows Boot Process .. 614
Troubleshooting the Windows Boot Process .. 614
Windows XP ASR (Automated System Recovery) ... 616
WinRE .. 616
System Configuration Utility ... 617
Task Manager and Event Viewer .. 619
Troubleshooting a Service That Does Not Start ... 623
Windows Reboots .. 623
Contents

Shut Down Problems .. 624
Monitoring System Performance .. 624
Supporting Windows Computers Remotely .. 630
Preventive Maintenance for Your Operating System... 632

Soft Skills—Avoiding Burnout ... 632
Chapter Summary ... 634
Key Terms .. 635
Review Questions .. 635
Exercises .. 636

| Lab 12.1 Windows XP Clean Installation .. 636 |
| Lab 12.2 Windows XP Upgrade Installation ... 638 |
| Lab 12.3 Windows 7 Installation ... 638 |
| Lab 12.4 Installing VMware Workstation .. 639 |
| Lab 12.5 Installing Windows into a VMware Workstation Virtual Machine 640 |
| Lab 12.6 Working with a VMware Workstation Virtual Machine .. 641 |
| Lab 12.7 Windows XP/Vista/7 Registry Modification .. 644 |
| Lab 12.8 Windows XP System State Backup ... 645 |
| Lab 12.9 Windows 7 Backup ... 646 |
| Lab 12.10 Windows Automatic Update Utility .. 646 |
| Lab 12.11 Windows XP Mouse, Keyboard, Accessibility, and Sound Options 647 |
| Lab 12.12 Configuring Windows 7 Ease of Access .. 650 |
| Lab 12.13 Windows XP System Restore Utility .. 653 |
| Lab 12.14 Windows 7 System Restore Utility .. 654 |
| Lab 12.15 Upgrading a Hardware Driver and Using Driver Roll Back Using Windows XP/Vista/7 ... 655 |
| Lab 12.16 Disabling a Hardware Driver Using Windows XP, Vista, or 7 656 |
| Lab 12.17 Installing Hardware Using Windows XP/Vista/7 ... 656 |
| Lab 12.18 Installing Administrative Tools in Windows XP ... 657 |
| Lab 12.19 Installing and Removing Windows XP Components ... 658 |
| Lab 12.20 Installing and Removing Windows Vista/7 Components 659 |
| Lab 12.21 Windows XP Microsoft Management Console .. 662 |
| Lab 12.22 Windows 7 Microsoft Management Console ... 666 |
| Lab 12.23 Exploring Windows XP Boot Options .. 669 |
| Lab 12.24 Exploring Windows 7 Boot Options .. 672 |
| Lab 12.25 Windows XP System Configuration Utility ... 676 |
| Lab 12.26 Windows 7 Startup Configuration ... 677 |
| Lab 12.27 Halting an Application Using Task Manager in Windows XP/Vista/7 679 |
| Lab 12.28 Using Windows XP Event Viewer ... 680 |
| Lab 12.29 Using Windows Vista/7 Event Viewer .. 681 |
| Lab 12.30 Using Task Manager to View Performance .. 682 |
| Lab 12.31 Using the System Monitor Utility in Windows XP ... 682 |
| Lab 12.32 Using the Performance Monitor Utility in Windows XP 683 |
Chapter 13: Internet Connectivity .. 695
 Internet Connectivity Overview .. 696
 Modems Overview .. 696
 Serial Communication Overview ... 697
 How to Configure Serial Ports and Devices 698
 56Kbps Modems .. 701
 Fax Modems .. 702
 Digital Modems and ISDN ... 702
 VoIP ... 703
 Cable Modems .. 704
 xDSL Modems ... 706
 Troubleshooting Cable and DSL Modems 708
 Satellite Modems ... 709
 Modem Preventive Maintenance ... 709
 Mobile Connectivity ... 709
 Web Browsers .. 711
 Soft Skills—Mentoring ... 713
 Chapter Summary .. 714
 Key Terms .. 714
 Review Questions .. 714
 Exercises ... 716
 Lab 13.1 Exploring Serial Devices in Windows XP 716
 Lab 13.2 Exploring Serial Devices in Windows Vista/7 717
 Lab 13.3 Windows XP Direct Cable Connection 718
 Lab 13.4 Internal and External Modem Installation 719
 Lab 13.5 Introduction to Internet Explorer Configuration 723
 Activities .. 724

Chapter 14: Introduction to Networking ... 727
 Networking Overview .. 728
 Types of Local Area Networks ... 729
 Network Topologies ... 732
 Network Media Overview .. 734
 Copper Media ... 734
 Fiber Media .. 737
 Protecting Your Network and Cable Investment 738
 Ethernet Issues and Concepts ... 741
 Network Standards ... 742
 The OSI Model .. 743
Contents

The TCP/IP Model ... 745
Network Addressing ... 746
IP Addressing .. 748
Subnetting Basics ... 750
Wireless Networks Overview .. 752
Bluetooth .. 753
Wireless Networks ... 753
Antenna Basics ... 760
Wireless Network Standards .. 764
Wired or Wireless NIC Installation 765
Wireless Broadband .. 770
Virtualization Network Issues .. 770
Access Point/Router Installation ... 771
Configuring a Networked Printer 771
Network Troubleshooting .. 772
Network Printer Troubleshooting 775
Network Terminology ... 775
The TCP/IP Model in Action ... 778
Sharing .. 779
Email ... 782
Network Connectivity ... 783
Mobile Device Network Connectivity 784
Mobile Apps .. 784
Soft Skills—Being Proactive ... 787
Chapter Summary .. 788
Key Terms .. 789
Review Questions .. 789
Exercises .. 791
Lab 14.1 Installing and Configuring a NIC Using Windows XP 791
Lab 14.2 Creating a Straight-Through CAT 5, 5e, or 6 Network Patch Cable ... 792
Lab 14.3 Creating a CAT 5, 5e, or 6 Crossover
Network Cable .. 795
Lab 14.4 Networking with Windows 7 797
Lab 14.5 Connecting to a Windows XP/Vista/7 Shared or Networked Printer ... 800
Lab 14.6 Installing a Dial-Up Connection Using Windows XP 801
Lab 14.7 Identifying Basic Wireless Network Parts 802
Lab 14.8 Installing a Wireless NIC 803
Lab 14.9 Configuring a Wireless Network 804
Lab 14.10 Wireless Network Case Study 805
Lab 14.11 FTP Server and Client .. 806
Lab 14.12 Subnet Practice Lab .. 807
Activities .. 808
Chapter 15: Computer and Network Security

Security Overview ... 812
Security Policy .. 812
Physical Security .. 813
Protecting the Operating System and Data 818
DEP (Data Execution Prevention) ... 822
Protecting Access to Local and Network Resources 823
Permissions ... 827
Internet Security ... 833
Security Incident Reporting .. 843
Wireless Network Security Overview 844
Wireless Authentication and Encryption 844
Default Settings .. 847
More Wireless Options .. 848
Wireless Security Conclusion ... 848
Wireless Network Troubleshooting 849
Mobile Security ... 850
A Final Word About Security ... 851
Soft Skills—Building Customer Trust 851
Chapter Summary .. 852
Key Terms .. 853
Review Questions .. 853
Exercises .. 854
Lab 15.1 Encrypting a File and Folder 854
Lab 15.2 Using Windows Vista/7 System Protection 856
Lab 15.3 Making a Folder Private in XP 857
Lab 15.4 Sharing a Folder in Windows XP 858
Lab 15.5 Sharing a Folder in Windows 7 860
Lab 15.6 Creating a Local Security Policy for Passwords 864
Lab 15.7 Windows Defender in Windows 7 868
Lab 15.8 Configuring a Secure Wireless Network 869
Activities .. 870

Glossary .. 873
Index .. 911
About the Author

Cheryl Schmidt is a professor of Network Engineering Technology at Florida State College at Jacksonville. Prior to joining the faculty ranks, she oversaw the LAN and PC support for the college and other organizations. She started her career as an electronics technician in the U.S. Navy. She teaches computer repair and various networking topics, including CCNA, CCNP, VoIP, QoS, and wireless technologies. She has published other works with Pearson, including *IP Telephony Using CallManager Express* and *Routing and Switching in the Enterprise Lab Guide*.

Cheryl has won awards for teaching and technology, including Outstanding Faculty of the Year, Innovative Teacher of the Year, and Cisco Networking Academy Stand Out Instructor. She has presented at U.S. and international conferences. Cheryl keeps busy maintaining her technical certifications and teaching, but also loves to travel, hike, do all types of puzzles, and read.
Dedication

A Note to Instructors

I was a teacher long before I had the title professor. Sharing what I know has always been as natural as walking to me, but sitting still to write what I know is not as natural, so composing this text has always been one of my greatest challenges. Thank you so much for choosing this text. I thank you for sharing your knowledge and experience with your students. Your dedication to education is what makes the student experience so valuable.

A Note to Students

Writing a textbook is really different from teaching class. I have said for years that my students are like my children, except that I don’t have to pay to send them through college. I am happy to claim any of you who have this text. I wish that I could be in each classroom with you as you start your IT career. How exciting!

Another thing that I tell my students is that I am not an expert. Computer repair is an ever-changing field and I have been in it since PCs started being used. You have to be excited about the never-ending changes to be good in this field. You can never stop learning or you will not be very good any more. I offer one important piece of advice:

Consistent, high-quality service boils down to two equally important things: caring and competence.

—Chip R. Bell and Ron Zemke

I dedicate this book to you. I can help you with the competence piece, but you are going to have to work on the caring part. Do not ever forget that there are people behind those machines that you love to repair. Taking care of people is as important as taking care of the computers.

Acknowledgments

I am so thankful for the support of my family during the production of this book. My husband Karl and daughters Raina and Karalina were such a source of inspiration and encouragement. Thanks to my colleagues, adjuncts, and students at my college who offered numerous valuable suggestions for improvement and testing the new material. I am especially grateful for the help and edits provided by Kathy A. Himle from Salt Lake Community College.

Many thanks are also due the folks at Pearson. The professionalism and support given during this edition was stellar. Thank you so much Pearson team and especially Drew Cupp, Mary Beth Ray, and two of the toughest technical reviewers I have had since my first and second editions, Chris Crayton and Jeff McDowell. You two kept me up late at night trying to figure out a way to make things better. I thank you so much for your conscientious efforts.

Finally, thank you to the students who have taken the time to share their recommendations for improvement. You are the reason I write this book each time. Please send me any ideas and comments you may have. I love hearing from you and of your successes. I may be reached at cheryl.schmidt@fscj.edu.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com
Mail: Dave Dusthimer
 Associate Publisher
 Pearson IT Certification
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.pearsonitcertification/register for convenient access to any updates, downloads, or errata that might be available for this book.
It Pays to Get Certified

In a digital world, digital literacy is an essential survival skill.

Certification proves you have the knowledge and skill to solve business problems in virtually any business environment. Certifications are highly-valued credentials that qualify you for jobs, increased compensation and promotion.

Certification Advances Your Career

- The CompTIA A+ credential—provides foundation-level knowledge and skills necessary for a career in PC repair and support.
- Starting Salary—CompTIA A+ Certified individuals can earn as much as $65,000 per year.
- Career Pathway—CompTIA A+ is a building block for other CompTIA certifications such as Network+, Security+ and vendor specific technologies.
- More than 850,000—Individuals worldwide are CompTIA A+ certified.
- Mandated/Recommended by organizations worldwide—Such as Cisco and HP and Ricoh, the U.S. State Department, and U.S. government contractors such as EDS, General Dynamics, and Northrop Grumman.

Some of the primary benefits individuals report from becoming A+ certified are:

- More efficient troubleshooting
- Improved career advancement
- More insightful problem solving
CompTIA Career Pathway

CompTIA offers a number of credentials that form a foundation for your career in technology and allows you to pursue specific areas of concentration. Depending on the path you choose to take, CompTIA certifications help you build upon your skills and knowledge, supporting learning throughout your entire career.

Steps to Certification

Steps to Getting Certified and Staying Certified

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review Exam Objectives</td>
<td>Review the certification objectives to make sure you know what is covered in the exam. http://www.comptia.org/certifications/testprep/examobjectives.aspx</td>
</tr>
<tr>
<td>Practice for the Exam</td>
<td>After you have studied for the certification, take a free assessment and sample test to get an idea what type of questions might be on the exam. http://www.comptia.org/certifications/testprep/practicetests.aspx</td>
</tr>
<tr>
<td>Purchase an Exam Voucher</td>
<td>Purchase your exam voucher on the CompTIA Marketplace, which is located at: www.comptiastore.com.</td>
</tr>
<tr>
<td>Take the Test!</td>
<td>Select a certification exam provider and schedule a time to take your exam. You can find exam providers at the following link: http://www.comptia.org/certifications/testprep/testingcenters.aspx</td>
</tr>
</tbody>
</table>
Join the Professional Community

Join IT Pro Community
http://itpro.comptia.org

The free IT Pro online community provides valuable content to students and professionals.

Career IT Job Resources
- Where to start in IT
- Career Assessments
- Salary Trends
- US Job Board

Forums on Networking, Security, Computing and Cutting Edge Technologies
Access to blogs written by Industry Experts
Current information on Cutting Edge Technologies
Access to various industry resource links and articles related to IT and IT careers

Content Seal of Quality

This courseware bears the seal of CompTIA Approved Quality Content. This seal signifies this content covers 100% of the exam objectives and implements important instructional design principles. CompTIA recommends multiple learning tools to help increase coverage of the learning objectives.

Why CompTIA?
- Global Recognition—CompTIA is recognized globally as the leading IT non-profit trade association and has enormous credibility. Plus, CompTIA’s certifications are vendor-neutral and offer proof of foundational knowledge that translates across technologies.
- Valued by Hiring Managers—Hiring managers value CompTIA certification because it is vendor- and technology-independent validation of your technical skills.
- Recommended or Required by Government and Businesses—Many government organizations and corporations either recommend or require technical staff to be CompTIA certified. (For example, Dell, Sharp, Ricoh, the U.S. Department of Defense, and many more.)
- Three CompTIA Certifications ranked in the top 10—In a study by DICE of 17,000 technology professionals, certifications helped command higher salaries at all experience levels.

How to obtain more information

Visit CompTIA online: www.comptia.org to learn more about getting CompTIA certified.

Contact CompTIA: Call 866-835-8020 ext. 5 or email questions@comptia.org

Connect with us:
Introduction

Complete CompTIA A+ Guide to PCs, Sixth Edition, is intended for one or more courses geared toward CompTIA A+ Certification and Computer Repair. It covers all the material needed for the CompTIA A+ 220-801 and 220-802 exams. The book is written so that it is easy to read and understand, with concepts presented in building-block fashion. The book focuses on hardware, software, mobile devices, virtualization, basic networking, and security.

Some of the best features of the book include the coverage of difficult subjects in a step-by-step manner, carefully developed graphics that illustrate concepts, photographs that demonstrate various technologies, reinforcement questions, critical thinking skills, soft skills, and hands-on exercises at the end of each chapter. Also, this book is written by a teacher who understands the value of a textbook from someone who has been in IT their entire career.

What’s New in the Sixth Edition?
This update has been revised to include coverage of mobile devices such as smartphones and tablets, virtualization, and design. This edition differs from the Fifth Edition Update book in the following ways:

- Conformity with the latest CompTIA A+ Exam requirements, including the CompTIA A+ 220-801 exam, as well as the CompTIA A+ 220-802 exam.
- A new chapter on computer design was added after the hardware chapters. The chapter includes design activities with various scenarios.
- Mobile devices and virtualization technologies have been added to relevant hardware and software chapters. Labs have also been included.
- Chapters 1 through 10 focus on hardware and design. Chapters 11 and 12 are the operating system chapters. Chapter 13 and 14 cover Internet/networking concepts. Chapter 15 handles security concepts.
- The Internet Connectivity chapter was moved after the Windows chapters and before the Introduction to Networking chapter. The chapter was revamped to be a better introduction to Internet technologies, before the book dives into the details of supporting devices that connect to a wired or wireless network.
- Chapters 1 through 3 were reorganized to better flow through the basic concepts.
- The book has always been filled with graphics and photos, but even more have been added to target those naturally drawn to the IT field.
- The number of questions at the end of each chapter was reduced, but more questions are available in the test bank available from the Pearson Instructor Resource Center.

Organization of the Text
The text is organized to allow thorough coverage of all topics and also to be a flexible teaching tool. It is not necessary to cover all the chapters, nor do the chapters have to be covered in order.

- Chapter 1 covers beginning terminology and computer part and port identification. Chapter 1 does not have a specific soft skills section as do the other chapters. Instead, it focuses on common technician qualities that are explored in greater detail in the soft skills sections of later chapters.
- Chapter 2 details components, features, and concepts related to motherboards, including processors, cache, expansion slots, and chipsets. Active listening skills are described in the soft skills section in this chapter.
• **Chapter 3** deals with system configuration basics. BIOS options, UEFI BIOS, and system resources are key topics. The soft skills section covers how one thing at a time should be done when replacing components.

• **Chapter 4** steps the student through how to disassemble and reassemble a computer. Laptop disassembly is also covered. Tools, ESD, EMI, and preventive maintenance are discussed. Subsequent chapters also include preventive maintenance topics. Basic electronics and computer power concepts are also included in this chapter. Written communication tips are provided for the soft skills training.

• **Chapter 5** covers troubleshooting skills and error codes. Good communication skills are stressed in the soft skills section.

• **Chapter 6** covers memory installation, preparation, and troubleshooting. The importance of teamwork is emphasized as the soft skill.

• **Chapter 7** deals with storage devices including the floppy drive and IDE PATA/SATA and SCSI (parallel and SAS) hard drive installation, preparation, and troubleshooting. SSDs are also covered. Phone communication skills is the target area for soft skills in this chapter.

• **Chapter 8** covers multimedia devices, including optical drives, sound cards, cameras, scanners, and speakers. The chapter ends with a section on having a positive, proactive attitude.

• **Chapter 9** deals with peripheral devices, including printers and video output devices. A discussion of work ethics finishes the chapter.

• **Chapter 10** is the new computer design chapter. Not only are the specialized computers and components needed within those types of systems covered, but computer subsystem design is also included. The soft skills section targets recommendations for dealing with irate customers.

• **Chapter 11** introduces operating systems, including Windows, Android, and iOS. The chapter also includes common desktop or home icons, how to manage files and folders, the registry, and how to function from a command prompt. The soft skills section includes tips on how to stay current in this fast-paced field.

• **Chapter 12** covers Windows XP, Vista, and 7. Details include how to install, configure, and troubleshoot the environment. Avoiding burnout is the soft skill discussed in this chapter.

• **Chapter 13** handles Internet connectivity. Analog and digital modems, cable modems, DSL modems, and mobile connectivity including wireless, WiMax, and broadband cellular are all discussed. Internet browser configuration is covered along with the soft skill of mentoring.

• **Chapter 14** introduces networking. Basic concepts, terminology, and exercises make this chapter a favorite. An introduction to subnetting has been added. The focus of the soft skills section is being proactive instead of reactive.

• **Chapter 15** describes computer, mobile device, and network security. The exercises include file and folder security, event monitoring, and local policy creation. The soft skills section is on building customer trust.
Features of This Book

The following key features of the book are designed to enable a better learning experience.

Chapter Objectives:
In this chapter you will learn:

- To recognize and identify important motherboard parts
- To explain the basics of how a processor works
- What issues to consider when upgrading or replacing the motherboard or processor
- How to add cards to computers and mobile devices
- The differences between PCI, PCI-X, AGP, and PCIe adapters and slots
- About motherboard technologies such as HyperTransport, Hyper-Threading, and multi-core
- The benefits of active listening

CompTIA Exam Objectives:
What CompTIA A+ exam objectives are covered in this chapter?

- 801-5.2 Differentiate between motherboard components, their purposes, and properties.
- 801-6.6 Differentiate among various CPU types and features and select the appropriate cooling method.
- 801-3.1 Install and configure laptop hardware and components.
- 801-5.3 Given a scenario, demonstrate proper communication and professionalism.
- 802-1.9 Explain the basics of client-side virtualization.
- 802-4.2 Given a scenario, troubleshoot common problems related to motherboards, RAM, CPU, and power with appropriate tools.

OBJECTIVES Each chapter begins with BOTH chapter objectives and the CompTIA A+ exam objectives

GRAPHICS AND PHOTOGRAPHS Many more have been added to better illustrate the concepts
Tech Tip

Enable SATA port

Many manufacturers require that you enable the motherboard port through the system BIOS before any device connected to the port is recognized.

TECH TIPS The chapters are filled with Tech Tips that highlight technical issues and certification exam topics

RAM is divided into two major types: **DRAM** (dynamic RAM) and **SRAM** (static RAM). DRAM is less expensive but slower than SRAM. With DRAM, the 1s and 0s inside the chip must be refreshed. Over time, the charge, which represents information inside a DRAM chip, leaks out. The information, stored in 1s and 0s, is periodically rewritten to the memory chip through the **refreshing** process. The refreshing is accomplished inside the DRAM while other

KEY TERMS IN CONTEXT As you read the chapter, terms that appear in blue are considered key terms and are defined in the glossary

Key Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>access time</td>
<td>216</td>
</tr>
<tr>
<td>cache memory</td>
<td>203</td>
</tr>
<tr>
<td>CL rating</td>
<td>216</td>
</tr>
<tr>
<td>CompactFlash</td>
<td>226</td>
</tr>
<tr>
<td>DDR</td>
<td>205</td>
</tr>
<tr>
<td>DDR2</td>
<td>205</td>
</tr>
<tr>
<td>DDR3</td>
<td>205</td>
</tr>
<tr>
<td>DDR3L</td>
<td>205</td>
</tr>
<tr>
<td>DIMM</td>
<td>203</td>
</tr>
<tr>
<td>double-sided memory</td>
<td>208</td>
</tr>
<tr>
<td>DRAM</td>
<td>203</td>
</tr>
<tr>
<td>dual-channel</td>
<td>212</td>
</tr>
<tr>
<td>dual-voltage memory</td>
<td>217</td>
</tr>
<tr>
<td>ECC</td>
<td>209</td>
</tr>
<tr>
<td>flash memory</td>
<td>226</td>
</tr>
<tr>
<td>fully buffered memory</td>
<td>208</td>
</tr>
<tr>
<td>microSD</td>
<td>226</td>
</tr>
<tr>
<td>miniSD</td>
<td>226</td>
</tr>
<tr>
<td>non-parity</td>
<td>208</td>
</tr>
<tr>
<td>pages</td>
<td>221</td>
</tr>
<tr>
<td>parity</td>
<td>208</td>
</tr>
<tr>
<td>Performance utility</td>
<td>223</td>
</tr>
<tr>
<td>RAM</td>
<td>202</td>
</tr>
<tr>
<td>RDRAM</td>
<td>205</td>
</tr>
<tr>
<td>refresh (process)</td>
<td>203</td>
</tr>
<tr>
<td>registered memory</td>
<td>207</td>
</tr>
<tr>
<td>quadraple-channel</td>
<td>215</td>
</tr>
<tr>
<td>SD</td>
<td>226</td>
</tr>
<tr>
<td>SDRAM</td>
<td>205</td>
</tr>
<tr>
<td>SIMM</td>
<td>203</td>
</tr>
<tr>
<td>single-sided memory</td>
<td>208</td>
</tr>
<tr>
<td>SO-DIMM</td>
<td>207</td>
</tr>
<tr>
<td>SPD</td>
<td>208</td>
</tr>
<tr>
<td>SRAM</td>
<td>203</td>
</tr>
<tr>
<td>swap file</td>
<td>221</td>
</tr>
<tr>
<td>triple-channel</td>
<td>215</td>
</tr>
<tr>
<td>unbuffered memory</td>
<td>208</td>
</tr>
<tr>
<td>USB flash drive</td>
<td>227</td>
</tr>
<tr>
<td>virtual machine</td>
<td>224</td>
</tr>
<tr>
<td>virtual memory</td>
<td>221</td>
</tr>
<tr>
<td>Windows Memory</td>
<td></td>
</tr>
<tr>
<td>Diagnostics Tool</td>
<td>225</td>
</tr>
<tr>
<td>xD</td>
<td>226</td>
</tr>
</tbody>
</table>

KEY TERMS LIST At the end of the chapter, all key terms are listed with page references to which to refer for context
Soft Skills—Active Listening

Active listening is participating in a conversation where you focus on what the customer is saying—in other words, listening more than talking. For a technician, active listening has the following benefits:

- Allows you to gather data and symptoms quickly
- Allows you to build customer rapport
- Improves your understanding of the problem
- Allows you to solve the problem more quickly because you understand the problem better
- Provides mutual understanding between you and the customer
- Provides a means of having a positive, engaged conversation rather than having a negative, confrontational encounter
- Focuses on the customer rather than the technician
- Provides an environment where the customer might be more forthcoming with information related to the problem

Frequently, when a technician arrives onsite or contacts a customer who has a technical problem, the technician is (1) rushed; (2) thinking of other things, including the problems that need to be solved; (3) assuming that he or she knows exactly what the problem is, even though the user has not finished explaining the problem; or (4) more interested in the technical problem than in the customer and the issues. Active listening changes the focus from the technician's problems to the customer's problems.

A common but ineffective service call involves a technician doing most of the talking and questioning, using technical jargon and acronyms and a flat or condescending tone. The customer, who feels vulnerable, experiences a heightened anxiety level. Active listening changes this scenario by helping you build a professional relationship with your customers. The following list outlines some measures that help you implement active listening.

Have a positive, engaged professional attitude when talking and listening to customers:

- Leave your prejudices behind; be polite and aware of other cultures and customs; be open-minded and nonjudgmental.
- Have a warm and caring attitude.
- Do not fold your arms in front of your chest because doing so distances you from the problem and the customer.

SOFT SKILLS Technology is not the only thing you must learn and practice; each chapter offers advice, activities, and examples of how to be a good tech, an ethical tech, a good work mate, a good communicator, and so on

Chapter Summary

- Memory on a motherboard is SDRAM, a type of RAM that is cheaper and slower than SRAM, the type of memory inside the CPU and processor housing.
- A DDR module fits in a DDR slot. A DDR2 module requires a DDR2 slot; a DDR3 module requires a DDR3 slot.
- RIMMs are RDRAM and were developed by Rambus, Inc. C-RIMMs are inserted into empty memory slots.
- Unbuffered memory is the memory normally installed in computers.
- ECC is used for error checking and is commonly found in high-end computers and servers. An older method of error checking was called parity.
- The CL rating or the timing sequence first number shows how fast the processor can access data in sequential memory locations. The lower the first number, the faster the access.
- SPD is a technology used so the memory module can communicate specifications to the BIOS.

CHAPTER SUMMARY Recap the key concepts of the chapter, and use this for review to ensure you've mastered the chapter's learning objectives
Review Questions

1. Which expansion slot would most likely be used to add an internal adapter to a new laptop? (ExpressCard/34 | ExpressCard/54 | mini PCIe | PC Card | USB port | PCI-X | mini PCI |)
2. Which expansion slot would be best for a video card in a desktop computer? (PCI-X | PCIe | PCI | ExpressCard/54 | AGP)
3. A motherboard has a PCIe x16 expansion slot. Which PCIe adapter(s) will fit in this slot? (Select any that apply.) (x1 | x2 | x4 | x8 | x16 | x32)
4. Match the capacity to the description.
 ___ bit a. 8 bits
 ___ kilobyte b. a 1 or a 0
 ___ megabyte c. approximately 1,000 bytes
 ___ byte d. approximately 1 million bytes
 ___ gigabyte e. approximately 1 trillion bytes
 ___ terabyte f. approximately 1 billion bytes
5. What is the front side bus?
 a. the internal data bus that connects the processor core to the L1 cache
 b. the internal data bus that connects the processor core to the L2 cache
 c. the external data bus that connects the processor to the motherboard components
 d. the external data bus that connects the processor to the L2 cache
6. A customer wants to upgrade the L2 cache. What will this definitely require?
 a. a motherboard purchase

Review Questions Hundreds of review questions, including true/false, multiple choice, matching, fill-in-the-blank, and open-ended questions, assess your knowledge of the learning.

Lab 1.3 Identification of Video Ports

Objective: To identify various video ports correctly
Procedure: Identify each video port in Figure 1.55.

![Video ports](image)

Figure 1.55 Video ports

1.
2.
3.
4.

Lab Exercises More than 125 labs enable you to link theory to practical experience.
ACTIVITIES

Extensive practice with Internet Discovery, Soft Skills, and Critical Thinking Skills round out your technical knowledge so that you can be prepared for IT work.
EXAM TIPS Read through these tips on the CompTIA A+ exams so you aren’t caught off guard when you sit for the exam

CompTIA A+ Exam Objectives

Tables I-1 and I-2 summarize where you can find all the CompTIA A+ exam objectives covered in the book.

Table I-1 CompTIA A+ 220-801 exam objectives

<table>
<thead>
<tr>
<th>Objective</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>220-801</td>
<td></td>
</tr>
<tr>
<td>1.0 PC Hardware</td>
<td></td>
</tr>
<tr>
<td>1.1 Configure and apply BIOS settings.</td>
<td>3, 7, 8, 15</td>
</tr>
<tr>
<td>1.2 Differentiate between motherboard components, their purposes, and properties.</td>
<td>1, 2, 3, 4, 6, 14</td>
</tr>
<tr>
<td>1.3 Compare and contrast RAM types and features.</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Install and configure expansion cards.</td>
<td>3, 8, 9, 13</td>
</tr>
<tr>
<td>1.5 Install and configure storage devices and use appropriate media.</td>
<td>1, 6, 7, 8</td>
</tr>
<tr>
<td>1.6 Differentiate among various CPU types and features and select the appropriate cooling method.</td>
<td>2</td>
</tr>
<tr>
<td>1.7 Compare and contrast various connection interfaces and explain their purpose.</td>
<td>1, 13, 14</td>
</tr>
<tr>
<td>1.8 Install an appropriate power supply based on a given scenario</td>
<td>4</td>
</tr>
<tr>
<td>1.9 Evaluate and select appropriate components for a custom configuration, to meet customer specifications or needs.</td>
<td>10</td>
</tr>
<tr>
<td>1.10 Given a scenario, evaluate types and features of display devices.</td>
<td>1, 9</td>
</tr>
<tr>
<td>1.11 Identify connector types and associated cables.</td>
<td>1, 7, 9, 13</td>
</tr>
<tr>
<td>1.12 Install and configure various peripheral devices.</td>
<td>1, 8, 9</td>
</tr>
<tr>
<td>Objective</td>
<td>Chapters</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>220-801</td>
<td></td>
</tr>
<tr>
<td>2.0 Networking</td>
<td></td>
</tr>
<tr>
<td>2.1 Identify types of network cables and connectors.</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Categorize characteristics of connectors and cabling.</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Explain properties and characteristics of TCP/IP.</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Explain common TCP and UDP ports, protocols, and their purpose.</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Compare and contrast wireless networking standards and encryption types.</td>
<td>14, 15</td>
</tr>
<tr>
<td>2.6 Install, configure, and deploy a SOHO wireless/wired router using appropriate settings.</td>
<td>14, 15</td>
</tr>
<tr>
<td>2.7 Compare and contrast Internet connection types and features.</td>
<td>13, 14</td>
</tr>
<tr>
<td>2.8 Identify various types of networks.</td>
<td>14</td>
</tr>
<tr>
<td>2.9 Compare and contrast network devices their functions and features.</td>
<td>13, 14, 15</td>
</tr>
<tr>
<td>2.10 Given a scenario, use appropriate networking tools.</td>
<td>14</td>
</tr>
<tr>
<td>3.0 Laptops</td>
<td></td>
</tr>
<tr>
<td>3.1 Install and configure laptop hardware and components.</td>
<td>1, 2, 4, 6, 7, 8, 9, 14</td>
</tr>
<tr>
<td>3.2 Compare and contrast the components within the display of a laptop.</td>
<td>9, 14</td>
</tr>
<tr>
<td>3.3 Compare and contrast laptop features.</td>
<td>1, 8, 14, 15</td>
</tr>
<tr>
<td>4.0 Printers</td>
<td></td>
</tr>
<tr>
<td>4.1 Explain the differences between the various printer types and summarize the associated imaging process.</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Given a scenario, install, and configure printers.</td>
<td>3, 9, 14</td>
</tr>
<tr>
<td>4.3 Given a scenario, perform printer maintenance.</td>
<td>9</td>
</tr>
<tr>
<td>5.0 Operational Procedures</td>
<td></td>
</tr>
<tr>
<td>5.1 Given a scenario, use appropriate safety procedures.</td>
<td>4, 14</td>
</tr>
<tr>
<td>5.2 Explain environmental impacts and the purpose of environmental controls.</td>
<td>4, 10</td>
</tr>
<tr>
<td>5.3 Given a scenario, demonstrate proper communication and professionalism.</td>
<td>1, 2, 4, 5, 7, 10, 15</td>
</tr>
<tr>
<td>5.4 Explain the fundamentals of dealing with prohibited content/activity.</td>
<td>15</td>
</tr>
<tr>
<td>Objective</td>
<td>Chapters</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>220-802</td>
<td></td>
</tr>
<tr>
<td>1.0 Operating Systems</td>
<td></td>
</tr>
<tr>
<td>1.1 Compare and contrast the features and requirements of various Microsoft operating systems.</td>
<td>6, 11, 12, 15</td>
</tr>
<tr>
<td>1.2 Given a scenario, install and configure the operating system using the most appropriate method.</td>
<td>7, 11, 12, 14</td>
</tr>
<tr>
<td>1.3 Given a scenario, use appropriate command line tools.</td>
<td>11, 12, 14</td>
</tr>
<tr>
<td>1.4 Given a scenario, use appropriate operating system features and tools.</td>
<td>4, 6, 7, 8, 11, 12, 14, 15</td>
</tr>
<tr>
<td>1.5 Given a scenario, use Control Panel utilities (the items are organized by “classic view/large icons” in Windows).</td>
<td>4, 6, 8, 11, 12, 14, 15</td>
</tr>
<tr>
<td>1.6 Setup and configure Windows networking on a client/desktop.</td>
<td>13, 14, 15</td>
</tr>
<tr>
<td>1.7 Perform preventive maintenance procedures using appropriate tools.</td>
<td>7, 11, 12</td>
</tr>
<tr>
<td>1.8 Explain the differences among basic OS security settings.</td>
<td>14, 15</td>
</tr>
<tr>
<td>1.9 Explain the basics of client-side virtualization.</td>
<td>2, 11, 12, 14, 15</td>
</tr>
<tr>
<td>2.0 Security</td>
<td></td>
</tr>
<tr>
<td>2.1 Apply and use common prevention methods.</td>
<td>12, 15</td>
</tr>
<tr>
<td>2.2 Compare and contrast common security threats.</td>
<td>12, 15</td>
</tr>
<tr>
<td>2.3 Implement security best practices to secure a workstation.</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Given a scenario, use the appropriate data destruction/disposal method.</td>
<td>7, 15</td>
</tr>
<tr>
<td>2.5 Given a scenario, secure a SOHO wireless network.</td>
<td>15</td>
</tr>
<tr>
<td>2.6 Given a scenario, secure a SOHO wired network.</td>
<td>15</td>
</tr>
<tr>
<td>3.0 Mobile Devices</td>
<td></td>
</tr>
<tr>
<td>3.1 Explain the basic features of mobile operating systems.</td>
<td>6, 11</td>
</tr>
<tr>
<td>3.2 Establish basic network connectivity and configure email.</td>
<td>1, 14</td>
</tr>
<tr>
<td>3.3 Compare and contrast methods for securing mobile devices.</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Compare and contrast hardware differences in regards to tablets and laptops.</td>
<td>1</td>
</tr>
<tr>
<td>3.5 Execute and configure mobile device synchronization.</td>
<td>14</td>
</tr>
<tr>
<td>4.0 Troubleshooting</td>
<td></td>
</tr>
<tr>
<td>4.1 Given a scenario, explain the troubleshooting theory.</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Given a scenario, troubleshoot common problems related to motherboards, RAM, CPU, and power with appropriate tools.</td>
<td>2, 4, 5, 6, 14</td>
</tr>
</tbody>
</table>
Objective Chapters 220-802

<table>
<thead>
<tr>
<th>Objective</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Given a scenario, troubleshoot hard drives and RAID arrays with appropriate tools.</td>
<td>7</td>
</tr>
<tr>
<td>4.4 Given a scenario, troubleshoot common video and display issues.</td>
<td>9</td>
</tr>
<tr>
<td>4.5 Given a scenario, troubleshoot wired and wireless networks with appropriate tools.</td>
<td>13, 14</td>
</tr>
<tr>
<td>4.6 Given a scenario, troubleshoot operating system problems with appropriate tools.</td>
<td>6, 7, 11, 12</td>
</tr>
<tr>
<td>4.7 Given a scenario, troubleshoot common security issues with appropriate tools and best practices.</td>
<td>12, 15</td>
</tr>
<tr>
<td>4.8 Given a scenario, troubleshoot, and repair common laptop issues while adhering to the appropriate procedures.</td>
<td>1, 4, 9, 14</td>
</tr>
<tr>
<td>4.9 Given a scenario, troubleshoot printers with appropriate tools</td>
<td>9</td>
</tr>
</tbody>
</table>

Summary of Exam Domains by Chapter

<table>
<thead>
<tr>
<th>Schmidt Table of Contents</th>
<th>220-801 Domains</th>
<th>220-802 Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Introduction to Computer Repair</td>
<td>1, 5</td>
<td>3, 4</td>
</tr>
<tr>
<td>Chapter 2: On the Motherboard</td>
<td>1, 3, 5</td>
<td>1, 4</td>
</tr>
<tr>
<td>Chapter 3: System Configuration</td>
<td>1, 4</td>
<td></td>
</tr>
<tr>
<td>Chapter 4: Disassembly and Power</td>
<td>1, 3, 5</td>
<td>1, 4</td>
</tr>
<tr>
<td>Chapter 5: Logical Troubleshooting</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Chapter 6: Memory</td>
<td>1, 3</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>Chapter 7: Storage Devices</td>
<td>1, 3, 5</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>Chapter 8: Multimedia Devices</td>
<td>1, 3</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 9: Other Peripherals</td>
<td>1, 3, 4</td>
<td>4</td>
</tr>
<tr>
<td>Chapter 10: Computing Design</td>
<td>1, 5</td>
<td></td>
</tr>
<tr>
<td>Chapter 11: Basic Windows Operating Systems</td>
<td>1, 3, 4</td>
<td></td>
</tr>
<tr>
<td>Chapter 12: Windows XP, Vista, and 7</td>
<td>1, 2, 4</td>
<td></td>
</tr>
<tr>
<td>Chapter 13: Internet Connectivity</td>
<td>1, 2</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 14: Introduction to Networking</td>
<td>1, 2, 3, 4, 5</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>Chapter 15: Computer and Network Security</td>
<td>1, 2, 3, 5</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>
Chapter Objectives:
In this chapter you will learn:
- How to prevent static electricity, RFI, and EMI from harming or interfering with a computer
- The tools needed to work on computers
- How to take apart a computer and put it back together
- How to perform basic voltage and continuity checks
- How to upgrade or replace a power supply
- Different power-saving techniques
- What type of power devices can be used to protect computers
- Tips for good written communication

CompTIA Exam Objectives:
What CompTIA A+ exam objectives are covered in this chapter?

✓ 801-1.2 Differentiate between motherboard components, their purposes, and properties.
✓ 801-1.8 Install an appropriate power supply based on a given scenario.
✓ 801-3.1 Install and configure laptop hardware and components.
✓ 801-5.1 Given a scenario, use appropriate safety procedures.
✓ 801-5.2 Explain environmental impacts and the purpose of environmental controls.
✓ 801-5.3 Given a scenario, demonstrate proper communication and professionalism.
✓ 802-1.4 Given a scenario, use appropriate operating system features and tools.
✓ 802-1.5 Given a scenario, use Control Panel utilities.
✓ 802-4.2 Given a scenario, troubleshoot common problems related to motherboards, RAM, CPU, and power with appropriate tools.
✓ 802-4.8 Given a scenario, troubleshoot, and repair common laptop issues while adhering to the appropriate procedures.
Chapter 4 • Disassembly and Power

Disassembly Overview
It is seldom necessary to completely disassemble a computer. However, when a technician is first learning about PCs, disassembly can be both informative and fun. Technicians might disassemble parts of a computer to perform preventive cleaning or to troubleshoot a problem. It may also be appropriate to disassemble a computer when it has a problem of undetermined cause. Sometimes, the only way to diagnose a problem is to disassemble the computer outside the case or remove components one by one. Disassembling a computer outside the case may help with grounding problems. A grounding problem occurs when the motherboard or adapter is not properly installed and a trace (a metal line on the motherboard or adapter) touches the computer frame, causing the adapter and possibly other components to stop working. Don't forget to remove jewelry and use proper lifting techniques, as described in Figure 1.1 (see Chapter 1) before disassembling a computer.

