Authorized Cert Guide

Learn, prepare, and practice for exam success

CompTIA Security+
SY0-301
Second Edition

- Master every topic on CompTIA's new Security+ SY0-301 exam.
- Assess your knowledge and focus your learning.
- Get the practical workplace knowledge you need!
- Practice with realistic exam questions on the DVD

PEARSON
Contents at a Glance

Introduction xxv
CHAPTER 1 Introduction to Security 3
CHAPTER 2 Computer Systems Security 17
CHAPTER 3 OS Hardening and Virtualization 67
CHAPTER 4 Application Security 109
CHAPTER 5 Network Design Elements and Network Threats 149
CHAPTER 6 Network Perimeter Security 205
CHAPTER 7 Securing Network Media and Devices 233
CHAPTER 8 Physical Security and Authentication Models 265
CHAPTER 9 Access Control Methods and Models 305
CHAPTER 10 Vulnerability and Risk Assessment 341
CHAPTER 11 Monitoring and Auditing 379
CHAPTER 12 Encryption and Hashing Concepts 415
CHAPTER 13 PKI and Encryption Protocols 451
CHAPTER 14 Redundancy and Disaster Recovery 475
CHAPTER 15 Policies, Procedures, and People 509
CHAPTER 16 Taking the Real Exam 551

Practice Exam 1: CompTIA Security+ SY0-301 561
Practice Exam 2: CompTIA Security+ SY0-301 611
Glossary 663
Master List of Key Topics 684
Index 692

On the DVD:
Appendix A: Memory Tables
Appendix B: Memory Tables Answer Key
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xxv</td>
</tr>
<tr>
<td>Chapter 1 Introduction to Security</td>
<td>3</td>
</tr>
<tr>
<td>Foundation Topics</td>
<td>4</td>
</tr>
<tr>
<td>Security 101</td>
<td>4</td>
</tr>
<tr>
<td>The CIA of Computer Security</td>
<td>4</td>
</tr>
<tr>
<td>The Basics of Information Security</td>
<td>6</td>
</tr>
<tr>
<td>Think Like a Hacker</td>
<td>9</td>
</tr>
<tr>
<td>Exam Preparation Tasks</td>
<td>11</td>
</tr>
<tr>
<td>Review Key Topics</td>
<td>11</td>
</tr>
<tr>
<td>Define Key Terms</td>
<td>11</td>
</tr>
<tr>
<td>Answer Review Questions</td>
<td>11</td>
</tr>
<tr>
<td>Answers and Explanations</td>
<td>13</td>
</tr>
<tr>
<td>Chapter 2 Computer Systems Security</td>
<td>17</td>
</tr>
<tr>
<td>Foundation Topics</td>
<td>18</td>
</tr>
<tr>
<td>Computer Systems Security Threats</td>
<td>18</td>
</tr>
<tr>
<td>Malicious Software</td>
<td>18</td>
</tr>
<tr>
<td>Viruses</td>
<td>18</td>
</tr>
<tr>
<td>Worms</td>
<td>19</td>
</tr>
<tr>
<td>Trojan Horses</td>
<td>20</td>
</tr>
<tr>
<td>Spyware</td>
<td>21</td>
</tr>
<tr>
<td>Rootkits</td>
<td>21</td>
</tr>
<tr>
<td>Spam</td>
<td>21</td>
</tr>
<tr>
<td>Summary of Malware Threats</td>
<td>22</td>
</tr>
<tr>
<td>Ways to Deliver Malicious Software</td>
<td>23</td>
</tr>
<tr>
<td>Via Software, Messaging, and Media</td>
<td>23</td>
</tr>
<tr>
<td>Active Interception</td>
<td>23</td>
</tr>
<tr>
<td>Privilege Escalation</td>
<td>24</td>
</tr>
<tr>
<td>Backdoors</td>
<td>24</td>
</tr>
<tr>
<td>Logic Bombs</td>
<td>24</td>
</tr>
<tr>
<td>Botnets and Zombies</td>
<td>25</td>
</tr>
</tbody>
</table>
Contents

Preventing and Troubleshooting Malware 26
Preventing and Troubleshooting Viruses 26
Preventing and Troubleshooting Worms and Trojans 30
Preventing and Troubleshooting Spyware 30
Preventing and Troubleshooting Rootkits 32
Preventing and Troubleshooting Spam 33
You Can't Save Every Computer from Malware! 35
Summary of Malware Prevention Techniques 35

Implementing Security Applications 36
Personal Software Firewalls 36
Host-Based Intrusion Detection Systems 38
Pop-Up Blockers 40
Data Loss Prevention Systems 42

Securing Computer Hardware and Peripherals 42
Securing the BIOS 43
Securing Storage Devices 44
Removable Storage 44
Network Attached Storage 45
Whole Disk Encryption 45
Hardware Security Modules 47

Securing Cell Phones and Smartphones 47

Exam Preparation Tasks 49
Review Key Topics 49
Complete Tables and Lists from Memory 49
Define Key Terms 50

Hands-On Labs 50
Equipment Needed 50
Lab 2-1: Using Free Malware Scanning Programs 50
Lab 2-2: How to Secure the BIOS 51

View Recommended Resources 53
Answer Review Questions 54
Answers and Explanations 60
Chapter 3 OS Hardening and Virtualization 67

Foundation Topics 68
Hardening Operating Systems 68
 Removing Unnecessary Applications and Services 68
 Service Packs 72
 Windows Update, Patches, and Hotfixes 75
 Patches and Hotfixes 77
 Patch Management 79
 Group Policies, Security Templates, and Configuration Baselines 80
 Hardening File Systems and Hard Drives 82

Virtualization Technology 86
 Types of Virtualization and Their Purposes 86
 Working with Virtual Machines 88
 Microsoft Virtual PC 88
 Microsoft Windows XP Mode 90
 Microsoft Virtual Server 90
 VMware 91
 Hypervisor 92
 Securing Virtual Machines 92

Exam Preparation Tasks 94
Review Key Topics 94
Complete Tables and Lists from Memory 95
Define Key Terms 95
Hands-On Labs 95
 Equipment Needed 95
 Lab 3-1: Discerning and Updating the Service Pack Level 96
 Lab 3-2: Creating a Virtual Machine in Virtual PC 2007 96
 Lab 3-3: Securing a Virtual Machine 98

View Recommended Resources 101
Answer Review Questions 102
Answers and Explanations 105
Chapter 5 Network Design Elements and Network Threats 149

Foundation Topics 150

Network Design 150

Network Devices 150

Hub 150

Switch 151

Router 152

Network Address Translation, and Private Versus Public IP 154

Network Zones and Interconnections 156

LAN Versus WAN 157

Internet 157

Demilitarized Zone (DMZ) 157

Intranets and Extranets 159

Cloud Computing 159

Network Access Control (NAC) 162

Subnetting 162

Virtual Local Area Network (VLAN) 164

Telephony Devices 165

Modems 166

PBX Equipment 166

VoIP 167

Ports and Protocols 167

Ports Ranges, Inbound Versus Outbound, and Common Ports 167

Protocols That Can Cause Anxiety on the Exam 174

Malicious Network Attacks 175

DoS 175

DDoS 178

Spoofing 178

Session Hijacking 179

Replay 181

Null Sessions 181

Transitive Access and Client-Side Attacks 182

DNS Poisoning and Other DNS Attacks 183

ARP Poisoning 184

Summary of Network Attacks 185
Chapter 6 Network Perimeter Security 205

Foundation Topics 206
Firewalls and Network Security 206
Firewalls 207
Proxy Servers 212
Honeypots and Honeynets 215
Data Loss Prevention (DLP) 216
NIDS Versus NIPS 217
 NIDS 217
 NIPS 218
 Summary of NIDS Versus NIPS 219
 The Protocol Analyzer's Role in NIDS and NIPS 220
Exam Preparation Tasks 220
Review Key Topics 220
Complete Tables and Lists from Memory 221
Define Key Terms 221
Hands-On Labs 221
 Equipment Needed 222
 Lab 6-1: Packet Filtering and NAT Firewalls 222
 Lab 6-2: Configuring an Inbound Filter on a SOHO Router/Firewall 223
 Lab 6-3: Enabling MAC Filtering 224
View Recommended Resources 225
Answer Review Questions 225
Answers and Explanations 229
Chapter 7 Securing Network Media and Devices 233

Foundation Topics 234
Securing Wired Networks and Devices 234
Network Device Vulnerabilities 234
Default Accounts 234
Weak Passwords 235
Privilege Escalation 236
Back Doors 237
Network Attacks 237
Other Network Device Considerations 238
Cable Media Vulnerabilities 238
Interference 239
Crosstalk 240
Data Emanation 241
Tapping into Data and Conversations 241

Securing Wireless Networks 244
Wireless Access Point Vulnerabilities 244
Secure the Administration Interface 244
SSID Broadcast 245
Rogue Access Points 245
Evil Twin 246
Weak Encryption 246
Other Wireless Access Point Security Strategies 248
Wireless Transmission Vulnerabilities 250
Bluetooth Vulnerabilities 250
Bluejacking 251
Bluesnarfing 251

Exam Preparation Tasks 252
Review Key Topics 252
Complete Tables and Lists from Memory 253
Define Key Terms 253
Hands-On Labs 253

Equipment Needed 254
Lab 7-1: Securing a Wireless Device: 8 Steps to a Secure Network 254
Lab 7-2: Wardriving...and The Cure 256
Assessing Vulnerability with Security Tools 352
 Network Mapping 352
 Vulnerability Scanning 355
 Network Sniffing 358
 Password Analysis 359
Exam Preparation Tasks 363
Review Key Topics 363
Complete Tables and Lists from Memory 363
Define Key Terms 364
Hands-On Labs 364
 Equipment Needed 364
Lab 10-1: Mapping and Scanning the Network 365
Lab 10-2: Password Cracking and Defense 366
View Recommended Resources 367
Answer Review Questions 368
Answers and Explanations 374

Chapter 11 Monitoring and Auditing 379
Foundation Topics 380
Monitoring Methodologies 380
 Signature-Based Monitoring 380
 Anomaly-Based Monitoring 381
 Behavior-Based Monitoring 381
Using Tools to Monitor Systems and Networks 382
 Performance Baselining 382
 Protocol Analyzers 384
 Wireshark 385
 Network Monitor 386
 SNMP 388
Conducting Audits 389
 Auditing Files 389
 Logging 392
 Log File Maintenance and Security 394
 Auditing System Security Settings 396
Chapter 12 Encryption and Hashing Concepts 415

Foundation Topics 416
Cryptography Concepts 416
 Symmetric Versus Asymmetric Key Algorithms 419
 Symmetric Key Algorithms 420
 Asymmetric Key Algorithms 421
 Public Key Cryptography 421
 Key Management 422
 Steganography 423

Encryption Algorithms 423
 DES and 3DES 424
 AES 424
 RC 425
 Summary of Symmetric Algorithms 426
 RSA 426
 Diffie-Hellman 427
 Elliptic Curve 428
 More Encryption Types 428
 One-Time Pad 428
 PGP 429

Hashing Basics 430
 Cryptographic Hash Functions 431
 MD5 432
 SHA 432
Happy Birthday! 432
LANMAN, NTLM, and NTLM2 433
LANMAN 433
NTLM and NTLM2 435
Exam Preparation Tasks 436
Review Key Topics 436
Complete Tables and Lists from Memory 436
Define Key Terms 436
Hands-On Lab 437
 Equipment Needed 437
 Lab 12-1: Disabling the LM Hash in Windows Server 2003 437
View Recommended Resources 438
Answer Review Questions 439
Answers and Explanations 445

Chapter 13 PKI and Encryption Protocols 451
Foundation Topics 452
Public Key Infrastructure 452
 Certificates 452
 Certificate Authorities 453
 Single-Sided and Dual-Sided Certificates 456
 Web of Trust 456
Security Protocols 457
 S/MIME 457
 SSL/TLS 458
 SSH 459
 PPTP, L2TP, and IPsec 459
 PPTP 460
 L2TP 460
 IPsec 460
Exam Preparation Tasks 461
Review Key Topics 461
Define Key Terms 462
Chapter 14 Redundancy and Disaster Recovery 475

Foundation Topics 476
Redundancy Planning 476
 Redundant Power 478
 Redundant Power Supplies 479
 Uninterruptible Power Supplies 480
 Backup Generators 481
 Redundant Data 483
 Redundant Networking 486
 Redundant Servers 488
 Redundant Sites 489
Disaster Recovery Planning and Procedures 490
 Data Backup 490
 DR Planning 494
Exam Preparation Tasks 497
 Review Key Topics 497
 Complete Tables and Lists from Memory 497
 Define Key Terms 498
Hands-On Labs 498
 Equipment Needed 498
 Lab 14-1: Configuring RAID 1 and 5 498
View Recommended Resources 500
Answer Review Questions 500
Answers and Explanations 504

Chapter 15 Policies, Procedures, and People 509

Foundation Topics 510
 Environmental Controls 510
Contents xvii

Fire Suppression 510

Fire Extinguishers 510

Sprinkler Systems 512

Special Hazard Protection Systems 512

HVAC 513

Shielding 514

Social Engineering 515

Pretexting 516

Diversion Theft 516

Phishing 516

Hoaxes 518

Shoulder Surfing 518

Eavesdropping 518

Dumpster Diving 519

Baiting 519

Piggybacking/Tailgating 519

Summary of Social Engineering Types 519

User Education and Awareness 520

Legislative and Organizational Policies 521

Data Sensitivity and Classification of Information 522

Personnel Security Policies 524

Privacy Policies 525

Acceptable Use 525

Change Management 525

Separation of Duties/Job Rotation 526

Mandatory Vacations 526

Due Diligence 527

Due Care 527

Due Process 527

User Education and Awareness Training 527

Summary of Personnel Security Policies 528

How to Deal with Vendors 529

How to Dispose of Computers and Other IT Equipment Securely 529

Incident Response Procedures 531
About the Author

David L. Prowse is an author, a computer network specialist, and a technical trainer. Over the past several years he has authored several titles for Pearson Education, including the well-received *CompTIA A+ Exam Cram*. As a consultant, he installs and secures the latest in computer and networking technology. Over the past decade he has also taught CompTIA A+, Network+, and Security+ certification courses, both in the classroom and via the Internet.

He runs the website www.davidlprowse.com, where he gladly answers questions from students and readers.

About the Reviewer

Aubrey Adams (CCNA, Security+) is an electronic and computer system engineering lecturer and Cisco Networking Academy instructor at Central Institute of Technology in Perth, Western Australia. Coming from a background in telecommunications design, with qualifications in electronic engineering and management and graduate diplomas in computing and education, he teaches across a range of computer systems and networking vocational education and training areas. Aubrey also authors Networking Academy curriculum and assessments and is a Cisco Press author and Pearson Education technical editor.
Acknowledgments

This book and accompanying DVD wouldn't have been possible without my publisher, Pearson. I've been involved in many projects with Pearson over the past several years and give my thanks for the ongoing opportunities and support I have received.

One person in particular I’d like to acknowledge is Andrew Cupp. Drew, once again, your guidance during this project has been nothing short of greatness. You definitely helped develop what I think is an exceptional product.

I’d also like to thank Aubrey Adams for his excellent feedback during the creation of this book. Good technical editors are difficult to find; I’m grateful to Aubrey for his dedication and hard work during this project. My thanks also go out to the various people involved in developing and publishing this book: David Dusthimer, Betsy Brown, Sandra Schroeder, Tony Palleschi, Tonya Simpson, Tim Warner, and Vanessa Evans. It takes a lot of talented people to get a final product on the shelves—I appreciate everything you did to make this book a reality.

Special thanks to Dr. Rick Blazek, Tony Ardito, and Brian Campbell. Your contributions and suggestions helped me to incorporate a “real-world” feel and were key ingredients in keeping the book current.

And then there are the usual suspects—my wife, family, friends; thank you for bearing with me on yet another crazy book-writing crusade!

Finally, I thank my website readers. Your input over the years has helped me tailor my book projects, making them more complete and helping them to be successful.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

As an associate publisher for Pearson IT Certification, I welcome your comments. You can email or write me directly to let me know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do have a User Services group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book's title and author as well as your name, email address, and phone number. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com

Mail: David Dusthimer
Associate Publisher
Pearson IT Certification
800 East 96th Street
Indianapolis, IN 46240 USA
CompTIA Security+
- Designed for IT professionals focused on system security.
- Covers network infrastructure, cryptography, assessments, and audits.
- Security+ is mandated by the U.S. Department of Defense and is recommended by top companies such as Microsoft, HP, and Cisco.

It Pays to Get Certified
In a digital world, digital literacy is an essential survival skill. Certification proves you have the knowledge and skill to solve business problems in virtually any business environment. Certifications are highly valued credentials that qualify you for jobs, increased compensation, and promotion.

Security is one of the highest demand job categories. Growing in importance as the frequency and severity of security threats continues to be a major concern for organizations around the world.

- Jobs for security administrators are expected to increase by 18% - the skill set required for these types of jobs map to CompTIA Security+ certification.
- Network Security Administrators - can earn as much as $106,000 per year.
- CompTIA Security+ is the first step - in starting your career as a Network Security Administrator or Systems Security Administrator.
- CompTIA Security+ is regularly used in organizations - such as Hitachi Information Systems, Trendmicro, the McAfee Elite Partner program, the U.S. State Department, and U.S. government contractors such as EDS, General Dynamics, and Northrop Grumman.

How Certification Helps Your Career

IT is Everywhere
IT is ubiquitous, needed by most organizations. Globally, there are over 600,000 IT job openings.

IT Knowledge and Skills Gets Jobs
Certifications are essential credentials that qualify you for jobs, increased compensation, and promotion.

Retain your Job and Salary
Make your expertise stand above the rest. Competence is usually retained during times of change.

Want to Change Jobs
Certifications qualify you for new opportunities, whether locked into a current job, see limited advancement, or need to change careers.

Stick Out from the Resume Pile
Hiring managers can demand the strongest skill set.
CompTIA Career Pathway

CompTIA offers a number of credentials that form a foundation for your career in technology and allow you to pursue specific areas of concentration. Depending on the path you choose to take, CompTIA certifications help you build upon your skills and knowledge, supporting learning throughout your entire career.

