Contents at a Glance

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>Introduction to Troubleshooting</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>Motherboards</td>
<td>23</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>The CPU</td>
<td>55</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>RAM</td>
<td>79</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>Power</td>
<td>103</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>Storage Devices</td>
<td>131</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td>Installing and Upgrading Windows</td>
<td>165</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>Configuring Windows</td>
<td>209</td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td>Maintaining Windows</td>
<td>263</td>
</tr>
<tr>
<td>CHAPTER 10</td>
<td>Troubleshooting Windows</td>
<td>279</td>
</tr>
<tr>
<td>CHAPTER 11</td>
<td>Laptops</td>
<td>315</td>
</tr>
<tr>
<td>CHAPTER 12</td>
<td>Video, Audio, and Peripherals</td>
<td>351</td>
</tr>
<tr>
<td>CHAPTER 13</td>
<td>Printers</td>
<td>391</td>
</tr>
<tr>
<td>CHAPTER 14</td>
<td>Networking</td>
<td>413</td>
</tr>
<tr>
<td>CHAPTER 15</td>
<td>Security</td>
<td>459</td>
</tr>
<tr>
<td>CHAPTER 16</td>
<td>Safety and Professionalism</td>
<td>499</td>
</tr>
<tr>
<td>CHAPTER 17</td>
<td>Taking the Real Exams</td>
<td>513</td>
</tr>
<tr>
<td></td>
<td>Practice Exam 1: CompTIA A+ 220-701</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>Practice Exam 2: CompTIA A+ 220-702</td>
<td>553</td>
</tr>
<tr>
<td></td>
<td>Practice Exam 3: Final Prep for CompTIA A+ 220-702</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>609</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction .. 1
Target Audience .. 1
About the Latest CompTIA A+ Exams 2
About This Book .. 3
 Chapter Format and Conventions 3
 Additional Elements .. 4
 The Hands-On Approach 4
 Goals for This Book 5
Exam Topics .. 6

CHAPTER 1: Introduction to Troubleshooting 9
 The Six-Step A+ Troubleshooting Process 10
 Step 1: Identify the Problem 10
 Step 2: Establish a Theory of Probable Cause (Question the Obvious) .. 11
 Step 3: Test the Theory to Determine the Cause 12
 Step 4: Establish a Plan of Action to Resolve the Problem and Implement the Solution 12
 Step 5: Verify Full System Functionality and if Applicable Implement Preventative Measures 12
 Step 6: Document Findings, Actions, and Outcomes 13
 Cram Quiz .. 13
 Cram Quiz Answers .. 14
 Troubleshooting Examples and Concepts 15
 Troubleshooting Example 1: Display Issue 15
 Troubleshooting Example 2: Power Issue 17
 Some More Troubleshooting Tidbits 18
 Cram Quiz .. 20
 Cram Quiz Answers .. 21
 Additional Reading and Resources 22

CHAPTER 2: Motherboards 23
 Motherboard Components and Form Factors 24
 Motherboard Components 24
 Form Factors .. 34
Installing and Troubleshooting DRAM .. 94
Installing DRAM ... 94
Troubleshooting DRAM ... 98
Cram Quiz ... 100
Cram Quiz Answers ... 101
Additional Reading and Resources .. 102

CHAPTER 5:
Power .. 103

Understanding and Testing Power .. 104
Testing an AC Outlet with a Receptacle Tester 105
Testing an AC Outlet with a Multimeter 106
Cram Quiz ... 108
Cram Quiz Answers ... 109
Power Devices ... 110
Power Strips ... 110
Surge Protectors .. 111
Uninterruptible Power Supplies .. 112
Cram Quiz ... 114
Cram Quiz Answers ... 115
Power Supplies .. 116
Planning Which Power Supply to Use 116
Installing the Power Supply ... 122
Troubleshooting Power Supply Issues 123
Heating and Cooling .. 127
Cram Quiz ... 128
Cram Quiz Answers ... 129
Additional Reading and Resources .. 130

CHAPTER 6:
Storage Devices ... 131

Magnetic Storage Media .. 132
Hard Disk Drives ... 132
Floppy Disk Drives ... 143
Tape Drives ... 145
Cram Quiz ... 146
Cram Quiz Answers ... 147
Optical Storage Media .. 149
Compact Disc (CD) ... 149
CHAPTER 7: Installing and Upgrading Windows

Installing and Upgrading to Windows 7 .. 166
 Windows 7 Versions .. 166
 Windows 7 Minimum Requirements and Compatibility 167
 Windows 7 Installation Methods ... 169
 Installing Windows 7 ... 170
 Upgrading to Windows 7 ... 173
 Verifying and Troubleshooting Windows 7 Installations 174
 Cram Quiz .. 176
 Cram Quiz Answers .. 177

