Contents at a Glance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 1 Arduino Cram Session</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 2 Breadboarding</td>
<td>27</td>
</tr>
<tr>
<td>CHAPTER 3 How to Solder</td>
<td>53</td>
</tr>
<tr>
<td>CHAPTER 4 Setting Up Wireless Connections</td>
<td>91</td>
</tr>
<tr>
<td>CHAPTER 5 Programming Arduino</td>
<td>117</td>
</tr>
<tr>
<td>CHAPTER 6 Sensing the World</td>
<td>143</td>
</tr>
<tr>
<td>CHAPTER 7 Controlling Liquid</td>
<td>165</td>
</tr>
<tr>
<td>CHAPTER 8 Tool Bin</td>
<td>187</td>
</tr>
<tr>
<td>CHAPTER 9 Ultrasonic Detection</td>
<td>243</td>
</tr>
<tr>
<td>CHAPTER 10 Making Noise</td>
<td>273</td>
</tr>
<tr>
<td>CHAPTER 11 Measuring Time</td>
<td>295</td>
</tr>
<tr>
<td>CHAPTER 12 Safely Working with High Voltage</td>
<td>321</td>
</tr>
<tr>
<td>CHAPTER 13 Controlling Motors</td>
<td>339</td>
</tr>
<tr>
<td>Glossary</td>
<td>359</td>
</tr>
<tr>
<td>Index</td>
<td>365</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

Chapter 1 Arduino Cram Session 5

- Arduino Uno: A Rookie-Friendly Microcontroller 5
- Other Arduino Products 8
- Electronics 9
 - Light-Emitting Diodes 11
 - Buttons and Switches 11
 - Potentiometers 12
 - Resistors 13
 - Capacitors 14
 - Motors 15
 - Solenoids 16
 - Piezo Buzzers 17
 - Seven-Segment Displays 18
 - Relays 19
- Integrated Circuits 20
- Temperature Sensors 21
- Flex Sensor 22
- Light Sensor 23
- Ultrasonic Sensor 23
- Safety Rules 24
- The Next Chapter 26

Chapter 2 Breadboarding 27

- Assembling Circuits Using Solderless Breadboards 27
- Understanding Power and Ground 30
- Using Jumper Wires 30
- Project: Breadboard Blink 32
- Project: Laser Trip Beam 35
- Assembling the Laser Module 38
- Assembling the Sensor Module 38
- Building the Enclosures 41
- Laser Trip Beam Code 47
- Setting Up the Trip Beam 49
Table of Contents

Alt. Project: Infrared Detector .. 50
Wiring Up the PIR and Buzzer .. 51
Infrared Detector Code ... 51
The Next Chapter .. 52

Chapter 3 How to Solder ... 53

- Gathering Soldering Supplies .. 55
- Picking a Soldering Iron .. 55
- Choosing a Solder .. 58
- Getting the Other Things You Need .. 59
 - Desktop Vises .. 59
 - Cutters and Stripppers ... 60
 - Needle-Nose Pliers and Hemostats ... 61
 - Fans or Fume Extractors ... 62
 - ESD Protection ... 62
 - Solder Stand and Sponge ... 63
- Soldering ... 64
- Desoldering .. 68
- Cleanup ... 71
- Project: LED Strip Coffee Table .. 72
 - Preparing the Light Strip ... 73
 - Attaching the Light Strip to the Table .. 75
- Building the Enclosure .. 76
- Controlling the LED Strip .. 82
- LED Strip Code .. 82
- The Next Chapter .. 90

Chapter 4 Setting Up Wireless Connections 91

- XBee Wireless Modules ... 92
- XBee Versus XBee Pro ... 92
- Series 1 Versus Series 2 ... 93
- XBee Breakout Boards ... 93
- Anatomy of the XBee .. 94
- Competing Wireless Modules ... 95
- Freakduino Chibi ... 95
- JeeLabs JeeNode .. 96
Arduino for Beginners

Project: Wireless LED Activation ..	96
Wireless LED Code ..	99
Project: Bluetooth Doorbell ...	101
The Button ..	103
Instructions for Wiring Up the Doorbell..................................	103
Button Unit...	103
Buzzer Unit..	105
Building the Doorbell Enclosures ..	107
Button Unit Enclosure..	108
Bending Acrylic...	109
Buzzer Unit Enclosure..	112
Wireless Doorbell Code ...	112
Button Unit Code ..	113
Buzzer Unit Code ...	114
The Next Chapter ..	115

Chapter 5 Programming Arduino.. 117

<p>| The Arduino Development Environment .. | 118 |
| Programming Window .. | 118 |
| Menus ... | 120 |
| File Menu... | 120 |
| Edit Menu.. | 120 |
| Sketch Menu... | 121 |
| Tools Menu.. | 122 |
| Help Menu... | 123 |
| The Blink Sketch... | 124 |
| Learning from Example Code .. | 127 |
| Adapt the Code .. | 128 |
| Finding Example Code .. | 128 |
| Arduino Playground.. | 129 |
| Libraries... | 130 |
| Sharing Example Code... | 131 |
| More Functions and Syntax .. | 133 |
| Arithmetic .. | 133 |
| Arrays .. | 133 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Operators</td>
<td>134</td>
</tr>
<tr>
<td>For</td>
<td>134</td>
</tr>
<tr>
<td>Include</td>
<td>135</td>
</tr>
<tr>
<td>Increment/Decrement</td>
<td>135</td>
</tr>
<tr>
<td>Interrupts</td>
<td>135</td>
</tr>
<tr>
<td>If/Else</td>
<td>136</td>
</tr>
<tr>
<td>Mapping</td>
<td>136</td>
</tr>
<tr>
<td>Random</td>
<td>136</td>
</tr>
<tr>
<td>Switch/Case</td>
<td>137</td>
</tr>
<tr>
<td>While</td>
<td>137</td>
</tr>
<tr>
<td>Debugging Using the Serial Monitor</td>
<td>137</td>
</tr>
<tr>
<td>All About Libraries</td>
<td>139</td>
</tr>
<tr>
<td>Resources for Learning Programming</td>
<td>141</td>
</tr>
<tr>
<td>Books</td>
<td>141</td>
</tr>
<tr>
<td>Websites</td>
<td>141</td>
</tr>
<tr>
<td>The Next Chapter</td>
<td>141</td>
</tr>
<tr>
<td>Chapter 6 Sensing the World</td>
<td>143</td>
</tr>
<tr>
<td>Lesson: Sensors</td>
<td>144</td>
</tr>
<tr>
<td>Digital Versus Analog</td>
<td>145</td>
</tr>
<tr>
<td>Digital</td>
<td>145</td>
</tr>
<tr>
<td>Analog</td>
<td>145</td>
</tr>
<tr>
<td>Connecting Digital and Analog Sensors</td>
<td>146</td>
</tr>
<tr>
<td>Know Your Sensors</td>
<td>146</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>147</td>
</tr>
<tr>
<td>Barometric</td>
<td>147</td>
</tr>
<tr>
<td>Encoder</td>
<td>148</td>
</tr>
<tr>
<td>Gas</td>
<td>148</td>
</tr>
<tr>
<td>Hall Effect</td>
<td>149</td>
</tr>
<tr>
<td>Infrared</td>
<td>150</td>
</tr>
<tr>
<td>Piezo Buzzer (Knock Sensor)</td>
<td>150</td>
</tr>
<tr>
<td>Sound Sensors</td>
<td>151</td>
</tr>
<tr>
<td>Tilt Sensors</td>
<td>151</td>
</tr>
<tr>
<td>Project: Mood Light</td>
<td>152</td>
</tr>
<tr>
<td>Instructions</td>
<td>154</td>
</tr>
<tr>
<td>Mood Lamp Code</td>
<td>159</td>
</tr>
</tbody>
</table>
Chapter 7 Controlling Liquid ... 165