<table>
<thead>
<tr>
<th>Steps to Getting Certified and Staying Certified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review Exam Objectives</td>
</tr>
<tr>
<td>Practice for the Exam</td>
</tr>
<tr>
<td>Purchase an Exam Voucher</td>
</tr>
<tr>
<td>Take the Test!</td>
</tr>
<tr>
<td>Stay Certified!</td>
</tr>
</tbody>
</table>
Join the Professional Community

The free IT Pro online community provides valuable content to students and professionals.

- Career IT Job Resources
- Where to start in IT
- Career Assessments
- Salary Trends
- US Job Board
- Forums on Networking, Security, Computing and Cutting Edge Technologies
- Access to blogs written by industry Experts
- Current information on Cutting Edge Technologies
- Access to various industry resource links and articles related to IT and IT careers

Content Seal of Quality

This courseware bears the seal of CompTIA Approved Quality Content. This seal signifies this content covers 100% of the exam objectives and implements important instructional design principles. CompTIA recommends multiple learning tools to help increase coverage of the learning objectives.

Why CompTIA?

- **Global Recognition** – CompTIA is recognized globally as the leading IT non-profit trade association and has enormous credibility. Plus, CompTIA’s certifications are vendor-neutral and offer proof of foundational knowledge that translates across technologies.

- **Valued by Hiring Managers** - Hiring managers value CompTIA certification because it is vendor and technology independent validation of your technical skills.

- **Recommended or Required by Government and Businesses** - Many government organizations and corporations either recommend or require technical staff to be CompTIA certified. (e.g. Dell, Sharp, Ricoh, the U.S. Department of Defense and many more)

- **Three CompTIA Certifications ranked in the top 10.** In a study by DICE of 17,000 technology professionals, certifications helped command higher salaries at all experience levels.

How to obtain more information

- **Visit CompTIA online** - www.comptia.org to learn more about getting CompTIA certified.

- **Contact CompTIA** - call 866-835-8020 ext. 5 or email questions@comptia.org

- **Join the IT Pro Community** – http://itpro.comptia.org to join the IT community to get relevant career information.

- **Connect with us :**
 - ![LinkedIn](https://www.linkedin.com)
 - ![Facebook](https://www.facebook.com)
 - ![Twitter](https://twitter.com)
 - ![Instagram](https://www.instagram.com)
 - ![YouTube](https://www.youtube.com)
Welcome to the CompTIA Security+ SY0-301 Authorized Cert Guide. The CompTIA Security+ Certification is widely accepted as the first security certification you should attempt to attain in your information technology (IT) career. The CompTIA Security+ Certification is designed to be a vendor-neutral exam that measures your knowledge of industry-standard technologies and methodologies. It acts as a great stepping stone to other vendor-specific certifications and careers. I developed this book to be something you can study from for the exam and keep on your bookshelf for later use as a security resource.

I’d like to note that it’s unfeasible to cover all security concepts in depth in a single book. However, the Security+ exam objectives are looking for a basic level of computer, networking, and organizational security knowledge. Keep this in mind while reading through this text, and remember that the main goal of this text is to help you pass the Security+ exam, not to be the master of all security. Not just yet at least!

Because this is a security book, it is a bit more serious than some of my other texts. This may come as a surprise to some, but levity should be used carefully when dealing with security concepts because too much humor can easily confuse the issue and be taken the wrong way. It is my belief that in this fast-paced world of ever-changing technology, an author needs to get right to the point. I understand that you don’t have unlimited time for study, so you will notice me being blunt in the way I get to the core of concepts. Don’t take offense! This is done by design to aid you in absorbing content quickly.

Good luck as you prepare to take the CompTIA Security+ exam. As you read through this book, you will be building an impenetrable castle of knowledge, culminating in hands-on familiarity and the know-how to pass the exam.

IMPORTANT NOTE!!
The first thing you should do before you start reading Chapter 1 is check my website for errata and updated information, and mark those new items in the book. On my site you will also find videos, articles, and additional test questions. And of course, feel free to ask me questions about the book. You can reach the Security+ page of my website directly at the following link:

www.SY0-301.com

Or, go to my home page at the following link:

www.davidlprowse.com
A NOTE TO INSTRUCTORS I developed this book not only for the individual reader, but also to work well in the classroom setting. To complement this book, I also designed an instructor guide that can be accessed for free from the following link:
www.davidlprowse.com/instructor-sy0-301.php
(You may afterward be redirected to a separate Pearson web page to download the materials.)

The supplemental instructor guide includes a breakdown of each chapter, a sample lesson plan, and plenty of teaching tips and tricks. You can also find PowerPoint presentations and a test bank of questions available for download. And, of course, if you have questions about the guide, please let me know at my website. Good luck in your teaching endeavors!

Goals and Methods

The number one goal of this book is to help you pass the 2011 version of the CompTIA Security+ Certification Exam (number SY0-301). To that effect, I have filled this book with more than 500 questions/answers and explanations in total, including two 100-question practice exams. The exams are in text at the end of the book and located on the disc in a simulated test environment. These tests are geared to check your knowledge and ready you for the real exam.

Deluxe Edition

The Deluxe Edition has one additional practice exam as well as a suite of Security+ learning activities on the DVD.

The CompTIA Security+ Certification exam involves familiarity with computer security theory and hands-on know-how. To aid you in mastering and understanding the Security+ Certification objectives, this book uses the following methods:

■ **Opening topics list**—This defines the topics to be covered in the chapter; it also lists the corresponding CompTIA Security+ objective numbers.

■ **Topical coverage**—The heart of the chapter. Explains the topics from a theory-based standpoint, as well as from a hands-on perspective. This includes in-depth descriptions, tables, and figures that are geared to build your knowledge so that you can pass the exam. The chapters are broken down into two to three topics each.
■ **Key Topics**—The Key Topic icons indicate important figures, tables, and lists of information that you should know for the exam. They are interspersed throughout the chapter and are listed in table format at the end of the chapter.

■ **Memory Tables and Lists**—These can be found on the DVD as Appendix A, “Memory Tables,” and Appendix B, “Memory Tables Answer Key.” Use them to help memorize important information.

■ **Key Terms**—Key terms without definitions are listed at the end of each chapter. See whether you can define them, and then check your work against the complete key term definitions in the glossary.

■ **Hands-On Labs**—There are labs for most chapters. The step-by-step procedures appear at the end of the chapters (as well as on the disc) and the corresponding video solutions can be found on the disc as well.

■ **Review Questions**—At the end of each chapter is a quiz. The quizzes, and answers with explanations, are meant to gauge your knowledge of the subjects. If an answer to a question doesn’t come readily to you, be sure to review that portion of the chapter.

Another goal of this book is to offer support for you—the reader. Again, if you have questions or suggestions, please contact me through my website: www.davidlprowse.com

I try my best to answer your queries as soon as possible.

Who Should Read This Book?

This book is for anyone who wants to start or advance a career in IT security. Readers of this book can range from persons taking a Security+ course to individuals already in the field who want to keep their skills sharp, or perhaps retain their job due to a company policy mandating they take the Security+ exam. Some information assurance professionals who work for the Department of Defense or have privileged access to DoD systems are required to become Security+ certified as per DoD directive 8570.1.

This book is also designed for people who plan on taking additional security-related certifications after the CompTIA Security+ exam. The book is designed in such a way to offer an easy transition to future certification studies.

Although not a prerequisite, it is recommended that CompTIA Security+ candidates have at least two years of technical networking experience with an emphasis on security. The CompTIA Network+ certification is also recommended as a prerequisite. It is expected that you understand computer topics such as how to install operating systems and applications, and networking topics such as how to configure IP, what a
VLAN is, and so on. The focus of this book is to show how to secure these technologies and protect against possible exploits and attacks. Generally, for people looking to enter the IT field, the CompTIA Security+ certification is attained after the A+ and Network+ certifications.

Important! If you do not feel that you have the required experience, have never attempted to secure a computer or network, or are new to the IT field, I recommend considering an IT course that covers the CompTIA Security+ objectives. You can choose from plenty of technical training schools, community colleges, and online courses. Use this book with the course and any other course materials you obtain.

CompTIA Security+ Exam Topics

Table I-1 lists the exam topics for the CompTIA Security+ exam. This table lists the chapter in which each exam topic is covered. Chapter 1 is an introductory chapter and as such does not map to any specific exam objectives. Chapter 16 gives strategies for taking the exam and does not map to any specific objectives either.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Exam Topic</th>
<th>CompTIA Security+ Exam Objectives Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Security 101</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Think Like a Hacker</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Computer Systems Security Threats</td>
<td>Objectives 3.1, 3.2, 4.2, 4.3</td>
</tr>
<tr>
<td></td>
<td>Implementing Security Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Securing Computer Hardware and Peripherals</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hardening Operating Systems</td>
<td>Objectives 3.6, 4.1, 4.2</td>
</tr>
<tr>
<td></td>
<td>Virtualization Technology</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Securing the Browser</td>
<td>Objective 3.5, 4.1, 4.2</td>
</tr>
<tr>
<td></td>
<td>Securing Other Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secure Programming</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Network Design</td>
<td>Objectives 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 3.2, 3.5, 4.3</td>
</tr>
<tr>
<td></td>
<td>Ports and Protocols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malicious Attacks</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Firewalls and Network Security</td>
<td>Objectives 1.1, 1.2, 3.6</td>
</tr>
<tr>
<td></td>
<td>NIDS Versus NIPS</td>
<td></td>
</tr>
</tbody>
</table>
Table I-1 CompTIA Security+ Exam Topics

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Exam Topic</th>
<th>CompTIA Security+ Exam Objectives Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Securing Wired Networks and Devices</td>
<td>Objectives 1.6, 3.4, 6.2</td>
</tr>
<tr>
<td></td>
<td>Securing Wireless Networks</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Physical Security</td>
<td>Objectives 3.6, 4.2, 5.1, 5.2</td>
</tr>
<tr>
<td></td>
<td>Authentication Models and Components</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Access Control Models Defined</td>
<td>Objectives 2.2, 5.2, 5.3</td>
</tr>
<tr>
<td></td>
<td>Rights, Permissions, and Policies</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Conducting Risk Assessments</td>
<td>Objectives 1.1, 2.1, 2.2, 3.7, 3.8</td>
</tr>
<tr>
<td></td>
<td>Assessing Vulnerability with Security Tools</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Monitoring Methodologies</td>
<td>Objectives 2.2, 2.3, 3.6, 4.1</td>
</tr>
<tr>
<td></td>
<td>Using Tools to Monitor Systems and Networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conducting Audits</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cryptography Concepts</td>
<td>Objectives 4.3, 6.1, 6.2</td>
</tr>
<tr>
<td></td>
<td>Encryption Algorithms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hashing Basics</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Public Key Infrastructure</td>
<td>Objectives 1.4, 6.2, 6.3, 6.4</td>
</tr>
<tr>
<td></td>
<td>Security Protocols</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Redundancy Planning</td>
<td>Objective 1.1, 2.5, 2.7</td>
</tr>
<tr>
<td></td>
<td>Disaster Recovery Planning and Procedures</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Environmental Controls</td>
<td>Objectives 2.1, 2.3, 2.4, 2.6, 3.3, 5.2</td>
</tr>
<tr>
<td></td>
<td>Social Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legislative and Organizational Policies</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Getting Ready and the Exam Preparation Checklist</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Tips for Taking the Real Exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beyond the CompTIA Security+ Certification</td>
<td></td>
</tr>
</tbody>
</table>

Pearson IT Certification Practice Test Engine and Questions on the DVD

The DVD in the back of the book includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice questions. Using the Pearson IT Certification Practice Test engine, you can
either study by going through the questions in Study Mode, or take a simulated exam that mimics real exam conditions.

The installation process requires two major steps: installing the software and then activating the exam. The DVD in the back of this book has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam—the database of exam questions—is not on the DVD.

NOTE The cardboard DVD case in the back of this book includes the DVD and a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Install the Software from the DVD

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows Virtual Machine, but it was built specifically for the PC platform. The minimum system requirements are

- Windows XP (SP3), Windows Vista (SP2), or Windows 7
- Microsoft .NET Framework 4.0 Client
- Pentium class 1GHz processor (or equivalent)
- 512 MB RAM
- 650 MB disc space plus 50 MB for each downloaded practice exam

The software installation process is pretty routine as compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the DVD sleeve.

The following steps outline the installation process:

Step 1. Insert the DVD into your PC.

Step 2. The software that automatically runs is the Pearson software to access and use all DVD-based features, including the exam engine and the DVD-only appendices. From the Practice Exam tab, click the option **Install Practice Exam**.
Step 3. Respond to windows prompts as with any typical software installation process.

The installation process gives you the option to activate your exam with the activation code supplied on the paper in the DVD sleeve. This process requires that you establish a Pearson website login. You need this login to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

Once the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process) as follows:

Step 1. Start the Pearson IT Certification Practice Test software from the Windows Start menu or from your desktop shortcut icon.

Step 2. To activate and download the exam associated with this book, from the My Products or Tools tab, select the Activate button.

Step 3. At the next screen, enter the Activation Key from the paper inside the cardboard DVD holder in the back of the book. Once entered, click the Activate button.

Step 4. The activation process will download the practice exam. Click Next; then click Finish.

Once the activation process is completed, the My Products tab should list your new exam. If you do not see the exam, make sure you have selected the My Products tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the Open Exam button.

To update a particular exam you have already activated and downloaded, simply select the Tools tab and select the Update Products button. Updating your exams ensures you have the latest changes and updates to the exam data.

If you want to check for updates to the Pearson IT Certification Practice Test software, simply select the Tools tab and select the Update Engine button. This ensures you are running the latest version of the software engine.

Activating Other Exams

The exam software installation process and the registration process only have to happen once. Then, for each new exam, only a few steps are required. For instance, if you buy another new Pearson IT Certification Cert Guide or Cisco Press Official Cert Guide, extract the activation code from the DVD sleeve in the back of that book. From there, all you have to do is start the exam engine (if not still up and running) and perform steps 2 through 4 from the previous list.
Premium Edition

In addition to the free practice exams provided with your purchase, you can purchase one additional exam with expanded functionality directly from Pearson IT Certification. The Premium Edition eBook and Practice Test for this title contains an additional full practice exam as well as an eBook (in both PDF and ePub format). In addition, the Premium Edition title also has remediation for each question to the specific part of the eBook that relates to that question.

If you have purchased the print version of this title, you can purchase the Premium Edition at a deep discount. A coupon code in the DVD sleeve contains a one-time use code as well as instructions for where you can purchase the Premium Edition.

To view the premium edition product page, go to

www.informit.com/title/9780132939607
This page intentionally left blank
This chapter covers the following subjects:

- **Security 101**—School is in session. This section discusses some of the basic principles of information security such as CIA and AAA, some basic threats, and various ways to mitigate those threats.

- **Think Like a Hacker**—To know your enemy, you must think like the enemy. Sometimes the hacker is your adversary, sometimes not. This section describes the various hats worn in the hacker society.
This chapter covers the following subjects:

- **Hardening Operating Systems**—Service packs, patches, hotfixes—This section details what you need to know to make your operating system strong as steel. Group policies, security templates, and baselining put on the finishing touches to attain that bullet-proof system.

- **Virtualization Technology**—This section delves into virtual machines and other virtual implementations with an eye on applying real-world virtualization scenarios.

This chapter covers the CompTIA Security+ SY0-301 objectives 3.6, 4.1, and 4.2.
CHAPTER 3

OS Hardening and Virtualization

Imagine a computer with a freshly installed server operating system (OS) placed on the Internet or on a DMZ that went live without any updating, service packs, or hotfixes. How long do you think it would take for this computer to be compromised? A week? Sooner? It depends on the size and popularity of the organization, but it won’t take long for a nonhardened server to be compromised. And it’s not just servers! Workstations, routers, switches: You name it; they all need to be updated regularly, or they will fall victim to attack. By updating systems frequently and by employing other methods such as group policies and baseline, we are hardening the system, making it tough enough to withstand the pounding that it will probably take from today’s technology...and society.

Another way to create a secure environment is to run OSs virtually. Virtual systems allow for a high degree of security, portability, and ease of use. However, they are resource-intensive, so a balance needs to be found, and virtualization needs to be used according to the resources of the organization. Of course, these systems need to be maintained and updated (hardened) as well.

By utilizing virtualization properly and by implementing an intelligent update plan, OSs, and the relationships between OSs, can be more secure and last a long time.
An OS that has been installed out-of-the-box is inherently insecure. This can be attributed to several things, including initial code issues and backdoors, the age of the product, and the fact that most systems start off with a basic and insecure set of rules and policies. How many times have you heard of an OS where the controlling user account was easily accessible and had no password? Although these types of oversights are constantly being improved upon, making an out-of-the-box experience more pleasant, new applications and new technologies offer new security implications as well. So regardless of the product, we must try to protect it after the installation is complete.

Hardening of the OS is the act of configuring an OS securely, updating it, creating rules and policies to help govern the system in a secure manner, and removing unnecessary applications and services. This is done to minimize OS exposure to threats and to mitigate possible risk. Although it is impossible to reduce risk to zero, I’ll show some tips and tricks that can enable you to diminish current and future risk to an acceptable level.

This section demonstrates how to harden the OS through the use of service packs, patches and patch management, hotfixes, group policies, security templates, and configuration baselines. We then discuss a little bit about how to secure the file system and hard drives. But first, let’s discuss how to go about analyzing the system and deciding which applications and services are unnecessary, and then remove them.

Removing Unnecessary Applications and Services

Unnecessary applications and services use valuable hard drive space and processing power. Plus, they can be vulnerabilities to an operating system.

For example, instant messaging programs might be fun for a user but usually are not productive in the workplace (to put it nicely); plus, they often have backdoors that are easily accessible to attackers. They should be discouraged or disallowed by rules and policies. Be proactive when it comes to these types of programs. If users can’t install an IM program on their computer, you will never have to go about removing it from the system. But if you do have to remove an application like this, be sure to remove all traces that it ever existed. Make sure that related services are turned off and disabled. Then verify that their inbound ports are no longer functional, and that they are closed and secured. For example, AOL Instant Messenger uses inbound port 5190, which is well known to attackers, as are other inbound ports of other
IM programs, such as ICQ or Trillian. Confirm that any shares created by an application are disabled as well. Basically, remove all instances of the application or, if necessary, re-image the computer! That is just one example of many, but it can be applied to most superfluous programs. Another type of program you should watch out for are remote control programs. Applications that enable remote control of a computer should be avoided if possible.