Electrostatic Discharge (ESD)
You must take many precautions when disassembling a computer. The electronic circuits located on the motherboard and adapters are subject to ESD. ESD (electrostatic discharge) is a difference of potential between two items that causes static electricity. Static electricity can damage electronic equipment without the technician's knowledge. The average person requires a static discharge of 3,000 volts before he or she feels it. An electronic component can be damaged with as little as 30 volts. Some electronic components may not be damaged the first time static electricity occurs. However, the effects of static electricity can be cumulative, weakening or eventually destroying a component. An ESD event is not recoverable—nothing can be done about the damage it induces. Electronic chips and memory modules are most susceptible to ESD strikes.

Atmospheric conditions affect static electricity. When humidity is low, the potential for ESD is greater than at any other time; however, too much humidity is bad for electronics. Keep humidity between 45 and 55 percent to reduce the threat of ESD.

A technician can prevent ESD by using a variety of methods. The most common tactic is to use an antistatic wrist strap. One end encircles the technician's wrist. At the other end, an alligator clip attaches to the computer. The clip attaches to a grounding post or a metal part such as the power supply. The electronic symbol for ground follows:

An antistatic wrist strap allows the technician and the computer to be at the same voltage potential. As long as the technician and the computer or electronic part are at the same potential, static electricity does not occur. An exercise at the end of the chapter demonstrates how to attach an antistatic wrist strap and how to perform maintenance on it. Technicians should use an ESD wrist strap whenever possible.

A resistor inside an antistatic wrist strap protects the technician in case something accidentally touches the ground to which the strap attaches while he or she is working inside a computer. This resistor cannot protect the technician against the possible voltages inside a monitor. See Figure 4.1 for an illustration of an antistatic wrist strap. Figure 4.2 shows a good location for attaching an antistatic wrist strap.

When not to wear an antistatic wrist strap
Technicians should not wear an ESD wrist strap when working inside a CRT monitor because of the high voltages there.
Antistatic bags are good for storing spare adapters and motherboards when the parts are not in use. However, antistatic bags lose their effectiveness after a few years. Antistatic mats are available to place underneath a computer being repaired; such a mat may have a snap for connecting the antistatic wrist strap. Antistatic heel straps are also available.

If an antistatic wrist strap is not available, you can still reduce the chance of ESD damage. After removing the computer case, stay attached to an unpainted metal computer part. One such part is the power supply. If you are right-handed, place your bare left arm on the power supply. Remove the computer parts one by one, always keeping your left elbow (or some other bare part of your arm) connected to the power supply. If you are left-handed, place your right arm on the power supply. By placing your elbow on the power supply, both hands are free to remove computer parts. This method is an effective way of keeping the technician and the computer at the same voltage potential, thus reducing the chance of ESD damage. It is not as safe as using an antistatic wrist strap. Also, removing the power cable from the back of the
A computer is a good idea. A power supply provides a small amount of power to the motherboard even when the computer is powered off. Always unplug the computer and use an antistatic wrist strap when removing or replacing parts inside a computer!

EMI (Electromagnetic Interference)

EMI (electromagnetic interference, sometimes called EMR, for electromagnetic radiation) is noise caused by electrical devices. Many devices can cause EMI, such as a computer, a pencil sharpener, a motor, a vacuum cleaner, an air conditioner, and fluorescent lighting. The electrical devices around the computer case, including a CRT-type monitor and speakers, cause more problems than the computer.

A specific type of electromagnetic interference that affects computers is RFI (radio frequency interference). RFI is simply those noises that occur in the radio frequency range. Anytime a computer has an intermittent problem, check the surrounding devices for the source of that problem. For example, if the computer goes down only when the pencil sharpener operates or when using the optical drive, EMI could be to blame. EMI problems are very hard to track to the source. Any electronic device including computers and printers can be a source of EMI/RFI. EMI/RFI can affect any electronic circuit. EMI can also come through power lines. Move the computer to a different wall outlet or to a totally different circuit to determine if the power outlet is the problem source. EMI can also affect files on a hard drive.

Disassembly

Before a technician disassembles a computer, several steps should be performed or considered. The following disassembly tips are helpful:

- Do not remove the motherboard battery, or the configuration information in CMOS will be lost.
- Use proper grounding procedures to prevent ESD damage.
- Keep paper, a pen, a phone, and a digital camera nearby for note taking, diagramming, and photo taking. Even if you have taken apart computers for years, you might find something unique or different inside this one.
- Have ample flat and clean workspace.
- When removing adapters, do not stack the adapters on top of one another.
- If possible, place removed adapters inside a special ESD protective bag.
- Handle each adapter, motherboard, or processor on the side edges. Avoid touching the gold contacts on the bottom of adapters. Sweat, oil, and dirt cause problems.
- Remember that hard drives require careful handling. A very small jolt can cause damage to stored data.
- You can remove a power supply, but do not disassemble a CRT-style monitor or power supply without proper training and tools.
- Document screw and cable locations. Label them if possible.

Tools

No chapter on disassembly and reassembly is complete without mentioning tools. Tools can be divided into two categories: (1) those you should not leave the office without and (2) those that are nice to have in the office, at home, or in the car.
Many technicians do not go on a repair call with a full tool case. Ninety-five percent of all repairs are completed with the following basic tools:

- Small and medium flat-tipped screwdrivers
- #0, #1, and #2 Phillips screwdrivers
- 1/4- and 3/16-inch hex nut drivers
- Small diagonal cutters
- Needle-nose pliers

Screwdrivers take care of most disassemblies and reassemblies. Sometimes manufacturers place tie wraps on new parts, new cables, or the cables inside the computer case. The diagonal cutters are great for removing the tie wraps without cutting cables or damaging parts. Needle-nose pliers are ideal for straightening bent pins on cables or connectors, and doing a million other things. Small tweaker screwdrivers and needle-nose pliers are indispensable.

Many technicians start with a basic $15 microcomputer repair kit and build from there. A bargain table 6-in-1 or 4-in-1 combination screwdriver that has two sizes of flat-tipped and two sizes of Phillips screwdrivers is a common tool among new technicians. A specialized Swiss army knife with screwdrivers is the favorite of some technicians. Other technicians prefer to carry an all-in-one tool in a pouch that connects to their belt.

Alternatives to the magnetic screwdriver include a screw pick-up tool and common sense. A screw pick-up tool is used in hard-to-reach places and sometimes under the motherboard. If a screw rolls under the motherboard and cannot be reached, tilt the computer so that the screw rolls out. Sometimes the case must be tilted in different directions until the screw becomes dislodged.

There are tools that no one thinks of as tools but that should be taken on a service call every time. They include a pen or pencil with which to take notes and fill out the repair slip and a bootable disc containing the technician’s favorite repair utilities. Usually a technician has several bootable discs for different operating systems and utilities. Often a flashlight comes in handy because some rooms and offices are dimly lit. Finally, do not forget to bring a smile and a sense of humor.

Tools that are nice to have but not used daily include the following:

- Multimeter
- Screw pick-up tool
- Screwdriver extension tool
- Soldering iron, solder, and flux
- Screw-starter tool
- Medium-size diagonal cutters
- Metric nut drivers
- Cable-making tools
- Cable tester
- Loopback plug
- Punch down tool
- Toner probe
- Wire stripper
- Crimper

Tech Tip

Do not use magnetized screwdrivers

Avoid using a magnetic screwdriver when working on a computer. It can cause permanent loss of data on hard drives or floppy disks. Magnetism can also induce currents into components and damage them. Sometimes, technicians are tempted to use a magnetic screwdriver when they drop a small part such as a screw into a hard-to-reach place, but avoid using a magnetic screwdriver.
You could get some nice muscle tone from carrying all these nice-to-have but normally unnecessary tools. When starting out in computer repair, get the basics. As your career path and skill level grow, so will your tool kit. Getting to a job site and not having the right tool can be a real hassle. However, because there are no standards or limitations on what manufacturers can use in their product lines, it is impossible to always have the right tool on hand. However, always remember that no tool kit is complete without an antistatic wrist strap.

Opening the Case
Opening or removing the case is sometimes the hardest part of disassembly. Some manufacturers have tabs or covers over the retaining screws, and others have retention levers or tabs that have to be depressed before the cover slides open or away. For some computers you must press a tab on top of the computer downward while simultaneously pressing upward on a tab on the bottom of the computer. Once the tabs are pressed, the cover can be pried open. Sound like a two-person job? Sometimes it is.

Some cases have screws that loosen but do not have to be removed all the way to remove or open the case. For all computer screws, make diagrams and use an egg carton and label each section of the carton with where you got the screws. When possible, refer to the manufacturer’s directions when opening a case.

Cables and Connectors
Internal cables commonly connect from a device to the motherboard, the power supply to a device, the motherboard to the front panel buttons or ports, and/or from a card that occupies an expansion space to the motherboard. Cables can be tricky. Inserting a cable backward into a device or adapter can damage the device, motherboard, or adapter. Most cables are keyed so the cable inserts into the connector only one way. However, some cables or connectors are not keyed.

Removing a cable for the first time requires some muscle. Many cables have a pull tab or plastic piece used to remove the cable from the connector and/or device. Use this if possible and do not yank on the cable. Some cables have connectors with locking tabs. Release the locking tab before disconnecting the cable; otherwise, damage can be done to the cable and/or connector.

Be careful with hard drive cables. Some of the narrow drive cables, such as the one shown in Figure 4.3, are not as sturdy and do not connect as firmly as some of the other computer cables. Also, with this particular cable type, it does not matter which cable end attaches to the device. A 90°-angled cable (see Figure 4.4) may attach to devices in a case that has a limited-space design and may have a release latch.
Each cable has a certain number of pins, and all cables have a **pin 1**. Pin 1 on a cable connects to pin 1 on a connector. In the event that the pin 1 is not easily identified, both ends of the cable should be labeled with either a 1 or 2 on one side or a higher number, such as 24, 25, 49, 50, and so on, on the other end. Pins 1 and 2 are always on the same end of a cable. If you find a higher number, pin 1 is on the opposite end. Also, the cable connector usually has an arrow etched into its molding showing the pin 1 connection. Figure 4.5 shows pin 1 on a ribbon cable.

Pin 1 is the cable edge that is colored

Pin 1 on a ribbon cable is easily identified by the colored stripe that runs down the edge of the cable.
Chapter 4 • Disassembly and Power

Just as every cable has a pin 1, all connectors on devices, adapters, or motherboards have a pin 1. Pin 1 on a cable inserts into pin 1 on a connector. Cables are normally keyed so that they insert only one way. Some manufacturers stencil a 1 or a 2 by the connector on the motherboard or adapter; however, on a black connector, it's difficult to see the small number. Numbers on adapters are easier to distinguish. When the number 2 is etched beside the adapter's connector, connect the cable's pin 1 to this side. Remember that pins 1 and 2 are always on the same side, whether on a connector or on a cable. Some technicians use a permanent marker to label a cable's function. Figure 4.6 shows an example of a stenciled marking beside an adapter's connector. Figure 4.6 illustrates the number 2 etched onto the adapter, but other manufacturers stencil a higher number, such as 33, 34, 39, or 40, beside the opposite end of the connector.

Motherboard connectors are usually notched so that the cable inserts only one way; however, not all cables are notched. Some motherboards have pin 1 (or the opposite pin) labeled. Always refer to the motherboard documentation for proper orientation of a cable into a motherboard connector. Figure 4.7 shows the motherboard connectors used for the thin cables shown in Figures 4.3 and 4.4. These connectors commonly have hard drives and optical drives attached. Figure 4.8 shows three other motherboard connectors that are notched.

Figure 4.5 Pin 1 on a ribbon cable

Figure 4.6 Pin 1 on an adapter

Tech Tip

Snug connections
When connecting cables to a motherboard or internal components, ensure that each cable is connected tightly, evenly, and securely.
Some manufacturers do not put any markings on the cable connector; even so, there is a way to determine which way to connect the cable. Remove the adapter, motherboard, or device from the computer. Look where the connector solders or connects to the motherboard or adapter. Turn over the adapter. Notice the silver blobs, known as solder joints, on the back of the motherboard or adapter. Solder joints connect electronic components to the motherboard or adapter. The connector’s solder joints are normally round, except for the solder joint for pin 1, which is square. Look for the square solder joint on the back of the connector. If the square solder joint is not apparent on the connector, look for other connectors or solder joints that are square. All chips and connectors mount onto a motherboard in the same direction—all pin 1s are normally oriented in the same direction. If one pin 1 is found, the other connectors orient in the same direction. Insert the cable so pin 1 matches the square solder joint of the connector. Figure 4.9 shows a square solder joint for a connector on the back of an adapter.

Tech Tip

Pin 1 is on the opposite end from the higher stenciled number

If a higher number, such as 39 or 40, is stenciled beside the connector, connect pin 1 and 2 of the cable to the opposite end of that connector.
Chapter 4 • Disassembly and Power

On the back of the adapter, the square solder joint is pin 1.

Pin 1 of cable connects to pin 1 on the adapter's connector.

Figure 4.9 Pin 1 on a connector

Specific cables connect a motherboard to lights, ports, or buttons on the front panel. These include the power button, a reset button, USB ports, IEEE 1394 ports, a microphone port, a headphone port, speakers, fans, the hard drive usage light, and the power light, to name a few. Be very careful when removing and reinstalling these cables. Usually, each one of these has a connector that must attach to the appropriate motherboard pins. Be sure to check all ports and buttons once you have reconnected these cables. Refer to the motherboard documentation if your diagramming or notes are inaccurate or if you have no diagrams or notes. Figure 4.10 shows the motherboard pins and the connectors.

Figure 4.10 Motherboard front panel connectors

Storage Devices

Hard drives must be handled with care when disassembling a computer. Inside traditional hard drives are hard platters with tiny read/write heads located just millimeters above the platters. If dropped, the read/write heads can touch the platter, causing damage to the platter and/or the read/write heads. The platter is used to store data and applications. Today’s mechanical hard drives have self-parking heads that pull the heads away to a safe area when the computer is powered off or in a power-saving mode. Always be careful neither to jolt nor to jar the hard drive when removing it from the computer. Even with self-parking heads, improper handling can cause damage to the hard drive.

A solid-state drive does not contain fragile heads. However, these drives are susceptible to ESD. Use proper antistatic handling procedures when removing/installing them. Store a solid-state drive in an antistatic bag when not in use. Avoid touching the drive with a metal tool.
Motherboards

Chapter 2 covered motherboard replacement extensively, and here we discuss issues related to building a computer from scratch or disassembling a computer: I/O shield, standoffs, and retaining clips. Some cases include a standard I/O panel shield that may need to be removed to install the I/O shield that comes with some motherboards. The I/O shield is a part that allows for optimum air flow and grounding for the motherboard ports. The I/O shield helps ensure the motherboard is installed correctly and properly aligned with the case. Figure 4.11 shows a motherboard I/O shield.

Figure 4.11 Motherboard I/O shield

Some computer cases have plastic or metal (commonly brass) standoffs that allow the motherboard to be screwed into the case without the motherboard solder joints touching and grounding to the computer case, causing the motherboard not to work. Some standoffs are plastic, and they slide into slots on the computer case. Do not remove these types of standoffs but just leave them attached and slide the motherboard out of the slots. The most common type of standoff is a metal standoff that screws into the case; this standoff has a threaded side that the motherboard sits on and a screw that attaches the motherboard to the standoff, as shown in Figure 4.12.

Figure 4.12 Motherboard standoff
Some motherboards not only have screws that attach them to the metal standoffs but one or more retaining clips. A retaining clip might need to be pressed down, lifted up, or bent upward in order to slide the motherboard out of the case. The case might contain one or more notches and require the motherboard to be slid in a particular direction (usually in the direction going away from the back I/O ports) before being lifted from the case.

Mobile Device Issues

Chapter 1 contains information on removing laptop keyboards, and Chapter 2 includes information on removing laptop adapters, motherboards, and CPUs. Other laptop issues relating to disassembling a laptop include memory, plastics, the DC power jack, and the speaker. Whenever taking anything out of a laptop, one of the major issues is tiny screws. Many manufacturers label the type of screen or location for ease of explaining disassembly. Always keep like screws together (in containers or an egg carton) and take notes. All the parts are manufacturer dependent, but the following explanation and graphics/photos should help with these portable devices.

Laptop memory and expansion cards are commonly located in a bottom compartment accessed by removing a screw. Figure 4.13 shows this on a netbook computer.

![Figure 4.13 Netbook memory compartment](image)

Some laptop and mobile device compartments require levering the compartment cover away from the case or removing plastic parts such as the cover that fits over a mobile computer keyboard. A plastic **scribe** is the best tool to use for this levering. Figure 4.14 shows a plastic scribe being used to lift the plastic part that is between the keyboard and the laptop screen.
Laptop/netbook speakers commonly mount above or to the side of the keyboard. The keyboard usually has to be removed to reach the speakers. Sometimes, speaker cables run alongside the keyboard and must be pried out of the case. The DC power plug commonly has a similar cable, as shown in Figure 4.15.
Reassembling a computer is easy if the technician is careful and properly diagrams the disassembly. Simple tasks such as inserting the optical drive in the correct drive bay become confusing after many parts have been removed. Writing down reminders takes less time than having to troubleshoot the computer because of poor reassembly. Reinsert all components into their proper place; be careful to replace all screws and parts. Install missing slot covers, if possible.

Three major reassembly components are motherboards, cables, and connectors. When reinstalling a motherboard, reverse the procedure used during disassembly. Ensure that the motherboard is securely seated into the case and that all retaining clips and/or screws are replaced. This procedure requires practice, but eventually a technician will be able to tell when a motherboard is seated into the case properly. Visual inspection can also help. Ensure that the ports extend fully from the case through the I/O shield. As a final step, ensure that the drives and cover are aligned properly when the case is reinstalled.

Cables and connectors are the most common source of reassembly problems once the motherboard is installed. Ensure that cables are fully attached to devices and the motherboard. Ensure that power cables are securely attached. Matching pin 1 on the cable to pin 1 on the motherboard connector is critical for older ribbon cables. Attaching the correct device to the correct cable can be difficult if proper notes were not taken.

Preventive Maintenance

Preventive maintenance includes certain procedures performed to prolong the life of a computer. Some computer companies sell maintenance contracts that include preventive maintenance programs. A computer in a normal working environment should be cleaned at least once a year. Typical preventive measures include vacuuming the computer/printer and cleaning the optical drive laser, keyboard keys, printers, and display screen. Be sure to power down the computer and remove the power cord for any computer, remove the battery and AC adapter for a laptop/netbook, and allow a laser printer to cool before accessing internal parts. Preventive exercises for many individual devices are described in their respective chapters. For example, the steps detailing how to clean CDs/DVDs/BDs are included in Chapter 8. This section gives an overview of a preventive maintenance program and some general tips about cleaning solvents.

When performing preventive maintenance, power on the computer to be certain it operates. Perform an audio and visual inspection of the computer as it boots. It is a terrible feeling to perform preventive maintenance on a computer only to power it on and find it does not work. You will wonder if the cleaning you performed caused the problem or if the computer had a problem before the preventive maintenance.

Repair companies frequently provide a preventive maintenance kit for service calls. The kit normally includes a portable vacuum cleaner, special vacuum cleaner bags for laser printers, a can of compressed air, a floppy head cleaning kit, urethane swabs, monitor wipes, lint-free cloths, general-purpose cloths, general-purpose cleanser, denatured alcohol, a mouse ball cleaning kit, an antistatic brush, gold contact cleaner, and an optical drive cleaning kit.

The vacuum is used to suck dirt from the inside of the computer. Ensure that you use nonmetallic attachments. Some vacuum cleaners have the ability to blow air. Vacuum first and then set the vacuum cleaner to blow to get dust out of hard-to-reach places. Compressed air can also be used in these situations. The floppy head cleaning kit is used to clean the read/write heads on the floppy drive. Monitor wipes are used on the front of the monitor screen. Monitor wipes with antistatic solution work best.

Urethane swabs are used to clean between the keys on a keyboard. If a key is sticking, remove the keyboard before spraying or using contact cleaner on it. Touchpads normally require no maintenance except being wiped with a dampened lint-free cloth to remove residual finger oil.

General-purpose cleanser is used to clean the outside of the case and to clean the desktop areas under and around the computer. Never spray or pour liquid on any computer part. Liquid cleaners are used with soft lint-free cloths or lint-free swabs.
Preventive Maintenance

Be careful when cleaning LCD monitors and laptop displays

Use one of the following to clean LCD monitors and laptop displays: (1) wipes specifically designed for LCDs or (2) a soft lint-free cloth dampened with either water or a mixture of isopropyl alcohol and water. Never put liquid directly on the display and ensure that the display is dry before closing the laptop.

Denatured alcohol is used on rubber rollers, such as those found inside printers. An anti-static brush can be used to brush dirt away from hard-to-reach places. Gold contact cleaner is used to clean adapter contacts as well as contacts on laptop batteries and the contacts where the battery inserts. A useful CD/DVD/BD cleaning kit can include a lens cleaner that removes dust and debris from an optical lens; a disk cleaner that removes dust, dirt, fingerprints, and oils from the disk; and a scratch repair kit used to resurface, clean, and polish CDs, DVDs, and BDs.

Many cleaning solution companies provide MSDS (material safety data sheets) that contain information about a product, including its toxicity, storage, disposal, and health/safety concerns. Your state may also have specific disposal procedures for chemical solvents. Check with the company’s safety coordinator for storage and disposal information.

To perform the preventive maintenance, power off the computer, remove the power cord, and vacuum the computer with a nonmetallic attachment. Do not start with compressed air or by blowing dust out of the computer because the dirt and dust will simply go into the air and eventually fall back into the computer and surrounding equipment. After vacuuming as much as possible, use compressed air to blow the dust out of hard-to-reach places, such as inside the power supply and under the motherboard. If you are performing maintenance on a notebook computer, remove as many modules as possible, such as the optical drive, battery, and hard drive, before vacuuming or using compressed air. Inform people in the immediate area that they might want to leave the area if they have allergies.

If you remove an adapter from an expansion slot, replace it into the same slot. If the computer battery is on a riser board, it is best to leave the riser board connected to the motherboard so the system does not lose its configuration information. The same steps covered in the disassembly section of this chapter hold true when you are performing preventive maintenance.

When you perform preventive maintenance, take inventory and document what is installed in the computer, such as the hard drive size, amount of RAM, available hard drive space, and so on. During the maintenance procedure, communicate with the user. Ask if the computer has been giving anyone trouble lately or if it has been performing adequately. Computer users like to know that you care about their computing needs. Also, users frequently ask questions such as whether sunlight or cold weather harms the computer. Always respond with answers the user can understand. Users appreciate it when you explain things in terms they comprehend and that make sense.

A preventive maintenance call is the perfect opportunity to check computers for viruses. Normally, first you clean the computer. Then, while the virus checker is running, you might clean external peripherals such as printers. Preventive maintenance measures help limit computer problems as well as provide a chance to interact with customers and help with a difficulty that may seem minuscule but could worsen. A preventive maintenance call is also a good time to take inventory of all hardware and software installed. In a preventive maintenance call, entry-level technicians can see the different computer types and begin learning the computer components.
Basic Electronics Overview

A technician needs to know a few basic electronic terms and concepts when testing components. The best place to start is with electricity. There are two types of electricity: AC and DC. The electricity provided by a wall outlet is AC (alternating current), and the type of electricity used by computer components is DC (direct current). Devices such as radios, TVs, and toasters use AC power. Low-voltage DC power is used for a computer’s internal components and anything powered by batteries. A computer’s power supply converts AC electricity from the wall outlet to DC for the internal components. Electricity involves electrons flowing through a conductor, similar to the way that water runs through a pipe. With AC, the electrons flow alternately in both directions; with DC, the electrons flow in one direction only.

Electronics Terms

Voltage, current, power, and resistance are terms commonly used in the computer industry. Voltage, which is a measure of the pressure pushing electrons through a circuit, is measured in volts. A power supply’s output is measured in volts. Power supplies typically put out +3.3 volts, +5 volts, +12 volts, and –12 volts. You will commonly see these voltages shown in power supply documentation as +5V or +12V. Another designation is +5VSB. This is for the computer’s standby power. This power is always provided, even when the computer is powered off. This supplied voltage is why you have to unplug a computer when working inside it.

The term volts is also used to describe voltage from a wall outlet. Wall outlet voltage is normally 120VAC (120 volts AC). Exercises at the end of the chapter explain how to take both AC and DC voltage readings. Figure 4.16 shows a photograph of a multimeter being used to take a DC voltage reading on the power connectors coming from a power supply. When the meter leads are inserted correctly, the voltage level shown is of the correct polarity.

Tech Tip

Polarity is important only when measuring DC voltage

When a technician measures the voltage coming out of a power supply, the black meter lead (which is negative) connects to the black wire from the power supply (which is ground). The red meter lead connects to either the +5 or +12 volt wires from the power supply.
The reading on the meter could be the opposite of what it should be if the meter’s leads are reversed. Since electrons flow from one area where there are many of them (negative polarity) to an area where there are few electrons (positive polarity), polarity shows which way an electric current will flow. Polarity is the condition of being positive or negative with respect to some reference point. Polarity is not important when measuring AC. Figure 4.17 shows rules to observe when working with meters.

1. Select AC or DC on the meter (some meters automatically select AC or DC).

 - VAC or ACV or
 - VDC or DCV or

2. Select the appropriate voltage range (0-10V, 0-100V, etc). The meter can be damaged if you measure a high voltage in a low range (but not the reverse). Use the highest range for unknown volatges.

3. Touch only the insulated parts of the meter probes.

Monitors and power supplies can have dangerous voltage levels. Monitors can have up to 35,000 volts going to the back of the CRT. Note that flat-panel displays and mobile device displays use low DC voltage and AC voltage, but not at the voltage levels of CRTs. 120 volts AC is present inside the power supply. Power supplies and monitors have capacitors inside them. A capacitor is a component that holds a charge even after the computer is turned off. Capacitors inside a monitor can hold a charge for several hours after the monitor has been powered off.

Current is measured in amps (amperes), which is the number of electrons going through a circuit every second. In the water pipe analogy, voltage is the amount of pressure applied to force the water through the pipe, and current is the amount of water flowing. Every device needs a certain amount of current to operate. A power supply is rated for the amount of total current (in amps) it can supply at each voltage level. For example, a power supply could be rated at 20 amps for the 5-volt level and 8 amps for the 12-volt level.

Power is measured in watts, which is a measurement of how much work is being done. It is determined by multiplying volts by amps. Power supplies are described as providing a maximum number of watts. This is the sum of all outputs: For example, 5 volts × 20 amps (100 watts) plus 12V 8 amps (96 watts) equals 196 watts. An exercise at the end of the chapter explains how current and power relate to a technician’s job.

Resistance is measured in ohms, which is the amount of opposition to current in an electronic circuit. The resistance range on a meter can be used to check continuity or check whether a fuse is good. A continuity check is used to determine whether a wire has a break in it. A conductor (wire) in a cable or a good fuse will have very low resistance to electricity (close to zero ohms). A broken wire or a bad fuse will have a very high resistance (millions of ohms, sometimes shown as infinite ohms, or OL). For example, a cable is normally made up of several wires that go from one connector to another. If you measure the continuity from
one end of a wire to the other, it should show no resistance. If the wire has a break in it, the meter shows infinite resistance. Figure 4.18 shows examples of a good wire reading and a broken wire reading.

Tech Tip

Always unplug a computer before working inside it
The power supply provides power to the motherboard, even if the computer is powered off. Leaving the power cord attached can cause damage when replacing components such as the processor or RAM.

![Good connection](image1)

![Broken wire](image2)

Figure 4.18 Sample resistance meter readings

Digital meters have different ways of displaying infinity. Always refer to the meter manual for this reading. When checking continuity, the meter is placed on the ohms setting, as shown in Figure 4.18. The ohms setting is usually illustrated by an omega symbol (Ω).

Polarity is not important when performing a continuity check. Either meter lead (red or black) can be placed at either end of the wire. However, you do need a pin-out diagram (wiring list) for the cable before you can check continuity because pin 1 at one end could connect to a different pin number at the other end. An exercise at the end of the chapter steps through this process.

The same concept of continuity applies to fuses.

A fuse has a tiny wire inside it that extends from end to end. The fuse is designed so that the wire melts (breaks) if too much current flows through it. The fuse keeps excessive current from damaging electronic circuits or starting a fire. A fuse is rated for a particular amount of current. For example, a 5-amp fuse protects a circuit if the amount of current exceeds 5 amps.

Tech Tip

Dealing with small connections and a meter

Some connectors have small pin connections. Use a thin meter probe or insert a thin wire, such as a paper clip, into the hole and touch the meter to the wire to take your reading.
Use the right fuse or lose

Never replace a fuse with one that has a higher amperage rating. You could destroy electronic circuits or cause a fire by allowing too much current to be passed by the fuse, defeating the fuse’s purpose.

Take a fuse out of the circuit before testing it. A good fuse has a meter reading of 0 ohms (or close to that reading). A blown fuse shows a meter reading of infinite ohms. Refer to the section on resistance and Figure 4.18. An exercise at the end of this chapter demonstrates how to check a fuse.

A technician needs to be familiar with basic electronics terms and checks. Table 4.1 consolidates this information.

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Volts</td>
<td>Checking AC voltage on a wall outlet (typically 120VAC). Checking the DC output voltage from a power supply (typically +/- 12, +3.3, and +/- 5 VDC).</td>
</tr>
<tr>
<td>Current</td>
<td>Amps (amperes)</td>
<td>Each device needs a certain amount of current to operate. A power supply is rated for total current in amps for each voltage level (such as 24 amps for 5-volt power and 50 amps for 12-volt power).</td>
</tr>
<tr>
<td>Resistance</td>
<td>Ohms</td>
<td>Resistance is the amount of opposition to electric current. Resistance is used to check continuity on cables and fuses. A cable that shows little or no resistance has no breaks in it. A good fuse shows no resistance. If a cable has a break in it or if a fuse is bad, the resistance is infinite.</td>
</tr>
<tr>
<td>Wattage (power)</td>
<td>Watts</td>
<td>Watts is a measure of power and is derived by multiplying amps by volts. Power supply output is measured in watts. Also, A UPS (uninterruptible power supply) is rated in volt-amps. The size of UPS to purchase depends on how many devices will plug in to it.</td>
</tr>
</tbody>
</table>

Power Supply Overview

A power supply is an essential component within a computer; no internal computer device works without it. The power supply converts AC to DC, distributes lower-voltage DC power to components throughout the computer, and provides cooling through the use of a fan located inside the power supply. The AC voltage a power supply accepts is normally either 100 to 120 volts or 200 to 240 volts. Some dual-voltage power supplies can accept either. This type of power supply can have a selector switch on the back or can automatically detect the input voltage level. The power supply is sometimes a source of unusual problems. The effects of the problems can range from those not noticed by the user to those that shut down the system.

There are two basic types of power supplies: switching and linear. A computer uses a switching power supply. It provides efficient power to all the computer’s internal components (and possibly to some external ones, such as USB devices). It also generates minimum heat, comes in small sizes, and is cheaper than linear power supplies. A switching power supply requires a load (something attached to it) in order to operate properly. With today’s power supplies, a motherboard is usually a sufficient load, but a technician should always check the power supply specifications to be sure.
Power Supply Form Factors

Just as motherboards come in different shapes and sizes, so do power supplies. Today’s power supply form factors are ATX, ATX12V v1.x, ATX12V v2.x, and micro-ATX. Other form factors include LFX12V (low profile), SFX12V (small form factor), EPS12V (used with server motherboards and has an extra 8-pin connector), CFX12V (compact form factor), SFX12V (small form factor), TFX12V (thin form factor), WTX12V (workstation form factor for high-end workstations and select servers), and FlexATX (smaller systems that have no more than three expansion slots). Intel, AMD, and video card manufacturers certify specific power supplies that work with their processors and video cards. A computer manufacturer can also have a proprietary power supply form factor that is not compatible with different computer models or other vendors’ machines. Laptop power supplies are commonly proprietary.

The motherboard and power supply must be compatible

The motherboard form factor and the power supply form factor must fit in the case and work together. For optimum performance, research what connectors and form factors are supported by both components.

The ATX12V version 2 standard has a 24-pin motherboard connector instead of a 20-pin version 1 connector. This did away with the need for the extra 6-pin auxiliary connector. In addition, version 2 power supplies have a SATA power connector. Some 24-pin motherboard connectors accept the 20-pin power supply connector. Table 4.2 lists the possible ATX power supply connectors.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Notes</th>
<th>Voltage(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-pin Main ATX power connector to the motherboard</td>
<td>+3.3, +5, +12, –12</td>
<td></td>
</tr>
<tr>
<td>20-pin Main power connector to the motherboard</td>
<td>+3.3, +5, –5, +12, –12</td>
<td></td>
</tr>
<tr>
<td>15-pin SATA connector</td>
<td>+3, +5, +12</td>
<td></td>
</tr>
<tr>
<td>8-pin 12V for CPU used with an ATX12V v1 power supply</td>
<td>+12</td>
<td></td>
</tr>
<tr>
<td>8-pin PCIe video; connects to a PCIe video adapter. Note that some connectors are 6+2-pin meaning they accept either the 6- or 8-pin cable.</td>
<td>+12</td>
<td></td>
</tr>
<tr>
<td>6-pin PCIe video; connects to PCIe video adapter</td>
<td>+12</td>
<td></td>
</tr>
<tr>
<td>6-pin Sometimes labeled as AUX; connects to the motherboard if it has a connector</td>
<td>+3.3, +5</td>
<td></td>
</tr>
<tr>
<td>4-pin Molex Connects to peripheral devices such as hard drives and CD/DVD drives</td>
<td>+5, +12</td>
<td></td>
</tr>
<tr>
<td>4-pin Berg Connects to peripheral devices such as the floppy drive</td>
<td>+5, +12</td>
<td></td>
</tr>
<tr>
<td>4-pin Sometimes labeled as AUX or 12V; connects to the motherboard for CPU</td>
<td>+12</td>
<td></td>
</tr>
<tr>
<td>3-pin Used to monitor fan speed</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.19 shows a few ATX power supply connectors. Figure 4.20 shows more ATX power supply connectors.

Figure 4.19 Common power supply connectors

Not all 24-pin motherboard connectors accept 20-pin power supply connectors

You can purchase a 24-pin to 20-pin power adapter. The site http://www.formfactors.org provides information regarding power supply form factors.

Figure 4.20 ATX power supply connectors

Figure 4.21 illustrates the compatibility between the ATX 20- and 24-pin motherboard connector standards. Notice in Figure 4.21 that the power cable is only one connector, notched so the cable inserts into the connector one way only. This is a much better design than older power supplies, where two connectors were used and could be reversed. Also, notice that a power good signal (labeled PWR_OK in Figure 4.21) goes to the motherboard. When the computer is turned on, part of POST is to allow the power supply to run a test on each of the voltage levels. The voltage levels must be correct before any other devices are tested and allowed to initialize. If the power is okay, a power good signal is sent to the motherboard. If the power good signal is not sent from the power supply, a timer chip on the motherboard resets the CPU. Once a power good signal is sent, the CPU begins executing software from the BIOS. Figure 4.21 also shows the +5v connection to provide standby power for features such as Wake on LAN or Wake on Ring (covered later in this chapter).
A high-quality power supply delays sending the power good signal until all of the power supply's voltages have a chance to stabilize. Some cheap power supplies do not delay the power good signal. Other cheap power supplies do not provide the power good circuitry, but instead, tie 5 volts to the signal (which sends a power good signal even when it is not there).

The number and quantity of connectors available on a power supply depends on the power supply manufacturer. If a device requires a Berg connector and the only one available is a Molex, a Molex-to-Berg connector converter can be purchased. If a SATA device needs a power connection, a Molex-to-SATA converter is available. Figure 4.22 shows a Molex-to-SATA converter and a Molex-to-Berg converter.

Power supply connectors can connect to any device; there is not a specific connector for the hard drive, the optical drive, and so on. If there are not enough connectors from the power supply for the number of devices installed in a computer, a Y power connector can be purchased at a computer or electronics store. The Y connector adapts a single Molex connector to two Molex connectors for two devices. Verify that the power supply can output enough power to handle the extra device being installed. Figure 4.23 shows a Y power connector.
Power converters and Y connectors are good to have in your tool kit

In case a service call involves adding a new device, having various power converters available as part of your tool kit is smart.

Figure 4.23 Y Molex connector

Purposes of a Power Supply

The power from a wall outlet is high-voltage AC. The type of power computers need is low-voltage DC. All computer parts (the electronic chips on the motherboard and adapters, the electronics on the drives, and the motors in the hard drive and optical drive) need DC power to operate. Power supplies in general come in two types: linear and switching. Computers use switching power supplies. The main functions of a power supply include the following:

- Convert AC to DC
- Provide DC voltage to the motherboard, adapters, and peripheral devices
- Provide cooling and facilitate air flow through the case

One purpose of a power supply is to convert AC to DC so the computer has proper power to run its components. An ATX power supply does not connect to the front panel switch as the old AT-style power supplies did. With the ATX power supply, a connection from the front panel switch to the motherboard simply provides a 5-volt signal that allows the motherboard to tell the power supply to turn on. This 5-volt signal allows ATX power supplies to support ACPI, which is covered later in the chapter, and also lets the motherboard and operating system control the power supply. Figures 4.24 and 4.25 show the front panel connections to the motherboard on two different computers.

On an ATX power supply that has an on/off switch, ensure that it is set to the on position

If an ATX power supply switch is present and in the off position, the motherboard and operating system cannot turn on the power supply. Some ATX power supplies do not have external on/off switches, and the computer can be powered down only via the operating system.
Another purpose of a power supply is to distribute proper DC voltage to each component. Several cables with connectors come out of the power supply. With ATX motherboards, there is only a 20- or 24-pin connector used to connect power to the motherboard. The power connector inserts only one way into the motherboard connector. Figure 4.26 shows an ATX connector being inserted into a motherboard.
Another purpose for a power supply is to provide cooling for the computer. The power supply’s fan circulates air throughout the computer. Most computer cases have air vents on one side, on both sides, or in the rear of the computer. The ATX-style power supply blows air inside the case instead of out the back. This is known as reverse flow cooling. The air blows over the processor and memory to keep them cool. This type of power supply keeps the inside of the computer cleaner than older styles.

Don’t block air vents
Whether a computer is a desktop model, a tower model, or a desktop model mounted in a stand on the floor, ensure that nothing blocks the air vents in the computer case. Do not place a laptop on a blanket or pillow, causing the vents to be blocked.

Electronic components generate a great deal of heat but are designed to withstand fairly high temperatures. Auxiliary fans can be purchased to help cool the internal components of a computer. Some cases have an extra mount and cutout for an auxiliary fan. Some auxiliary fans mount in adapter slots or drive bays.

Be careful when installing an auxiliary fan
Place the fan so the outflow of air moves in the same direction as the flow of air generated by the power supply. If an auxiliary fan is installed inside a case in the wrong location, the auxiliary air flow could work against the power supply air flow, reducing the cooling effect. Figure 2.19 in Chapter 2 details how air flow can be aided with an auxiliary fan.

Power Supply Voltages
Refer to Figure 4.21 and notice how +3.3, +5, –5, +12, and –12 volts are supplied to the motherboard. The motherboard and adapters use +3.3 and +5 volts. The –5 volts is seldom used. If the motherboard has integrated serial ports, they sometimes use +12V and –12V power. Hard drives and optical drives commonly use +5 and +12 volts. The +12 voltage is used to operate...
Chapter 4 • Disassembly and Power

the device motors found in drives, the CPU, internal cooling fans, and the graphics card. Drives are now being made that use +5V motors. Chips use +5 volts and +3.3 volts. The +3.3 volts are also used for memory, AGP/PCI/PCIe adapters, and some laptop fans. The negative voltages are seldom used.