Lesson: Controlling the Flow of Liquid 166
Solenoid Valve ... 166
Pressurized Reservoir .. 167
Peristaltic Pump ... 168
Mini Project: Make a Pressurized Reservoir 169
Instructions.. 170
Pressurized Reservoir Code .. 171
Project: Plant-Watering Robot .. 173
Instructions.. 175
Plant-Watering Robot Electronics ... 179
Plant-Watering Robot Enclosure .. 181
Adding the Electronics.. 182
Plant-Watering Robot Code ... 185

Chapter 8 Tool Bin ... 187

Maker’s Ultimate Toolbox ... 188
Basic Multimeter ... 188
Multitool ... 189
Measuring Tape ... 190
Soldering Iron .. 190
Digital Caliper ... 191
Scissors.. 192
X-Acto Knives .. 192
Screwdrivers ... 193
Hardware... 193
Wire Strippers ... 194
Super Glue .. 195
Mini Flashlight .. 196
Hot Glue Gun .. 196
Magnifying Glass .. 197
Writing Supplies .. 197
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sketchbook</td>
<td>198</td>
</tr>
<tr>
<td>Charging Cables</td>
<td>198</td>
</tr>
<tr>
<td>Working with Wood</td>
<td>200</td>
</tr>
<tr>
<td>Laser Cutter</td>
<td>200</td>
</tr>
<tr>
<td>How to Use a Laser Cutter</td>
<td>201</td>
</tr>
<tr>
<td>Rotary Tool</td>
<td>202</td>
</tr>
<tr>
<td>Air Compressor and Attachments</td>
<td>203</td>
</tr>
<tr>
<td>Drill</td>
<td>203</td>
</tr>
<tr>
<td>CNC Mill</td>
<td>204</td>
</tr>
<tr>
<td>Lasering and CNCing Services</td>
<td>205</td>
</tr>
<tr>
<td>Table Saw</td>
<td>206</td>
</tr>
<tr>
<td>Lathe</td>
<td>206</td>
</tr>
<tr>
<td>Sander</td>
<td>207</td>
</tr>
<tr>
<td>Working with Plastic</td>
<td>208</td>
</tr>
<tr>
<td>3D Printers</td>
<td>209</td>
</tr>
<tr>
<td>LEGO</td>
<td>210</td>
</tr>
<tr>
<td>Sugru</td>
<td>211</td>
</tr>
<tr>
<td>Vacuum Former</td>
<td>211</td>
</tr>
<tr>
<td>Extruder</td>
<td>212</td>
</tr>
<tr>
<td>Tamiya</td>
<td>213</td>
</tr>
<tr>
<td>Working with Metal</td>
<td>214</td>
</tr>
<tr>
<td>Plasma Cutter</td>
<td>215</td>
</tr>
<tr>
<td>Band Saw</td>
<td>216</td>
</tr>
<tr>
<td>Grinder</td>
<td>217</td>
</tr>
<tr>
<td>Welder</td>
<td>218</td>
</tr>
<tr>
<td>Aluminum Building Systems</td>
<td>219</td>
</tr>
<tr>
<td>80/20</td>
<td>219</td>
</tr>
<tr>
<td>MicroRAX</td>
<td>220</td>
</tr>
<tr>
<td>OpenBeam</td>
<td>221</td>
</tr>
<tr>
<td>Makeblock</td>
<td>222</td>
</tr>
<tr>
<td>VEX</td>
<td>223</td>
</tr>
<tr>
<td>Maker Spaces</td>
<td>224</td>
</tr>
<tr>
<td>Software</td>
<td>228</td>
</tr>
<tr>
<td>GIMP</td>
<td>228</td>
</tr>
<tr>
<td>Inkscape</td>
<td>229</td>
</tr>
</tbody>
</table>
Chapter 9 Ultrasonic Detection ... 243
 Lesson: Ultrasonic Detection ... 244
 Ultrasonic Sensor Applications ... 245
 Mini Project: Make an Ultrasonic Night Light 245
 Ultrasonic Night Light Code .. 246
 Project: Cat Toy ... 247
 Instructions .. 250
 Enclosure ... 252
 Lathe 101 .. 269
 Lathe Safety .. 271
 The Next Chapter .. 272

Chapter 10 Making Noise ... 273
 Noise in Electronics .. 274
 Thingamagoop ... 275
 Tactile Metronome .. 275
 LushOne Synth ... 276
 Mini Project: Pushbutton Melody ... 278
 Instructions ... 279
 Pushbutton Melody Code ... 280
 Project: Noisemaker .. 282
 Instructions ... 283
 Noisemaker Code ... 293
 The Next Chapter .. 294
Table of Contents

Chapter 11 Measuring Time ... 295
- Time Server .. 295
- Arduino’s Timer .. 296
- Real-Time Clock (RTC) Module ... 297
- Mini Project: Digital Clock .. 298
 - Instructions .. 300
 - Digital Clock Code .. 301
- Project: Indoor Wind Chime .. 302
 - Servo Horns .. 303
 - Instructions .. 304
 - Code .. 316
- Computer Numerically Controlled (CNC) Tools 318
- The Next Chapter .. 319

Chapter 12 Safely Working with High Voltage 321
- Lesson: Controlling High Voltage .. 322
 - PowerSwitch Tail ... 322
 - EMSL Simple Relay Shield ... 323
 - Beefcake Relay Control Board .. 324
- Mini Project: Making a Fan Controller 327
 - Instructions .. 328
 - Fan Controller Code .. 329
- Project: Making a Lava Lamp Buddy 330
 - Decoding Infrared .. 331
 - Instructions .. 332
 - Lava Lamp Buddy Code ... 335
- The Next Chapter .. 338

Chapter 13 Controlling Motors ... 339
- How to Control Motors ... 340
 - Adafruit Motor Shield .. 340
 - Shmalz Haus EasyDriver .. 341
 - Bricktronics MegaShield .. 341
- Powering Your Motor Using a TIP-120 342
- Alt. Project: Stepper Turner ... 344
 - Instructions .. 345
 - Stepper Turner Code .. 346
About the Author

John Baichtal got his start writing blog posts for Wired’s legendary GeekDad blog as well as the DIYer’s bible MAKE Magazine. From there, he branched out into authoring books about toys, tools, robots, and hobby electronics. He is the co-author of The Cult of LEGO (No Starch) and author of Hack This: 24 Incredible Hackerspace Projects from the DIY Movement as well as Basic Robot Building with LEGO Mindstorm’s NXT 2.0 (both from Que). Most recently he wrote Make: LEGO and Arduino Projects for MAKE, collaborating with Adam Wolf and Matthew Beckler. He lives in Minneapolis, MN, with his wife and three children.

Dedication

For Harold Baichtal
1939–2013

Acknowledgments

I want to thank my loving wife, Elise, for her patience and support; all my hacker friends, for answering my endless questions; my mother, Barbara, for working on the glossary; and my children, Eileen Arden, Rosemary, and Jack, for their curiosity and interest.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better. *Please note that we cannot help you with technical problems related to the topic of this book.*

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Que Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at quepublishing.com/register for convenient access to any updates, downloads, or errata that might be available for this book.
Introduction

When you go to a store and buy an electronic gizmo, does it ever occur to you that you could make one yourself? Or even that it would be FUN to make one yourself?

The learning curve can be intimidating. You have to study electronics, learn what all the components do, and how to control them with a microcontroller. To put the components together, you’ll have to learn how to solder. To program the microcontroller, you’ll have to learn how to code. To make a cool container that holds the electronics, you’ll have to master certain workshop skills.

Sound intimidating?

One bit of technology that makes these dreams not only achievable but enjoyable is the Arduino, a small microcontroller board designed to be easy to learn and a breeze to program. It lets you operate motors and take input from sensors, allowing you to build the project you want to!