Personally, I use a lot of programs. But over time, some of them fall by the wayside and are replaced by better programs. The best procedure is to check a system periodically for any unnecessary programs. For example, in Windows 7 we can look at the list of installed programs by going to the Control Panel > Programs > Programs and Features, as shown in Figure 3-1.

![Figure 3-1](image)

Notice in the figure that Camtasia Studio 5 is installed. If in the future I decide to use another program, such as Adobe Captivate or something similar, and Camtasia is no longer necessary, it should be removed. This can be done by right-clicking the application and selecting Uninstall. Or an application might have an uninstall feature built in to the Start menu that you can use. Camtasia takes up 61 MB, so it makes sense to remove apps like this to conserve hard drive space. This becomes more important when you deal with audio/video departments that would use an application (and many others like it) such as Camtasia. They are always battling for hard drive space, and it can get ugly! Not only that, but many applications place a piece of themselves in the system tray. So, a part of the program is actually running
behind the scenes using processor/RAM resources. If the application is necessary, there are often ways to eliminate it from the system tray, either by right-clicking the system tray icon and accessing its properties, or by turning it off with a configuration program such as MSconfig.

Consider also that apps like this might also attempt to communicate with the Internet in an attempt to download updates, or for other reasons. It makes this issue not only a resource problem, but also a security concern, so it should be removed if it is unused. Only software deemed necessary should be installed in the future.

Services are used by applications and the OS. They too can be a burden on system resources and pose security concerns. Examine Figure 3-2 and note the highlighted service.

The OS shown in Figure 3-2 is Windows XP. Windows XP was the last Microsoft OS to have Telnet installed by default, even though it was already well-known that Telnet was a security risk. This is an example of an out-of-box security risk. But to make matters worse, the Telnet service in the figure is started! Instead of using Telnet, a more secure application/protocol should be utilized such as SSH. Then Telnet should be stopped and disabled. To do so, just right-click the service, select **Properties**, then click the **Stop** button, and change the Startup type drop-down menu to the **Disabled** option, as shown in Figure 3-3. This should be done for all unnecessary services, for example, the Trivial File Transfer Protocol (TFTP). By
disabling services such as this one we can reduce the risk of attacker access to the computer and we trim the amount of resources used. This is especially important on Windows servers, because they run a lot more services and are a more common target. By disabling unnecessary services, we reduce the size of the attack surface. Services can be disabled in the Windows Command Prompt by using the `sc config` command, and can be started and stopped with the `net start` and `net stop` commands, respectively.

![Telnet Properties Dialog Box](image)

Figure 3-3 Telnet Properties Dialog Box

Services can be stopped in the Linux command-line in a few ways:

- By typing the following syntax:
  ```bash
  /etc/init.d/<service> stop
  ```
 where `<service>` is the service name.

- By typing the following syntax in select versions:
  ```bash
  service <service> stop
  ```

Some services require a different set of syntax. For example, Telnet can be deactivated in Red Hat by typing `chkconfig telnet off`. Check the MAN pages within the command line or online for your particular version of Linux to obtain exact syntax and any previous commands that need to be issued. Or use a generic Linux online MAN page, for example: http://linux.die.net/man/1/telnet.
In Mac OS X, services can be stopped in the command line by using the following syntax:

```
% sudo /sbin/service <service> stop
```

Don’t confuse services with service packs. Although a service controls a specific function of an OS or application, a service pack is used to update a system. The service pack probably will update services as well, but the similarity in names is purely coincidental.

Service Packs

A service pack (SP) is a group of updates, bug fixes, updated drivers, and security fixes installed from one downloadable package or from one disc. When the number of patches for an OS reaches a certain limit, they are gathered together into an SP. This might take one to several months after the OS is released. Because organizations know an SP will follow an OS release, which implies that there will be security issues with a brand new out-of-the-box OS, they will usually wait until the first SP is released before embracing a new OS.

SPs are numbered; for example SP1, SP2, and so on. An OS without an SP is referred to as SP0. Installing an SP is relatively easy and only asks a few basic questions. When those questions are answered, it takes several minutes or more to complete the update; then a restart is required. Although the SP is installed, it re-writes many files and copies new ones to the hard drive as well.

Historically, many SPs have been cumulative, meaning that they also contain previous SPs. For example, SP2 for Windows XP includes all the updates from SP1; a Windows XP installation with no SP installed can be updated directly to SP2 without having to install SP1 first. However, you also see incremental SPs, for example, Windows XP SP3. A Windows XP installation with no SP cannot be updated directly to SP3; it needs to have SP1 or SP2 installed first before the SP3 update. Another example of an incremental SP is Windows Vista SP2; SP1 must be installed before updating to SP2 in Windows Vista. This is becoming more common with Microsoft software. Before installing an SP, read the instructions that accompany it, or the instructions on the download page on the company’s website.

To find out an OS’s current SP level, click **Start**, right-click **Computer**, and select **Properties**, and the SP should be listed. If there is no SP installed, it will be blank. An example of Windows 7’s System window is shown in Figure 3-4; it shows that SP1 is installed. An example of Windows XP’s System Properties dialog box is shown in Figure 3-5; it has no SP installed (SP0). If an SP were installed, the SP number would be displayed under Version 2002; otherwise the area is left blank. Windows Server OSs work in the same fashion.
NOTE You can also find out which service pack your operating system uses by opening the System Information tool (open the Run prompt and type `msinfo32.exe`). It will be listed directly in the system summary. In addition, you can use the `systeminfo` command in the Command Prompt (a GREAT information gatherer!).

![Figure 3-4](Windows 7 System Window)

![Figure 3-5](Windows XP System Properties Dialog Box)
To find out what SP a particular version of Office is running, click **Help** on the menu bar and select **About Microsoft Office <Application Name>** where the application name could be Outlook, Word, and so on, depending on what app you use. An example of this in Outlook is shown in Figure 3-6. Office SPs affect all the applications within the Office suite.

![Figure 3-6 Microsoft Outlook About Window](image)

SPs can be acquired through Windows Update, at www.microsoft.com, on CD/DVD, and through a Microsoft Developer Network (MSDN) subscription. An SP might also have been incorporated into the original OS distribution DVD/CD. This is known as slipstreaming. This method enables the user to install the OS and the SP at the same time in a seamless manner. System administrators can create slipstreamed images for simplified over-the-network installations of the OS and SP.

Table 3-1 defines the latest SPs as of August 2011. You might see older OSs in the field. (If something works, why replace it, right?) For example, Windows NT and 2000 servers might be happily churning out the data necessary to users. That’s okay; just make sure that they use the latest SP so that they can interact properly with other computers on the network. Keep in mind that this table is subject to change because new SPs can be released at any time. Note that other applications such as Microsoft Office, and server-based apps such as Microsoft Exchange Server, use SPs as well.
Table 3-1 Latest Microsoft SPs as of August 2011

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Service Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 7</td>
<td>SP1</td>
</tr>
<tr>
<td>Windows Vista</td>
<td>SP2</td>
</tr>
<tr>
<td>Windows XP</td>
<td>SP3</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>SP1</td>
</tr>
<tr>
<td>Windows Server 2003</td>
<td>SP2</td>
</tr>
<tr>
<td>Windows 2000 (Server and Professional)</td>
<td>SP4</td>
</tr>
<tr>
<td>Windows NT 4.0 (Server and Workstation)</td>
<td>SP6</td>
</tr>
<tr>
<td>Office 201</td>
<td>SP1</td>
</tr>
<tr>
<td>Office 2007</td>
<td>SP2</td>
</tr>
<tr>
<td>Office 2003</td>
<td>SP3</td>
</tr>
<tr>
<td>Office 2000</td>
<td>SP3</td>
</tr>
</tbody>
</table>

NOTE Some companies choose to stay with an older SP so that the OS in question can interoperate properly with specific applications. Though this is not recommended, you should check your organization’s policies governing this subject.

If possible, service pack installations should be done offline. Disconnect the computer from the network by disabling the network adapter before initiating the SP upgrade. Again, because brand new OSs are inherently insecure to some extent (no matter what a manufacturer might say), organizations usually wait for the release of the first SP before implementing the OS on a live network. However, SPs are not the only type of updating you need to do to your computers. Microsoft OSs require further patching with the Windows Update program, and other applications require their own patches and hotfixes.

Windows Update, Patches, and Hotfixes

OSs should be updated regularly. For example, Microsoft recognizes the deficiencies in an OS, and possible exploits that could occur, and releases patches to increase OS performance and protect the system. After the latest SP has been installed, the next step is to see whether any additional updates are available for download.
For example, if you want to install additional updates for Windows through Windows Update, you can do the following:

Step 1. Click **Start > All Programs > Windows Update**.

Step 2. Different OSs have different results at this point. For example, Windows 7/Vista opens the Window Update window in which you can click the Install Updates button. Windows XP opens a web page in which you can select Express or Custom installation of updates. Follow the prompts to install the latest version of the Windows Update software if necessary.

NOTE Do not select Express or let Microsoft automatically install all updates if you do not want to use newer applications, for example, the latest version of Internet Explorer, Windows 7 SP1, or Windows XP SP3.

Step 3. The system (or web page) automatically scans for updates. Updates are divided into the following categories:

- **Critical updates and SPs**—These include the latest SP and other security and stability updates. Some updates must be installed individually; others can be installed as a group.
- **Windows updates**—Recommended updates to fix noncritical problems certain users might encounter; also adds features and updates to features bundled into Windows.
- **Driver updates**—Updated device drivers for installed hardware.

If your system is in need of updates, a shield (for the Windows Security Center) appears in the system tray. Double-clicking this brings up the Security Center window in which you can turn on automatic updates. To modify how you are alerted to updates, and how they are downloaded and installed, do the following in Windows 7/Vista:

- Click **Start > All Programs > Windows Update**; then click the Change Settings link.
- It might require slightly different navigation in other OSs to access this.

From here, there will be four options (in other OSs, the options might be slightly different):

- **Install Updates Automatically**—This is the recommended option by Microsoft. You can schedule when and how often the updates should be downloaded and installed.
■ **Download Updates but Let Me Choose Whether to Install Them**—This automatically downloads updates when they become available, but Windows prompts you to install them instead of installing them automatically. Each update has a checkbox, so you can select individual updates to install.

■ **Check for Updates but Let Me Choose Whether to Download and Install Them**—This enables you know when updates are available, but you are in control as to when they are downloaded and installed.

■ **Never Check for Updates**—This is not recommended by Microsoft because it can be a security risk but might be necessary in some environments in which updates could cause conflicts over the network. In some networks, the administrator takes care of updates from a server and sets the local computers to this option.

Another tool that can be used online is Microsoft Update, which is similar to Windows Update, but it can update for other Microsoft applications as well. It can be found at the following link: http://windowsupdate.microsoft.com/. For newer versions of Windows, this simply opens the Windows Update program on your local computer automatically.

Patches and Hotfixes

The best place to obtain patches and hotfixes is from the manufacturer’s website. The terms *patches* and *hotfixes* are often used interchangeably. Windows Updates are made up of *hotfixes*. Originally, a hotfix was defined as a single problem-fixing patch to an individual OS or application installed live while the system was up and running and without a reboot necessary. However, this term has changed over time and varies from vendor to vendor. (Vendors may even use both terms to describe the same thing.) For example, if you run the `systeminfo` command in the Command Prompt of a Windows Vista computer, you see a list of Hotfix(s), similar to Figure 3-7. The figure doesn’t show all of them because there are 88 in total. However, they can be identified with the letters KB followed by six numbers. Some of these are single patches to individual applications, but others affect the entire system, such as #88, which is called KB948465. This hotfix is actually Windows Vista Service Pack 2!—which includes program compatibility changes, additional hardware support, and general OS updates. And a Service Pack 2 installation definitely requires a restart.
On the other side of the spectrum, World of Warcraft defines hotfixes as a “hot” change to the server with no downtime (or a quick world restart), and no client download is necessary. The organization releases these if they are critical, instead of waiting for a full patch version. The gaming world commonly uses the terms patch version, point release, or maintenance release to describe a group of file updates to a particular gaming version. For example, a game might start at version 1 and later release an update known as 1.17. The .17 is the point release. (This could be any number depending on the amount of code rewrites.) Later, the game might release 1.32, in which .32 is the point release, again otherwise referred to as the patch version. This is common with other programs as well. For example, the aforementioned Camtasia program that is running on the computer we showed is version 5.0.2. The second dot (.2) represents very small changes to the program, whereas a patch version called 5.1 would be a larger change, and 6.0 would be a completely new version of the software. This concept also applies to blogging applications and forums (otherwise known as bulletin boards). As new threats are discovered (and they are extremely common in the blogging world), new patch versions are released. They should be downloaded by the administrator, tested, and installed without delay. Admins should keep in touch with their software manufacturers, either through phone or e-mail, or by frequenting their web pages. This keeps the admin “in the know” when it comes to the latest updates. And this applies to server and client operating systems, server add-ons such as Microsoft Exchange or SQL Server, Office programs, web browsers, and the plethora of third-party programs that an organization might use. Your job just got a bit busier!

Of course, we are usually not concerned with updating games in the working world; they should be removed from a computer if they are found (unless perhaps if you
work for a gaming company). But multimedia software such as Camtasia is prevalent in most companies, and web-based software such as bulletin-board systems are also common and susceptible to attack.

Patches generally carry the connotation of a small fix in the mind of the user or system administrator, so larger patches are often referred to as software updates, service packs, or something similar. However, if you were asked to fix a single security issue on a computer, a patch would be the solution you would want.

Sometimes, patches are designed poorly, and although they might fix one problem, they could possibly create another, which is a form of software regression. Because you never know exactly what a patch to a system might do, or how it might react or interact with other systems, it is wise to incorporate patch management.

Patch Management

It is not wise to go running around the network randomly updating computers, not to say that you would do so! Patching, like any other process, should be managed properly. Patch management is the planning, testing, implementing, and auditing of patches. Now, these four steps are ones that I use; other companies might have a slightly different patch management strategy, but each of the four concepts should be included:

- **Planning**—Before actually doing anything, a plan should be set into motion. The first thing that needs to be decided is whether the patch is necessary and whether it is compatible with other systems. Microsoft Baseline Security Analyzer (MBSA) is one example of a program that can identify security misconfigurations on the computers in your network, letting you know whether patching is needed. If the patch is deemed necessary, the plan should consist of a way to test the patch in a “clean” network on clean systems, how and when the patch will be implemented, and how the patch will be checked after it is installed.

- **Testing**—Before automating the deployment of a patch among a thousand computers, it makes sense to test it on a single system or small group of systems first. These systems should be reserved for testing purposes only and should not be used by “civilians” or regular users on the network. I know, this is asking a lot, especially given the amount of resources some companies have. But the more you can push for at least a single testing system that is not a part of the main network, the less you will be to blame if a failure occurs!

- **Implementing**—If the test is successful, the patch should be deployed to all the necessary systems. In many cases this is done in the evening or over the weekend for larger updates. Patches can be deployed automatically using software such as Microsoft’s Systems Management Server (SMS).
Auditing—When the implementation is complete, the systems (or at least a sample of systems) should be audited; first, to make sure the patch has taken hold properly, and second, to check for any changes or failures due to the patch. SMS, and other third-party tools can be used in this endeavor.

There are also Linux-based and Mac-based programs and services developed to help manage patching and the auditing of patches. Red Hat has services to help sys admins with all the RPMs they need to download and install, which can become a mountain of work quickly! And for those people who run GPL Linux, there are third-party services as well. Sometimes, patch management is just too much for one person, or for an entire IT department, and an organization might opt to contract that work out.

Group Policies, Security Templates, and Configuration Baselines

Although they are important, removing applications, disabling services, patching, hotfixing, and installing service packs are not the only ways to harden an operating system. Administrative privileges should be used sparingly, and policies should be in place to enforce your organization’s rules. Group policies are used in Microsoft environments to govern user and computer accounts through a set of rules. Built-in or administrator-designed security templates can be applied to these to configure many rules at one time. And configuration baselines should be created and used to measure server and network activity.

To access the group policy in Windows, go to the Run prompt and type gedit.msc. This should display the Local Group Policy Editor console window. Figure 3-8 shows an example of this in Windows 7.

Although there are many configuration changes you can make, this figure focuses on the computer’s security settings that can be accessed by navigating to Local Computer Policy > Computer Configuration > Windows Settings > Security Settings. From here you can make changes to the password policies, for example, how long a password lasts before having to be changed, account lockout policies, public key policies, and so on. We talk about these different types of policies and the best way to apply them in future chapters. The group policy editor in the figure is known as the Local Group Policy and only governs that particular machine and the local users of that machine. It is a basic version of the group policy used by Windows Server 2008/2003 domain controllers that have Active Directory loaded.
It is also from here where you can add security templates as well. Security templates are groups of policies that can be loaded in one procedure; they are commonly used in corporate environments. Different security templates have different security levels. These can be installed by right-clicking Security Settings and selecting Import Policy. This brings up the Import Policy From window. Figure 3-9 shows an example of this in Windows Server 2003. For example, the file securedc.inf is an information file filled with policy configurations more secure than the default you would find in a Windows Server 2003 domain controller that runs Active Directory. And hisecdc.inf is even more secure, perhaps too secure and limiting for some organizations. Generally, these policy templates are applied to organizational units on a domain controller. But they can be used for other types of systems and policies as well. Server 2003 Templates are generally stored in %systemroot%\Security\templates.

