DAVID L. PROWSE

Authorized **Cert Guide**

Learn, prepare, and practice for exam success

- Master every topic on CompTIA's new Security+ SY0-301 exam.
- Assess your knowledge and focus your learning.
- Get the practical workplace knowledge you need!
- Practice with realistic exam questions on the DVD

SY0-301

Second Edition

DVD FEATURES COMPLETE SAMPLE EXAM

PEARSON

CompTIA Security+ SY0-301 Authorized Cert Guide

David L. Prowse

PEARSON

Pearson IT Certification 800 East 96th Street, Indianapolis, Indiana 46240 USA

CompTIA Security+ SY0-301 Authorized Cert Guide

Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

CompTIA Security+ SY0-301 Authorized Cert Guide, Deluxe Edition

ISBN-13: 978-0-7897-4827-0 ISBN-10: 0-7897-4827-4

CompTIA Security+ SY0-301 Authorized Cert Guide, Standard Edition:

ISBN-13: 978-0-7897-4921-5 ISBN-10: 0-7897-4921-1

Library of Congress Cataloging-in-Publication Data:

Prowse, David L.

CompTIA security+ SY0-301 authorized cert guide / David L. Prowse. p. cm.

Includes bibliographical references and index.

ISBN 978-0-7897-4827-0 (hardcover : alk. paper)

1. Computer security—Examinations—Study guides. 2. Computer technicians—Certification—Study guides. 3. Computer networks—Security measures—Examinations—Study guides. 4. Computing Technology Industry Association—Examinations—Study guides. I. Title.

QA76.9.A25P788 2012 005.8—dc23

2011042332

Printed in the United States of America First Printing: December 2011

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Pearson IT Certification cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Bulk Sales

Pearson IT Certification offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales 1-800-382-3419 corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales international@pearson.com

Editor-in-Chief

David Dushimer

Acquisitions Editor

Betsy Brown

Development Editor

Andrew Cupp

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Copy Editor

Geneil Breeze

Indexer

Cheryl Lenser

Proofreader

Leslie Joseph

Technical Editor

Aubrey Adams

Publishing Coordinator

Vanessa Evans

Multimedia Developer

Tony Palleschi

Book Designer

Gary Adair

Compositor

Bronkella Publishing LLC

Contents at a Glance

	Introduction xxv
CHAPTER 1	Introduction to Security 3
CHAPTER 2	Computer Systems Security 17
CHAPTER 3	OS Hardening and Virtualization 67
CHAPTER 4	Application Security 109
CHAPTER 5	Network Design Elements and Network Threats 149
CHAPTER 6	Network Perimeter Security 205
CHAPTER 7	Securing Network Media and Devices 233
CHAPTER 8	Physical Security and Authentication Models 265
CHAPTER 9	Access Control Methods and Models 305
CHAPTER 10	Vulnerability and Risk Assessment 341
CHAPTER 11	Monitoring and Auditing 379
CHAPTER 12	Encryption and Hashing Concepts 415
CHAPTER 13	PKI and Encryption Protocols 451
CHAPTER 14	Redundancy and Disaster Recovery 475
CHAPTER 15	Policies, Procedures, and People 509
CHAPTER 16	Taking the Real Exam 551
	Practice Exam 1: CompTIA Security+ SY0-301 561
	Practice Exam 2: CompTIA Security+ SY0-301 611
	Glossary 663
	Master List of Key Topics 684
	Index 692
	On the DVD:
	On the DYD.
	Appendix A: Memory Tables

Appendix B: Memory Tables Answer Key

Table of Contents

```
Introduction xxv
           Introduction to Security 3
Chapter 1
             Foundation Topics 4
             Security 101 4
                The CIA of Computer Security 4
                The Basics of Information Security 6
             Think Like a Hacker 9
             Exam Preparation Tasks 11
            Review Key Topics 11
             Define Key Terms 11
             Answer Review Questions
             Answers and Explanations 13
Chapter 2 Computer Systems Security 17
             Foundation Topics 18
             Computer Systems Security Threats 18
                 Malicious Software 18
                 Viruses 18
                 Worms 19
                 Trojan Horses 20
                Spyware 21
                 Rootkits 21
                 Spam 21
                 Summary of Malware Threats 22
                 Ways to Deliver Malicious Software 23
                 Via Software, Messaging, and Media 23
                Active Interception 23
                 Privilege Escalation 24
                 Backdoors 24
                 Logic Bombs 24
                 Botnets and Zombies 25
```

```
Preventing and Troubleshooting Malware 26
    Preventing and Troubleshooting Viruses 26
    Preventing and Troubleshooting Worms and Trojans 30
    Preventing and Troubleshooting Spyware 30
    Preventing and Troubleshooting Rootkits 32
    Preventing and Troubleshooting Spam 33
    You Can't Save Every Computer from Malware! 35
    Summary of Malware Prevention Techniques 35
Implementing Security Applications 36
    Personal Software Firewalls 36
    Host-Based Intrusion Detection Systems 38
    Pop-Up Blockers 40
    Data Loss Prevention Systems 42
Securing Computer Hardware and Peripherals 42
    Securing the BIOS 43
    Securing Storage Devices 44
    Removable Storage 44
    Network Attached Storage 45
    Whole Disk Encryption 45
    Hardware Security Modules 47
    Securing Cell Phones and Smartphones 47
Exam Preparation Tasks
Review Key Topics 49
Complete Tables and Lists from Memory 49
Define Key Terms 50
Hands-On Labs 50
    Equipment Needed 50
    Lab 2-1: Using Free Malware Scanning Programs 50
    Lab 2-2: How to Secure the BIOS 51
View Recommended Resources 53
Answer Review Questions
Answers and Explanations
```

Chapter 3 OS Hardening and Virtualization 67

Foundation Topics 68

Hardening Operating Systems 68

Removing Unnecessary Applications and Services 68

Service Packs 72

Windows Update, Patches, and Hotfixes 75

Patches and Hotfixes 77

Patch Management 79

Group Policies, Security Templates, and Configuration Baselines 80

Hardening File Systems and Hard Drives 82

Virtualization Technology 86

Types of Virtualization and Their Purposes 86

Working with Virtual Machines 88

Microsoft Virtual PC 88

Microsoft Windows XP Mode 90

Microsoft Virtual Server 90

VMware 91

Hypervisor 92

Securing Virtual Machines 92

Exam Preparation Tasks 94

Review Key Topics 94

Complete Tables and Lists from Memory 95

Define Key Terms 95

Hands-On Labs 95

Equipment Needed 95

Lab 3-1: Discerning and Updating the Service Pack Level 96

Lab 3-2: Creating a Virtual Machine in Virtual PC 2007 96

Lab 3-3: Securing a Virtual Machine 98

View Recommended Resources 101

Answer Review Questions 102

Answers and Explanations 105

Chapter 4 Application Security 109

Foundation Topics 110

Securing the Browser 110

General Browser Security Procedures 111

Implement Policies 111

Train Your Users 114

Use a Proxy and Content Filter 114

Secure Against Malicious Code 116

Securing Internet Explorer 116

Securing Firefox 121

Securing Other Applications 124

Secure Programming 127

Systems Development Life Cycle 128

Programming Testing Methods 130

Programming Vulnerabilities and Attacks 132

Backdoors 132

Buffer Overflows 132

XSS and XSRF 133

More Code Injection Examples 133

Directory Traversal 134

Zero Day Attack 135

Exam Preparation Tasks 136

Review Key Topics 136

Complete Tables and Lists from Memory 136

Define Key Terms 137

Hands-On Labs 137

Equipment Needed 137

Lab 4-1: Securing the Browser 137

Lab 4-2: Disabling Applications with a Windows Server 2008

Policy 138

View Recommended Resources 141

Answer Review Questions 141

Answers and Explanations 145

Chapter 5 Network Design Elements and Network Threats 149

Foundation Topics 150 Network Design 150 Network Devices 150 Hub 150 Switch 151 Router 152 Network Address Translation, and Private Versus Public IP 154 Network Zones and Interconnections 156 LAN Versus WAN 157 Internet 157 Demilitarized Zone (DMZ) 157 Intranets and Extranets 159 Cloud Computing 159 Network Access Control (NAC) 162 Subnetting 162 Virtual Local Area Network (VLAN) 164 Telephony Devices 165 Modems 166 PBX Equipment 166 VoIP 167 Ports and Protocols 167 Ports Ranges, Inbound Versus Outbound, and Common Ports 167 Protocols That Can Cause Anxiety on the Exam 174 Malicious Network Attacks 175 DoS 175 DDoS 178 Spoofing 178 Session Hijacking 179 Replay 181 Null Sessions 181 Transitive Access and Client-Side Attacks 182 DNS Poisoning and Other DNS Attacks 183 ARP Poisoning 184 Summary of Network Attacks 185

```
Exam Preparation Tasks 188
            Review Key Topics 188
            Complete Tables and Lists from Memory 189
            Define Key Terms 189
            Hands-On Labs 189
                Equipment Needed 190
                Lab 5-1: Port Scanning Basics 190
            View Recommended Resources 191
            Answer Review Questions 192
            Answers and Explanations 199
Chapter 6 Network Perimeter Security 205
            Foundation Topics 206
            Firewalls and Network Security 206
                Firewalls 207
                Proxy Servers 212
                Honeypots and Honeynets 215
                Data Loss Prevention (DLP) 216
            NIDS Versus NIPS 217
                NIDS 217
                NIPS 218
                Summary of NIDS Versus NIPS 219
                The Protocol Analyzer's Role in NIDS and NIPS 220
            Exam Preparation Tasks 220
            Review Key Topics 220
            Complete Tables and Lists from Memory 221
            Define Key Terms 221
            Hands-On Labs 221
                Equipment Needed 222
                Lab 6-1: Packet Filtering and NAT Firewalls 222
                Lab 6-2: Configuring an Inbound Filter on a SOHO Router/
                 Firewall 223
                Lab 6-3: Enabling MAC Filtering 224
            View Recommended Resources 225
            Answer Review Questions 225
            Answers and Explanations 229
```

Chapter 7 Securing Network Media and Devices 233

Foundation Topics 234

Securing Wired Networks and Devices 234

Network Device Vulnerabilities 234

Default Accounts 234

Weak Passwords 235

Privilege Escalation 236

Back Doors 237

Network Attacks 237

Other Network Device Considerations 238

Cable Media Vulnerabilities 238

Interference 239

Crosstalk 240

Data Emanation 241

Tapping into Data and Conversations 241

Securing Wireless Networks 244

Wireless Access Point Vulnerabilities 244

Secure the Administration Interface 244

SSID Broadcast 245

Rogue Access Points 245

Evil Twin 246

Weak Encryption 246

Other Wireless Access Point Security Strategies 248

Wireless Transmission Vulnerabilities 250

Bluetooth Vulnerabilities 250

Bluejacking 251

Bluesnarfing 251

Exam Preparation Tasks 252

Review Key Topics 252

Complete Tables and Lists from Memory 253

Define Key Terms 253

Hands-On Labs 253

Equipment Needed 254

Lab 7-1: Securing a Wireless Device: 8 Steps to a Secure Network 254

Lab 7-2: Wardriving...and The Cure 256

View Recommended Resources 257 Answer Review Ouestions 257 Answers and Explanations 261 Chapter 8 Physical Security and Authentication Models 265 Foundation Topics 267 Physical Security 267 General Building and Server Room Security 267 Door Access 268 Biometric Readers 270 Authentication Models and Components 271 Authentication Models 271 Localized Authentication Technologies 273 802.1X and EAP 273 LDAP 276 Kerberos and Mutual Authentication 277 Terminal Services 279 Remote Authentication Technologies 279 Remote Access Service 280 Virtual Private Networks 281 RADIUS Versus TACACS 284 Exam Preparation Tasks 286 Review Key Topics 286 Complete Tables and Lists from Memory 287 Define Key Terms 287 Hands-On Labs 287 Equipment Needed 288 Lab 8-1: Enabling 802.1X on a Network Adapter 288 Lab 8-2: Setting Up a VPN 289 View Recommended Resources 291 Answer Review Questions 292 Answers and Explanations Chapter 9 Access Control Methods and Models 305 Foundation Topics 306

Access Control Models Defined 306

Discretionary Access Control 306

Mandatory Access Control 308

Role-Based Access Control (RBAC) 309

Access Control Wise Practices 310

Rights, Permissions, and Policies 313

Users, Groups, and Permissions 313

Permission Inheritance and Propagation 317

Moving and Copying Folders and Files 318

Usernames and Passwords 318

Policies 322

User Account Control (UAC) 325

Exam Preparation Tasks 326

Review Key Topics 326

Complete Tables and Lists from Memory 327

Define Key Terms 327

Hands-On Labs 327

Equipment Needed 327

Lab 9-1: Configuring Password Policies and User Account Restrictions 328

Lab 9-2: Configuring User and Group Permissions 330

View Recommended Resources 331

Answer Review Questions 332

Answers and Explanations 337

Chapter 10 Vulnerability and Risk Assessment 341

Foundation Topics 342

Conducting Risk Assessments 342

Qualitative Risk Assessment 344

Quantitative Risk Assessment 344

Security Analysis Methodologies 346

Security Controls 347

Vulnerability Management 349

Penetration Testing 350

OVAL 351

Assessing Vulnerability with Security Tools 352 Network Mapping 352 Vulnerability Scanning 355 Network Sniffing 358 Password Analysis 359 Exam Preparation Tasks 363 Review Key Topics 363 Complete Tables and Lists from Memory 363 Define Key Terms 364 Hands-On Labs 364 Equipment Needed 364 Lab 10-1: Mapping and Scanning the Network 365 Lab 10-2: Password Cracking and Defense 366 View Recommended Resources 367 Answer Review Questions 368 Answers and Explanations 374 Chapter 11 Monitoring and Auditing 379 Foundation Topics 380 Monitoring Methodologies Signature-Based Monitoring Anomaly-Based Monitoring Behavior-Based Monitoring 381 Using Tools to Monitor Systems and Networks 382 Performance Baselining 382 Protocol Analyzers 384 Wiresbark 385 Network Monitor 386 SNMP 388 Conducting Audits 389 Auditing Files 389 Logging 392 Log File Maintenance and Security 394 Auditing System Security Settings 396

```
Exam Preparation Tasks 399
            Review Key Topics 399
            Complete Tables and Lists from Memory 400
            Define Key Terms 400
            Hands-On Labs 400
                Equipment Needed 400
                Lab 11-1: Using Protocol Analyzers 401
            View Recommended Resources 403
            Answer Review Questions 404
            Answers and Explanations 409
Chapter 12 Encryption and Hashing Concepts 415
            Foundation Topics 416
            Cryptography Concepts 416
                Symmetric Versus Asymmetric Key Algorithms 419
                Symmetric Key Algorithms 420
                Asymmetric Key Algorithms 421
                Public Key Cryptography 421
                Key Management 422
                Steganography 423
            Encryption Algorithms 423
                DES and 3DES 424
                AES 424
                RC 425
                Summary of Symmetric Algorithms 426
                RSA 426
                Diffie-Hellman 427
                Elliptic Curve 428
                More Encryption Types 428
                One-Time Pad 428
                PGP 429
            Hashing Basics 430
                Cryptographic Hash Functions 431
                MD5 432
                SHA 432
```

```
Happy Birthday! 432
                LANMAN, NTLM, and NTLM2 433
                LANMAN 433
                NTLM and NTLM2 435
            Exam Preparation Tasks 436
            Review Key Topics 436
            Complete Tables and Lists from Memory 436
            Define Key Terms 436
            Hands-On Lab 437
                Equipment Needed 437
                Lab 12-1: Disabling the LM Hash in Windows Server 2003 437
            View Recommended Resources 438
            Answer Review Ouestions 439
            Answers and Explanations 445
Chapter 13 PKI and Encryption Protocols 451
            Foundation Topics 452
            Public Key Infrastructure 452
                Certificates 452
                Certificate Authorities 453
                Single-Sided and Dual-Sided Certificates 456
                Web of Trust 456
            Security Protocols 457
                S/MIME 457
                SSL/TLS 458
                SSH 459
                PPTP, L2TP, and IPsec 459
                PPTP 460
                L2TP 460
                IPsec 460
            Exam Preparation Tasks 461
            Review Key Topics 461
            Define Key Terms 462
```

Hands-On Labs 462

Equipment Needed 462

Lab 13-1: A Basic Example of PKI 462

Lab 13-2: Making an SSH Connection 463

View Recommended Resources 465

Answer Review Questions 465

Answers and Explanations 470

Chapter 14 Redundancy and Disaster Recovery 475

Foundation Topics 476

Redundancy Planning 476

Redundant Power 478

Redundant Power Supplies 479

Uninterruptible Power Supplies 480

Backup Generators 481

Redundant Data 483

Redundant Networking 486

Redundant Servers 488

Redundant Sites 489

Disaster Recovery Planning and Procedures 490

Data Backup 490

DR Planning 494

Exam Preparation Tasks 497

Review Key Topics 497

Complete Tables and Lists from Memory 497

Define Key Terms 498

Hands-On Labs 498

Equipment Needed 498

Lab 14-1: Configuring RAID 1 and 5 498

View Recommended Resources 500

Answer Review Ouestions 500

Answers and Explanations 504

Chapter 15 Policies, Procedures, and People 509

Foundation Topics 510

Environmental Controls 510

```
Fire Suppression
    Fire Extinguishers 510
    Sprinkler Systems 512
    Special Hazard Protection Systems 512
    HVAC 513
    Shielding 514
Social Engineering 515
    Pretexting 516
    Diversion Theft 516
    Phishing 516
    Hoaxes 518
    Shoulder Surfing 518
    Eavesdropping 518
    Dumpster Diving 519
    Baiting 519
    Piggybacking/Tailgating 519
    Summary of Social Engineering Types 519
    User Education and Awareness 520
Legislative and Organizational Policies 521
    Data Sensitivity and Classification of Information 522
    Personnel Security Policies 524
    Privacy Policies 525
    Acceptable Use 525
    Change Management 525
    Separation of Duties/7ob Rotation 526
    Mandatory Vacations 526
    Due Diligence 527
    Due Care 527
    Due Process 527
    User Education and Awareness Training 527
    Summary of Personnel Security Policies 528
    How to Deal with Vendors 529
    How to Dispose of Computers and Other IT Equipment Securely 529
    Incident Response Procedures 531
```

Exam Preparation Tasks 534

Review Key Topics 534

Complete Tables and Lists from Memory 535

Define Key Terms 535

View Recommended Resources 535

Answer Review Questions 536

Answers and Explanations 543

Chapter 16 Taking the Real Exam 551

Foundation Topics 552

Getting Ready and the Exam Preparation Checklist 552

Tips for Taking the Real Exam 555

Beyond the CompTIA Security+ Certification 558

Hands-On Lab 559

Practice Exam 1 561

Practice Exam 2 611

Glossary 663

Master List of Key Topics 685

Index 692

On the DVD:

Appendix A: Memory Tables

Appendix B: Memory Tables Answer Key

About the Author

David L. Prowse is an author, a computer network specialist, and a technical trainer. Over the past several years he has authored several titles for Pearson Education, including the well-received *CompTIA A+ Exam Cram*. As a consultant, he installs and secures the latest in computer and networking technology. Over the past decade he has also taught CompTIA A+, Network+, and Security+ certification courses, both in the classroom and via the Internet.

He runs the website www.davidlprowse.com, where he gladly answers questions from students and readers.