A technician must occasionally check voltages in a system. There are four basic checks for power supply situations: (1) wall outlet AC voltage, (2) DC voltages going to the motherboard, (3) DC voltages going to a device, and (4) ground or lack of voltage with an outlet tester. A power supply tester can be used to check DC power levels on the different power supply connectors.

Mobile Device Travel and Storage

When traveling with a laptop, remove all cards that insert into slots and store them in containers so that their contacts do not become dirty and cause intermittent problems. Remove all media discs such as CDs, DVDs, or BDs. Check that drive doors and devices are securely latched. Ensure that the mobile device is powered off or in hibernate mode (not in sleep/suspend or standby power mode, which is covered later in this chapter).

Carry the device in a padded case. If you have to place the device on an airport security conveyor belt, ensure that the device is not placed upside down, which could cause damage to the display. Never place objects on top of a mobile device or pick up a laptop by the edges of the display when the laptop is opened. When shipping a mobile device, place it in a properly padded box. The original shipping box is a safe container.

The United States has regulations about lithium batteries on airplanes. If battery contacts come in contact with metal or other batteries, the battery could short-circuit and cause a fire. For this reason, any lithium batteries are to be kept in original packaging. If original packaging is not available, place electrical tape over the battery terminals or place each battery in an individual bag. Spare lithium batteries are not allowed in checked baggage but can be taken in carry-on bags.

Like other electronic devices, laptops have heating issues. The following can help with laptop overheating:

- Locate air vents and keep them unblocked and clean. Do not place a laptop on your lap to work.
- In the BIOS settings, check the temperature settings for when fans turn on.
- Check the laptop manufacturer website or documentation for any fan/temperature monitoring gauges.
- Place a laptop on something that elevates it from the desk, such as drink coasters. In addition, pads, trays, and mats can be purchased with fans that are AC powered or USB powered.

Mobile Device Power

A portable computer (laptop/netbook/ultrabook/tablet) uses either an AC connection or a battery as its power source. On most models, when the mobile device connects to AC power, the battery normally recharges. Laptop batteries are usually modules with one or two release latches that are used to remove the module. Smartphone batteries either have a release latch or you slide part of the phone away and reveal the battery. Figure 4.27 shows a netbook computer with its battery module removed. Battery technologies have improved in the past few years, probably due to the development of more devices that need battery power, such as tablets, digital cameras, and portable CD, DVD, and BD players.
NiCad (nickel cadmium) batteries originally used in laptops were replaced with lighter and more powerful NiMH (nickel-metal hydride) batteries. These batteries were replaced with **Li-ion** (lithium-ion) batteries, which are very light and can hold a charge longer than any other type. They are also more expensive. Mobile phones, tablets, portable media players, and digital cameras also use Li-ion batteries. These batteries lose their charge over time even if they are not being used. Use your laptop with battery-provided power. Ensure that a laptop that has an Li-ion battery is not plugged into an AC outlet all the time. Calibrate a laptop battery according to manufacturer instructions so the battery meter displays correctly.

Li-ion polymer batteries are similar to Li-ion batteries except that they are packed in pouched cells. This design allows for smaller batteries and a more efficient use of space, which is important in the portable computer and mobile devices industries. For environmentalists, the zinc-air battery is the one to watch. AER Energy Resources, Inc., has several patents on a battery that uses oxygen to generate electricity. Air is allowed to flow during battery discharge and is blocked when the battery is not in use. This battery holds a charge for extended periods of time. Another upcoming technology is fuel cells. Fuel cells used for a laptop can provide power for 5 to 10 hours.

Figure 4.27 Netbook battery

Do not power on after a temperature change

Computers are designed to work within a range of temperatures, but sudden change is not good for them. If a mobile device is in a car all night and the temperature drops, allow the device to return to room temperature before powering on. Avoid direct sunlight. Inside the computer case, it is usually 40°F hotter than outside.

Do not fully discharge a Li-ion battery

Li-ion batteries do not suffer from the memory effect, as do some nickel-based batteries. Fully discharging a lithium battery, such as an Li-ion battery, is actually bad for it. However, most lithium batteries have a circuit to prevent the battery from being totally discharged.
Mobile devices rely on their batteries to provide the mobility. The following tips can help you get more time out of your batteries:

- Most people do not need a spare Li-ion battery. If you are not using an Li-ion battery constantly, it is best not to buy a spare. The longer the spare sits unused, the shorter the lifespan it will have.
- Buy the battery recommended by the laptop manufacturer.
- For a mobile device or smartphone, use an AC outlet rather than a USB port for faster charging.
- If using a USB port for charging a mobile device or smartphone, unplug all unused USB devices. Note that not all USB ports can provide a charge if the host device is in sleep mode.
- Do not use the optical player when running on battery power.
- Turn off the wireless adapter if a wireless network is not being used. For Windows-based devices, use the Network and Internet Control Panel. For smaller mobile devices, use flight mode to turn off both the wireless and the cellular (3G/4G) networks. Apple iOS devices can use Settings to access Airplane Mode. Android devices can use the Settings option to access Flight mode through the Wireless and network option.
- In the power options, configure the mobile device for hibernate rather than standby (covered later in the chapter).
- Save work only when necessary and turn off the autosave feature.
- Reduce the screen brightness. In Windows, use the Display Control Panel link found within the Hardware and Sound Control Panel. In Apple iOS, us the Brightness & Wallpaper setting; on an Android device, use the Sound and display option from the Settings application.
- Keep the hard drive defragmented especially before running on battery power.
- Avoid using external USB devices such as flash drives or external hard drives.
- Add more RAM to reduce swapping of information from the hard drive to RAM to CPU or to just be more efficient.
- Keep battery contacts clean with a dab of rubbing alcohol on a lint-free swab once a month.
- Use your mobile device until the battery is drained when possible and then recharge it. Constantly recharging the battery reduces the battery life. Most lithium batteries have a circuit that keeps the battery from being discharged completely.
- Avoid running multiple programs. To close an application on an iOS-based device, hold down on the icon from the home menu. On an Android-based device, use the Applications > Manage Applications option from the Settings application.
- Disable automatic updates. In Windows, use the Windows Update link from the System and Security Control Panel. On iOS or Android systems, disable push reports and application notifications that make sounds or vibrations from within the Settings option. Have the OS check less often for mail; use the Mail, Contacts, Calendars option to change the settings.
- Avoid temperature extremes.
All power supplies are not created equal

A technician needs to replace a power supply with one that provides an equal or greater amount of power. Search the Internet for power supply reviews. A general rule of thumb is that if two power supplies are equal in wattage, the heavier one is better because it uses a bigger transformer, bigger heat sinks, and more quality components.

ACPI (Advanced Configuration and Power Interface)

Today's computer user needs to leave a computer on for extended periods of time in order to receive faxes, run computer maintenance tasks, automatically answer phone calls, and download software upgrades and patches. Network managers want control of computers so they can push out software upgrades, perform backups, download software upgrades and patches, and perform tests. Laptop users have always been plagued by power management problems, such as short battery life, inconsistent handling of screen blanking, and screen blanking in the middle of presentations. Such problems occurred because originally the BIOS controlled power. Power management has changed.

ACPI (Advanced Configuration and Power Interface) gives the BIOS and operating system control over various devices’ power and modes of operation, as shown in Figure 4.28.

With ACPI, the user can control how the power switch operates and when power to specific devices, such as the hard drive and monitor, is lowered. For example, the Instant On/Off BIOS setting can control how long the power switch is held in before the power supply turns on or off. Case temperatures, CPU temperatures, and CPU fans can be monitored. The power supply can be adjusted for power requirements. The CPU clock can be throttled or slowed down to keep the temperature lower and prolong the life of the CPU and reduce power requirements especially in portable devices when activity is low or nonexistent. ACPI has various operating states, as shown in Table 4.3.
Two common BIOS and adapter features that take advantage of ACPI are Wake on LAN and Wake on Ring. The **Wake on LAN** feature allows a network administrator to control the power to a workstation remotely and directs the computer to come out of sleep mode. Software applications can also use the Wake on LAN feature to perform updates, upgrades, and maintenance tasks. The feature can also be used to bring up computers immediately before the business day starts. Wake on LAN can be used with Web or network cameras to start recording when motion is detected or to bring up a network printer so that it can be used when needed. **Wake on Ring** allows a computer to come out of sleep mode when the telephone line has an incoming call. This lets the computer receive phone calls, faxes, and emails when the user is not present. Common BIOS settings related to ACPI are listed in Table 4.4.

Table 4.3 ACPI operating states

<table>
<thead>
<tr>
<th>Global system state</th>
<th>Sleep state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0 Working</td>
<td>(S0)</td>
<td>The computer is fully functional. Software, such as the autosave function used with Microsoft products, can be optimized for performance or lower battery usage.</td>
</tr>
<tr>
<td>G1 Sleeping</td>
<td></td>
<td>Requires less power than the G0 state and has multiple sleeping states: S1, S2, S3, and S4.</td>
</tr>
<tr>
<td>(S1)</td>
<td></td>
<td>CPU is still powered, and unused devices are powered down. RAM is still being refreshed. Hard disks are not running.</td>
</tr>
<tr>
<td>(S2)</td>
<td></td>
<td>CPU is not powered. RAM is still being refreshed. System is restored instantly upon user intervention.</td>
</tr>
<tr>
<td>(S3)</td>
<td></td>
<td>Power supply output is reduced. RAM is still being refreshed. Some info in RAM is restored to CPU and cache.</td>
</tr>
<tr>
<td>(S4)</td>
<td></td>
<td>Lowest-power sleep mode and takes the longest to come up. Info in RAM is saved to hard disk. Some manufacturers call this the hibernate state.</td>
</tr>
<tr>
<td>G2 (S5)</td>
<td></td>
<td>Also called soft off. Power consumption is almost zero. Requires the operating system to reboot. No information is saved anywhere.</td>
</tr>
<tr>
<td>G3</td>
<td></td>
<td>Also called off, or mechanical off. This is the only state where the computer can be disassembled. You must power on the computer to use it again.</td>
</tr>
</tbody>
</table>

Windows power management

Use the *Power Options* link from within the *System and Security* Control Panel to configure power from within the Windows environment.

Tech Tip

Table 4.4 Common BIOS power settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Prior to Thermal</td>
<td>Defines the number of minutes the system waits to shut down the system once an overheating situation occurs.</td>
</tr>
<tr>
<td>CPU Warning Temperatures</td>
<td>Specifies the CPU temperature at which a warning message is displayed on the screen.</td>
</tr>
<tr>
<td>ACPI Function</td>
<td>Enables or disables ACPI. This is the preferred method for disabling ACPI in the event of a problem.</td>
</tr>
</tbody>
</table>
ACPI (Advanced Configuration and Power Interface)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft-off</td>
<td>Specifies the length of time a user must press the power button to turn off the computer.</td>
</tr>
<tr>
<td>Deep S4/S5</td>
<td>Uses less power and only wakes from S4/S5 states with the power button or a RTC (real time clock) alarm, such as waking the computer to complete a task.</td>
</tr>
<tr>
<td>Power on by Ring, Resume by Ring, or Wakeup</td>
<td>Allows the computer to wake when an adapter or an external device supports Wake on Ring.</td>
</tr>
<tr>
<td>Resume by Alarm</td>
<td>Allows a date and time to be set when the system is awakened from Suspend mode. Commonly used to update the system during nonpeak periods.</td>
</tr>
<tr>
<td>Wake Up on LAN</td>
<td>Allows the computer to wake when a Wake on LAN signal is received across the network.</td>
</tr>
<tr>
<td>CPU THRMT Throttling</td>
<td>Allows a reduction in CPU speed when the system reaches a specific temperature.</td>
</tr>
<tr>
<td>Power on Function</td>
<td>Specifies which key (or key combination) will activate the system’s power.</td>
</tr>
<tr>
<td>Hot Key Power On</td>
<td>Defines what keystrokes will reactivate system power.</td>
</tr>
<tr>
<td>Doze Mode</td>
<td>When the system is in a reduced activity state, the CPU clock is throttled (slowed down). All other devices operate at full speed.</td>
</tr>
<tr>
<td>After Power Failure</td>
<td>Sets power mode after a power loss.</td>
</tr>
</tbody>
</table>

Windows 7 has three power plans available, and you can customize these power plans. You might want to customize a power plan when there is a problem with poor video quality when playing a movie. Use the Change plan settings link followed by the Change advanced power settings link to expand a section such as the Multimedia settings option. Table 4.5 shows the three main power plans you can just click and select.

Table 4.5 Windows 7 power plans

<table>
<thead>
<tr>
<th>Power plan</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced</td>
<td>The most common plan because it provides full power when you need it and saves power when the computer is not being used.</td>
</tr>
<tr>
<td>Power saver</td>
<td>Saves power by running the CPU more slowly and reducing screen brightness.</td>
</tr>
<tr>
<td>High performance</td>
<td>Select the Show additional plans link to see this option. This provides the maximum performance possible.</td>
</tr>
</tbody>
</table>

Sometimes, when a computer comes out of Sleep mode, not all devices respond, and the computer’s power or reset button has to be pressed to reboot the computer. The following situations can cause this to happen:

- A screen saver conflicts with ACPI
- All adapters/devices are not ACPI compliant
- An adapter/device has an outdated driver
- The system BIOS or an installed adapter BIOS needs to be updated
To see if the screen saver causes a problem, use the Display Control Panel and set the screen saver option to None. Identifying a problem adapter, device, or driver will take Internet research. Check each adapter, device, and driver one by one. Use the Power Options Control Panel to change the power scheme. Also check all devices for a Power Management tab on the Properties dialog box. Changes can be made there.

Links on the left of the Power Options Control Panel provide access to advanced settings such as requiring a password to come out of sleep mode. The power options for a Windows 7 laptop are shown in Figure 4.29.

Figure 4.29 Windows 7 power settings

Other laptop Power Options Control Panel settings include the following links: Require a password on wakeup, Choose what the power button does (as shown in Figure 4.29), Choose what closing the lid does, Create a power plan, Choose when to turn off the display, and Change when the computer sleeps. Laptop power settings affect battery life. Users and technicians should adjust these settings to best fit how the laptop or mobile device is used.

In Windows Vista and 7, use the Power Options Control Panel to edit the power settings. Select the Change advanced power settings link to configure passwords, standby power behavior, and other power-related settings. If the computer does not go into the Sleep mode, check the following:

- Determine if ACPI is enabled in BIOS.
- Try disabling the antivirus program to see if it is causing the problem.
- Set the screen saver to None to see if it is causing the problem.
- Determine if all device drivers are ACPI compliant.
- Determine if power management is enabled through the operating system (use the Power Options Control Panel).
- Disconnect USB devices to see if they are causing problems.
Replacing or Upgrading a Power Supply

Power supplies are rated in watts. Today’s typical computers have power supplies with ratings ranging from 250 to 500 watts, although powerful computers, such as network servers or higher-end gaming systems, can have power supplies rated 600 watts or higher. Each device inside a computer uses a certain amount of power, and the power supply must provide enough to run all the devices. The power each device or adapter requires is usually defined in the documentation for the device or adapter or on the manufacturer’s website. The computer uses the wattage needed, not the total capacity of a power supply. The efficiency (more AC is converted to DC) is what changes the electricity bill.

Some power supplies are listed as being dual or triple (or tri) rail. A dual-rail power supply has two +12V output lines. A triple-rail power supply simply has three +12V output lines for devices. Keep in mind that most manufacturers do not have two or more independent 12V sources; they all derive from the same 12V source but have independent output lines. Figure 4.30 shows how the +12V rails might be used.

![Image of power supply with +12V rails]

Look on top of the power supply for the various voltage levels and maximum current output in amps.

\[\text{Power supply} \Rightarrow \text{Voltage Levels} \Rightarrow \text{Maximum Current} \]

Figure 4.30 12V rails

Power supplies can be auto-switching or have a fixed input. An auto-switching power supply monitors the incoming voltage from the wall outlet and automatically switches itself accordingly. Auto-switching power supplies accept voltages from 100 to 240VAC at 50 to 60Hz. These power supplies are popular in mobile devices and are great for international travel. A power supply might also allow adjusting the input value by manually selecting the value through a voltage selector switch on the power supply. A fixed-input power supply is rated for a specific voltage and frequency for a country, such as 120VAC 60Hz for the United States.

Some people are interested in exactly how much power their system is consuming. Every device in a computer consumes power, and each device could use one or more different voltage levels (±5V, ±12V, ±12V, ±3.3V). A power supply has a maximum amperage for each voltage level (for example, 30 amps at ±5 volts and 41 amps at ±12V). To determine the maximum power being used, in watts, multiply the amps and volts. If you add all the maximum power levels, the amount will be greater than the power supply’s rating. This means that you cannot use the maximum power at every single voltage level (but since the ±5V and ±12V are not used very often, normally this is not a problem).

In order to determine the power being consumed, you must research every device to determine how much current it uses at a specific voltage level. Internet power calculators are available to help with this task. Table 4.6 lists sample computer components’ power requirements.
Table 4.6 Sample computer component power requirements

<table>
<thead>
<tr>
<th>Component</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motherboard (without processor)</td>
<td>5 to 150W</td>
</tr>
<tr>
<td>Processor</td>
<td>10 to 140W</td>
</tr>
<tr>
<td>Floppy drive</td>
<td>5W</td>
</tr>
<tr>
<td>PATA hard drive</td>
<td>3 to 30W</td>
</tr>
<tr>
<td>SATA hard drive</td>
<td>2 to 15W</td>
</tr>
<tr>
<td>Optical drive</td>
<td>10 to 30W</td>
</tr>
<tr>
<td>Non-video adapter</td>
<td>4 to 25W</td>
</tr>
<tr>
<td>AGP video adapter</td>
<td>20 to 50W</td>
</tr>
<tr>
<td>PCIe video card with one power connector</td>
<td>50-150W</td>
</tr>
<tr>
<td>PCIe video card with two power connectors</td>
<td>100-300W</td>
</tr>
<tr>
<td>Extra fan</td>
<td>3W</td>
</tr>
<tr>
<td>RAM stick</td>
<td>15W</td>
</tr>
</tbody>
</table>

Different physical sizes of power supplies are available. When replacing a power supply, purchasing a power supply for a new computer, or upgrading a power supply, verify that the power supply will fit in the computer case. Also, verify that the power supply produces enough power for the installed devices and for future upgrades. Do not forget to check that the on/off switch on the new power supply is in a location that fits in the computer case.

When purchasing a new power brick for a laptop or battery for a mobile device, ensure that it has the same specifications as the one from the manufacturer. Less expensive models might not provide the same quality as approved models. Ensure that the replacement has a power jack that does not wiggle when it is inserted into the device. Ensure that a laptop power brick has the appropriate DC voltage required by the laptop. Current (amperage) should be equal to or more than the original power brick.

Power management on both laptops and desktops is important. Most computer components are available as energy-efficient items. ENERGY STAR is a joint effort by the U.S. EPA (Environmental Protection Agency) and Department of Energy to provide device standards and ratings that easily identify products (including computer components) that are energy efficient. Many computers today are on more than they are off, and settings such as power options, CPU throttling, and some advanced BIOS settings affect power settings. A technician must be aware of all these options and be willing to offer advice such as turn the computer off when finished working on it; set the power management option to allow work to be performed at an affordable cost; disable options not being used, such as wireless capabilities when wired networking is functioning; be aware of monitor costs (CRT-type monitors take the most energy, followed by plasma displays and then LCD or flat-panel technology); and purchase energy-efficient parts and computers.

Symptoms of Power Supply Problems

The following is a list of symptoms of a power supply problem:

- The power light is off and/or the device won’t turn on.
- The power supply fan does not turn when the computer is powered on.
• The computer sounds a continuous beep. (This could also be a bad motherboard or a stuck key on the keyboard.)
• When the computer powers on, it does not beep at all. (This could also be a bad motherboard.)
• When the computer powers on, it sounds repeating short beeps. (This could also be a bad motherboard.)
• During POST, a 02X or parity POST error code appears (where X is any number); one of the POST checks is a power good signal from the power supply; a 021, 022,... error message indicates that the power supply did not pass the POST test.
• The computer reboots or powers down without warning.
• The power supply fan is noisy.
• The power supply is too hot to touch.
• The computer emits a burning smell.
• The power supply fan spins, but there is no power to other devices.
• The monitor has power light, but nothing appears on the monitor, and no PC power light illuminates.

Solving Power Supply Problems

When you suspect that the power supply is causing a problem, swap the power supply, make the customer happy, and be on your way! Power problems are not usually difficult to detect or troubleshoot.

Do not overlook the most obvious power supply symptom. Start by checking the computer power light. If it is off, check the power supply’s fan by placing your palm at the back of the computer. If the fan is turning, it means the wall outlet is providing power to the computer and you can assume that the wall outlet is functioning. Check the motherboard for LEDs and refer to the manual for their meaning. Test the power outlet with another device. Ensure that the power cord is inserted fully into the wall outlet and the computer. If you suspect that the wall outlet is faulty, use an AC circuit tester to verify that the wall outlet is wired properly.

On a mobile device that is running on battery power, check the battery charge icon through the operating system. Try using the device on AC power. If it works on AC power, try recharging the battery. If the battery does not recharge, replace it. Wiggle the AC power to see if the connection is loose. Remove the battery for a moment and then re-insert it (and attach AC power if battery power does not work). On a laptop, see if the power brick has a power light on it and whether it is lit. Try a different AC adapter from the same manufacturer because AC adapters are proprietary between laptop vendors.

If a mobile device or smartphone won’t power on after recharging the battery, remove the battery for about a minute. Reinstall the battery and try powering on again. If the system will still not power on, try powering on with the power cable attached. If the system works with the power cable attached, the battery probably needs to be replaced.

The following troubleshooting questions can help you determine the location of a power problem:

• Did the power supply work before? If not, check the input voltage selector switch on the power supply and verify that it is on the proper setting.
• Is the power supply’s fan turning? If yes, check voltages going to the motherboard. If they are good, maybe just the power supply fan is bad. If the power supply’s fan is not turning, check the wall outlet for proper AC voltages.
Chapter 4 • Disassembly and Power

- Is a surge strip used? If so, check to see if the surge strip is powered on, then try a different outlet in the surge strip, or replace the surge strip.
- Is the computer's power cord okay? Verify that the power cord plugs snugly into the outlet and into the back of the computer. Swap the power cord to verify that it is functioning.
- Is the front panel power button stuck?
- Are the voltages going to the motherboard at the proper levels? If they are low, something may be overloading the power supply. Disconnect the power cable to one device and recheck the voltages. Replace the power cable to the device. Remove the power cable from another device and recheck the motherboard voltages. Continue doing this until the power cord for each device has been disconnected and the motherboard voltages have been checked. A single device can short out the power supply and cause the system to malfunction. Replace any device that draws down the power supply's output voltage and draws too much current. If none of the devices is the cause of the problem, replace the power supply. If replacing the power supply does not solve the problem, replace the motherboard.

If a computer does not boot properly, but it does boot when you press Ctrl + Alt + Delete, the power good signal is likely the problem. Some motherboards are more sensitive to the power good signal than others. For example, say that a motherboard has been replaced and the system does not boot. At first glance, this may appear to be a bad replacement board, but the problem could be caused by a power supply failing to output a consistent power good signal.

Sometimes, none of these troubleshooting actions work. A grounding problem might be the issue. Build the computer outside the computer case, on an anti-static mat, if possible. Start with only the power supply, motherboard, and speaker connected. Even though it will normally produce a POST audio error, verify that the power supply will turn. Most power supplies issue a click before the audio POST beeps. Next, verify the voltages from the power supply. If the fan turns and the voltages are correct, power down the machine and add a video adapter and monitor to the system. If the machine does not work, put the video adapter in a different expansion slot and try again. If placing the video adapter in a different expansion slot does not work, swap out the video adapter.

If the video adapter works, continue adding devices one by one and checking the voltages. Just as any one device can cause the system not to operate properly, so can any one adapter. If one particular adapter causes the system to malfunction, try a different expansion slot before trying a different adapter.

If the expansion slot proves to be a problem, check the slot for foreign objects. If none are found but the problem still occurs, place a note on the expansion slot so that no one will use it.

Adverse Power Conditions

There are two adverse AC power conditions that can damage or adversely affect a computer: overvoltage and undervoltage. **Overs voltage** occurs when the output voltage from the wall outlet (the AC voltage) is over the rated amount. Normally, the output of a wall outlet is 110 to 130 volts AC. When the voltage rises above 130 volts, an overvoltage condition exists. The power supply takes the AC voltage and converts it to DC. An overvoltage condition is harmful to the components because too much DC voltage destroys electronic circuits. An overvoltage condition can be a surge or a spike.
When the voltage falls below 110 volts AC, an undervoltage condition exists. If the voltage is too low, a computer power supply cannot provide enough power to all the components. Under these conditions, the power supply draws too much current, causing it to overheat, weakening or damaging the components. An undervoltage condition is known as a brownout or sag. Table 4.7 explains these power terms.

Table 4.7 Adverse power conditions

<table>
<thead>
<tr>
<th>Major type</th>
<th>Subtype</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvoltage</td>
<td>spike</td>
<td>A spike lasts 1 to 2 nanoseconds. A nanosecond is one-billionth of a second. A spike is harder to guard against than a surge because it has such short duration and high intensity.</td>
</tr>
<tr>
<td></td>
<td>surge</td>
<td>A surge lasts longer (3 or more nanoseconds) than a spike. Also called transient voltage. Causes of surges include lightning, poorly regulated electricity, faulty wiring, and devices that turn on periodically, such as elevators, air conditioners, and refrigerators.</td>
</tr>
<tr>
<td>Undervoltage</td>
<td>brownout</td>
<td>In a brownout, power circuits become overloaded. Occasionally, an electric company intentionally causes a brownout to reduce the power drawn by customers during peak periods.</td>
</tr>
<tr>
<td></td>
<td>sag</td>
<td>A sag occurs when the voltage from the wall outlet drops momentarily.</td>
</tr>
<tr>
<td></td>
<td>blackout</td>
<td>A blackout is a total loss of power.</td>
</tr>
</tbody>
</table>

Electric companies offer surge protection for homes. Frequently, there are two choices. A basic package protects large appliances, such as refrigerators, air conditioners, washers, and dryers. It allows no more than 800 volts to enter the electrical system. A premium package protects more sensitive devices (TVs, stereos, and computers) and reduces the amount of voltage allowed to 323 volts or less. Some suppressors handle surges up to 20,000 volts. The exterior surge arrestor does not protect against voltage increases that originate inside the building, such as those caused by faulty wiring.

Adverse Power Protection

Power supplies have built-in protection against adverse power conditions. However, the best protection for a computer is to unplug it during a power outage or thunderstorm. Surge protectors and UPSs (uninterruptible power supplies) are commonly used to protect against adverse power conditions. A line conditioner can also be used. Each device has a specific purpose and guards against certain conditions. A technician must be familiar with each device in order to make recommendations for customers.

Surge Protectors

A surge protector, also known as a surge strip or surge suppressor, is commonly a multi-outlet strip that offers built-in protection against overvoltage. Surge protectors do not protect against undervoltage; they protect against voltage increases. Figure 4.31 shows a picture of a surge protector.
Most surge protectors have an electronic component called an MOV (metal oxide varistor), which protects the computer or device that plugs into one of the outlets on the surge strip. An MOV is positioned between the AC coming in and the outlet into which devices are plugged. When a surge occurs, the MOV prevents the extra voltage from passing to the outlets. An MOV, however, has some drawbacks. If a large surge occurs, the MOV will take the hit and be destroyed, which is better than damaging the computer. However, with small overvoltages, each small surge weakens the MOV. A weakened MOV might not give the proper protection to the computer in the event of a bigger surge. Also, there is no simple check for an MOV’s condition. Some MOVs have indicator lamps attached, but they indicate only when the MOV has been destroyed, not when it is weakened. Still, having an indicator lamp is better than nothing at all. Some surge protectors also have replaceable fuses and/or indicator lamps for the fuse. A fuse works only once and then is destroyed during a surge in order to protect devices plugged into surge protector outlets.

Several surge protector features deserve consideration. Table 4.8 outlines some of them.

Table 4.8 Surge protector features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping voltage</td>
<td>The level at which surge protector starts protecting the computer. The lower the value, the better the protection.</td>
</tr>
<tr>
<td>Clamping speed</td>
<td>How much time elapses before protection begins. The lower the value, the better the protection. Surge protectors cannot normally protect against power spikes (overvoltages of short duration) because of their rated clamping speed.</td>
</tr>
</tbody>
</table>
Feature | Explanation
--- | ---
Energy absorption/dissipation | The greater the number of joules (a unit of energy) that can be dissipated, the more effective and durable a surge protector is. This feature is sometimes called energy absorption. A surge protector rating of 630 joules is more effective than a rating of 210 joules.

TVS (transient voltage suppressing) rating | This is also known as response time. The lower the rating the better. For example, a 330 TVS-rated surge protector is better than a 400 TVS-rated one.

UL rating | UL (Underwriters Laboratories) developed the UL 1449 VPR (voltage protection rating) standard to measure the maximum amount of voltage a surge protector will let through to the attached devices. The UL 497A standard is for phone line protection, and the UL 1283 standard is for EMI/RFI.

The federal government designates surge suppressor grades—A, B, and C. Suppressors are evaluated on a basis of 1,000 surges at a specific number of volts and amps. A Class A rating is the best and indicates tolerance up to 6,000 volts and 3,000 amps.

Which surge strip to buy?

When purchasing or recommending a surge protector, be sure it conforms to the UL 1449 standard and has an MOV status lamp. Also, check to see if the vendor offers to repair or replace the surge-protected equipment in the event that they are damaged during a surge.

Surge protectors are not the best protection for a computer system because most provide very little protection against other adverse power conditions. Even the good ones protect only against overvoltage conditions. Those with the UL 1449 rating and an MOV status lamp are usually more expensive. Unfortunately, people tend to put their money into their computer parts, but not into the protection of those parts.

Line Conditioners

An alternative for computer protection is a line conditioner. Line conditioners, sometimes known as power conditioners, are more expensive than surge protectors, but they protect a computer from overvoltages, undervoltages, and adverse noise conditions over electrical lines. A line conditioner monitors AC electricity. If the voltage is too low, the line conditioner boosts voltage to the proper range. If the voltage level is too high, the line conditioner clamps down the voltage and sends the proper amount to the computer. Figure 4.32 shows a line conditioner.

Be careful not to plug too many devices into a line conditioner

A line conditioner is rated for a certain amount of current. Some devices, such as laser printers, can draw a great deal of current (up to 15 amps). Some line conditioners are not rated to handle these devices. Because laser printers draw so much current, if a computer and a laser printer are on the same electrical circuit, that circuit should be wired to a 20-amp circuit breaker. Most outlets in today’s buildings are on 20-amp breakers.
Uninterruptible Power Supply (UPS)

A **UPS** (uninterruptible power supply), sometimes called an online (or true) UPS or a line interactive UPS, provides power to a computer or other device for a limited amount of time when there is a power outage. A UPS provides enough time to save work and safely shut down the computer. Some operating systems do not operate properly if power abruptly cuts off and the computer is not brought to a logical stopping place. A network server, the main computer for a network, is a great candidate for a UPS. Network operating systems are particularly susceptible to problems during a power outage. Some UPSs have a connection for a cable and special software that automatically maintains voltages to the computer, quits all applications, and powers off the computer. Some UPS units have USB and/or network connections as well.

A UPS also provides power conditioning for the devices attached to it. The AC power is used to charge a battery inside the UPS. The battery inside the UPS supplies power to an inverter. The inverter makes AC for the computer. When AC power from the outlet fails, the battery inside the UPS continues to supply power to the computer. The battery inside the UPS outputs DC power, and the computer accepts (and expects) AC power. Therefore, the DC power from the battery must be converted to AC voltage. AC voltage looks like a sine wave when it is in its correct form, but cheaper UPSs produce a square wave (especially when power comes from the battery) that is not as effective. Some computer systems and peripherals do not work well on a 120VAC square wave, modified sine wave, or quasi-sine wave. Figure 4.33 illustrates a sine wave and a square wave.

A UPS can be the best protection against adverse power conditions because it protects against overvoltage and undervoltage conditions, and it provides power so a system can be shut down properly. When purchasing a UPS, be sure that (1) the amount of battery time is sufficient to protect all devices; (2) the amount of current the UPS produces is sufficient to protect all devices; and (3) the output waveform is a sine wave.

Tech Tip

Do not plug a laser printer into a UPS unless it has a rating less than 1400VA.

Most UPSs cannot handle the very high current requirements of a laser printer.
To install a UPS, perform the following steps:

1. Connect the UPS to a wall outlet and power it on. When a UPS is first plugged in, the battery is not charged. See the UPS manufacturer’s installation manual for the specific time it will take to charge.

2. Power off the UPS.

3. Attach device power cords, such as the PC, to the UPS. Ensure that the UPS is rated to supply power to the number and type of connected devices.

4. Power on the UPS.

A UPS has a battery inside that is similar to a car battery (except that the UPS battery is sealed). Because this battery contains acid, you should never drop a UPS or throw it in the trash. Research your state’s requirements for recycling batteries. All batteries fail after some time, and most UPSs have replaceable batteries.

UPS troubleshooting is not difficult. In addition to following the manufacturer’s recommendations for troubleshooting, try the following guidelines:

- If a UPS will not power on, check the on/off switch. Verify that the UPS is attached to an electrical outlet. Ensure that the outlet has power and that the circuit breaker for the outlet has not been tripped. Ensure that the battery is installed properly.

- Check whether the UPS unit has a self-test procedure and include a self-test button.

- With some UPS units, a beep indicates that a power interruption has occurred. This is a normal function.

- Some UPS units beep at a different rate when the battery is low. Others have a light indicator to indicate that it’s time to recharge or replace the battery.

- If a UPS is overloaded—that is, has too many devices attached—the UPS may shut off, trip a circuit breaker, beep, or turn on a light indication for this problem.

Figure 4.34 shows the front of an American Power Conversion UPS. Notice the diagnostic lights on it.

Figure 4.34 Front of an American Power Conversion UPS
Standby Power Supply (SPS)

A device similar to a UPS is an **SPS** (standby power supply). An SPS contains a battery like the UPS, but the battery provides power to the computer only when it loses AC power. It does not provide constant power, like the UPS. An SPS is not as effective as a UPS because the SPS must detect a power-out condition first and then switch over to the battery to supply power to the computer. As a result, SPS switching time is important. Any time under 5 milliseconds is fine for most systems. Figures 4.35 and 4.36 show the differences between how SPSs and UPSs work.

Figure 4.35 SPS/line interactive UPS operation

- SPS/Line interactive UPS normal operation (solid line)
 1. AC power is brought through the UPS.
 2. The battery is charged simultaneously.
 3. With some units, small over or undervoltages are evened out before sending through the UPS.

- SPS/Line interactive UPS abnormal power operation (dashed line)
 1. When high voltage or large undervoltage for some units and with loss of power is present in all units, DC power from the battery is sent to the inverter for as long as the battery lasts.
 2. The DC power is converted to AC and provided to the attached devices.

Figure 4.36 Online UPS operation

- Online UPS normal operation (solid line)
 1. AC power is brought into the UPS and cleaned up by the filter and converted to DC by the rectifier.
 2. The battery is charged and outputs DC to the inverter.
 3. The DC is converted to AC and provided to the attached devices.

- Online UPS abnormal power operation (dashed line)
 1. When the battery has died, the attached devices still receive power through the bypass circuit.
Phone Line Isolator

Just like AC power outlets, phone outlets can experience power fluctuations. A power surge can enter a computer through a modem, a device used to connect a computer to a phone line. Not only can a modem be damaged by a power surge on the phone line, but other electronics inside the computer, such as the motherboard, can be damaged. A **phone line isolator**, sometimes called a **modem isolator**, can be purchased at an electronics store. It provides protection against phone line surges. No computer connected to a phone line through a modem should be without one. Many surge protectors now come with a modem isolator built into the strip. Figure 4.31 shows an example of a surge strip that has modem protection integrated into the unit.

Power supplies and associated protection equipment are not exciting topics, but they are very important to a technician. Power problems can catch you unaware. Always keep power in your mind as a potential suspect when troubleshooting a computer.

Electrical Fires

No discussion of power is complete without a brief warning about fire. Electrical fires are uncommon in computers, but if one occurs, a technician must know what to do. If a fire occurs inside a computer or peripheral, unplug the equipment if possible, but do not put yourself in harm’s way attempting to do this. Use a **Type C** or a **Type A-B-C fire extinguisher** to put out the fire. Type C fire extinguishers are made specifically for electrical (Type C) fires. Type A-B-C fire extinguishers can be used for Class A, Class B, and Class C fires. Class A fires involve paper, wood, cloth, or other normal combustibles. Class B fires involve flammable liquids and gases. It is also a good idea to have a dry chemical 20lb ABC fire extinguisher in homes for the electronics (including computers) located there. Home computer equipment should be listed on the home insurance policy. Figure 4.37 shows a Type A-B-C fire extinguisher.

![Type A-B-C fire extinguisher](image)

Figure 4.37 **Type A-B-C fire extinguisher**

When a fire occurs, pull out the fire extinguisher pin. Aim the fire extinguisher nozzle at the base (bottom) of the fire. Squeeze the fire extinguisher’s handle and move the nozzle back and forth in a slow sweeping motion. With electrical fires, the smoke is a breathing hazard. Burning plastics produce lethal toxic fumes. Always evacuate the people in the building and call the fire department.
Computer Disposal/Recycling

Computers and other electronic devices can contain materials such as beryllium, chromium, cadmium, lead, mercury, nickel, and zinc. The levels of these materials are increasing dramatically every year in landfills and can pose a threat to our environment. Plastics that are part of computers are hard to isolate and recycle. CRTs (cathode ray tubes) are found in older monitors and TVs and usually contain enough lead and mercury to be considered hazardous waste. However, the EPA has been successful in obtaining exclusions from the federal hazardous waste standards for unbroken CRTs, so they can be recycled more effectively.

Batteries contain acids that can burn or hurt body parts. Batteries can introduce lead and acid into the environment. Heavy metals can leach into the ground and water sources.

Every state and many cities have specific guidelines about how to dispose of electronics. These rules must be followed by technicians who replace broken computer equipment. For example, in Florida and New York, steps have been taken to increase CRT recycling; however, other states regulate all CRTs as hazardous waste and ban them from being sent to landfills. If you are unsure about how to get rid of any piece of broken electronic equipment, contact your direct supervisor for instructions.

The following list provides alternatives and suggestions for being environmentally conscious about discarding electronics:

- Donate equipment that is operational to schools and charities so that those who do not have access to technology can get some exposure. If the operating system is not transferred to another system, leave the operating system on it and provide proof of purchase along with documentation. Also, do not forget to erase all data stored on the computer before donating it.
- Recycle very outdated electronics. If the devices are so outdated that a school or charity does not want them, consider recycling them. Many companies accept old electronics and have determined ways to reuse some of their parts.
- Remove parts that do work and donate or recycle them.
- Buy electronics that are designed with saving resources in mind and are easy to upgrade, which extends their usefulness period; are energy efficient; contain fewer toxins; use recycled materials; and offer leasing or recycling programs.
- Check with the computer or component manufacturer to see if it has a recycling program. Most of them do.