The goal of this book is to help you create those projects—not just the gizmo, but the enclosure as well. You’ll learn workshop skills, familiarize yourself with a ton of tools, build stuff. All of these projects use the easy-to-learn Arduino UNO microcontroller.

This book has been a huge learning experience for me, and I hope it is for you as well. You can build a lot of cool things with an Arduino, and the projects in this book are just the beginning. Good luck and have fun!

What’s in This Book

This book is designed to take an absolute beginner and bring him or her up to speed on a large number of topics related to electronics, tools, and programming.

- Chapter 1 is called “Arduino Cram Session” because it drops a bunch of information on Arduinos and electronics—just what you need to start creating!
- Chapter 2, “Breadboarding,” walks you through actually creating an electronics project—a laser trip beam!—using a handy piece of equipment called a solderless breadboard.
- Chapter 3, “How to Solder,” teaches you how to use a soldering iron to connect electronic components. The chapter’s project involves adding an LED light strip to a coffee table.
- Chapter 4, “Setting Up Wireless Connections,” introduces you to three different ways that you can control a project with wireless signals. When you’re finished learning about that, you can tackle the chapter’s project, creating a wireless doorbell.
- Chapter 5, “Programming Arduino,” shows you the basics of controlling your Arduino with programs you upload to the board. I’ll take you line by line through an Arduino program so you can learn how it works.
Chapter 6, “Sensing the World,” describes a variety of sensors and explains the difference between digital and analog sensors. Chapter 6’s project is a mood lamp that changes its colors depending on the environment around it.

Chapter 7, “Controlling Liquid,” shows readers three ways to pump liquid, and then puts one of these techniques to the test by showing how to build a plant-watering robot.

Chapter 8, “Tool Bin,” is a crash course on tools, everything from the ultimate toolbox to what to stock a wood or metal shop.

Chapter 9, “Ultrasonic Detection,” talks about using pulses of inaudible sound to map out obstructions and measure distances. The chapter’s project, a cat toy, waggles a pompom intriguingly above your cat’s nose when the sensor detects her.

Chapter 10, “Making Noise,” shows you how to make delightful electronic music (also known as noise!) generated by your Arduino. The project shows you how to build a hand-held noisemaker of your very own.

Chapter 11, “Measuring Time,” explains three ways in which the Arduino can keep track of time. Then I show you how to build an “indoor wind chime” that strikes on the hour.

Chapter 12, “Safely Working with High Voltage,” shows you three ways to deal with wall current safely. You’ll build a sweet lava lamp controller that starts and stops the lamp on a schedule, plus you can trigger it with a remote control.

Chapter 13, “Controlling Motors,” explains motor control options for the Arduino. Then you’ll build a bubble-blowing robot with your newfound skills!

Who Can Use This Book
This book is intended for persons new to making Arduinos. It assumes very little knowledge on the part of the reader; the only mental attributes needed are a sense of curiosity and a desire to tackle new challenges.

How to Use This Book
I hope this book is easy enough to read that you don’t need instructions. That said, a few elements bear explaining.

Tip
Tips are helpful bits of advice that will save you time and/or headaches.
Tip

This is a Tip that provides helpful advice that I have learned along the way.

Note

Notes are tidbits of useful information that are helpful, but not mission critical.

Note

This is a Note that provides information that’s useful, even if it is somewhat ancillary.

Caution

Cautions point out pitfalls and dangers. Don’t skip these unless you like breaking things and spending time in the ER.

Caution

This is a Caution. You shouldn’t skip these! The safety of your hardware, tools, and possibly your flesh depend on it.

Parts Lists

For each project in this book, I provide a shopping list of parts, such as the following, that you’ll need to complete it.

Parts List

- Arduino
- Servo (I used a HiTec HS-322HD servo, Jameco P/N 33322.)
- Servo horns (A number of horns come with the HiTec; these should be fine.)
- Chronodot RTC Module
- 1/4” dowel (You’ll need about 8” to a foot.)
- Wind chime (I used a Gregorian Chimes Soprano wind chime, SKU 28375-00651.)
- 5mm plywood for the enclosure
Code

When a project requires code—or a sketch—I list it exactly as you should type it. However, unless you just like typing, you don’t need to re-key the code found in this book. I’ve placed the code online so that you can easily download it, and then copy and paste it. Chapter 5 will get you up to speed on programming your Arduino.

Go to https://github.com/n1/Arduino-For-Beginners to download this code and other files associated with this book.

Here is a sample code listing:

```cpp
int valve = 13; // renames Pin 13 "valve"

int offhours = 0; // how many hours before the water dispenses?
int offmins = 1; // how many minutes before the water dispenses?
int spray = 10; // number of seconds the water sprays

void setup() {
  pinMode(valve, OUTPUT); // designates the valve pin as "output"
  Serial.begin(115200);
}

void loop() {
  int wait = (offmins * 60000) + (offhours * 3600000); // computes milliseconds

  digitalWrite(valve, HIGH);
  delay(spray * 1000); // water stays on this number of milliseconds
  Serial.println(offmins * 60000); // I used this when debugging
  digitalWrite(valve, LOW);
  delay(offmins * 60000); // water stays off this number of milliseconds
```
Setting Up Wireless Connections

This chapter explores the wireless networking tools that enable two or more Arduinos to talk together. Chief among these is the XBee, an Arduino-friendly wireless module capable of connecting a whole network of microcontrollers. In Figure 4.1, you can see one of my own projects, a LEGO robot controlled with Wii nunchucks connected to XBee-equipped Arduinos. You can learn how to build it in my book, *Make: Lego and Arduino Projects* (ISBN 978-1-4493-2106-2). After you get up to speed on the XBee, you will tackle the third project, a wireless doorbell!

FIGURE 4.1 This XBee-equipped bracer enables you to control a robot wirelessly.
XBee Wireless Modules

XBee modules (see Figure 4.2) are based on ZigBee, which is an industry standard protocol that creates networks of multiple wireless nodes via serial data transmission, meaning only one bit (0 or 1) is sent at a time, making it slow but easy to configure. ZigBee is the default protocol used in home automation, so learning the platform’s ins and outs could aid you in creating your own curtain-puller or light-switcher!

FIGURE 4.2 Two Series 1 XBee modules attached to Adafruit breakout boards.

XBee also happens to be the default communication method used by Arduino, enabling them to work together nicely. However, a wide assortment of XBee flavors are available, and you must sure to get the right one. Let’s focus on just four of those XBee flavors in this chapter:

- XBee
- XBee Pro
- XBee Series 1
- XBee Series 2

XBee Versus XBee Pro

You first need to choose between XBee “regular” and “professional”—the distinction is purely about radio power. Ordinary XBees feature 1mW (one thousandth of a watt) power, whereas Pros are rated at 63mW, giving you a much greater range. What kind of range exactly? It depends on a complicated array of factors, including electromagnetic interference, antenna type, and physical obstructions.

That said, Digi International, the maker of XBee products, issues range estimates for the various models. The regular 1mW XBee is rated for 80 feet indoors and 300 feet outdoors, and the company claims the Pro model is good for 140 feet indoors and an impressive 4,000 feet—almost a mile—outdoors. Of course, for that last number, you would need the
most ideal circumstances, like beaming from one hilltop to another. Any sort of obstruction will reduce the effective range of your radio.

If you don’t need 4,000 feet, you might be better off skipping the Pro model because it costs more.

Series 1 Versus Series 2

The second consideration in choosing an XBee is what sort of networking you would like to configure. Digi International sells what it describes as Series 1 and Series 2 XBees.

- **Series 1**—Series 1 offers the simplest networking setup in that you don’t have to set it up. Basically, every Series 1 module talks to every other Series 1 module within range—a configuration known as the mesh network. It’s an easy way to get started playing around with wireless technology.