About the Reviewer

Aubrey Adams (CCNA, Security+) is an electronic and computer system engineering lecturer and Cisco Networking Academy instructor at Central Institute of Technology in Perth, Western Australia. Coming from a background in telecommunications design, with qualifications in electronic engineering and management and graduate diplomas in computing and education, he teaches across a range of computer systems and networking vocational education and training areas. Aubrey also authors Networking Academy curriculum and assessments and is a Cisco Press author and Pearson Education technical editor.

Acknowledgments

This book and accompanying DVD wouldn't have been possible without my publisher, Pearson. I've been involved in many projects with Pearson over the past several years and give my thanks for the ongoing opportunities and support I have received.

One person in particular I'd like to acknowledge is Andrew Cupp. Drew, once again, your guidance during this project has been nothing short of greatness. You definitely helped develop what I think is an exceptional product.

I'd also like to thank Aubrey Adams for his excellent feedback during the creation of this book. Good technical editors are difficult to find; I'm grateful to Aubrey for his dedication and hard work during this project. My thanks also go out to the various people involved in developing and publishing this book: David Dusthimer, Betsy Brown, Sandra Schroeder, Tony Palleschi, Tonya Simpson, Tim Warner, and Vanessa Evans. It takes a lot of talented people to get a final product on the shelves—I appreciate everything you did to make this book a reality.

Special thanks to Dr. Rick Blazek, Tony Ardito, and Brian Campbell. Your contributions and suggestions helped me to incorporate a "real-world" feel and were key ingredients in keeping the book current.

And then there are the usual suspects—my wife, family, friends; thank you for bearing with me on yet another crazy book-writing crusade!

Finally, I thank my website readers. Your input over the years has helped me tailor my book projects, making them more complete and helping them to be successful.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

As an associate publisher for Pearson IT Certification, I welcome your comments. You can email or write me directly to let me know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do have a User Services group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book's title and author as well as your name, email address, and phone number. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com

Mail: David Dusthimer

Associate Publisher Pearson IT Certification 800 East 96th Street

Indianapolis, IN 46240 USA

CompTIA Security+

- Designed for IT professionals focused on system security.
- Covers network infrastructure, cryptography, assessments, and audits.
- Security+ is mandated by the U.S. Department of Defense and is recommended by top companies such as Microsoft, HP, and Cisco.

It Pays to Get Certified

In a digital world, digital literacy is an essential survival skill. Certification proves you have the knowledge and skill to solve business problems in virtually any business environment. Certifications are highly valued credentials that qualify you for jobs, increased compensation, and promotion.

Security is one of the highest demand job categories. Growing in importance as the frequency and severity of security threats continues to be a major concern for organizations around the world.

- Jobs for security administrators are expected to increase by 18% -the skill set required for these types of jobs map to CompTIA Security+ certification.
- Network Security Administrators can earn as much as \$106,000 per year.

How Certification Helps Your Career

CompTIA Career Pathway

CompTIA offers a number of credentials that form a foundation for your career in technology and allow you to pursue specific areas of concentration. Depending on the path you choose to take, CompTIA certifications help you build upon your skills and knowledge, supporting learning throughout your entire career.

Steps to Getting Certified and Staying Certified				
Review Exam Objectives	Review the certification objectives to make sure you know what is covered in the exam. http://www.comptia.org/certifications/testprep/examobjectives.aspx			
Practice for the Exam	After you have studied for the certification, take a free assessment and sample test to get an idea what type of questions might be on the exam. http://www.comptia.org/certifications/testprep/practicetests.aspx			
Purchase an Exam Voucher	Purchase your exam voucher on the CompTIA Marketplace, which is located at: www.comptiastore.com			
Take the Test!	Select a certification exam provider and schedule a time to take your exam. You can find exam providers at the following link: http://www.comptia.org/certifications/testprep/testingcenters.aspx			
Stay Certified! Continuing Education	Effective January 1, 2011, new CompTIA Security+ certifications are valid for three years from the date of your certification. There are a number of ways the certification can be renewed. For more information go to: http://certification.comptia.org/getCertified/steps_to_certification/stayCertified.aspx			

Join the Professional Community

Join IT Pro Community http://itpro.comptia.org

The free IT Pro online community provides valuable content to students and professionals.

- Career IT Job Resources
 - Where to start in IT Career Assessments Salary Trends US Job Board
- Forums on Networking, Security, Computing and Cutting Edge Technologies
- · Access to blogs written by Industry Experts
- · Current information on Cutting Edge Technologies
- Access to various industry resource links and articles related to IT and IT careers

Content Seal of Quality

This courseware bears the seal of **CompTIA Approved Quality Content.** This seal signifies this content covers 100% of the exam objectives and implements important instructional design principles. CompTIA recommends multiple learning tools to help increase coverage of the learning objectives.

Why CompTIA?

- Global Recognition CompTIA is recognized globally as the leading IT non-profit trade association
 and has enormous credibility. Plus, CompTIA's certifications are vendor-neutral and offer proof of
 foundational knowledge that translates across technologies.
- **Valued by Hiring Managers** Hiring managers value CompTIA certification because it is vendor and technology independent validation of your technical skills.
- Recommended or Required by Government and Businesses Many government organizations and corporations either recommend or require technical staff to be CompTIA certified. (e.g. Dell, Sharp, Ricoh, the U.S. Department of Defense and many more)
- Three CompTIA Certifications ranked in the top 10. In a study by DICE of 17,000 technology professionals, certifications helped command higher salaries at all experience levels.

How to obtain more information

- Visit CompTIA online www.comptia.org to learn more about getting CompTIA certified.
- Contact CompTIA call 866-835-8020 ext. 5 or email questions@comptia.org
- **Join the IT Pro Community** http://itpro.comptia.org to join the IT community to get relevant career information.
- Connect with us : in F 🕒 🔤 🚟

Introduction

Welcome to the *CompTIA Security+ SY0-301 Authorized Cert Guide*. The CompTIA Security+ Certification is widely accepted as the first security certification you should attempt to attain in your information technology (IT) career. The CompTIA Security+ Certification is designed to be a vendor-neutral exam that measures your knowledge of industry-standard technologies and methodologies. It acts as a great stepping stone to other vendor-specific certifications and careers. I developed this book to be something you can study from for the exam and keep on your bookshelf for later use as a security resource.

I'd like to note that it's unfeasible to cover all security concepts in depth in a single book. However, the Security+ exam objectives are looking for a basic level of computer, networking, and organizational security knowledge. Keep this in mind while reading through this text, and remember that the main goal of this text is to help you pass the Security+ exam, not to be the master of all security. Not just yet at least!

Because this is a security book, it is a bit more serious than some of my other texts. This may come as a surprise to some, but levity should be used carefully when dealing with security concepts because too much humor can easily confuse the issue and be taken the wrong way. It is my belief that in this fast-paced world of ever-changing technology, an author needs to get right to the point. I understand that you don't have unlimited time for study, so you will notice me being blunt in the way I get to the core of concepts. Don't take offense! This is done by design to aid you in absorbing content quickly.

Good luck as you prepare to take the CompTIA Security+ exam. As you read through this book, you will be building an impenetrable castle of knowledge, culminating in hands-on familiarity and the know-how to pass the exam.

IMPORTANT NOTE!!

The first thing you should do before you start reading Chapter 1 is check my website for errata and updated information, and mark those new items in the book. On my site you will also find videos, articles, and additional test questions. And of course, feel free to ask me questions about the book. You can reach the Security+ page of my website directly at the following link:

www.SY0-301.com

Or, go to my home page at the following link:

www.davidlprowse.com

A NOTE TO INSTRUCTORS I developed this book not only for the individual reader, but also to work well in the classroom setting. To complement this book, I also designed an instructor guide that can be accessed for free from the following link: www.davidlprowse.com/instructor-sy0-301.php

(You may afterward be redirected to a separate Pearson web page to download the materials.)

The supplemental instructor guide includes a breakdown of each chapter, a sample lesson plan, and plenty of teaching tips and tricks. You can also find PowerPoint presentations and a test bank of questions available for download. And, of course, if you have questions about the guide, please let me know at my website. Good luck in your teaching endeavors!

Goals and Methods

The number one goal of this book is to help you pass the 2011 version of the Comp-TIA Security+ Certification Exam (number SY0-301). To that effect, I have filled this book with more than 500 questions/answers and explanations in total, including two 100-question practice exams. The exams are in text at the end of the book and located on the disc in a simulated test environment. These tests are geared to check your knowledge and ready you for the real exam.

Deluxe Edition

The Deluxe Edition has one additional practice exam as well as a suite of Security+learning activities on the DVD.

The CompTIA Security+ Certification exam involves familiarity with computer security theory and hands-on know-how. To aid you in mastering and understanding the Security+ Certification objectives, this book uses the following methods:

- **Opening topics list**—This defines the topics to be covered in the chapter; it also lists the corresponding CompTIA Security+ objective numbers.
- **Topical coverage**—The heart of the chapter. Explains the topics from a theory-based standpoint, as well as from a hands-on perspective. This includes indepth descriptions, tables, and figures that are geared to build your knowledge so that you can pass the exam. The chapters are broken down into two to three topics each.

- **Key Topics**—The Key Topic icons indicate important figures, tables, and lists of information that you should know for the exam. They are interspersed throughout the chapter and are listed in table format at the end of the chapter.
- Memory Tables and Lists—These can be found on the DVD as Appendix A, "Memory Tables," and Appendix B, "Memory Tables Answer Key." Use them to help memorize important information.
- **Key Terms**—Key terms without definitions are listed at the end of each chapter. See whether you can define them, and then check your work against the complete key term definitions in the glossary.
- Hands-On Labs There are labs for most chapters. The step-by-step procedures appear at the end of the chapters (as well as on the disc) and the corresponding video solutions can be found on the disc as well.
- Review Questions—At the end of each chapter is a quiz. The quizzes, and answers with explanations, are meant to gauge your knowledge of the subjects. If an answer to a question doesn't come readily to you, be sure to review that portion of the chapter.

Another goal of this book is to offer support for you—the reader. Again, if you have questions or suggestions, please contact me through my website:

www.davidlprowse.com

I try my best to answer your queries as soon as possible.

Who Should Read This Book?

This book is for anyone who wants to start or advance a career in IT security. Readers of this book can range from persons taking a Security+ course to individuals already in the field who want to keep their skills sharp, or perhaps retain their job due to a company policy mandating they take the Security+ exam. Some information assurance professionals who work for the Department of Defense or have privileged access to DoD systems are required to become Security+ certified as per DoD directive 8570.1.

This book is also designed for people who plan on taking additional security-related certifications after the CompTIA Security+ exam. The book is designed in such a way to offer an easy transition to future certification studies.

Although not a prerequisite, it is recommended that CompTIA Security+ candidates have at least two years of technical networking experience with an emphasis on security. The CompTIA Network+ certification is also recommended as a prerequisite. It is expected that you understand computer topics such as how to install operating systems and applications, and networking topics such as how to configure IP, what a

VLAN is, and so on. The focus of this book is to show how to secure these technologies and protect against possible exploits and attacks. Generally, for people looking to enter the IT field, the CompTIA Security+ certification is attained after the A+ and Network+ certifications.

Important! If you do not feel that you have the required experience, have never attempted to secure a computer or network, or are new to the IT field, I recommend considering an IT course that covers the CompTIA Security+ objectives. You can choose from plenty of technical training schools, community colleges, and online courses. Use this book with the course and any other course materials you obtain.

CompTIA Security+ Exam Topics

Table I-1 lists the exam topics for the CompTIA Security+ exam. This table lists the chapter in which each exam topic is covered. Chapter 1 is an introductory chapter and as such does not map to any specific exam objectives. Chapter 16 gives strategies for taking the exam and does not map to any specific objectives either.

Table I-1 CompTIA Security+ Exam Topics

Chapter	Exam Topic	CompTIA Security+ Exam Objectives Covered
1	Security 101	n/a
	Think Like a Hacker	
2	Computer Systems Security Threats	Objectives 3.1, 3.2, 4.2, 4.3
	Implementing Security Applications	
	Securing Computer Hardware and Peripherals	
3	Hardening Operating Systems	Objectives 3.6, 4.1, 4.2
	Virtualization Technology	
4	Securing the Browser	Objective 3.5, 4.1, 4.2
	Securing Other Applications	
	Secure Programming	
5	Network Design	Objectives 1.1, 1.2, 1.3, 1.4,
	Ports and Protocols	1.5, 1.6, 3.2, 3.5, 4.3
	Malicious Attacks	
6	Firewalls and Network Security	Objectives 1.1, 1.2, 3.6
	NIDS Versus NIPS	

Table I-1 CompTIA Security+ Exam Topics

Chapter	Exam Topic	CompTIA Security+ Exam Objectives Covered	
7	Securing Wired Networks and Devices	Objectives 1.6, 3.4, 6.2	
	Securing Wireless Networks		
8	Physical Security	Objectives 3.6, 4.2, 5.1, 5.2	
	Authentication Models and Components		
9	Access Control Models Defined	Objectives 2.2, 5.2, 5.3	
	Rights, Permissions, and Policies		
10	Conducting Risk Assessments	Objectives 1.1, 2.1, 2.2, 3.7, 3.8	
	Assessing Vulnerability with Security Tools		
11	Monitoring Methodologies	Objectives 2.2, 2.3, 3.6, 4.1	
	Using Tools to Monitor Systems and Networks		
	Conducting Audits		
12	Cryptography Concepts	Objectives 4.3, 6.1, 6.2	
	Encryption Algorithms		
	Hashing Basics		
13	Public Key Infrastructure	Objectives 1.4, 6.2, 6.3, 6.4	
	Security Protocols		
14	Redundancy Planning	Objective 1.1, 2.5, 2.7	
	Disaster Recovery Planning and Procedures		
15	Environmental Controls	Objectives 2.1, 2.3, 2.4, 2.6, 3.3, 5.2	
	Social Engineering		
	Legislative and Organizational Policies		
16	Getting Ready and the Exam Preparation Checklist	n/a	
	Tips for Taking the Real Exam		
	Beyond the CompTIA Security+ Certification		

Pearson IT Certification Practice Test Engine and Questions on the DVD

The DVD in the back of the book includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice questions. Using the Pearson IT Certification Practice Test engine, you can

either study by going through the questions in Study Mode, or take a simulated exam that mimics real exam conditions.

The installation process requires two major steps: installing the software and then activating the exam. The DVD in the back of this book has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam—the database of exam questions—is not on the DVD.

NOTE The cardboard DVD case in the back of this book includes the DVD and a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Install the Software from the DVD

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows Virtual Machine, but it was built specifically for the PC platform. The minimum system requirements are

- Windows XP (SP3), Windows Vista (SP2), or Windows 7
- Microsoft .NET Framework 4.0 Client
- Pentium class 1GHz processor (or equivalent)
- 512 MB RAM
- 650 MB disc space plus 50 MB for each downloaded practice exam

The software installation process is pretty routine as compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the DVD sleeve.

The following steps outline the installation process:

- **Step 1.** Insert the DVD into your PC.
- Step 2. The software that automatically runs is the Pearson software to access and use all DVD-based features, including the exam engine and the DVD-only appendices. From the Practice Exam tab, click the option Install Practice Exam.

Step 3. Respond to windows prompts as with any typical software installation process.

The installation process gives you the option to activate your exam with the activation code supplied on the paper in the DVD sleeve. This process requires that you establish a Pearson website login. You need this login to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

Once the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process) as follows:

- **Step 1.** Start the Pearson IT Certification Practice Test software from the Windows **Start** menu or from your desktop shortcut icon.
- Step 2. To activate and download the exam associated with this book, from the My Products or Tools tab, select the Activate button.
- **Step 3.** At the next screen, enter the Activation Key from the paper inside the cardboard DVD holder in the back of the book. Once entered, click the **Activate** button.
- **Step 4.** The activation process will download the practice exam. Click **Next**; then click **Finish**.

Once the activation process is completed, the **My Products** tab should list your new exam. If you do not see the exam, make sure you have selected the **My Products** tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the **Open Exam** button.

To update a particular exam you have already activated and downloaded, simply select the **Tools** tab and select the **Update Products** button. Updating your exams ensures you have the latest changes and updates to the exam data.

If you want to check for updates to the Pearson IT Certification Practice Test software, simply select the **Tools** tab and select the **Update Engine** button. This ensures you are running the latest version of the software engine.

Activating Other Exams

The exam software installation process and the registration process only have to happen once. Then, for each new exam, only a few steps are required. For instance, if you buy another new Pearson IT Certification Cert Guide or Cisco Press Official Cert Guide, extract the activation code from the DVD sleeve in the back of that book. From there, all you have to do is start the exam engine (if not still up and running) and perform steps 2 through 4 from the previous list.

Premium Edition

In addition to the free practice exams provided with your purchase, you can purchase one additional exam with expanded functionality directly from Pearson IT Certification. The Premium Edition eBook and Practice Test for this title contains an additional full practice exam as well as an eBook (in both PDF and ePub format). In addition, the Premium Edition title also has remediation for each question to the specific part of the eBook that relates to that question.

If you have purchased the print version of this title, you can purchase the Premium Edition at a deep discount. A coupon code in the DVD sleeve contains a one-time use code as well as instructions for where you can purchase the Premium Edition.

To view the premium edition product page, go to

www.informit.com/title/9780132939607

This chapter covers the following subjects:

- Security 101—School is in session. This section discusses some of the basic principles of information security such as CIA and AAA, some basic threats, and various ways to mitigate those threats.
- Think Like a Hacker—To know your enemy, you must think like the enemy. Sometimes the hacker is your adversary, sometimes not. This section describes the various hats worn in the hacker society.

This chapter covers the following subjects:

- Hardening Operating Systems—Service packs, patches, hotfixes—This section details what you need to know to make your operating system strong as steel. Group policies, security templates, and baselining put on the finishing touches to attain that bullet-proof system.
- **Virtualization Technology**—This section delves into virtual machines and other virtual implementations with an eye on applying real-world virtualization scenarios.

This chapter covers the CompTIA Security+ SY0-301 objectives 3.6, 4.1, and 4.2.

OS Hardening and Virtualization

Imagine a computer with a freshly installed server operating system (OS) placed on the Internet or on a DMZ that went live without any updating, service packs, or hotfixes. How long do you think it would take for this computer to be compromised? A week? Sooner? It depends on the size and popularity of the organization, but it won't take long for a nonhardened server to be compromised. And it's not just servers! Workstations, routers, switches: You name it; they all need to be updated regularly, or they *will* fall victim to attack. By updating systems frequently and by employing other methods such as group policies and baselining, we are *hardening* the system, making it tough enough to withstand the pounding that it will probably take from today's technology...and society.

Another way to create a secure environment is to run OSs *virtually*. Virtual systems allow for a high degree of security, portability, and ease of use. However, they are resource-intensive, so a balance needs to be found, and virtualization needs to be used according to the resources of the organization. Of course, these systems need to be maintained and updated (hardened) as well.

By utilizing virtualization properly and by implementing an intelligent update plan, OSs, and the relationships between OSs, can be more secure and last a long time.

Foundation Topics

Hardening Operating Systems

An OS that has been installed out-of-the-box is inherently insecure. This can be attributed to several things, including initial code issues and backdoors, the age of the product, and the fact that most systems start off with a basic and insecure set of rules and policies. How many times have you heard of an OS where the controlling user account was easily accessible and had no password? Although these types of oversights are constantly being improved upon, making an out-of-the-box experience more pleasant, new applications and new technologies offer new security implications as well. So regardless of the product, we must try to protect it after the installation is complete.