Installing and Upgrading to Windows Vista 178
 Windows Vista Versions .. 178
 Windows Vista Minimum Requirements and Compatibility 179
 Windows Vista Installation Methods .. 181
 Installing Windows Vista ... 183
 Upgrading to Windows Vista .. 188
 Verifying and Troubleshooting Windows Vista Installations 190
 Cram Quiz .. 193
 Cram Quiz Answers .. 195

Installing and Upgrading to Windows XP 196
 Windows XP Versions ... 196
 Windows XP Minimum Requirements and Compatibility 197
 Windows XP Installation Methods ... 198
 Installing Windows XP .. 200
 Upgrading to Windows XP ... 203
 Verifying and Troubleshooting Windows XP Installations 204
CHAPTER 10: Troubleshooting Windows ... 279

Repair Environments and Boot Errors ... 279
 Windows Repair Tools ... 279
 Boot Errors .. 285
 Cram Quiz .. 288
 Cram Quiz Answers ... 289

Windows Tools and Errors .. 290
 Troubleshooting Within Windows .. 290
 Stop Errors .. 298
 Additional Windows Errors and Error Reporting 300
 Restoring Windows ... 301
 The Six-Step Troubleshooting Process Revisited 304
 Cram Quiz .. 305
 Cram Quiz Answers ... 306

Command-Line Tools .. 307
 Windows Command Prompt .. 307
 Recovery Command Prompt .. 310
 Cram Quiz .. 312
 Cram Quiz Answers ... 313

Additional Reading and Resources ... 314

CHAPTER 11: Laptops ... 315

Installing, Configuring, and Troubleshooting Visible Laptop Components ... 316
 Laptop 101 .. 316
 Input Devices ... 318
 Video ... 324
 Audio ... 329
 Optical Discs .. 330
 Power ... 330
 Expansion Devices .. 334
 Communications .. 336
 Cram Quiz .. 338
 Cram Quiz Answers ... 340
Installing, Configuring, and Troubleshooting Internal Laptop Components ... 342
Hard Drives ... 342
Memory .. 343
System Board and CPU 345
Cram Quiz .. 347
Cram Exam Answers 348
Additional Reading and Resources 349

CHAPTER 12:
Video, Audio, and Peripherals 351
The Video Subsystem 351
Video Cards ... 352
Video Displays .. 361
Video Settings and Software 363
Cram Quiz .. 372
Cram Quiz Answers 374
The Audio Subsystem 375
Sound cards ... 375
Installing a Sound Card and Speakers 377
Audio Quality ... 378
Cram Quiz .. 380
Cram Quiz Answers 381
Input/Output, Input Devices, and Peripherals 382
I/O Ports .. 382
Input Devices and Peripherals 386
Cram Quiz .. 388
Cram Quiz Answers 389
Additional Reading and Resources 390

CHAPTER 13:
Printers ... 391
Printer Types and Technologies 392
Types of Printers .. 392
Local Versus Network Printers 397
Cram Quiz .. 397
Cram Quiz Answers 398
Installing, Configuring, and Troubleshooting Printers 399
Printer Installation and Drivers 399
CHAPTER 14: Networking ... 413

Networking Fundamentals .. 413
Configuring IPv4 ... 414
IPv4 Classes .. 417
IPv6 ... 420
Analyzing and Configuring the Network Adapter 422
Network Devices ... 424
Types of Networks ... 426
Common TCP/IP Protocols and Their Ports 427
Cram Quiz .. 430
Cram Quiz Answers ... 431
Network Cabling and Connectors 432
Cram Quiz .. 435
Exam Cram Answers ... 436
Troubleshooting Network Connectivity 437
Command-Line Interface Tools 437
Troubleshooting with Applications 442
Cram Quiz .. 444
Cram Quiz Answers ... 445
Installing and Configuring a SOHO Network 446
Internet and Wireless Connectivity Options 446
Setting Up a SOHO Router and Wireless Network Adapters ... 450
Cram Quiz .. 455
Cram Quiz Answers ... 456
Additional Reading and Resources 457

CHAPTER 15: Security .. 459

Basics of Data Security ... 460
Data Sensitivity and Security Compliance 462
Cram Quiz .. 463
Cram Quiz Answers ... 464
Authentication .. 465
 Usernames and Passwords 465
 Smart Cards and Biometrics 472
 Cram Quiz .. 473
 Cram Quiz Answers ... 474
Malicious Software .. 475
 Types of Malware .. 475
 Preventing and Troubleshooting Malware 477
 Cram Quiz .. 483
 Exam Cram Answers ... 484
File Security .. 485
 Working with Files and Folders 485
 Sharing Folders ... 486
 Encryption ... 492
 Cram Quiz .. 495
 Cram Quiz Answers ... 496
Additional Reading and Resources 497