Soft Skills—Written Communications Skills

When technicians are in school, they seldom think that the skills they should be learning involve writing. However, in the workplace, technicians use written communication skills when they document problems and use email. Advisory committees across the country say that in addition to having technical knowledge, it is important that technicians be able to communicate effectively both written and orally, be comfortable working in a team environment, and possess critical thinking skills (that is, solve problems even though they have not been taught the specific problem).
Regardless of the size of a company, documentation is normally required. The documentation may only be the number of hours spent on a job and a basic description of what was done, but most companies require a bit more. Documentation should be written so others can read and understand it. Keep in mind that if another technician must handle another problem from the same customer, it saves time and money to have good documentation. The following list includes complaints from managers who hire technicians. You can use this list to improve and avoid making the same mistakes:

- Avoids doing documentation in a timely manner
- Does not provide adequate or accurate information on what was performed or tried
- Has poor spelling, grammar, capitalization, and punctuation skills
- Writes in short, choppy sentences, using technical jargon
- Does not provide updates on the status of a problem

Email is a common means of communication for technicians. However, most technicians do not take the time to communicate effectively using email. The following is a list of guidelines for effective email communication:

- Do not use email when a meeting or a phone call is more appropriate.
- Include a short description of the email topic in the subject line.
- Do not write or respond to an email when you are angry.
- Send email only to the appropriate people.
- Stick to the point; do not digress.
- Use a spelling and grammar checker; if one is not included in the email client, write the email in a word processing application, check it, and then paste the document into the email.
- Use proper grammar, punctuation, and capitalization; do not write in all uppercase or all lowercase letters.
- Do not copy others unnecessarily.
- Write each email as if you were putting the message on a billboard; you never know how the content might be used or who might see it.

The number-one complaint about technical support staff is not their lack of technical skills but their lack of communication skills. Spend as much of your education practicing your communication skills as you do your technical skills.
Chapter Summary

- Wearing a wrist strap or staying in contact with unpainted metal keeps you and the computing device at the same electrical potential so you won’t induce current into any part and weaken/damage it.
- EMI and RFI cause issues. Move the computer or the offending device and replace all slot covers/openings.
- When removing parts, have the right tools, lighting, antistatic items, and ample work space. Take notes. Don’t use magnetized tools. Avoid jarring hard drives.
- Be careful installing an I/O shield and be aware of standoffs when dealing with the motherboard.
- Laptops and mobile devices frequently have compartments for memory and expansion card. These devices frequently have plastic parts that must be removed. A scribe helps with prying plastics and covers off. Laptop speakers and DC power plug frequently have cables that run along the back or sides of the device. Keep screws separated and take notes for any parts removal.
- Ribbon cables have a colored stripe indicating pin 1. Pin 1 of a cable must attach to pin 1 of a connector.
- Preventive maintenance procedures prolong the life of the computer. Vacuum before spraying compressed air.
- An MSDS describes disposal and storage procedures and contains information about toxicity and health concerns. Cities/states have specific disposal rules for chemicals, batteries, CRTs, electronics, and so on. Always know the disposal rules in the area where you work.
- AC power goes into the power supply or mobile device power brick. DC power is provided to all internal parts of the computing device. AC and DC voltage checks can be done and only with DC power does polarity matter. Use the highest meter setting possible with unknown voltage levels. Power is measured in watts.
- Continuity checks are done on cabling and a good wire shows close to 0 ohms.
- A power supply converts AC to DC, distributes DC throughout a unit, and provides cooling. The power supply must be the correct form factor and able to supply the current amount of wattage for a particular voltage level such as +5V or +12V. Multiple “rails” are commonly available for +12V since the CPU commonly needs its own connection. The number and type of connectors vary, but converters can be purchased.
- Li-ion batteries are used with mobile devices. If a device must be attached to AC power or a USB port to work, replace the battery with one of with the correct DC power jack, appropriate DC voltage level, and current (amperage) equal to or higher than the original power brick.
- Conserve mobile device power by adding more RAM, turning off wireless/Bluetooth, configuring power options, reducing screen brightness, and avoiding temperature extremes.
- You use ACPI to control power options through BIOS and the operating system. Wake on LAN and Wake on Ring are power features that allow a device to be powered up from a lowered power condition for a specific purpose.
- An AC circuit tester, multimeter, and power supply tester are tools used with power problems.
- Power issues include overvoltage conditions such as a surge or spike that can be helped with surge protectors, power conditioners, and UPSs. Power conditioners and UPSs help with undervoltage conditions such as a sag. A UPS is the only device that powers a computer when a blackout occurs.
Review Questions

1. What would happen if you removed the battery from the motherboard by accident?

2. List three tasks commonly performed during preventive maintenance.

3. Computers used in a grocery store warehouse for inventory control have a higher part failure rate than the other company computers. Which of the following is most likely to help in this situation?
 a. an antistatic wrist strap
 b. a preventive maintenance plan
 c. antistatic pads
 d. high wattage power supplies
4. Which of the following can prolong the life of a computer and conserve resources? (Select all that apply.)
 a. a preventive maintenance plan
 b. antistatic mats and pads
 c. upgraded power supply
 d. a power plan
 e. using a Li-ion battery as a replacement
 f. extra case fans

5. Which power component has a 20- or 24-pin connector?
 a. ATX power supply
 b. UPS
 c. line conditioner
 d. SPS
 e. surge protector

6. An optical drive randomly becomes unavailable, and after replacing the drive, the technician now suspects a power issue. What could help in this situation?
 a. a UPS
 b. a surge protector
 c. antistatic wipes
 d. a preventive maintenance plan
 e. a multimeter

7. Which unit would you recommend for the help desk people who sit at a computer for a 24/7 operation where help must be provided at all times?
 a. a UPS
 b. a surge protector
 c. an upgrade power supply
 d. a line conditioner

8. When disassembling a computer, which tool will help you remove the memory module?
 a. magnetic screwdriver
 b. needlenose pliers
 c. #1 or #2 Phillips screwdriver
 d. antistatic wrist strap

9. How would a technician normally access a memory module that needs to be replaced on a netbook? (Select the best answer.)
 a. by removing the DC power jack
 b. by removing a secured bottom compartment
 c. by removing the speaker
 d. by removing the display

10. Which part would be specialized when used with a laser printer?
 [surge strip | vacuum | multimeter | antistatic wrist strap]

11. Which two of the following would most likely cause a loud noise on a desktop computer? (Select two.) [motherboard | USB drive | power supply | case fan | memory | PCIe adapter]
12. A computer will not power on. Which of the following would be used to check the wall outlet? [power supply tester | UPS | multimeter | POST]

13. A computer will not power on. After checking the wall outlet and swapping the power cord, what would the technician use next?
 a. power supply tester
 b. UPS
 c. antistatic wrist strap
 d. magnetic screw driver
 e. nonmagnetic screw driver

14. Which of the following is affected by the power supply wattage rating?
 a. number of internal storage devices
 b. number of power supply connectors
 c. speed of the processor
 d. type of processor
 e. type of power supply connectors

15. Which of the following would help with computer heat?
 a. increased power supply wattage
 b. larger power supply form factor
 c. unplug unused power connectors
 d. install case fans

16. Lightning is prevalent in Jacksonville, Florida. What would you recommend for home owners who would like to keep working even when a storm is rolling through? [surge protector | phone line protector | UPS | line conditioner]

17. Consider the following email.

 From: Cheryl a. Schmidt
 To: Network Engineering Technology Faculty
 Subj: [None]
 We have little time to get the PMS done on the PCs and N/W gear. What software do you want?

Reword this email to illustrate good written communication skills.
18. List three recommendations for good technical written communication.

19. What type of fire extinguisher can be used on electronic equipment?

20. List three recommendations for saving power on a laptop.

Exercises

Lab 4.1 Performing Maintenance on an Antistatic Wrist Strap

Objective: To understand how to care for and properly use an antistatic wrist strap

Parts:
- Antistatic wrist strap
- Computer chassis
- Multimeter

Note: Electrostatic discharge (ESD) has great potential to harm the electronic components inside a computer. Given this fact, it is vitally important that you practice proper ESD precautions when working inside a computer case. One tool you can use to prevent ESD is an antistatic wrist strap. This tool channels any static electricity from your body to the computer’s chassis, where it is dissipated safely.

Procedure: Complete the following procedure and answer the accompanying questions.

1. Examine the wrist strap for any obvious defects such as worn or broken straps, loose grounding lead attachments, dirt or grease buildup, and so on.

2. If necessary, remove any dirt or grease buildup from the wrist strap, paying close attention to the electrical contact points such as the wrist contact point, the ground lead attachment point, and the computer chassis attachment clip. Use denatured alcohol to clean these contact points.

3. If possible, use a multimeter to check continuity between the wrist contact point and the computer chassis attachment clip. A reading of zero ohms of resistance indicates a good electrical pathway.

4. Adjust the wrist strap so it fits snugly yet comfortably around your wrist. Ensure that the wrist contact is in direct contact with your skin, with no clothing, hair, etc., being in the way.

5. Attach the ground lead to the wrist strap and ensure it snaps securely into place.

6. Attach the computer chassis attachment clip to a clean metal attachment point on the computer chassis.

7. Any static electricity generated or attracted by your body will now be channeled through the antistatic wrist strap to the computer chassis, where it will be safely dissipated.

How many volts of static electricity does it take to harm a computer’s electrical components?

How many volts will an ESD be before you will feel anything?
Exercises

Should you use an antistatic wrist strap when working inside a monitor?

Instructor initials: _____________

Lab 4.2 Computer Disassembly/Reassembly

Objective: To disassemble and reassemble a computer correctly

Parts: A computer to disassemble
 A tool kit
 An antistatic wrist strap (if possible)

Note: Observe proper ESD handling procedures when disassembling and reassembling a computer.

 Procedure: Complete the following procedure and answer the accompanying questions.

1. Gather the proper tools needed to disassemble the computer.
2. Clear as much workspace as possible around the computer.
3. Power on the computer.

 Why is it important to power on the computer before you begin?

4. Turn off the computer and all peripherals. Remove the power cable from the wall outlet and then remove the power cord from the computer.
5. Note where the monitor cable plugs into the back of the computer. Disconnect the monitor including the power cord and move it to a safe place. Take appropriate notes.
6. Remove all external cables from the back of the computer. Take notes on the location of each cable. Move the peripheral devices to a safe place.

 Did the mouse cable connect to a PS/2 or USB port?

7. If possible, remove the computer case. This is usually the hardest step in disassembly if the computer is one that has not been seen before. Diagram the screw locations. Keep the cover screws separate from other screws. An egg carton or a container with small compartments makes an excellent screw holder. Label each compartment and reuse the container. Otherwise, open the case as directed by the manufacturer.

8. Make notes or draw the placement of each adapter in the expansion slots.
9. On your notes, draw the internal cable connections *before* removing any adapters or cables from the computer. Make notes regarding how and where the cable connects to the adapter. Do not forget to include cables that connect to the motherboard or to the computer case.

 List some ways to determine the correct orientation for an adapter or cable.
Chapter 4 • Disassembly and Power

Internal Cable Removal

10. Remove all internal cables. WARNING: Do not pull on a cable; use the pull tab, if available, or use the cable connector to pull out the cable. Some cables have connectors with locking tabs. Release the locking tabs before you disconnect the cable. Make appropriate notes regarding the cable connections. Some students find that labeling cables and the associated connectors makes reassembly easier, but good notes usually suffice.

Adapter Removal

11. Start with the left side of the computer (facing the front of the computer) and locate the leftmost adapter.
12. Write down any jumpers or switch settings for this adapter. This step may need to be performed after you remove the board from the computer if the settings are inaccessible.
13. If applicable, remove the screw or retaining bracket that holds the adapter to the case. Place the screw in a separate, secure location away from the other screws already removed. Make notes about where the screw goes or any other notes that will help you when reassembling the computer.
14. Remove the adapter from the computer.
 Why must you be careful not to touch the gold contacts at the bottom of each adapter?

15. Remove the remaining adapters in the system by repeating Steps 12–15. Take notes regarding screw locations, jumpers, switches, and so forth for each adapter.

Drivers

16. Remove all power connections to drives, such as hard drives, floppy drives, CD/DVD/BD drives, and so on. Note the placement of each drive and each cable, as well as any reminders needed for reassembly.
17. Remove any screws holding the drives in place. Make notes about where the screws go. Keep these screws separate from any previously removed screws.
18. Remove all drives.
 Why must you be careful when handling a mechanical hard drive?
 What would you do differently when handling an SSD than a SATA hard drive?

Power Supply

19. Before doing this step, ensure that the power cord is removed from the wall outlet and the computer. Remove the connectors that connect the power supply to the motherboard.
20. Take very good notes here so you will be able to insert the connectors correctly when reassembling.
21. Remove the power supply.
 What is the purpose of the power supply?
Motherboard

22. Make note of any motherboard switches or jumpers and indicate whether the switch position is on or off.

What is the importance of documenting switches and jumpers on the motherboard?

23. Remove any remaining connectors except those that connect a battery to the motherboard. Take appropriate notes.

24. Remove any screws that hold the motherboard to the case. Place these screws in a different location from the other screws removed from the system. Write any notes pertaining to the motherboard screws. Look for retaining clips or tabs that hold the motherboard into the case.

25. Remove the motherboard. Make notes pertaining to the motherboard removal. The computer case should be empty after you complete this step.

Instructor initials: ____________

Reassembly

26. Reassemble the computer by reversing the steps for disassembly. Pay particular attention to cable orientation when reinstalling cables. Before reconnecting a cable, ensure that the cable and the connectors are correctly oriented and aligned before pushing the cable firmly in place. Refer to your notes. The first step is to install the motherboard in the computer case and reconnect all motherboard connections and screws.

27. Install the power supply by attaching all screws that hold the power supply in the case. Reattach the power connectors to the motherboard. Refer to your notes.

28. Install all drives by attaching screws, cables, and power connectors. Refer to your notes. Attach any cables that connect the drive to the motherboard.

29. Install all adapters. Attach all cables from the adapter to the connecting device. Replace any retaining clips or screws that hold adapters in place. Refer to your previous notes and diagrams.

30. Connect any external connectors to the computer. Refer to previously made notes, when necessary.

31. Replace the computer cover. Ensure that slot covers are replaced and that the drives and the front cover are aligned properly. Ensure that all covers are installed properly.

32. Reinstall the computer power cable.

33. Once the computer is reassembled, power on all external peripherals and the computer. A chassis intrusion error message may appear. This is just an indication that the cover was removed.

Did the computer power on with POST error codes? If so, recheck all diagrams, switches, and cabling. Also, check a similar computer model that still works to see if you made a diagramming error. A chapter on logical troubleshooting comes next in the book. However, at this point in the course, the most likely problem is with a cable connection or with an adapter not seated properly in its socket.

Instructor initials: ____________
Lab 4.3 Amps and Wattage

Objective: To determine the correct capacity and wattage of a power supply

Parts:
Power supply
Internet access (as needed)

Procedure: Complete the following procedure and answer the accompanying questions.

1. Locate the documentation stenciled on the power supply, if possible.
 Can you determine from the documentation how many amps of current the power supply is rated for at 5 volts? If not, proceed to Optional Step 2.

2. Optional: Use the Internet to find the power supply’s documentation on the manufacturer’s website. Use the information you find to answer the remaining questions.
 - How many amps is the power supply rated for at 5 volts?
 - How many amps is the power supply rated for at 12 volts?
 - How many +12V rails does the power supply have?
 - What is the maximum rated output power of the power supply in watts?

Instructor initials: __________

Lab 4.4 Continuity Check

Objective: To perform a continuity check on a cable and find any broken wires

Parts:
Multimeter
Cable and pin-out diagram

Procedure: Complete the following procedure and answer the accompanying questions.

1. Obtain a meter, cable, and pin-out diagram from your instructor.
2. Set the meter to ohms.
3. Power on the meter.
4. Lay the cable horizontally in front of you. The connector on the left is referred to as Connector A. The connector on the right is referred to as Connector B.
5. Determine the number of pins on the cable connector. On a separate sheet of paper, write numbers vertically down the left side of the paper, similar to the numbering used in Lab 4.5. There should be a number for each connector pin. At the top of the numbers write Connector A as the heading. Create a corresponding set of identical numbers vertically on the right side of the paper.
6. Check the continuity of each wire. Document your findings by placing a check mark beside each pin number that has a good continuity check.
 - What meter setting did you use to check continuity, and what meter symbol is used for this setting?

7. Power off the meter and return all supplies to the instructor.

Instructor initials: __________
Lab 4.5 Pin-Out Diagramming

Objective: To draw a pin-out diagram using a working cable

Parts:
- Multimeter
- Good cable

Procedure: Complete the following procedure and perform the accompanying activities.
1. Obtain a meter and a good cable from your instructor.
2. Set the meter to ohms.
3. Power on the meter.
4. Lay the cable horizontally in front of you. The connector on the left is referred to as Connector A. The connector on the right is referred to as Connector B.
5. Touch one meter lead to Connector A’s pin 1. Touch the other meter lead to every Connector B pin. Notice when the meter shows zero resistance, indicating a connection. Using the table that follows, draw a line from Connector A’s pin 1 to any Connector B pins that show zero resistance. Add more pin numbers as needed to the table or use a separate piece of paper. Remember that all pins do not have to be used in the connector. There are no review questions; however, there is a connector table that contains connection lines. The lines will be cable dependent.

<table>
<thead>
<tr>
<th>Connector A</th>
<th>Connector B</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ 1</td>
<td>☐ 1</td>
</tr>
<tr>
<td>☐ 2</td>
<td>☐ 2</td>
</tr>
<tr>
<td>☐ 3</td>
<td>☐ 3</td>
</tr>
<tr>
<td>☐ 4</td>
<td>☐ 4</td>
</tr>
<tr>
<td>☐ 5</td>
<td>☐ 5</td>
</tr>
<tr>
<td>☐ 6</td>
<td>☐ 6</td>
</tr>
<tr>
<td>☐ 7</td>
<td>☐ 7</td>
</tr>
<tr>
<td>☐ 8</td>
<td>☐ 8</td>
</tr>
<tr>
<td>☐ 9</td>
<td>☐ 9</td>
</tr>
<tr>
<td>☐ 10</td>
<td>☐ 10</td>
</tr>
<tr>
<td>☐ 11</td>
<td>☐ 11</td>
</tr>
<tr>
<td>☐ 12</td>
<td>☐ 12</td>
</tr>
<tr>
<td>☐ 13</td>
<td>☐ 13</td>
</tr>
<tr>
<td>☐ 14</td>
<td>☐ 14</td>
</tr>
<tr>
<td>☐ 15</td>
<td>☐ 15</td>
</tr>
<tr>
<td>☐ 16</td>
<td>☐ 16</td>
</tr>
<tr>
<td>☐ 17</td>
<td>☐ 17</td>
</tr>
<tr>
<td>☐ 18</td>
<td>☐ 18</td>
</tr>
<tr>
<td>☐ 19</td>
<td>☐ 19</td>
</tr>
<tr>
<td>☐ 20</td>
<td>☐ 20</td>
</tr>
</tbody>
</table>
6. Power off the meter.

Instructor initials:

7. Return all supplies to the instructor.

Lab 4.6 Fuse Check

Objective: To determine if a fuse is good

Parts: Multimeter

Fuse

Procedure: Complete the following procedure and answer the accompanying questions.

1. Obtain a meter and a fuse from your instructor.
2. Look at the fuse and determine its amp rating.

 What is the ampere rating of the fuse?

3. Set the meter to ohms.

Instructor initials:

4. Power on the meter.
5. Connect one meter lead to one end of the fuse. Connect the other meter lead to the opposite end.

 What is the resistance reading?

 Is the fuse good?

7. Power off the meter.

Instructor initials:

8. Return all materials to the instructor.

Lab 4.7 Using a Multimeter

Objective: To check voltage and resistance levels using a multimeter

Parts: Multimeter

AA, AAA, C, D, or 9-volt battery

Extended paperclip or wire

Caution: Keep both hands on the behind the protective rings on the meter handles. See Figures 4.16 and 4.17.

Procedure: Complete the following procedure and perform the accompanying activities.

1. All voltage inside the computer is DC voltage (except for some parts inside the power supply, of course). Learning how to measure DC voltage is important for a technician. The best place to start is with a battery. Obtain a battery. Look carefully at the battery and determine where the positive end or connector is located (usually has a + (plus) symbol nearby) and where the negative end or connector is located.

 Why is it important to locate positive and negative on a battery?

2. Look carefully at the battery and determine the voltage rating. Document your findings.

 DC voltage:

3. Place the battery on a flat surface. If the battery is an AA, AAA, C, or D battery, place the battery so that the positive side (the side with a nodule) pointing toward your right side. If the battery is a 9-volt battery, place the battery so that the connectors are facing you and the positive connector (the smaller connector) is on your right side.
4. If the meter has leads that attach, attach the black meter lead to the appropriate port colored as a black port or has the COM labeling. Attach the red meter lead to the positive or port marked with a plus sign (+).

5. Turn on the meter. Set the meter so that it is measuring VDC (DC voltage). This may involve manually rotating a dial and/or pushing a button. Note that some meters can autodetect the setting, but most involve configuration.
 Document what you did to configure the meter for VDC.
 What indication, if any, did the meter show in the meter window that VDC is being measured?

6. Hold the meter leads so that the black lead is in your left hand and the right lead is in your right hand. Ensure your hands are behind the protective ring on the meter handle. Refer to Figure 4.16 if you are unsure.

7. Place the black meter lead to the negative side (left side or left connector). Also touch the red meter lead to the positive side (right side or right connector) of the battery. Make a note of the meter reading.
 DC volts:
 Based on your findings, is the battery good (usable in an electronic device)?

8. Now reverse the meter leads—place the black lead to the positive side and the red lead to the negative side. Record your findings.
 DC volts:
 What was different from the original meter reading?

9. Perform this voltage check on any other batteries given to you by the instructor or lab assistant.

10. Straighten a paperclip or obtain a wire. Place the paperclip or wire on a flat surface.

11. Change the meter so that it reads ohms. This is normally shown by the omega symbol (Ω).
 While having the meter leads up in the air (not touching each other), what does the meter display?

12. Touch the meter leads together to make a complete circuit or path.
 What does the meter display now?

13. Touch one meter lead to one end of the paperclip or wire, and touch the other meter lead to the opposite paperclip or wire end. Sometimes it is easier to just lay the meter lead on top of the wire close to the end.
 What is the meter reading?

14. Some meters have the ability to make a sound when a wire is good. This is frequently shown on your meter as a sound wave (O). If your meter has this ability, configure the meter and redo the test. You can see how much easier this would be than trying to hold your meter leads straight and watch the meter.

Instructor initials: ______________________

15. Power off the meter. Disconnect the leads as necessary. Return all parts to the appropriate location.
Lab 4.8 Wall Outlet and Power Cord AC Voltage Check

Objective: To check the voltage from a wall outlet and through a power cord

Parts: Multimeter
 Computer power cord

Caution: Exercise extreme caution when working with AC voltages!

Procedure: Complete the following procedure and perform the accompanying activities.
1. Set the multimeter to AC VOLTAGE (refer to the meter’s manual if you are unsure about this setting). Important: Using a current or resistance setting could destroy the meter.
2. Power on the multimeter. Locate an AC power outlet. Refer to Figure 4.38 for the power connections.

3. Insert the meter’s black lead into the round (Ground) AC outlet plug.
4. Insert the meter’s red lead into the smaller flat (Hot) AC outlet plug. The meter reading should be around 120 volts. Use Table 4.9 to record the reading.
5. Move the meter’s red lead into the larger flat (Neutral) AC outlet plug. The meter reading should be 0 volts. Use Table 4.9 to record the reading.

Table 4.9 Wall outlet AC checks

<table>
<thead>
<tr>
<th>Connections</th>
<th>Expected voltage</th>
<th>Actual voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND to hot</td>
<td>120VAC</td>
<td></td>
</tr>
<tr>
<td>GND to neutral</td>
<td>0VAC</td>
<td></td>
</tr>
<tr>
<td>Hot to neutral</td>
<td>120VAC</td>
<td></td>
</tr>
</tbody>
</table>
6. Remove both leads from the wall outlet.
7. Insert the meter’s black lead into the smaller flat (hot) AC outlet plug.
8. Insert the meter’s red lead into the larger flat (neutral) AC outlet plug. The meter reading should be around 120 volts. Use Table 4.9 to record the reading.
9. Plug the computer power cord into the AC wall outlet that was checked using Steps 3 through 8.
10. Verify the other end of the power cord is not plugged into the computer.
11. Perform the same checks you performed in Steps 3 through 8, except this time check the power cord end that plugs into the computer. Use Table 4.10 to record the reading.

Table 4.10 Power cord AC checks

<table>
<thead>
<tr>
<th>Connections</th>
<th>Expected voltage</th>
<th>Actual voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND to hot</td>
<td>120VAC</td>
<td></td>
</tr>
<tr>
<td>GND to neutral</td>
<td>0VAC</td>
<td></td>
</tr>
<tr>
<td>Hot to neutral</td>
<td>120VAC</td>
<td></td>
</tr>
</tbody>
</table>

12. If the voltage through the power cord is correct, power off the meter. Notify the instructor of any incorrect voltages.

_Instructor initials: ___________________

Lab 4.9 Device DC Voltage Check

Objective: To check the power supply voltages sent to various devices

Parts: Multimeter
Computer

Procedure: Complete the following procedure and perform the accompanying activities.

1. Set the multimeter to DC VOLTAGE (refer to the meter’s manual if unsure about the setting).
2. Power on the multimeter.
3. Power off the computer.
4. Remove the computer case.
5. Locate a Molex or Berg power connector. If one is not available, disconnect a power connector from a device.
6. Power on the computer.
7. Check the +5 volt DC output from the power supply by placing the meter’s black lead in (if the connector is a Molex) or on (if the connector is a Berg) one of the grounds* (a black wire). Place the meter’s red lead on the +5 volt wire (normally a red wire) in or on the connector. Consult Figure 4.39 for the layout of the Molex and Berg power supply connections. Figure 4.39 also contains a table with the acceptable voltage levels.

*Use and check both ground connections (black wires going into the connector); do not check all the voltages using only one ground connection.
Write the voltage level found for the +5 volt wire in Table 4.11.

Table 4.11 +5 volt check

<table>
<thead>
<tr>
<th>Voltage being checked</th>
<th>Voltage found</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5 volts</td>
<td></td>
</tr>
</tbody>
</table>

8. Check the +12 volt DC output by placing the meter’s black lead in (if the connector is a Molex) or on (if the connector is a Berg) one of the grounds. Place the meter’s red lead on the +12 volt wire in or on the connector. See Figure 4.39 for the layout of the Molex and Berg power supply connections. The figure also contains a table with acceptable voltage levels. Write the voltage level found for the +12 volt wire in Table 4.12.

Table 4.12 +12 volt check

<table>
<thead>
<tr>
<th>Voltage being checked</th>
<th>Voltage found</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12 volts</td>
<td></td>
</tr>
</tbody>
</table>

9. Notify the instructor of any voltages out of the acceptable range.

10. Power off the meter.

Instructor initials: ______________

11. Power off the computer.

Lab 4.10 Windows XP Power Options

Objective: To be able to control power options via BIOS and Windows XP

Parts: Computer with Windows XP loaded

Procedure: Complete the following procedure and answer the accompanying questions.

1. Power on the computer and ensure it boots properly before the exercise begins.
2. Reboot the computer and access BIOS Setup.
List the BIOS options related to power management.

Can ACPI be disabled via BIOS?

3. Exit the BIOS setup program without saving any settings. Boot to Windows XP.
4. From the Start button > access Control Panel > Classic view > and the Power Options Control Panel.
 On the Power Schemes tab, what is the current setting used?
 Using the Power Schemes drop-down menu, list the power schemes available.

What is the current setting for the monitor power scheme?
What is the current setting for the hard drive power scheme?
What is the current setting for the system standby?
What is the maximum amount of time the monitor can be on and then be shut off by the operating system?

5. Select the Advanced tab.
 Describe the power savings icon shown on this window.
 What options are available for the power button?

6. Select the Hibernate tab.
 How much disk space is required for hibernation?

7. Click Cancel.

Lab 4.11 Windows Vista/7 Power Options

Objective: To be able to control power options via BIOS and Windows Vista/7
Parts: Computer with Windows Vista or 7 loaded
Procedure:
1. Power on the computer and ensure it boots properly before the exercise begins.
2. Reboot the computer and access BIOS Setup.
 List the BIOS options related to power management.

Can ACPI be disabled via BIOS?

 What power plan is currently configured?

5. Select the Create a power plan link on the left. Type a unique name in the Plan name textbox. Click Next.
6. Use the *Turn off the display* drop-down menu to select a time. Use the *Put the computer to sleep* drop-down menu to select a time for the computer to go into reduced power mode. Note that on a laptop computer there will be two columns of choices: *On battery* and *Plugged in*.

What global ACPI state do you think this would assign? Look back through the chapter to review.

7. Click the *Create* button. Notice that your new plan appears in the list of preferred plans. Also notice that the *Show additional plans* reveal arrow might be in the center of the window on the right if someone has hidden the additional plans. Click on *Show additional plans*, and other plans are revealed.

8. Click on the *Change plan settings* link under or beside the plan you just created. Select the *Change advanced power settings* link.

List at least three devices for which you can have power controlled through this control panel.

9. Expand the USB settings, if possible, and the *USB selective suspend* setting.

What is the current setting?

10. Expand the *Processor power management* setting, if possible.

What is the minimum processor state?

What is the maximum processor state?

11. Expand the *Multimedia* settings, if possible.

What setting(s) is configured with this option?

12. Click the *Cancel* button to return to the Change settings window. Click the *Cancel* button again. Show the instructor or lab assistant your settings.

Instructor initials: __________

13. To delete a power plan you created (the default ones cannot be deleted), select the radio button for the original power plan. Refer to Step 4, if necessary. Under the plan you created, select the *Change settings for the plan* link. Select the *Delete this plan* link and click *OK*. The plan should be removed from the power options list. Show the instructor or lab assistant that the plan has been deleted.

Instructor initials: __________

Activities

Internet Discovery

Objective: To obtain specific information on the Internet regarding a computer or its associated parts

Parts: Computer with Internet access

Procedure: Complete the following procedure and answer the accompanying questions.

1. Locate an Internet site that provides tips for doing computer preventive maintenance.

Write 10 of the tips and the URL where you found the information.
2. Locate an Internet site to buy a computer tool kit that contains non-magnetic screwdrivers.
 List the URL where you found the tool kit and at least three sizes of screwdrivers or bits provided.

3. Locate a surge protector for the whole house. Determine if it replaces the need for individual surge protectors.
 Write the name and part number as well as your findings.

4. A customer owns a Belkin 12-outlet surge protector with phone/Ethernet/coaxial protection and an extended cord.
 What is the warranty amount for this surge protector and at what URL did you find this information?

5. A customer has a Rosewill CAPSTONE-450 power supply.
 What is the power supply’s maximum power output (in watts) and how many amps are provided for +3.3V, +5V, and +12V (combined amount for +12V)? Write the URL where you found this information as well.

6. A customer has an Enermax Liberty ELT500AWT power supply.
 Does this power supply comply with the ATXV12 version 2.2 or higher specification?

 How many PCIe connectors are provided?

 Does the power supply have any SATA power connectors? If so, how many?

 At what website did you find this information?

 What type of battery provides power for the longest amount of time for this model? Write the URL where you found this information.

8. Your company has a Tripp Lite Smart 700 UPS.
 What are the part number and cost for a replacement battery? At what website did you find this information?

9. Locate an A-B-C fire extinguisher.
 Give the model, cost, and URL where you found this information.

Soft Skills

Objective: To enhance and fine-tune a future technician’s ability to listen, communicate in both written and oral form, and support people who use computers in a professional manner

Activities:

1. Using the information gathered in Critical Thinking Skills Activity 1 or researching an appropriate replacement power supply for any computer, prepare a business proposal for the power supply as if you were offering it to a customer. Present your proposal to the class.
2. Work in teams to decide the best way to inform a customer about the differences between a line conditioner and a UPS. Present your description to the class as if you were talking to the customer. Each team member must contribute. Each classmate votes for the best team explanation.

Critical Thinking Skills

Objective: To analyze and evaluate information as well as apply learned information to new or different situations

Activities:

1. Locate a computer on the Internet that lists each device that is installed and the type of motherboard, integrated ports, and so on. Then locate a power supply calculator. Find a replacement power supply, based on the calculations performed. Write the details of what you looked for in the replacement power supply, the power supply, vendor, number and type of connectors, and cost.

2. For one of the computers in the classroom, locate an appropriate UPS that can provide power for 10 minutes. Write the details of your findings in a report.

A+ Certification Exam Tips

- ✓ Review the chapter summary. Quite a few questions are about preventive maintenance procedures. Don’t forget that other chapters have preventive maintenance tips, too, including the chapters on storage devices, multimedia devices, and other peripherals chapters.
- ✓ Power down a computer, remove the power cord/power brick/battery, and allow a laser printer to cool before performing maintenance.
- ✓ Know what the +5 and +12 volts are used for in a computer.
- ✓ Review a couple of videos on laptop disassembly. Know where the common parts, including the following, are located on different vendors’ products: memory, wireless antennas, mini PCI/PCIe adapters, DC power jack, and speakers.
- ✓ Know what tools are commonly used: flat-tip/Phillips screwdrivers, #0 Phillips screwdriver for laptop and mobile device screws, antistatic wrist strap (don’t use in a CRT monitor or inside a power supply).
- ✓ Know all about static electricity, RFI, and EMI and how to prevent them.
- ✓ Know the purpose of various power protection devices: surge protector, line conditioner, SPS, UPS, and modem isolator.
- ✓ Know what type of fire extinguishers are used with electronic devices.
- ✓ Be able to identify all motherboard, PCIe adapter, and power supply power connectors.
- ✓ The following communication and professionalism skills are part of the 220-801 exam: Provide proper documentation on the services provided.
- ✓ Be familiar with all the power options that can be set on a desktop and a mobile device.
Symbols
3 UTP cable, 735
4GB RAM, 214
5 UTP cable, 735
6 UTP cables, 735
6a UTP cables, 735
8-bit sound cards, 346
10BaseT, 741
10GBaseER Ethernet, 742
10GBaseLR Ethernet, 741
10GBaseLX4 Ethernet, 741
10GBaseSR Ethernet, 741
10GBaseT Ethernet, 742
16-bit
 sound cards, 347
 Windows XP, 576
32-bit
 video processors, 398
 Windows Vista/7, 578
 Windows XP, 576
40-pin cables (IDE), 260
56K point to point connections, 783
56Kbps modems, 701-702
64-bit
 video processors, 398
 Windows Vista/7, 578
100BaseT Ethernet, 741
802.11-based wireless networks, 764
1000BaseLX Ethernet, 741
1000BaseSX Ethernet, 741
1000BaseT Ethernet, 741