Hardening of the OS is the act of configuring an OS securely, updating it, creating rules and policies to help govern the system in a secure manner, and removing unnecessary applications and services. This is done to minimize OS exposure to threats and to mitigate possible risk. Although it is impossible to reduce risk to zero, I'll show some tips and tricks that can enable you to diminish current and future risk to an acceptable level.

This section demonstrates how to harden the OS through the use of service packs, patches and patch management, hotfixes, group policies, security templates, and configuration baselines. We then discuss a little bit about how to secure the file system and hard drives. But first, let's discuss how to go about analyzing the system and deciding which applications and services are unnecessary, and then remove them.

Removing Unnecessary Applications and Services

Unnecessary applications and services use valuable hard drive space and processing power. Plus, they can be vulnerabilities to an operating system.

For example, instant messaging programs might be fun for a user but usually are not productive in the workplace (to put it nicely); plus, they often have backdoors that are easily accessible to attackers. They should be discouraged or disallowed by rules and policies. Be proactive when it comes to these types of programs. If users can't install an IM program on their computer, you will never have to go about removing it from the system. But if you do have to remove an application like this, be sure to remove all traces that it ever existed. Make sure that related services are turned off and disabled. Then verify that their inbound ports are no longer functional, and that they are closed and secured. For example, AOL Instant Messenger uses inbound port 5190, which is well known to attackers, as are other inbound ports of other

IM programs, such as ICQ or Trillian. Confirm that any shares created by an application are disabled as well. Basically, remove all instances of the application or, if necessary, re-image the computer! That is just one example of many, but it can be applied to most superfluous programs. Another type of program you should watch out for are remote control programs. Applications that enable remote control of a computer should be avoided if possible.

Personally, I use a *lot* of programs. But over time, some of them fall by the wayside and are replaced by better programs. The best procedure is to check a system periodically for any unnecessary programs. For example, in Windows 7 we can look at the list of installed programs by going to the **Control Panel > Programs > Programs and Features**, as shown in Figure 3-1.

Figure 3-1 Windows 7 Programs and Features Window

Notice in the figure that Camtasia Studio 5 is installed. If in the future I decide to use another program, such as Adobe Captivate or something similar, and Camtasia is no longer necessary, it should be removed. This can be done by right-clicking the application and selecting **Uninstall**. Or an application might have an uninstall feature built in to the Start menu that you can use. Camtasia takes up 61 MB, so it makes sense to remove apps like this to conserve hard drive space. This becomes more important when you deal with audio/video departments that would use an application (and many others like it) such as Camtasia. They are always battling for hard drive space, and it can get ugly! Not only that, but many applications place a piece of themselves in the system tray. So, a part of the program is actually running

behind the scenes using processor/RAM resources. If the application is necessary, there are often ways to eliminate it from the system tray, either by right-clicking the system tray icon and accessing its properties, or by turning it off with a configuration program such as MSconfig.

Consider also that apps like this might also attempt to communicate with the Internet in an attempt to download updates, or for other reasons. It makes this issue not only a resource problem, but also a security concern, so it should be removed if it is unused. Only software deemed necessary should be installed in the future.

Services are used by applications and the OS. They too can be a burden on system resources and pose security concerns. Examine Figure 3-2 and note the highlighted service.

Figure 3-2 Services Window in Windows XP

The OS shown in Figure 3-2 is Windows XP. Windows XP was the last Microsoft OS to have Telnet installed by default, even though it was already well-known that Telnet was a security risk. This is an example of an out-of-box security risk. But to make matters worse, the Telnet service in the figure is started! Instead of using Telnet, a more secure application/protocol should be utilized such as SSH. Then Telnet should be stopped and disabled. To do so, just right-click the service, select **Properties**, then click the **Stop** button, and change the Startup type drop-down menu to the **Disabled** option, as shown in Figure 3-3. This should be done for all unnecessary services, for example, the Trivial File Transfer Protocol (TFTP). By

disabling services such as this one we can reduce the risk of attacker access to the computer and we trim the amount of resources used. This is especially important on Windows servers, because they run a lot more services and are a more common target. By disabling unnecessary services, we reduce the size of the attack surface. Services can be disabled in the Windows Command Prompt by using the sc config command, and can be started and stopped with the **net start** and **net stop** commands, respectively.

Figure 3-3 Telnet Properties Dialog Box

Services can be stopped in the Linux command-line in a few ways:

- By typing the following syntax: /etc/init.d/<service> stop where <service> is the service name.
- By typing the following syntax in select versions: service <service> stop

Some services require a different set of syntax. For example, Telnet can be deactivated in Red Hat by typing **chkconfig telnet off**. Check the MAN pages within the command line or online for your particular version of Linux to obtain exact syntax and any previous commands that need to be issued. Or use a generic Linux online MAN page, for example: http://linux.die.net/man/1/telnet.

In Mac OS X, services can be stopped in the command line by using the following syntax:

% sudo /sbin/service <service> stop

Don't confuse services with *service packs*. Although a service controls a specific function of an OS or application, a service pack is used to update a system. The service pack probably will update services as well, but the similarity in names is purely coincidental.

Service Packs

A *service pack (SP)* is a group of updates, bug fixes, updated drivers, and security fixes installed from one downloadable package or from one disc. When the number of patches for an OS reaches a certain limit, they are gathered together into an SP. This might take one to several months after the OS is released. Because organizations know an SP will follow an OS release, which implies that there will be security issues with a brand new out-of-the-box OS, they will usually wait until the first SP is released before embracing a new OS.

SPs are numbered; for example SP1, SP2, and so on. An OS without an SP is referred to as SP0. Installing an SP is relatively easy and only asks a few basic questions. When those questions are answered, it takes several minutes or more to complete the update; then a restart is required. Although the SP is installed, it rewrites many files and copies new ones to the hard drive as well.

Historically, many SPs have been cumulative, meaning that they also contain previous SPs. For example, SP2 for Windows XP includes all the updates from SP1; a Windows XP installation with no SP installed can be updated directly to SP2 without having to install SP1 first. However, you also see incremental SPs, for example, Windows XP SP3. A Windows XP installation with no SP *cannot* be updated directly to SP3; it needs to have SP1 or SP2 installed first before the SP3 update. Another example of an incremental SP is Windows Vista SP2; SP1 must be installed before updating to SP2 in Windows Vista. This is becoming more common with Microsoft software. Before installing an SP, read the instructions that accompany it, or the instructions on the download page on the company's website.

To find out an OS's current SP level, click **Start**, right-click **Computer**, and select **Properties**, and the SP should be listed. If there is no SP installed, it will be blank. An example of Windows 7's System window is shown in Figure 3-4; it shows that SP1 is installed. An example of Windows XP's System Properties dialog box is shown in Figure 3-5; it has no SP installed (SP0). If an SP were installed, the SP number would be displayed under Version 2002; otherwise the area is left blank. Windows Server OSs work in the same fashion.

NOTE You can also find out which service pack your operating system uses by opening the System Information tool (open the Run prompt and type msinfo32.exe). It will be listed directly in the system summary. In addition, you can use the systeminfo command in the Command Prompt (a GREAT information gatherer!).

Figure 3-4 Windows 7 System Window

Figure 3-5 Windows XP System Properties Dialog Box

74

To find out what SP a particular version of Office is running, click **Help** on the menu bar and select **About Microsoft Office <Application Name>** where the application name could be Outlook, Word, and so on, depending on what app you use. An example of this in Outlook is shown in Figure 3-6. Office SPs affect all the applications within the Office suite.

Figure 3-6 Microsoft Outlook About Window

SPs can be acquired through Windows Update, at www.microsoft.com, on CD/DVD, and through a Microsoft Developer Network (MSDN) subscription. An SP might also have been incorporated into the original OS distribution DVD/CD. This is known as slipstreaming. This method enables the user to install the OS and the SP at the same time in a seamless manner. System administrators can create slipstreamed images for simplified over-the-network installations of the OS and SP.

Table 3-1 defines the latest SPs as of August 2011. You might see older OSs in the field. (If something works, why replace it, right?) For example, Windows NT and 2000 servers might be happily churning out the data necessary to users. That's okay; just make sure that they use the latest SP so that they can interact properly with other computers on the network. Keep in mind that this table is subject to change because new SPs can be released at any time. Note that other applications such as Microsoft Office, and server-based apps such as Microsoft Exchange Server, use SPs as well.

Table 3-1 Latest Microsoft SPs as of August 2011

Operating System	Service Pack
Windows 7	SP1
Windows Vista	SP2
Windows XP	SP3
Windows Server 2008	SP1
Windows Server 2003	SP2
Windows 2000 (Server and Professional)	SP4
Windows NT 4.0 (Server and Workstation)	SP6
Office 201	SP1
Office 2007	SP2
Office 2003	SP3
Office 2000	SP3

NOTE Some companies choose to stay with an older SP so that the OS in question can interoperate properly with specific applications. Though this is not recommended, you should check your organization's policies governing this subject.

If possible, service pack installations should be done offline. Disconnect the computer from the network by disabling the network adapter before initiating the SP upgrade. Again, because brand new OSs are inherently insecure to some extent (no matter what a manufacturer might say), organizations usually wait for the release of the first SP before implementing the OS on a live network. However, SPs are not the only type of updating you need to do to your computers. Microsoft OSs require further patching with the Windows Update program, and other applications require their own patches and hotfixes.

Windows Update, Patches, and Hotfixes

OSs should be updated regularly. For example, Microsoft recognizes the deficiencies in an OS, and possible exploits that could occur, and releases patches to increase OS performance and protect the system. After the latest SP has been installed, the next step is to see whether any additional updates are available for download.

For example, if you want to install additional updates for Windows through Windows Update, you can do the following:

- Step 1. Click Start > All Programs > Windows Update.
- Step 2. Different OSs have different results at this point. For example, Windows 7/Vista opens the Window Update window in which you can click the Install Updates button. Windows XP opens a web page in which you can select Express or Custom installation of updates. Follow the prompts to install the latest version of the Windows Update software if necessary.

NOTE Do not select Express or let Microsoft automatically install all updates if you do not want to use newer applications, for example, the latest version of Internet Explorer, Windows 7 SP1, or Windows XP SP3.

- **Step 3.** The system (or web page) automatically scans for updates. Updates are divided into the following categories:
 - Critical updates and SPs—These include the latest SP and other security and stability updates. Some updates must be installed individually; others can be installed as a group.
 - Windows updates Recommended updates to fix noncritical problems certain users might encounter; also adds features and updates to features bundled into Windows.
 - **Driver updates**—Updated device drivers for installed hardware.

If your system is in need of updates, a shield (for the Windows Security Center) appears in the system tray. Double-clicking this brings up the Security Center window in which you can turn on automatic updates. To modify how you are alerted to updates, and how they are downloaded and installed, do the following in Windows 7/ Vista:

- Click Start > All Programs > Windows Update; then click the Change Settings link.
- It might require slightly different navigation in other OSs to access this.

From here, there will be four options (in other OSs, the options might be slightly different):

Install Updates Automatically—This is the recommended option by Microsoft.
 You can schedule when and how often the updates should be downloaded and installed.

- Download Updates but Let Me Choose Whether to Install Them—This automatically downloads updates when they become available, but Windows prompts you to install them instead of installing them automatically. Each update has a checkbox, so you can select individual updates to install.
- Check for Updates but Let Me Choose Whether to Download and Install **Them**—This enables you know when updates are available, but you are in control as to when they are downloaded and installed.
- Never Check for Updates This is not recommended by Microsoft because it can be a security risk but might be necessary in some environments in which updates could cause conflicts over the network. In some networks, the administrator takes care of updates from a server and sets the local computers to this option.

Another tool that can be used online is Microsoft Update, which is similar to Windows Update, but it can update for other Microsoft applications as well. It can be found at the following link: http://windowsupdate.microsoft.com/. For newer versions of Windows, this simply opens the Windows Update program on your local computer automatically.

Patches and Hotfixes

The best place to obtain patches and hotfixes is from the manufacturer's website. The terms *patches* and *hotfixes* are often used interchangeably. Windows Updates are made up of *hotfixes*. Originally, a hotfix was defined as a single problem-fixing patch to an individual OS or application installed live while the system was up and running and without a reboot necessary. However, this term has changed over time and varies from vendor to vendor. (Vendors may even use both terms to describe the same thing.) For example, if you run the **systeminfo** command in the Command Prompt of a Windows Vista computer, you see a list of Hotfix(s), similar to Figure 3-7. The figure doesn't show all of them because there are 88 in total. However, they can be identified with the letters KB followed by six numbers. Some of these are single patches to individual applications, but others affect the entire system, such as #88, which is called KB948465. This hotfix is actually Windows Vista Service Pack 2! which includes program compatibility changes, additional hardware support, and general OS updates. And a Service Pack 2 installation definitely requires a restart.

Figure 3-7 systeminfo Command in Windows Vista

On the other side of the spectrum, World of Warcraft defines hotfixes as a "hot" change to the server with no downtime (or a quick world restart), and no client download is necessary. The organization releases these if they are critical, instead of waiting for a full patch version. The gaming world commonly uses the terms patch version, point release, or maintenance release to describe a group of file updates to a particular gaming version. For example, a game might start at version 1 and later release an update known as 1.17. The .17 is the point release. (This could be any number depending on the amount of code rewrites.) Later, the game might release 1.32, in which .32 is the point release, again otherwise referred to as the patch version. This is common with other programs as well. For example, the aforementioned Camtasia program that is running on the computer we showed is version 5.0.2. The second dot (.2) represents very small changes to the program, whereas a patch version called 5.1 would be a larger change, and 6.0 would be a completely new version of the software. This concept also applies to blogging applications and forums (otherwise known as bulletin boards). As new threats are discovered (and they are extremely common in the blogging world), new patch versions are released. They should be downloaded by the administrator, tested, and installed without delay. Admins should keep in touch with their software manufacturers, either through phone or e-mail, or by frequenting their web pages. This keeps the admin "in the know" when it comes to the latest updates. And this applies to server and client operating systems, server add-ons such as Microsoft Exchange or SQL Server, Office programs, web browsers, and the plethora of third-party programs that an organization might use. Your job just got a bit busier!

Of course, we are usually not concerned with updating games in the working world; they should be removed from a computer if they are found (unless perhaps if you

work for a gaming company). But multimedia software such as Camtasia is prevalent in most companies, and web-based software such as bulletin-board systems are also common and susceptible to attack.

Patches generally carry the connotation of a small fix in the mind of the user or system administrator, so larger patches are often referred to as software updates, service packs, or something similar. However, if you were asked to fix a single security issue on a computer, a patch would be the solution you would want.

Sometimes, patches are designed poorly, and although they might fix one problem, they could possibly create another, which is a form of software regression. Because you never know exactly what a patch to a system might do, or how it might react or interact with other systems, it is wise to incorporate patch management.

Patch Management

It is not wise to go running around the network randomly updating computers, not to say that you would do so! Patching, like any other process, should be managed properly. *Patch management* is the planning, testing, implementing, and auditing of patches. Now, these four steps are ones that I use; other companies might have a slightly different patch management strategy, but each of the four concepts should be included:

- Planning—Before actually doing anything, a plan should be set into motion. The first thing that needs to be decided is whether the patch is necessary and whether it is compatible with other systems. Microsoft Baseline Security Analyzer (MBSA) is one example of a program that can identify security misconfigurations on the computers in your network, letting you know whether patching is needed. If the patch is deemed necessary, the plan should consist of a way to test the patch in a "clean" network on clean systems, how and when the patch will be implemented, and how the patch will be checked after it is installed.
- **Testing**—Before automating the deployment of a patch among a thousand computers, it makes sense to test it on a single system or small group of systems first. These systems should be reserved for testing purposes only and should not be used by "civilians" or regular users on the network. I know, this is asking a lot, especially given the amount of resources some companies have. But the more you can push for at least a single testing system that is not a part of the main network, the less you will be to blame if a failure occurs!
- Implementing—If the test is successful, the patch should be deployed to all the necessary systems. In many cases this is done in the evening or over the weekend for larger updates. Patches can be deployed automatically using software such as Microsoft's Systems Management Server (SMS).

■ Auditing—When the implementation is complete, the systems (or at least a sample of systems) should be audited; first, to make sure the patch has taken hold properly, and second, to check for any changes or failures due to the patch. SMS, and other third-party tools can be used in this endeavor.

There are also Linux-based and Mac-based programs and services developed to help manage patching and the auditing of patches. Red Hat has services to help sys admins with all the RPMs they need to download and install, which can become a mountain of work quickly! And for those people who run GPL Linux, there are third-party services as well. Sometimes, patch management is just too much for one person, or for an entire IT department, and an organization might opt to contract that work out.

Group Policies, Security Templates, and Configuration Baselines

Although they are important, removing applications, disabling services, patching, hotfixing, and installing service packs are not the only ways to harden an operating system. Administrative privileges should be used sparingly, and policies should be in place to enforce your organization's rules. *Group policies* are used in Microsoft environments to govern user and computer accounts through a set of rules. Built-in or administrator-designed security templates can be applied to these to configure many rules at one time. And configuration baselines should be created and used to measure server and network activity.

To access the group policy in Windows, go to the Run prompt and type **gpedit.msc**. This should display the Local Group Policy Editor console window. Figure 3-8 shows an example of this in Windows 7.

Although there are many configuration changes you can make, this figure focuses on the computer's security settings that can be accessed by navigating to **Local Computer Policy > Computer Configuration > Windows Settings > Security Settings.** From here you can make changes to the password policies, for example, how long a password lasts before having to be changed, account lockout policies, public key policies, and so on. We talk about these different types of policies and the best way to apply them in future chapters. The group policy editor in the figure is known as the Local Group Policy and only governs that particular machine and the local users of that machine. It is a basic version of the group policy used by Windows Server 2008/2003 domain controllers that have Active Directory loaded.

Figure 3-8 Local Group Policy Editor in Windows 7

It is also from here where you can add security templates as well. Security templates are groups of policies that can be loaded in one procedure; they are commonly used in corporate environments. Different security templates have different security levels. These can be installed by right-clicking **Security Settings** and selecting **Import Policy.** This brings up the Import Policy From window. Figure 3-9 shows an example of this in Windows Server 2003. For example, the file securedc.inf is an information file filled with policy configurations more secure than the default you would find in a Windows Server 2003 domain controller that runs Active Directory. And hisecdc.inf is even more secure, perhaps too secure and limiting for some organizations. Generally, these policy templates are applied to organizational units on a domain controller. But they can be used for other types of systems and policies as well. Server 2003 Templates are generally stored in %systemroot%\Security\templates.

There are only three default security templates in Server 2008: Defltbase.inf (uncommon), defltsv.inf (used on regular servers), and defltdc.inf (used in domain controllers). By default, these templates are stored in %systemroot%\inf. They are imported in the same manner as in Server 2003.