 If you want to direct data to a single module, you have to use software to set an identifier during both transmission and reception. This sounds intimidating, but it can be as simple as adding a single digit. Say you want to send data to Node 5; you can add a 5 to the beginning of your stream of data and the other nodes will ignore it.

- **Series 2**—Series 2 is more robust, offering—in addition to the settings of the Series 1—the ability to
 - Create more intricate networks with nodes being designated as “coordinators,” able to issue commands.
 - Create “routers” that send and receive data.
 - Create end devices that may only receive.

On the downside, having all these features means that you can’t plug-and-play, because you must configure the modules before using them, unlike Series 1, which you can use right out of the box! More technically, the Series 2 use a different wireless protocol that makes them incompatible with Series 1 modules, so don’t even try!

XBee Breakout Boards

XBee modules are easy to use, but they require a little love before they will fit into a typical Arduino project because their pin spacing is 2mm instead of Arduino-compatible 0.1". The solution is a small PCB called a breakout board, a way of creating a tiny circuit that can be plugged in to an Arduino.

The wimpiest of these is simply a PCB (printed circuit board) equipped with pins with the right spacing for breadboarding. However, more robust breakout boards, such as Adafruit’s (P/N 126, previously shown in Figure 4.2), have a voltage regulator and status LEDs to keep your radio from getting fried.
Anatomy of the XBee

If you look at an XBee module, shown in Figure 4.3, it looks like a blue plate the size of a postage stamp, with a number of metal pins sticking out underneath. The top features an antenna. Adding it to a breakout board makes for more detail, so let’s go through the XBee’s various features.

1. **Pins**—You can see the tops of the XBee’s pins. They control the board, bringing in power and sending and receiving data from the Arduino. The pins plug into headers on the breakout board. Note that these pins have the wrong spacing for breadboards.

2. **Antenna**—You have multiple antenna options depending on the XBee, but I think this wire antenna is the best for what it does, because it’s tough and can take a modest amount of abuse without bending.

3. **Power LED**—This lights when the board powers up.
4. **Data LED**—This flashes to let you know that data is passing through the XBee.

5. **Power regulator**—These capacitors and the transistor manage the power going into the XBee. Unfortunately, frying a radio by using too much power is easy to do. The good news is that the regulator keeps the power flowing at just the right voltage.

6. **Breadboard pins**—Unlike the pins that connect the XBee to the breakout board, these pins are spaced correctly for a breadboard. Just as good, they are labeled so you can see which pin does what!

Competing Wireless Modules

It probably doesn’t surprise you that the XBee isn’t the only party in town. Here are a couple of cool alternatives that you can purchase for use in a project.

Freakduino Chibi

Created by Tokyo-based hacker Akiba (a.k.a. Chris Wang), the Chibi (see Figure 4.4) does away with the separate boards for the microcontroller and wireless module—Akiba has combined them into a single board. The Chibi is Arduino compatible and uses the same wireless band as the XBee. You can buy it at www.freaklabsstore.com.

![Freakduino Chibi](image)

FIGURE 4.4 Freaklabs’ Freakduino Chibi is essentially an Arduino with built-in wireless capability.
JeeLabs JeeNode

A similar concept to the Chibi, the JeeNode consists of an ATmega328p, which is the same microchip that serves as the mind of the Arduino, along with a built-in wireless module. JeeNodes are very small and have fewer capabilities than the Chibi, but have many fans due to the JeeNodes’ small form factor and their ease of use. You can purchase them at http://jeelabs.com/products/jeenode.

TIP

Just Use Series 1

There is so much more to learn about radios, and you might already be overwhelmed! I suggest just limiting yourself to the XBee, non-Pro, Series 1. It’s a wonderfully simple way to add wireless to your projects without spending too much money or frustrating yourself by taking on too complicated a radio before you need to.

Project: Wireless LED Activation

Oooh, wireless radios! Working with them sounds kind of intimidating. It’s actually not, and I’ll prove it. Let’s create a simple network (see Figure 4.5) that lets two Arduinos communicate. In this mini-project, you’ll create two identical assemblies, each consisting of an Arduino and XBee, along with a button and a LED. When you press the button on one assembly, the LED on the other one lights up, and vice versa! You can see how this project will give you a nice start toward building a wireless doorbell, which is the main project for this chapter.
PARTS LIST

You’ll be making two assemblies, so you need two of everything!

- Arduinos (x2)
- XBees (x2)
- Breakout boards (x2)
- Pushbuttons (x2)
- Breadboards (x2)
- LEDs (x2)
- Jumpers
Follow these steps to assemble the XBee test platform:

1. **Solder the breakout boards**—Solder up your XBee breakout boards if you haven’t already. Depending on your kit, this could mean simply soldering in some header pins. On other kits, however, you must solder in LEDs, capacitors, and so on.

2. **Connect the XBees to the breakout boards**—Attach the XBees to their respective breakout boards. This typically involves simply plugging in the XBees’ pins to the appropriate holes in the breakout board. Just follow the directions that accompany your kit.

3. **Attach to breadboards**—Plug the breakout boards and XBees into the breadboards. You can see where to place it in Figure 4.6.

4. **Attach the pushbuttons, LEDs, and jumpers**—Attach these items as follows (also shown in Figure 4.6):
 - **A.** GND on the XBee goes to GND on the breadboard. Connect the GND bus of the breadboard to the GND port of the Arduino.
 - **B.** +5V on the XBee goes to 5V on the Arduino.
 - **C.** TX on the XBee goes to RX on the Arduino.
 - **D.** RX on the XBee goes to TX on the Arduino.
 - **E.** Connect a button to pin 8 on the Arduino; the other end connects to the GND bus.

You should end up with two identical units, and if you upload the Arduino code to both of them, they should work identically. Even cooler, the way the networks are set up, you could actually create three or more of these assemblies and they’ll all work the way you would expect. Press the button on one, and the LEDs on all the others will light up! It’s not super practical, to be sure, but it shows how easily you can set up an XBee network.
FIGURE 4.6 This diagram shows you how to create these XBee test modules.

Wireless LED Code

Upload the following code to both Arduinos. Remember, both modules are identical, down to the software. If you can’t remember how to upload sketches to your Arduino, Chapter 5, “Programming Arduino,” explains how.

NOTE

Code Available for Download

You don’t have to enter all of this code by hand. Simply go to https://github.com/n1/Ardino-For-Beginners to download the free code.
```c
#include <Wire.h>

const int buttonPin = 8;
const int ledPin = 13;
int buttonState = 0;

void setup()
{
  Serial.begin(9600);
  pinMode(ledPin, OUTPUT);
  pinMode(buttonPin, INPUT_PULLUP);
}

void process_incoming_command(char cmd)
{
  int speed = 0;
  switch (cmd)
  {
  case '1':
  case 1:
    digitalWrite(ledPin, LOW);
    break;
  case '0':
  case 0:
    digitalWrite(ledPin, HIGH);
    break;
  }
}

void loop()
{
  if (Serial.available() >= 2)
  {
    char start = Serial.read();
    if (start != '*')
    {
      return;
    }

    char cmd = Serial.read();
    process_incoming_command(cmd);
  }
```
Project: Bluetooth Doorbell

Now you can take what you learned about XBees and apply it to a slightly more robust project: a wireless doorbell. Figure 4.7 shows the doorbell button, and Figure 4.8 shows the buzzer unit that is tucked away on a shelf inside.

FIGURE 4.7 The doorbell awaits visitors!
FIGURE 4.8 The buzzer unit sits discreetly on a shelf.

Sure, you might say, they make these already! You can buy a wireless doorbell in any hardware store. However, this one you make yourself! Even better, as you get more confident with Arduino, you can modify it to make it uniquely yours. For instance, what if your Arduino triggers a music player instead of a buzzer to let you know that someone has pressed the button?