A
AAX (audible enhanced audio file) extension, 485
AC (alternating current), 134
 adverse power conditions, 154-155
AC circuit testers, 153
AC to DC power conversion, 141
Accelerated Graphics Port. See AGP
accelerated processing units. See APUs
accelerometers, 383
acceptable use security policies, 812
access
 attacks, 841
 physical
 locking computers, 816
 security, 812
 principle of least privilege, 828
 protecting
 auditing, 826
 authentication, 823
 authorization, 823
 files/folders, 826-827
 user IDs/passwords, 823-826
 remote
 Remote Assistance, 630-631
 Remote Desktop, 630-631, 687-689
 security policies, 812
access points. See APs
access time (memory), 216
accessibility
 Windows 7 Ease of Access, configuring, 650-653
 Windows XP, configuring, 648-649
Accessibility Options control panel, 521, 648-649
accessing
 Add or Remove Programs control panel, 605
 Administrator accounts (Windows XP), 474
 Advanced Boot Options, 610
 command prompts, 496, 504
 Event Viewer, 620
 MMC, 662
 Recovery Console, 495
 remote network devices, 514
 Setup program, 95
 shares, 780
 Task Manager, 619
 web cams on PCs, 359-360
 Windows 7 MMC, 666
 Windows Update, 596
accounts
 Administrator, accessing in Windows XP, 474
 email, hijacked, 834
 user, 608
ACPI (Advanced Configuration and Power Interface), 99, 147
 BIOS settings, 148-149
 configuring, 99
 operating states, 147-148
 Wake on LAN, 148
 Wake on Ring, 148
ACPI Function BIOS power setting, 148
ACR (Advanced Communications Riser) connectors, 76
activating Windows, 588
active Disk Management status state, 298
active heat sinks, 60
active listening skills, 3, 81-82
active matrix LCDs, 386
active scripting, 835
active terminators, 278
adapters
 configuring, 109
 defined, 8
 digital, 391
 flash memory, 226
 function, identifying, 8
 grounding problems, 120
 installing, 8
 mini PCI/PCIe, 74
 network, ipconfig command, 508
 non-video, power consumption, 152
 oldest, placement, 602
 PCIe, removing, 73
 PnP, 109
 removing, 133
 SATA, 273
 SCSI, 264
video, 397-398
 32-bit/64-bit processors, 398
 AGP, 152, 397
 display design considerations, 460
 GPUs, 397
 installing, 401
 memory, 399-400
 PCIe cards, 397
Add Hardware wizard, 602
Add or Remove Programs control panel, 605
Add Printer Wizard, 772
Add/Remove Hardware control panel, 521
Add/Remove Programs control panel, 521
Additional Options control panel, 530
Address Resolution Protocol (ARP), 776
addresses
 alternative IP, 766
 broadcast, finding, 751-752
 I/O, 106-107
IP
 alternative, 766
 APIPA, 766
 broadcast address, 749
 default gateways, 766-767
 DNS servers, 767
 host, 748
 IPv4, 747
 IPv6, 747
 network numbers, 748
 pinging, 774
 private ranges, 748
 statically assigning, 765-766
 subnet masks, 749-752
 two-network example, 748-749
 types, 747
 viewing, 773
MAC, 746
memory, 108
administrative shares, 826
Administrative Tools, 521, 657
Administrator accounts, 608
 Windows XP, accessing, 474
Administrator group, 825
Administrator logins (Windows XP), 580
Administrators, 825
Adobe Illustrator extension (AI), 485
ADSL (Asymmetrical DSL), 706
Advanced Boot Options menu, 610-611
Advanced Communications (ACR) connectors, 76
Advanced Configuration and Power Interface. See ACPI
Advanced Encryption Standard. See AES
Advanced Host Controller Interface. See AHCI
advanced programmable interrupt controllers. See APICs
Advanced tab (Internet Explorer Internet Options), 712
adverse power conditions, 154-155
adware, 840
Aero (Windows), 577
aerosol can disposal, 133
AES (Advanced Encryption Standard), 846
After Power Failure BIOS power setting, 149
AGP (Accelerated Graphics Port), 69
 bus speed, 51
 ports, 390
 slots, 69-71
 video adapters, power consumption, 152
AHCI (Advanced Host Controller Interface) mode, 282
AI (Adobe Illustrator) extension, 485
amplification (speakers), 350-352
amps (amperes), 135
AMR (Audio/Modem Riser) connectors, 76
analog phone lines versus digital phone lines, 701
Adobe Illustrator extension (AI), 485
Add Hardware wizard, 602
Add or Remove Programs control panel, 605
Add Printer Wizard, 772
Add/Remove Hardware control panel, 521
Add/Remove Programs control panel, 521
Additional Options control panel, 530
Address Resolution Protocol (ARP), 776
addresses
 alternative IP, 766
 broadcast, finding, 751-752
 I/O, 106-107
IP
 alternative, 766
 APIPA, 766
 broadcast address, 749
 default gateways, 766-767
 DNS servers, 767
 host, 748
 IPv4, 747
 IPv6, 747
 network numbers, 748
 pinging, 774
 private ranges, 748
 statically assigning, 765-766
 subnet masks, 749-752
 two-network example, 748-749
 types, 747
 viewing, 773
MAC, 746
memory, 108
administrative shares, 826
Administrative Tools, 521, 657
Administrator accounts, 608
 Windows XP, accessing, 474
Administrator group, 825
Administrator logins (Windows XP), 580
Administrators, 825
Adobe Illustrator extension (AI), 485
ADSL (Asymmetrical DSL), 706
Advanced Boot Options menu, 610-611
Advanced Communications (ACR) connectors, 76
Advanced Configuration and Power Interface. See ACPI
Advanced Encryption Standard. See AES
Advanced Host Controller Interface. See AHCI
advanced programmable interrupt controllers. See APICs
Advanced tab (Internet Explorer Internet Options), 712
adverse power conditions, 154-155
adware, 840
Aero (Windows), 577
aerosol can disposal, 133
AES (Advanced Encryption Standard), 846
After Power Failure BIOS power setting, 149
AGP (Accelerated Graphics Port), 69
 bus speed, 51
 ports, 390
 slots, 69-71
 video adapters, power consumption, 152
AHCI (Advanced Host Controller Interface) mode, 282
AI (Adobe Illustrator) extension, 485
amplification (speakers), 350-352
amps (amperes), 135
AMR (Audio/Modem Riser) connectors, 76
analog phone lines versus digital phone lines, 701
Android devices
apps, 482, 784-785
Bluetooth, configuring, 16
e-mail, configuring, 786
Gaming, 484
geo-tracking, 483
GPS app, 483
home screens, 480
lock screen, 482
multitasking gestures/screen
rotation settings, 386
network connectivity, 784
notification area, 481
operating system interaction,
481-482
operating system, recovering,
493
sound settings, 349
storage, 786
system bar, 481
video ports, 22
antennas, 760, 764
attenuation, 761
dipole, 764
directional, 761
gain, 762
laptops, wireless, 760
MIMO, 763
omnidirectional, 760
parabolic, 763
signal strength, 762
site survey, 762
transmission interference, 762
types, 763
wireless locator devices, 763
Yagi, 763
antistatic bags, 121
antistatic wrist straps, 120
anti-virus programs
running, 587
security policies, 812
APICs (advanced programmable
interrupt controllers), 102
APIPA (Automatic Private IP
Addressing), 766
APIs (Application Programming
Interfaces), 348
appearance, web browsers, 712
Appearance and Personalization
control panel, 530
Apple iOS devices
apps, 482, 784-785
Bluetooth, configuring, 16
e-mail, configuring, 787
Gaming, 484
geo-tracking, 483
GPS app, 483
home screens, 480
lock screen, 482
multitasking gestures/screen
rotation settings, 386
network connectivity, 784
notification area, 481
operating system interaction,
481-482
operating system, recovering,
493
sound settings, 349
storage, 786
synchronizing with iTunes, 786
system bar, 481
video ports, 22
web cams, accessing, 360
application layer
OSI model, 745
TCP/IP model, 746, 779
application logs, 620
Application Programming Interfaces. See APIs
Applications and Services logs, 621
Applications tab (Task Manager),
619
Apply buttons, Windows dialog
boxes, 479
apps, 482. See also programs
deleting, 785
folders, creating, 785
GPS, 483
installing, 784
moving, 785
stopping, 785
synchronizing with iTunes, 786
APs (access points), 754
channel IDs, 757-759
connectivity, 755-756
D-Link, 754
infrastructure, 755
installing, 771
passwords/SSIDs, 757, 847-848
PoE, 754
repeater, 760
router, 771
APUs (accelerated processing units),
49
arithmetic logic unit. See ALU
ARP (Address Resolution Protocol),
776
ARP spoofing, 841
artifacts, 404
aspect ratios, LCDs, 387
ASR (Automated System Recovery),
616
Asymmetrical DSL (ADSL), 706
asynchronous data transfers, 30
Asynchronous Transfer Mode
(ATM), 783
asynchronous transmissions,
697-698
ATA (AT Attachment), 259
ATA-1 Standard, 260
ATA-5 Standard, 260
ATAPI (AT Attachment Packet Interface), 259
Athlon/Mobile AMD processors, 50
ATM (Asynchronous Transfer
Mode), 783
Atom Intel processors, 49
attenuation, 761
attitude (technicians), 360-361
attrib command, 500-501
ATX motherboards, 78
ATX power supplies, 138-139
Audible enhanced audio file (AAX)
extension, 485
audio. See also sound
high-definition controllers,
configuring, 99
ports, 29, 37
Audio/Modem Riser (AMR) connec-
tors, 76
audio/video editing PCs, 451
auditing, 826
authentication, 823
biometrics, 815-816
Kerberos protocol, 823
multifactor, 815
<table>
<thead>
<tr>
<th>Page Dimensions: 720.0x864.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>[123x778]914</td>
</tr>
<tr>
<td>[0x0]authentication</td>
</tr>
<tr>
<td>open, 844</td>
</tr>
<tr>
<td>password guidelines, 823</td>
</tr>
<tr>
<td>shared key, 844</td>
</tr>
<tr>
<td>single sign-on, 824</td>
</tr>
<tr>
<td>two-factor, 814</td>
</tr>
<tr>
<td>user IDs/passwords, 824-826</td>
</tr>
<tr>
<td>wireless networks, 844-845</td>
</tr>
<tr>
<td>authenticators, 845</td>
</tr>
<tr>
<td>authorization, 823</td>
</tr>
<tr>
<td>Auto-Detect feature (BIOS), hard drives, 282</td>
</tr>
<tr>
<td>Automated System Recovery. See ASR</td>
</tr>
<tr>
<td>automatic booting after crashes, 611</td>
</tr>
<tr>
<td>automatic disk checking, 503</td>
</tr>
<tr>
<td>Automatic Private IP Addressing. See APIPA</td>
</tr>
<tr>
<td>Automatic Update settings, customizing, 597</td>
</tr>
<tr>
<td>automatic updates, configuring, 646</td>
</tr>
<tr>
<td>Automatic Updates (Windows), 595-596</td>
</tr>
<tr>
<td>AutoPlay/AutoRun, disabling, 819</td>
</tr>
<tr>
<td>auto-switching power supplies, 151</td>
</tr>
<tr>
<td>auxiliary fans</td>
</tr>
<tr>
<td>installing, 60, 143</td>
</tr>
<tr>
<td>power consumption, 152</td>
</tr>
<tr>
<td>AV hard drives, 452</td>
</tr>
<tr>
<td>Available Physical Memory field (Task Manager Performance tab), 223</td>
</tr>
<tr>
<td>backups</td>
</tr>
<tr>
<td>differential, 302</td>
</tr>
<tr>
<td>full, 302</td>
</tr>
<tr>
<td>hard drives, 301-303</td>
</tr>
<tr>
<td>incremental, 302</td>
</tr>
<tr>
<td>ntbackup command, 511</td>
</tr>
<tr>
<td>wbackup command, 515</td>
</tr>
<tr>
<td>bandwidth, 705</td>
</tr>
<tr>
<td>bus, comparisons, 72</td>
</tr>
<tr>
<td>cable modems, 705</td>
</tr>
<tr>
<td>DSL, 707</td>
</tr>
<tr>
<td>networks, 776</td>
</tr>
<tr>
<td>barcode readers, 354</td>
</tr>
<tr>
<td>basic disks, 290</td>
</tr>
<tr>
<td>basic input/output system. See BIOS</td>
</tr>
<tr>
<td>basic storage, 290</td>
</tr>
<tr>
<td>BAT (batch file) extension, 485</td>
</tr>
<tr>
<td>batteries</td>
</tr>
<tr>
<td>CMOS, 100</td>
</tr>
<tr>
<td>digital cameras, 358</td>
</tr>
<tr>
<td>disposal, 162</td>
</tr>
<tr>
<td>fuel cells, 145</td>
</tr>
<tr>
<td>Li-ion, 145</td>
</tr>
<tr>
<td>Li-ion polymer, 145</td>
</tr>
<tr>
<td>lithium regulations, 144</td>
</tr>
<tr>
<td>mobile devices, 144-146, 152-153</td>
</tr>
<tr>
<td>motherboard, 101-102</td>
</tr>
<tr>
<td>NiCad, 145</td>
</tr>
<tr>
<td>NiMH, 145</td>
</tr>
<tr>
<td>recycling programs, 102</td>
</tr>
<tr>
<td>UPSs, 159</td>
</tr>
<tr>
<td>zinc-air, 145</td>
</tr>
<tr>
<td>baud, 698</td>
</tr>
<tr>
<td>bcd file, 612</td>
</tr>
<tr>
<td>BCD store, configuring, 501</td>
</tr>
<tr>
<td>bcedit command, 501, 592</td>
</tr>
<tr>
<td>BDs, cleaning, 133</td>
</tr>
<tr>
<td>BEDO (burst EDO), 205</td>
</tr>
<tr>
<td>Berg connectors, 140</td>
</tr>
<tr>
<td>binary prefixes (processors), 46</td>
</tr>
<tr>
<td>biometrics, 815-816</td>
</tr>
<tr>
<td>BIOS (basic input/output system), 6, 94</td>
</tr>
<tr>
<td>ACPI settings, 148-149</td>
</tr>
<tr>
<td>adapters, configuring, 109</td>
</tr>
<tr>
<td>booting, 94-95, 185</td>
</tr>
<tr>
<td>CMOS, 100, 109</td>
</tr>
<tr>
<td>configuring, 98-100</td>
</tr>
<tr>
<td>default settings, 99</td>
</tr>
<tr>
<td>energy-efficiency settings, 396</td>
</tr>
<tr>
<td>exit options, 100</td>
</tr>
<tr>
<td>flash, 96-98</td>
</tr>
<tr>
<td>functions, 94</td>
</tr>
<tr>
<td>hard drive configuration, 282</td>
</tr>
<tr>
<td>memory, configuring, 219</td>
</tr>
<tr>
<td>motherboard, 187-188</td>
</tr>
<tr>
<td>POST, 94</td>
</tr>
<tr>
<td>AMI audio beeps, 185</td>
</tr>
<tr>
<td>memory, troubleshooting, 226</td>
</tr>
<tr>
<td>memory installation error codes, 220</td>
</tr>
<tr>
<td>multiple errors, 187</td>
</tr>
<tr>
<td>Phoenix audio beeps, 187</td>
</tr>
<tr>
<td>written error messages, 185-187</td>
</tr>
<tr>
<td>processor installation settings, 55</td>
</tr>
<tr>
<td>RAID configuration settings, 293</td>
</tr>
<tr>
<td>recovery, 96</td>
</tr>
<tr>
<td>security options, 100, 817</td>
</tr>
<tr>
<td>Setup program, 95</td>
</tr>
<tr>
<td>SSDs, recognizing, 275</td>
</tr>
<tr>
<td>UEFI, 96-97</td>
</tr>
<tr>
<td>update compatibility, 585</td>
</tr>
<tr>
<td>upgrading, 96</td>
</tr>
<tr>
<td>virtualization, enabling, 593</td>
</tr>
<tr>
<td>viruses, 586</td>
</tr>
<tr>
<td>BIOS ROM checksum error—System halted message, 185</td>
</tr>
<tr>
<td>bit depth, scanners, 357</td>
</tr>
<tr>
<td>BitLocker drive encryption, 302, 818</td>
</tr>
<tr>
<td>bitmap (BMP) extension, 485</td>
</tr>
<tr>
<td>bits, 46</td>
</tr>
<tr>
<td>bits per second (bps), 698</td>
</tr>
<tr>
<td>blackouts (power), 155</td>
</tr>
<tr>
<td>Bloom, Benjamin, 450</td>
</tr>
<tr>
<td>Bloom’s Taxonomy, 450</td>
</tr>
<tr>
<td>blue screen of death (BSoD), 403</td>
</tr>
<tr>
<td>Bluetooth, 16-17, 753</td>
</tr>
<tr>
<td>Blu-ray discs. See also ODVs</td>
</tr>
<tr>
<td>cleaning, 342-343</td>
</tr>
<tr>
<td>handling, 342</td>
</tr>
</tbody>
</table>

B

back side bus, 51
backbone (networks), 776
backdoor attacks, 841
backing up
 data before installing Windows, 585
 files, xcopy command, 515
 system state, 598
 Windows 7, 646
 Windows files/folders, 488
 Windows registry, 492, 597
 Windows XP System State, 645
backlights, 14, 381
backup operators, 825
Backup utility, 597-598
Cables

- Burst EDO (BEDO), 205
- Bus, 47
- AGP speed, 51
- Back side, 51
- Bandwidth comparisons, 72
- Dual independent (DIB), 54
- External data, 47
- Front side, 51
- HyperTransport, 55
- Internal data, 47
- PCI speed, 51
- PCIe speed, 51
- PCI-X bus, 68
- Bus-powered hubs, 24
- Bus speed, 51
- Bus topology, 734
- Business Software Alliance (BSA), 843
- Buttons (taskbar), 538
- Buying memory, 216-217
- Bytes, 46

CAB (cabinet file) extension, 485

Cable modems, 704-706
- Troubleshooting, 708-709

Cables

- Coaxial, 736-737
- Connecting, 253
- Crossover, 735
- Floppy drives, 252
- IDE 40-pin, 260
- IEEE 1394, 30
- Installing, 126
- Modems, 696
- Motherboards, 126-128
- Network
 - Copper, 734-737
 - Crossover CAT 5 UTP, creating, 795-797
 - Fiber-optic, 737-738
 - Installing, 736
 - Labeling, 734
 - Ladder racks, 739
 - Protecting, 736-739
 - RJ-11 connectors, 736
 - RJ-45 connectors, 736

Index
straight-through CAT 5 UTP, creating, 792-794
tools, 740
twisted-pair, 734
wiring standards, 735
PATA, 260
PATA IDE, 267-269
pin 1, 125
power supplies, 454
projectors, 394
reassembling, 132
removing, 124-125
SATA, 262, 271
SCSI, 279
serial, 697
sound designs, 458
straight through, 735
twisted-pair, 734-736
USB, 23-24
video, 391-392
cache memory, 51-52
adding, 220
Cached Physical Memory field (Task Manager Performance tab), 223
caches, creating, 304
calibrating batteries, mobile devices, 145
cameras. See digital cameras
Cancel buttons, Windows dialog boxes, 479
capacities (memory), 209
capacitive keyboards, 13
capacitive touch screens, 383-384
capacitors, 135
capitalization, command prompts, 496
CardBus, 75
cards
CompactFlash, 226
microSD, 226
miniSD, 226
NICs. See NICs
POST, 187
SD, 226
smart, 813
sound, 345-348
TV tuner, 398
video capture, 398
xD, 226
Carrier Sense Multiple Access/ Collision Avoidance (CSMA/CA), 764
Carrier Sense Multiple Access/ Collision Detection (CSMA/CD), 741
cartridges (ink)
inkjet printers, 410
recycling, 417
refilling, 417-418
toner
defined, 414
refilling, 418
spills, 416
troubleshooting, 429
cases
cleaning, 132
design components, 455-456
removing, 124
CAT 5 cables, 735
cathode ray tubes. See CRTs
CCFL (cold cathode fluorescent lamp), 381
cd command, 498, 502
CD drives, 334
CDFS (Compact Disk File System), 284
CDMA (Code Division Multiple Access), 776
CDs (compact discs), 334. See also ODDS
burning, 337
cleaning, 133, 342-343
handling, 342
labeling, 338
sound, enabling, 343-345
writeable, 335
Celeron/Mobile Intel processors, 49
center frequencies, 758
central processing unit (CPU). See processors
centralized data storage, 303
Centrino Intel processors, 49
CERT (U.S. computer emergency readiness team), 843
certified W-USB, 26
CF (Compact Flash), 226, 358
channel IDs, access points, 757-759
characters, filenames/folder names, 484
charging laser printers, 412
checkboxes in Windows dialog boxes, 480
checking disks, 503
child exploitation, reporting, 843
chipsets
defined, 76
design components, 453-454
function, 77
ICH, 77
locating, 77
manufacturers, 76
MCH, 77
Z277, 77
chkdsk command, 300, 503
chkntfs command, 503
choosing
cases, 455
chipsets, 453
memory, 453
power supplies, 454-455
processors, 453
speakers, 351
cipher command, 503-504
CL (column address strobe [CAS] latency), 216-217
CL ratings, memory, 216-217
clamping speed, 156
clamping voltage, 156
classes (IPv4 addresses), 747
clean installations
Windows, 580-582
Windows XP, 636-637
cleaning
aerosol can disposal, 133
cases, 132
contacts, 133
dirt removal, 133
discs, 342-343
displays, 395
floppy drives, 132, 252
inside of computers, 132
keyboards, 18, 132
laser lens (ODDs), 343
laser printers, 413-414
LCD monitors, 133
mice, 18
MSDs, 133
optical lens, 133
printers, 420-421
complementary metal-oxide semiconductor 917

rubber rollers, 133
scanners, 357
clear text email, 834
clearing commands, 504
Event Viewer, 622
client/server network. See server-based LANs
client-side DNS, 767
clients, FTP, 806
clips (fans/heat sinks), 60
Clock, Language, and Region control panel, 530
clock speed, 51
clocking, 53
Close buttons in Windows dialog boxes, 479
closing command prompts, 506
cloud storage, 251, 304, 786
cls command, 504
clusters, 284
FAT16 partitions, 285
FAT32 partitions, 286
lost, locating, 300
NTFS, 286
size, 294
cmd command, 504
CMOS (complementary metal-oxide semiconductor), 100
error messages, 185-186
ESCD, 109
CNR (Communications Network Riser) connectors, 76
coaxial cables, 736-737
Code Division Multiple Access (CDMA), 776
cold boots, 94
cold cathode fluorescent lamp (CCFL), 381
color inkjet printers, 410
column address strobe (CAS) latency (CL ratings), 216-217
COM (command file) extension, 485
command prompt environments, 473
command prompt tool, 617
command prompts accessing, 496, 504
attributes, viewing, 500
capitalization, 496
closing, 506
commands. See commands directories, 496-498
drives, mapping, 780
external commands, 496
files, copying, 499
internal commands, 495
operation requires elevation message, 516
root directories, 496
Safe Mode with Command Prompt boot option, 610
viewing, 496
commands
attrib, 500-501
bcdedit, 501, 592
benefits, 500
bootcfg, 502
bootree, 502
cd, 498, 502
chkdsk, 503
chkntfs, 503
cipher, 503-504
clearing, 504
cls, 504
cmd, 504
convert, 583
copy, 499, 504
defrag, 504
del, 505
dir, 505
disable, 505
diskpart, 505
dxdiag, 506
enable, 506
exit, 506
expand, 506
explorer, 507
external, 496
fdisk, 507
fixboot, 507
fixmbr, 507
format, 500, 507
gpresult, 507
help, 508
internal, 495
ipconfig, 508, 773
lists, 508
logon, 508
map, 509
md, 509
more, 509
msconfig, 509
msinfo32, 509
mstsc, 509
netstat, 510
net use, 510
netstat, 510
notepad, 510
nslookup, 510, 774
ntbackup, 511
ping, 511, 772-774
rd, 511
Recovery Console, 569
regsvr32, 512
ren, 512
robocopy, 512
services.msc, 623
set, 513
sfc, 513
shutdown, 513
switches, 500
systeminfo, 514
systemroot, 514
taskkill, 514
tasklist, 514
telnet, 514
tracert, 515, 774
type, 498, 515
wbadmin, 515
xcopy, 515
Commit field (Task Manager Performance tab), 224
Communications Network Riser (CNR) connectors, 76
Compact Disk File System (CDFS), 284
Compact Flash (CF). See CF
compartment covers (laptops), removing, 130
compatibility mode, 582
Compatibility mode tool (Windows Vitsa/7), 224
complementary metal-oxide semiconductor. See CMOS
Complete PC Restore tool, 617

Component/RGB video analog ports, 395

Component Services snap-in, 606

components (PCs)
input devices, 6
KVM switches, 7
laptops, 9-10
memory types, 10
motherboards, 7
adapters, 8
connectors, 12
expansion slots, 8
integrated, 11, 34-35
locating, 7
mouse/keyboard ports, 12
ports, 11
riser boards, 8
optical drives, 7
output devices, 7
power supplies, 7
storage devices, 7
Windows Vista/7, installing/verifying, 659-662
Windows XP
installing, 658-659
removing, 658

composite video ports, 395
compressed file (ZIP) extension, 485
compressing files/folders, 488-489, 549
CompTIA A+ certification, 2
computer cages, 814
Computer icon, 475
Computer Management console. See MMC
Computer Management tool, Services snap-in, 623
computers
locking, 816
naming, 765
viewing through networks, 823
conditioning rollers (laser printers), 412-414
conferencing features, display design considerations, 459
configuring
accessibility
Windows 7 Ease of Access, 650-653
Windows XP, 648-649
ACPI, 99
adapters, 109
automatic updates, 646
BCD store, 501
BIOS, 98-100
Bluetooth, 16
booting options, 98
date/time, 98
displays
image quality, 386
Windows XP, 522
e-mail, mobile devices, 786-787
executable code prevention, 99
file/folder attributes, 488
hard drive encryption, 99
hardware monitor, 99
high-definition audio controllers, 99
home pages (web browsers), 712
Hyper-Threading, 99
IDE devices, 99
Internet Explorer, 723-724
intrusion detection, 99
IRQs with Device Manager, 102-104
jumpers, 94
keyboards, Windows XP, 647
LANs, 730-731
lojack, 99
memory, 219
mice, 647-648
microphones, 348
mobile device networks, 784
motherboards, 94
multiple displays, 392
multitasking gestures, 386
network printers, 771-772
networks, Windows 7, 797-800
number lock key, 98
parallel SCSI, 276
passwords, 98
PCI slots, 99
PCIe slots, 99
peripherals, 99
printers
default, 422
feed options, 417
paper sizes, 417
processors, 98
projectors, laptops, 394
RAID, 291
resolution, 386
restore points, 856-857
SATA, 99
screen rotation, 386
SCSI IDs
electrical signals/terminators, 277
priority levels, 276
software, 277
serial ports/devices, 698-700
speakers, 650
Start menu (Windows Vista/7)
default icons, 554
icon size, 553
programs, 553-555
Start menu (Windows XP)
default icons, 552
icon size, 551
programs, 551-553
startup programs, 615
storage devices, 266
System Restore, 653-654
systems, 450-453
TPM, 99
UAC, 533
USB options, 98
video, 98
virtual machines, 224
virtual memory, 221, 304
virtualization, 99
virus protection, 98
VMware Workstation virtual machines, 642
VPNs, 842
Windows 7 startup, 677-679
Windows taskbar buttons, 479
wireless networks, 804
security, 869-870
Windows Vista/7, 847
wireless NICs, 768
connecting cables, 253
Connections tab (Internet Explorer Internet Options), 712
connectivity
APs, multiple devices, 756
cable modems, 704
cables, determining direction, 127
connectors, 12
direct cable, 718-719
docking stations, 35
DSL modems, 707
Internet
dial-up, installing, 801-802
overview, 696
mobile device networks, 784
mobile Internet, 709-710
modems, 696
multiple displays, 393
networks, 783
troubleshooting, 772-773
ODDs with PATA connectors, 340
PATA, 269
port replicators, 36
ports
audio, 37
defined, 11
eSATA, 37
eSATAp, 37
Ethernet, 33, 37
game, 37
IEEE 1394, 36
male/female, 11
MIDI, 37
modem, 34, 37
mouse/keyboard, 12
network, 33
parallel, 36
PS/2 keyboard, 36
PS/2 mouse, 36
S-Video, 37
S/PDIF, 37
serial, 36
processors, 54-55
projectors, 394
remote network devices, testing, 511
SATA, 272
scanners, 355
sound designs, 458
speakers, 351
storage device design considerations, 457
USB ports, 36
3.0, 23
cabling rules, 24
converters, 25
defined, 22
devices supported, 22
hubs, 24
installing extra, 26
installing USB devices, 25
maximum cable length, 23
mini, 25
on-the-go, 26
power, 24
removing USB devices, 25, 347
speeds, 23
troubleshooting, 27-28
upstream/downstream, 23
versions, 23
wireless, 26
video ports, 19, 36-37
Android devices, 22
Apple iOS devices, 22
DisplayPorts, 22
DVI, 19-20
HDMI, 20
laptops, 22
projectors, 21
RCA jacks, 21
S-Video, 19
Thunderbolt, 22
VGA, 19
virtualization, 594
VPNs, 843
web browsers, 712
connectors
ATX power supplies, 138-139
cable pins, matching, 126
disabling, 95
fiber-optic cables, 737
motherboard front panel, 128
motherboard IDE, 267
motherboards, 76, 126
PATA, ODD connectivity, 340
PATA/SATA motherboard, 259
power supplies, 140
reassembling, 132
RJ-11, 736
RJ-45, 736
SATA, 261-262
solder joints, 127
contacts, cleaning, 133
Content tab (Internet Explorer Internet Options), 712
troubleshooting, 772-773
context menus, Windows desktop, 480
continuity checks, 135-137
contrast ratios
display design considerations, 459
LCDs, 387
Control Panel, 478
Control Panel assembly (laser printers), 414
control panels
Accessibility Options, 648-649
Bluetooth Devices, 753
defined, 599
Printers and Other Hardware, 647-648
unique, 599
views, 599
Windows Vista/7, 527, 530
Windows XP, 521
controllers, APICs, 102
controlling
content in web browsers, 712
sound, 349, 649-650
corrections, 703
convert command, 583
CONVERT program, 284
converters
IEEE 1394, 33
USB, 25
corrections
file systems, 583
partitions, 284
cookies, controlling, 835
cooling
Li-ion batteries, 146
power supplies, 143
reverse flow, 143
cooling processors, 59
air vents, 143
airflow, 60
auxiliary fans, installing, 60, 143
cooling processors

crossover CAT 5 UTP cable, creating, 795-797
CRT (cathode ray tube) monitors, 19
CRTs (cathode ray tubes), 381
 cleaning, 396
 removing, 396
Crucial website, 216
CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance), 764
CSMA/CD (Carrier Sense Multiple Access/Collision Detection), 741
current, measuring, 135
cursors, ghost, 14
customer trust, building, 851
cylinders (hard drives), 255
data
 backing up, 301-303, 585
 security, 819-821
data bits, 699
data circuit-terminating equipment. See DCE
Data Execution Prevention. See DEP
data link layer (OSI model), 745
data migration, 582
data terminal equipment. See DTE
date/time, configuring, 98
Date/Time control panel, 521
DBR (DOS boot record), 294
DC (direct current), 134
 AC conversion, 141
 voltage distribution, 142
DC power plugs, removing from laptops, 131
DCE (data circuit-terminating equipment), 700
DCE signal connections, 700
DDoS attacks, 842
DDR (double data rate), 205
DDR2, 205-206
DDR3, 205-206
DDR3L, 205
debugging mode, 611
defrag command, 504
defragmenting
 with Disk Defragmenter tool, 609
default folders, 486
default gateways, 766-767
default printers, configuring, 422
defrag command, 504
degauss, 385
del command, 505
delay Prior to Thermal BIOS power setting, 148
deleter. See removing
Dell Webcam Control, 359
demilitarized zones. See DMZs
denial of Service. See DoS
density control blade (laser printers), 412-414
deep S4/S5 BIOS power setting, 149
design components
 cases, 455-456
 chipsets, 453
 computer systems, 450-453
 displays, 459-460
 memory, 453
 mobile devices, 460-461
 motherboards, 453-454
 overview, 450
 power supplies, 454-455
 processors, 453
 sound, 458
 storage devices, 456-458
desktop
 Aero, 577
 My Computer icon, 523
 notification update icon, 596
 Quick Launch toolbar, 539
 Recycle Bin
 Windows Vista/7, 534
 Windows XP, 524
 shortcuts, creating, 525
 start menu
 Administrative tools, adding/removing, 657
 customizing, 606
directories

Windows Vista/7, 526-527, 553-555
Windows XP, 519-520, 551-553
system tray icons, customizing, 603
taskbar options, 538
Windows, 474
common icons, 475
context menus, 480
dialog boxes, 478-480
double-clicking icons, 476
icons, 474
notification area, 478
organizing, 476
Recycle Bin, 476-477
shortcuts, 475-476
shut down options, 477
Start button, 476-477
taskbar, 476-479
wallpaper, 476
desktop computers, laptop components compared, 460
destroying hard drives, 818
developing cylinders (laser printers), 412-414
device driver (DRV) extension, 485
device drivers
defined, 5, 600
digital signatures, 601
disabling, 656
handling, 602
installing, 601-603, 655
new hardware, finding, 600
rolling back, 602, 655
signatures, disabling, 611
upgrading, 655
Device Manager, 602, 608
derivers, 585
IDE, configuring, 99
IEEE 1394
connecting, 31-32
troubleshooting, 32-33
input
defined, 6
keyboards. See keyboards
mice. See mice
ports, 12
touch/multitouch, 14
wireless, 15-16
integrated sound adapters, 348
KVM switches, 7
masters versus slaves, 267
network security settings, 848
onboard configuration options, 98
OSI model layers, 746
output, defined, 7
PATA, storage device design considerations, 458
physical security, 813-817
remote network
accessing, 514
attaching, 510
connectivity, testing, 511
serial, 697-700
shutdown problems, 624
storage. See storage devices
TCP/IP model layers, 746
uninstalling/disabling, 602
USB
configuring, 98
installing, 25
removing, 25, 347
troubleshooting, 27-28
video output, 380-384
wireless broadband, 770
wireless locators, 763
DHCP, IP addressing, 766
diagnostic displays (motherboards), 187-188
Diagnostic startup radio button (System Configuration utility), 618
dial-up Internet connection, installing, 801-802
dial-up networks, 696
DIB (dual independent bus), 54
differential backups, 302
files/folders, 497
digital adapters, 489
digital cameras, 358-360
Digital Light Processing. See DLP
digital modems, 702
digital phone lines versus analog phone lines, 701
digital signatures, device drivers, 601
digital subscriber line. See DSL
digital video recorders (DVRs), 452
digital visual interface. See DVI
ports
DIMMs (dual in-line memory modules), 10, 203
DDR2/DDR3, 206
installing, 219
models, listing of, 206
removing, 218
small-outline (SO-DIMMs), 207, 217
DIP (dual in-line package) chips, 10, 203
dipole antennas, 764
dir command, 505
direct cable connections (Windows XP), 718-719
Direct Connect (AMD), 55
direct current (DC), 134
directional antennas, 761
directories, 496. See also folders
attributes, viewing, 500
commands. See commands
copying, 515
deleting, 511
filenames, 497
files
copying, 499, 504
deleting, 505
listing, 505
folders, creating, 509
navigating, 498
renaming, 512
root, 496
setting as root, 514
structure, example, 496-497
subdirectories, 497
DirectX, 342
 APIs, 348
diagnostics, 506
DirectX Diagnostic Tool (Windows), 342
dirt removal, 132-133
Disable automatic restart on system failure option, 611
disable command, 505
disabling
 AutoRun/AutoPlay, 819
device drivers, 656
driver signatures, 611
ports/connectors, 95
SSID broadcasting, 848
startup programs, 615, 670
disassembly
 cables, 124-128
case removal, 124
hard drives, 128
laptops, 130-131
motherboards, 129-130
power supplies, 153
preparations, 122
safety, 120-122
solid-state drives, 128
tools, 122-124
disk boot failure message, 296
disk caches, creating, 304
Disk Cleanup program, 300
Disk Defragmenter tool, 609
Disk Management, 283, 290-291, 609
 status states, 298-299
Windows 7, 669
Windows XP, 665
diskpart command, 283, 505
disks
 checking, 503
 floppy, 252
formatting, 507
Display control panel, 521
DisplayPorts, 22, 391
displays
 cleaning, 395
 CRTs, 381, 396
 Degauss, 385
design components, 459-460
disposal, 403
DLP, 381
energy efficiency, 396
horizontal scanning frequency, 385
image quality, configuring, 386
interlacing, 385
laptops, 388-389, 402-404
LCDs, 381, 386-389, 396
LEDs, 381
mobile devices, multitasking gestures/screen rotation settings, 386
multiple, 392-393
multi-scan, 385
OLEDs, 381
pixels, 385-387
plasma, 381
ports/cables, 390-392
preventive maintenance, 395-396
privacy, 397
refresh rate, 385
resolution, 385-388
touch screen, 383-384
troubleshooting, 402-404
vertical scan rate, 385
Windows Vista/7 settings, 531
Windows XP settings, 522
disposal, 162
CRTs, 381
displays, 403
Distributed Denial of Service. See DDoS
DL (digital light processing), 381
D-Link access point, 754
DDoS attacks, 842
DDL (digital layer technology), 335
D-Link access point, 754
Distributed Denial of Service. See DDoS
DL (digital light processing), 381
DMZs (demilitarized zones), 837
DNS (Domain Name System), 778
DOS boot record. See DBR
DPI (dots per inch), 409-410
Doze Mode BIOS power setting, 149
Dr. Watson utility, 620
DRAM (dynamic RAM), 203
drive buffers, storage device design considerations, 458
driver.cab file, 600
drivers. See also device drivers
 disabling, 505
 enabling, 506
 listing, 508
 print, 424
 software, troubleshooting, 402
 Windows installations, 585
drives
 destroying, 818
 floppy, See floppy drives
 hard. See hard drives
 letters, 484
 logical, 287
 mapping to network shares, 780
ODDs. See ODDS
PATA, installing, 266-270
removable, 303
SATA, installing, 271-274
SSDs. See SSDs
tape, 303
USB flash, 227
drop-down menus, Windows dialog boxes, 480
drums (laser printers), 414
DRV (device driver) extension, 485
D-shell connectors, 12
DSL (digital subscriber line), 706, 783
DSL modems, 706-709
DSL Reports website, 707
DTE (data terminal equipment), 700
DTE signal connections, 700
dual-booting Windows, 592-593
dual-channel memory, 212-214
dual-core processors, 55
dual independent bus (DIB), 54
dual in-line memory modules. See DIMMs
dual in-line package (DIP) chips, 10, 203
dual-layer technology (DL), 335
dual link DVI connectors, 20
dual-rail power supplies, 151
dual-voltage memory, 217
DUN (Dial-up Network) utility, 801
duplexing assemblies (laser printers), 414
DVD drives, 334
DVDs (digital video discs), 334. See also ODDS
 burning, 337
cleaning, 133, 342-343
decoders, 342
handling, 342
labeling, 338
region codes, 337
sound, enabling, 343-345
writeable, 335
DVI ports, 19-20, 391
DVI-A connectors, 20
DVI-D connectors, 20
DVI-I connectors, 20
DVI-to-HDMI cables, 392
DVRs (digital video recorders), 452
dxdiag command, 506
dye sublimation printers, 410
Dynamic Disk Management status state, 298
dynamic disks, 290-291
dynamic link libraries. See DLLs
dynamic RAM. See DRAM
dynamic storage, 290
EAP (Extensible Authentication Protocol), 845
Ease of Access, configuring, 650-653
Easy Transfer program, 582
EBs (exabytes), 46
ECC (error correcting code), 208
ECP (electronic control package), 414
editing Windows registry, 491-492
EDO (extended data out), 205
effective permissions, 832
efficiency
displays, 396
system design components, 453
EFS (Encrypting File System), 821
EIDE (Enhanced IDE), 257
electricity
AC/DC, 134
blackouts, 155
brownouts, 155
capacitors, 135
continuity checks, 136-137
current, measuring, 135
fires, 161
line conditioners, 157
phone line isolators, 161
power consumption, 151-152
power, measuring, 135
power supplies, 137
AC voltage, 137
auto-switching, 151
cables, 454
comparing, 147
connectors, 140
converting AC to DC, 141
cooling function, 143
DC voltage distribution, 142
design components, 454-455
disassembly, 153
dual-rail, 151
fixed input, 151
form factors, 138-139
functions, 141
mobile devices, 152
physical sizes, 152
power good signals, 139
problem symptoms, 152-153
standby, 160
switching, 137
testers, 144
triple-rail, 151
uninterruptible, 158-159
upgrading/replacing, 151-152
voltages, 143
watts, 151
resistance, 135
sags, 155
spikes, 155
standby power, 134
surge protection, surge protectors, 156-157
surge protectors, 155-157
surgés, 155
troubleshooting, 153-154
grounding problems, 154
overvoltage, 154-155
power good signals, 154
problem sources, finding, 153
undervoltage, 155
wall outlets, testing, 153
voltage, 134-135
volts, 134
electromagnetic interference. See EMI
electronic control package (ECP), 414
electronic key cards, 813
electronics donation and recycling website, 381
electrostatic discharge. See ESD
e-mail, 782
forwarding, 783
mobile devices
 configuring, 786-787
security, 834
security policies, 812
servers, 782
emergency procedures (security policies), 812
EMI (electromagnetic interference), 122
emptying Recycle Bin, 477
Enable Boot Logging, 611
enable command, 506
Enable low resolution video, 610
Enable VGA Mode, 610 enabling
Remote Desktop, 631
virtualization, 593
encapsulated postscript file (EPS), 485
encrypting
files, 550
files/folders, 855-856
hard drives, configuring, 99
Encrypting File System (EFS), 821
encryption
BitLocker, 302, 818
BitLocker To Go, 818
files/folders, 503-504, 821
Windows files/folders, 490
wireless networks, 845-847
energy efficiency, 152
displays, 396
system design components, 453
ENERGY STAR, 152
displays, 396
system configuration, 453
“Engineer Guy LCD monitor teardown” video, 386
Enhanced IDE (EIDE), 257
EPA ENERGY STAR, displays, 396
EPEAT rating system, 453
EPS (encapsulated postscript file) extension, 485
erase lamps, laser printers, 413-414
Error-checking (Check Now) tool, 300
error correcting code (ECC), 208
errors
Device Manager error codes, 104
disk boot failure message, 296
software, detecting, 188
memory, troubleshooting, 225-226
POST, 100
AMI BIOS audio beeps, 185
memory installations/ upgrades, 220
multiple, 187
Phoenix audio beeps, 187
written messages, 185-187
software, 190
stop 0x000000xx Kernel xxx, 295
eSATA (External SATA), 33, 262
deVICES, 273-274
partitioning, 287
ports, 33, 37
eSATAp ports, 33, 37
ESCD (Extended System Configuration Data), 109
ESD (electrostatic discharge), 120-122
Ethernet, PoE, 754
Ethernet networks, 732, 741
CSMA/CD, 741
FastEthernet, 776
full-duplex, 742
half-duplex, 741
speeds, 741
standards, 741
Ethernet ports, 33, 37
Event Viewer, 620
accessing, 620
clearing, 622
event details, viewing, 622
services, troubleshooting, 623
symbols, 622
Windows Vista/7, 681-682
Windows Vista/7 improvements, 620
Windows Vista/7 logs, 621
Windows XP, 680-681
Windows XP logs, 620
exabytes (EBs), 46
exclamation points (!), Device Manager, 104
EXE (executable file) extension, 485
eXECutable code prevention, configuring, 99
exFAT file systems, 284
exit command, 506
expand command, 506
expansion cards, removing (laptops), 130
expansion slots, 67
AGP, versions, 69
bus bandwidth comparisons, 72
defined, 8
laptops, 74-76
PCI, 67-69
PCIe, 70-73
types, 67
Explorer. See Windows Explorer
explorer command, 507
exporting Windows registry sections, 551
exposing laser printers, 412
ExpressCard slots, 75
extended data out (EDO), 205
extended partitions, 287
Extended System Configuration Data. See ESCD
Extensible Authentication Protocol (EAP), 845
extensions, files, 484-485
external commands, 496
external connectivity, 11-12
external data bus, 47
external hard drives, 257
external modems, installing, 720-721
external SATA. See eSATA devices
extreme digital (XD) memory cards, 11
facial recognition devices, 816
failed Disk Management status state, 298
fans
auxiliary, installing, 143
installing, 60
power consumption, 152
power supplies, 143
processors, 3-pin/4-pin, 59
fast page mode (FPM), 205
FastEthernet, 776
FAT file systems, 284
FAT16, high-level formatting, 293
FAT16/FAT32 disk partitions, managing, 507
FAT16 partitions, 285
FAT32 file systems, 284
FAT32 partitions, 286
FATs (file allocation tables), 294
fault tolerance, 291-293
BIOS configuration settings, 293
hardware, configuring, 291
hot swapping, 292
levels, 291-292
software, configuring, 291
fax modems, 702
faxing VoIP interference, 704
FCBGA (flip chip ball grid array) sockets, 57
FDDI (Fiber Distributed Data Interface), 776
fdisk command, 507
features, memory, 207-209
feed assemblies, thermal printers, 416
feeding paper (printers), 417
female ports, 11
Fiber Distributed Data Interface (FDDI), 776
fiber-optic cables, 737-738
FIFO, serial ports, 699
file allocation tables (FATs), 294
file systems
CDFS, 284
comparison, 294
converting, 583
defined, 283
exFAT, 284
FAT, 284
FAT16
high-level formatting, 293
partitions/clusters, 285
FAT32, 284
partitions/clusters, 286
NTFS, 284
benefits, 286
boot partitions, 289
high-level formatting, 293
partitions/clusters, 286
system partitions, 289
types, determining, 283
Windows pre-installation considerations, 583
File Transfer Protocol (FTP), 778
files
attributes, configuring, 488
attributes, viewing, 500
backing up, 488. See also backups
xcopy command, 515
BOOT.INI, editing, 502
compressing, 488-489, 549
copying, 475, 499, 541
between folders, 543
copy command, 504
multiple, 542
robcopy command, 512
xcopy command, 515
defined, 472
deleting, 505, 544
permanently, 476
directory structure example, 496-497
dll, registering, 512
driver.cab, 600
encrypting, 550, 855-856
encryption, 490, 503-504
extensions, 484-485
formats, digital cameras, 359
indexing, 485
inf, finding, 603
libraries, 484
listing, 505
log. See logs
moving between folders, 543
names, 484, 497
characters, 484
wildcards, 499
navigating, 498
network transfers. See FTP organizing, 484
page, 576
paths, 475-476
long filenames, 486
viewing, 486
protecting, 826-827
quarantined, deleting, 820
recovering, 303
removable media, deleting, 486
renaming, 512
root directory maximum, 496
saving, 486
scanner formats, 356
searching
Windows Vista/7, 532
Windows XP, 523
security, 820-821
sharing
effective permissions, 832
inherited permissions, 831
libraries, 828
NTFS permissions, 830-831
permissions, 827, 830
Public folders, 828
tips, 832
Windows XP method with Windows Vista/7, 829
shortcuts, creating, 525
swap, 221
virtual memory, 304
system, 612-613
text, viewing, 509, 515
uncompressing, 506
viewing, 498
viruses, 586
Windows, locations, 613
film scanners, 354
FilterKeys, 649
filters, privacy, 814
finding inf files, 603
fingerprint readers, 816
fire extinguishers, 161
fires (electrical), 161
firewalls, 836
antivirus/antispyware programs, 836
DMZs, 837
network location settings, 839
overview, 836
port forwarding, 838
port triggering, 838
programs, allowing, 838
Remote Desktop, 688
security alerts, 838
troubleshooting, 839
verifying, 838
wireless networks, 844
FireWire. See IEEE 1394 ports
firmware

defined, 6
printers, upgrading, 427
five-wire resistive touch screen displays, 384
fixboot command, 507
fixed input power supplies, 151
fixmbr command, 507
flash BIOS, 96-98
Flash memory, 226-227
CompactFlash cards, 226
defined, 11
failures, troubleshooting, 227
internal memory, viewing, 227
technologies, 226
thumb drives, 227
flashlights, 123
flat panel monitors, 19, 388
flatbed scanners, 354-355
flick gesture, 481
flip chip ball grid array (FCBGA) sockets, 57
Floppy disk(s) failed message, 186
floppy drives, 7
cable, 252
cleaning, 132, 252
installing, 252-253
media, 252
overview, 251
power consumption, 152
read/write heads, 252
flow control, serial ports, 699-700
Folder Options control panel, 521
folders
apps, creating, 785
attributes, 488
configuring, 488
backing up, 488
compressing, 488-489
copying, 475
creating, 541
default, 486
defined, 472
deleting, 544
directory, creating, 509
encrypting, 855-856
encryption, 490, 503-504
indexing, 485
listing, 505
moving files between, 543
names, characters, 484
paths, 475-476
private, creating, 857-858
protecting, 826
administrative shares, 826
hidden shares, 827
local shares, 826
Public, 828
searching
Windows Vista/7, 532
Windows XP, 523
security, 820-821
sharing, 780
effective permissions, 832
inherited permissions, 831
libraries, 828
maximum users, 821
NTFS permissions, 830-831
permissions, 827, 830
Public folders, 828
subfolders, 820
tips, 832
Windows 7, 860-863
Windows XP, 858-859
Windows XP method with Windows Vista/7, 829
startup
program shortcuts, creating, 676
verifying, 670
subfolders, 484
following up with customers, 193
fonts control panel, 521
force quitting, programs, 620
forced perfect termination (FPT), 278
foreign Disk Management status state, 298
form factors
hard drives, 256
motherboards, 78-79
power supplies, 138-139
format command, 507
formats
files
digital cameras, 359
scanners, 356
MAC addresses, 746
formatting
CF cards, 226
commands, 500
disks, 507
full formats, 293
hard drives
high-level, 283, 293-294
low-level, 283
quick formats, 293
forward slash (/), commands, 500
forwarding email, 783
Found New Hardware wizard, 600
four-wire resistive touch screen displays, 384
FPM (fast page mode), 205
FPT (forced perfect termination), 278
Frame Relay, 783
Free Physical Memory field (Task Manager Performance tab), 223
frequencies (wireless), 757
frequency response, 346
frequency response range (speakers), 351
Friend, Ernie, 190
front side bus (FSB), 51
FSB (front side bus), 51
FTP (File Transfer Protocol), 778
clients, 806
security, 806
servers, 806
fuel cells (laptops), 145
full backups, 302
files/folders, 488
full control NTFS permission, 831
full-duplex Ethernet, 742
full format partitions, 583
full formats, 293
fully buffered memory, 208
fuser cleaning pads, 412
fuses, continuity checks, 136-137
fusing assemblies (laser printers), 414
fusing laser printers, 413
fusing rollers, 412
fusing rollers (laser printers), 414
Fusion AMD processors, 49
FX AMD processors, 49
hard drives