Figure 3-9 Import Policy From Window in Windows Server 2003

Baselining is the process of measuring changes in networking, hardware, software, and so on. Creating a baseline consists of selecting something to measure and measuring it consistently for a period of time. For example, I might want to know what the average hourly data transfer is to and from a server. There are many ways to measure this, but I could possibly use a protocol analyzer to find out how many packets cross through the server's network adapter. This could be run for 1 hour (during business hours of course) every day for 2 weeks. Selecting different hours for each day would add more randomness to the final results. By averaging the results together, we get a baseline. Then we can compare future measurements of the server to the baseline. This can help us to define what the standard load of our server is and the requirements our server needs on a consistent basis. It can also help when installing additional, like computers on the network. The term baselining is most often used to refer to monitoring network performance, but it actually can be used to describe just about any type of performance monitoring. Baselining and benchmarking are extremely important when testing equipment and when monitoring already installed devices. We discuss this further in Chapter 11, "Monitoring and Auditing."

Hardening File Systems and Hard Drives

Last topic about hardening your system, I promise! Not! The rest of the book constantly refers to more advanced and in-depth ways to harden a computer system. But for this chapter, let's conclude this section by giving a few tips on hardening a hard drive and the file system it houses.

First, the file system used dictates a certain level of security. On Microsoft computers, the best option is to use NTFS, which is more secure, enables logging (oh so important), supports encryption, and has support for a much larger maximum partition size and larger file sizes. Just about the only place where FAT32 and NTFS are

on a level playing field is that they support the same amount of file formats. So, by far, NTFS is the best option. If a volume uses FAT or FAT32, it can be converted to NTFS using the following command:

Convert volume /FS:NTFS

For example, if I want to convert a USB flash drive named M: to NTFS the syntax would be

Convert M: /FS:NTFS

There are additional options for the **convert** command. To see these, simply type convert /? in the Command Prompt. NTFS enables for file-level security and tracks permissions within access control lists (ACLs) that are a necessity in today's environment. Most systems today already use NTFS, but you never know about flash-based and other removable media. A quick chkdsk command in the Command Prompt or right-clicking the drive in the GUI and selecting **Properties** can tell you what type of file system it runs.

System files and folders by default are hidden from view to protect a Windows system, but you never know. To permanently configure the system to not show hidden files and folders, navigate to Windows Explorer, click the **Tools** menu, and click Folder Options. Then select the View tab, and under Hidden Files and Folders select the **Do not show hidden files and folders** radio button. Note that in Windows 7/Vista, the menu bar can also be hidden; to view it press Alt+T on the keyboard. To configure the system to hide protected system files, select the **Hide** protected operating system files checkbox, located three lines below the radio button previously mentioned. This disables the ability to view files such as ntldr, boot.ini, or bootmgr. You might also need to secure a system by turning off file sharing. For example, this can be done in Windows 7/Vista within the Network and Sharing Center, and within Windows XP in the Local Area Connection Properties dialog box.

In the past, I have made a bold statement: "Hard disks will fail." But it's all too true. It's not a matter of if; it's a matter of when. By maintaining and hardening the hard disk with various hard disk utilities, we attempt to stave off that dark day as long as possible. You can implement several things when maintaining and hardening a hard disk:

■ Remove temporary files — Temporary files and older files can clog up a hard disk, cause a decrease in performance, and pose a security threat. It is recommended that Disk Cleanup or a similar program be used. Policies can be configured (or written) to run Disk Cleanup every day or at logoff for all the computers on the network.

- Periodically check system files—Every once in a while it's a good idea to verify the integrity of operating system files. This can be done in the following ways:
 - With the **chkdsk** command in Windows. This checks the disk and fixes basic issues such as lost files, and some errors with the /F option.
 - With the **SFC** (System File Checker) command in Windows. This utility checks and if necessary replaces protected system files. It can be used to fix problems in the OS, and in other applications such as Internet Explorer. A typical command is **SFC** /scannow. Use this if **chkdsk** is not successful at making repairs.
 - With the **fsck** command in Linux. This command is used to check and repair a Linux file system. The synopsis of the syntax is **fsck** [-sAVRTNP] [-C [fd]] [-t fstype] [filesys ...] [--] [fs-specific-options]. More information about this command can be found at the corresponding MAN page: http://linux.die.net/man/8/fsck. A derivative, **e2fsck**, is used to check a Linux ext2fs (second extended file system). Also open source data integrity tools can be downloaded for Linux such as Tripwire.
- **Defragment drives**—Applications and files on hard drives become fragmented over time. For a server, this could be a disaster, because the server cannot serve requests in a timely fashion if the drive is too thoroughly fragmented. Defragmenting the drive can be done with Microsoft's Disk Defragmenter, with the command-line **defrag** command, or with other third-party programs.
- Back up data Backing up data is critical for a company. It is not enough to rely on a fault tolerant array. Individual files or the entire system can be backed up to another set of hard disks, to optical discs, or to tape. Microsoft domain controllers' Active Directory databases are particularly susceptible to attack; the System State for these OSs should be backed up, in the case that the server fails and the Active Directory needs to be recovered in the future.
- Create restore points Restore points should also be created on a regular basis for servers and workstations. System Restore can fix issues caused by defective hardware or software by reverting back to an earlier time. Registry changes made by hardware or software are reversed in an attempt to force the computer to work the way it did previously. Restore points can be created manually and are also created automatically by the OS before new applications or hardware is installed.
- Consider whole disk encryption—Finally, whole disk encryption can be used to secure the contents of the drive, making it harder for attackers to obtain and interpret its contents.

A recommendation I give to all my students and readers is to separate the OS from the data physically. If you can have each on a separate hard drive, it can make things a bit easier just in case the OS is infected with malware. The hard drive that the OS inhabits can be completely wiped and reinstalled without worrying about data loss, and applications can always be reloaded. Of course, settings should be backed up (or stored on the second drive). If a second drive isn't available, consider configuring the one hard drive as two partitions, one for the OS (or system) and one for the data. By doing this, and keeping a well-maintained computer, you are effectively hardening the OS.

Keeping a Well-Maintained Computer

This is an excerpt of an article I wrote that I give to all my customers and students. By maintaining the workstation or server, you are hardening it as well. I break it down into six steps (and one optional step):

- **Step 1. Use a surge protector or UPS**—Make sure the computer and other equipment connect to a surge protector, or better yet a UPS if you are concerned about power loss.
- **Step 2. Update the BIOS**—Flashing the BIOS isn't always necessary; check the manufacturer's website for your motherboard to see if an update is needed.
- **Step 3. Update Windows**—This includes the latest SPs and any Windows updates beyond that and setting Windows to alert if there are any new updates.
- **Step 4. Update antimalware**—This includes making sure that there is a current license for the antimalware (antivirus and antispyware) and verifying that updates are turned on and the software is regularly scanning the system.
- Step 5. Update the firewall—Be sure to have some kind of firewall installed and enabled; then update it. If it is the Windows Firewall, updates should happen automatically through Windows Update. However, if you have a SOHO router with a built-in firewall, or other firewall device, you need to update the device's ROM by downloading the latest image from the manufacturer's website.
- Step 6. Maintain the disks—This means running a disk cleanup program regularly and checking to see whether the hard disk needs to be defragmented from once a week to once a month depending on the amount of usage. It also means creating restore points, doing Complete PC Backups, or using third-party backup or drive imaging software.

Step 7. (Optional) Create an image of the system—After all your configurations and hardening of the OS are complete, you might consider creating an image of the system. Imaging the system is like taking a snapshot of the entire system partition. That information is saved as one large file, or a set of compressed files that can be saved anywhere. It's kind of like system restore but at another level. The beauty of this is that you can reinstall the entire image if your system fails or is compromised, quickly and efficiently, with very little configuration necessary—only the latest security and AV updates since the image was created need be applied. Of course, most imaging software has a price tag involved, but it can be well worth it if you are concerned about the time it would take to get your system back up and running in the event of a failure. This is the basis for standardized images in many organizations. By applying mandated security configurations, updates, and so on, and then taking an image of the system, you can create a snapshot in time that you can easily revert to if necessary, while being confident that a certain level of security is already embedded into the image.

Virtualization Technology

Let's define virtualization. *Virtualization* is the creation of a virtual entity, as opposed to a true or actual entity. The most common type of entity created through virtualization is the virtual machine—usually as an OS. In this section we discuss types of virtualizations, their purposes, and define some of the various virtual applications.

Types of Virtualization and Their Purposes

Many types of virtualization exist, from network and storage to hardware and software. The CompTIA Security+ exam focuses mostly on virtual machine software. The *virtual machines (VMs)* created by this software run operating systems or individual applications. These virtual OSs (also known as hosted OSs or guests) are designed to run *inside* a real OS. So the beauty behind this is that you can run multiple various OSs simultaneously from just one PC. This has great advantages for programmers, developers, and systems administrators, and can facilitate a great testing environment. Security researchers in particular utilize virtual machines so they can execute and test malware without risk to an actual OS and the hardware it resides on. Nowadays, many VMs are also used in live production environments. Plus, an entire OS can be dropped onto a DVD or even a flash drive and transported where you want to go.

Of course, there are drawbacks. Processor and RAM resources and hard drive space are eaten up by virtual machines. And hardware compatibility can pose some problems as well. Also, if the physical computer that houses the virtual OS fails, the virtual OS will go offline immediately. All other virtual computers that run on that physical system will also go offline. There is added administration as well. Some technicians forget that virtual machines need to be updated with the latest service packs and patches just like regular OSs. Many organizations have policies that define standardized virtual images, especially for servers. As I alluded to earlier, the main benefit of having a standardized server image is that mandated security configurations will have been made to the OS from the beginning—creating a template so to speak. This includes a defined set of security updates, service packs, patches, and so on, as dictated by organizational policy. So when you load up a new instance of the image, a lot of the configuration work will already have been done, and just the latest updates to the OS and AV software need to be applied. This image can be used in a virtual environment, or copied to a physical hard drive as well. For example, you might have a server farm that includes two physical Windows Server 2008 systems, and four virtual Windows Server 2008 systems, each running different tasks. It stands to reason that you will be working with new images from time to time as you need to replace servers or add them. By creating a standardized image once, and using it many times afterward, you can save yourself a lot of configuration time in the long run.

Virtual machines can be broken down into two categories:

- System virtual machine—A complete platform meant to take the place of an entire computer that enables you to run an entire OS virtually.
- **Process virtual machine**—Designed to run a single application, for example, if you ran a virtual web browser.

Whichever VM you select, the VM cannot cross the software boundaries set in place. For example, a virus might infect a computer when executed and spread to other files in the OS. However, a virus executed in a VM will spread through the VM but not affect the underlying actual OS. So this provides a secure platform to run tests, analyze malware, and so on...and creates an isolated system. If there are adverse effects to the VM, those effects (and the VM) can be compartmentalized to stop the spread of those effects. This is all because the virtual machine inhabits a separate area of the hard drive from the actual OS. This enables us to isolate network services and roles that a virtual server might play on the network.

Virtual machines are, for all intents and purposes, emulators. The terms *emulation*, simulation, and virtualization are often used interchangeably.

Emulators can also be web-based. An example of a web-based emulator is D-Link's DIR-655 router emulator (we use this in Chapters 5–7), which you can find at the following link:

http://support.dlink.com/emulators/dir655/133NA/login.html

You might remember older emulators such as Basilisk, or the DOSBox, but nowadays, anything that runs an OS virtually is generally referred to as a virtual machine or virtual appliance.

A virtual appliance is a virtual machine image designed to run on virtualization platforms; it can refer to an entire OS image or an individual application image. Generally, companies such as VMware refer to the images as virtual appliances, and companies such as Microsoft refer to images as virtual machines. One example of a virtual appliance that runs a single app is a virtual browser. VMware developed a virtual browser appliance that protects the underlying OS from malware installations from malicious websites. If the website succeeds in its attempt to install the malware to the virtual browser, the browser can be deleted and either a new one can be created or an older saved version of the virtual browser can be brought online!

Other examples of virtualization include the virtual private network (VPN), which is covered in Chapter 8, "Physical Security and Authentication Models," and the virtual local area network (VLAN), which is covered in Chapter 5, "Network Design Elements and Network Threats."

Working with Virtual Machines

Several companies offer virtual software including Microsoft and VMware. Let's take a look at some of those programs now.

Microsoft Virtual PC

Microsoft's Virtual PC is commonly used to host workstation OSs, server OSs, and sometimes other OSs such as DOS or even Linux. There are 32-bit and 64-bit versions that can be downloaded for free and run on most Windows systems. A common version is Virtual PC 2007 that can be downloaded from the following link:

www.microsoft.com/downlOAds/details.aspx?familyid=04D26402-3199-48A3-AFA2-2DC0B40A73B6&displaylang=en

After a quick installation, running the program displays the Virtual PC Console window, as shown in Figure 3-10.

Figure 3-10 Virtual PC Console

After a fresh install of Virtual PC, there won't be any virtual machines listed. However, in Figure 3-10, you can note a Windows Server 2003 VM, a SuSE Linux 9 VM, and a Windows Vista VM. Virtual software such as this allows a person to run less used or older operating systems without the need for additional physical hardware. Personally, I run all kinds of platforms with Virtual PC, but it is not the only virtual software I use.

A virtual machine can be created by clicking the **New** button and following the directions. The virtual machine consists of two parts when you are done:

- Virtual machine configuration file or .vmc
- Virtual hard drive file or .vhd

In addition to this, you can save the state of the virtual machine. Let's say you need to restart your main computer but don't want to restart the virtual machine. You could simply "save the state" of the VM that will save it, remember all the files that were open and where you were last working, and close the VM. Even after rebooting the actual PC, you can immediately reload the last place you were working in a VM. When a VM's state is saved, an additional file called a .vsv file is stored adjacent to the .vhd. Figure 3-11 shows an example of a Windows Server 2003 virtual machine, which is called "Server2003" as shown at the top of the Virtual PC software window in the title bar.

See Lab 3-2 in the "Hands-On Labs" section near the end of this chapter for a quick tutorial/lab on using Virtual PC to create a virtual machine.

Figure 3-11 Windows Server 2003 Virtual Machine

NOTE Also, if you are interested, I have demonstrations of several virtual machine OS installations at my website: www.davidlprowse.com

Microsoft Windows XP Mode

Windows 7 can emulate the entire Windows XP OS if you so want. To do so, you must install Windows XP Mode, then Virtual PC, and then the Windows XP Mode update. This is done to help with program compatibility. These components can be downloaded for free (as long as you have a valid copy of Windows 7) from the following link: www.microsoft.com/windows/virtual-pc/download.aspx.

Microsoft Virtual Server

Virtual Server is similar to Virtual PC but far more powerful and meant for running server OSs in particular. It is not free like Virtual PC, and an install of Internet Information Services (IIS) is required prior to the install of Virtual Server to take full advantage of the program. When servers are created, they can be connected to by using the Virtual Machine Remote Control (VMRC) client, as shown in Figure 3-12.

Figure 3-12 Virtual Machine Remote Client in Virtual Server 2005

VMware

VMware (part of EMC Corporation) runs on Windows, Linux, and Mac OSs. Some versions of VMware (for example VMware ESX Server) can run on server hardware without any underlying OS. These programs are extremely powerful, may require a lot of resources, and are generally web-based, meaning that you would control the virtual appliance through a browser. An example of the VCenter server main management console window in VMware is shown in Figure 3-13.

Figure 3-13 VCenter Management Console Window

Hypervisor

Most virtual machine software is designed specifically to host more than one VM. A byproduct is the intention that all VMs are able to communicate with each other quickly and efficiently. This concept is summed up by the term *bypervisor*. A hypervisor allows multiple virtual operating systems (guests) to run at the same time on a single computer. It is also known as a virtual machine manager (VMM). The term hypervisor is often used ambiguously. This is due to confusion concerning the two different types of hypervisors:

- Type 1: Native—The hypervisor runs directly on the host computer's hardware. Because of this it is also known as "bare metal." Examples of this include VMware ESX Server, Citrix XenServer, and Microsoft Hyper-V. Hyper-V can be installed as a standalone product known as Microsoft Hyper-V Server 2008, or it can be installed as a role within a standard installation of Windows Server 2008 (R2). Either way, the hypervisor runs independently and accesses hardware directly, making both versions of Hyper-V Type 1 hypervisors.
- Type 2: Hosted—This means that the hypervisor runs within (or "on top of") the operating system. Guest operating systems run within the hypervisor. Compared to Type 1, guests are one level removed from the hardware and therefore run less efficiently. Examples of this include Microsoft Virtual PC, VMware Server, and VMware Workstation.

Generally, Type 1 is a much faster and efficient solution than Type 2. Because of this, Type 1 hypervisors are the kind used by web-hosting companies and by companies that offer cloud computing solutions such as infrastructure as a service (IaaS). It makes sense too. If you have ever run a powerful operating system such as Windows Server 2008 within a Type 2 hypervisor such as Virtual PC 2007, you will have noticed that a ton of resources are being used that are taken from the hosting operating system. It is not nearly as efficient as running the hosted OS within a Type 1 environment. However, keep in mind that the hardware/software requirements for a Type 1 hypervisor are more stringent and more costly. Because of this, some developing and testing environments use Type 2-based virtual software.

Securing Virtual Machines

In general, the security of a virtual machine operating system is the equivalent to that of a physical machine OS. The VM should be updated to the latest service pack, should have the newest AV definitions, perhaps have a personal firewall, have strong passwords, and so on. However, there are several things to watch out for that, if not addressed, could cause all your work compartmentalizing OSs to go down the drain. This includes considerations for the virtual machine OS as well as the controlling virtual machine software.

First, make sure you are using current and updated virtual machine software. Update to the latest patch or service pack for the software you are using (for example, Virtual PC 2007 SP1). Configure any security settings or options in the virtual machine software. Once this is done, you can go ahead and create your virtual machines, keeping in mind the concept of standardized imaging mentioned earlier.

Next, keep an eye out for network shares and other connections between the virtual machine and the physical machine, or between two VMs. Normally, malicious software cannot travel between a VM and another VM or a physical machine as long as they are properly separated. But if active network shares are between the two, malware could easily spread from one system to the other. If a network share is needed, map it, use it, and then disconnect it when you are finished. If you need network shares between two VMs, document what they are and which systems (and users) connect to them. Review the shares often too see whether they are still necessary. If a virtual host is attached to a NAS device or to a SAN, it is recommended to segment the storage devices off the LAN either physically, or with a secure VLAN. Regardless of where the virtual host is located, secure it with a strong firewall and disallow unprotected file transfer protocols such as FTP and Telnet.

Consider disabling any unnecessary hardware from within the virtual machine such as optical drives, USB ports, and so on. If some type of removable media is necessary, enable the device, make use of it, and then disable it immediately after finishing. Also, devices can be disabled from the virtual machine software itself. The boot priority in the virtual BIOS should also be configured so that the hard drive is booted from first, and not any removable media or network connection (unless necessary in your environment).

Due to the fact that VMs use a lot of physical resources of the computer, a compromised VM can be a threat in the form of a Denial of Service attack. To mitigate this, set a limit on the amount of resources any particular VM can utilize, and periodically monitor the usage of VMs. However, be careful of monitoring VMs. Most virtual software offers the ability to monitor the various VMs from the main host. However, this feature can also be exploited. Be sure to limit monitoring, enable it only for authorized users, and disable it whenever not necessary.

Finally, be sure to protect the raw virtual disk file. A disaster on the raw virtual disk can be tantamount to physical disk disaster. Look into setting permissions as to who can access the folder where the VM files are stored. If your virtual machine software supports logging and/or auditing, consider implementing it so that you can see exactly who started and stopped the virtual machine, and when. Otherwise, you can audit the folder where the VM files are located. Finally, consider digitally signing the VM and validating that signature prior to usage.