CHAPTER 16:
Safety and Professionalism .. 499
 Safety and Environmental Procedures 500
 Electrical Safety .. 500
 ESD ... 502
 Physical Safety ... 504
 MSDS and Disposal .. 505
 EMI and RFI ... 506
 Cram Quiz .. 507
 Cram Quiz Answers ... 507
 Professionalism and Communication Skills 508
 Cram Quiz .. 509
 Cram Quiz Answers ... 510
 Additional Reading and Resources 511

CHAPTER 17:
Taking the Real Exams .. 513
 Getting Ready and the Exam Preparation Checklist 513
 Tips for Taking the Real Exam 516
 Beyond the CompTIA A+ Certification 519
Practice Exam 1 .. 521
Practice Exam 2 .. 553
Practice Exam 3 .. 587
Index .. 609
About the Author

David L. Prowse is a computer network specialist, author, and technical trainer. As a consultant, he installs and secures the latest in computer and networking technology. Over the past several years, he has authored several titles for Pearson Education. In addition, over the past decade he has taught CompTIA A+, Network+, and Security+ certification courses, both in the classroom and via the Internet. He runs the website www.davidlprowse.com, where he gladly answers questions from students and readers.
Dedication

To my wife Georgia, for dealing with my absurd deadlines.

Acknowledgments

First, I’d like to thank David Dusthimer who put his faith in me and turned me loose on this project.

Special thanks to Andrew Cupp, my development editor. Drew, your direction and guidance during this project, and your organization of my disoriented words and ideas really helped build what I think is a valuable text. Of course, thanks to everyone else at Pearson who was involved in this project as well!

I’d also like to acknowledge my previous and current readers, students, and visitors to my website. Thank you very much for all of your kind words, input and feedback.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an associate publisher for Pearson IT Certification, I welcome your comments. You can email or write me directly to let me know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do have a User Services group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book’s title and author as well as your name, email address, and phone number. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com
Mail: David Dusthimer
Associate Publisher
Pearson IT Certification
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Welcome to the CompTIA A+ Exam Cram, Fifth Edition. This book prepares you for the CompTIA A+ Essentials Exam (number 220-701), and the CompTIA A+ Practical Application Exam (number 220-702) Imagine if you will, that you are at a testing center and have just been handed the passing scores for these exams. The goal of this book is to make that scenario a reality. I am very happy to have the opportunity to serve you in this endeavor. Together, we can accomplish your goal of attaining the CompTIA A+ certification.

Target Audience

The CompTIA A+ exams measure the necessary competencies for an entry-level IT professional with the equivalent knowledge of at least 500 hours of hands-on experience in the lab or field.

This book is for persons who have experience working with desktop PCs and laptops and want to cram for the A+ certification exam—cram being the key word. This book does not cover everything in the PC world; how could you in such a concise package? However, this guide is fairly thorough and should offer you a lot of insight…and a whole lot of test preparation.

If you do not feel that you have the required experience, have never attempted to troubleshoot a computer, or are new to the field, then I recommend the CompTIA A+ Cert Guide, which goes into much more depth than this text. On a side note, another great reference book that should be on every PC technician’s shelf is the latest edition of Upgrading and Repairing PCs by Scott Mueller, published by Que.

There are essentially two types of people that will be reading this book: those who want a job in the IT field, and those who want to keep their job. For those of you in the first group, the new CompTIA A+ certification can have a powerful career impact, increasing the chances of securing a position in the IT world. For those in the second group, preparing for the exams serves to keep your skills sharp, and your knowledge up-to-date, making you a well-versed and well-sought after technician.

Of course I know that some of you are picking this book up solely for the practice exams, which are by the way located directly after Chapter 17, “Taking the Real Exams,” and more are on the CD. But I recommend against
solely studying the practice questions. This book was designed from the ground up to build your knowledge in such a way that when you get to the practice exams, they will act as the final key to passing the real exams. The knowledge in the chapters is the cornerstone, whereas the practice exam questions are the battlements. Complete the entire book and you will have built yourself an impenetrable castle of knowledge.