There are only three default security templates in Server 2008: Defltbase.inf (uncommon), deftsv.inf (used on regular servers), and defltvc.inf (used in domain controllers). By default, these templates are stored in %systemroot%\inf. They are imported in the same manner as in Server 2003.
Baselining is the process of measuring changes in networking, hardware, software, and so on. Creating a baseline consists of selecting something to measure and measuring it consistently for a period of time. For example, I might want to know what the average hourly data transfer is to and from a server. There are many ways to measure this, but I could possibly use a protocol analyzer to find out how many packets cross through the server's network adapter. This could be run for 1 hour (during business hours of course) every day for 2 weeks. Selecting different hours for each day would add more randomness to the final results. By averaging the results together, we get a baseline. Then we can compare future measurements of the server to the baseline. This can help us to define what the standard load of our server is and the requirements our server needs on a consistent basis. It can also help when installing additional, like computers on the network. The term baselining is most often used to refer to monitoring network performance, but it actually can be used to describe just about any type of performance monitoring. Baselining and benchmarking are extremely important when testing equipment and when monitoring already installed devices. We discuss this further in Chapter 11, “Monitoring and Auditing.”

Hardening File Systems and Hard Drives

Last topic about hardening your system, I promise! Not! The rest of the book constantly refers to more advanced and in-depth ways to harden a computer system. But for this chapter, let's conclude this section by giving a few tips on hardening a hard drive and the file system it houses.

First, the file system used dictates a certain level of security. On Microsoft computers, the best option is to use NTFS, which is more secure, enables logging (oh so important), supports encryption, and has support for a much larger maximum partition size and larger file sizes. Just about the only place where FAT32 and NTFS are
on a level playing field is that they support the same amount of file formats. So, by far, NTFS is the best option. If a volume uses FAT or FAT32, it can be converted to NTFS using the following command:

```
Convert volume /FS:NTFS
```

For example, if I want to convert a USB flash drive named M: to NTFS the syntax would be

```
Convert M: /FS:NTFS
```

There are additional options for the `convert` command. To see these, simply type `convert /?` in the Command Prompt. NTFS enables for file-level security and tracks permissions within access control lists (ACLs) that are a necessity in today’s environment. Most systems today already use NTFS, but you never know about flash-based and other removable media. A quick `chkdsk` command in the Command Prompt or right-clicking the drive in the GUI and selecting Properties can tell you what type of file system it runs.

System files and folders by default are hidden from view to protect a Windows system, but you never know. To permanently configure the system to not show hidden files and folders, navigate to Windows Explorer, click the Tools menu, and click Folder Options. Then select the View tab, and under Hidden Files and Folders select the Do not show hidden files and folders radio button. Note that in Windows 7/Vista, the menu bar can also be hidden; to view it press Alt+T on the keyboard. To configure the system to hide protected system files, select the Hide protected operating system files checkbox, located three lines below the radio button previously mentioned. This disables the ability to view files such as ntldr, boot.ini, or bootmgr. You might also need to secure a system by turning off file sharing. For example, this can be done in Windows 7/Vista within the Network and Sharing Center, and within Windows XP in the Local Area Connection Properties dialog box.

In the past, I have made a bold statement: “Hard disks will fail.” But it’s all too true. It’s not a matter of if; it’s a matter of when. By maintaining and hardening the hard disk with various hard disk utilities, we attempt to stave off that dark day as long as possible. You can implement several things when maintaining and hardening a hard disk:

- **Remove temporary files**—Temporary files and older files can clog up a hard disk, cause a decrease in performance, and pose a security threat. It is recommended that Disk Cleanup or a similar program be used. Policies can be configured (or written) to run Disk Cleanup every day or at logoff for all the computers on the network.
Periodically check system files—Every once in a while it's a good idea to verify the integrity of operating system files. This can be done in the following ways:

- With the `chkdsk` command in Windows. This checks the disk and fixes basic issues such as lost files, and some errors with the `/F` option.
- With the `SFC` (System File Checker) command in Windows. This utility checks and if necessary replaces protected system files. It can be used to fix problems in the OS, and in other applications such as Internet Explorer. A typical command is `SFC /scannow`. Use this if `chkdsk` is not successful at making repairs.
- With the `fsck` command in Linux. This command is used to check and repair a Linux file system. The synopsis of the syntax is `fsck [-sAVRTNP] [-C [fd]] [-t fstype] [filesys ...] [--] [fs-specific-options]`. More information about this command can be found at the corresponding MAN page: http://linux.die.net/man/8/fsck. A derivative, `e2fsck`, is used to check a Linux ext2fs (second extended file system). Also open source data integrity tools can be downloaded for Linux such as Tripwire.

Defragment drives—Applications and files on hard drives become fragmented over time. For a server, this could be a disaster, because the server cannot serve requests in a timely fashion if the drive is too thoroughly fragmented. Defragmenting the drive can be done with Microsoft's Disk Defragmenter, with the command-line `defrag` command, or with other third-party programs.

Back up data—Backing up data is critical for a company. It is not enough to rely on a fault tolerant array. Individual files or the entire system can be backed up to another set of hard disks, to optical discs, or to tape. Microsoft domain controllers' Active Directory databases are particularly susceptible to attack; the System State for these O/Ss should be backed up, in the case that the server fails and the Active Directory needs to be recovered in the future.

Create restore points—Restore points should also be created on a regular basis for servers and workstations. System Restore can fix issues caused by defective hardware or software by reverting back to an earlier time. Registry changes made by hardware or software are reversed in an attempt to force the computer to work the way it did previously. Restore points can be created manually and are also created automatically by the O/S before new applications or hardware is installed.

Consider whole disk encryption—Finally, whole disk encryption can be used to secure the contents of the drive, making it harder for attackers to obtain and interpret its contents.
A recommendation I give to all my students and readers is to separate the OS from the data physically. If you can have each on a separate hard drive, it can make things a bit easier just in case the OS is infected with malware. The hard drive that the OS inhabits can be completely wiped and reinstalled without worrying about data loss, and applications can always be reloaded. Of course, settings should be backed up (or stored on the second drive). If a second drive isn’t available, consider configuring the one hard drive as two partitions, one for the OS (or system) and one for the data. By doing this, and keeping a well-maintained computer, you are effectively hardening the OS.

Keeping a Well-Maintained Computer

This is an excerpt of an article I wrote that I give to all my customers and students. By maintaining the workstation or server, you are hardening it as well. I break it down into six steps (and one optional step):

Step 1. Use a surge protector or UPS—Make sure the computer and other equipment connect to a surge protector, or better yet a UPS if you are concerned about power loss.

Step 2. Update the BIOS—Flashing the BIOS isn’t always necessary; check the manufacturer’s website for your motherboard to see if an update is needed.

Step 3. Update Windows—This includes the latest SPs and any Windows updates beyond that and setting Windows to alert if there are any new updates.

Step 4. Update antimalware—This includes making sure that there is a current license for the antimalware (antivirus and antispyware) and verifying that updates are turned on and the software is regularly scanning the system.

Step 5. Update the firewall—Be sure to have some kind of firewall installed and enabled; then update it. If it is the Windows Firewall, updates should happen automatically through Windows Update. However, if you have a SOHO router with a built-in firewall, or other firewall device, you need to update the device’s ROM by downloading the latest image from the manufacturer’s website.

Step 6. Maintain the disks—This means running a disk cleanup program regularly and checking to see whether the hard disk needs to be defragmented from once a week to once a month depending on the amount of usage. It also means creating restore points, doing Complete PC Backups, or using third-party backup or drive imaging software.
Virtualization Technology

Let’s define virtualization. Virtualization is the creation of a virtual entity, as opposed to a true or actual entity. The most common type of entity created through virtualization is the virtual machine—usually as an OS. In this section we discuss types of virtualizations, their purposes, and define some of the various virtual applications.

Types of Virtualization and Their Purposes

Many types of virtualization exist, from network and storage to hardware and software. The CompTIA Security+ exam focuses mostly on virtual machine software. The virtual machines (VMs) created by this software run operating systems or individual applications. These virtual OSs (also known as hosted OSs or guests) are designed to run inside a real OS. So the beauty behind this is that you can run multiple various OSs simultaneously from just one PC. This has great advantages for programmers, developers, and systems administrators, and can facilitate a great testing environment. Security researchers in particular utilize virtual machines so they can execute and test malware without risk to an actual OS and the hardware it resides on. Nowadays, many VMs are also used in live production environments. Plus, an entire OS can be dropped onto a DVD or even a flash drive and transported where you want to go.
Of course, there are drawbacks. Processor and RAM resources and hard drive space are eaten up by virtual machines. And hardware compatibility can pose some problems as well. Also, if the physical computer that houses the virtual OS fails, the virtual OS will go offline immediately. All other virtual computers that run on that physical system will also go offline. There is added administration as well. Some technicians forget that virtual machines need to be updated with the latest service packs and patches just like regular OSs. Many organizations have policies that define standardized virtual images, especially for servers. As I alluded to earlier, the main benefit of having a standardized server image is that mandated security configurations will have been made to the OS from the beginning—creating a template so to speak. This includes a defined set of security updates, service packs, patches, and so on, as dictated by organizational policy. So when you load up a new instance of the image, a lot of the configuration work will already have been done, and just the latest updates to the OS and AV software need to be applied. This image can be used in a virtual environment, or copied to a physical hard drive as well. For example, you might have a server farm that includes two physical Windows Server 2008 systems, and four virtual Windows Server 2008 systems, each running different tasks. It stands to reason that you will be working with new images from time to time as you need to replace servers or add them. By creating a standardized image once, and using it many times afterward, you can save yourself a lot of configuration time in the long run.

Virtual machines can be broken down into two categories:

- **System virtual machine**—A complete platform meant to take the place of an entire computer that enables you to run an entire OS virtually.
- **Process virtual machine**—Designed to run a single application, for example, if you ran a virtual web browser.

Whichever VM you select, the VM cannot cross the software boundaries set in place. For example, a virus might infect a computer when executed and spread to other files in the OS. However, a virus executed in a VM will spread through the VM but not affect the underlying actual OS. So this provides a secure platform to run tests, analyze malware, and so on...and creates an isolated system. If there are adverse effects to the VM, those effects (and the VM) can be compartmentalized to stop the spread of those effects. This is all because the virtual machine inhabits a separate area of the hard drive from the actual OS. This enables us to isolate network services and roles that a virtual server might play on the network.

Virtual machines are, for all intents and purposes, emulators. The terms *emulation*, *simulation*, and *virtualization* are often used interchangeably.
Emulators can also be web-based. An example of a web-based emulator is D-Link’s DIR-655 router emulator (we use this in Chapters 5–7), which you can find at the following link:

http://support.dlink.com/emulators/dir655/133NA/login.html

You might remember older emulators such as Basilisk, or the DOSBox, but nowadays, anything that runs an OS virtually is generally referred to as a virtual machine or virtual appliance.

A virtual appliance is a virtual machine image designed to run on virtualization platforms; it can refer to an entire OS image or an individual application image. Generally, companies such as VMware refer to the images as virtual appliances, and companies such as Microsoft refer to images as virtual machines. One example of a virtual appliance that runs a single app is a virtual browser. VMware developed a virtual browser appliance that protects the underlying OS from malware installations from malicious websites. If the website succeeds in its attempt to install the malware to the virtual browser, the browser can be deleted and either a new one can be created or an older saved version of the virtual browser can be brought online!

Other examples of virtualization include the virtual private network (VPN), which is covered in Chapter 8, “Physical Security and Authentication Models,” and the virtual local area network (VLAN), which is covered in Chapter 5, “Network Design Elements and Network Threats.”

Working with Virtual Machines

Several companies offer virtual software including Microsoft and VMware. Let’s take a look at some of those programs now.

Microsoft Virtual PC

Microsoft’s Virtual PC is commonly used to host workstation OSs, server OSs, and sometimes other OSs such as DOS or even Linux. There are 32-bit and 64-bit versions that can be downloaded for free and run on most Windows systems. A common version is Virtual PC 2007 that can be downloaded from the following link:

After a quick installation, running the program displays the Virtual PC Console window, as shown in Figure 3-10.
After a fresh install of Virtual PC, there won’t be any virtual machines listed. However, in Figure 3-10, you can note a Windows Server 2003 VM, a SuSE Linux 9 VM, and a Windows Vista VM. Virtual software such as this allows a person to run less used or older operating systems without the need for additional physical hardware. Personally, I run all kinds of platforms with Virtual PC, but it is not the only virtual software I use.

A virtual machine can be created by clicking the **New** button and following the directions. The virtual machine consists of two parts when you are done:

- Virtual machine configuration file or `.vmc`
- Virtual hard drive file or `.vhd`

In addition to this, you can save the state of the virtual machine. Let’s say you need to restart your main computer but don’t want to restart the virtual machine. You could simply “save the state” of the VM that will save it, remember all the files that were open and where you were last working, and close the VM. Even after rebooting the actual PC, you can immediately reload the last place you were working in a VM. When a VM’s state is saved, an additional file called a `.vsv` file is stored adjacent to the `.vhd`. Figure 3-11 shows an example of a Windows Server 2003 virtual machine, which is called “Server2003” as shown at the top of the Virtual PC software window in the title bar.

See Lab 3-2 in the “Hands-On Labs” section near the end of this chapter for a quick tutorial/lab on using Virtual PC to create a virtual machine.
NOTE Also, if you are interested, I have demonstrations of several virtual machine OS installations at my website: www.davidlprowse.com

Microsoft Windows XP Mode

Windows 7 can emulate the entire Windows XP OS if you so want. To do so, you must install Windows XP Mode, then Virtual PC, and then the Windows XP Mode update. This is done to help with program compatibility. These components can be downloaded for free (as long as you have a valid copy of Windows 7) from the following link: www.microsoft.com/windows/virtual-pc/download.aspx.

Microsoft Virtual Server

Virtual Server is similar to Virtual PC but far more powerful and meant for running server OSs in particular. It is not free like Virtual PC, and an install of Internet Information Services (IIS) is required prior to the install of Virtual Server to take full advantage of the program. When servers are created, they can be connected to by using the Virtual Machine Remote Control (VMRC) client, as shown in Figure 3-12.
VMware

VMware (part of EMC Corporation) runs on Windows, Linux, and Mac OSs. Some versions of VMware (for example VMware ESX Server) can run on server hardware without any underlying OS. These programs are extremely powerful, may require a lot of resources, and are generally web-based, meaning that you would control the virtual appliance through a browser. An example of the VCenter server main management console window in VMware is shown in Figure 3-13.
Hypervisor

Most virtual machine software is designed specifically to host more than one VM. A byproduct is the intention that all VMs are able to communicate with each other quickly and efficiently. This concept is summed up by the term hypervisor. A hypervisor allows multiple virtual operating systems (guests) to run at the same time on a single computer. It is also known as a virtual machine manager (VMM). The term hypervisor is often used ambiguously. This is due to confusion concerning the two different types of hypervisors:

- **Type 1: Native**—The hypervisor runs directly on the host computer’s hardware. Because of this it is also known as “bare metal.” Examples of this include VMware ESX Server, Citrix XenServer, and Microsoft Hyper-V. Hyper-V can be installed as a standalone product known as Microsoft Hyper-V Server 2008, or it can be installed as a role within a standard installation of Windows Server 2008 (R2). Either way, the hypervisor runs independently and accesses hardware directly, making both versions of Hyper-V Type 1 hypervisors.

- **Type 2: Hosted**—This means that the hypervisor runs within (or “on top of”) the operating system. Guest operating systems run within the hypervisor. Compared to Type 1, guests are one level removed from the hardware and therefore run less efficiently. Examples of this include Microsoft Virtual PC, VMware Server, and VMware Workstation.

Generally, Type 1 is a much faster and efficient solution than Type 2. Because of this, Type 1 hypervisors are the kind used by web-hosting companies and by companies that offer cloud computing solutions such as infrastructure as a service (IaaS). It makes sense too. If you have ever run a powerful operating system such as Windows Server 2008 within a Type 2 hypervisor such as Virtual PC 2007, you will have noticed that a ton of resources are being used that are taken from the hosting operating system. It is not nearly as efficient as running the hosted OS within a Type 1 environment. However, keep in mind that the hardware/software requirements for a Type 1 hypervisor are more stringent and more costly. Because of this, some developing and testing environments use Type 2-based virtual software.

Securing Virtual Machines

In general, the security of a virtual machine operating system is the equivalent to that of a physical machine OS. The VM should be updated to the latest service pack, should have the newest AV definitions, perhaps have a personal firewall, have strong passwords, and so on. However, there are several things to watch out for that, if not addressed, could cause all your work compartmentalizing OSs to go down the drain. This includes considerations for the virtual machine OS as well as the controlling virtual machine software.
First, make sure you are using current and updated virtual machine software. Update to the latest patch or service pack for the software you are using (for example, Virtual PC 2007 SP1). Configure any security settings or options in the virtual machine software. Once this is done, you can go ahead and create your virtual machines, keeping in mind the concept of standardized imaging mentioned earlier.

Next, keep an eye out for network shares and other connections between the virtual machine and the physical machine, or between two VMs. Normally, malicious software cannot travel between a VM and another VM or a physical machine as long as they are properly separated. But if active network shares are between the two, malware could easily spread from one system to the other. If a network share is needed, map it, use it, and then disconnect it when you are finished. If you need network shares between two VMs, document what they are and which systems (and users) connect to them. Review the shares often too see whether they are still necessary. If a virtual host is attached to a NAS device or to a SAN, it is recommended to segment the storage devices off the LAN either physically, or with a secure VLAN. Regardless of where the virtual host is located, secure it with a strong firewall and disallow unprotected file transfer protocols such as FTP and Telnet.

Consider disabling any unnecessary hardware from within the virtual machine such as optical drives, USB ports, and so on. If some type of removable media is necessary, enable the device, make use of it, and then disable it immediately after finishing. Also, devices can be disabled from the virtual machine software itself. The boot priority in the virtual BIOS should also be configured so that the hard drive is booted from first, and not any removable media or network connection (unless necessary in your environment).

Due to the fact that VMs use a lot of physical resources of the computer, a compromised VM can be a threat in the form of a Denial of Service attack. To mitigate this, set a limit on the amount of resources any particular VM can utilize, and periodically monitor the usage of VMs. However, be careful of monitoring VMs. Most virtual software offers the ability to monitor the various VMs from the main host. However, this feature can also be exploited. Be sure to limit monitoring, enable it only for authorized users, and disable it whenever not necessary.