NOTE Enterprise-level virtual software such as Hyper-V and VMware takes security to a whole new level. Much more planning and configuration is necessary for these applications. It's not necessary to know for the Security+ exam, but if you want to gather more information on securing Hyper-V see the following link:

http://technet.microsoft.com/en-us/library/dd569113.aspx

For more information on how to secure VMware see the following link:

http://www.vmware.com/technical-resources/security/index.html

One last comment: A VM should be as secure as possible, but in general, because the hosting computer is in a controlling position, it is likely more easily exploited, and a compromise to the hosting computer probably means a compromise to any guest OSs. Therefore, if possible, the host should be even more secure than the VMs it controls. So harden your heart, harden the VM, and make the hosting OS solid as a rock.

Exam Preparation Tasks

Review Key Topics

Review the most important topics in the chapter, noted with the Key Topic icon in the outer margin of the page. Table 3-2 lists a reference of these key topics and the page number on which each is found.

Table 3-2 Key Topics for Chapter 3

Key Topic Element	Description	Page Number
Figure 3-2	Services Window in Windows XP	70
Figure 3-3	Telnet Properties Dialog Box	71
Bullet list	Stopping services in Linux	71
Figures 3-4 and 3-5 and Note	Identifying the SP level	73
Table 3-1	Latest Microsoft Service Packs	75
Step list	Windows update	76
Figure 3-7	systeminfo Command in Windows Vista	78
Bulleted list	Patch management four steps	79

Key Topic Element	Description	Page Number
Figure 3-8	Local Group Policy Editor in Windows 7	81
Figure 3-9	Import Policy from Window in Windows Server 2003	82
Numbered list	Keeping a well-maintained computer	85
Figure 3-10	Virtual PC Console	89

Complete Tables and Lists from Memory

Print a copy of Appendix A, "Memory Tables," (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix B, "Memory Tables Answer Key," also on the DVD, includes completed tables and lists to check your work.

Define Key Terms

Define the following key terms from this chapter, and check your answers in the glossary:

hardening, service pack (SP), hotfix, patch, patch management, group policy, security template, baselining, virtualization, virtual machine, hypervisor

Hands-On Labs

Complete the following written step-by-step scenarios. After you finish (or if you do not have adequate equipment to complete the scenario), watch the corresponding video solutions on the DVD.

If you have additional questions, feel free to ask them at my website: www.davidlprowse.com

Equipment Needed

- Computer with Internet access.
- Web browser: Internet Explorer version 6 and higher or Firefox are recommended.
- Virtual PC 2007: This can be downloaded at the following link: www.microsoft.com/downloads/details.aspx?FamilyID=04d26402-3199-48a3afa2-2dc0b40a73b6&displaylang=en

Lab 3-1: Discerning and Updating the Service Pack Level

In this lab, you observe the service pack currently used on a Windows Vista computer and show where to go to update the SP to the latest version. The steps are as follows:

- **Step 1.** Access Windows Vista (other Windows OSs such as Windows 7 will be similar in appearance and in navigation).
- **Step 2.** View the SP level:
 - A. Click Start.
 - **B.** Right-click **Computer** and select **Properties**. This brings up the System window. F rom here, you can see the SP level in the Windows edition section.
- **Step 3.** Access Windows Update:
 - A. Click Start.
 - **B.** Click All Programs.
 - **C.** Click Windows Update.
- **Step 4.** Modify Windows Update:
 - A. Click the View Advanced Options link.
 - **B.** Select the Check for Updates but Let Me Choose Whether to Download Them or Install Them radio button.
 - C. Click OK.
- **Step 5.** Locate Windows Vista Service Pack 2 at http://support.microsoft.com.

You can find information about Windows Vista SP2 at the following link: http://support.microsoft.com/kb/948465

Watch the video solution on the DVD.

Lab 3-2: Creating a Virtual Machine in Virtual PC 2007

In this lab, you learn how to create a basic virtual machine (VM) in Virtual PC 2007. The steps are as follows:

Step 1. Download the Virtual PC 2007 application. It is a free download available at the following link:

www.microsoft.com/downloads/details.aspx?FamilyID=04d26402-3199-48a3-afa2-2dc0b40a73b6&displaylang=en

You can also search the phrase virtual PC 2007 download.

- Install Virtual PC 2007. Install the program with the default settings un-Step 2. less you want to modify them.
- Run Virtual PC 2007 by navigating to Start > All Programs > Micro-Step 3. **soft Virtual PC**. This displays the Virtual PC Console.
- Step 4. Create a new virtual machine:
 - A. Click the **New** button.
 - В. Click **Next** for the wizard.
 - C. Select Create a virtual machine radio button and click Next.
 - Type a name for the virtual machine. Try to keep the name close to D. the name of the OS you plan to install. For example, if you install Windows Vista, type **Windows Vista**. Virtual PC can recognize these names. Keep in mind that you do not have to install an OS; this lab is simply to show how to create the virtual machine. This virtual machine will be available to you to use later on if you want, and you can load any OS that you want into the VM.
 - Select where you want to save the virtual machine by clicking the **Browse** button, or simply leave the default. Then click **Next**.
 - Select the OS you want to install from the drop-down menu. If you are not planning on installing an OS, select **Other**. Then click **Next**.
 - Select the amount of RAM you want the VM to use. You can increase the default by clicking the **Adjusting the RAM** radio button. As a rule of thumb it is recommended that you use no more than half the physical RAM on your system for a single VM. Then click Next.
 - Select the A New Virtual Hard Disk radio button, and select where you want to save the virtual hard disk (.vhd file). Then click **Next**.
 - Review the summary and click **Finish**.

The new VM should now be listed in the Virtual PC Console.

- Step 5. Run the VM:
 - Highlight the new VM.
 - Click Start. В.
- Step 6. (Optional) Install an OS. Be sure to select **CD** from the menu bar and click **Use Physical Drive**. This way, the VM can use the physical CD-ROM drive.

Step 7. Save the VM:

- Click Action on the menu bar.
- **B.** Select **Close**.
- **C.** From the drop-down menu in the Close dialog box, select **Save State** and click **OK**.

Step 8. Modify the VM settings:

- **A.** Highlight the new VM.
- **B.** Click the **Settings** button.
- **C.** Click **OK** for the pop-up note.
- **D.** Examine the various settings for each device within the VM. Note that you cannot make changes to some of the settings when the VM is in a saved state. To modify these, you need to turn off the VM either within Virtual PC or by shutting down the OS normally.

Watch the video solution on the DVD.

Lab 3-3: Securing a Virtual Machine

In this lab, you secure a virtual machine (VM) in Virtual PC 2007. This lab assumes that you have already downloaded and installed Virtual PC 2007, created a virtual machine, and installed an OS. This lab refers to Windows 7 Ultimate.

The steps are as follows:

- **Step 1.** Start Virtual PC 2007 and check its SP level.
 - A. Access the Control Panel and find your list of installed programs.
 For example, in Windows 7 the path to this is Control Panel > Programs > Programs & Features.
 - **B.** If it says "Microsoft Virtual PC 2007 SP1," you can continue to Step 2. If it does not say "SP1" on the end, then continue to Step 1C.
 - **C.** Upgrade to the latest SP from the following link: www.microsoft.com/download/en/details.aspx?displaylang= en&id=24439

NOTE Be sure to fully shut down all VMs in the console. If any are in a saved state during the SP install, they could become corrupted.

NOTE It might be difficult to tell whether an SP was installed to Virtual PC 2007 (this might not be displayed in the About Virtual PC window). Aside from checking in the Control Panel, you could also attempt to create a Server 2008 virtual machine. If the Virtual PC console doesn't have Server 2008 listed as a possible option, then SP1 is not installed. If it is listed, then SP1 (at least) is installed.

- **Step 2.** Set security options in the Virtual PC console.
 - **A.** Click **File > Options**; this opens the Virtual PC Options window.
 - **B.** Select **Security**.
 - **C.** Select all four administrative permissions checkboxes.
 - **D.** Click **OK** for the Virtual PC Options window.
- Step 3. Disable unnecessary hardware within the Virtual PC console for the VM in question. For example, the sound card, COM ports, LPT ports, and floppy disks.
 - **A.** Click **Action > Settings** (or simply highlight the VM and click the Settings button). This opens the Settings for %virtual machine% window where virtual machine is whatever VM you select.
 - **B.** Click **Sound**. Deselect the Enable sound card checkbox.
 - **C.** Disable any other unnecessary devices such as COM1, LPT1, and so on, if they are enabled and you do not need them.
 - **D.** Click **OK** to close the window.
- **Step 4.** Start the virtual machine and secure the virtual BIOS.
 - **A.** Press **DEL** immediately after starting the VM. This should display the BIOS Setup Utility screen.
 - **B.** Set the hard drive to first in the boot order:
 - **a.** Press the right arrow key to navigate to the Boot menu. With the Boot Device Priority option highlighted press **Enter**.
 - **b.** Modify the list so that the Hard Drive is listed first. Use the legend on the right to figure out which keys to use.
 - **c.** Press **Esc** to return to the main menu.

- Disable removable media devices such as the floppy drive:
 - **a.** Select the **Advanced** menu.
 - Select Floppy configuration.
 - Disable Floppy A.
 - Press **Esc** to return to the main menu.
- D. Set passwords:
 - **a.** Select the **Security** menu.
 - Configure a Supervisor password.
- Press **F10** to save your settings and exit. This reboots the VM into the OS.
- Step 5. Start the virtual machine and check the SP level of the OS.
 - Click **Start**. Then right-click **Computer**. This brings up the System window. If no service pack is listed, then none is installed.
 - Install the latest SP for the OS in question.
- Step 6. Disable unnecessary hardware within the VM OS, such as optical drives or USB devices.
 - Click **Start**. Then right-click **Computer** and select Manage. This displays the Computer Management window.
 - В. Click **Device Manager**.
 - Locate the optical drive, right-click it, and select **Disable**. For some devices you might have to restart the OS.
- Step 7. Remove any network sharing connections between the VM and the physical host.
 - Look for shared folders on the VM:
 - **a.** While in the Computer Management window click **Shared** Folders > Shares.
 - **b.** Remove any unnecessary shares by right-clicking them and selecting **Stop Sharing**. However, leave the ADMIN\$, C\$, and IPC\$ shares alone.
 - **c.** While in this window click on **Sessions** to see whether the computer has any unwanted outbound sessions to other computers.
 - **d.** Close the Computer Management window.

- Look for mapped network drives in Windows Explorer and disconnect them by right-clicking the drive and selecting **Disconnect**.
- Exit the VM and secure the folder on the host OS that contains the VM Step 8. files.
 - Α. Set permissions on the folder:
 - Right-click the folder and select **Properties**.
 - **b.** Click the **Security** tab and modify permissions as you see fit. The fewer permissions the better!
 - **c.** Verify that the folder is not shared by accessing the Sharing tab.
 - **d.** Remain in the Properties window for the folder.
 - Encrypt and/or Digitally sign the VM folder:
 - **a.** Click the **General** tab; then click the **Advanced** button.
 - **b.** Select the checkbox that says **Encrypt** contents to secure data.
 - **c.** Close the Properties window.
 - **d.** Consider other encryption (or FDE) and digital signing methods from organizations such as PGP and TrueCrypt.

Watch the video solution on the DVD.

View Recommended Resources

For readers who want to brush up on their CompTIA A+ topics:

■ Prowse, David L. *CompTIA A+ Exam Cram*, Fifth Edition. Que Publishing. 2011.

Virtualization software links:

- Microsoft Virtual PC: www.microsoft.com/downlOAds/ details.aspx?familyid=04D26402-3199-48A3-AFA2-2DC0B40A73B6&displaylang=en
- Windows XP Mode: www.microsoft.com/windows/virtual-pc/download.aspx
- Virtual Server 2005: www.microsoft.com/windowsserversystem/virtualserver/
- VMware: www.vmware.com/
- Securing Hyper-V: http://technet.microsoft.com/en-us/library/dd569113.aspx
- Securing VMware: www.vmware.com/technical-resources/security/index.html

Answer Review Questions

Answer the following review questions. You can find the answers at the end of this chapter.

- 1. Virtualization technology is often implemented as operating systems and applications that run in software. Often, it is implemented as a virtual machine. Of the following, which can be a security benefit when using virtualization?
 - **A.** Patching a computer will patch all virtual machines running on the computer.
 - **B.** If one virtual machine is compromised, none of the other virtual machines can be compromised.
 - **C.** If a virtual machine is compromised, the adverse effects can be compartmentalized.
 - **D.** Virtual machines cannot be affected by hacking techniques.
- **2.** Eric wants to install an isolated operating system. What is the best tool to use?
 - A. Virtualization
 - **B.** UAC
 - c. HIDS
 - **D.** NIDS
- **3.** Where would you turn off file sharing in Windows Vista?
 - A. Control Panel
 - **B.** Local Area Connection
 - **C.** Network and Sharing Center
 - **D.** Firewall properties
- **4.** Which option enables you to hide ntldr?
 - **A.** Enable Hide Protected Operating System Files
 - **B.** Disable Show Hidden Files and Folders
 - **C.** Disable Hide Protected operating system Files
 - **D.** Remove the -R Attribute

- **5.** Which of the following should be implemented to harden an operating system? (Select the two best answers.)
 - **A.** Install the latest service pack.
 - **B.** Install Windows Defender.
 - **C.** Install a virtual operating system.
 - **D.** Execute PHP scripts.
- **6.** In Windows 7, Vista, and XP, what is the best file system to use?
 - A. FAT
 - B. NTFS
 - **c.** DFS
 - **D.** FAT32
- **7.** A customer's computer uses FAT16 as its file system. What file system can you upgrade it to when using the **convert** command?
 - A. NTFS
 - **B.** HPFS
 - **C.** FAT32
 - D. NFS
- **8.** Which of the following is not an advantage of NTFS over FAT32?
 - **A.** NTFS supports file encryption.
 - **B.** NTFS supports larger file sizes.
 - **C.** NTFS supports larger volumes.
 - **D.** NTFS supports more file formats.
- **9.** What is the deadliest risk of a virtual computer?
 - **A.** If a virtual computer fails, all other virtual computers immediately go offline.
 - **B.** If a virtual computer fails, the physical server goes offline.
 - **C.** If the physical server fails, all other physical servers immediately go offline.
 - **D.** If the physical server fails, all the virtual computers immediately go offline.

- **10.** Virtualized browsers can protect the OS that they are installed within from which of the following?
 - **A.** DDoS attacks against the underlying OS
 - **B.** Phishing and spam attacks
 - **C.** Man-in-the-middle attacks
 - **D.** Malware installation from Internet websites
- 11. Which of the following needs to be backed up on a domain controller to recover Active Directory?
 - A. User data
 - **B.** System files
 - **C.** Operating system
 - **D.** System state
- **12.** Which of the following should you implement to fix a single security issue on the computer?
 - **A.** Service pack
 - **B.** Support website
 - **C.** Patch
 - **D.** Baseline
- **13.** An administrator wants to reduce the size of the attack surface of Windows server 2008. Which of the following is the best answer to accomplish this?
 - **A.** Update antivirus software.
 - **B.** Install service packs.
 - **C.** Disable unnecessary services.
 - **D.** Install network intrusion detection systems.
- **14.** You finished installing the operating system for a home user. What are three good methods to implement to secure that operating system? (Select the three best answers.)
 - **A.** Install the latest service pack.
 - **B.** Install a hardware- or software-based firewall.
 - **C.** Install the latest patches.
 - **D.** Install pcAnywhere.

- **15.** Which of the following is a security reason to implement virtualization in your network?
 - **A.** To isolate network services and roles
 - **B.** To analyze network traffic
 - **C.** To add network services at lower costs
 - **D.** To centralize patch management
- **16.** Which of the following is one example of verifying new software changes on a test system?
 - **A.** Application hardening
 - **B.** Virtualization
 - **C.** Patch management
 - **D.** HIDS
- 17. You have been tasked with protecting an operating system from malicious software. What should you do? (Select the two best answers.)
 - **A.** Disable the DLP.
 - **B.** Update the HIPS signatures.
 - **C.** Install a perimeter firewall.
 - **D.** Disable unused services.
 - **E.** Update the NIDS signatures.

Answers and Explanations

- **1.** C. By using a virtual machine (which is one example of a virtual instance) any ill effects can be compartmentalized to that particular virtual machine, usually without any ill effects to the main operating system on the computer. Patching a computer does not automatically patch virtual machines existing on the computer. Other virtual machines can be compromised, especially if nothing is done about the problem. Finally, virtual machines can definitely be affected by hacking techniques. Be sure to secure them!
- **2. A.** Virtualization enables a person to install operating systems (or applications) in an isolated area of the computer's hard drive, separate from the computer's main operating system.
- **3.** C. The Network and Sharing Center is where you can disable file sharing in Windows Vista.

- **4. A.** To hide ntldr you need to enable the **Hide Protected Operating System** Files checkbox. Keep in mind that you should have already enabled the Show **Hidden Files and Folders** radio button.
- 5. A and B. Two ways to harden an operating system include installing the latest service pack and installing Windows defender. However, virtualization is a separate concept altogether, and PHP scripts will generally not be used to harden an operating system.
- **6. B.** NTFS is the most secure file system for use with Windows 7, Vista, and XP. FAT and FAT32 are older file systems, and DFS is the distributed file system used in more advanced networking.
- **7. A.** The **Convert** command is used to upgrade FAT and FAT32 volumes to the more secure NTFS without loss of data. HPFS is the High Performance File System developed by IBM and not used by Windows. NFS is the Network File System, something you would see in a storage area network.
- **8. D.** NTFS and FAT32 support the same number of file formats.
- **9. D.** The biggest risk of running a virtual computer is that it will go offline immediately if the server that it is housed on fails. All other virtual computers on that particular server will also go offline immediately.
- **10.** The beauty of a virtualized browser is that regardless of whether a virus or other malware damages it, the underlying operating system will remain unharmed. The virtual browser can be deleted and a new one can be created; or if the old virtual browser was backed up previous to the malware attack, it can be restored.
- **11. D.** The system state needs to be backed up on a domain controller to recover the active directory database in the future. The system state includes user data and system files but does not include the entire operating system. If a server fails, the operating system would have to be reinstalled, and then the system state would need to be restored.
- **12.** C. A patch can fix a single security issue on a computer. A service pack addresses many issues and rewrites many files on a computer; it may be overkill to use a service pack when only a patch is necessary. You might obtain the patch from a support website. A baseline can measure a server or a network and to obtain averages of usage.