PARTS LIST

Just as in the mini-project earlier in the chapter, you’ll be using two Arduinos, linked together. However, in this project, one Arduino waits for a button press, while the other one sets off a buzzer when it detects that the button has been pressed.

- 2 Arduino Unos
- 2 XBee wireless modules (Adafruit P/N 128)
- 2 Adafruit XBee breakout boards (Adafruit P/N 126)
- 2 mini breadboards (these are really small breadboards the sign of a postage stamp, Adafruit P/N 65)
- Button (SparkFun P/N CDM-10443)
- A 330-ohm resistor
- Buzzer (Jameco P/N 1956776)
- Jumpers
- 9v battery clip (Jameco P/N 105794)
- 9v connector with barrel plug (Adafruit P/N 80)
- 1/4-inch MDF for enclosure backing and sides
- 5mm acrylic for enclosure front
- 1-inch #4-40 bolts
- Hot glue gun
The Button

The button you use in the button unit, shown in Figure 4.9, is kind of intriguing because it has six connectors: two sets of positive and negative terminals that close when the button is pressed—so you could have two circuits, both of which trip when the button is activated. The last two leads—the white lugs in the photo—are for powering the LED. Be sure to attach a resistor on the power lead so you don’t fry your LED inadvertently. I use a 330-ohm resistor in this project.

Instructions for Wiring Up the Doorbell

The project consists of two Arduinos equipped with XBee modules and breakout boards. One Arduino has a button, and the other has a buzzer to sound out to let you know someone is at your door. Let’s get started!

Button Unit

Let’s begin with the button unit (see Figure 4.10), which consists of the following components:
FIGURE 4.10 The button unit before the acrylic is added.

Now, assemble these parts together as shown in Figure 4.11, and you can follow along with these steps:
FIGURE 4.11 The button unit consists primarily of a button, an Arduino, and the wireless module.

1. Plug in the XBee and its breakout board to a mini breadboard.
2. Plug the XBee’s 5V to the 5V on the Arduino, its TX into RX, its RX into TX, and its GND pin to any free GND on the Arduino.
3. Connect one of the button’s leads to pin 8 and the other to GND. (I use the breadboard to accommodate the GND leads coming from the button.)
4. Solder a 330-ohm resistor and a jumper to the button’s LED’s power terminal, and connect the other end to the 3V3 port of the Arduino. The other terminal of the LED goes to GND.

Buzzer Unit

Next, connect the components that make up the buzzer unit, seen in Figure 4.12. These consist of the following:
CHAPTER 4: Setting Up Wireless Connections

A. Arduino Uno
B. Mini breadboard
C. XBee wireless module
D. Buzzer

FIGURE 4.12 The buzzer unit waiting to be closed up. The outer holes are for wall mounting.

Next, use Figure 4.13 as a guide for connecting the various parts:

1. Plug in the XBee and its breakout board into a mini breadboard.
2. Plug in the XBee’s 5V to the 5V on the Arduino, its TX into RX, its RX into TX, and its GND pin to any free GND on the Arduino.

3. Connect the buzzer’s leads to the breadboard as well, as shown in Figure 4.13. You can connect them directly to the Arduino if you want—if you go this route, connect the red wire to pin 8 and the black wire to any free GND.

4. To power the buzzer unit, use an Arduino-compatible wall wart or a 9V battery pack.

Building the Doorbell Enclosures

You next need to build the two enclosures for this project. The outside enclosure (see Figure 4.14) is designed to resist the elements—I hesitate to call it “weatherproof”—whereas the inside enclosure is designed to look good.
CHAPTER 4: Setting Up Wireless Connections

FIGURE 4.14 The outside enclosure is made out of bent acrylic on a wooden back.

Button Unit Enclosure

The button unit is the module that is on the outside of the door—press the button to make
the buzzer buzz! To make an enclosure, all you need is a box with a hole for the button,
but I’ll show you how you can make one of your own. The one I made consists of a sheet of
acrylic that I bent by heating it up, and then laying the flexible acrylic over a metal pipe to
form a half-circle. I added the acrylic to a wooden back (refer to Figure 4.11) to finish the
enclosure. Here are the steps:

1. Laser-cut the top, bottom, and back out of quarter-inch medium-density fiberboard
 (MDF). If you don’t have access to a laser cutter, you can create a box out of pieces
 of wood, repurpose another container as an enclosure, or buy a commercial project
 enclosure.

2. Laser-cut the front from 5mm acrylic. (If you want the design files I used to output the
 wooden backing as well as the acrylic front, you can find them at https://github.com/
n1/Arduino-For-Beginners.)
3. Glue the top and bottom wood pieces to the back wood piece. You might want to paint the wood!

4. Attach the completed electronics as shown earlier in Figures 4.10 and 4.12. Use the #4-40 bolts for the Arduinos and hot glue for the buzzer, battery pack, and mini breadboards.

 If you aren’t using a laser cutter, you’ll need to drill mounting holes in the acrylic. You might want to mock it up using a sheet of paper first.

5. Bend the acrylic front plate as described in the next section, “Bending Acrylic.”

6. Attach the acrylic plate to the front so that the button can be pressed through the hole in the plastic.

7. Install the unit outside your door of choice, and eagerly await your first visitor!

Bending Acrylic

For the outside button unit enclosure, you heat-bend acrylic (see Figure 4.15) to form a casing. This task is easy to learn because you don’t really need anything unusual or uncommon.

FIGURE 4.15 Bending acrylic is easy and gives a nice effect!
Acrylic (also known as Plexiglas) is also easy to heat and re-form. After it gets to the right temperature—not too hot or cool—the acrylic starts to bow and flex. When it gets a little hotter, it softens. That’s when you bend it how you want it, and let it cool into an awesome new shape!

You need three things to get started:

- **The acrylic to be bent**—I suggest 1/8 inch, though you might have luck with the thicker stuff.
- **A form**—This is the surface over which the hot acrylic will cool and harden. You want this close to the actual curve you want the plastic to hold. The easiest form of all is the edge of a table. I used a rounded form—a pipe—to form the acrylic face seen in Figure 4.7. If you go this route, you’ll need to find a form that matches the curve of the shape you’re looking for.
- **A source of heat**—Heat guns (see Figure 4.16) and propane torches are common tools, though you can purchase commercial acrylic-heating strips (TAP Plastics has one for $80, P/N 169). Finally, you could heat up the plastic in an oven. This last technique is not for the faint of heart and you should definitely monitor the plastic closely so it doesn’t bubble or scorch.

FIGURE 4.16 Using a heat gun to soften acrylic.
Although you could conceivably use any heat-resistant surface to form your acrylic—or even build your own out of pieces of wood—in some respects, using the edge of the table is an easy choice because it bends the plastic perfectly, using gravity and the table’s surface to make a fairly perfect 90-degree bend. To bend plastic using the “edge of the table” technique, follow these steps:

1. As shown in Figure 4.17, position the acrylic so the edge of the table is right where you want the plastic to bend. You’ll definitely want to weigh it down so it doesn’t move.

![Figure 4.17](image)

FIGURE 4.17 As the acrylic heats up, it starts to bend.

When it gets hot enough, gravity starts pulling the soft acrylic down, as shown in Figure 4.17.

2. Position the acrylic how you want it to look—and work quickly because after it cools, it becomes just as brittle as it was before. Don’t try to re-bend it without applying more heat!
Buzzer Unit Enclosure

The buzzer unit doesn’t use plastic, because who wants plastic in their home? Instead, you can use a simple arrangement of wooden panels separated by bolts. I laser-cut two pieces of wood, one bigger than the other. (I ended up hand-drilling four additional holes, as shown in Figure 4.18, after changing my mind on how to proceed.)

![Figure 4.18](image)

FIGURE 4.18 I used laser-cut wood for the buzzer unit’s enclosure.

To connect the two pieces I used brass bolts, #10-24 and 2.5" long, with brass washers and nuts. This enclosure is considerably easier to do than the other enclosure and it looks great!