Finally, be sure to protect the raw virtual disk file. A disaster on the raw virtual disk can be tantamount to physical disk disaster. Look into setting permissions as to who can access the folder where the VM files are stored. If your virtual machine software supports logging and/or auditing, consider implementing it so that you can see exactly who started and stopped the virtual machine, and when. Otherwise, you can audit the folder where the VM files are located. Finally, consider digitally signing the VM and validating that signature prior to usage.
One last comment: A VM should be as secure as possible, but in general, because the hosting computer is in a controlling position, it is likely more easily exploited, and a compromise to the hosting computer probably means a compromise to any guest OSs. Therefore, if possible, the host should be even more secure than the VMs it controls. So harden your heart, harden the VM, and make the hosting OS solid as a rock.

NOTE Enterprise-level virtual software such as Hyper-V and VMware takes security to a whole new level. Much more planning and configuration is necessary for these applications. It’s not necessary to know for the Security+ exam, but if you want to gather more information on securing Hyper-V see the following link: http://technet.microsoft.com/en-us/library/dd569113.aspx

For more information on how to secure VMware see the following link:

http://www.vmware.com/technical-resources/security/index.html

Exam Preparation Tasks

Review Key Topics

Review the most important topics in the chapter, noted with the Key Topic icon in the outer margin of the page. Table 3-2 lists a reference of these key topics and the page number on which each is found.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-2</td>
<td>Services Window in Windows XP</td>
<td>70</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>Telnet Properties Dialog Box</td>
<td>71</td>
</tr>
<tr>
<td>Bullet list</td>
<td>Stopping services in Linux</td>
<td>71</td>
</tr>
<tr>
<td>Figures 3-4 and 3-5 and Note</td>
<td>Identifying the SP level</td>
<td>73</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>Latest Microsoft Service Packs</td>
<td>75</td>
</tr>
<tr>
<td>Step list</td>
<td>Windows update</td>
<td>76</td>
</tr>
<tr>
<td>Figure 3-7</td>
<td>systeminfo Command in Windows Vista</td>
<td>78</td>
</tr>
<tr>
<td>Bulleted list</td>
<td>Patch management four steps</td>
<td>79</td>
</tr>
</tbody>
</table>
The text is not clearly visible in the image. However, based on the visible content, it seems to be discussing various topics related to operating system hardening and virtualization. The text includes tables, figures, lists of key terms, and descriptions of hands-on labs. The equipment needed is also mentioned, including a computer with Internet access, a web browser, and Virtual PC 2007. The text is well-structured and informative, providing a comprehensive overview of the topics covered in the chapter.

If you need further assistance or clarification on a specific topic, please let me know.
Lab 3-1: Discerning and Updating the Service Pack Level

In this lab, you observe the service pack currently used on a Windows Vista computer and show where to go to update the SP to the latest version. The steps are as follows:

Step 1. Access Windows Vista (other Windows OSs such as Windows 7 will be similar in appearance and in navigation).

Step 2. View the SP level:
A. Click Start.
B. Right-click Computer and select Properties. This brings up the System window. From here, you can see the SP level in the Windows edition section.

Step 3. Access Windows Update:
A. Click Start.
B. Click All Programs.
C. Click Windows Update.

Step 4. Modify Windows Update:
A. Click the View Advanced Options link.
B. Select the Check for Updates but Let Me Choose Whether to Download Them or Install Them radio button.
C. Click OK.

You can find information about Windows Vista SP2 at the following link: http://support.microsoft.com/kb/948465
Watch the video solution on the DVD.

Lab 3-2: Creating a Virtual Machine in Virtual PC 2007

In this lab, you learn how to create a basic virtual machine (VM) in Virtual PC 2007. The steps are as follows:

Step 1. Download the Virtual PC 2007 application. It is a free download available at the following link:
You can also search the phrase virtual PC 2007 download.
Step 2. Install Virtual PC 2007. Install the program with the default settings unless you want to modify them.

Step 3. Run Virtual PC 2007 by navigating to Start > All Programs > Microsoft Virtual PC. This displays the Virtual PC Console.

Step 4. Create a new virtual machine:
 A. Click the New button.
 B. Click Next for the wizard.
 C. Select Create a virtual machine radio button and click Next.
 D. Type a name for the virtual machine. Try to keep the name close to the name of the OS you plan to install. For example, if you install Windows Vista, type Windows Vista. Virtual PC can recognize these names. Keep in mind that you do not have to install an OS; this lab is simply to show how to create the virtual machine. This virtual machine will be available to you to use later on if you want, and you can load any OS that you want into the VM.
 E. Select where you want to save the virtual machine by clicking the Browse button, or simply leave the default. Then click Next.
 F. Select the OS you want to install from the drop-down menu. If you are not planning on installing an OS, select Other. Then click Next.
 G. Select the amount of RAM you want the VM to use. You can increase the default by clicking the Adjusting the RAM radio button. As a rule of thumb it is recommended that you use no more than half the physical RAM on your system for a single VM. Then click Next.
 H. Select the A New Virtual Hard Disk radio button, and select where you want to save the virtual hard disk (.vhd file). Then click Next.
 I. Review the summary and click Finish.

The new VM should now be listed in the Virtual PC Console.

Step 5. Run the VM:
 A. Highlight the new VM.
 B. Click Start.

Step 6. (Optional) Install an OS. Be sure to select CD from the menu bar and click Use Physical Drive. This way, the VM can use the physical CD-ROM drive.
Step 7. Save the VM:
 A. Click Action on the menu bar.
 B. Select Close.
 C. From the drop-down menu in the Close dialog box, select Save State and click OK.

Step 8. Modify the VM settings:
 A. Highlight the new VM.
 B. Click the Settings button.
 C. Click OK for the pop-up note.
 D. Examine the various settings for each device within the VM. Note that you cannot make changes to some of the settings when the VM is in a saved state. To modify these, you need to turn off the VM either within Virtual PC or by shutting down the OS normally.

Watch the video solution on the DVD.

Lab 3-3: Securing a Virtual Machine

In this lab, you secure a virtual machine (VM) in Virtual PC 2007. This lab assumes that you have already downloaded and installed Virtual PC 2007, created a virtual machine, and installed an OS. This lab refers to Windows 7 Ultimate.

The steps are as follows:

Step 1. Start Virtual PC 2007 and check its SP level.
 A. Access the Control Panel and find your list of installed programs. For example, in Windows 7 the path to this is Control Panel > Programs > Programs & Features.
 B. If it says “Microsoft Virtual PC 2007 SP1,” you can continue to Step 2. If it does not say “SP1” on the end, then continue to Step 1C.
 C. Upgrade to the latest SP from the following link: www.microsoft.com/download/en/details.aspx?displaylang=en&id=24439

NOTE Be sure to fully shut down all VMs in the console. If any are in a saved state during the SP install, they could become corrupted.
Step 2. Set security options in the Virtual PC console.
 A. Click File > Options; this opens the Virtual PC Options window.
 B. Select Security.
 C. Select all four administrative permissions checkboxes.
 D. Click OK for the Virtual PC Options window.

Step 3. Disable unnecessary hardware within the Virtual PC console for the VM in question. For example, the sound card, COM ports, LPT ports, and floppy disks.
 A. Click Action > Settings (or simply highlight the VM and click the Settings button). This opens the Settings for %virtual machine% window where virtual machine is whatever VM you select.
 B. Click Sound. Deselect the Enable sound card checkbox.
 C. Disable any other unnecessary devices such as COM1, LPT1, and so on, if they are enabled and you do not need them.
 D. Click OK to close the window.

Step 4. Start the virtual machine and secure the virtual BIOS.
 A. Press DEL immediately after starting the VM. This should display the BIOS Setup Utility screen.
 B. Set the hard drive to first in the boot order:
 a. Press the right arrow key to navigate to the Boot menu. With the Boot Device Priority option highlighted press Enter.
 b. Modify the list so that the Hard Drive is listed first. Use the legend on the right to figure out which keys to use.
 c. Press Esc to return to the main menu.

NOTE It might be difficult to tell whether an SP was installed to Virtual PC 2007 (this might not be displayed in the About Virtual PC window). Aside from checking in the Control Panel, you could also attempt to create a Server 2008 virtual machine. If the Virtual PC console doesn’t have Server 2008 listed as a possible option, then SP1 is not installed. If it is listed, then SP1 (at least) is installed.
C. Disable removable media devices such as the floppy drive:
 a. Select the Advanced menu.
 b. Select Floppy configuration.
 c. Disable Floppy A.
 d. Press Esc to return to the main menu.

D. Set passwords:
 a. Select the Security menu.
 b. Configure a Supervisor password.

E. Press F10 to save your settings and exit. This reboots the VM into the OS.

Step 5. Start the virtual machine and check the SP level of the OS.
 A. Click Start. Then right-click Computer. This brings up the System window. If no service pack is listed, then none is installed.
 B. Install the latest SP for the OS in question.

Step 6. Disable unnecessary hardware within the VM OS, such as optical drives or USB devices.
 A. Click Start. Then right-click Computer and select Manage. This displays the Computer Management window.
 B. Click Device Manager.
 C. Locate the optical drive, right-click it, and select Disable. For some devices you might have to restart the OS.

Step 7. Remove any network sharing connections between the VM and the physical host.
 A. Look for shared folders on the VM:
 a. While in the Computer Management window click Shared Folders > Shares.
 b. Remove any unnecessary shares by right-clicking them and selecting Stop Sharing. However, leave the ADMIN$, C$, and IPC$ shares alone.
 c. While in this window click on Sessions to see whether the computer has any unwanted outbound sessions to other computers.
 d. Close the Computer Management window.
B. Look for mapped network drives in Windows Explorer and disconnect them by right-clicking the drive and selecting **Disconnect**.

Step 8. Exit the VM and secure the folder on the host OS that contains the VM files.

A. Set permissions on the folder:
 a. Right-click the folder and select **Properties**.
 b. Click the **Security** tab and modify permissions as you see fit. The fewer permissions the better!
 c. Verify that the folder is not shared by accessing the Sharing tab.
 d. Remain in the Properties window for the folder.

B. Encrypt and/or Digitally sign the VM folder:
 a. Click the **General** tab, then click the **Advanced** button.
 b. Select the checkbox that says **Encrypt** contents to secure data.
 c. Close the Properties window.
 d. Consider other encryption (or FDE) and digital signing methods from organizations such as PGP and TrueCrypt.

Watch the video solution on the DVD.

View Recommended Resources

For readers who want to brush up on their CompTIA A+ topics:

Virtualization software links:

- VMware: www.vmware.com/
- Securing VMware: www.vmware.com/technical-resources/security/index.html
Answer Review Questions

Answer the following review questions. You can find the answers at the end of this chapter.

1. Virtualization technology is often implemented as operating systems and applications that run in software. Often, it is implemented as a virtual machine. Of the following, which can be a security benefit when using virtualization?
 A. Patching a computer will patch all virtual machines running on the computer.
 B. If one virtual machine is compromised, none of the other virtual machines can be compromised.
 C. If a virtual machine is compromised, the adverse effects can be compartmentalized.
 D. Virtual machines cannot be affected by hacking techniques.

2. Eric wants to install an isolated operating system. What is the best tool to use?
 A. Virtualization
 B. UAC
 C. HIDS
 D. NIDS

3. Where would you turn off file sharing in Windows Vista?
 A. Control Panel
 B. Local Area Connection
 C. Network and Sharing Center
 D. Firewall properties

4. Which option enables you to hide ntldr?
 A. Enable Hide Protected Operating System Files
 B. Disable Show Hidden Files and Folders
 C. Disable Hide Protected operating system Files
 D. Remove the -R Attribute
5. Which of the following should be implemented to harden an operating system? (Select the two best answers.)
 A. Install the latest service pack.
 B. Install Windows Defender.
 C. Install a virtual operating system.
 D. Execute PHP scripts.

6. In Windows 7, Vista, and XP, what is the best file system to use?
 A. FAT
 B. NTFS
 C. DFS
 D. FAT32

7. A customer’s computer uses FAT16 as its file system. What file system can you upgrade it to when using the `convert` command?
 A. NTFS
 B. HPFS
 C. FAT32
 D. NFS

8. Which of the following is not an advantage of NTFS over FAT32?
 A. NTFS supports file encryption.
 B. NTFS supports larger file sizes.
 C. NTFS supports larger volumes.
 D. NTFS supports more file formats.

9. What is the deadliest risk of a virtual computer?
 A. If a virtual computer fails, all other virtual computers immediately go offline.
 B. If a virtual computer fails, the physical server goes offline.
 C. If the physical server fails, all other physical servers immediately go offline.
 D. If the physical server fails, all the virtual computers immediately go offline.
10. Virtualized browsers can protect the OS that they are installed within from which of the following?
 A. DDoS attacks against the underlying OS
 B. Phishing and spam attacks
 C. Man-in-the-middle attacks
 D. Malware installation from Internet websites

11. Which of the following needs to be backed up on a domain controller to recover Active Directory?
 A. User data
 B. System files
 C. Operating system
 D. System state

12. Which of the following should you implement to fix a single security issue on the computer?
 A. Service pack
 B. Support website
 C. Patch
 D. Baseline

13. An administrator wants to reduce the size of the attack surface of Windows server 2008. Which of the following is the best answer to accomplish this?
 A. Update antivirus software.
 B. Install service packs.
 C. Disable unnecessary services.
 D. Install network intrusion detection systems.

14. You finished installing the operating system for a home user. What are three good methods to implement to secure that operating system? (Select the three best answers.)
 A. Install the latest service pack.
 B. Install a hardware- or software-based firewall.
 C. Install the latest patches.
 D. Install pcAnywhere.
15. Which of the following is a security reason to implement virtualization in your network?
 A. To isolate network services and roles
 B. To analyze network traffic
 C. To add network services at lower costs
 D. To centralize patch management

16. Which of the following is one example of verifying new software changes on a test system?
 A. Application hardening
 B. Virtualization
 C. Patch management
 D. HIDS

17. You have been tasked with protecting an operating system from malicious software. What should you do? (Select the two best answers.)
 A. Disable the DLP.
 B. Update the HIPS signatures.
 C. Install a perimeter firewall.
 D. Disable unused services.
 E. Update the NIDS signatures.

Answers and Explanations

1. C. By using a virtual machine (which is one example of a virtual instance) any ill effects can be compartmentalized to that particular virtual machine, usually without any ill effects to the main operating system on the computer. Patching a computer does not automatically patch virtual machines existing on the computer. Other virtual machines can be compromised, especially if nothing is done about the problem. Finally, virtual machines can definitely be affected by hacking techniques. Be sure to secure them!

2. A. Virtualization enables a person to install operating systems (or applications) in an isolated area of the computer’s hard drive, separate from the computer’s main operating system.

3. C. The Network and Sharing Center is where you can disable file sharing in Windows Vista.
4. A. To hide ntdr you need to enable the Hide Protected Operating System Files checkbox. Keep in mind that you should have already enabled the Show Hidden Files and Folders radio button.

5. A and B. Two ways to harden an operating system include installing the latest service pack and installing Windows defender. However, virtualization is a separate concept altogether, and PHP scripts will generally not be used to harden an operating system.

6. B. NTFS is the most secure file system for use with Windows 7, Vista, and XP. FAT and FAT32 are older file systems, and DFS is the distributed file system used in more advanced networking.

7. A. The Convert command is used to upgrade FAT and FAT32 volumes to the more secure NTFS without loss of data. HPFS is the High Performance File System developed by IBM and not used by Windows. NFS is the Network File System, something you would see in a storage area network.

8. D. NTFS and FAT32 support the same number of file formats.

9. D. The biggest risk of running a virtual computer is that it will go offline immediately if the server that it is housed on fails. All other virtual computers on that particular server will also go offline immediately.

10. D. The beauty of a virtualized browser is that regardless of whether a virus or other malware damages it, the underlying operating system will remain unharmed. The virtual browser can be deleted and a new one can be created; or if the old virtual browser was backed up previous to the malware attack, it can be restored.

11. D. The system state needs to be backed up on a domain controller to recover the active directory database in the future. The system state includes user data and system files but does not include the entire operating system. If a server fails, the operating system would have to be reinstalled, and then the system state would need to be restored.

12. C. A patch can fix a single security issue on a computer. A service pack addresses many issues and rewrites many files on a computer; it may be overkill to use a service pack when only a patch is necessary. You might obtain the patch from a support website. A baseline can measure a server or a network and to obtain averages of usage.
13. C. Often, operating system manufacturers such as Microsoft refer to the attack surface as all the services that run on the operating system. By conducting an analysis of which services are necessary and which are unnecessary, an administrator can find out which ones need to be disabled, thereby reducing the attack surface. Service packs, antivirus software, and network intrusion detection systems (NIDS) are good tools to use to secure an individual computer and the network but do not help to reduce the size of the attack surface of the operating system.

14. A, B, and C. After installing an operating system, it’s important to install the latest service pack, patches, and a firewall. These three methods can help to secure the operating system. However, pcAnywhere can actually make a computer less secure and should be installed only if the user requests it. pcAnywhere is just one of many examples of remote control software.

15. A. Virtualization of computer servers enables a network administrator to isolate the various network services and roles that a server may play. Analyzing network traffic would have to do more with assessing risk and vulnerability and monitoring and auditing. Adding network services at lower costs deals more with budgeting than with virtualization, although, virtualization can be less expensive. Centralizing patch management has to do with hardening the operating systems on the network scale.

16. C. Patch management is an example of verifying any new changes in software on a test system (or live systems for that matter.) Verifying the changes (testing) is the second step of the standard patch management strategy. Application hardening might include updating systems, patching them, and so on, but to be accurate, this question is looking for that particular second step of patch management. Virtualization is the creating of logical OS images within a working operating system. HIDS stands for host-based intrusion detection system, which attempts to detect malicious activity on a computer.