- **13.** C. Often, operating system manufacturers such as Microsoft refer to the attack surface as all the services that run on the operating system. By conducting an analysis of which services are necessary and which are unnecessary, an administrator can find out which ones need to be disabled, thereby reducing the attack surface. Service packs, antivirus software, and network intrusion detection systems (NIDS) are good tools to use to secure an individual computer and the network but do not help to reduce the size of the attack surface of the operating system.
- **14.** A, B, and C. After installing an operating system, it's important to install the latest service pack, patches, and a firewall. These three methods can help to secure the operating system. However, pcAnywhere can actually make a computer less secure and should be installed only if the user requests it. pcAnywhere is just one of many examples of remote control software.
- **15.** A. Virtualization of computer servers enables a network administrator to isolate the various network services and roles that a server may play. Analyzing network traffic would have to do more with assessing risk and vulnerability and monitoring and auditing. Adding network services at lower costs deals more with budgeting than with virtualization, although, virtualization can be less expensive. Centralizing patch management has to do with hardening the operating systems on the network scale.
- **16.** C. Patch management is an example of verifying any new changes in software on a test system (or live systems for that matter.) Verifying the changes (testing) is the second step of the standard patch management strategy. Application hardening might include updating systems, patching them, and so on, but to be accurate, this question is looking for that particular second step of patch management. Virtualization is the creating of logical OS images within a working operating system. HIDS stands for host-based intrusion detection system, which attempts to detect malicious activity on a computer.
- **17. B** and **D**. Updating the host-based intrusion prevention system is important. Without the latest signatures, the HIPS will not be at its best when it comes to protecting against malware. Also, disabling unused services will reduce the attack surface of the OS, which in turn makes it more difficult for attacks to access the system and run malicious code. Disabling the data leakage prevention device would not aid the situation, and it would probably cause data leakage from the computer. Installing a perimeter firewall won't block malicious software from entering the individual computer. A personal firewall would better reduce the attack surface of the computer, but it is still not meant as an antimalware tool. Updating the NIDS signatures will help the entire network, but might not help the individual computer. In this question we want to focus in on the individual computer, not the network. In fact, given the scenario of the question, you do not even know if a network exists.

Index

Δ	ACK, 385
	ACLs (access control lists), 154, 315
AAA (authentication, authorization,	Active Directory Users and
accounting), 5-6	Computers (ADUC), 313-314
acceptable use policies, 525	active fingerprinting, 347
access control	active interception, as malware
authentication. See authentication	delivery method, 23
best practices, 310-313	active security analysis, 347
physical security, 267-271	ActiveX controls in Internet
biometric readers, 270-271	Explorer, 119-120
building security, 267-268	ad filtering, 41
door access systems, 268-270	add-ons
server room security, 267-268	in Firefox, 124
policies, 322-325	in Internet Explorer, 119
UAC (User Account Control),	addresses
325-326	IP addresses
usernames/passwords, 318-322	public versus private, 154-156
users, groups, permissions, 313-317	subnetting, 162-163
access control lists (ACLs), 154, 315	IPv6 addresses, types of, 155
access control models, 306-313	network socket addresses, 169
centralized versus decentralized, 310	administration interface for wireless
DAC (discretionary access control),	access points, 244
306-308	administrative shares, securing, 397
MAC (mandatory access control), 308-309	Administrator accounts, passwords for, 321
RBAC (role-based access control),	ADUC (Active Directory Users and
309-310	Computers), 313-314
Account lockout threshold, 324	Advanced Encryption Standard
accounting, 6	(AES), 424-425
accounts	adware, 21
Administrator accounts, passwords for, 321	AES (Advanced Encryption Standard), 424-425
default accounts, 234-235	agents (SNMP), 388
guest accounts, 235	AH (authentication header), 461
guest accounts, disabling, 321-322	air-conditioning systems, 513-514
restrictions, configuring, 328-330	ALE (annualized loss expectancy),
user accounts, expiration, 314	345

alerts, 384	application-level gateway (ALG), 209
ALG (application-level gateway), 209	applications, removing, 68-72
algorithms	archival methods, 494
asymmetric key algorithms, 421	armored viruses, 19
Diffie-Hellman key exchange, 427	ARO (annualized rate of
ECC, 428	occurrence), 345
RSA, 426-427	ARP poisoning, 184
defined, 417	ArpON, 184
hashes	assessing risk. See risks
LANMAN hash, 433-435	assessments. See audits
MD5, 432	asymmetric key algorithms, 421
NTLM hash, 435	Diffie-Hellman key exchange, 427
NTLM 2 hash, 435	ECC, 428
one-time pads, 428-429	RSA, 426-427
PGP, 429-430	attack surface area, minimizing, 129
public key cryptography, 421-422	attacks. See also vulnerabilities
SHA, 432	ARP poisoning, 184
symmetric key algorithms, 420-421	brute force attacks, 361
AES, 424-425	client-side attacks, 182
DES and 3DES, 424	cryptanalysis attacks, 361
RC, 425	DDoS attacks, 178
all-in-one security appliances, 215	dictionary attacks, 361
annualized loss expectancy (ALE), 345	DNS poisoning, 183-184
annualized rate of occurrence	DoS attacks, 175-178
(ARO), 345	network attacks, 186, 237
anomaly-based monitoring, 381	null sessions, 181-182
anonymous access control, 310	on program code, 132-136
antimalware software, 8	backdoors, 132
antispyware software, 30	buffer overflows, 132-133
antivirus (AV) software, 26-30	code injection, 133-134
AP isolation, 249	directory traversal, 134
application firewalls, 211	XSS and XSRF, 133
Application logs, 393	zero day attacks, 135
application security, 124-126.	replay attacks, 181
See also browser security	session hijacking, 179-181
disabling with policies, 138-140	spoofing attacks, 178-179
secure coding concepts, 126-136	TCP reset attacks, 174
Systems Development Life Cycle	
(SDLC), 128-130	transitive access, 182 audit trails, 392
testing methods for, 130-132 vulnerabilities and attacks, 132-136	audit Halls, 372
ountruountes una attacks, 152-150	

audits, 389-398	backups, 8, 84, 490-494
of files, 389-392	badware, 32
log files for, 392-396, 394-396	baiting, 519
in patch management, 80	Barracuda Networks Spam Firewall, 33
steps in, 389	Basel I and II accords, 346
on system security settings, 396-398	baseline reporting, 381
authentication, 5, 8, 265	baselining, 82, 381-384
localized technologies, 273-279	battery-inverter generators, 482
IEEE 802.1X standard, 273-276	behavior-based monitoring, 381
Kerberos, 277-278	Bell-La Padula access control
LDAP, 276-277	model, 309
Terminal Services, 279	best practices
methods of, 266	in access control, 310-313
models for, 271-273	passwords, 324
remote technologies, 279-286	Biba Integrity Model access control
RADIUS versus TACACS, 284-285	model, 309
RAS, 280-281	biometric readers, 270-271
VPNs, 281-284	BIOS, securing, 43-44, 51-53
usernames/passwords, 318-322	birthday attacks, 432-433
authentication agents (802.1X	BitLocker, 46-47
connections), 274	black book analogy (cryptography),
authentication header (AH), 461	416-417
authentication servers (802.1X	black hats, 9
connections), 274	black-box testing, 130, 350
authenticators (802.1X	blacklists, 34
connections), 274	blackouts, 479
authorization, 5, 265	blind hijacking, 180
automated monitoring, 380	block ciphers, 420
AV (antivirus) software, 26-30	blue hats, 10
availability, 5	Bluejacking, 48, 251
Б	Bluesnarfing, 48, 251
B	Bluetooth vulnerabilities, 48, 250-251
hashdoons 24 122 227	boot sector viruses, 19, 29-30
backdoors, 24, 132, 237	botnets, 25, 178
back office applications, securing, 126	Bro, 217
back-to-back perimeter DMZ, 158	broadcast storms, 385
backup generators, 481-483	broadcasting, 150
backup plans in disaster recovery, 490-494	brownouts, 479

backup sites, 490

browser security, 110-124, 137-138	certificate authorities (CA), 453-456
Firefox, 121-124	certificate revocation list (CRL),
Internet Explorer, 116-120	454-455
proxy servers and content filters,	certificates, 422, 452-453
114-115	dual-sided certificates, 456
security policies, implementing,	revoking, 454-455
111-113	single-sided certificates, 456
user education, 114	validation of, 453
brute force attacks, 361	chain of custody, 533
buffer overflows, 132-133	change management policies, 525-526
building loss (disaster recovery), 495	CHAP (challenge-handshake
building security, 267-268	authentication protocol),
bulletin boards, policies for, 325	280-281, 286
butt sets, 242	cheat sheet for exam preparation, 553
	Check Point Security Appliances, 218
C	checklist for exam preparation, 554
	chkrootkit, 33
CA (certificate authorities), 453-456	chromatic dispersion, 243
cabling	CIA triad, 4-5, 128
STP cables, 514	cipher locks, 268
vulnerabilities, 238-244	ciphers, 417. See also algorithms
crosstalk, 240	circuit-level gateway, 209
data emanation, 241	Clark-Wilson access control
interference, 239	model, 309
tapping into data, 241-244	classification of data, policies
CAC (Common Access Card), 269	concerning, 522-523
caching proxy servers, 213	clean agent fire extinguishers, 512-513
Cain & Abel password recovery	clean machines, 29
tool, 360	clearing data, 531
California SB 1386, 524	clear-text passwords, 387-388
CAM (Content Addressable Memory)	client-side attacks, 182
table, 151	closing
CAPTCHA, 325	pop-up windows, 114
carbon dioxide (CO2) extinguishers,	ports, 173-174
511	cloud computing, securing, 159-162
cardkey access systems, 269	clusters, 488
castle analogy (network security),	CO2 (carbon dioxide) extinguishers,
205-206	511
CCI (co-channel interference), 240	coaxial cables, 238, 241-242
cell phones, securing, 47-49	co-channel interference (CCI), 240
centralized access control, 310	code injection, 133-134

cold aisles, 514	cooking oil fires, extinguishing, 511
cold sites, 489	copying files/folders, permissions
collisions in hashes, 432	for, 318
combustible metal fires,	corrective security controls, 348
extinguishing, 511	cracking passwords, 366-367
command injection, 134	CRL (certificate revocation list),
Common Access Card (CAC), 269	454-455
complexity of passwords, 324	cross-site request forgery (XSRF), 133
computer disposal policies, 528-531	cross-site scripting (XSS),
computer forensics, 533	118, 133, 181
computer security audits. See audits	crosstalk, 240
computer telephony integration	cryptanalysis attacks, 361
(CTI), 165	cryptographic blinding, 427
confidence tricks, 518	cryptographic hash functions, 431-433
confidential information, sensitivity	cryptography. See also encryption
of, 523	asymmetric key algorithms, 421
confidentiality, 5	Diffie-Hellman key exchange, 427
configuration baselines, 80-82	ECC, 428
configuring	RSA, 426-427
BIOS, 44	black book analogy, 416-417
inbound filters, 223	defined, 417
log files, 394	key management, 422
NAT firewalls, 222	public key cryptography, 421-422
password policies, 328-330	steganography, 423
proxy server connections in Firefox, 123	symmetric key algorithms, 420-421
RAID, 498-500	AES, 424-425
security zones (Internet Explorer),	DES and 3DES, 424
116-117	RC, 425
user and group permissions, 330-331	terminology, 417-419
VPNs, 289-291	CTI (computer telephony
containment (incident response), 532	integration), 165
Content Addressable Memory table, 151	Ctrl+Alt+Del logon, 322
content filtering, 41, 153, 214	D
content filters in browser security,	<u>U</u>
114-115	DAC (discretionary access control),
contracts with vendors, 528	306-308
converting NTFS to FAT32, 83	data, separating from operating
cookies	system, 28, 84-85
in Firefox, 121	data backups, 8, 84, 395, 490-494
in Internet Explorer, 117-119	data classification policies, 522-523

stealing, 179

data emanation, 241	detective security controls, 348
Data Encryption Standard (DES), 424	devices. See network devices
data failure, avoiding with RAID,	dial-up connections, RAS, 280-281
483-486, 498-500	dictionary attacks, 361
data leak prevention (DLP)	differential backups, 491
devices, 216	Diffie-Hellman encryption, 422, 427
data loss prevention (DLP) systems,	digital forensics, 533
42, 216	Digital Signature Algorithm
data removal, 8, 531	(DSA), 428
data security. See security	digital signatures, 422
data sensitivity policies, 522-523	Directory Service log, 393
data validation, 131	directory traversal, 134
DDoS (Distributed Denial of Service)	dirty power, 480
attacks, 178	disabling
decentralized access control, 310	applications with policies, 138-140
decryption, 417	file sharing, 83
default accounts, 234-235	Guest accounts, 321-322
default browser, setting, 121	LANMAN hash storage, 433-438
default configurations, securing for routers, 153	services
Default Domain Policy, 323	in Linux, 71
defaults, securing, 129	in Mac OS X, 72
defense in depth, 9	Telnet, 70-72
defragmenting hard drives, 84	disaster recovery. See also
delivery methods for malware, 23-25	environmental controls;
active interception, 23	redundancy planning
backdoors, 24	data backups, 490-494
botnets, 25	incident response procedures, 531-534
logic bombs, 24-25	planning for, 494-496
privilege escalation, 24	types of disasters, 494-495
removable media, 23	disaster-tolerant disk systems, 486
software, 23	discretionary access control (DAC),
zombies, 25	306-308
Demilitarized Zone (DMZ), 157-158	disposal of equipment, policies concerning, 528-531
Denial of Service (DoS) attacks, 175-178	Distributed Denial of Service (DDoS) attacks, 178
DES (Data Encryption Standard), 424	diversion theft, 516
designing networks. See network design	DLP (data loss prevention) systems, 42, 216
destruction of computer	DMZ (Demilitarized Zone), 157-158
equipment, 531	DNS poisoning, 183-184

DNS Server log, 393	e-mail addresses, removing from
documentation	websites, 34
in incident response, 532	e-mail messages, S/MIME, 457
of network, 251, 352-355	e-mail spam, 21-22, 33-35
domain name kiting, 184	emergency response detail, 532
door access systems, 268-270	EMI (electromagnetic interference)
DoS (Denial of Service) attacks,	239, 514-515
175-178	employee security policies. See
Dragon IPS, 218	personnel security policies
drills, fire, 513	employee training. See training
drive lock technology, 44	employees
dry pipe systems, 512	emulators, 88
DSA (Digital Signature	enabling
Algorithm), 428	file auditing, 390
dual-sided certificates, 456	IEEE 802.1X standard, 288-289
due care, 527	MAC filtering, 224
due diligence, 527	packet filtering, 222
due process, 527	Encapsulating Security Payload (ESP), 461
dumpster diving, 519	encapsulation, 358
_	•
E	encrypting log files, 396
	encryption, 8. See also cryptography hashes
EAP (Extensible Authentication	
Protocol), 273-276	asymmetric key algorithms
EAP-FAST (flexible authentication via secure tunneling) authentication,	Diffie-Hellman key exchange, 427
276	ECC, 428 RSA, 426-427
EAP-MD5 authentication, 275	$R \setminus A \setminus A \setminus b = A \setminus A$
LAM MIDS audicidication, 275	•
	defined, 417
EAP-TLS (Transport Layer Security)	defined, 417 hardware security modules, 45-47
EAP-TLS (Transport Layer Security) authentication, 275	defined, 417 hardware security modules, 45-47 one-time pads, 428-429
EAP-TLS (Transport Layer Security) authentication, 275 EAP-TTLS (Tunneled Transport	defined, 417 hardware security modules, 45-47 one-time pads, 428-429 PGP, 429-430
EAP-TLS (Transport Layer Security) authentication, 275 EAP-TTLS (Tunneled Transport Layer Security) authentication, 276	defined, 417 hardware security modules, 45-47 one-time pads, 428-429 PGP, 429-430 PKI, 452-456, 462-463
EAP-TLS (Transport Layer Security) authentication, 275 EAP-TTLS (Tunneled Transport Layer Security) authentication, 276 Easter eggs, 25	defined, 417 hardware security modules, 45-47 one-time pads, 428-429 PGP, 429-430 PKI, 452-456, 462-463 certificate authorities, 453-456
EAP-TLS (Transport Layer Security) authentication, 275 EAP-TTLS (Tunneled Transport Layer Security) authentication, 276 Easter eggs, 25 eavesdropping, 241, 518-519	defined, 417 hardware security modules, 45-47 one-time pads, 428-429 PGP, 429-430 PKI, 452-456, 462-463 certificate authorities, 453-456 certificates, 452-453
EAP-TLS (Transport Layer Security) authentication, 275 EAP-TTLS (Tunneled Transport Layer Security) authentication, 276 Easter eggs, 25 eavesdropping, 241, 518-519 ECC (elliptic curve cryptography), 428	defined, 417 hardware security modules, 45-47 one-time pads, 428-429 PGP, 429-430 PKI, 452-456, 462-463 certificate authorities, 453-456 certificates, 452-453 dual-sided certificates, 456
EAP-TLS (Transport Layer Security) authentication, 275 EAP-TTLS (Tunneled Transport Layer Security) authentication, 276 Easter eggs, 25 eavesdropping, 241, 518-519 ECC (elliptic curve cryptography), 428 electrical fires, extinguishing, 510	defined, 417 hardware security modules, 45-47 one-time pads, 428-429 PGP, 429-430 PKI, 452-456, 462-463 certificate authorities, 453-456 certificates, 452-453 dual-sided certificates, 456 single-sided certificates, 456
EAP-TLS (Transport Layer Security) authentication, 275 EAP-TTLS (Tunneled Transport Layer Security) authentication, 276 Easter eggs, 25 eavesdropping, 241, 518-519 ECC (elliptic curve cryptography), 428	defined, 417 hardware security modules, 45-47 one-time pads, 428-429 PGP, 429-430 PKI, 452-456, 462-463 certificate authorities, 453-456 certificates, 452-453 dual-sided certificates, 456
EAP-TLS (Transport Layer Security) authentication, 275 EAP-TTLS (Tunneled Transport Layer Security) authentication, 276 Easter eggs, 25 eavesdropping, 241, 518-519 ECC (elliptic curve cryptography), 428 electrical fires, extinguishing, 510 electromagnetic interference (EMI), 239	defined, 417 hardware security modules, 45-47 one-time pads, 428-429 PGP, 429-430 PKI, 452-456, 462-463 certificate authorities, 453-456 certificates, 452-453 dual-sided certificates, 456 single-sided certificates, 456 web of trust, 456 security protocols
EAP-TLS (Transport Layer Security) authentication, 275 EAP-TTLS (Tunneled Transport Layer Security) authentication, 276 Easter eggs, 25 eavesdropping, 241, 518-519 ECC (elliptic curve cryptography), 428 electrical fires, extinguishing, 510 electromagnetic interference	defined, 417 hardware security modules, 45-47 one-time pads, 428-429 PGP, 429-430 PKI, 452-456, 462-463 certificate authorities, 453-456 certificates, 452-453 dual-sided certificates, 456 single-sided certificates, 456 web of trust, 456