G

G.SHDSL (Symmetric High-speed DSL), 706
gain (antennas), 762
game ports, 37
gaming mobile devices, 484
Gaming PCs, 451
gateways, default, 766-767
GBs (gigabytes), 46
General tab (Internet Explorer Internet Options), 712
gestures, mobile devices, 481-482
ghost cursors (laptops), 14
GHz (gigahertz), 46
GIF (Graphic Interchange Format), 356
GIF (graphics interchange format) extension, 485
gigabytes (GBs), 46
gigahertz (GHz), 46
glass (scanners), 357
Global Positioning System (GPS), 483
Global System Mobile (GSM), 776
gold memory modules, 204
gpresult command, 507
GPS (Global Positioning System), 483
GUID partition table (GPT), 289
GPUs (graphics processing unit), 49, 397
Graphic Interchange Format (GIF), 356
graphics/CAD/CAM system configurations, 451
graphics interchange format (GIF) extension, 485
graphics processing unit (GPUs), 49, 397
grayware, 840
reporting, 843
green, motherboards, 79
green computer system configuration, 453
grounding, troubleshooting, 154
grounding problems, 120
group policies, viewing, 507

partitions
advantages, 283
boot partitions, 289
cluster size, 294
clusters, 284
converting partitions, 284
creating, 286
defined, 283-289
deleting, 289
diskpart command, 505
efficiency, 285
eSATA, 287
extended, 287
FAT16, 285
FAT32, 286
GPT, 289
high-level formatting, 283
HPA, 289
logical drives, 288
multiple operating systems, loading, 283
NTFS, 286
OEM, 289
partition tables, 288
primary, 287
separating data files from application files, 285
system partitions, 289
type, determining, 290
types, 283
volumes, 287
Windows installation, 583
passwords, 303
PATA
installing, 266-270
power consumption, 152
physical sizes, 256
platters, 253
preparations, 282
preventive maintenance, 299-301
RAID, 291
BIOS configuration settings, 293
hardware, configuring, 291
hot swapping, 292
levels, 291-292
software, configuring, 291
troubleshooting, 299

hal.dll file, 612
half-duplex Ethernet, 741
hand scanners, 816
handheld scanners, 354
Handles field (Task Manager Performance tab), 224
handshaking serial ports, 699
Hard disk install failure message, 186
hard drives
AV, 452
backing up, 301-303
BIOS configuration, 282
cables, removing, 124
caching, 304
clusters, 255
defined, 7
defragmenting, 300-301
destroying, 818
definition, configuring, 99
definition, determining, 818
definition, external, 257
definitions, 283-289
deleting, 289
definitions, 283
definitions, 283
full format versus quick format, 583
head crashes, 254
head crashes, 254
high-level formatting, 293-294
IDE, 259-261
eSATA, 262, 273-274
PATA, 259-260
SATA, 261-263
interfaces, 257-258
IDE, 259-263
letters, assigning, 289-290
low-level formatting, 283
magnetic, 253
mobile devices, 281
overview, 253

partition advantages, 283
boot partitions, 289
cluster size, 294
clusters, 284
converting partitions, 284
creating, 286
defined, 283-289
deleting, 289
diskpart command, 505
efficiency, 285
eSATA, 287
extended, 287
FAT16, 285
FAT32, 286
GPT, 289
high-level formatting, 283
HPA, 289
logical drives, 288
multiple operating systems, loading, 283
NTFS, 286
OEM, 289
partition tables, 288
primary, 287
separating data files from application files, 285
system partitions, 289
type, determining, 290
types, 283
volumes, 287
Windows installation, 583
passwords, 303
PATA
installing, 266-270
power consumption, 152
physical sizes, 256
platters, 253
preparations, 282
preventive maintenance, 299-301
RAID, 291
BIOS configuration settings, 293
hardware, configuring, 291
hot swapping, 292
levels, 291-292
software, configuring, 291
troubleshooting, 299
removable, 303
removing, 128
repairing/recovering, 502
RPMs, 254
SATA
installing, 271-274
power consumption, 152
SCSI, 264-266
cables, 279
electrical signals/terminators, 277
host adapters, 264
ID configuration/termination, 276-279
installing, 280-281
multiple, installing, 280
networking, 266
parallel, configuring, 276
powering on, 276
SAS, 266
standards, 265
symbols, 278
types, 264
sectors, 256
SSDs, compared, 263
storage device design considerations, 457
swap files, 221
tracks, 255
troubleshooting
Disk Management status states, 298-299
new drive installations, 295-296
noises, 294
previously working drives, 297-298
sticky, 297
virtual memory, 221, 304
configuring, 304
size, configuring, 221
VMM, 304
volumes, 287
wiping, 302
writing to, 253
hardware
adding, 600-602
audio ports, 29
cable modems, 706
defined, 5
DEP, 822
device drivers, defined, 5
docking stations, 35
drivers, 655-656
Windows installations, 585
eSATA ports, 33
firmware, defined, 6
IEEE 1394 ports, 30
cables, 30
connecting devices, 31-32
data transfer modes, 30
speeds, 30
standards, 31
troubleshooting, 32-33
input devices. See input devices installing, 656-657
keyboards. See keyboards
KVM switches, 7
memory, types, 10
mice. See mice
modem ports, 34
motherboards. See motherboards
network ports, 33
output devices, 7
parallel ports, 28
port replicators, 36
power supplies, 7
printers, troubleshooting, 427
RAID, configuring, 291
serial ports, 29
storage devices, 7
troubleshooting, 185-188
USB ports
3.0, 23
cabling rules, 24
defined, 22
deVICES supported, 22
hubs, 24
installing extra, 26
installing USB devices, 25
maximum cable length, 23
mini, 25
on-the-go, 26
power, 24
removing USB devices, 25, 347
speeds, 23
troubleshooting, 27-28
upstream/downstream, 23
versions, 23
wireless, 26
video ports, 19-22
Windows requirements, 584-585
wireless input devices, 15-17
Hardware and Sound control panel, 528
Hardware-Assisted Virtualization Detection Tool, 594
hardware firewalls, 836
hardware handshaking, 699
hardware monitor, configuring, 99
HDI (head-to-disk interference), 254
HDMI (High-Definition Multimedia Interface) ports, 20
HDMI ports/cabling, 391
HDSL (High bit-rate DSL), 706
head crashes, 254
head-to-disk interference (HDI), 254
headers, OSI, 744
healthy Disk Management status state, 298
heat sinks, 60
heavy lifting, 3
help
MMC, 662
permissions, 832
Windows dialog boxes, 480
Windows Vista/7, 532
Windows XP, 523
Help and Support Center (Windows), 341
help command, 508
Hewlett-Packard LightScribe, 338
hexa-core processors, 55
hexadecimal numbers, I/O addresses, 107
hidden shares, 827
hiding taskbars, 538
High-bit rate DSL (HDSL), 706
High-Definition Multimedia Interface (HDMI) ports, 20
high-level formatting, hard drives, 293-294
high-voltage differential (HVD), 278
high-voltage power supplies (laser printers), 414
hijack viruses, 586
hijacked browsers, 833-834
hijacked email accounts, 834
hijacking TCP/IP, 842
history, web browsing, 712
HKey_Classes_Root subtree, 491
HKey_Current_Config subtree, 491
HKey_Current_User subtree, 491
HKey_Local_Machine subtree, 491
HKey_Users subtree, 491
HLP (Windows-based help file) extension, 485
home pages (web browsers), 712
home screens, mobile devices, 480
home server computer systems configuration, 452
home theater PCs (HTPCs), 452
homegroup networks, 588
accessing from Windows XP/Vista, 782
creating, 781
horizontal scanning frequency, 385
host (IP addresses), 748
host machines, virtualization, 494
Host Protected Area (HPA), 289
hosted hypervisors. See Type 2 hypervisors
Hot Key Power On BIOS power setting, 149
hot spots (wireless), 710
hot swapping
 expansion cards, 75
 RAID drives, 292
humidity, paper, 417
HVD (high-voltage differential), 278
hybrid topologies, 732
HyperTerminal program, 721-723
Hypertext Markup Language (HTML), 776
HyperText Transfer Protocol (HTTP), 778
Hyper-Threading, configuring, 99
Hyper-Threading Technology (HTT), 54
HyperTransport, 55
hypervisors, types, 593
ICH (I/O controller hub), 77
ICMP (Internet Control Message Protocol), 776
icons
 My Computer, missing, 523
 Start menu (Windows Vista/7), 553-554
 Start menu (Windows XP), 551-552
 system tray, customizing, 603
 VMware Workstation virtual machines, creating, 644
 Windows desktop, 474-476
 Windows update notification, 596
IDE (integrated drive electronics), 259-263
 40-pin cables, 260
 ATA-1 standard, 260
 ATA-5 standard, 260
eSATA, 262
 installing, 273
 partitions, 287
 unmounting, 274
HTTP (Hypertext Transfer Protocol), 778
HTTPS (HTTP over SSL), 778
hubs
 Ethernet, 732
 ICH, 77
 IEEE 1394, 33
 MCH, 77
 star topologies, 733
 switch advantage, 742
 USB, 24
humidity, paper, 417
HPA (Host Protected Area), 289
HT (Hyper-Threading Technology), 54
HTC TouchFlo, 14
HTML (Hypertext Markup Language), 776
HTPCs (home theater PCs), 452
HTTP (Hypertext Transfer Protocol), 778
Hubs
 Ethernet, 732
 ICH, 77
 IEEE 1394, 33
 MCH, 77
 star topologies, 733
 switch advantage, 742
 USB, 24
humidity, paper, 417
HPA (Host Protected Area), 289
HT (Hyper-Threading Technology), 54
HTC TouchFlo, 14
HTML (Hypertext Markup Language), 776
HTPCs (home theater PCs), 452
importing Windows registry sections, 551
INDEX

IEEE (Institute for Electrical and Electronics Engineers), 742
IEEE 802 standards, 742-743
IEEE 1394 ports, 30, 36
cables, 30
connecting devices, 31-32
data transfer modes, 30
shutdown problems, 624
speeds, 30
standards, 31
system resources, 108
troubleshooting, 32-33
iLink. See IEEE 1394 ports
IMAP (Internet Message Access Protocol), 778
impact printers, 407-408
advantages, 408
defined, 407
maintenance, 420
printheads, 407-408
printwires, 407
re-inking, 418
troubleshooting, 428
Important Updates (Windows Update), 597
importing Windows registry sections, 551
incident reporting (security), 843-844
increasing processor speed, 50-51
Windows bootup speed, 614
incremental backups, 302
incremental backups, files/folders, 489
indexing, 485
industrial computer configuration, 452
inf files, finding, 603
INF (information) extension, 485
infrared, 776
infrared touch screen displays, 384
infrared wireless input devices, 16
inherited permissions, 831
INI (initialization file) extension, 485
ink cartridges
inkjet printers, 410
recycling, 417
refilling, 417-418
toner
defined, 414
refilling, 418
spills, 416
troubleshooting, 429
inkjet printers, 409-411
defined, 407
maintenance, 420
refilling cartridges, 418
troubleshooting, 429
in-place upgrades, Windows XP/Vista, 581
in-plane switching (IPS), 388
input devices
defined, 6
keyboards, 13
capacitive, 13
cleaning, 18
laptops, 13-14
PS/2 ports, 36
troubleshooting, 18
mice, 13
cleaning, 18
mechanical, 13
optical, 13
PS/2 ports, 36
troubleshooting, 18
ports, 12
touch/multitouch, 14
wireless, 15-16
input/output operations per second. See IOPS
installing access points, 771
adapters, 8, 109
Administrative Tools on Start menu, 657
apps, 784
auxiliary fans, 143
cables, 125-128
cache memory, 220
CF cards, 226
clean installs, 580
connectors, motherboard front panel, 128
device drivers, 601-603, 655
devices, 600-602
dial-up Internet, 801-802
eSATA drives, 273-274
fans, 60
floppy drives, 252-253
hard drives, troubleshooting, 295-296
hardware, 656-657
heat sinks, 60
IEEE 1394 devices, 32
lite touch (LTI), 590
memory
configuring, 219
DIMMs/RIMMs, 219
mobile devices, 220
overview, 218
planning. See planning
memory installations
POST error codes, 220
removing memory, 218
modems, 720-721
network cables, 736
network printers, 771-772
NICs
pre-installation steps, 765
requirements, 765
Windows XP, 792
ODDs, 339-341
operating systems, multiple, 583
PATA devices, 266-270
PATA drives, connectivity, 269
printers, 418-422
processors, 62-64
BIOS settings, 55
programs, 605-606
Recovery Console, 495, 568
Remote Desktop, 687
remote networks, 590
riser boards, 8
SAS, 280-281
SATA drives, 271-274
SCSI, multiple, 280
sound cards, 347
SSDs, 274-275
unattended installations, 590
updates, 597
UPSs, 159
USB devices, 25
USB ports, 26
video adapters, 401
VMware Workstation, 639-640
Windows, 587
activation, 588
corporate computers, 588-590
multiple computers, 583
networks, selecting, 588
pre-installation. See Windows, pre-installation
checklist
setup log files, 592
troubleshooting, 591
verification, 590
VMware Workstation virtual machine, 640-641
Windows 7, 638-639
Windows Vista/7, older operating systems, 613
Windows Vista/7 components, 659-662
Windows XP, 636-638
Windows XP components, 659
wireless NICs, 768-769
Institute for Electrical and Electronics Engineers (IEEE), 742
integrated drive electronics. See IDE
integrated motherboards
 advantages/disadvantages, 34-35
 defined, 11
Integrated Services Digital Network. See ISDN
integrated sound, 348
Intel, Z277 chipset, 77
Intel HTT (Hyper-Threading Technology), 54
Intel processors, 48-49
Intel website, 49
interfaces
 APIs, sound cards, 348
 hard drives, 257-258
 IDE, 259-263
 parallel, 258
 SCSI, 264-266, 276-280
 serial, 258
 types, 257
 ODDS, 338-339
 operating systems, 472-473
interlacing displays, 385
internal commands, 495
internal data bus, 47
internal modems, installing, 720
Internet
 browsers
 active scripting, 835
 cookies, controlling, 835
 firewalls, 836-839
 hijacked, 833-834
 malicious code types, 839
 phishing, 841
 proxy servers, 836
 security programs, 840
 social engineering, 840
 connectivity
 dial-up, installing, 801-802
 overview, 696
 mobile connectivity, 709-710
modems, 696
 56Kbps, 701-702
 cable, 704-708
 cabling, 696
 communication, 721-723
 connectivity, 696
 defined, 696
 digital, 702
digital versus analog, 701
DSL. See DSL
external, installing, 720-721
fax, 702
internal, installing, 720
maintenance, 709
phone line limits, 701
satellite, 709
security, 833
 active scripting, 835
clear text emails, 834
 cookies, controlling, 835
 encryption, 833
 firewalls, 836-839
 hijacked browsers, 833-834
 hijacked email accounts, 834
 malicious code types, 839
 network attacks, 841-842
 phishing, 841
 programs, 840
 proxy servers, 836
 social engineering, 840
 spam, 834
 VPNs, 842-843
serial communication, 697-700
service providers (ISPs), 709
VoIP, 703-704
 faxing interference, 704
 web browsers, 711-712
Internet appliances, defined, 6
Internet Control Message Protocol (ICMP), 776
Internet Explorer
 active scripting, 835
 configuring, 723-724
 cookies, controlling, 835
 icon, 475
 Internet Options tabs, 711-712
 proxy servers, 836
Internet layer
 TCP/IP, 779
 TCP/IP model, 746
Internet Message Access Protocol (IMAP), 778
Internet Options control panel, 521
interpolation, scanners, 357
Interrupt Requests. See IRQs
interrupts
 IRQs, 102-104
 MSI/MSI-X, 106
 PCI, 105
Intruder detection error message, 186
intrusion detection, configuring, 99
invalid Disk Management status state, 298
I/O addresses, 106-107
I/O APICs, 102
I/O controller hub (ICH), 77
I/O shields, 129
IOPS (input/output operations per second), 457
IP addresses, 747
 alternative, 766
 alternative configuration, 766
 assigning, 765-766
 broadcast address, 749
 default gateways, 766-767
 DNS servers, 767
 host, 748
 IPv4, 747-748
 IPv6, 747
 network numbers, 748
 pinging, 774
 subnet masks, 749-752
two-network example, 748-749
types, 747
 viewing, 773
ipconfig command, 508, 773
IPS (in-plane switching), 388
IPv4 addresses, 747-748
IPv6 addresses, 747
irate customers, handling, 461-462
IRQs (Interrupt Requests), 102
 APICs, 102
 configuring with Device Manager, 102-103
 defined, 102
 MSI/MSI-X, 106
 multiple-device port assignments, 102
 PCI, 105
 resource conflicts, 104
 steering, 105
ISDN (Integrated Services Digital Network), 702-783
 isochronous data transfers, 30
 ISP (Internet Service Providers), 709
 iTunes, 786

J
 JPEG (Joint Photographic Experts Group), 356
 JPG (joint photographic experts) extension, 485
 jumpers, 94
 CMOS password, 100

K
 KBs (kilobytes), 46
 Kerberos protocol, 823
 kernel (operating system), 6
 Key Management Service (KMS), 590
 Keyboard control panel, 521
 Keyboard error or no keyboard present message, 186
 Keyboard is locked out—Unlock the key message, 186
 keyboard, video, mouse (KVM) switches, 7, 393
 keyboards, 13
 capacitive, 13
 cleaning, 18, 132
 configuring Windows XP, 647
 laptops, 13-14
 mechanical, 13
 number lock key, configuring, 98
 ports, 12
 PS/2 ports, 36
 troubleshooting, 18
 keyed connectors, 12
 killing processes/tasks, 514
 kilobytes (KBs), 46
 Kingston Technology website, 216
 KMS (Key Management Service), 590
 KVM switches, 7, 393

L
 L1 cache, 51
 L2 cache, 51
 L3 cache, 51
 labeling discs, 338
 labeling network cables, 734
 ladder racks (cables), 739
 land grid array (LGA) sockets, 57
 landscape mode, LCDs, 387
 LANs (local area networks), 728
 Ethernet, 741-742
 network resource management, 731
 peer-to-peer, 729-731
 security, 729
 server-based, 729-730
 LAPICs (local APICs), 102
 laptops
 batteries, 144-146
 replacing, 152
 troubleshooting, 153
 components, 9
 design components, 460-461
 desktop components, compared, 460
 disassembly, 130-131
 displays, 388-389
 cleaning, 133
 troubleshooting, 402-404
 docking stations, 35
 expansion slots, 74-76
 ghost cursors, 14
 GUIs, 472
 hard drives, 281
 Internet connectivity, 709-710
 keyboards, 13-14
 media bays, 10
 memory, 207, 220
 motherboards, compared with desktop motherboards, 64
 operating systems, recovering, 493
 port replicators, 36
 processors, 64
 projectors, 394
 security, 850-851
 physical, 817
 sound, 349-350
 speakers, 349
 storage, 281
 traveling with, 144
 USS, 817
 video ports, 22
 Windows 7 power settings, 150
 wireless antennas, 760
 large format inkjet printers, 411
 laser lens (ODDs), cleaning, 343
 laser printers, 411-415
 defined, 407
 maintenance, 421
 memory upgrades, 420
 spilled toner, 416
 toner cartridges
 defined, 414
 refilling, 418
 spills, 416
 troubleshooting, 429
 troubleshooting, 429-430
 UPSs, 158
 Last Known Good Configuration, booting from, 610
 Last Known Good Configuration option, 611
 latency, networks, 774
 launching programs, 605
 layers
 OSI model, 743-745
 TCP/IP, 746, 779
 LCD monitors, cleaning, 133
 LCDs (liquid crystal displays), 381, 386-389
 cleaning, 396
 LDAP (Lightweight Directory Access Protocol), 778
 LEDs (light-emitting diodes), 381
 motherboards, 188
 LGA (land grid array) sockets, 57
 libraries, 484, 828
 licensing
 virtualization, 593
 Windows Vista/7, 590
 lid close detectors (laptop displays), 389
 lifting, 3
 light-emitting diodes (LEDs), 381
 Lightweight Directory Access Protocol (LDAP), 778
Li-ion batteries, 145-146
Li-ion polymer batteries, 145
line conditioners, 157
line-of-sight networks, 711
link-local addresses, 747
liquid cooling system, 62
liquid crystal displays. See LCDs
list folder contents NTFS permission, 831
listing files/folders, 505
listsvc command, 508
lite touch installation (LTI), 590
lithium battery regulations, 144
lithium-ion batteries, 145-146
local APICs (LAPICs), 102
local area networks. See LANs
local policies
passwords, controlling, 826
passwords, creating, 864-868
local shares, 826
local user settings, 608
Local Users and Groups tool (MMC), 607-608
locating
chipsets, 77
taskbar, 538
lock screens (mobile devices), 482
locking
computers, 816
taskbar, 538
log files, Windows, 592
logging in, Windows, 474
logging on, Windows, 580
logical drives, 287-288
logical troubleshooting, 184
establishing a theory, 185-190
flow chart, 192
full system functionality, verifying, 191
identifying the problem, 184
plan of action, 191
preventive measures, implementing, 191
testing the theory, 190-191
logon command, 508
logs, 620-621
booting, enabling, 611
lojack, configuring, 99
long touch gesture, 481
loopback plugs, 188
lost clusters, locating, 300
low-level hard drive formatting, 283
low-voltage differential (LVD), 278
LTI (lite touch installation), 590
lumens, LCDs, 387
LVD (low-voltage differential), 278
Lynx. See IEEE 1394 ports
MAC addresses, 746
macro viruses, 586
main motors (laser printers), 414
mainboards. See motherboards
maintenance
displays, 395-396
floppy drives, cleaning, 252
keyboards, cleaning, 18
mice, cleaning, 18
modems, 709
ODDs, 342-345
cleaning discs, 342-343
disc handling, 342
laser lens, 343
sound, enabling, 343-345
operating systems, 632
preventive, 132-133
hard drives, 299-303
implementing, 191
inventory, taking, 133
printers, 420-421
projectors, 395
scanners, 357
MAK (Multiple Activation Key), 590
male ports, 11
malware, 840
managing
dynamic disks, 291
FAT16/FAT32 partitions, 507
memory, 225
MMC, 606-608
power
ACPI, 147-148
BIOS settings, 148-149
coming out of sleep mode, 149
efficiency, 152
energy-efficient monitors, 150
going into, 150
screen saver conflicts with sleep mode, 150
Wake on LAN, 148
Wake on Ring, 148
Windows 7, 149-150
printers, Windows, 422
storage devices. See Disk Management
MANs (metropolitan area networks), 728
mantraps, 814
map command, 509
MAPI (Messaging Application Programming Interface), 779
mapping
drive letters to network shares, 780
viewing, 509
marking subsystem (printers), 404
master devices, 267
material safety data sheets. See MSDS
MBR
partition tables, 288
rewriting, 507
viruses, 586
MBSA (Microsoft Baseline Security Analyzer), 840
MBs (megabytes), 46
MCBF (mean cycles between failure), 337
MCH (memory controller hub), 77
MDT (Microsoft Deployment Toolkit), 589
mean cycles between failure (MCBF), 337
mean time between failures (MTBF), 266
mechanical keyboards, 13
mechanical mice, 13
media bays, laptops, 10
media (networks)
copper, 734-737
fiber-optic, 737-738
media players, 452
megabytes (MBs), 46
memory

- access time, 216
- addresses, 108
- buffer, ODDs, 337
- buying, 216-217
- cache, 51-52
- adding, 220
- capacities, 209
- CL ratings, 216-217
- CMOS, 100
- ESCD, 109
- design components, 453
- double-sided, 208
- dual-channel, 212-214
- dual-voltage, 217
- ECC, 208
- features, 207-209
- Flash, 11, 226-227
- fully buffered memory, 208
- installed amount, determining, 211
- installing, 218-220
- laptops, removing, 130
- managing, 225
- mobile devices, 207, 220
- module type amounts, determining, 212-215
- monitoring, 223-224
- motherboard chip support, 205
- motherboard maximums, 211
- multi-core processor access, 55
- non-parity, 208
- operating system requirements, 210-211
- PAE, 223
- pages, 221
- parity, 208-209
- physical packaging, 203-204
- printers, upgrading, 420
- quadruple-channel, 215
- RAM
 - defined, 10
 - mobile devices, 11
 - over 4GB, 214
 - performance, 203
- ROM, compared, 202
- types, 203
- video, 400
- RAM sticks power consumption, 152
- refreshing, 203
- registered, 208
- removing, 218
- requirements, 203, 209-211
- researching, 216-217
- ROM
 - compared, 202
 - defined, 10
 - safety, 218
- sample advertisements, 216
- shared system, 400
- single-sided, 208
- SO-DIMM advertisements, 217
- software instructions, fetching, 203
- SPD, 208
- speed, 216-217
- Technologies, 205-206
- triple-channel, 215
- troubleshooting, 225-226
- types, 10
- unbuffered, 208
- upgrading, 225
- video, 399-400
- virtual, 221-222, 304
- wear leveling, 263
- Windows 7 requirements, 584
- Windows Memory Diagnostic Tool, 617
- write amplification, 263
- memory, flash, thumb drives, 227
- memory card readers, 359
- memory controller hub (MCH), 77
- Memory Diagnostics tool (Windows), 225
- memory optimal error message, 186
- Memory size decrease error message, 186
- Memory Sticks, 358
- Memory test fail message, 186
- mentoring skills, 713
- menus, context (Windows), 480
- mesh topology, 734
- Message Signaled Interrupt (MSI), 106
- Messaging Application Programming Interface (MAPI), 779
- metal oxide varistors (MOVs), 156
- meter rules (electricity), 135
- MetroE (MetroEthernet), 783
- metropolitan area networks (MANs), 728
- mice, 13
 - cleaning, 18
 - configuring, 647-648
 - mechanical, 13
 - optical, 13
 - ports, 12
 - PS/2 ports, 36
 - troubleshooting, 18
- micro pin grid array (µPGA) sockets, 57
- microdrives, 226
- microHDMI connectors, 20
- microphones
 - mobile devices, 350
 - sound designs, 458
- Windows, 348
- microprocessor. See processors
- microSD cards, 226
- Microsoft
 - Hardware-Assisted Virtualization Detection Tool, 594
 - Management Console. See MMC
 - Setup Manager, 589
- Microsoft Deployment Toolkit (MDT), 589
- Microsoft Excel extension (XLS/XLSX), 485
- Microsoft Magnifier, 649
- Microsoft OneNote file (ONE) extension, 485
- Microsoft Paint (PNG) extension, 485
- Microsoft Paintbrush (PCX) extension, 485
- Microsoft PowerPoint (PPT/PPTX) extension, 485
- Microsoft Security Baseline Analyzer. See MBSA
- Microsoft Security Essentials, 587
- Microsoft Word (DOC/DOCX) extension, 485
Microsoft WordPad (WRI) extension, 485
Microsoft Works text file format (WPS) extension, 485
MIDI (musical instrument digital interface), 344
MIDI ports, 37, 344
migrating data, 582
MIMO antennas, 763
MIMO (multiple input/multiple output), 763
mini-DIN connectors, 12
miniHDMI connectors, 20
mini PCI/PCIe cards, 74
miniSD cards, 226
mini-USB ports, 25
MLCs (multi-level memory cells), 264
MMC (Microsoft Management Console), 606
Device Manager, 608
Local Users and Groups tool, 607
Services and Applications category, 609
shares, 607
Storage category, 609
System Tools, 607
System Tools category, Local Users and Groups tool, 608
tool categories, 607
viewing, 606
Windows 7, 666-669
Windows XP, 662-665
MMCs (multimedia cards), 358
mobile devices
apps, 482, 784-786
batteries, 144-146
replacing, 152
troubleshooting, 153
Bluetooth, configuring, 16
design components, 460-461
disassembly, 130-131
displays
cleaning, 133
multitasking gestures/screen rotation settings, 386
troubleshooting, 402-403
email, configuring, 786-787
gaming, 484
geo-tracking, 483
GPS app, 483
GUIs, 472
hard drives, 281
home screens, 480
Internet connectivity, 709-710
lock screen, 482
memory, 207, 220
motherboards, 64
network connectivity, 784
notification area, 481
operating system interaction, 481-482
operating systems, recovering, 493
processors, 64
RAM, 11
screen orientations, 383
security, 850-851
sound, 349-350
speakers, 349
storage, 281, 786
system bar, 481
touch/multi-touch technologies, 14
traveling with, 144
video ports, 22
Mobile PC control panel, 530
modern isolators, 161
moderns (modulator/demodulator), 696
56Kbps, 701-702
cable, 704-706
troubleshooting, 708-709
cabling, 696
communication, 721-723
connectivity, 696
definition, 696
dial-up, installing, 801-802
digital, 702
digital versus analog phone lines, 701
DSL, 706-707
troubleshooting, 708-709
external, 696
faxes, 702
installing, 720-721
internal, 696
maintenance, 709
overview, 696
phone line isolators, 161
phone line limits, 701
ports, 34, 37
satellite, 709
speeds, 701
xDSL, 706
modify NTFS permission, 831
modulator/demodulator. See modems
Molex connectors, 140
monitoring
memory, 223-224
performance, 624, 683-685
systems, Windows XP, 682-683
monitors
CRT versus flat panel, 19
disposal, 162
energy-efficiency, 150
LCD, cleaning, 133
screen savers, sleep mode conflicts, 150
video ports, 19-22
voltage, 135
more command, 509
motherboards, 7
adapters, 8, 602
antistatic measures, 80
audio ports, 29
batteries, 101-102
BIOS
ACPI settings, 148-149
adapters, configuring, 109
boot process, 185
CMOS, 100
cold boots, 94
default settings, 99
energy-efficiency settings, 396
exit options, 100
flash, 96-98
definitions, 94
hard drive configuration, 282
POST, 94
POST errors, 185-187
RAID errors, 293
recovery, 96
security settings, 100, 817
setup options, 98-100
Setup program. See Setup program
SSDs, recognizing, 275
UEFI, 96-97
update compatibility, 585
upgrading, 96
virtualization, enabling, 593
viruses, 586
warm boots, 95
cables, 127-128
chipsets, 76-77
design components, 453-454
configuring, 94
connectors, 12, 76, 126
design components, 453-454
diagnostic display, 187-188
eSATA ports, 33
expansion slots, 8, 67
AGP, 69
hot swapping, 75
laptops, 74-76
PCI, 67-69
PCIe, 70-73
types, 67
form factors, 78-79
green, 79
grounding problems, 120
IDE connectors, 267
IEEE 1394 ports, 30-33
integrated
advantages/disadvantages, 34
defined, 11
LEDs, 188
locating, 7
memory, maximum, 211
memory chip support, 205
mobile devices, desktop motherboards (compared), 64
modem ports, 34, 37
network ports, 33
parallel ports, 28
PATA/SATA connectors, 259
PCI IRQ assignments, 105
ports, 11-12
power consumption, 152
processors
ALU, 47
AMD, 49-50
binary prefixes, 46
BIOS settings, 55, 98
bits, 46
bus, 47
bytes, 46
cache memory, 51-52
clocking, 53
connections, 54-55
cooling, 59-62
defined, 46
design components, 453-454
installing, 62-64
Intel, 48-49
IRQs, 102-104
laptops versus desktops, 64
multi-core, 55-57
multiple, installing, 63
multipliers, 55
nanometers, 453
overclocking, 65-66
pipelining, 48
power consumption, 152
register size, 47
replacing in laptops, 64
sockets, 57-58
speed, 50-51
speeds, 46
threading, 54
throttling, 63
troubleshooting, 66-67
upgrading, 63
voltage requirements, 63
reassembling, 132
removing, 80, 129-130
replacement considerations, 80
riser boards, 8
serial ports, 29
sound, integrated, 348
sound ports, 344-345
speakers, 344
troubleshooting, 80-81
upgrading, 79-80
USB ports. See USB ports
video ports. See video, ports
Mouse control panel, 521
MouseKeys, 649
movie clip extension (MPG), 485
moving
apps, 785
files/folders, 475
moving files between folders, 543
MOVs (metal oxide varistors), 156
MPG (movie clip) extension, 485
msconfig command, 509
MSDS (material safety data sheets), 3, 133
MSI (Message Signaled Interrupt), 106
msinfo32 command, 509
MSI-X, 106
mstsc command, 509
MTBF (mean time between failures), 266
multi-core processors, 55-57
multifactor authentication, 815
multi-level memory cells (MLCs), 264
multimedia
digital cameras, 358-360
media players, 452
ODDs, 334
Blu-ray compatibility, 337
blue-violet laser technology, 334
buffer memory, 337
burning discs, 337
DL, 335
DVD/Blu-ray region codes, 337
external, installing, 340
factor numbers, 336
installing, 339-341
interfaces, 338-339
labeling discs, 338
MCFB, 337
PATA connectivity, 340
preventive maintenance, 342-345
random access time, 337
read-only, 335
reads/writes, 335
red laser technology, 334
sound, troubleshooting, 353
speeds, 335-336
troubleshooting, 341-342
writeable media, 335
scanners, 354-357
sound, 348-352
troubleshooting, 352-354
sound cards, 345-348
troubleshooting, 353
multimedia cards (MMCs), 358
multi-mode fiber-optic cables, 738
multiple, display design considerations, 459
Multiple Activation Key (MAK), 590
multiple displays, 392-393
multiple input/multiple output (MIMO), 763
multipliers, 55
multi-scan monitors, 385
multi-touch gestures, mobile devices, 481-482
multi-tasking technologies, 14
multitasking gestures, configuring mobile devices, 386
musical instrument digital interface. See MIDI
muting audio, 348
My Computer icon, 475, 523
My Documents icon, 475
My Network Places icon, 475