17. B and D. Updating the host-based intrusion prevention system is important. Without the latest signatures, the HIPS will not be at its best when it comes to protecting against malware. Also, disabling unused services will reduce the attack surface of the OS, which in turn makes it more difficult for attacks to access the system and run malicious code. Disabling the data leakage prevention device would not aid the situation, and it would probably cause data leakage from the computer. Installing a perimeter firewall won’t block malicious software from entering the individual computer. A personal firewall would better reduce the attack surface of the computer, but it is still not meant as an antimalware tool. Updating the NIDS signatures will help the entire network, but might not help the individual computer. In this question we want to focus in on the individual computer, not the network. In fact, given the scenario of the question, you do not even know if a network exists.
Index

A

AAA (authentication, authorization, accounting), 5-6
acceptable use policies, 525
access control
 authentication. See authentication best practices, 310-313
 physical security, 267-271
 biometric readers, 270-271
 building security, 267-268
 door access systems, 268-270
 server room security, 267-268
 policies, 322-325
 UAC (User Account Control), 325-326
 usernames/passwords, 318-322
 users, groups, permissions, 313-317
access control lists (ACLs), 154, 315
access control models, 306-313
 centralized versus decentralized, 310
 DAC (discretionary access control), 306-308
 MAC (mandatory access control), 308-309
 RBAC (role-based access control), 309-310
Account lockout threshold, 324
accounting, 6
accounts
 Administrator accounts, passwords for, 321
 default accounts, 234-235
 guest accounts, 235
 guest accounts, disabling, 321-322
 restrictions, configuring, 328-330
 user accounts, expiration, 314
ACK, 385
ACLs (access control lists), 154, 315
Active Directory Users and Computers (ADUC), 313-314
active fingerprinting, 347
active interception, as malware delivery method, 23
active security analysis, 347
ActiveX controls in Internet Explorer, 119-120
ad filtering, 41
add-ons
 in Firefox, 124
 in Internet Explorer, 119
addresses
 IP addresses
 public versus private, 154-156
 subnetting, 162-163
 IPv6 addresses, types of, 155
 network socket addresses, 169
administration interface for wireless access points, 244
administrative shares, securing, 397
Administrator accounts, passwords for, 321
ADUC (Active Directory Users and Computers), 313-314
Advanced Encryption Standard (AES), 424-425
adware, 21
AES (Advanced Encryption Standard), 424-425
agents (SNMP), 388
AH (authentication header), 461
air-conditioning systems, 513-514
ALE (annualized loss expectancy), 345
alerts, 384
ALG (application-level gateway), 209
algorithms
asymmetric key algorithms, 421
 Diffie-Hellman key exchange, 427
 ECC, 428
 RSA, 426-427
defined, 417
hashes
 LANMAN hash, 433–435
 MD5, 432
 NTLM hash, 435
 NTLM 2 hash, 435
 one-time pads, 428-429
PGP, 429-430
public key cryptography, 421-422
SHA, 432
symmetric key algorithms, 420-421
 AES, 424-425
 DES and 3DES, 424
 RC, 425
all-in-one security appliances, 215
annualized loss expectancy (ALE), 345
annualized rate of occurrence (ARO), 345
anomaly-based monitoring, 381
anonymous access control, 310
antimalware software, 8
antispyware software, 30
antivirus (AV) software, 26-30
AP isolation, 249
application firewalls, 211
Application logs, 393
application security, 124-126.
 See also browser security
disabling with policies, 138-140
secure coding concepts, 126-136
 Systems Development Life Cycle (SDLC), 128-130
testing methods for, 130-132
vulnerabilities and attacks, 132-136
application-level gateway (ALG), 209
applications, removing, 68-72
archival methods, 494
armored viruses, 19
ARO (annualized rate of occurrence), 345
ARP poisoning, 184
ArpON, 184
assessing risk. See risks
assessments. See audits
asymmetric key algorithms, 421
 Diffie-Hellman key exchange, 427
 ECC, 428
 RSA, 426-427
attacks. See also vulnerabilities
ARP poisoning, 184
brute force attacks, 361
client-side attacks, 182
cryptanalysis attacks, 361
DDoS attacks, 178
dictionary attacks, 361
DNS poisoning, 183-184
DoS attacks, 175-178
network attacks, 186, 237
null sessions, 181-182
on program code, 132-136
 backdoors, 132
 buffer overflows, 132-133
 code injection, 133-134
 directory traversal, 134
 XSS and XSRF, 133
 zero day attacks, 135
replay attacks, 181
session hijacking, 179-181
spoofing attacks, 178-179
TCP reset attacks, 174
transitive access, 182
audit trails, 392
audits, 389-398
 of files, 389-392
 log files for, 392-396, 394-396
 in patch management, 80
 steps in, 389
 on system security settings, 396-398
authentification, 5, 8, 265
 localized technologies, 273-279
 IEEE 802.1X standard, 273-276
 Kerberos, 277-278
 LDAP, 276-277
 Terminal Services, 279
 methods of, 266
 models for, 271-273
 remote technologies, 279-286
 RADIUS versus TACACS, 284-285
 RAS, 280-281
 VPNs, 281-284
 usernames/passwords, 318-322
authentication agents (802.1X connections), 274
authentication header (AH), 461
authentication servers (802.1X connections), 274
authenticators (802.1X connections), 274
authorization, 5, 265
automated monitoring, 380
AV (antivirus) software, 26-30
availability, 5
backdoors, 24, 132, 237
backoffice applications, securing, 126
back-to-back perimeter DMZ, 158
backup generators, 481-483
backup plans in disaster recovery, 490-494
backup sites, 490
backups, 8, 84, 490-494
badware, 32
baiting, 519
Barracuda Networks Spam Firewall, 33
Basel I and II accords, 346
baseline reporting, 381
baselining, 82, 381-384
battery-inverter generators, 482
behavior-based monitoring, 381
Bell-La Padula access control model, 309
best practices
 in access control, 310-313
 passwords, 324
Biba Integrity Model access control model, 309
biometric readers, 270-271
BIOS, securing, 43-44, 51-53
birthday attacks, 432-433
BitLocker, 46-47
black book analogy (cryptography), 416-417
black hats, 9
black-box testing, 130, 350
blacklists, 34
blackouts, 479
blind hijacking, 180
block ciphers, 420
blue hats, 10
Bluejacking, 48, 251
Bluesnarfing, 48, 251
Bluetooth vulnerabilities, 48, 250-251
boot sector viruses, 19, 29-30
botnets, 25, 178
Bro, 217
broadcast storms, 385
broadcasting, 150
brownouts, 479
browser security, 110-124, 137-138
Firefox, 121-124
Internet Explorer, 116-120
proxy servers and content filters, 114-115
security policies, implementing, 111-113
user education, 114
brute force attacks, 361
buffer overflows, 132-133
building loss (disaster recovery), 495
building security, 267-268
bulletin boards, policies for, 325
butt sets, 242

CA (certificate authorities), 453-456
cabling
STP cables, 514
vulnerabilities, 238-244
crosstalk, 240
data emanation, 241
interference, 239
tapping into data, 241-244
CAC (Common Access Card), 269
caching proxy servers, 213
Cain & Abel password recovery tool, 360
California SB 1386, 524
CAM (Content Addressable Memory) table, 151
CAPTCHA, 325
carbon dioxide (CO2) extinguishers, 511
cardkey access systems, 269
castle analogy (network security), 205-206
CCI (co-channel interference), 240
cell phones, securing, 47-49
centralized access control, 310
certificate authorities (CA), 453-456
certificate revocation list (CRL), 454-455
certificates, 422, 452-453
dual-sided certificates, 456
revoking, 454-455
single-sided certificates, 456
validation of, 453
chain of custody, 533
change management policies, 525-526
CHAP (challenge-handshake authentication protocol), 280-281, 286
cheat sheet for exam preparation, 553
Check Point Security Appliances, 218
checklist for exam preparation, 554
chkrootkit, 33
chromatic dispersion, 243
CIA triad, 4-5, 128
cipher locks, 268
ciphers, 417. See also algorithms
circuit-level gateway, 209
Clark-Wilson access control model, 309
classification of data, policies concerning, 522-523
clean agent fire extinguishers, 512-513
clean machines, 29
clearing data, 531
clear-text passwords, 387-388
client-side attacks, 182
closing
pop-up windows, 114
ports, 173-174
cloud computing, securing, 159-162
clusters, 488
CO2 (carbon dioxide) extinguishers, 511
coxial cables, 238, 241-242
coop-channel interference (CCI), 240
code injection, 133-134
cold aisles, 514
cold sites, 489
collisions in hashes, 432
combustible metal fires, extinguishing, 511
command injection, 134
Common Access Card (CAC), 269
certainty of passwords, 324
computer disposal policies, 528-531
computer forensics, 533
computer security audits. See audits
computer telephony integration (CTI), 165
confidence tricks, 518
confidential information, sensitivity of, 523
certainty, 5
configuration baselines, 80-82
configuring
BIOS, 44
inbound filters, 223
log files, 394
NAT firewalls, 222
password policies, 328-330
proxy server connections in Firefox, 123
RAID, 498-500
security zones (Internet Explorer), 116-117
user and group permissions, 330-331
VPNs, 289-291
containment (incident response), 532
Content Addressable Memory table, 151
content filtering, 41, 153, 214
content filters in browser security, 114-115
contracts with vendors, 528
converting NTFS to FAT32, 83
cookies
in Firefox, 121
in Internet Explorer, 117-119
stealing, 179
cooking oil fires, extinguishing, 511
copying files/folders, permissions for, 318
corrective security controls, 348
cracking passwords, 366-367
CRL (certificate revocation list), 454-455
cross-site request forgery (XSRF), 133
cross-site scripting (XSS), 118, 133, 181
crosstalk, 240
cryptanalysis attacks, 361
cryptographic blinding, 427
cryptographic hash functions, 431-433
cryptography. See also encryption
asymmetric key algorithms, 421
Diffie-Hellman key exchange, 427
ECC, 428
RSA, 426-427
black book analogy, 416-417
defined, 417
key management, 422
public key cryptography, 421-422
steganography, 423
symmetric key algorithms, 420-421
AES, 424-425
DES and 3DES, 424
RC, 425
terminology, 417-419
CTI (computer telephony integration), 165
Ctrl+Alt+Del logon, 322
DAC (discretionary access control), 306-308
data, separating from operating system, 28, 84-85
Data backups, 8, 84, 395, 490-494
data classification policies, 522-523
data emanation, 241
Data Encryption Standard (DES), 424
data failure, avoiding with RAID, 483-486, 498-500
data leak prevention (DLP) devices, 216
data loss prevention (DLP) systems, 42, 216
data removal, 8, 531
data security. See security
data sensitivity policies, 522-523
data validation, 131
DDoS (Distributed Denial of Service) attacks, 178
decentralized access control, 310
decryption, 417
default accounts, 234-235
default browser, setting, 121
default configurations, securing for routers, 153
Default Domain Policy, 323
defaults, securing, 129
defense in depth, 9
defragmenting hard drives, 84
delivery methods for malware, 23-25
 active interception, 23
 backdoors, 24
 botnets, 25
 logic bombs, 24-25
 privilege escalation, 24
 removable media, 23
 software, 23
 zombies, 25
Demilitarized Zone (DMZ), 157-158
Denial of Service (DoS) attacks, 175-178
DES (Data Encryption Standard), 424
designing networks. See network design
destruction of computer equipment, 531
detector security controls, 348
devices. See network devices
dial-up connections, RAS, 280-281
dictionary attacks, 361
differential backups, 491
Diffie-Hellman encryption, 422, 427
digital forensics, 533
Digital Signature Algorithm (DSA), 428
digital signatures, 422
Directory Service log, 393
directory traversal, 134
dirty power, 480
disabling
 applications with policies, 138-140
 file sharing, 83
 Guest accounts, 321-322
 LANMAN hash storage, 433-438
 services
 in Linux, 71
 in Mac OS X, 72
 Telnet, 70-72
disaster recovery. See also environmental controls;
 redundancy planning
data backups, 490-494
 incident response procedures, 531-534
 planning for, 494-496
 types of disasters, 494-495
disaster-tolerant disk systems, 486
discretionary access control (DAC), 306-308
disposal of equipment, policies concerning, 528-531
Distributed Denial of Service (DDoS) attacks, 178
diversion theft, 516
DLP (data loss prevention) systems, 42, 216
DMZ (Demilitarized Zone), 157-158
DNS poisoning, 183-184
encryption

DNS Server log, 393
documentation
 in incident response, 532
 of network, 251, 352-355
domain name kiting, 184
door access systems, 268-270
DoS (Denial of Service) attacks, 175-178
Dragon IPS, 218
drills, fire, 513
drive lock technology, 44
dry pipe systems, 512
DSA (Digital Signature Algorithm), 428
dual-sided certificates, 456
due care, 527
due diligence, 527
due process, 527
dumpster diving, 519

e-mail addresses, removing from websites, 34
e-mail messages, S/MIME, 457
e-mail spam, 21-22, 33-35
eemergency response detail, 532
EMI (electromagnetic interference), 239, 514-515
employee security policies. See personnel security policies
employee training. See training employees
emulators, 88
enabling
 file auditing, 390
 IEEE 802.1X standard, 288-289
 MAC filtering, 224
 packet filtering, 222
Encapsulating Security Payload (ESP), 461
encapsulation, 358
encrypting log files, 396
encryption, 8. See also cryptography;
hashes
 asymmetric key algorithms
 Diffie-Hellman key exchange, 427
 ECC, 428
 RSA, 426-427
defined, 417
 hardware security modules, 45-47
 one-time pads, 428-429
PGP, 429-430
PKI, 452-456, 462-463
 certificate authorities, 453-456
 certificates, 452-453
dual-sided certificates, 456
 single-sided certificates, 456
 web of trust, 456
security protocols
 IPSec, 460-461
 L2TP, 460
PPTP, 460
S/MIME, 457
SSH, 459, 463-464
SSL/TLS, 458-459
of smartphone data, 48
symmetric key algorithms
AES, 424-425
DES and 3DES, 424
RC, 425
website encryption notification, 114
whole disk encryption, 45-47, 84
on wireless access points, 246-247
endpoint-based DLP (data loss prevention), 42, 216
Enterasys, 217-218
environmental controls, 510-515
fire suppression, 510-513
fire extinguishers, 510-512
hazard protection systems, 512-513
sprinkler systems, 512
HVAC, 513-514
shielding, 514-515
equipment disposal policies, 528-531
eradication (incident response), 532
error handling, securing, 129
ESP (Encapsulating Security Payload), 461
Ethereal. See Wireshark
events, incidents versus, 531-532
evidence gathering (incident response), 532
evidence preservation (incident response), 533
Evil Maid Attack, 21
evil twin wireless access points, 246
exam preparation
cheat sheet, 553
checklist, 554
Security+ certification
requirements, 552
tips for, 553-558
Excel, securing, 127
expiration of user accounts, 314
Extensible Authentication Protocol (EAP), 273-276
external security testing, 350
extranets, securing, 159-160
extrusion prevention systems, 216
fail-closed, 477
fail-open, 152, 477
fail-over clusters, 488
fail-over redundancy, 477
failure of power supplies, 479
failure-resistant disk systems, 486
failure-tolerant disk systems, 486
false negatives, 39, 219, 272
false positives, 39, 219, 272
far end crosstalk (FEXT), 240
Faraday cages, 241, 514
FAT32, converting to NTFS, 83
FEXT (far end crosstalk), 240
fiber-optic cables, 238, 243
File Replication Service log, 393
file sharing, disabling, 83
file systems, hardening, 82-85
files
auditing, 389-392
moving/copying, permissions, 318
FileZilla, 172
filtering
ad filtering, 41
content filtering, 41
filters in browser security, 114-115
fingerprinting, 347
fire drills, 513
fire extinguishers, 510-512
class A, 510
class B, 510
class C, 510
class D, 511
class K, 511

fire suppression, 510-513
fire extinguishers, 510-512
hazard protection systems, 512-513
sprinkler systems, 512

Firefox
Internet Explorer versus, 110-111
securing, 121-124

fires (disaster recovery), 494
firewall logs, 393-394
firewalls, 27-28, 206-212
configuring inbound filters, 223
enabling MAC filtering, 224
NAT firewalls, configuring, 222
personal firewalls, 35-38
for router security, 153
first responders, 532
flammable liquid/gas fires, extinguishing, 510
Flash scripts in Internet Explorer, 120
flashing the BIOS, 44
flood attacks, 175-177
floods (disaster recovery), 494
Fluke Networks, 359
folders, moving/copying, 318
fork bomb attacks, 177
Fraggle attacks, 176
FreeBSD, 308
FreeNAC, 162
FTP connections
ports and protocols for, 169-172
securing, 174-175
FTP (FTP Secure), 174
full backups, 490
fuzzing, 131

G

gaseous fire suppression systems, 512-513
generators. See backup generators
Gnutella, 210
GPS tracking of smartphones, 48
Gramm-Leach-Bliley Act, 524
grandfather-father-son backup rotation method, 493
gray hats, 10
gray-box testing, 130, 350
grayware, 21
GRC’s ShieldsUP!, 173, 208
green hats, 10
group policies, 80-82
groups
in access control, 313-317
permissions, configuring, 330-331
guessing passwords, 361
guest accounts, 235, 321-322

H

hackers, types of, 9-10
Halon extinguishers, 512
handheld devices, protocol analyzers, 359
handheld fire extinguishers. See fire extinguishers
hands-on labs
applications, disabling with policies, 138-140
BIOS, securing, 51-53
browsers, securing, 137-138
IEEE 802.1X standard, enabling, 288-289
inbound filters, configuring, 223
LANMAN hash, disabling, 437-438
MAC filtering, enabling, 224
malware, scanning for, 50-51
NAT firewalls, configuring, 222
network mapping, 365
packet filtering, enabling, 222
password cracking, 366-367
password policies and user account restrictions, configuring, 328-330
PKI (public key infrastructure), 462-463
ports, scanning, 190-191
protocol analyzers, 401-403
RAID, configuring, 498-500
service packs, updating, 96
SSH connections, 463-464
user and group permissions, configuring, 330-331
virtual machines, creating in Virtual PC 2007, 96-98
virtual machines, securing, 98-101
VPNs, configuring, 289-291
wardriving, 256
wireless access points, securing, 254-256
hard drives
defragmenting, 84
hardening, 82-85
sanitizing, 530-531
hardening operating systems, 68-85
file systems and hard drives, 82-85
with group policies, security templates, configuration baselines, 80-82
installing service packs, 72-75
installing updates, patches, hotfixes, 75-80
maintenance, 85-86
removing applications and services, 68-72
hardware security modules (HSMs), 45-47
hashes, 430-431
cryptographic hash functions, 431-433
password hash functions, 433-435
hazard protection systems, 512-513
HDD passwords, 44
header manipulation, 385
Health Insurance Portability and Accountability Act (HIPAA), 524
HICCUPS system (Hidden Communication System for Corrupted Networks), 423
hidden files/folders, 83
hidden shares, securing, 397
hiding protected system files, 83
HIDS (host-based intrusion detection systems), 35, 38-40
high-availability clusters, 488
HIPAA (Health Insurance Portability and Accountability Act), 524
hoaxes, 518
honeyfarms, 215
honeynets, 215-216
honeypots, 215-216
horizontal privilege escalation, 236
host-based intrusion detection systems (HIDS), 35, 38-40
hosted hypervisors, 92
hosts file attacks, 183
hot aisles, 514
hot sites, 489
hotfixes, installing, 75-80
HouseCall, 29
HSMs (hardware security modules), 45-47
HTTP connections, ports and protocols for, 172
HTTP proxy servers, 213. See also proxy servers
HTTPS (Hypertext Transfer Protocol Secure), 459
hubs, securing, 150-151
humidity controls, 513
HVAC shielding, 514
HVAC systems, 513-514
hybrid cryptosystems, 429
Hypertext Transfer Protocol Secure (HTTPS), 459
Hyper-V, 94
hypervisors, 92