PPTP, 460	Excel, securing, 127
<i>S/MIME</i> , 457	expiration of user accounts, 314
SSH, 459, 463-464	Extensible Authentication Protocol
SSL/TLS, 458-459	(EAP), 273-276
of smartphone data, 48	external security testing, 350
symmetric key algorithms	extranets, securing, 159-160
AES, 424-425	extrusion prevention systems, 216
DES and 3DES, 424	<u>_</u>
RC, 425	F
website encryption notification, 114	
whole disk encryption, 45-47, 84	fail-closed, 477
on wireless access points, 246-247	fail-open, 152, 477
endpoint-based DLP (data loss	fail-over clusters, 488
prevention), 42, 216	fail-over redundancy, 477
Enterasys, 217-218	failure of power supplies, 479
environmental controls, 510-515	failure-resistant disk systems, 486
fire suppression, 510-513	failure-tolerant disk systems, 486
fire extinguishers, 510-512	false negatives, 39, 219, 272
hazard protection systems, 512-513	false positives, 39, 219, 272
sprinkler systems, 512	far end crosstalk (FEXT), 240
HVAC, 513-514	Faraday cages, 241, 514
shielding, 514-515	FAT32, converting to NTFS, 83
equipment disposal policies, 528-531	FEXT (far end crosstalk), 240
eradication (incident response), 532	fiber-optic cables, 238, 243
error handling, securing, 129	File Replication Service log, 393
ESP (Encapsulating Security	file sharing, disabling, 83
Payload), 461	file systems, hardening, 82-85
Ethereal. See Wireshark	files
events, incidents versus, 531-532	auditing, 389-392
evidence gathering (incident	moving/copying, permissions, 318
response), 532	FileZilla, 172
evidence preservation (incident	filtering
response), 533	ad filtering, 41
Evil Maid Attack, 21	content filtering, 41
evil twin wireless access points, 246	filters in browser security, 114-115
exam preparation	fingerprinting, 347
cheat sheet, 553	fire drills, 513
checklist, 554	fire extinguishers, 510-512
Security+ certification	class A, 510
requirements, 552	class B, 510
tips for, 553-558	•

class C, 510 G class D, 511 class K, 511 gaseous fire suppression systems, 512-513 fire suppression, 510-513 generators. See backup generators fire extinguishers, 510-512 Gnutella, 210 hazard protection systems, 512-513 GPS tracking of smartphones, 48 sprinkler systems, 512 Gramm-Leach-Bliley Act, 524 Firefox grandfather-father-son backup Internet Explorer versus, 110-111 rotation method, 493 securing, 121-124 gray hats, 10 fires (disaster recovery), 494 gray-box testing, 130, 350 firewall logs, 393-394 grayware, 21 firewalls, 27-28, 206-212 **GRC's ShieldsUP!**, 173, 208 configuring inbound filters, 223 green hats, 10 enabling MAC filtering, 224 group policies, 80-82 NAT firewalls, configuring, 222 groups personal firewalls, 35-38 in access control, 313-317 for router security, 153 permissions, configuring, 330-331 first responders, 532 guessing passwords, 361 flammable liquid/gas fires, guest accounts, 235, 321-322 extinguishing, 510 Flash scripts in Internet Explorer, 120 Н flashing the BIOS, 44 flood attacks, 175-177 hackers, types of, 9-10 floods (disaster recovery), 494 Halon extinguishers, 512 Fluke Networks, 359 handheld devices, protocol folders, moving/copying, 318 analyzers, 359 fork bomb attacks, 177 handheld fire extinguishers. See fire Fraggle attacks, 176 extinguishers FreeBSD, 308 hands-on labs FreeNAC, 162 applications, disabling with policies, **FTP** connections 138-140 ports and protocols for, 169-172 BIOS, securing, 51-53 securing, 174-175 browsers, securing, 137-138 FTPS (FTP Secure), 174 IEEE 802.1X standard, enabling, full backups, 490 288-289 fuzzing, 131 inbound filters, configuring, 223 LANMAN hash, disabling, 437-438

MAC filtering, enabling, 224 malware, scanning for, 50-51

NAT firewalls, configuring, 222 network mapping, 365 packet filtering, enabling, 222 password cracking, 366-367 password policies and user account restrictions, configuring, 328-330 PKI (public key infrastructure), 462-463 ports, scanning, 190-191 protocol analyzers, 401-403 RAID, configuring, 498-500 service packs, updating, 96	HDD passwords, 44 header manipulation, 385 Health Insurance Portability and Accountability Act (HIPAA), 524 HICCUPS system (Hidden Communication System for Corrupted Networks), 423 hidden files/folders, 83 hidden shares, securing, 397 hiding protected system files, 83 HIDS (host-based intrusion detection
SSH connections, 463-464	systems), 35, 38-40 high-availability clusters, 488
user and group permissions, configuring, 330-331	HIPAA (Health Insurance Portability and Accountability Act), 524
virtual machines, creating in Virtual PC 2007, 96-98	hoaxes, 518
virtual machines, securing, 98-101	honeyfarms, 215
VPNs, configuring, 289-291	honeynets, 215-216
wardriving, 256	honeypots, 215-216
wireless access points, securing, 254-256	horizontal privilege escalation, 236 host-based intrusion detection systems
hard drives	(HIDS), 35, 38-40
defragmenting, 84	hosted hypervisors, 92
hardening, 82-85	hosts file attacks, 183
sanitizing, 530-531	hot aisles, 514
hardening operating systems, 68-85	hot sites, 489 hotfixes, installing, 75-80
file systems and hard drives, 82-85	HouseCall, 29
with group policies, security templates, configuration baselines, 80-82	HSMs (hardware security modules), 45-47
installing service packs, 72-75 installing updates, patches, hotfixes, 75-80	HTTP connections, ports and protocols for, 172
maintenance, 85-86	HTTP proxy servers, 213. See also
removing applications and services,	proxy servers HTTPS (Hypertext Transfer Protocol
hardware security modules (HSMs),	Secure), 459
45-47 hashar 420 431	hubs, securing, 150-151 humidity controls, 513
hashes, 430-431	HVAC shielding, 514
cryptographic hash functions, 431-433 password hash functions, 433-435	HVAC systems, 513-514
hazard protection systems, 512-513	hybrid cryptosystems, 429
inizara protection systems, 312-313	/

IP proxy servers 703

Hypertext Transfer Protocol Secure	installing
(HTTPS), 459	Network Monitor for Server 2003, 402
Hyper-V, 94	service packs, 72-75
hypervisors, 92	service packs and updates, 26-27
	updates, patches, hotfixes, 75-80
<u>I</u>	instant messaging programs, 68
IA (information assurance) 342	integrity, 5
IA (information assurance), 342	interconnections in network design,
IaaS (Infrastructure as a Service), 161 ICMP flood attacks, 175	156-162
·	cloud computing, 159-162
identification, 265, 532	DMZ, 157-158
identity proofing, 266	Internet, 157
IDS (intrusion detection systems), 35, 38-40, 217-218	intranets/extranets, 159-160
	LANs versus WANs, 157
IE. See Internet Explorer	interference, 239, 514-515
IEEE 802.1Q standard, 164	internal information, sensitivity of, 523
IEEE 802.1X standard, 162, 249, 273-276, 286-289	Internet
ILP (information leak prevention)	content filtering, 214
devices, 216	in network security, 157
IM spam, 22	Internet Explorer
impact assessment, 343	Firefox versus, 110-111
impersonation, 516	securing, 116-120
implementing in patch management,	security policies, implementing, 111-113
implicit deny, 173, 310-311	security settings, 30
inbound filters, configuring, 223	Internet Optimizer, 21
inbound ports, 169	Internet Protocol Security (IPsec),
incident response procedures, 531-534	460-461
incremental backups, 490	intranets, securing, 159-160
information assurance (IA), 342	intrusion detection systems (IDS), 35,
	38-40, 217-218
information leak prevention (ILP) devices, 216	intrusion prevention systems (IPS), 40
information security. See security	NIPS, 218-219
Infrastructure as a Service (IaaS), 161	for router security, 153
inheritance of permissions, 317	investigation (incident response), 532
initialization in 802.1X authentication,	IP addresses
275	public versus private, 154-156
initiation in 802.1X authentication,	spoofing, 179
275	subnetting, 162-163
input validation, 131	IP masquerading, 154
*	IP proxy servers, 213

redundancy planning, 488

IT security audits. See audits

J-K

IV attacks, 250

job rotation, 312, 526

Kerberos, 277-278, 286, 420 key algorithms. *See* algorithms key escrow, 455 key generators, 20 key management, 422 keys, defined, 419 kitchen fires, extinguishing, 511

I

L2TP (Layer 2 Tunneling Protocol), 282, 460 label-based access control, 309 LACK (Lost Audio Packets Steganography), 423 LAN Surveyor, 352 LANMAN hash, 433-438 LANs, WANs versus, 157 lattice-based access control, 309 Layer 2 Tunneling Protocol (L2TP), 282, 460 LDAP (Lightweight Directory Access Protocol), 276-277, 286 LDAP injection, 134 LEAP (Lightweight EAP), 276 least privilege, 311-312, 317 legislative policies. See policies length of passwords, 324 Lightweight Directory Access Protocol (LDAP), 276-277, 286 Lightweight EAP (LEAP), 276 line conditioners, 480 Linux, disabling services in, 71 load-balancing clusters, 488 local area networks (LANs), wide area networks (WANs) versus, 157 localized authentication technologies, 273-279 IEEE 802.1X standard, 273-276 Kerberos, 277-278 LDAP, 276-277 Terminal Services, 279 locking computers, 325 logic bombs, 24-25 logon process, locking computers, 325 logs for audits, 392-396, 394-396 firewall logs, 210 security logs in file auditing, 390 long-term power loss (disaster recovery), 495 Lost Audio Packets Steganography (LACK), 423 Love Bug virus, 19

M

MAC (mandatory access control), 308-309 address spoofing, 179 filtering, 211, 224 flooding, 151

Mac OS X, disabling services in, 72	many-to-one mapping, 455
macro viruses, 19	mapping the network, 352-355, 365
maintenance in hardening operating	McAfee IntruShield, 218
systems, 85-86	MD5 (Message-Digest
maintenance phase (SDLC), 129	algorithm 5), 432
maintenance release, 78	message authentication code, 421
malicious attacks (disaster	message digests, 430
recovery), 495	Message-Digest algorithm 5
malware, 6, 18-36	(MD5), 432
delivery methods for, 23-25	metal fires, extinguishing, 511
active interception, 23	Microsoft Sysinternals Rootkit
backdoors, 24	Revealer, 33
botnets, 25	Microsoft Update, 77
logic bombs, 24-25	Microsoft Virtual PC, 88-90
privilege escalation, 24	Microsoft Virtual Server, 90
removable media, 23	Microsoft Windows XP Mode, 90
software, 23	minimal privilege, 317
zombies, 25	minimizing attack surface area, 129
preventing and troubleshooting, 26-36	mining log files, 394
rootkits, 32-33	MITM. See man-in-the-middle attacks
spam, 33-35	modems, securing, 166
spyware, 30-32	monitoring
viruses, 26-30	in incident response, 532
worms and Trojan horses, 30	in intrusion detection, 39
rootkits, 21	methdologies for, 380-382
scanning for, 50-51	anomaly-based monitoring, 381
spam, 21-22	behavior-based monitoring, 381
spyware, 21	signature-based monitoring, 380-381
Trojan horses, 20	tools for
viruses, 18-19	Network Monitor, 386-388
worms, 19-20	performance baselining, 381-384
managed devices, 388	protocol analyzers, 384-388
management security controls, 348	SNMP, 388
mandatory access control (MAC). See	Wireshark, 385-386
MAC (mandatory access control)	moving files/folders, permissions
Mandatory Security Policy, 308	for, 318
mandatory vacation policies, 526-527	MS-CHAP, 280-281
man-in-the-middle attacks, 178, 180	multifactor authentication, 272
mantraps, 270, 519	multihomed connections, 211
manual monitoring, 380	multipartite viruses, 19
manuai momtoring, 500	mutual authentication 277

N	telephony devices, 165
	modems, 166
NAC (Network Access Control), 162	PBX equipment, 166-167
NAS (network attached storage),	VoIP, 167
securing, 45	VLAN, 164-165
NAT (network address translation),	network devices, 150-154
154-156	hubs, 150-151
NAT filtering, 209	routers, 152-154
NAT firewalls, configuring, 222	switches, 151-152
National Cyber Alert System website, 48	vulnerabilities, 234-238
native hypervisors, 92	backdoors, 237
near end crosstalk (NEXT), 240	default accounts, 234-235
negotiation in 802.1X	network attacks, 237
authentication, 275	privilege escalation, 236-237
Nessus, 355-356	weak passwords, 235-236
netmon. See Network Monitor	network DLP systems, 42
netstat command, 358	network intrusion detection systems (NIDS), 38, 217-219
Network Access Control (NAC), 162	network intrusion prevention system
network address translation (NAT),	(NIPS), 218-219
154-156	Network Magic, 353
network attached storage (NAS), securing, 45	network management system (NMS), 388
network attacks, 237	network mapping, 352-355, 365
network connections, redundancy	network masquerading, 154
planning, 486-488	Network Monitor, 386-388
network design, 150-167	Network Monitor for Server 2003,
interconnections, 156-162	installing, 402
cloud computing, 159-162	Network Monitor for Server 2008, 402
DMZ, 157-158	network monitoring
Internet, 157	in incident response, 532
intranets/extranets, 159-160	in intrusion detection, 39
LANs versus WANs, 157	methdologies for, 380-382
NAC, 162	anomaly-based monitoring, 381
NAT, 154-156	behavior-based monitoring, 381
network devices, 150-154	signature-based monitoring, 380-381
hubs, 150-151	tools for
routers, 152-154	Network Monitor, 386-388
switches, 151-152	performance baselining, 381-384
subnetting, 162-163	protocol analyzers, 384-388

SNMP, 388	network-based firewalls. See firewalls
Wireshark, 385-386	NEXT (near end crosstalk), 240
network perimeter, 205-206	NIDS (network intrusion detection
network security	systems), 38, 217-219
ARP poisoning, 184	Nimda worm, 20
attacks, list of, 186	NIPS (network intrusion prevention
castle analogy, 205-206	system), 218-219
client-side attacks, 182	NIST penetration testing, 351
data loss prevention systems, 216	Nmap, 173, 208, 356-357
DDoS attacks, 178	NMS (network management system), 388
DNS poisoning, 183-184	nonpromiscuous mode, 385
DoS attacks, 175-178	nonrepudiation, 6, 391
firewalls, 206-212	NOOP sleds, 132
honeypots and honeynets, 215-216	NOP slides, 132
network design. See network design	NoScript, 124
network documentation, 251	NTFS
NIDS, 217-218	converting FAT32 to, 83
NIPS, 218-219	permissions, 316
null sessions, 181-182	NTLM hash, 435
ports and protocols, 167-175	NTLM 2 hash, 435
protocol analyzers, 220	null sessions, 181-182
proxy servers, 212-215	
replay attacks, 181	0
session hijacking, 179-181	one time node 428 420
spoofing attacks, 178-179	one-time pads, 428-429
transitive access, 182	one-to-one mapping, 154, 455
wired networks, 234-244	one-way functions, 431 online scanners, 29
cable vulnerabilities, 238-244	•
device vulnerabilities, 234-238	open mail relays, 34
wireless network security, 244-251	open ports on twisted-pair cables, 243
Bluetooth vulnerabilities, 250-251	Open Source Security Testing Methodology Manual (OSSTMM),
wireless access point vulnerabilities, 244-	350
249	Open Vulnerability and Assessment
wireless access points, securing,	Language (OVAL), 351
254-256	operating systems
wireless transmission vulnerabilities, 250	fingerprinting, 347
network sniffers. See protocol	hardening, 68-85
analyzers	file systems and hard drives, 82-85
network socket addresses, 169	with group policies, security templates,
network-based DLP (data loss prevention), 216	configuration baselines, 80-82

installing service packs, 72-75 installing updates, patches, hotfixes, 75 - 80maintenance, 85-86 removing applications and services, 68 - 72separating from data, 28, 84-85 operational security controls, 348 optical splitters, 243 The Orange Book, 306, 308 organizational policies. See policies OS. See operating systems OSI model, 152 **OSSTMM (Open Source Security** Testing Methodology Manual), 350 outbound ports, 169 Outlook, securing, 127 OVAL (Open Vulnerability and Assessment Language), 351

PaaS (Platform as a Service), 161 packet filtering, 208, 222 packet sniffers. See protocol analyzers PacketFence, 162 padding schemes in RSA encryption, 427 **PAP**, 280 passive fingerprinting, 347 passive security analysis, 347 password analysis, 359-362, 366-367 password crackers, 360 password hash functions, 433-435 passwords

in access control, 318-322 best practices, 324 BIOS passwords, 43-44 clear-text passwords, 387-388 complexity and length of, 324 frequency of changes, 321

guessing, 361 HDD passwords, 44 policies for, 322-325, 328-330 storing in web browsers, 122 strong passwords, 319-321 weak versus strong passwords, 235-236

PAT (port address translation), 154 patches

installing, 75-80 management, 79-80 versions, 78

PBX (private branch exchange) equipment, securing, 166-167 PDAs, securing, 47-49 PDoS (permanent DoS) attacks, 177 PEAP (protected extensible authentication protocol), 276 penetration tests, 130, 350-351 performance baselining, 381-384 Performance Monitor tool, 383-384 permanent DoS (PDoS) attacks, 177 permanently installed generators, 482 permissions, 313-317

auditing, 397 inheritance and propagation, 317 types of, 316 user and group permissions, configuring, 330-331 when moving/copying files and folders, 318

personal firewalls, 35-38 Personal Identity Verification (PIV) card, 269

personally identifiable information (PII), 528 personnel security policies, 523-525

acceptable use, 525 change management, 525-526 due care, 527

due diligence, 527 due process, 527

mandatory vacations, 526-52/	Point-to-Point Tunneling Protocol
separation of duties, 526	(PPTP), 282, 460
training employees, 527-528	policies. See also procedures
types of, 528	for access control, 322-325
PGP (Pretty Good Privacy), 429-430	in application security, 124-125
Phage virus, 28	auditing, 398
pharming attacks, 184	for browsers, implementing, 111-113
phishing, 178, 516-518	configuring, 328-330
Phlashing, 177	data sensitivity and classification,
phone cloning, 48	522-523
physical security, 267-271	disabling applications with, 138-140
biometric readers, 270-271	in disaster recovery plans, 495-496
building security, 267-268	equipment disposal, 528-531
door access systems, 268-270	example of, 521
server room security, 267-268	group policies, 80-82
of switches, 152	personnel security policies, 523-525
piggybacking, 519	acceptable use, 525
PII (personally identifiable	change management, 525-526
information), 528	due care, 527
ping flood attacks, 175	due diligence, 527
ping of death (POD) attacks, 177	due process, 527
PIV card (Personal Identity	mandatory vacations, 526-527
Verification), 269	separation of duties, 526
PKCS (public key cryptography	training employees, 527-528
standards), 427	types of, 528
PKI (Public Key Infrastructure), 422,	privacy policies, 525
452-456, 462-463	vendor contracts, 528
certificate authorities, 453-456	polymorphic viruses, 19
certificates, 452-453	POP3 connections, ports and
dual-sided certificates, 456	protocols for, 173
single-sided certificates, 456	pop-up blockers, 35, 40-42
web of trust, 456	in Firefox, 124
planning	in Internet Explorer, 119
for disaster recovery, 494-496	pop-up windows, closing, 114
in patch management, 79	port address translation (PAT), 154
security plans, 7	port forwarding, 208
Platform as a Service (PaaS), 161	port scanning, 173, 356-357
PNAC (port-based Network Access	port zero, securing, 174
Control), 162	portable gas-engine generators, 482
POD (ping of death) attacks, 177	