N
names
computers, 765
files, 484
caracters, 484
directories, 497
wildcards, 499
folders, characters, 484
nanometers, 453
The Narrator, 649
NAT (Network Address Translation), 776
Remote Assistance support, 631
native hypervisors. See type 1 hypervisors
native resolution, LCDs, 387
navigating directories, 498
nbtstat command, 510
net command, 687
net use command, 510
netbook design components, 461
netstat command, 510
network access layer, TCP/IP model, 746, 779
Network Address Translation (NAT), 776
network cable testers, 741
Network Configuration Operators group, 825
Network and Dial-up control panel, 521
Network icon, 475
network interface cards. See NICs
Network and Internet control panel, 528
network layer, OSI model, 745
network operating system (NOS), 729
Network Time Protocol (NTP), 779
networking
printers, 405
SCSI storage devices, 266
networks
adapters, ipconfig command, 508
addresses, 746-748
APs, 771
ARP, 776
backbone, 776
bandwidth, 776
broadband, 776
cables, 734-740
crossover CAT 5 UTP, creating, 795-797
straight-through CAT 5 UTP, creating, 792-794
CDMA, 776
call sponsors, 823
connectivity, 783
troubleshooting, 772-773
copper media, coaxial, 737
defined, 728
devices, security settings, 848
dial-up, 696
Ethernet, 732, 741
CSMA/CD, 741
FastEthernet, 776
full-duplex, 742
half-duplex, 741
PoE, 754
speeds, 741
standards, 741
FastEthernet, 776
FDDI, 776
folders, sharing, 780
FTP (File Transfer Protocol), 806
GSM, 776
homegroups, 781-782
HTML, 776
ICMP, 776
infrared, 776
IP addresses, pinging, 774
IP addressing, 765-767
LANs, 728-731
Ethernet. See Ethernet
latency, 774
line-of-sight, 711
MANs, 728
mobile device connectivity, 784
NAT, 776
NICs. See NICs
OSI model, 743-746
PANs, 728
PAT, 776
POP, 776
ports, 33
printers
configuring, 771-772
connectivity, 800
printing, 801
troubleshooting, 775
remote devices, 510-511, 514
remote installations, 590
requirements, 731
security, 841-843
shares
accessing, 780
corporate, 782
defined, 779
drive letters, mapping, 780
SSL, 776
standards, 742-743
subnet masks, 750-752
TCP, 777
TCP/IP, 745-746, 778-779
Telnet, 777
topologies, 732-734
troubleshooting, 772-775
types, 588, 728
UDP, 777
virtual machines, connecting, 594
virtualization issues, 770
VoIP, 777
WANs, 728
Windows 7, configuring, 797-800
Windows installation, choosing, 588
wireless. See wireless networks
WLANs, 728
WWANs, 728
NiCad (nickel cadmium) batteries, 145
nickel-metal hydride (NiMH) batteries, 145
NICs (network interface cards), 33
installing
pre-installation steps, 765
Windows XP, 792
IP addresses, assigning, 765
IP addressing, 765-767
properties, 769
QoS, 769
requirements, 765
speed, 769
TCP/IP stack, checking, 772
troubleshooting, 774-775
vendor software, 846
Wake-on-LAN, 769
wireless
configuring, 768
defined, 754
half-duplex/full-duplex/auto, 769
installing, 768-769, 803
types, 754
NiMH (nickel-metal hydride) batteries, 145
nonoverlapping ID channels, 758-759
Nonpaged Kernel Memory field (Task Manager Performance tab), 224
non-parity, memory, 208
non-video adapters, power consumption, 152
north bridge. See MCH
north bridge chips, 68
NOS (network operating system), 729
not initialized Disk Management status state, 298
Notepad, starting, 510
notepad command, 510
notification area
mobile devices, 481
Windows desktop, 478
nslookup command, 510, 774
NT Virtual DOS Machine (NTVDM), 224
ntbackup command, 511
ntbootdd file, 612
ntdetect.com file, 612
ntldr file, 612
ntoskrnl.exe file, 612
NTP (Network Time Protocol), 779
NTVDM (NT Virtual DOS Machine), 224
number lock key, configuring, 98
OCR (Optical Character Recognition), 357
octa-core processors, 55
ODDs (optical disk drives), 334
Blu-ray compatibility, 337
blue-violet laser technology, 334
buffer memory, 337
burning discs, 337
defined, 7
DL, 335
DVD/Blu-ray region codes, 337
factor numbers, 336
installing, 339-341
interfaces, 338-339
labeling discs, 338
MCBF, 337
PATA connectivity, 340
power consumption, 152
preventive maintenance, 342-345
random access time, 337
read-only, 335
reads/writes, 335
red laser technology, 334
sound, troubleshooting, 353
speeds, 335-336
storage device design considerations, 457
troubleshooting, 341-342
writeable media, 335
OEM (original equipment manufacturer), 289
versions of Windows, 583
Offer Remote Assistance Helper group, 825
offline Disk Management status state, 298
ohms, 135
ohms (Greek omega symbol), 136
OK buttons, Windows dialog boxes, 479
old Windows software, 224
OLEDs (organic LEDs), 381
omnidirectional antennas, 760
on-the-go USB (OTG), 26
on the road system configurations, 451
ONE (Microsoft OneNote file) extension, 485
online Disk Management status state, 299
open authentication, 844
Open Systems Interconnect. See OSI model
opening System Information window, 509
operating systems
clean installs, 580
command prompt. See command prompts
colorful command prompt environment, 473
defined, 5, 472
<table>
<thead>
<tr>
<th>Indexpaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUIs, 472</td>
</tr>
<tr>
<td>hotfixes, 595</td>
</tr>
<tr>
<td>installing multiple, 583</td>
</tr>
<tr>
<td>interfaces, 472</td>
</tr>
<tr>
<td>kernel, 6</td>
</tr>
<tr>
<td>licensing virtualization, 593</td>
</tr>
<tr>
<td>memory requirements, 210-211</td>
</tr>
<tr>
<td>mobile devices, 480-484</td>
</tr>
<tr>
<td>recovering, 493</td>
</tr>
<tr>
<td>patches, 595</td>
</tr>
<tr>
<td>preventive maintenance, 632</td>
</tr>
<tr>
<td>recovering Windows, 492-493</td>
</tr>
<tr>
<td>security, 818-819</td>
</tr>
<tr>
<td>AutoPlay/AutoRun, disabling, 819</td>
</tr>
<tr>
<td>viruses, 819-820</td>
</tr>
<tr>
<td>service packs, 490, 595</td>
</tr>
<tr>
<td>upgrading, 580</td>
</tr>
<tr>
<td>virtualization, 493-494</td>
</tr>
<tr>
<td>Windows. See Windows operation requires elevation message, 516</td>
</tr>
<tr>
<td>Optical Character Recognition (OCR), 357</td>
</tr>
<tr>
<td>optical drives. See ODDS</td>
</tr>
<tr>
<td>optical lens, cleaning, 133</td>
</tr>
<tr>
<td>optical mice, 13</td>
</tr>
<tr>
<td>optical storage, 303</td>
</tr>
<tr>
<td>optimization, configuring Setup program, 98</td>
</tr>
<tr>
<td>optimized dpi (inkjet printers), 410</td>
</tr>
<tr>
<td>organic LEDs (OLEDs), 381</td>
</tr>
<tr>
<td>organizing files, 484</td>
</tr>
<tr>
<td>Windows desktop, 476</td>
</tr>
<tr>
<td>original equipment manufacturer (OEM), 289</td>
</tr>
<tr>
<td>versions of Windows, 583</td>
</tr>
<tr>
<td>OSI (Open Systems Interconnect) model, 743</td>
</tr>
<tr>
<td>defined, 743</td>
</tr>
<tr>
<td>devices, 746</td>
</tr>
<tr>
<td>layers, 743-745</td>
</tr>
<tr>
<td>peer communication, 744</td>
</tr>
<tr>
<td>troubleshooting, 744</td>
</tr>
<tr>
<td>output devices, defined, 7</td>
</tr>
<tr>
<td>overclocking processors, 65-66</td>
</tr>
<tr>
<td>Override enabled—Defaults loaded message, 186</td>
</tr>
<tr>
<td>overvoltage, 154-155</td>
</tr>
<tr>
<td>overwriting hard drives, 302</td>
</tr>
<tr>
<td>ozone, 421</td>
</tr>
<tr>
<td>packaging memory, 203-204</td>
</tr>
<tr>
<td>PAE (physical address extension), 223</td>
</tr>
<tr>
<td>page files, 221, 576. See also swap files</td>
</tr>
<tr>
<td>Paged Kernel Memory field (Task Manager Performance tab), 223</td>
</tr>
<tr>
<td>pages (memory), 221</td>
</tr>
<tr>
<td>PANs (personal area networks), 728</td>
</tr>
<tr>
<td>paper (printers), 416-417</td>
</tr>
<tr>
<td>storage tray/feeder upgrades, 420</td>
</tr>
<tr>
<td>troubleshooting, 428</td>
</tr>
<tr>
<td>stuck, 427</td>
</tr>
<tr>
<td>paper transport subsystem (printers), 404</td>
</tr>
<tr>
<td>parabolic antennas, 763</td>
</tr>
<tr>
<td>Parallel ATA (PATA), 258-259</td>
</tr>
<tr>
<td>parallel hard drive interfaces, 258</td>
</tr>
<tr>
<td>parallel ports, 28, 36</td>
</tr>
<tr>
<td>parallel SCSI, 264, 276</td>
</tr>
<tr>
<td>parity memory, 208-209</td>
</tr>
<tr>
<td>serial ports, 699</td>
</tr>
<tr>
<td>partitioning hard drives diskpart command, 505</td>
</tr>
<tr>
<td>Windows installation, 583</td>
</tr>
<tr>
<td>partitions</td>
</tr>
<tr>
<td>boot, booting Windows, 612</td>
</tr>
<tr>
<td>cluster size, 294</td>
</tr>
<tr>
<td>hard drives advantages, 283</td>
</tr>
<tr>
<td>boot partitions, 289</td>
</tr>
<tr>
<td>clusters, 284</td>
</tr>
<tr>
<td>converting partitions, 284</td>
</tr>
<tr>
<td>creating, 286</td>
</tr>
<tr>
<td>defined, 283-289</td>
</tr>
<tr>
<td>deleting, 289</td>
</tr>
<tr>
<td>efficiency, 285</td>
</tr>
<tr>
<td>eSATAs, 287</td>
</tr>
<tr>
<td>extended, 287</td>
</tr>
<tr>
<td>FAT16, 285</td>
</tr>
<tr>
<td>FAT32, 286</td>
</tr>
<tr>
<td>GPT, 289</td>
</tr>
<tr>
<td>HPA, 289</td>
</tr>
<tr>
<td>logical drives, 288</td>
</tr>
<tr>
<td>multiple operating systems, loading, 283</td>
</tr>
<tr>
<td>NTFS, 286</td>
</tr>
<tr>
<td>OEM, 289</td>
</tr>
<tr>
<td>partition tables, 288</td>
</tr>
<tr>
<td>primary, 287</td>
</tr>
<tr>
<td>separating data files from application files, 285</td>
</tr>
<tr>
<td>system partitions, 289</td>
</tr>
<tr>
<td>type, determining, 290</td>
</tr>
<tr>
<td>types, 283</td>
</tr>
<tr>
<td>volumes, 287</td>
</tr>
<tr>
<td>system, booting Windows, 612</td>
</tr>
<tr>
<td>pass-through terminators, 278</td>
</tr>
<tr>
<td>passive matrix LCDs, 386</td>
</tr>
<tr>
<td>passive terminators, 277</td>
</tr>
<tr>
<td>passwords access points, 757, 847-848</td>
</tr>
<tr>
<td>BIOS settings, 98</td>
</tr>
<tr>
<td>CMOS jumper, 100</td>
</tr>
<tr>
<td>guidelines, 823</td>
</tr>
<tr>
<td>hard drives, 303</td>
</tr>
<tr>
<td>LANs, peer-to-peer, 731</td>
</tr>
<tr>
<td>local policies, creating, 864-868</td>
</tr>
<tr>
<td>managers, 826</td>
</tr>
<tr>
<td>protecting, 823-826</td>
</tr>
<tr>
<td>security policies, 812</td>
</tr>
<tr>
<td>Windows Vista/7 protection, 828</td>
</tr>
<tr>
<td>PAT (Port Address Translation), 776</td>
</tr>
<tr>
<td>PATA (Parallel ATA), 258</td>
</tr>
<tr>
<td>ODD connectivity, 340</td>
</tr>
<tr>
<td>storage device design considerations, 458</td>
</tr>
<tr>
<td>PATA devices, 259-260</td>
</tr>
<tr>
<td>installing, 266-270</td>
</tr>
<tr>
<td>80-conductor cable settings, 267</td>
</tr>
<tr>
<td>documentation, 270</td>
</tr>
<tr>
<td>motherboard connectors, 259</td>
</tr>
<tr>
<td>PATA hard drives, power consumption, 152</td>
</tr>
<tr>
<td>patch cables, 735</td>
</tr>
<tr>
<td>patches, 595</td>
</tr>
<tr>
<td>patches (software), 190</td>
</tr>
<tr>
<td>paths, 475-476, 486</td>
</tr>
</tbody>
</table>
PBs (petabytes), 46
PC Card/ExpressBus drives, 358
PC Cards, 75, 709
PCI (Peripheral Component Interconnect), 67
PCI bus speed, 51
PCI expansion slots, 67-69
PCI Express. See PCIe slots
PCI interrupts, 105
PCI slots
 bus bandwidth comparisons, 72
 configuring, 99
 PCIe, compared, 71
PCI (PCI Express), 70
PCI bus speed, 51
PCI slots, 70-73, 99
PCI video cards, power consumption, 152
PCI-X bus, 68
PCMCIA (Personal Computer Memory Card International Association), 75
PCs (personal computers), 6
 components, 6
 memory, 10
 optical drives, 7
 types, 6
 web cams, accessing, 359
PCX (Microsoft Paintbrush) extension, 485
PDF extension, 485
PDF (Portable Document Format), 356
PDSL (Power line DSL), 706
peer-to-peer LANS, 729-731
Pentium/Mobile Intel processors, 49
 performance
 evaluating, 682
 memory, upgrading, 225
 monitoring with Performance Monitor, 683-685
 RAM, 203
 software, troubleshooting, 226
 system, monitoring, 624
 video, 404
Windows 7, 685-686
Performance Log Users group, 825
Performance Monitor utility, Windows XP, 683-685
Performance tab (Task Manager), 223
Performance utility, memory, 223-224
Peripheral Component Interconnect. See PCI
peripherals, configuring, 99
permissions, 827
 effective, 832
 inherited, 831
 NTFS, 827-831
 shared folder, 827-830
Windows help, 832
personal area networks. See PANs
Personal Computer Memory Card International Association (PCMCIA). See PC Cards
personal computers. See PCs
petabytes (PBs), 46
PGA (pin grid array) sockets, 57
phage viruses, 586
Phenom AMD processors, 49
phishing, 841
 reporting, 843
Phoenix BIOS audio beeps, 187
Phone and Modem Options control panel, 521
phone filters, 707
phone line isolators, 161
phone line limits, 701
phone skills (technicians), 305
physical access
 locking computers, 816
 security, 812
physical address extension (PAE), 223
physical layer (OSI model), 745
physical security, 813-814
 biometrics, 815
 laptops, 817
 real-world applications, 816
pickup rollers (laser printers), 414
pin 1 (cables), 125
pin grid array (PGA) sockets, 57
pinch gesture, 482
ping command, 511, 772-774
pinning applications (Start menu), 534
pins (motherboards), configuring, 94
pipelines (processors), 48
pixels
 dead, LCDs, 387
 defined, 381
 displays, number determining, 385
 response rate, LCDs, 387
Plain Old Telephone Service (POTS), 783
plan of action (troubleshooting), 191
planars. See motherboards
plane to line switching (PLS), 388
planning memory installations
 amount of memory needed, determining, 209-211
 buying, 216-217
 memory features, 207-209
 mobile devices, 207
 module type amounts, determining, 212-215
 researching, 216-217
 technologies, 205-206
plasma, defined, 381
plastic parts, removing from laptops, 130
plastic pin grid array (PPGA) sockets, 57
platters (hard drives), 253
plenum cables, 735
PLS (plane to line switching), 388
plug and play devices, installing, 600-602
plug and play (PnP), 109
PNG (Microsoft Paint) extension, 485
PNG (Portable Network Graphics) extension, 356
PNG (Portable Network Graphics), 356
PnP (plug and play), 109
PoE (power over Ethernet), 754
Point of Presence (POP), 776
Point-to-Point protocol (PPP), 783
polarity, 135-136
policies
 group, viewing, 507
 local, controlling passwords, 826
 security, 812
polymorphic viruses, 586
POP (Point of Presence), 776
POP3 (Post Office Protocol version 3), 779
Port Address Translation (PAT), 776
portable document format. See PDF
Portable Network Graphics (PNG), 356
portrait mode, LCDs, 387
ports
audio, 29, 37
component/RGB video analog, 395
defined, 11
disabling, 95
downstream, 23
eSATA, 33, 37
eSATAp, 33, 37
Ethernet, 33, 37
forwarding, 838
game, 37
IEEE 1394, 30-33, 36
shutdown problems, 624
male/female, 11
MIDI, 37
modem, 34, 37
mouse/keyboard, 12
multiple-device IRQ assignments, 102
network, 33
parallel, 28, 36
printers, 405, 427
projectors, 394-395
PS/2 keyboard, 36
PS/2 mouse, 36
replicators, 36
RJ-11, 33
RJ-45, 33
SATA, enabling, 273
serial, 29, 36, 697-700
sound, 344-345
sound designs, 458
S/PDIF, 37
S-Video, 37
TCP/IP, 778-779
troubleshooting physical problems, 188
upstream, 23
USB, 36
3.0, 23
cabling rules, 24
configuring, 98
converters, 25
deleted, 22
devices supported, 22
hubs, 24
installing extra, 26
installing USB devices, 25
maximum cable length, 23
mini, 25
on-the-go, 26
power, 24
printers, troubleshooting, 427-428
removing USB devices, 25, 347
scanners, 355
shutdown problems, 624
sound, 349
speeds, 23
troubleshooting, 27-28
upstream/downstream, 23
versions, 23
wireless, 26
video, 19-22, 36-37, 390-392
positive attitude, 4
POST (power-on self-test), 94
errors, 100, 185-187
memory error codes, 220
memory, troubleshooting, 226
Post Office Protocol version 3 (POP3), 779
POTS (Plain Old Telephone Service), 783
pounds (paper), 416
power
AC/DC, 134
batteries
digital cameras, 358
disposal, 162
lithium regulations, 144
mobile device replacement, 152
troubleshooting, 153
battery recycling programs, 102
blackouts, 155
brownouts, 155
capacitors, 135
consumption, 151-152
continuity checks, 135-136
current, measuring, 135
DC power plugs, removing, 131
electrical fires, 161
flash BIOS, 98
fuel cells, 145
IEEE 1394 hubs, 33
laser printers, 414
line conditioners, 157
managing, 147-152
measuring, 135
mobile device batteries, 144-146
motherboard, 101-102
over Ethernet (PoE), 754
phone line isolators, 161
projectors, 395
resistance, 135
safety, 3
shorts, 155
saving, 396
sleep mode, 149-150
speakers, 351
spikes, 155
standby, 134
storage device design considerations, 457-458
supplies, 7, 137
AC voltage, 137
auto-switching, 151
cables, 454
comparing, 147
connectors, 140
converting AC to DC, 141
cooling function, 143
DC voltage distribution, 142
design components, 454-455
disassembly, 153
dual-rail, 151
fixed input, 151
form factors, 138-139
functions, 141
mobile devices, 152
physical sizes, 152
power good signals, 139
problem symptoms, 152-153
standby, 160
switching, 137
testers, 144
triple-rail, 151
uninterruptible, 158-159
upgrading/replacing, 151-152
voltage, 135
voltages, 143
watts, 151
surge protection, 156-157
surge protectors, 155-157
surges, 155
troubleshooting, 153-154
grounding problems, 154
overvoltage, 154-155
power good signals, 154
problem sources, finding, 153
under-voltage, 155
wall outlets, 153
USB ports, 24
voltage, 134-135
volts, 134
Windows 7, 149-150
Windows management settings, 148
Windows Vista/7 schemes, 532
Windows XP schemes, 522
power good signals, 139
testing, 154
troubleshooting, 154
Power line DSL (PDSL), 706
Power on by Ring, Resume by Ring, or Wakeup BIOS power setting, 149
Power on Function BIOS power setting, 149
power-on self-test. See POST
Power Options control panel, 521
power ratings (speakers), 350
power users, 825
PPGA (plastic pin grid array) sockets, 57
PPP (Point-to-Point Protocol), 783
PPT/PPTX (Microsoft PowerPoint) extension, 485
preboot execution environment (PXE boot), 590
pre-installation checklist (Windows), 580
backing up data, 585
clean install, 580-582
data migration, 582
drivers, 585
file systems, 583
hardware requirements, 584-585
multiple operating systems, 583
partition size, 583
power-/disk-management tools, removing, 585
program compatibility, 582
upgrading, 580-581
virus scans, 585
preparations, disassembly, 122
presentation layer (OSI model), 745
preventing ESD, 120-121
preventive maintenance
adapters, removing, 133
aerosol can disposal, 133
boot inspection, 132
contacts, 133
defined, 132
dirt removal, 132-133
displays, 395-396
floppy drives, 132
hard drives, 299-301
backups, 301-303
implementing, 191
inventory, taking, 133
keyboards, 18, 132
kits, 132
LCD monitors, 133
mice, 18
modems, 709
MSDs, 133
ODDs, 342-345
operating systems, 632
optical lens, 133
outside case, 132
printers, 420-421
rubber rollers, 133
scanners, 357
updates, checking, 133
viruses, 133
primary corona (laser printers), 414
Primary master hard disk fail message, 186
primary partitions, 287
Primary slave hard disk fail message, 186
print drivers, 424
print engine (printers), 404
print jobs, reordering, 422
printed materials security, 821
printers
categories, 406-407
default, configuring, 422
DPI, 409-410
dye sublimation, 410
impact, 407-408
re-inking, 418
troubleshooting, 428
ink cartridges, 417-418
inkjet, 409-411
maintenance, 420
refilling cartridges, 418
troubleshooting, 429
installing, 418-420
Windows, 422
large format inkjet, 411
laser. See laser printers
memory, upgrading, 420
network
configuring, 771-772
troubleshooting, 775
networking, 405
networks, 800-801
paper, 416-417
storage tray/feeder upgrades, 420
stuck, troubleshooting, 427
troubleshooting, 428
ports, 405
troubleshooting, 427
print spoolers, 424-425
properties, 423
solid ink, 410
subsystems, 404-405
Index

programs 943

test pages, printing, 424
thermal, 416
defined, 407
maintenance, 421
thermal wax transfer, 411
troubleshooting, 427-430
upgrading, 420
Windows, 422-426
wireless, 406
Printers and Other Hardware
control panel, 647-648
Printers control panel, 521
printheads
impact printers, 407-408
inkjet printers, 409
thermal printers, 416
printing, troubleshooting, 428
printwires, impact printers, 407
priority levels (SCSI IDs), 276
privacy
displays, 397
web browsers, 712
privacy filters, 397, 814
Privacy tab (Internet Explorer Internet Options), 712
private folders, creating, 857-858
private IP address ranges, 748
proactive technicians, 787
probable cause theory (troubleshooting), 185-190
process IDs, listing, 514
processes, killing, 514
Processes field (Task Manager Performance tab), 224
processing laser printers, 412
processors
ALU, 47
AMD, 49-50
binary prefixes, 46
BIOS settings, 55, 98
bits, 46
bus, 47
bytes, 46
cache memory, 51-52
clocking, 53
connections, 54-55
cooling, 59-62
defined, 46
design components, 453-454
installing, 62-64
Intel, 48-49
IRQs, 102-103
laptops, 64
multi-core, 55-57
multiple, installing, 63
multipliers, 55
nanometers, 453
overclocking, 65-66
pipelining, 48
power consumption, 152
register size, 47
sockets, 57-58
software instructions, fetching, 203
speed, 50-51
speeds, 46
threading, 54
throttling, 63
troubleshooting, 66-67
upgrading, 63
video, 397-398
voltage requirements, 63
Profile tab, MMC
Windows 7, 667
Windows XP, 663
profiles, users, 490
programs
allowing through firewalls, 838
antivirus, running, 587
AutoPlay/AutoRun, disabling, 819
Backup utility, 597-598
CHKDSK, 300
Computer Management, Services snap-in, 623
CONVERT, partitions, 284
Disk Cleanup, 300
Disk Defragmenter, 301
Disk Management, 283,
status states, 298-299
diskpart utility, 283
Dr. Watson, 620
Easy Transfer, 582
Event Viewer, 680-682
force quitting, 620
HyperTerminal, 721-723
installing, 605-606
launching, 605
MBSA, 840
NIC vendor software, 846
not responding, troubleshooting, 624
nslookup, 774
paths, 475-476
Performance Monitor, Windows XP, 683-685
pinning to Start menu, 534
print spoolers, 424-425
regedit, 491
registry, backing up, 597
REGEDIT. See REGEDIT
regedt32, 491
Remote Desktop, starting, 509
security, 840
Setup, 94-99
Start menu, customizing
Windows Vista/7, 553-555
Windows XP, 551-553
startup
configuring, 615
disabling, 615, 670
Windows Vista/7, 533
Windows XP, 524
startup folder shortcuts, creating, 676
stopping, 680
System Configuration, 617-618
starting, 509, 617
Windows 7, 677-679
Windows XP, 676-677
System File Checker
running, 297
starting, 513
System Monitor, Windows XP, 682-683
System Restore, 603-604
registry, 604
restore points, 604
Windows 7, configuring, 654
Windows XP, configuring, 653
Task Manager, 619-620
tracert, 774
web browser options, 712
Windows compatibility, 582
Windows XP Mode, 582
Programs control panel, 529, 605
Programs tab (Internet Explorer Internet Options), 712
projector ports, 21
projectors, 394-395
properties
NICs, 769
printers, 423
protocols
DHCP, IP addressing, 766
Kerberos, 823
PPP, 783
TCP, 777
TCP/IP, 745
devices, 746
hijacking, 842
layers, 746, 779
NIC stack, checking, 772
overview, 745, 778
protocols/ports, 778-779
statistics, viewing, 510
proxy servers, 836
PS/2 keyboard ports, 36
PS/2 mouse ports, 36
PSTN (public switched telephone network), 703
Public folder, 828
punch down tools, 741
PVC cables, 735
PXE boot (preboot execution environment), 590
QoS (quality of service), 703
NICs, 769
quad-core processors, 55
quadruple-channel memory, 215
qualities (technicians), 3-4
active listening skills, 3, 81-82
documentation, 192-193
doing one thing at a time, 110
follow up, 193
gun slingers, 110
positive attitude, 4
teamwork, 228

R
technical language
familiarity, 4
written communication skills, 162-163
quality of service. See QoS
quality of video, 380
quarantined files, deleting, 820
quick format partitions, 583
quick formats, 293
Quick Launch (taskbar), 538
Quick Launch toolbar, 539
quitting programs, 620
radio buttons, Windows dialog boxes, 480
radio frequency ID (RFID), 813
radio frequency interference (RFI), 122
radio wireless input devices, 16
RAS (Recovery Console), 494-495
RAID (redundant array of independent disks), 291-293
troubleshooting, 299
RAM (random access memory)
defined, 10
mobile devices, 11
over 4GB, 214
performance, 203
ROM, compared, 202
types, 203
video, 400
virtual memory, 221
RAM sticks power consumption, 152
Rambus DRAM (RDRAM), 205
Rambus memory modules. See RIMMs
random access memory. See RAM
random access time, ODDS, 337
Rate-Adaptive DSL (RADSL), 706
RAW volumes, 290
RCA jacks, 21
rd command, 21
RDP (Remote Desktop Protocol), 511
RDAM (Rambus DRAM), 205
REGEDIT, registry, 550-551
regedit program, 597
regedit tool, 491
read & execute NTFS permission, 831
read NTFS permission, 831
read-only memory. See ROM
read-only ODDS, 335
read/write heads, 252
ReadyBoost, 614
re-arming computers, 589
reassembly, 132
reconnaissance attacks, 842
recovery, 303
BIOS, 96
hard drives, 502
mobile operating systems, 493
Recovery Console, 494-495
Windows XP, 672
restore points, configuring, 856-857
Windows, 616-617
Windows 7, 675
Windows OS, 492-493
WinRE, 494-495
Recovery Console, 494-495
accessing, 495
commands, 569
installing, 495, 568
limitations, 495
running, 495
Windows XP, 672
recovery discs, 492
Recycle Bin
emptying, 477
Windows desktop, 476
Windows Vista/7, 534
Windows XP, 524
Recycle Bin icon, 475
recycling, 162
ink cartridges, 417
red laser technology, 334
redirecting browsers, 833
redundant array of independent disks. See RAID
refilling ink cartridges, 417-418
refresh rate, displays, 385
refreshing memory, 203
REGEDIT, registry, 550-551
restoring

regedit32 tool, 491
Regional Options control panel, 521
register size (processors), 47
registered memory, 208
registering dll files, 512
registry
 backing up, 597
 restoring, 597, 604
 Windows, 109
registry (Windows), 491
 backing up, 492
 customizing, 644-645
 defined, 490
 dll files, registering, 512
 editing, 491-492
 exporting/importing sections, 551
 subtrees, 490
 viewing, 550
regsvr32 command, 512
re-imaging Windows 7, 589
re-installing Windows, 594-595
reliability, Windows 7, 685-686
remote access
 Remote Assistance, 631
 Remote Desktop, 631, 687-689
 Remote Desktop versus Remote Assistance, 630
 security policies, 812
Remote Assistance, 630-631
Remote Desktop, 393, 630-631, 687-689
Remote Desktop Protocol (RDP), 779
remote desktop users, 825
Remote Desktop utility, starting, 509
remote network devices
 accessing, 514
 attaching, 510
 connectivity, testing, 511
remote network installations, 590
removable drives, 303
removable media files, deleting, 486
removing
 adapters, 133
 Administrative Tools from Start menu, 657
 apps, 785
 batteries, mobile devices, 144
 BIOS write protection, 96
cables, 124-126
case, 124
CRTs, 396
DC power plug, laptops, 131
directories, 511
dirt, 133
expansion cards, laptops, 130
files, 505, 544
 permanently, 476
 removable media, 486
flash drives, 227
folders, 544
hard drives, 128
laptop displays, 389
laptop keyboards, 13
memory, 218
 laptops, 130
 mobile devices, 220
motherboard front panel
cables/connectors, 128
motherboards, 80, 129
 I/O shields, 129
 retaining clips, 130
 standoffs, 129
partitions, 289
PCIe adapters, 73
plastic parts, laptops, 130
quarantined files, 820
SATA drives, 456
solid-state drives, 128
speakers, laptops, 131
USB devices, 25, 347
viruses, 819-820
Windows XP components, 658
ren command, 512
renaming files and directories, 512
repair installation (Windows), 594-595
Repair Your Computer, 611
repairing hard drives, 502
repeater access points, 760
replacing. See also removing
 floppy drives, 252-253
 laptop processors, 64
 motherboard batteries, 101
 motherboards, 80
 power supplies, 151-152
 printheads, impact printers, 408
touch input devices, 14
replay attacks, 842
reporting security incidents, 843-844
requirements
 cable modems, 706
 hardware, 584-585
 iTunes, 786
 memory
 calculating, 209-211
 capacities, 209
determining, 203
 installed amount, determining, 211
 operating systems, 210-211
 Windows 7, 584
 Windows XP/Vista/7, 210
 networks, 731
 NICs, 765
 Remote Desktop, 631
 Virtual PC, 593
researching memory, 216-217
resistance, measuring, 135
resistive touch screen displays, 384
resistive touch screens, 383
resolution
 digital cameras, 358
 displays, 385-388
 scanners, 357
resources
 adapters, assigning, 109
 conflicts, 104
 Device Manager verification, 104
 system, 102-108
troubleshooting, 184
response time, LCDs, 387
restarting computers, 513
restore points, 604
 configuring, 856-857
 controlling, 819
restoring
 registry, 604
 restore points, 604
 Shadow Copies, 604
System Restore. See System Restore
System Restore utility, 603-604
system state, 598
Windows registry, 597
Resume by Alarm BIOS power setting, 149
retaining clips, 130
retinal scanners, 816
retrieving deleted files, 544
reverse flow cooling, 143
revolutions per minute (RPMs), 254
RFI (radio frequency interference), 122
RFID (radio frequency ID), 813
RG-6 coax cable, 737
RG*-58 A/U coax cable, 737
RG-59 coax cable, 737
rich text format (extension), 485
RIMMs (Rambus memory modules), 10, 204
installing, 219
removing, 218
ring topology, 734
riser boards, installing, 8
Rivest Shamir Adleman (RSA) security token, 813
RJ-11 connectors, 736
RJ-11 ports, 33
RJ-45 connectors, 736
RJ-45 ports, 33
robocopy command, 512
rolling back device drivers, 602, 655
ROM (read-only memory)
defined, 10
RAM, compared, 202
root directories, 496
file maximum, 496
setting directories as, 514
rootkits, 833
routers
access points, 771
network layer, 745
wireless, 754
RPMs (revolutions per minute), 254
RS232 serial communication standard, 700
RS232C, 698
RSA (Rivest Shamir Adleman) security token, 813
RTF (rich text format) extension, 485
RTS/CTS (hardware handshaking), 699
rubber ducky, 764
rubber printer rollers, troubleshooting, 427
rubber rollers, cleaning, 133
running Recovery Console, 495
RW (reads/writes) ODDs, 335
S-Video ports, 19, 37
Safe Mode, 610-611
Safe Mode with Command Prompt, 610
Safe Mode with Networking, 610
SAFER+ (Secure and Fast Encryption Routine), 844
safety
electrical fires, 161
EMI, 122
ESD, 120-122
laser printers, 415
LCDs, 388
lifting, 3
memory, 218
MSDS, 3, 133
power, 3
refilling ink cartridges, 418
static electricity, SSDs, 275
sags (power), 155
sampling
8-bit, 346
16-bit, 347
SAS (Serial Attached SCSI), 258, 264-266
installing, 280-281
SATA (serial AT attachment), 33, 258-263
BIOS options, 99
cables, 262
connectors, 261-262
devices
installing, 271-274
motherboard connectors, 259
hard drives, power consumption, 152
SATA 1, 261
SATA 2, 261
SATA 3, 261
satellite modems, 709
saving files, 486
power, 396
scalable link interface (SLI), 399
scanner units (laser printers), 414
scanners, 354-357
Scheduled Tasks control panel, 521
screen orientations, mobile devices, 383
screen rotation, configuring mobile devices, 386
screen savers, 397
sleep mode conflicts, 150
cert pick-up, 123
screwdrivers, 123
scribe, 130
scroll gesture, 482
SCSI (Small Computer System Interface), 257, 264-266
cables, 279
host adapters, 264
IDs, 276-279
multiple, installing, 280
networking, 266
parallel, configuring, 276
powering on, 276
SAS, 266
installing, 280-281
standards, 265
symbols, 278
types, 264
SD (Secure Digital) memory cards, 11, 226
SDelete utility, 302
SDRAM, 205
SDSL (Symmetric DSL), 706
SE (single-ended terminators), 277
searches (web browsers), 712
searching files/folders
Windows Vista/7, 532
Windows XP, 523
Secondary master hard disk fail message, 186
Secondary slave hard disk fail message, 186
sectors (hard drives), 256
Secure and Fast Encryption Routine (SAFER+), 844
Secure Digital (SD) memory cards, 11, 226
Secure Digital storage, 358
Secure File Transfer Protocol (SFTP), 779
Secure Shell (SSH), 779
Secure File Transfer Protocol (SFTP), 779
Secure Shell (SSH), 779
Secure Sockets Layer (SSL), 776
security auditing, 826
authentication, 823
authorization, 823
biometrics, 815-816
BIOS settings, 100, 817
Bluetooth, 753
data, 820-821
DEP, 822
file/folder encryption, 855-856
files/folders, 826-827
flash drives, 227
FTP, 806
hard drives, backing up, 301-303
incident reporting, 843-844
Internet, 833
active scripting, 835
clear text emails, 834
cookies, controlling, 835
cryptography, 833
firewalls, 836-839
hijacked browsers, 833-834
hijacked email accounts, 834
malicious code types, 839
network attacks, 841-842
phishing, 841
programs, 840
proxy servers, 836
social engineering, 840
spam, 834
VPNs, 842-843
LANs, 729
laptops, physical, 817
local policies, passwords, 826
Microsoft Security Essentials, 587
mobile devices, 850-851
network cabling, 738-739
networks attacks, 841-842
VPNs, 842-843
operating systems, 818-820
passwords, local policies, 864-868
peer-to-peer LANs, 730
permissions, 827-832
physical, 813-816
physical access, locking computers, 816
policies, 812
principle of least privilege, 828
private folders, creating, 857-858
user IDs/passwords, 823-826
web browsers, 712
WFP, Windows XP support, 576
Windows Defender, 868-869
Windows System Protection, restore points, 856-857
wireless networks. See wireless networks
WIFI (Windows Resource Protection), 579
Security control panel, 528
security logs, 620
Security tab (Internet Explorer Internet Options), 712
security tokens, RSA, 813
Selective startup radio button (System Configuration utility), 618
self-powered hubs, 24
Sempron/Mobile AMD processors, 50
separation pad (laser printers), 414
serial AT attachment. See SATA
Serial Attached SCSI (SAS), 258, 264-266
serial devices, 697-700
serial hard drive interfaces, 258
serial ports, 29, 36, 697
configuring, 698-700
DCE signal connections, 700
DTE signal connections, 700
flow control, 699-700
hardware handshaking, 699
parity, 699
RS232 serial communication standard, 700
software handshaking, 699
transmission speeds, 698
serial presence detect (SPD), 208
server-based LANs, 729-731
Server Message Block (SMB), 779
servers
DNS
IP addresses, 767
troubleshooting, 774
e-mail, 782
FTP, 806
home computer system configuration, 452
NOS, 729
proxy, 836
service packs, 490, 595
service packs (software), 190
service releases (software), 190
service set identifiers (SSIDs), 757
services
disabling, 505
enabling, 506
listing, 508
process IDs, listing, 514
system shut down problems, 624
troubleshooting, 623
Services and Applications category (MMC), 609
services.msc command, 623
Services snap-in, 623
Services tab (System Configuration utility), 618
session layer (OSI model), 745
set command, 513
Setup program, 94-95
accessing, 95
ACPI, 99
advanced options, 99
boot options, 98
date/time, 98
executable code prevention, 99
exit options, 100
general optimization, 98
hard drive encryption, 99
hard drives, 282
hardware monitor, 99
Hyper-Threading, 99
IDE devices, 99
intrusion detection, 99
lojack, 99
number lock key, 98
onboard devices, 98
passwords, 98
PCI slots, 99
PCIE slots, 99
peripherals, 99
ports/connectors, disabling, 95
processors, 98
SATA, 99
system information, 98
TPM, 99
USB, 98
video, 98
virtualization, 99
virus protection, 98

sfc command, 513
SFTP (Secure File Transfer Protocol), 779
Shadow Copies, 604
shared folder permissions, 827-830
Shared Folders tool (MMC), 607-608
shared key authentication, 844
shared system memory, 400
shares
administrative, 826
hidden, 827
local, 826
network, 779-780
networks, corporate, 782
shares (MMC), 607
sharing
files/folders, 827-832
folders, 780
maximum users, 821
subfolders, 820
Windows 7, 860-863
Windows XP, 858-859
PCI IRQs, 105
sheeted scanners, 354
shielded twisted-pair (STP), 734
shielding (speakers), 351
shortcuts
creating, 525
desktop icons, 475-476
ShowSounds, 649
shredding printed materials, 821
shut down options, Windows, 477
shutdown command, 513
shutting down computers, 513
Windows Vista/7, 535
Windows XP options, 525
shutting down Windows, troubleshooting, 624
signals, SCSI electrical, 277
SIIA (Software and Information Industry Association), 843
SIM (System Image Manager), 589
SIMMs (single in-line memory modules), 203
Simple Mail Transfer Protocol (SMTP), 779
Simple Network Management Protocol (SNMP), 779
single volumes, 290
single-ended (SE) terminators, 277
single IDE setting, 267
single in-line memory modules (SIMMs), 203
single-level memory cells (SLCs), 264
single link DVI connectors, 20
single-mode fiber-optic cables, 738
single-sided memory, 208
single sign-on authentication, 824
site surveys (antennas), 762
size
clusters, 294
display design considerations, 459
hard drives, 256
icons, Start menu
Windows Vista/7, 553
Windows XP, 551
paper, configuring, 417
PCIE slots, 72
power supplies, 152
storage devices, 457
UTP, 734
virtual memory, configuring, 221

skills, technicians
attitude, 360-361
burnout, avoiding, 632-633
customer trust, building, 851
irate customers, handling, 461-462
mentoring, 713
phone, 305
proactive, 787
staying current, 516
work ethics, 430
slave devices, 267
SLCs (single-level memory cells), 264
sleep-and-charge USB ports, 24
sleep mode, 149-150
SLI (scalable link interface), 399
Small Computer System Interface. See SCSI
small-outline DIMMs (SO-DIMMs), 207
smart cards, 813
SmartMedia, 358
smartphones
apps, 784-786
batteries
removing, 144
troubleshooting, 153
design components, 461
displays, troubleshooting, 404
e-mail, configuring, 786-787
GUIs, 472
multitasking gestures/screen rotation settings, 386
notification area, 481
security, 850-851
storage, 786
SMB (Server Message Block), 779
SMTP (Simple Mail Transfer Protocol), 779
smurf attacks, 842
snap-ins, Component Services, 606
snapshots
virtualization, 494
VMware Workstation virtual machines, 643-644
SNMP (Simple Network Management Protocol), 779
social engineering, 840
SSDs (solid state drives)

sockets, 57-58
SO-DIMMs (small-outline DIMMs), 207
sample advertisements, 217
Soft-off BIOS power setting, 149
software
defined, 5
device drivers, 5
ersors, 190
firmware, 5
older Windows, 224
performance, troubleshooting, 226
printers, troubleshooting, 428
programs, 605
RAID, configuring, 291
SCSI configuration, 279
service packs, 190
software drivers, troubleshooting, 402
software-enforced DEP, 822
software firewalls, 836
software handshaking, 699
Software and Information Industry Association (SIIA), 843
software piracy, reporting, 843
software. see
solder joints, 127
solid ink printers, 410
solid state drives (SSDs), 263
Sony/Philips Digital Interface (S/PDIF), 29
sound
audio/video editing PCs, 451
controlling, 649-650
design components, 458
media players, 452
microphones
mobile devices, 350
sound designs, 458
Windows, 348
mobile devices, 349-350
motherboard speakers, 344
muting, 348
ODDs, 343-345
ports, 344
sound cards, 345-348
sound port colors, 345
sound waves, 345
speakers, 350
amplification, 350-352
choosing, 351
configuring, 650
connectivity, 351
electrostatic, 351
features, 350
frequency response range, 351
popping sounds, troubleshooting, 352
power rating, 350
power sources, 351
shielding, 351
sound designs, 458
troubleshooting, 352
volume, controlling, 650
troubleshooting, 352-354
sound cards, 345
8-bit, 346
16-bit, 347
analog to digital conversions, 346
defined, 29
frequency response, 346
installing, 347
sound design considerations, 458
troubleshooting, 353
Windows, 348
sound waves, 345