IA (information assurance), 342
IaaS (Infrastructure as a Service), 161
ICMP flood attacks, 175
identification, 265, 532
identity proofing, 266
IDS (intrusion detection systems), 35, 38-40, 217-218
IE. See Internet Explorer
IEEE 802.1Q standard, 164
IEEE 802.1X standard, 162, 249, 273-276, 286-289
ILP (information leak prevention) devices, 216
IM spam, 22
impact assessment, 343
impersonation, 516
implementing in patch management, 79
implicit deny, 173, 310-311
inbound filters, configuring, 223
inbound ports, 169
incident response procedures, 531-534
incremental backups, 490
information assurance (IA), 342
information leak prevention (ILP) devices, 216
information security. See security
Infrastructure as a Service (IaaS), 161
inheritance of permissions, 317
initialization in 802.1X authentication, 275
initiation in 802.1X authentication, 275
input validation, 131

installing
Network Monitor for Server 2003, 402
service packs, 72-75
service packs and updates, 26-27
updates, patches, hotfixes, 75-80
instant messaging programs, 68
integrity, 5
interconnections in network design, 156-162
cloud computing, 159-162
DMZ, 157-158
Internet, 157
intranets/extranets, 159-160
LANs versus WANs, 157
interference, 239, 514-515
internal information, sensitivity of, 523
Internet
content filtering, 214
in network security, 157
Internet Explorer
Firefox versus, 110-111
securing, 116-120
security policies, implementing, 111-113
security settings, 30
Internet Optimizer, 21
Internet Protocol Security (IPsec), 460-461
intranets, securing, 159-160
intrusion detection systems (IDS), 35, 38-40, 217-218
intrusion prevention systems (IPS), 40
NIPS, 218-219
for router security, 153
investigation (incident response), 532
IP addresses
public versus private, 154-156
spoofing, 179
subnetting, 162-163
IP masquerading, 154
IP proxy servers, 213
ipfirewall, 37
IPS (intrusion prevention systems), 40
NIPS, 218-219
for router security, 153
IPsec (Internet Protocol Security), 460-461
IPv6 addresses, types of, 155
Ironkey, 45
ISO/IEC 27002:2005 standard, 523, 533
isolation mode, 249
ISP (Internet service providers), redundancy planning, 488
IT security audits. See audits
IV attacks, 250

J –K
job rotation, 312, 526
Kerberos, 277-278, 286, 420
key algorithms. See algorithms
key escrow, 455
key generators, 20
key management, 422
keys, defined, 419
kitchen fires, extinguishing, 511

L
L2TP (Layer 2 Tunneling Protocol), 282, 460
label-based access control, 309
LACK (Lost Audio Packets Steganography), 423
LAN Surveyor, 352
LANMAN hash, 433-438
LANs, WANs versus, 157
lattice-based access control, 309
Layer 2 Tunneling Protocol (L2TP), 282, 460
LDAP (Lightweight Directory Access Protocol), 276-277, 286
LDAP injection, 134
LEAP (Lightweight EAP), 276
least privilege, 311-312, 317
legislative policies. See policies
length of passwords, 324
Lightweight Directory Access Protocol (LDAP), 276-277, 286
Lightweight EAP (LEAP), 276
line conditioners, 480
Linux, disabling services in, 71
load-balancing clusters, 488
local area networks (LANs), wide area networks (WANs) versus, 157
localized authentication technologies, 273-279
IEEE 802.1X standard, 273-276
Kerberos, 277-278
LDAP, 276-277
Terminal Services, 279
locking computers, 325
logic bombs, 24-25
logon process, locking computers, 325
logs
for audits, 392-396, 394-396
firewall logs, 210
security logs in file auditing, 390
long-term power loss (disaster recovery), 495
Lost Audio Packets Steganography (LACK), 423
Love Bug virus, 19

M
MAC (mandatory access control), 308-309
address spoofing, 179
filtering, 211, 224
flooding, 151
Mac OS X, disabling services in, 72
macro viruses, 19
maintenance in hardening operating systems, 85–86
maintenance phase (SDLC), 129
maintenance release, 78
malicious attacks (disaster recovery), 495
malware, 6, 18–36
delivery methods for, 23–25
active interception, 23
backdoors, 24
botnets, 25
logic bombs, 24–25
privilege escalation, 24
removable media, 23
software, 23
zombies, 25
preventing and troubleshooting, 26–36
rootkits, 32–33
spam, 33–35
spyware, 30–32
viruses, 26–30
worms and Trojan horses, 30
rootkits, 21
scanning for, 50–51
spam, 21–22
spyware, 21
Trojan horses, 20
viruses, 18–19
worms, 19-20
managed devices, 388
management security controls, 348
mandatory access control (MAC). See MAC (mandatory access control)
Mandatory Security Policy, 308
mandatory vacation policies, 526–527
man-in-the-middle attacks, 178, 180
mantraps, 270, 519
manual monitoring, 380
many-to-one mapping, 455
mapping the network, 352–355, 365
McAfee IntruShield, 218
MD5 (Message-Digest algorithm 5), 432
message authentication code, 421
message digests, 430
Message-Digest algorithm 5 (MD5), 432
metal fires, extinguishing, 511
Microsoft Sysinternals Rootkit Revealer, 33
Microsoft Update, 77
Microsoft Virtual PC, 88–90
Microsoft Virtual Server, 90
Microsoft Windows XP Mode, 90
minimal privilege, 317
minimizing attack surface area, 129
mining log files, 394
MITM. See man-in-the-middle attacks
modems, securing, 166
monitoring
in incident response, 532
in intrusion detection, 39
methodologies for, 380–382
anomaly-based monitoring, 381
behavior-based monitoring, 381
signature-based monitoring, 380–381
tools for
Network Monitor, 386–388
performance baselining, 381–384
protocol analyzers, 384–388
SNMP, 388
Wireshark, 385–386
moving files/folders, permissions for, 318
MS-CHAP, 280–281
multifactor authentication, 272
multihomed connections, 211
multipartite viruses, 19
mutual authentication, 277
N
NAC (Network Access Control), 162
NAS (network attached storage), securing, 45
NAT (network address translation), 154-156
NAT filtering, 209
NAT firewalls, configuring, 222
National Cyber Alert System website, 48
native hypervisors, 92
near end crosstalk (NEXT), 240
negotiation in 802.1X authentication, 275
Nessus, 355-356
netmon. See Network Monitor
netstat command, 358
Network Access Control (NAC), 162
network address translation (NAT), 154-156
network attached storage (NAS), securing, 45
network attacks, 237
network connections, redundancy planning, 486-488
network design, 150-167
interconnections, 156-162
cloud computing, 159-162
DMZ, 157-158
Internet, 157
intranets/extranets, 159-160
LANs versus WANs, 157
NAC, 162
NAT, 154-156
network devices, 150-154
bubs, 150-151
routers, 152-154
switches, 151-152
subnetting, 162-163
telephony devices, 165
modems, 166
PBX equipment, 166-167
VoIP, 167
VLAN, 164-165
network devices, 150-154
hubs, 150-151
routers, 152-154
switches, 151-152
vulnerabilities, 234-238
backdoors, 237
default accounts, 234-235
network attacks, 237
privilege escalation, 236-237
weak passwords, 235-236
network DLP systems, 42
network intrusion detection systems (NIDS), 38, 217-219
network intrusion prevention system (NIPS), 218-219
Network Magic, 353
network management system (NMS), 388
network mapping, 352-355, 365
network masquerading, 154
Network Monitor, 386-388
Network Monitor for Server 2003, installing, 402
Network Monitor for Server 2008, 402
network monitoring
in incident response, 532
in intrusion detection, 39
methodologies for, 380-382
anomaly-based monitoring, 381
behavior-based monitoring, 381
signature-based monitoring, 380-381
tools for
Network Monitor, 386-388
performance baselining, 381-384
protocol analyzers, 384-388
operating systems

SNMP, 388

Wireshark, 385-386

network perimeter, 205-206

network security

ARP poisoning, 184
attacks, list of, 186
castle analogy, 205-206
client-side attacks, 182
data loss prevention systems, 216
DDoS attacks, 178
DNS poisoning, 183-184
DoS attacks, 175-178
firewalls, 206-212
honeypots and honeynets, 215-216
network design. See network design
network documentation, 251
NIDS, 217-218
NIPS, 218-219
null sessions, 181-182
ports and protocols, 167-175
protocol analyzers, 220
proxy servers, 212-215
replay attacks, 181
session hijacking, 179-181
spoofing attacks, 178-179
transitive access, 182
wired networks, 234-244
cable vulnerabilities, 238-244
device vulnerabilities, 234-238
wireless network security, 244-251
Bluetooth vulnerabilities, 250-251
wireless access point vulnerabilities, 244-249
wireless access points, securing, 254-256
wireless transmission vulnerabilities, 250

network sniffers. See protocol
analyzers

network socket addresses, 169

network-based DLP (data loss
prevention), 216

network-based firewalls. See firewalls

NEXT (near end crosstalk), 240

NIDS (network intrusion detection
systems), 38, 217-219

Nimda worm, 20

NIPS (network intrusion prevention
system), 218-219

NIST penetration testing, 351

Nmap, 173, 208, 356-357

NMS (network management system), 388

nonpromiscuous mode, 385

nonrepudiation, 6, 391

NOOP sleds, 132

NOP slides, 132

NoScript, 124

NTFS

converting FAT32 to, 83
permissions, 316

NTLM hash, 435

NTLM 2 hash, 435

null sessions, 181-182

O

one-time pads, 428-429

one-to-one mapping, 154, 455

one-way functions, 431

online scanners, 29

open mail relays, 34

open ports on twisted-pair cables, 243

Open Source Security Testing
Methodology Manual (OSSTMM), 350

Open Vulnerability and Assessment
Language (OVAL), 351

operating systems

fingerprinting, 347
hardening, 68-85

file systems and hard drives, 82-85

with group policies, security templates,
configuration baselines, 80-82
installing service packs, 72-75
installing updates, patches, hotfixes, 75-80
maintenance, 85-86
removing applications and services, 68-72
separating from data, 28, 84-85
operational security controls, 348
optical splitters, 243
The Orange Book, 306, 308
organizational policies. See policies OS. See operating systems
OSI model, 152
OSSTMM (Open Source Security Testing Methodology Manual), 350
outbound ports, 169
Outlook, securing, 127
OVAL (Open Vulnerability and Assessment Language), 351

P

PaaS (Platform as a Service), 161
packet filtering, 208, 222
packet sniffers. See protocol analyzers
PacketFence, 162
padding schemes in RSA encryption, 427
PAP, 280
passive fingerprinting, 347
passive security analysis, 347
password analysis, 359-362, 366-367
password crackers, 360
password hash functions, 433-435
passwords
in access control, 318-322
best practices, 324
BIOS passwords, 43-44
clear-text passwords, 387-388
complexity and length of, 324
frequency of changes, 321
guessing, 361
HDD passwords, 44
policies for, 322-325, 328-330
storing in web browsers, 122
strong passwords, 319-321
weak versus strong passwords, 235-236
PAT (port address translation), 154
patches
installing, 75-80
management, 79-80
versions, 78
PBX (private branch exchange) equipment, securing, 166-167
PDAs, securing, 47-49
PDoS (permanent DoS) attacks, 177
PEAP (protected extensible authentication protocol), 276
penetration tests, 130, 350-351
performance baselining, 381-384
Performance Monitor tool, 383-384
permanent DoS (PDoS) attacks, 177
permanently installed generators, 482
permissions, 313-317
auditing, 397
inheritance and propagation, 317
types of, 316
user and group permissions, configuring, 330-331
when moving/copying files and folders, 318
personal firewalls, 35-38
Personal Identity Verification (PIV) card, 269
personally identifiable information (PII), 528
personnel security policies, 523-525
acceptable use, 523
change management, 525-526
due care, 527
due diligence, 527
due process, 527
mandatory vacations, 526-527
separation of duties, 526
training employees, 527-528
types of, 528
PGP (Pretty Good Privacy), 429-430
Phage virus, 28
pharming attacks, 184
phishing, 178, 516-518
Phlashing, 177
phone cloning, 48
physical security, 267-271
biometric readers, 270-271
building security, 267-268
door access systems, 268-270
server room security, 267-268
of switches, 152
piggybacking, 519
PII (personally identifiable information), 528
ping flood attacks, 175
ping of death (POD) attacks, 177
PIV card (Personal Identity Verification), 269
PKCS (public key cryptography standards), 427
PKI (Public Key Infrastructure), 422, 452-456, 462-463
certificate authorities, 453-456
certificates, 452-453
dual-sided certificates, 456
single-sided certificates, 456
web of trust, 456
planning
for disaster recovery, 494-496
in patch management, 79
security plans, 7
Platform as a Service (PaaS), 161
PNAC (port-based Network Access Control), 162
POD (ping of death) attacks, 177
point release, 78
Point-to-Point Tunneling Protocol (PPTP), 282, 460
policies. See also procedures
for access control, 322-325
in application security, 124-125
auditing, 398
for browsers, implementing, 111-113
configuring, 328-330
data sensitivity and classification,
522-523
disabling applications with, 138-140
in disaster recovery plans, 495-496
equipment disposal, 528-531
example of, 521
group policies, 80-82
personnel security policies, 523-525
acceptable use, 525
change management, 525-526
due care, 527
due diligence, 527
due process, 527
mandatory vacations, 526-527
separation of duties, 526
training employees, 527-528
types of, 528
privacy policies, 525
vendor contracts, 528
polymorphic viruses, 19
POP3 connections, ports and protocols for, 173
pop-up blockers, 35, 40-42
in Firefox, 124
in Internet Explorer, 119
pop-up windows, closing, 114
port address translation (PAT), 154
port forwarding, 208
port scanning, 173, 356-357
port zero, securing, 174
portable gas-engine generators, 482
port-based Network Access Control (PNAC), 162

ports
- closing, 173-174
- inbound ports, 169
- outbound ports, 169
- protocol associations, list of, 170-169
- range of, 167
- scanning, 190-191
- securing, 167-175

power supplies
- failure of, 479
- redundancy planning, 478-483
 - backup generators, 481-483
 - redundant power supplies, 479-480
 - UPS, 480-481

PPTP (Point-to-Point Tunneling Protocol), 282, 460

pre-action sprinkler systems, 512

precomputation, 361

preparing for exam. See exam preparation

preservation of evidence (incident response), 533

pretexting, 516

Pretty Good Privacy (PGP), 429-430

preventing
- BIOS attacks, 43-44
- malware, 26-36
 - rootkits, 32-33
 - spam, 33-35
 - spyware, 30-32
 - viruses, 26-30
 - worms and Trojan horses, 30

preventive security controls, 348

previous logon notification, 325

principle of defense in depth, 129

principle of least privilege, 129

Privacy Act of 1974, 523, 525

privacy policies, 525

private addresses, public addresses versus, 154-156

private branch exchange (PBX) equipment, securing, 166-167

private keys, defined, 419

private-key algorithms.
 - See symmetric key algorithms

privilege de-escalation, 237

privilege escalation, 24, 236-237

procedures, 531-534. See also policies

process virtual machines, 87

program viruses, 19

programming, securing. See secure coding concepts

programs. See applications

promiscuous mode, 217, 385

propagation of permissions, 317

protected extensible authentication protocol (PEAP), 276

protected system files, hiding, 83

protocol analyzers, 150, 220, 358-359, 384-388, 401-403
 - Network Monitor, 386-388
 - SNMP, 388
 - Wireshark, 385-386

protocol associations, list of, 170-169

protocols
- FTP, securing, 174-175
- securing, 167-175
- wireless protocols, 246

proximity sensors, 269

proximity-based door access systems, 270

proxy servers, 212-215
 - for browser security, 114-115
 - configuring connections in Firefox, 123

public addresses, private addresses versus, 154-156

public information, sensitivity of, 523

public key cryptography, 421-422
public key cryptography standards (PKCS), 427
Public Key Infrastructure (PKI), 422, 452-456, 462-463
certificate authorities, 453-456
certificates, 452-453
dual-sided certificates, 456
single-sided certificates, 456
web of trust, 456
public keys, defined, 419
punch block connections, 242
Pure-FTPD, 172
purging data, 531