Wireless Doorbell Code

Upload the following code to your Arduinos. If you’re having difficulty figuring out how to upload your sketches, see Chapter 5 to learn how. As before, you can download the code from https://github.com/n1/Arduino-For-Beginners.
Wireless Doorbell Code

The Button Unit sketch consists of a loop that waits for the button to be pressed, then transmits a wireless alert.

NOTE

Code Available for Download

You don't have to enter all of this code by hand. Simply go to https://github.com/n1/Arduino-For-Beginners to download the free code.

```cpp
#include <Wire.h>

const int buttonPin = 8;
int buttonState = 0;

void setup()
{
  Serial.begin(9600);
  pinMode(buttonPin, INPUT_PULLUP);
}

void loop()
{
  if (Serial.available() >= 2)
  {
    char start = Serial.read();
    if (start != '*')
    {
      return;
    }

    char cmd = Serial.read();
  }

  buttonState = digitalRead(buttonPin);
  if (buttonState == HIGH) {
    Serial.write('*');
    Serial.write(1);
  }
  else {
```
Buzzer Unit Code

The Buzzer Unit code is similarly plain. The loop monitors serial traffic, then sounds the buzzer when it detects the command from the Button Unit.

Code Available for Download

You don't have to enter all of this code by hand. Simply go to https://github.com/n1/Arduino-For-Beginners to download the free code.

```cpp
#include <Wire.h>

const int buzzerPin = 13;

void setup()
{
    Serial.begin(9600);
    pinMode(buzzerPin, OUTPUT);
}

void process_incoming_command(char cmd)
{
    int speed = 0;
    switch (cmd)
    {
    case 1:
        digitalWrite(buzzerPin, LOW);
        break;
    case 0:
        digitalWrite(buzzerPin, HIGH);
        break;
    }
}
```
void loop() {
 if (Serial.available() >= 2) {
 char start = Serial.read();
 if (start != '*') {
 return;
 }

 char cmd = Serial.read();
 process_incoming_command(cmd);
 }

 delay(50); //limit how fast we update
}

The Next Chapter
So far we’ve been talking the hardware angle, but now it’s time to switch things up! You get to delve into Arduino code in Chapter 5 and learn a bunch of programming techniques as well as the specific formatting you’ll need to successfully write your very own Arduino program.
Symbols

3D printers, plastics, 209-210
80/20, 219

A

accelerometer, 147
acrylic, bending, 109-111
Adafruit Industries, 141
Adafruit Motor Shield, 340
adapting example code, 128
air compressors, 203
Akiba (Chris Wang), 95
aluminum building systems, 219-223
analog sensors, 145
 connecting to digital sensors, 146
antenna, XBee, 94
ArcBotics, Hexy the Hexapod, 5
Arduino, 5-6
 overview, 7
Arduino IDE, 118
 menus, 120
 Edit menu, 120-121
 File menu, 120
 Help menu, 123
 Sketch menu, 121-122
 Tools menu, 122-123
 programming window, 118-119
Arduino Playground, 129-130, 141
 sharing code, 131
Arduino Uno, 6-8, 33
 arithmetic, 133
arrays, 133
assembling
 laser modules, 38
 sensor modules, 38-39
Atari Punk Console, 277
ATmega328 Microcontroller, 7
ATmega328P, 296

B

band saws, metal, 216
barometric sensors, 146-147
Beefcake Relay Control Board, 324-325
Belkin, ESD protection, 63
bending acrylic, 109-111
Bleep Labs, 275
Blink sketch, 124-127
Bluetooth doorbell project, 101-102
 button, 103
 doorbell enclosures, 107-112
 wiring instructions, 103-107
BMP085 barometric sensor, 147
books, programming resources, 141
breadboard blink project, 32-35
breadboard pins, XBee, 95
breadboarding, 27
 assembling circuits with solderless
 breadboards, 27-30
 ground, 30
 jumper wires, 30-32
 power, 30
breakout boards, XBee, 93
Bricktronics MegaShield, 341-342
BubbleBot project, 347-349
code, 356-358
instructions, 349-356
buttons, 11
 Bluetooth doorbell project, 103
buzzers, piezo buzzers, 17

calipers, digital, 191
capacitors, 14
caps (capacitors), 14
cat toy project, 247-250
 enclosures, 252-268
 instructions, 250-251
charging cables, 198
Chibi, 95
ChronoDot, 297
circuit bending, 274
circuits
 assembling with solderless breadboards, 27-30
 ground, 30
 jumper wires, 30-32
 power, 30
 integrated circuits, 20
cleaning up after soldering, 71
CNC (computer numerically controlled) tools, 318-319
CNC mills, 204-206
CNC routers, 302, 318
code
 BubbleBot project, 356-358
digital clock project, 301
 example code, 127
 adapting, 128
 finding, 128-129
 finding in Arduino Playground, 129-130
 finding in libraries, 130
 sharing, 131
 fan controller project, 329
 indoor wind chime project, 316-317
 lava lamp buddy project, 335-338
 mood light code, 159-161
 for Noisemaker project, 293-294
 plant-watering robot project, 185-186
 for pressurized reservoir project, 171
 for pushbutton melody project, 280-281
 stepper turner project, 346-347
 ultrasonic night light project, 246-247
 wireless doorbell code
 button unit code, 113-114
 buzzer unit code, 114-115
 wireless LED code, 99-101
Code.Google.com, 131
comparison operators, 134
conductors, 29
connecting sensors, digital and analog sensors, 146
controlling
 flow of liquid
 peristaltic pumps, 168
 pressurized reservoirs, 167
 solenoid valves, 166-167
 high voltage, 322
 Beefcake Relay Control Board, 324-325
 EMSL Simple Relay Shield, 323-324
 PowerSwitch Tail, 322-323
 motors, 340
 Bricktronics MegaShield, 341-342
 EasyDriver, 341
 Motor Shield, 340
Cupcake CNC 3D printer, 209
curly braces, 126
cutters, 60

data indicators, 8
data LED, XBee, 95
datasheets, electronics, 239-240
DC motors, 15
debugging with serial monitor, 137-139
decrement, 135
Delp, Mickey, 274
desktop vises, 59-60
desoldering, 68-70
desoldering braids, 70
desoldering bulb, 69
Digi International, 92
digital calipers, 191
digital clock project, 298-301
code, 301
digital sensors, 145
 connecting to analog sensors, 146
doorbell enclosures, Bluetooth doorbell project, 107-112
downloading Arduino software, 8
drills, 203

e
EasyDriver, 341
Edit menu, Arduino IDE, 120-121
electricity, safety, 325-326
electro-static discharge (ESD) protection, 62
electronics, 9
 buttons and switches, 11
 capacitors, 14
 flex sensors, 22
 harvesting, 235-237
 integrated circuits, 20
 LEDs (light-emitting diodes), 11
 marking, 238
 datasheets, 239-240
 part numbers, 238-239
 resistor color bands, 240-241
 schematic symbols, 241-242
 motors, 15-16
 piezo buzzers, 17
 plant-watering robot project, 179-180
 potentiometers, 12-13
 relays, 19
 resistors, 13-14
 seven-segment displays, 18
 solenoids, 16
 temperature sensors, 21
EMSL Simple Relay Shield, 323-324
enclosures
 building for laser trip beam project, 41-47
 building for LED strip coffee table project, 76-81
 cat toy project, 252-268
 plant-watering robot project, 181-183
encoders, 148
ESD protection, soldering, 62
Evil Mad Science LLC, 8
example code, 127
 adapting, 128
 finding, 128-129
 Arduino Playground, 129-130
 libraries, 130
 sharing, 131
extruders, plastics, 212

f
fan controller project, 327
 code, 329
 instructions, 328
fans, 62
File menu, Arduino IDE, 120
finding example code, 128-129
 Arduino Playground, 129-130
 libraries, 130
first-aid kits, 199
flashlights, 196
flex sensors, 22
flow of liquid, controlling
 with peristaltic pumps, 168
 with pressurized reservoirs, 167
 with solenoid valves, 166-167
flux-core solder, 58
food safety, pressurized reservoirs, 172
For function, 134-135
FORMUFIT, 174
Freakduino Chibi, 95
Fritzing, 34, 230
fume extractors, 62
functions
For, 134-135
if/else, 136
mapping, 136
max, 136
min, 136
random, 136
serial.begin(), 139
Serial.println(), 139
switch/case, 137
while, 137

gas sensors, 148
GIMP (GNU Image Manipulation Program), 228
GitHub.com, 131
glue
hot glue guns, 196
super glue, 195
grinders, metal, 217
ground, 30
ground bus strip, 29