point release, 78

port-based Network Access Control (PNAC), 162	private addresses, public addresses versus, 154-156
ports	private branch exchange (PBX)
closing, 173-174	equipment, securing, 166-167
inbound ports, 169	private keys, defined, 419
outbound ports, 169	private-key algorithms.
protocol associations, list of, 170-169	See symmetric key algorithms
range of, 167	privilege de-escalation, 237
scanning, 190-191	privilege escalation, 24, 236-237
securing, 167-175	procedures, 531-534. See also policies
power supplies	process virtual machines, 87
failure of, 479	program viruses, 19
redundancy planning, 478-483	programming, securing. See secure
backup generators, 481-483	coding concepts
redundant power supplies, 479-480	programs. See applications
UPS, 480-481	promiscuous mode, 217, 385
PPTP (Point-to-Point Tunneling	propagation of permissions, 317
Protocol), 282, 460	protected extensible authentication
pre-action sprinkler systems, 512	protocol (PEAP), 276
precomputation, 361	protected system files, hiding, 83 protocol analyzers, 150, 220, 358-359.
preparing for exam. See exam preparation	384-388, 401-403
preservation of evidence (incident	Network Monitor, 386-388
response), 533	SNMP, 388
pretexting, 516	Wireshark, 385-386
Pretty Good Privacy (PGP), 429-430	protocol associations, list of, 170-169
preventing	protocols
BIOS attacks, 43-44	FTP, securing, 174-175
malware, 26-36	securing, 167-175
rootkits, 32-33	wireless protocols, 246
spam, 33-35	proximity sensors, 269
spyware, 30-32	proximity-based door access
viruses, 26-30	systems, 270
worms and Trojan horses, 30	proxy servers, 212-215
preventive security controls, 348	for browser security, 114-115
previous logon notification, 325	configuring connections in Firefox, 12
principle of defense in depth, 129	public addresses, private addresses
principle of least privilege, 129	versus, 154-156
Privacy Act of 1974, 523, 525	public information, sensitivity of, 523
privacy policies, 525	public key cryptography, 421-422

public key cryptography standards (PKCS), 427	recycling computers, policies concerning, 528-531
Public Key Infrastructure (PKI), 422,	The Red Book, 306
452-456, 462-463	reduced sign-on, 272
certificate authorities, 453-456	redundancy planning, 476-490. See also
certificates, 452-453	disaster recovery
dual-sided certificates, 456	network connections, 486-488
single-sided certificates, 456	power supplies, 478-483
web of trust, 456	backup generators, 481-483
public keys, defined, 419	redundant power supplies, 479-480
punch block connections, 242	UPS, 480-481
Pure-FTPd, 172	RAID, 483-486, 498-500
purging data, 531	servers, 488-489
0 0	single points of failure, 476
Q–R	sites, 489-490
qualitative risk assessments, 344	redundant array of independent disks (RAID), 483-486, 498-500
quantitative risk assessments, 344-346	redundant ISP, 488
RA (registration authority), 455	redundant power supplies, 479-480
radio frequency interference (RFI),	registration authority (RA), 455
239	Remote Access Service (RAS),
RADIUS (Remote Authentication	280-281, 286
Dial-In User Service), 284-286	remote access Trojans (RATs), 20
RAID (redundant array of independent disks), 483-486, 498-500	Remote Authentication Dial-In User Service (RADIUS), 284-286
Rainbow Tables, 361	remote authentication technologies,
RAS (Remote Access Service),	279-286
280-281, 286	RADIUS versus TACACS, 284-285
RATs (remote access Trojans), 20	RAS, 280-281
raw socket programming, 174	VPNs, 281-284
RBAC (role-based access control), 309-310	remote ports, 238
RC (Rivest Cipher), 425	remote wipe programs, 48
RC4, 425	removable media
·	as malware delivery method, 23
RC5, 425	securing, 44-45
RC6, 425	removing. See also data removal
Real-time Transport Protocol	applications and services, 68-72
(RTP), 169	e-mail addresses from websites, 34
recovery (incident response), 532. See	temporary files, 83, 119
also disaster recovery	web browsers, 120

replay attacks, 181	RTP (Real-time Transport
requirements for Security+	Protocol), 169
certification, 552	rule-based access control, 309
residual risk, 343	•
restoration for backup tapes, 492	S
restore points, 84	SA (see all see sides) 461
restrictions on user accounts,	SA (security association), 461
configuring, 328-330	SaaS (Software as a Service), 161
revoking certificates, 454-455	safety. See environmental controls
RFI (radio frequency interference),	sags, 479
239	salting, 361
risks, 342-343	sandboxes, 130
acceptance, 343	sanitizing
assessments, 342-351	hard drives, 530-531
qualitative risk assessments, 344	smartphones, 48
quantitative risk assessments, 344-346	Sarbanes-Oxley Act (SOX), 523
security analysis methodologies,	saving log files, 394
346-347	SCA (side channel attacks), 428
security controls, 347-349	scanning
vulnerability management, 349-351	for malware, 50-51
avoidance, 342	network, 365
management, 342	ports, 173, 190-191, 356-357
mitigation, 344	for vulnerabilities, 355-358
reduction, 343	SCP (Secure copy), 175
retention, 343	SDLC (Systems Development Life
sharing, 342	Cycle), 128-130
transference, 342	secret information, sensitivity of, 523
Rivest Cipher (RC), 425	secret-key encryption, 417. See also
rogue wireless access points, 245-246	symmetric key algorithms
role-based access control (RBAC),	secure code reviews, 128
309-310	secure coding concepts, 126-136
rootkits, 21, 32-33	Systems Development Life Cycle
rotation schemes for backups, 492-493	(SDLC), 128-130
routers, securing, 152-154	testing methods for, 130-132
Routing and Remote Access Service	vulnerabilities and attacks, 132-136
(RRAS), 283	backdoors, 132
RRAS (Routing and Remote Access	buffer overflows, 132-133
Service), 283	code injection, 133-134
RSA (Rivest, Shamir, Adleman)	directory traversal, 134
encryption, 426-427	XSS and XSRF, 133
	zero day attacks, 135

Secure copy (SCP), 175	technologies. <i>See</i> technologies
Secure FTP (SFTP), 174	templates, 80-82
Secure Hash Algorithm (SHA), 432	threats
Secure HTTP (SHTTP), 459	malware, 18-36
Secure LDAP, 277	types of, 6-7
secure padding schemes in RSA	of virtual machines, 92-94, 98-101
encryption, 427	wired network security.
Secure Shell (SSH), 459, 463-464	See wired network security
Secure Sockets Layer (SSL), 458-459	wireless network security.
certificates, 454	See wireless network security
settings in Internet Explorer, 119	security analysis methodologies,
Secure/Multipurpose Internet Mail	346-347
Extensions (S/MIME), 457	security association (SA), 461
security	security audits. See audits
AAA (authentication, authorization,	security controls, 347-349
accounting), 5-6	security logs, 390, 392
access control. See access control	security permissions, 316. See also per
application security, 124-126, 138-140	missions
authentication models, 271-273	Security Posture Assessments
of BIOS, 43-44, 51-53	(SPA), 381
browser security. See browser security	security settings (Internet Explorer), 30
of cell phones and PDAs, 47-49	security tokens, 269
CIA triad, 4-5	security tokens, 207 security zones (Internet Explorer),
of log files, 396	configuring, 116-117
network design. See network design	Security+ certification
network security. See network security	requirements, 552
physical security. See physical security	SELinux (Security-Enhanced Linux),
plans, 7	40, 308
policies. See policies	sensitivity of data, policies concerning
protocols	522-523
IPsec, 460-461	separating data and operating system,
L2TP, 460	28, 84-85
PPTP, 460	Separation of Duties (SoD), 312, 526
S/MIME, 457	server room security, 267-268
SSH, 459, 463-464	servers, redundancy planning, 488-489
SSL/TLS, 458-459	service level agreement (SLA), 528
risk assessments. See risks	service packs
secure coding concepts. See secure cod-	installing, 26-27, 72-75
ing concepts	services versus, 72
of storage devices. See storage devices	updating, 96

Service Set Identifier (SSID)	SLA (service level agreement), 528
broadcasting, 211, 245	SLE (single loss expectancy), 344
services	slipstreaming, 74
removing, 68-72	smart cards, 269
service packs versus, 72	smartphones, theft of, 48-49
session cookies, 119	S/MIME (Secure/Multipurpose
session hijacking, 179-181	Internet Mail Extensions), 457
Session Initiation Protocol (SIP), 167	SMTP open relays, 34
session theft, 179	SMTP relay, 181
session-key algorithms. See symmetric	Smurf attacks, 176
key algorithms	SNMP (Simple Network Management
SFTP (Secure FTP), 174	Protocol), 388
SHA (Secure Hash Algorithm), 432	Snort, 217, 218
shared folders, auditing, 396-397	social engineering, 7, 515-521
shared-key algorithms. See symmetric	baiting, 519
key algorithms	diversion theft, 516
sharing	dumpster diving, 519
files, disabling, 83	eavesdropping, 518-519
permissions, 316	hoaxes, 518
risk, 342	phishing, 516-518
shielded twisted pair (STP) cables,	piggybacking, 519
240, 514	pretexting, 516
shielding, 514-515	shoulder surfing, 518
ShieldsUP!, 173, 208	training employees against, 520-521
shoulder surfing, 518	types of, 519
SHTTP (Secure HTTP), 459	SoD (Separation of Duties), 312, 526
side channel attacks (SCA), 428	Software as a Service (SaaS), 161
signal emanation, 241	software as malware delivery
signature-based monitoring, 39,	method, 23
380-381	software versions, explained, 78
SIM cloning, 48	SOX (Sarbanes-Oxley) Act, 523
Simple Network Management	SP. See service packs
Protocol (SNMP), 388	SPA (Security Posture
single loss expectancy (SLE), 344	Assessments), 381
single points of failure, 476	spam, 21-22, 33-35
single sign-on (SSO), 272	spam filters, 33-34
single-key algorithms.	spam honeypots, 215
See symmetric key algorithms	SPAP, 280
single-sided certificates, 456	spear phishing, 517
SIP (Session Initiation Protocol), 167	spectral analyzers, 243
sites, redundancy planning, 489-490	- ·

SPI (stateful packet inspection), 208	strong passwords, 235-236, 319-321
spikes, 478	subnetting, 162-163
spim, 22	subversion errors, 219
splitting	supplicants (802.1X connections), 274
fiber-optic cables, 243	surges, 478
twisted-pair cable wires, 243	switches, securing, 151-152
spoofing attacks, 178-179	symmetric key algorithms, 420-421
sprinkler systems, 512	AES, 424-425
spyware, 21	DES and 3DES, 424
preventing and troubleshooting, 30-32	RC, 425
symptoms of, 31	symptoms
SQL injection, 133	of spyware, 31
SSH (Secure Shell), 459, 463-464	of viruses, 28-29
SSH FTP, 174	SYN, 385
SSID (Service Set Identifier) broad-	SYN flood attacks, 176
casting, 211, 245	system failure, 6
SSL (Secure Sockets Layer), 458-459	system files, verifying, 84
certificates, 454	System logs, 393
settings in Internet Explorer, 119	System Monitor, 384
SSO (single sign-on), 272	System Restore, 84
standard load, 383	system security settings, audits on,
standby generators, 482	396-398
stateful packet inspection (SPI), 208	system virtual machines, 87
stateless packet inspection, 208	Systems Development Life Cycle
static NAT (network address translation), 154	(SDLC), 128-130
statistical anomaly-based monitoring,	Т
39, 381	
stealth viruses, 19	TACACS (Terminal Access
steganography, 423	Controller Access-Control System),
storage devices	284-286 TACACS: 285-284
hardware security modules, 45-47	TACACS+, 285-286
network attached storage, securing, 45	tailgating, 519
removable media, securing, 44-45	tape backups, types of, 490-491
whole disk encryption, 45-47	tapping into data, 241-244
storage-based DLP (data loss	TCB trusted computing base), 308
prevention), 42, 216	TCP reset attacks, 174
STP (shielded twisted pair) cables,	TCP/IP fingerprinting, 347
240, 514	TCP/IP hijacking, 180
stream ciphers, 420	TDEA (Triple Data Encryption Algorithm), 424

teardrop attacks, 177	test systems, importance of, 20
technical security controls, 348	testing in patch management, 79
technologies	testing methods for secure coding
data loss prevention systems, 42	concepts, 130-132
intrusion detection systems, 38-40	testing phase (SDLC), 129-132
localized authentication technologies,	theft
273-279	disaster recovery, 495
IEEE 802.1X standard, 273-276	of smartphones, 48-49
Kerberos, 277-278	threats
LDAP, 276-277	malware, 18-36
Terminal Services, 279	delivery methods for, 23-25
monitoring tools	preventing and troubleshooting, 26-36
performance baselining, 381-384	rootkits, 21
protocol analyzers, 384-388	spam, 21-22
personal firewalls, 35-38	spyware, 21
pop-up blockers, 40-42	Trojan horses, 20
remote authentication technologies,	viruses, 18-19
279-286	worms, 19-20
RADIUS versus TACACS, 284-285	modeling, 129
RAS, 280-281	types of, 6-7
VPNs, 281-284	3DES (triple DES), 424
types of, 7-9	3-leg perimeter DMZ, 157-158, 210
for vulnerability assessments, 352-362	tickets (Kerberos), 278, 420
network mapping, 352-355	time bombs, 24
password analysis, 359-362	TLS (Transport Layer Security),
protocol analyzers, 358-359	458-459
vulnerability scanning, 355-358	top secret information, sensitivity
telephony devices, securing, 165-167	of, 523
modems, 166	Towers of Hanoi backup rotation
PBX equipment, 166-167	method, 493
VoIP, 167	tracking cookies, 119
Telnet, 70-72, 166, 238	training employees
TEMPEST standards, 241, 515	for browser security, 114
templates, security, 80-82	on policies, 527-528
temporary files, removing, 83, 119	against social engineering, 520-521
10 tape rotation backup method, 492	spam prevention, 35
Terminal Access Controller Access-	spyware prevention, 31
Control System (TACACS),	transitive access, 182
284-286 Taminal Saminas 270	transparent testing, 130
Terminal Services, 279	

Transport Layer Security (TLS), 458-459	USB devices, securing, 44-45
Trend Micro OSSEC, 39	User Account Control (UAC), 124, 325-326
Trend Micro's HouseCall, 29	user accounts
Triple Data Encryption Algorithm	expiration, 314
(TDEA), 424	restrictions, configuring, 328-330
Trojan horses, 20, 30	user awareness, 7
troubleshooting malware, 26-36	user education
rootkits, 32-33	for browser security, 114
spam, 33-35	on policies, 527-528
spyware, 30-32	against social engineering, 520-521
viruses, 26-30	spam prevention, 35
worms and Trojan horses, 30	spyware prevention, 31
true negatives, 273	user input validation, 129
true positives, 273	usernames in access control, 318-322
TrueCrypt, 45	users
trusted computing base (TCB), 308	in access control, 313-317
Trustworthy Computing, 25	permissions, configuring, 330-331
tunneling protocols (VPNs), 282	UTP (unshielded twisted pair)
twisted-pair cables, 238, 240	cables, 240
open ports on, 243	
splitting wires of, 243	V
1 0 ,	-
U	vacation policies, 526-527
<u> </u>	validation
UAC (User Account Control), 124,	of certificates, 453
325-326	input validation, 129, 131
UDP flood attacks, 176	vampire taps, 241-242
unauthorized access, 6	vendor contracts, 528
unicast, 151	verifying system files, 84
uninterruptible power supplies (UPS), 480-481	Verisys, 39 versions of patches, explained, 78
unshielded twisted pair (UTP)	vertical privilege escalation, 236
cables, 240	virtual appliances, 88
updates, installing, 26-27, 75-80	virtual local area network (VLAN),
updating	164-165
BIOS, 44	. 1 1. (77) (70)
	virtual machine manager (VMM), 92
service packs, 96	virtual machines manager (VMM), 92 virtual machines (VMs), 85-87
service packs, 96 UPS (uninterruptible power supplies),	virtual machines (VMs), 85-87 creating in Virtual PC 2007, 96-98
service packs, 96	virtual machines (VMs), 85-87

VMware, 91

Microsoft Virtual Server, 90	VMware, 91, 94
Microsoft Windows XP Mode, 90	voice encryption, 48
securing, 92-94, 98-101	VoIP (voice over Internet Protocol)
VMware, 91	securing, 167
Virtual PC, 88-90	VPNs (virtual private networks),
Virtual PC 2007, creating virtual	281-284
machines, 96-98	configuring, 289-291
virtual private networks (VPNs),	IPsec, 460-461
281-284	L2TP, 460
configuring, 289-291	PPTP, 460
IPsec, 460-461	for router security, 153
L2TP, 460	vulnerabilities, 341. See also attacks
PPTP, 460	of Bluetooth, 250-251
for router security, 153	of cabling, 238-244
Virtual Server, 90	crosstalk, 240
virtual servers, 208	data emanation, 241
virtualization, 85-94	interference, 239
hypervisors, 92	tapping into data, 241-244
Microsoft Virtual PC, 88-90	of network devices, 234-238
Microsoft Virtual Server, 90	backdoors, 237
Microsoft Windows XP Mode, 90	default accounts, 234-235
securing virtual machines, 92-94,	network attacks, 237
98-101	privilege escalation, 236-237
types of, 85-88	weak passwords, 235-236
VMware, 91	to program code, 132-136
viruses, 18-19	backdoors, 132
preventing and troubleshooting, 26-30	buffer overflows, 132-133
symptoms of, 28-29	code injection, 133-134
vishing, 517	directory traversal, 134
VLAN (virtual local area network),	XSS and XSRF, 133
164-165	zero day attacks, 135
VLAN hopping, 164-165	of wireless access points, 244-249
VMM (virtual machine manager), 92	of wireless transmission, 250
VMs (virtual machines), 85-87	vulnerability assessments, tools for,
creating in Virtual PC 2007, 96-98	352-362
hypervisors, 92	network mapping, 352-355
Microsoft Virtual PC, 88-90	password analysis, 359-362
Microsoft Virtual Server, 90	protocol analyzers, 358-359
Microsoft Windows XP Mode, 90	vulnerability scanning, 355-358
securing, 92-94, 98-101	vulliciability scalling, 555-556

vulnerability management, 349-351 vulnerability scanning, 355-358

W

WANs, LANs versus, 157 WAP (wireless access points), vulnerabilities, 244-249 wardialing, 166, 517 wardriving, 250, 256 warm sites, 489 weak encryption on wireless access points, 246-247 weak passwords, 235-236, 361 web browser security. See browser security web of trust, 456 web proxy servers, 213 web security gateways, 214 websites encryption notification, 114 pop-up blocking, 40-42 pop-up windows, closing, 114 removing e-mail addresses from, 34 well-known ports, list of, 170-169 wet pipe systems, 512 whaling, 517 white hats, 9 white-box testing, 130, 350 whitelists, 34, 121 whole disk encryption, 45-47, 84 wide area networks (WANs), local area networks (LANs) versus, 157 Windows Firewall, 27-28, 37 Windows Update, 26-27, 75-80 Windows XP Mode, 90 wire tapping, 241-244 wired network security, 234-244 cable vulnerabilities, 238-244 crosstalk, 240 data emanation, 241

interference, 239 tapping into data, 241-244 device vulnerabilities, 234-238 backdoors, 237 default accounts, 234-235 network attacks, 237 privilege escalation, 236-237 weak passwords, 235-236 wireless access points securing, 254-256 vulnerabilities, 244-249 wireless network security, 244-251 Bluetooth vulnerabilities, 250-251 vulnerability assessments, 353 wireless access point vulnerabilities, 244-249 wireless transmission vulnerabilities, Wireshark, 358, 385-386 wood fires, extinguishing, 510 Word, securing, 127 worms, 19-20, 30 WWN (World Wide Name) spoofing, 179

X

X.509 standard, 452 XML injection, 134 XSRF (cross-site request forgery), 133 XSS (cross-site scripting), 118, 133, 181

zero day attacks, 135 zombies, 25, 178 Zone Alarm, 37 zone transfers, 183