Q–R
qualitative risk assessments, 344
quantitative risk assessments, 344-346
RA (registration authority), 455
radio frequency interference (RFI), 239
RADIUS (Remote Authentication Dial-In User Service), 284-286
RAID (redundant array of independent disks), 483-486, 498-500
Rainbow Tables, 361
RAS (Remote Access Service), 280-281, 286
RATs (remote access Trojans), 20
raw socket programming, 174
RBAC (role-based access control), 309-310
RC (Rivest Cipher), 425
RC4, 425
RC5, 425
RC6, 425
Real-time Transport Protocol (RTP), 169
recovery (incident response), 532. See also disaster recovery
recycling computers, policies concerning, 528-531
The Red Book, 306
reduced sign-on, 272
redundancy planning, 476-490. See also disaster recovery
network connections, 486-488
power supplies, 478-483
backup generators, 481-483
redundant power supplies, 479-480
UPS, 480-481
RAID, 483-486, 498-500
servers, 488-489
single points of failure, 476
sites, 489-490
redundant array of independent disks (RAID), 483-486, 498-500
redundant ISP, 488
redundant power supplies, 479-480
registration authority (RA), 455
Remote Access Service (RAS), 280-281, 286
remote access Trojans (RATs), 20
Remote Authentication Dial-In User Service (RADIUS), 284-286
remote authentication technologies, 279-286
RADIUS versus TACACS, 284-285
RAS, 280-281
VPNs, 281-284
remote ports, 238
remote wipe programs, 48
removable media
as malware delivery method, 23
securing, 44-45
removing. See also data removal
applications and services, 68-72
e-mail addresses from websites, 34
temporary files, 83, 119
web browsers, 120
replay attacks, 181
requirements for Security+ certification, 552
residual risk, 343
restoration for backup tapes, 492
restore points, 84
restrictions on user accounts, configuring, 328-330
revoking certificates, 454-455
RFI (radio frequency interference), 239
risks, 342-343
acceptance, 343
assessments, 342-351
 qualitative risk assessments, 344
 quantitative risk assessments, 344-346
 security analysis methodologies, 346-347
 security controls, 347-349
 vulnerability management, 349-351
avoidance, 342
management, 342
mitigation, 344
reduction, 343
retention, 343
sharing, 342
transference, 342
Rivest Cipher (RC), 425
rogue wireless access points, 245-246
role-based access control (RBAC), 309-310
rootkits, 21, 32-33
rotation schemes for backups, 492-493
routers, securing, 152-154
Routing and Remote Access Service (RRAS), 283
RRAS (Routing and Remote Access Service), 283
RSA (Rivest, Shamir, Adleman) encryption, 426-427
RTP (Real-time Transport Protocol), 169
rule-based access control, 309

S

SA (security association), 461
SaaS (Software as a Service), 161
safety. See environmental controls
sags, 479
salting, 361
sandboxes, 130
sanitizing
 hard drives, 530-531
 smartphones, 48
Sarbanes-Oxley Act (SOX), 523
saving log files, 394
SCA (side channel attacks), 428
scanning
 for malware, 50-51
 network, 365
 ports, 173, 190-191, 356-357
 for vulnerabilities, 355-358
SCP (Secure copy), 175
SDLC (Systems Development Life Cycle), 128-130
secret information, sensitivity of, 523
secret-key encryption, 417. See also symmetric key algorithms
secure code reviews, 128
secure coding concepts, 126-136
 Systems Development Life Cycle (SDLC), 128-130
testing methods for, 130-132
 vulnerabilities and attacks, 132-136
 backdoors, 132
 buffer overflows, 132-133
 code injection, 133-134
 directory traversal, 134
 XSS and XSRF, 133
 zero day attacks, 135
Secure copy (SCP), 175
Secure FTP (SFTP), 174
Secure Hash Algorithm (SHA), 432
Secure HTTP (SHTTP), 459
Secure LDAP, 277
secure padding schemes in RSA encryption, 427
Secure Shell (SSH), 459, 463-464
Secure Sockets Layer (SSL), 458-459
certificates, 454
settings in Internet Explorer, 119
Secure/Multipurpose Internet Mail Extensions (S/MIME), 457
security
AAA (authentication, authorization, accounting), 5-6
access control. See access control
application security, 124-126, 138-140
authentication models, 271-273
of BIOS, 43-44, 51-53
browser security. See browser security
cell phones and PDAs, 47-49
network design. See network design
CIA triad, 4-5
of log files, 396
network security. See network security
physical security. See physical security
plans, 7
policies. See policies
protocols
IPsec, 460-461
L2TP, 460
PPTP, 460
S/MIME, 457
SSH, 459, 463-464
SSL/TLS, 458-459
risk assessments. See risks
secure coding concepts. See secure coding concepts
storage devices. See storage devices
security analysis methodologies, 346-347
security association (SA), 461
security audits. See audits
security controls, 347-349
security logs, 390, 392
security permissions, 316. See also permissions
Security Posture Assessments (SPA), 381
security settings (Internet Explorer), 30
security tokens, 269
security zones (Internet Explorer), configuring, 116-117
Security+ certification requirements, 552
SE Linux (Security-Enhanced Linux), 40, 308
sensitivity of data, policies concerning, 522-523
separating data and operating system, 28, 84-85
Separation of Duties (SoD), 312, 526
server room security, 267-268
server rooms, redundancy planning, 488-489
service level agreement (SLA), 528
service packs
installing, 26-27, 72-75
services versus, 72
updating, 96
malware, 18-36
types of, 6-7
of virtual machines, 92-94, 98-101
wired network security. See wired network security
wireless network security. See wireless network security
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Set Identifier (SSID) broadcasting</td>
<td>211, 245</td>
</tr>
<tr>
<td>services</td>
<td>68-72</td>
</tr>
<tr>
<td>session cookies</td>
<td>119</td>
</tr>
<tr>
<td>session hijacking</td>
<td>179-181</td>
</tr>
<tr>
<td>Session Initiation Protocol (SIP)</td>
<td>167</td>
</tr>
<tr>
<td>session theft</td>
<td>179</td>
</tr>
<tr>
<td>Session Initiation Protocol (SIP)</td>
<td>167</td>
</tr>
<tr>
<td>session theft</td>
<td>179</td>
</tr>
<tr>
<td>SFTP (Secure FTP)</td>
<td>174</td>
</tr>
<tr>
<td>SHA (Secure Hash Algorithm)</td>
<td>432</td>
</tr>
<tr>
<td>shared folders, auditing</td>
<td>396-397</td>
</tr>
<tr>
<td>shared-key algorithms. See symmetric key algorithms</td>
<td></td>
</tr>
<tr>
<td>sharing</td>
<td>83</td>
</tr>
<tr>
<td>shielding twisted pair (STP) cables</td>
<td>240, 514</td>
</tr>
<tr>
<td>shielding</td>
<td>514-515</td>
</tr>
<tr>
<td>ShieldsUP!</td>
<td>173, 208</td>
</tr>
<tr>
<td>shoulder surfing</td>
<td>518</td>
</tr>
<tr>
<td>SHTTP (Secure HTTP)</td>
<td>459</td>
</tr>
<tr>
<td>side channel attacks (SCA)</td>
<td>428</td>
</tr>
<tr>
<td>signal emanation</td>
<td>241</td>
</tr>
<tr>
<td>signature-based monitoring</td>
<td>39, 380-381</td>
</tr>
<tr>
<td>SIM cloning</td>
<td>48</td>
</tr>
<tr>
<td>Simple Network Management Protocol (SNMP)</td>
<td>388</td>
</tr>
<tr>
<td>single loss expectancy (SLE)</td>
<td>344</td>
</tr>
<tr>
<td>single points of failure</td>
<td>476</td>
</tr>
<tr>
<td>single sign-on (SSO)</td>
<td>272</td>
</tr>
<tr>
<td>single-key algorithms. See symmetric key algorithms</td>
<td></td>
</tr>
<tr>
<td>single-sided certificates</td>
<td>456</td>
</tr>
<tr>
<td>SIP (Session Initiation Protocol)</td>
<td>167</td>
</tr>
<tr>
<td>sites, redundancy planning</td>
<td>489-490</td>
</tr>
<tr>
<td>SLA (service level agreement)</td>
<td>528</td>
</tr>
<tr>
<td>SLE (single loss expectancy)</td>
<td>344</td>
</tr>
<tr>
<td>slipstreaming</td>
<td>74</td>
</tr>
<tr>
<td>smart cards</td>
<td>269</td>
</tr>
<tr>
<td>smartphones, theft of</td>
<td>48-49</td>
</tr>
<tr>
<td>S/MIME (Secure/Multipurpose Internet Mail Extensions)</td>
<td>457</td>
</tr>
<tr>
<td>SMTP open relays</td>
<td>34</td>
</tr>
<tr>
<td>SMTP relay</td>
<td>181</td>
</tr>
<tr>
<td>Smurf attacks</td>
<td>176</td>
</tr>
<tr>
<td>SNMP (Simple Network Management Protocol)</td>
<td>388</td>
</tr>
<tr>
<td>Snort</td>
<td>217, 218</td>
</tr>
<tr>
<td>social engineering</td>
<td>7, 515-521</td>
</tr>
<tr>
<td>baiting</td>
<td>519</td>
</tr>
<tr>
<td>diversion theft</td>
<td>516</td>
</tr>
<tr>
<td>dumpster diving</td>
<td>519</td>
</tr>
<tr>
<td>eavesdropping</td>
<td>518-519</td>
</tr>
<tr>
<td>hoaxes</td>
<td>518</td>
</tr>
<tr>
<td>phishing</td>
<td>516-518</td>
</tr>
<tr>
<td>piggybacking</td>
<td>519</td>
</tr>
<tr>
<td>pretexting</td>
<td>516</td>
</tr>
<tr>
<td>shoulder surfing</td>
<td>518</td>
</tr>
<tr>
<td>training employees against</td>
<td>520-521</td>
</tr>
<tr>
<td>types of</td>
<td>519</td>
</tr>
<tr>
<td>SoD (Separation of Duties)</td>
<td>312, 526</td>
</tr>
<tr>
<td>Software as a Service (SaaS)</td>
<td>161</td>
</tr>
<tr>
<td>software as malware delivery method</td>
<td>23</td>
</tr>
<tr>
<td>software versions, explained</td>
<td>78</td>
</tr>
<tr>
<td>SOX (Sarbanes-Oxley) Act</td>
<td>523</td>
</tr>
<tr>
<td>SP. See service packs</td>
<td></td>
</tr>
<tr>
<td>SPA (Security Posture Assessments)</td>
<td>381</td>
</tr>
<tr>
<td>spam</td>
<td>21-22, 33-35</td>
</tr>
<tr>
<td>spam filters</td>
<td>33-34</td>
</tr>
<tr>
<td>spam honeypots</td>
<td>215</td>
</tr>
<tr>
<td>SPAP</td>
<td>280</td>
</tr>
<tr>
<td>spear phishing</td>
<td>517</td>
</tr>
<tr>
<td>spectral analyzers</td>
<td>243</td>
</tr>
</tbody>
</table>
SPI (stateful packet inspection), 208
spikes, 478
spim, 22
splitting
 fiber-optic cables, 243
twisted-pair cable wires, 243
spoofing attacks, 178-179
sprinkler systems, 512
spyware, 21
 preventing and troubleshooting, 30-32
 symptoms of, 31
SQL injection, 133
SSH (Secure Shell), 459, 463-464
SSH FTP, 174
SSID (Service Set Identifier) broadcasting, 211, 245
SSL (Secure Sockets Layer), 458-459
 certificates, 454
 settings in Internet Explorer, 119
SSO (single sign-on), 272
standard load, 383
standby generators, 482
stateful packet inspection (SPI), 208
stateless packet inspection, 208
static NAT (network address translation), 154
statistical anomaly-based monitoring, 39, 381
stealth viruses, 19
steganography, 423
storage devices
 hardware security modules, 45-47
 network attached storage, securing, 45
 removable media, securing, 44-45
 whole disk encryption, 45-47
storage-based DLP (data loss prevention), 42, 216
STP (shielded twisted pair) cables, 240, 514
stream ciphers, 420
strong passwords, 235-236, 319-321
subnetting, 162-163
supplicants, 219
subversion errors, 219
switches (802.1X connections), 274
surges, 478
switches, securing, 151-152
symmetric key algorithms, 420-421
 AES, 424-425
 DES and 3DES, 424
 RC, 425
symptoms
 of spyware, 31
 of viruses, 28-29
SYN, 385
SYN flood attacks, 176
system failure, 6
system files, verifying, 84
System logs, 393
System Monitor, 384
System Restore, 84
system security settings, audits on, 396-398
system virtual machines, 87
Systems Development Life Cycle (SDLC), 128-130

T

TACACS (Terminal Access Controller Access-Control System), 284-286
TACACS+, 285-286
tailgating, 519
tape backups, types of, 490-491
tapping into data, 241-244
TCB (trusted computing base), 308
TCP reset attacks, 174
TCP/IP fingerprinting, 347
TCP/IP hijacking, 180
TDEA (Triple Data Encryption Algorithm), 424
teardrop attacks, 177
technical security controls, 348
technologies
data loss prevention systems, 42
intrusion detection systems, 38-40
localized authentication technologies, 273-279
IEEE 802.1X standard, 273-276
Kerberos, 277-278
LDAP, 276-277
Terminal Services, 279
monitoring tools
performance baselining, 381-384
protocol analyzers, 384-388
personal firewalls, 35-38
pop-up blockers, 40-42
remote authentication technologies, 279-286
RADIUS versus TACACS, 284-285
RAS, 280-281
VPNs, 281-284
types of, 7-9
for vulnerability assessments, 352-362
network mapping, 352-355
password analysis, 359-362
protocol analyzers, 358-359
vulnerability scanning, 355-358
telephony devices, securing, 165-167
modems, 166
PBX equipment, 166-167
VoIP, 167
Telnet, 70-72, 166, 238
TEMPEST standards, 241, 515
templates, security, 80-82
temporary files, removing, 83, 119
10 tape rotation backup method, 492
Terminal Access Controller Access-Control System (TACACS), 284-286
Terminal Services, 279
test systems, importance of, 20
testing in patch management, 79
testing methods for secure coding concepts, 130-132
testing phase (SDLC), 129-132
theft
disaster recovery, 495
of smartphones, 48-49
threats
malware, 18-36
delivery methods for, 23-25
preventing and troubleshooting, 26-36
rootkits, 21
spam, 21-22
spyware, 21
Trojan horses, 20
viruses, 18-19
worms, 19-20
modeling, 129
types of, 6-7
3DES (triple DES), 424
3-leg perimeter DMZ, 157-158, 210
tickets (Kerberos), 278, 420
time bombs, 24
TLS (Transport Layer Security), 458-459
top secret information, sensitivity of, 523
Towers of Hanoi backup rotation method, 493
tracking cookies, 119
training employees
for browser security, 114
on policies, 527-528
against social engineering, 520-521
spam prevention, 35
spyware prevention, 31
transitive access, 182
transparent testing, 130
Transport Layer Security (TLS), 458-459
Trend Micro OSSEC, 39
Trend Micro's HouseCall, 29
Triple Data Encryption Algorithm (TDEA), 424
Trojan horses, 20, 30
troubleshooting malware, 26-36
 rootkits, 32-33
 spam, 33-35
 spyware, 30-32
 viruses, 26-30
 worms and Trojan horses, 30
true negatives, 273
true positives, 273
TrueCrypt, 45
trusted computing base (TCB), 308
Trustworthy Computing, 25
tunneling protocols (VPNs), 282
twisted-pair cables, 238, 240
 open ports on, 243
 splitting wires of, 243
USB devices, securing, 44-45
User Account Control (UAC), 124, 325-326
user accounts
 expiration, 314
 restrictions, configuring, 328-330
user awareness, 7
user education
 for browser security, 114
 on policies, 527-528
 against social engineering, 520-521
 spam prevention, 35
 spyware prevention, 31
user input validation, 129
usernames in access control, 318-322
users
 in access control, 313-317
 permissions, configuring, 330-331
UTP (unshielded twisted pair) cables, 240

U

UAC (User Account Control), 124, 325-326
UDP flood attacks, 176
unauthorized access, 6
unicast, 151
uninterruptible power supplies (UPS), 480-481
unshielded twisted pair (UTP) cables, 240
updates, installing, 26-27, 75-80
updating
 BIOS, 44
 service packs, 96
UPS (uninterruptible power supplies), 480-481
URL spoofing attacks, 178

V

vacation policies, 526-527
validation
 of certificates, 453
 input validation, 129, 131
vampire taps, 241-242
vendor contracts, 528
verifying system files, 84
Verisys, 39
versions of patches, explained, 78
vertical privilege escalation, 236
virtual appliances, 88
virtual local area network (VLAN), 164-165
virtual machine manager (VMM), 92
virtual machines (VMs), 85-87
 creating in Virtual PC 2007, 96-98
 hypervisors, 92
 Microsoft Virtual PC, 88-90
Microsoft Virtual Server, 90
Microsoft Windows XP Mode, 90
securing, 92-94, 98-101
VMware, 91
Virtual PC, 88-90
Virtual PC 2007, creating virtual machines, 96-98
virtual private networks (VPNs), 281-284
configuring, 289-291
IPsec, 460-461
L2TP, 460
PPTP, 460
for router security, 153
Virtual Server, 90
virtual servers, 208
virtualization, 85-94
hypervisors, 92
Microsoft Virtual PC, 88-90
Microsoft Virtual Server, 90
Microsoft Windows XP Mode, 90
securing virtual machines, 92-94, 98-101
types of, 85-88
VMware, 91
viruses, 18-19
preventing and troubleshooting, 26-30
symptoms of, 28-29
vishing, 517
VLAN (virtual local area network), 164-165
VLAN hopping, 164-165
VMM (virtual machine manager), 92
VMs (virtual machines), 85-87
creating in Virtual PC 2007, 96-98
hypervisors, 92
Microsoft Virtual PC, 88-90
Microsoft Virtual Server, 90
Microsoft Windows XP Mode, 90
securing, 92-94, 98-101
VMware, 91
VMware, 91, 94
voice encryption, 48
VoIP (voice over Internet Protocol), securing, 167
VPNs (virtual private networks), 281-284
configuring, 289-291
IPsec, 460-461
L2TP, 460
PPTP, 460
for router security, 153
vulnerabilities, 341. See also attacks
of Bluetooth, 250-251
of cabling, 238-244
crosstalk, 240
data emanation, 241
interference, 239
tapping into data, 241-244
of network devices, 234-238
backdoors, 237
default accounts, 234-235
network attacks, 237
privilege escalation, 236-237
weak passwords, 235-236
to program code, 132-136
backdoors, 132
buffer overflows, 132-133
code injection, 133-134
directory traversal, 134
XSS and XSRF, 133
zero day attacks, 135
of wireless access points, 244-249
of wireless transmission, 250
vulnerability assessments, tools for, 352-362
network mapping, 352-355
password analysis, 359-362
protocol analyzers, 358-359
vulnerability scanning, 355-358