Hack Factory, 224
Hackerspace, 224
hackerspaces, 225
Hall Effect sensor, 149
hardware, 193
harvesting electronics, 235-237
heat-shrink tubing (HST), 40-41
Help menu, Arduino IDE, 123
hemostats, 61
Hexy the Hexapod, 5
HIGH, 127
high voltage, 322
Beefcake Relay Control Board, 324-325
EMSL Simple Relay Shield, 323-324
PowerSwitch Tall, 322-323
Hitec HS-322HD servo, 249
hole letters and numbers, 29
hot glue guns, 196
HST (heat-shrink tubing), 40-41

IDE (integrated development environment), 118
if/else functions, 136
include, 135
increment, 135
indoor wind chime project, 302-303
code, 316-317
instructions, 304-315
servo horns, 303
Industrial Erector Set, 219
infrared detector project, 50
code for, 51-52
wiring up the PIR and buzzer, 51
infrared sensors, 150, 331
Inkscape, 229
Instructables, 141
integrated circuits, 20
integrated development environment (IDE), 118
interrupts, 135-136
iRobot Scooba, 235

JeeLabs JeeNode, 96
JeeNode, 96
jumper wires, assembling circuits with solderless breadboards, 30-32

K
kerf bending, 162
keywords
HIGH, 127
LOW, 127
void, 126
KiCad PCB Layout software, 230
knives, X-Acto knives, 192
knock sensors, 150
Krazy Glue, 195

L
laser cutters, 200
CNC mills, 205
how to use, 201-202
laser modules, assembling, 38
laser trip beam project, 35-37
assembling the laser module, 38
assembling the sensor module, 38-39
building enclosures, 41-47
code for, 47-48
setting up the trip beam, 49-50
lasers, safety, 36
lathes, 206, 269-271
lava lamp buddy project, 330-331
code, 335-338
instructions, 332-334
lead-free solder, 58
lead solder, 58
LED strip code, LED strip coffee table project, 82-89
LED strip coffee table project, 72
attaching light strips to tables, 75-76
building enclosures, 76-81
controlling LED strips, 82
LED strip code, 82-89
preparing light strips, 73-74
LED strips, controlling for LED strip coffee table project, 82
LEDs (light-emitting diodes), 11
wireless LED activation project, 96-98
LEGO
plastics, 210-211
prototyping, 184-185
LEGO enclosures, 181
LEGO peristaltic pumps, 171
libraries, 139-140
finding code, 130
servo objects, 140
light-emitting diodes. See LEDs
light sensors, 23
light strips
attaching to tables for LED strip coffee table project, 75-76
preparing for LED strip coffee table project, 73-74
lights, ultrasonic night light project, 245-246
code, 246-247
liquid, controlling flow
with peristaltic pumps, 168
with pressurized reservoirs, 167
with solenoid valves, 166-167
LoL (Lots of LEDs), 128
LOW, 127
LushOne synthesizers, 276

M
Mace, Garrett, 153
magnifying glasses, 197
Make, 141
Makeblock, 222
maker spaces, 224-228
MakerCase, 231
Maker2s Notebook, 198
mapping function

marking electronics, 238
datasheets, 239-240
part numbers, 238-239
resistor color bands, 240-241
schematic symbols, 241-242
max, 136
measuring tapes, 190
MegaShield (Bricktronics), 341-342
menus
Arduino IDE, 120
 Edit menu, 120-121
 File menu, 120
 Help menu, 123
 Sketch menu, 121-122
 Tools menu, 122-123
metal, tools, 214
 aluminum building systems, 219-223
 band saws, 216
 grinders, 217
 plasma cutters, 215
 welders, 218-219
metal inert gas (MIG), 218
MicroRAX, 220
 beams, 77
 corner braces, 78
MIG (metal inert gas), 218
min, 136
mini flashlights, 196
mood light project, 152-158
code, 159-161
Motor Shield (Adafruit), 340
motors, 15-16
BubbleBot project, 347-349
code, 356-358
instructions, 349-356
controlling, 340
 Bricktronics MegaShield, 341-342
 EasyDriver, 341
 Motor Shield, 340
Hitec HS-322HD, 249

powering with TIP-120, 342-343
stepper turner project, 344-346
code, 346-347
multimeters, 188, 233-235
multitools, 189

needle-nose pliers, 61
network time protocol (NTP), 295
noise, 274
Noisemaker project, 282-283
code, 293-294
instructions, 283-292
noisemaking projects
LushOne synthesizers, 276
Noisemaker, 282-283
code, 293-294
instructions, 283-292
Tactile Metronome, 275
Thingamagoop, 275
NTP (network time protocol), 295