Sounds and Multimedia control panel, 521
Sounds, Speech, and Audio Devices control panel, 649-650
SoundSentry, 649
south bridge (ICH), 77
spam, 834
spanned volume, 290
SPD (serial presence detect), 208
SPD error messages, troubleshooting, 225
S/PDIF (Sony/Philips Digital Interface), 29
S/PDIF sound ports, 37, 344
speakers, 350
amplification, 350-352
choosing, 351
configuring, 650
cost, 264
defined, 263
defragmenting, 301
defragmenting, 301
development, 275
defragmenting, 301
external, 275
hard drives, compared, 263
industries supported, 263
speed

cable modems, 705
clocking, 156
Ethernet, 741
IEEE 1394 ports, 30
memory, 216-217
modems, 701
NICs, 769
ODDs, 335-336
processors, 46, 50-51
serial port transmissions, 698
USB ports, 23
Windows boot process, increasing, 614
SPGA (staggered pin array) sockets, 57
spikes (power), 155
spilled toner, 416
spontaneous reboots (Windows), 623
spread gesture, 482
SPSs (Standby Power Supplies), 160
spyware, 840
reporting, 843
SRAM (static RAM), 203
SSDs (solid state drives), 264
cost, 264
defined, 263
defragmenting, 301
defragmenting, 301
development, 275
defragmenting, 301
external, 275
hard drives, compared, 263
industries supported, 263
installing, 274-275
MLCs, 264
reliability, 263
SLCs, 264
static electricity, 275
wear leveling, 263
write amplification, 263
SSH (Secure Shell), 779
SSID broadcasting, 848
SSIDs (service set identifiers), 757
access points, 757, 847-848
SSL (Secure Sockets Layer), 776
staggered pin array (SPGA) sockets, 57
standard users, 825
standards
Ethernet, 741
IDE PATA, 260
IEEE 1394, 31
network, 742-743
SCSI, 265
twisted-pair cables, 735
wireless networks, 764
standby power, 134
Standby Power Supplies (SPSs), 160
standoffs, 129
star topology, 733-734
start bit, 698
Start button, Windows desktop, 476-478
Start menu
Administrative tools, 657
applications, pinning, 534
customizing, 606
Windows Vista/7, 526-527
default icons settings, 554
desktop, 553
programs, customizing, 553-555
Windows XP, 519-520
default icon settings, 552
desktop, 551
programs, customizing, 551-553
Windows XP, 524
Notepad, 510
programs, 605
Remote Assistance, 631
Remote Desktop, 509
System Configuration utility, 509, 617
System File Checker, 513
Task Manager, 619
Windows Explorer, 507
startup files. See system files
startup folders
program shortcuts, creating, 676
verifying, 670
startup programs, 615
Startup Repair tool, 617
Startup tab (System Configuration utility), 618
state (system)
backing up/restoring, 598
backing up Windows XP, 645
static electricity, SSDs, 275
static RAM (SRAM), 203
staying current (technicians), 516
stealth viruses, 586
StickyKeys, 649
stop 0x00000xx Kernel xxx error, 295
stop bits, 698
serial ports, 699
stopping
apps, 785
programs, 680
storage
digital cameras, 358
mobile devices, 786
storage capacities, 46
Storage category (MMC), 609
storage devices, 7, 250
cloud, 251, 304
configuring, 266
design components, 456-458
eSATA, 262
installing, 273
partitions, 287
unmounting, 274
floppy drives, 251-253
hard drives. See hard drives
IDE, 259
managing. See Disk Management
mobile devices, 281
PATA, installing, 266-270
PATA IDE, 259-260
RAID, troubleshooting, 299
removable, 303
SAS, installing, 280-281
SATA IDE, 261-263
installing, 271-274
SCSI, 264-266
cables, 279
electrical signals/terminators, 277
host adapters, 264
ID configuration/termination, 276-279
multiple, installing, 280
networking, 266
parallel, configuring, 276
powering on, 276
SAS, 266
standards, 265
symbols, 278
types, 264
SSDs, 264
cost, 264
defined, 263
defragmenting, 301
hard drives, compared, 263
industries supported, 263
installing, 274-275
MLCs, 264
reliability, 263
SLCs, 264
cost, 264
defined, 263
defragmenting, 301
hard drives, compared, 263
industries supported, 263
installing, 274-275
MLCs, 264
reliability, 263
SLCs, 264
static electricity, 275
wear leveling, 263
write amplification, 263
troubleshooting
Disk Management status states, 298-299
hard drive noises, 294
installations, 297
new drive installations, 295-296
previously working hard drives, 297-298
storing laptops during travel, 144
STP (shielded twisted-pair), 734-736
straight-through cables, 735
straight-through CAT 5 UTP cable, creating, 792-794
striped volumes, 290
subdirectories, 497
subfolders, 484
sharing, 820
subnet masks, 749-750
broadcast address, 751-752
network number, 751-752
prefix notation, 750
purpose, 750
rules, 750
stopping point, showing, 750-751
viewing, 750
subtrees, Windows registry, 490
supplicants, 845
surface wave touch screen displays, 384
surge protection, surge protectors, 156-157
surge protectors, 155-157
surges (power), 155
swap files, 221
virtual memory, 304
swipe gesture, 481
switches
advantage over hubs, 742
APs, connecting, 755
commands, 500
Ethernet, 732
star topology, 733
switching power supplies, 137
symbols, SCSI, 278
Symmetric DSL (SDSL), 706
Symmetric High-speed DSL (G.SHDSL), 706
synchronization rate, LCDs, 387
synchronizing Apple iOS devices with iTunes, 786
Sysprep tool, 589
system
configuration information, viewing, 514
configuring. See Setup program
performance
evaluating, 682
monitoring, 624
restore points, 856-857
services, 505-506
system bars, mobile devices, 481
System Configuration utility, 617-618
services, troubleshooting, 623
starting, 509, 617
Windows 7, 677-679
Windows XP, 676-677
System control panel, 521
system design components, 450-453
system file, 612
System File Checker
running, 297
starting, 513
system files, 612
system image disc (Windows 7), creating, 570
System Image Manager (SIM), 589
System Image Recovery tool, 617
system images, 492
System Information window, opening, 509
system logs, 620
System and Maintenance control panel, 527
System Monitor utility, Windows XP, 682-683
system partitions
NTFS, 289
Windows, booting, 612
System Protection (Windows Vista/7), restore points, 856-857
system repair disc (Windows 7), creating, 569-570
system repair discs, 492
system resources
defined, 102
IEEE 1394 ports, 108
I/O addresses, 106-107
IRQs, 102-105
memory addresses, 108
MSI/MSI-X interrupts, 106
PCI interrupts, 105
System Restore utility, 603-604, 617
configuring
Windows 7, 654
Windows XP, 653
System and Security control panel, 527
System State, backing up (Windows XP), 645
system state, backing up/restoring, 598
System Tools (MMC), 607-608
system tray, icons (customizing), 603
system volumes, 290
systemboards. See motherboards
systeminfo command, 514
systemroot (%around), 613
systemroot command, 514
T
T1 connections, 783
T3 connections, 783
tables
FATs, 294
partition, 288
 tablets
design components, 461
security, 850-851
tabs, Windows dialog boxes, 479
Tag Image File Format (TIF/TIFF), 356, 485
tailgating, 813
tape drives, 303
Task Manager, 619
Applications tab, 619
force quitting programs, 620
performance, evaluating, 682
Performance tab, 223
programs, stopping, 680
starting, 619
Task Scheduler, Windows 7, 689-690
taskbar
options, 538
Windows desktop, 476-478
taskkill command, 514
tasklist command, 514
tasks, killing, 514
TBs (terabytes), 46
TCP (Transmission Control Protocol), 777
TCP/IP (Transmission Control Protocol/Internet Protocol), 745-746
hijacking, 842
layers, 779
NIC stack, checking, 772
overview, 778
protocols/ports, 778-779
TCP/IP statistics, 510

teamwork, 228

technicians
qualities, 3-5
active listening skills, 3, 81-82
doing one thing at a time, 110
gun slingers, 110
positive attitude, 4
technical language familiarity, 4

skills
attitude, 360-361
burnout, avoiding, 632-633
customer trust, building, 851
documentation, 192-193
follow up, 193
irate customers, handling, 461-462
mentoring, 713
phone, 305
proactive, 787
staying current, 516
teamwork, 228
work ethics, 430
written communication, 162-163

Telnet, 777-779
telnet command, 514

Temporal Key Integrity Protocol (TKIP), 846
terabytes (TBs), 46
terminating SCSI IDs, 276-278
terminators, SCSI electrical, 277
test pages (printers), 424
testing
networks, connectivity, 772-773
ODD installations, 341
ports, 188

power good signals, 154
remote network device connectivity, 511
troubleshooting theories, 190-191
wall outlets, 153
text file format (TXT) extension, 485
text files, viewing, 509, 515
textboxes, Windows dialog boxes, 479
theories (problems)
establishing, 185-190
testing, 190-191
thermal paste, 60
thermal printers, 416
defined, 407
feed assemblies, 416
maintenance, 421
printheads, 416
thermal wax transfer printers, 411
thick client computer system configuration, 452
thin client computer system configuration, 452
threading, 54
Threads field (Task Manager Performance tab), 224
throttling processors, 63
thumb drives, 227
Thunderbolt ports, 22, 391
TIFF (Tag Image File Format), 356, 485
tin memory modules, 204
TKIP (Temporal Key Integrity Protocol), 846
TN (twisted nematic), 388
ToggleKeys, 649
toner
defined, 414
refilling, 418
spills, 416
troubleshooting, 429
toner probes, 740
tools
AC circuit testers, 153
Backup utility, 597
Boot utility, 597
bootrec.exe, 617
command prompt, 617
Compat ibility mode (Windows Vista/7), 224
Complete PC Restore, 617
Computer Management, Services snap-in, 623
corporate Windows installations, 589
DirectX Diagnostic, 342
disassembly, 122-124
Disk Defragmenter, 301, 609
Disk Management, 609
Windows 7, 669
Windows XP, 665

Dr. Watson, 620
DUN, 801
Event Viewer, 620-622
Hardware-Assisted Virtualization Detection Tool, 594
HyperTerminal, 721-723
loopback plugs, 188
MDT, 589
Microsoft Setup Manager, 589
MMC, Local Users and Groups, 607-608
network cabling, 740
nslookup, 774
Performance Monitor, Windows XP, 683-685
phone line isolators, 161
power supply testers, 144
preventive maintenance kits, 132
Recovery Console, 568-569
REGEDIT. See REGEDIT
regedit, 491
regedit program, registry (backing up), 597
regedt32, 491
Remote Desktop, starting, 509
scribes, 130
SDelete, 302
SIM, 589
Startup Repair, 617
surge protectors, 155-157
Sysprep, 589
System Configuration services, troubleshooting, 623
troubleshooting

starting, 509
Windows 7, 677-679
Windows XP, 676-677
System Configuration utility, 617-618
System File Checker, starting, 513
System Image Recovery, 617
System Monitor, Windows XP, 682
System Restore, 603-604, 617
registry, 604
restore points, 604
Windows 7, configuring, 654
Windows XP, configuring, 653
Task Manager, 619-620
Applications tab, 619
force quitting programs, 620
starting, 619
tracert, 774
VMM, 304
WDS, 589
Windows hard drive preventive maintenance, 300
Windows Memory Diagnostic, 617
Windows Memory Diagnostics tool, 225
Windows Performance utility memory, monitoring, 223-224
Windows Troubleshooter, printers, 425
Windows XP Mode, 582
WinRE, 617
Tools tab (System Configuration utility), 618
topologies (network), 732-734
Toshiba netbook Synaptics touchpad settings, 15
Total Physical Memory field (Task Manager Performance tab), 223
touch and hold gesture, 481
touch gesture, 481
touch screen displays, 383-384
touch technologies, 14
TouchFlo, 14
TPM (Trusted Platform Module), 99, 814
tracert command, 515, 774
tracking modules, 814
tracks (hard drives), 255
transfer corona, 413
transfer corona wires (laser printers), 414
transferring laser printers, 413
transient voltage suppressing (TVS) ratings, 157
Transmission Control Protocol (TCP), 777
Transmission Control Protocol/Internet Protocol. See TCP/IP
transport layer
OSI model, 745
TCP/IP model, 746, 779
traveling with mobile devices/laptops, 144
triple-channel memory, 215
tri-rail power supplies, 151
Trojan horse viruses, 586
Troubleshooter tool (Windows), printers, 425
troubleshooting
Bluetooth, Windows, 17
BSOD, Windows updates, 604
cable modems, 708-709
Device Manager, 104
digital cameras not appearing in Windows Explorer, 359
DirectX, 342
DNS, slookup command, 510
documentation, 192-193
drive failures, improper removal, 227
DSL modems, 708-709
firewalls, 839
flash drive failures, 227
floppy rives, cleaning, 252
flow chart, 192
follow up, 193
ground problems, 120
hard drives, 294-299
hardware, 187-188
hijacked browsers, 833-834
hijacked email accounts, 834
IEEE 1394 ports/devices, 32-33
Internet malicious code, 839
I/O address hexadecimal numbers, 107
keyboards, 18
Last Known Good Configuration option, 611
logical steps, 184
establishing a theory, 185-190
full system functionality, verifying, 191
identifying the problem, 184
plan of action, 191
preventive measures, implementing, 191
testing the theory, 190-191
memory, 225-226
mice, 18
motherboard diagnostic displays, 187-188
motherboards, 80-81
My Computer icon, 523
network printers, 775
networks, 772
affected devices, calculating, 772
connectivity, 772-773
DNS servers, 774
IP addresses, testing, 774
NICs, 774-775
packet paths, 774
star topologies, 733
ODDs, 341-342
operation requires elevation message (command prompt), 516
overview, 184
plug and play, 109
ports, physical problems, 188
POST errors, 100
AMI, 185
multiple, 187
Phoenix audio beeps, 187
written error messages, 185
power supplies, 152-155
printers, 425-430
printing, light printing, 428
processors, 66-67
programs not responding, 624
RAID, 299
Recovery Console, Windows XP, 672
troubleshooting

resources, 184. See also recovery
services, 623
sleep mode, 149-150
software
 error detection, 190
 patches/service releases, 190
 performance, 226
sound, 352-354
 mute button, 348
 sound cards, 353
speakers, popping sounds, 352
UPSs, 159
USB devices, 27-28
video, 402-404
viruses
 antivirus programs, running, 587
 symptoms, 586
Windows
 repair installation, 594-595
 shutting down, 624
 spontaneous reboots, 623
Windows 7 system image disc, creating, 570
Windows 7 system repair disc, creating, 569-570
Windows boot process, 614-616
Windows Defender, 868-869
Windows installations, 591
Windows updates, BSOD, 604
wireless networks, 849
Trusted Platform Module (TPM), 99, 814
Turion AMD processors, 50
TV tuner cards, 398
TVS (transient voltage suppressing) ratings, 157
TWAIN (scanners), 357
twisted nematic (TN), 388
twisted-pair cables, 734-736
two-factor authentication, 814
TXT (text file format) extension, 485
Type 1 hypervisors, 593
Type 2 hypervisors, 593
Type A-B-C fire extinguishers, 161
Type C fire extinguishers, 161
type command, 498, 515
types
 antennas, 763
 APIs, 102
 backups, 302
 batteries, mobile devices, 145
 coaxial cable, 737
 displays design considerations, 459
 expansion slots, 67
 flash memory, 11
 hard drive interfaces, 257
 hypervisors, 593
 IP addresses, 747
 keyboards, 13
 LANs, 729
 LCDs, 386
 memory, 10, 202
 mice, 13
 monitors, 19
 motherboards, 78-79
 network attacks, 841-842
 networks, 588, 728
 partitions, 283
 PCI slots, 67
 power supplies, 137
 printers, 406-407
 RAM, 203
 scanners, 354
 SCSI, 264
 sockets, 57
 touch technologies, 14
 twisted-pair cables, 734
 viruses, 586
 wireless NICs, 754
unallocated Disk Management status state, 299
unattended installations, 590
unbuffered memory, 208
uncompressing files, 506
undervoltage, 155
Underwriters Laboratories (UL) ratings, 157
Uni-DL (UDSL), 706
Unified Extensible Firmware Interface (UEFI) BIOS, 96-97
UNII (Unlicensed National Information Infrastructure), 759
Uninterruptible Power Supplies (UPSs), 158
Universal Asynchronous Receiver/Transmitter (UART), 698
universal security slot (USS), 817
Universal Serial Bus. See USB
unknown Disk Management status state, 299
Unlicensed National Information Infrastructure (UNII), 759
unmounting eSATA drives, 274
unreadable Disk Management status state, 299
unshielded twisted-pair. See UTP
Up Time field (Task Manager Performance tab), 224
updates
 BIOS, compatibility, 585
 checking, 133
 configuring, 646
 Windows, 595-597
 BSOD, 604
Upgrade Advisor, 581
upgrading
 automatic updates, 655
 BIOS, 96
 configuring, 646
 mobile devices, 207
 motherboards, 79-80
 operating systems, 580
 power supplies, 151-152
 printers, 420
 firmware, 427
 processors, 63
 UPSs, 159
 USB devices, 27-28
 video, 402-404
 viruses, 586
 wireless NICs, 754
 wireless networks, 849
 wireless NICs, 754
 wireless networks, 849

UAC (User Access Control), 577, 608
configuring, 533
UART (Universal Asynchronous Receiver/Transmitter), 698
UDP (User Datagram Protocol), 777
UDSL (Uni-DSL), 706
UEFI (Unified Extensible Firmware Interface) BIOS, 96-97
UL (Underwriters Laboratories) ratings, 157
Ultra ATA/66 standard, 260
video

full system functionality troubleshooting step, 191
NICs installation, 792
resources, Device Manager, 104
startup folders, 670
Windows versions, 490
Windows Vista/7 component installation, 659-662
Windows XP components installation, 658

versions
WEP, 845
Windows, verifying, 490
Windows 7, 577-578
Windows Vista, 577-578
Windows XP, 576

vertical alignment (VA), 388
vertical scan rate, 385
VESA (Video Electronics Standards Association), 22
VESA DisplayPorts, 22
VGA ports, 19, 391

video adapters, 397-401
AGP adapters, power consumption, 152
audio/video editing PCs, 451
BIOS settings, 98
CrossFireX, 399
CRTs, cleaning, 396
Degauss, 385
digital recorders (DVRs), 452
displays cleaning, 395
design components, 459-460
energy efficiency, 396
preventive maintenance, 395-396
privacy, 397
horizontal scanning frequency, 385
image quality, configuring, 386
interlacing, 385
LCDs, 386-388
media players, 452
memory, 399-400
mobile devices, multitasking gestures/screen rotation settings, 386

VA (vertical alignment), 388
variables, viewing, 513
VDSL, 706
verification, Windows installations, 590
verifying Administrative Tools, 657
firewalls, 838

user IDs, protecting, 823-826
user profiles, 490
users
account control. See UAC
adding
Windows 7, 666-667
Windows XP, 663
Administrators, 825
groups, 664, 825
Windows 7, 667-668
Windows XP, 664
guest, 825

guest accounts, 608
local settings, 608
logging on to Windows, 580
power users, 825
remote desktop, 825
standard, 825
standard accounts versus Administrator accounts, 608
viewing, 607
Windows user rights assignment settings, 867
USMT (User State Migration Tool), 582
USS (universal security slot), 817
utilities. See programs
UTP (unshielded twisted-pair), 734
CAT 5
crossover, creating, 795-797
straight-through, creating, 792-794
categories, 735
installing, 736
plenum, 735
PVC, 735
sizes, 734
wiring standards, 735

USPs (Uninterruptible Power Supplies), 158-159
upstream, cable modems, 705
upstream ports, 23
USB (Universal Serial Bus), 22
USB devices
configuring, 98
flash drives, 227
installing, 25
printers, 405
installing, 418-420
troubleshooting, 427-428
removing, 25, 347
scanners, 355
troubleshooting, 27-28
USB OTG (on-the-go), 26
USB ports, 36
3.0, 23
cabling rules, 24
configuring, 98
converters, 25
defined, 22
devices supported, 22
hubs, 24
installing extra, 26
maximum cable length, 23
mini, 25
on-the-go, 26
printers, troubleshooting, 427-428
scanners, 355
shutdown problems, 624
sound, 349
speeds, 23
troubleshooting, 27-28
upstream/downstream, 23
versions, 23
wireless, 26

USB-to-serial converters, 697
U.S. computer emergency readiness team (CERT), 843
User Account Control. See UAC
User Accounts and Family Safety control panel, 530
User and Passwords control panel, 521
User Datagram Protocol (UDP), 777

windows, 580-581
Windows XP, 581, 638

upstream ports, 23
USB (Universal Serial Bus), 22
USB devices
configuring, 98
flash drives, 227
installing, 25
printers, 405
installing, 418-420
troubleshooting, 427-428
removing, 25, 347
scanners, 355
troubleshooting, 27-28
USB OTG (on-the-go), 26
USB ports, 36
3.0, 23
cabling rules, 24
configuring, 98
converters, 25
defined, 22
devices supported, 22
hubs, 24
installing extra, 26
maximum cable length, 23
mini, 25
on-the-go, 26
printers, troubleshooting, 427-428
scanners, 355
shutdown problems, 624
sound, 349
speeds, 23
troubleshooting, 27-28
upstream/downstream, 23
versions, 23
wireless, 26

USB-to-serial converters, 697
U.S. computer emergency readiness team (CERT), 843
User Account Control. See UAC
User Accounts and Family Safety control panel, 530
User and Passwords control panel, 521
User Datagram Protocol (UDP), 777

user IDs, protecting, 823-826
user profiles, 490
users
account control. See UAC
adding
Windows 7, 666-667
Windows XP, 663
Administrators, 825
groups, 664, 825
Windows 7, 667-668
Windows XP, 664
guest, 825
guest accounts, 608
local settings, 608
logging on to Windows, 580
power users, 825
remote desktop, 825
standard, 825
standard accounts versus Administrator accounts, 608
viewing, 607
Windows user rights assignment settings, 867
USMT (User State Migration Tool), 582
USS (universal security slot), 817
utilities. See programs
UTP (unshielded twisted-pair), 734
CAT 5
crossover, creating, 795-797
straight-through, creating, 792-794
categories, 735
installing, 736
plenum, 735
PVC, 735
sizes, 734
wiring standards, 735

VA (vertical alignment), 388
variables, viewing, 513
VDSL, 706
verification, Windows installations, 590
verifying Administrative Tools, 657
firewalls, 838

full system functionality troubleshooting step, 191
NICs installation, 792
resources, Device Manager, 104
startup folders, 670
Windows versions, 490
Windows Vista/7 component installation, 659-662
Windows XP components installation, 658

versions
WEP, 845
Windows, verifying, 490
Windows 7, 577-578
Windows Vista, 577-578
Windows XP, 576

vertical alignment (VA), 388
vertical scan rate, 385
VESA (Video Electronics Standards Association), 22
VESA DisplayPorts, 22
VGA ports, 19, 391

video adapters, 397-401
AGP adapters, power consumption, 152
audio/video editing PCs, 451
BIOS settings, 98
CrossFireX, 399
CRTs, cleaning, 396
Degauss, 385
digital recorders (DVRs), 452
displays cleaning, 395
design components, 459-460
energy efficiency, 396
preventive maintenance, 395-396
privacy, 397
horizontal scanning frequency, 385
image quality, configuring, 386
interlacing, 385
LCDs, 386-388
media players, 452
memory, 399-400
mobile devices, multitasking gestures/screen rotation settings, 386
Windows registry, 550
counting, 594
configuring, 99
connectivity, 594
enabling, 593
Hardware-Assisted Virtualization Detection Tool, 594
host machines, 494
hypervisor, 494
hypervisors, types, 593
network issues, 770
operating system licenses, 593
snapshot, 494
system configuration, 451
virtual machines, 494
Virtual PC, requirements, 593
viruses, 594
VMware Workstation, installing, 639-640
VMware Workstation virtual machine, 640-644
Windows 7, 593

WANs (wide area networks), 728
Windows Explorer, 487
security-related display options, 820

Wake-on-LAN, NICs, 769
Wake on LAN power feature, 148
Wake on Ring power feature, 148
Wake Up on LAN power setting, 148
wallpaper, Windows desktop, 476
WANs (wide area networks), 728
WAPD (Web Proxy AutoDiscovery), 836
warm booting, 95, 190
wattage, power supplies, 151
watts, 135
wbadmin command, 515
WDS (Windows Deployment Services), 589
wear leveling, 263
web browsers, 711-712
hijacked, 833-834
redirect, 833
security, 712, 835-841
web cams, 359-360
webcam, 359-360
webcams, 359-360
websites
battery recycling programs, 102
CERT, 843
Crucial, 216
DSL Reports, 707
electronics donation and recycling, 381
ENERGY STAR, 396
Engineer Guy LCD monitor teardown (quotes) video, 386
IEEE 802 standards, 743
Intel, 49
Kingston Technology, 216
SDDelete utility, 302
weight, paper, 416
WEP (Wired Equivalent Privacy), 845-846
Western Digital PATA IDE hard drive example, 270
WFP (Windows file protection), 576
wide area networks (WANs), 728
Wi-Fi Protected Access (WPA), 846
Wi-Fi Protected Setup (WPS), 847
wildcards, 499
WiMAX, 710
windows
System Information, opening, 509
thumbnails, viewing, 538
Windows
activating, 588
adapters, installing, 109
Add Hardware Wizard, 602
Add Printer Wizard, 772
Advanced Boot Options menu, 610-611
Aero, 577
APIs, sound cards, 348
backup utility, 303
registry, 597
System State, 598
Bluetooth, 16-17, 753
booting, 611-616
CF cards, formatting, 226
compatibility mode, 582
copyrighting, 600
context menus, 480
Control Panel, 478
control panels, 599
defragmenting hard drives, 301
Deployment Services (WDS), 589
desktop, 474
Aero, 577
common icons, 475
double-clicking icons, 476
icons, 474
notification area, 478
notification update icon, 596
organizing, 476
Quick Launch toolbar, 539
Recycle Bin, 476-477, 524, 534
shortcuts, 475-476
shortcuts, creating, 525
shut down options, 477
Start button, 476-477
Start menu, customizing, 606
Start menu (Windows Vista/7), 526-527
Start menu (Windows XP), 519-520
system tray icons, customizing, 603
taskbar, 476-479, 538
wallpaper, 476
Device Manager, 602
dialog boxes, 478-480
DirectX Diagnostic tool, 342
Disk Cleanup program, 300
Disk Defragmenter, 301, 609
Disk Management, 290-291
dual-booting, 592-593
DUN, 801
energy-saving features, 396
Event Viewer, 620-623
Explorer, display options, 487
file protection. See WFP
files
attributes, 488
backing up, 488
compressing, 488-489
deleting permanently, 476
encryption, 490
extensions, viewing, 484
locations, 613
paths, 486
removable media, deleting, 486
saving, 486
firewalls, 838-839
folders, 488-490
Found New Hardware Wizard, 600
Help and Support Center, 341
indexing, 485
installing, 587
activation, 588
corporate computers, 588-590
multiple computers, 583
networks, selecting, 588
setup log files, 592
troubleshooting, 591
verification, 590
VMware Workstation virtual machine, 640-641
logging in, 474
logging on, 580
MBSA, 840
memory, monitoring, 223-224
Memory Diagnostics tool, 225, 617
Notepad, starting, 510
OEM versions, 583
older software, 224
paper sizes, configuring, 417
password policy options, 864
permission help, 832
power management, 148
pre-installation, 580
pre-installation checklist
backing up data, 585
clean install, 580-582
data migration, 582
drivers, 585
file systems, 583
hardware requirements, 584-585
in-place upgrades, 581
multiple operating systems, 583
partition size, 583
power-/disk-management tools, removing, 585
program compatibility, 582
upgrading, 580-581
virus scans, 585
printers. See printers
programs, stopping, 680
ReadyBoost, 614
recovering, 492-493
recovery, 616-617
Recovery Console, 494-495
Recovery Environment. See WinRE
registry, 109, 491
backing up, 492, 597
customizing, 644-645
defined, 490
dll files, registering, 512
editing, 491-492
exporting/importing sections, 551
restoring, 597
subtrees, 490
viewing, 550
re-installing, 594-595
Remote Desktop, 393
security settings, 867
services
system shut down problems, 624
troubleshooting, 623
shutting down, troubleshooting, 624
sound, microphones, 348
sound cards, 348
System Configuration utility, 617-618
services, troubleshooting, 623
system state, backing up/restoring, 598
Task Manager, 619-620
Performance tab, 223
Troubleshooter tool, printers, 425
troubleshooting, 623-624
updates
automatic, configuring, 646
BSOD after, 604
updating, 595-597
upgrading, 581
user ID/password options, 824-826
user rights assignment settings, 867
versions, verifying, 490
virtual machines, configuring, 224
virtual memory, 221-222
VMM, 304
WinRE, 494-495
XP Mode, 582
Windows 7
32-bit/64-bit, 578
advanced boot options, 611
Aero desktop, 577
applications, 533-534
backing up, 646
boot process, 613-614
booting, 673
burning discs, 337
Check now tool, 300
components, installing/verifying, 659-662
control panels, 527, 530
unique, 599
DEP, 822
device drivers, 601-603
Display control panel, 388
display settings, 531
Ease of Access, configuring, 650-653
energy-saving features, 396
Event Viewer, 681-682
accessing, 620
clearing, 622
event details, viewing, 622
Event Viewer logs, 621
Event Viewer symbols, 622
file/folder sharing, 828-831
file paths, viewing, 486
firewall verification, 838
folder sharing, Windows XP method, 829
folders, sharing, 860-863
hard drive defragmentation, 301
hardware, installing, 602
help, 532
homegroups, 781-782
installing, 587, 638-639
activation, 588
corporate computers, 588-590
networks, selecting, 588
older operating systems, 613
setup log files, 592
troubleshooting, 591
verification, 590
libraries, 484, 282
licensing, 590
logging on, 580
memory limits, 210
memory requirements, 584
MMC, 666-669
multiple displays, configuring, 392
network printers, 800-801
networks, configuring, 797-800
older software, running, 224
password protection, 828
performance, 685-686
power, 149-150
power schemes, 532
pre-installation, 580
pre-installation checklist
backing up data, 585
clean install, 580-582
data migration, 582
drivers, 585
hardware requirements, 585
in-place upgrades, 581
multiple operating systems, 583
partition size, 583
power-/disk-management tools, removing, 585
program compatibility, 582
upgrading, 580
virus scans, 585
programs, installing, 605
recovery, 675
Recycle Bin, 534
re-imaging, 589
re-installing, 595
reliability, 685-686
Remote Assistance, NAT support, 631
Remote Desktop, 688-689 enabling, 631
resolution, configuring, 386
screen savers, 397
searching, 532
Shadow Copy, 604
shut down options, 477
shutdown options, 535
SIM, 589
Standard user versus Administrator accounts, 608
Start menu, 526-527
default icon settings, 554
icon size, 553
programs, customizing, 553-555
startup, configuring, 677-679
System Configuration utility, starting, 617
system image disc, creating, 570
System Protection, restore points, 856-857
system repair disc, creating, 569-570
System Restore utility, configuring, 654
system state, backing up/restore-
ing, 598
Task Scheduler, 689-690
UAC, 608
UAC, configuring, 533
versions, 577-578
virtual memory size, configuring, 221
Virtual PC, requirements, 593
virtualization, 593
VPNs, configuring, 842
Windows Defender, 840
Windows Update, 596-597
WinRE, 616-617
wireless settings, 847
WRP, 579
Windows-based help file (HLP) extension, 485
Windows Defender, 840, 868-869
Windows desktop, My Computer icon, 523
Windows Explorer, 472
display options, 487
security-related display options, 820
starting, 507
Windows logs, 621
Windows Resource Protection (WRP), 579
Windows Update, 596-597
Windows Vista
32-bit/64-bit, 578
advanced boot options, 611
Aero desktop, 577
applications, 533-534
boot process, 613-614
components, installing/verifying, 659-662
control panels, 527, 530
unique, 599
device drivers, 601-603
Display control panel, 388
display settings, 531
energy-saving features, 396
Error-Checking tool, 300
Event Viewer, 681-682
accessing, 620
clearing, 622
event details, viewing, 622
Event Viewer logs, 621
Event Viewer symbols, 622
file/folder sharing, 828-831
file paths, viewing, 486
firewall verification, 838
folder sharing, Windows XP method, 829
hard drive defragmentation, 301
hardware, installing, 602
help, 532
homegroup access, 782
installing
activation, 588
corporate computers, 588-590
networks, selecting, 588
older operating systems, 613
setup log files, 592
troubleshooting, 591
verification, 590
licensing, 590
logging on, 580
memory limits, 210
network printers, 800-801
older software, running, 224
password protection, 828
power schemes, 532
pre-installation, 580-583
pre-installation checklist, 584-585
programs, installing, 605
Recycle Bin, 534
re-installing, 595
Remote Assistance, NAT support, 631
Remote Desktop, enabling, 631
resolution, configuring, 386
screen savers, 397
searching, 532
Shadow Copy, 604
shut down options, 477
shutdown options, 535
SIM, 589
Standard user versus Administrator accounts, 608
Start menu, 526-527
default icon settings, 554
icon size, 553
programs, customizing, 553-555
System Protection, restore points, 856-857
system state, backing up/restoring, 598
UAC, 608
update notifications, customizing, 597
versions, 577-578
virtual memory size, configuring, 221
VPNs, configuring, 842
Windows Defender, 840
Windows Update, 596-597
WinRE, 616-617
wireless settings, 847
WFP, 579
Windows XP
16-bit/32-bit, 576
accessibility options, 648-649
Add Hardware Wizard, 602
Add or Remove Programs control panel, 605
Administrative Tools, 657
Administrator accounts, accessing, 474
Administrator logins, 580
applications, starting, 524
ASR, 616
Automatic Updates, 595-596
Backup utility, System State, 598
boot process, 613
booting, 670-672
Check Disk tool, 300
components, 658-659
control panels, 521
unique, 599
device drivers, 600-602
dial-up connections, installing, 801-802
direct cable connections, 718-719
Display control panel, 388
Dr. Watson, 620
Enable VGA Mode, 610
energy-saving features, 396
Event Viewer, 680-681
accessing, 620
symbols, 622
Event Viewer logs, 620
file/folder searches, 523
file/folder sharing, 827
NTFS sharing, 827
permissions, 830
firewall verification, 838
folders
private, creating, 857-858
sharing, 858-859
hard drive defragmentation, 301
help, 523
homegroup access, 782
installing, 587
activation, 588
clean install, 636-637
corporate computers, 588-590
networks, selecting, 588
setup log files, 592
troubleshooting, 591
upgrading, 638
verification, 590
keyboards, configuring, 647
logging on, 580
memory limits, 210
mice, configuring, 647-648
Microsoft Setup Manager tool, 589
MMC, 662-665
multiple displays, configuring, 392
network printers, 800-801
new hardware, installing, 602
NICs, installing, 792
Performance Monitor utility, 683-685
power schemes, 522
pre-installation, 580
pre-installation checklist, 580-585
programs, installing, 605
Recovery Console, 672
commands, 569
installing, 568
Recycle Bin, 524
refresh rate, 385
re-installing, 595
Remote Desktop, 687-688
screen savers, 397
shutdown options, 525
sound, controlling, 649-650
speakers, 650
Start menu, 519-520
default icon settings, 552
icon size, 551
programs, customizing, 551-553
Sysprep tool, 589
System Configuration utility, 676-677
System Configuration utility, starting, 617
System Monitor utility, 682-683
System Restore utility, configuring, 653
System State, backing up, 645
upgrading, 581
versions, 576
virtual memory size, configuring, 221
VPNs, 842-843
WFP, 576
winload.exe file, 612
winlogon.exe file, 612
WinRE (Windows Recovery Environment), 494-495, 616-617
winresume.exe file, 612
wiping hard drives, 302
wire strippers, 741
Wired Equivalent Privacy. See WEP wireless broadband devices, 770
wireless hot spots, 710
wireless input devices, 15-16
wireless Internet connectivity, 710
wireless LANs (WLANs), 728
wireless network printers, installing, 772
wireless networks
802.11-based, 764
antennas, 760-764
APs, 754-756
channel IDs, 757-759
passwords, 757
repeater, 760
SSIDs, 757
Bluetooth, 753
bridges, 754
broadband devices, 770
configuring, 804
defined, 752
desktops, 752
frequency channels, 757
infrared, 776
routers, 754
security
 access point settings, 847-848
 authentication, 844
 common network device configuration settings, 848
 configuring, 869-870
 EAP, 845
 firewalls, 844
 overview, 844-849
 WEP, 845-846
 Windows Vista/7 settings, 847
WPA, 846
WPA2, 846
WPS, 847
standards, 764
troubleshooting, 849
wireless NICs, 768-769
defined, 754
installing, 803
QoS, 769
speed, 769
types, 754
Wake-on-LAN, 769
wireless printers, 406
wireless sound, 349
wireless USB, 26
wireless WANs (WWANs), 728
wiring standards, twisted-pair cables, 735
wizards
 Add Hardware, 602
 Add Printer, 772
 Found New Hardware, 600
 WLANs (wireless LANs), 728
work ethics (technicians), 430
workgroup networks, 588
workgroups, 729
security, 824
worm viruses, 586
WPA (Wi-Fi Protected Access), 846
WPA2, 846
WPS (Microsoft Works text file format) extension, 485
WPS (Wi-Fi Protected Setup), 847
WRI (Microsoft WordPad) extension, 485
write amplification, 263
write-black laser printers, 413
write NTFS permission, 831
write protection, BIOS (removing), 96
write-white laser printers, 413
writing optical media, 335
written communication skills, 162-163
WRP (Windows Resource Protection), 579
WWANs (wireless WANs), 728

xcopy command, 515
xD (extreme digital) memory cards, 11, 226
xDSL modems, 706
XLS/XLSX (Microsoft Excel) extension, 485
XON/XOFF handshaking, 699

Yagi antennas, 763
YBs (yottabytes), 46

Z277 chipset, 77
ZBs (zetabytes), 46
ZIP (compressed file) extension, 485
ZTI (zero-touch installations), 590