Open Beam, 221
open source hardware, 131-133

part numbers, electronics, 238-239
passive infrared (PIR), 50
PCB (printed circuit board), 93, 230
pen style soldering irons, 55
peristaltic pumps, 165
 controlling flow of liquid, 168
piezo buzzers, 17, 150
pinouts, 8
pins, XBee 94
PIR (passive infrared), 50
wiring, 51
plant-watering robot project, 173-174
code, 185-186
electronics, 179-180
enclosures, 181-183
instructions, 175-179
plasma cutters, 215
plastic, tools, 208-209
3D printers, 209-210
extruders, 212
LEGO, 210-211
Sugru, 211
Tamiya, 213
vacuum formers, 211
Playground, 129-130
pliers, needle-nose pliers, 61
potentiometers, 12-13
pots (potentiometers), 12-13
power, 30
power bus strip, 29
power indicator, 8
power jack, 8
power LED, XBee, 94
power regulators, XBee, 95
powering motors with TIP-120, 342-343
PowerSwitch Tail, 322-323
pressurized reservoir project, 169-171
code for, 171
pressurized reservoirs, 165
controlling flow of liquid, 167
printed circuit board (PCB), 93, 230
private, 140
programming
arithmetic, 133
arrays, 133
Blink sketch, 124-127
comparison operators, 134
example code, 127
adapting, 128
finding, 128-130
sharing, 131
For function, 134-135
if/else, 136
include reference, 135
increment/decrement, 135
interrupts, 135-136
mapping function, 136
random, 136
resources, 141
switch/case, 137
while function, 137
programming window, Arduino IDE, 118-119
projects
Bluetooth doorbell, 101-102
button, 103
doorbell enclosures, 107-112
wiring instructions, 103-107
breadboard blink, 32-35
BubbleBot, 347-349
code, 356-358
instructions, 349-356
cat toys, 247-250
codes, 252-268
instructions, 250-251
digital clock project, 298-301
code, 301
fan controllers, 327
code, 329
instructions, 328
indoor wind chime, 302-303
code, 316-317
instructions, 304-315
servo horns, 303
erk bend, 162
laser trip beam, 35-37
assembling the laser module, 38
assembling the sensor module, 38-39
building enclosures, 41-47
code for, 47-48
setting up the trip beam, 49-50
lava lamp buddy, 330-331
 code, 335-338
 instructions, 332-334
LED strip coffee table, 72
 attaching light strips to tables, 75-76
 building enclosures, 76-81
 controlling LED strips, 82
 LED strip code, 82-89
 preparing light strips, 73-74
mood lights, 152-158
Noisemakers, 282-283
 code, 293-294
 instructions, 283-292
noisemaking projects, pushbutton melody, 278-281
plant-watering robot, 173-174
 code, 185-186
 electronics, 179-180
 enclosures, 181-183
 instructions, 175-179
pressurized reservoirs, 169-171
 code for, 171
stepper turner, 344-346
 code, 346-347
ultrasonic night lights, 245-246
 code, 246-247
wireless LED activation, 96-98
projects infrared detectors, 50
 code for, 51-52
 wiring up the PIR and buzzer, 51
prototypes, LEGO, 184-185
pushbutton melody project, 278-279
 code, 280-281
PVC (polyvinyl chloride), 174-175
relays, 19, 322
 Beefcake Relay Control Board, 324-325
 EMSL Simple Relay Shield, 323-324
 PowerSwitch Tail, 322-323
reset button, 8
resistor color bands, 240-241
resistors, 13-14
resources for programming, 141
rotary tools, wood, 202
routers, CNC routers, 318
RTC (real-time clock), 295-297
rules, safety, 24-26
safety
 controlling high voltage, 322
 Beefcake Relay Control Board, 324-325
 EMSL Simple Relay Shield, 323-324
 PowerSwitch Tail, 322-323
electricity, 325-326
 first-aid kits, 199
lasers, 36
lathes, 271
soldering, 55
working with wood, 267
safety rules, 24-26
sanders, 207
schematic symbols, marking electronics, 241-242
scissors, 192
screwdrivers, 193
sensor modules, assembling, 38-39
sensors, 143-146
 accelerometer, 147
 analog, 145
 barometric sensors, 146-147
 connecting digital and analog sensors, 146
digital, 145
 encoders, 148
 flex sensors, 22
random functions, 136
real-time clock (RTC), 295-297
Relay Shield, 8
gas sensors, 148
Hall Effect sensor, 149
infrared, 331
infrared sensors, 150
knock sensors, 150
light sensors, 23
mood light project, 152-158
piezo buzzer, 150
sound sensors, 151
temperature sensors, 21
tilt sensors, 151-152
ultrasonic sensors, 23, 244-245
serial monitor, debugging, 137-139
serial.begin(), 139
Serial.println(), 139
Series 1 (XBee), 93, 96
Series 2 (XBee), 93
servo horns, 303
servo objects, 140
servos, 15
setup, 126
seven-segment displays, 18
sharing example code, 131
Sharp, Iain, 276
Shielded Metal Arc Welding (SMAW), 218
shields, Relay Shield, 8
ShiftBrite module, 153
Simple Relay Shield (EMSL), 323
Sketch menu, Arduino IDE, 121-122
sketchbooks, 198
sketches, uploading, 124
SMAW (Shielded Metal Arc Welding), 218
software
downloading, 8
Fritzing, 230
GIMP, 228
Inkscape, 229
KiCad, 230
MakerCase, 231
solder, 53
choosing, 58-59
flux-core, 58
lead-free solder, 58
lead solder, 58
solid-core, 58
solder pads, 54
solder stand, 63
solder suckers, 69
soldering
cleaning up, 71
cutters and strippers, 60
desktop vises, 59-60
desoldering, 68-70
ESD protection, 62
fans and fume extractors, 62
how to, 53-54, 64-67
needle-nose pliers and hemostats, 61
safety, 55
solder stand, 63
tips for, 71
soldering irons, 190
choosing, 55-57
tinning tips, 57
Weller WESS, 56
solderless breadboards
assembling circuits, 27-30
ground, 30
jumper wires, 30-32
power, 30
solenoid valves, 165
controlling flow of liquid, 166-167
solenoids, 16
solid-core solder, 58
sonar, 243
sound, 274
sound sensors, 151
SparkFun, 141
ADXL362, 147
Beefcake Relay Control Board, 324-325
sponge (for soldering), 63
stepper turner project, 344-346
code, 346-347
steppers, 15
stick welders, 218
strippers, 60
Sugru, plastics, 211
super glue, 195
switch/case, 137
switches, 11
synthesizers, 276

table saws, 206
Tactile Metronome, 275
Tamiya, plastics, 213
temperature sensors, 21
terminal strips, 29
Thingamagoop, 275
TIG welders, 219
tilt sensors, 151-152
time
digital clock project, 298-301
code, 301
indoor wind chime project, 302-303
code, 316-317
instructions, 304-315
servo horns, 303
timer servers, 295
ATmega328P, 296
tinning tips, 57
TIP-12, powering motors, 342-343
toolbox, 188
tools
charging cables, 198
cutters, 60
desktop vises, 59
desoldering braids, 70
desoldering bulb, 69
digital calipers, 191
ESD (electro-static discharge) protection, 62
fans, 62
first-aid kits, 199
flashlights, 196
fume extractors, 62
hardware, 193
harvesting electronics, 235-237
hemostats, 61
hot glue guns, 196
magnifying glasses, 197
measuring tapes, 190
metal, 214
aluminum building systems, 219-223
band saws, 216
grinders, 217
plasma cutters, 215
welders, 218-219
multimeters, 188, 233-235
multitools, 189
needle-nose pliers, 61
plastics, 208-209
3D printers, 209-210
extruders, 212
LEGO, 210-211
Sugru, 211
Tamiya, 213
vacuum formers, 211
scissors, 192
screwdrivers, 193
sketchbooks, 198
solder stands, 63
solder suckers, 69
soldering irons, 190
sponges, 63
strippers, 60
super glue, 195
wire strippers, 194
woodworking, 200
air compressors, 203
CNC mills, 204-206
drills, 203
laser cutters, 200-202
lathes, 206
rotary tools, 202
sanders, 207
table saws, 206
writing utensils, 197
X-Acto knives, 192
Tools menu, Arduino IDE, 122-123
traces, 54
troubleshooting breadboard blink
project, 34
Tungsten Inert Gas Welding (TIG), 219

ultrasonic detection, 243-245
ultrasonic night light project, 245-246
code, 246-247
ultrasonic sensors, 23, 244-245
cat toy project, 247-250
enclosures, 252-256
instructions, 250-251
Uno, 6
uploading sketches, 124
USB jack, 8

vacuum formers, plastics, 211
Valenzuela, Miguel, 171
VEX, 223
Vibrati Punk Console, 277-278
void, 126

Wang, Chris, 95
Wayne and Layne, 275
websites, programming resources, 141
welders, metal, 218-219
Weller WES51, 56
while function, 137
Wi-Fi shield, 296
wire strippers, 194

wireless connections
Bluetooth doorbell project, 101-102
button, 103
doorbell enclosures, 107-112
wiring instructions, 103-107
Freakduino Chibi, 95
wireless doorbell code
button unit code, 113-114
buzzer unit code, 114-115
wireless LED activation project, 96-98
wireless LED code, 99-101
wireless modules
JeeLabs JeeNode, 96
XBee wireless modules, 92
wiring instructions, Bluetooth doorbell
project, 103-107
wiring PIR (passive infrared), 51
woodworking tools, 200
air compressors, 203
CNC mills, 204-206
drills, 203
laser cutters, 200
how to use, 201-202
lathes, 206
rotary tools, 202
Sanders, 207
table saws, 206
writing utensils, 197

X-Acto knives, 192
XBee, 94
antenna, 94
breadboard pins, 95
breakout boards, 93
data LED, 95
pins, 94
power LED, 94
power regulators, 95
Series 1 versus Series 2, 93
versus XBee Pro, 92
wireless LED activation project, 96-98
XBee-equipped bracer, 91
XBee Pro versus XBee, 92
XBee wireless modules, 92

Z

ZigBee, 92