About the Latest CompTIA A+ Exams

The latest A+ exams (originally released in 2009) are known as the CompTIA A+ Essentials Exam (number 220-701), and the CompTIA A+ Practical Application Exam (number 220-702). There are quite a few changes and additions to the latest A+ exams including:

- Windows Vista has been incorporated into the new objectives.
- Older operating systems such as Windows 95, 98, Me, and NT have been removed.
- Newer multicore processor technologies such as Core 2 Duo have been added.
- Newer hard drive and memory technologies have been added.
- The A+ troubleshooting process has been updated.
- Increased amount of networking and security topics, with increased difficulty.
- As of January, 2011, CompTIA has released Version 2 of the 220-701 and 220-702 objectives and corresponding exams. This new version includes Windows 7 and IPv6. These topics have been incorporated within this (5th) edition of the book.

This book covers all these changes and more within its covers.

For more information about how the A+ certification can help your career, or to download the latest official objectives, access CompTIA's A+ webpage at http://www.comptia.org/certifications/listed/a.aspx.
Note: Those who have been certified in the most recent version of CompTIA A+ (2006 objectives) by taking 220-601 and one of the following: 220-602, 220-603, and 220-604 exams are eligible to update their currency through taking the CompTIA A+ bridge exam (one exam, BR0-003), which covers the new 2009 objectives.

About This Book

There is a lot of new information (and changing information) on the new A+ exams, so the people at Exam Cram and I decided to start this book from scratch. Every single bit of content is all new. The book is broken down into 17 chapters, each pertaining to particular objectives on the exam. Because the official CompTIA objectives can have very long names that sometimes deal with multiple subjects, I have divided the chapters into more manageable (and memorable) topics. All the questions in this book refer to these topics. Chapter topics and the corresponding CompTIA objectives are listed in the beginning of each chapter.

For the most part, I’ve structured the exam topics in this book to build on one another. Because of this, I suggest that you read this entire book in order to best prepare for the CompTIA A+ exams. In the case that you want to review a particular topic, if your CD practice exam identifies a topic deficiency, for example, the topics are listed at the end of this introduction. In addition, you can use the index or the table of contents to quickly find the concept you are after.

Chapter Format and Conventions

Every Exam Cram chapter follows a standard structure and contains graphical clues about important information. The structure of each chapter includes the following:

- **Opening topics list:** This defines the topics to be covered in the chapter; it also lists the corresponding CompTIA A+ objective numbers.

- **Topical coverage:** The heart of the chapter. Explains the topics from a hands-on and a theory-based standpoint. This includes in-depth descriptions, tables, and figures geared to build your knowledge so that you can pass the exam. The chapters are broken down into between two and four topics each.
Cram Quiz questions: At the end of each topic is a quiz. The quizzes, and ensuing explanations, are meant to gauge your knowledge of the subjects. If the answers to the questions don’t come readily to you, consider reviewing individual topics or the entire chapter. In addition to being in the chapters, you can find a PDF of all the Cram Quiz questions compiled in one place on the CD.

Additional Reading and Resources: At the end of each chapter, I list other sources of information, including books and websites, if you want to learn more about a particular topic.

Exam Alerts, Sidebars, and Notes: These are interspersed throughout the book. Watch out for them!

Additional Elements
Beyond the chapters, there are a few more elements that I’ve thrown in for you. They include:

Practice Exams: There are five practice exams in total. Three of them are directly after Chapter 17 within the book. There is one for each CompTIA A+ exam and the third one—new to this fifth edition—also has questions on the new Windows 7 and IPv6 topics. This exam is also available on the CD. The other two exams are located on the CD that accompanies this book, again, one for each exam.

Cram Sheet: The tear-out Cram Sheet is located right in the beginning of the book. This is designed to jam some of the most important facts you need to know for the exam into one small sheet, allowing for easy memorization.

The Hands-On Approach
For this book, I built a new desktop computer using components that I believe are a good example of what you will see in the field today, and for a while to come; and are representative of the types of technologies that will be covered
in the exams. I refer to the components in this system from Chapter 2, “Motherboards,” onward. I like to put things into context whenever possible. By referencing the parts in the computer during each chapter, I hope to infuse some real-world knowledge and to solidify the concepts you need to learn for the exam. I believe that this more hands-on approach can help you to visualize concepts better and recommend that every PC technician build their own PC at some point (if you haven’t already). This can really help to reinforce the ideas and concepts expressed in the book. I also recommend that you work with multiple computers while going through this book: one with Windows 7, one with Windows Vista, and one with Windows XP. Or, you might attempt to create a dual-boot or three-way-boot on a single hard drive. Another option is to run one computer with one of the operating systems mentioned and virtual machines running the other operating systems. Finally, Windows 7 users might opt to include Windows XP mode, in addition to other solutions.

Within these pages I refer to various ancillary websites, most notably;

- Microsoft’s TechNet—http://technet.microsoft.com
- Microsoft Help and Support—http://support.microsoft.com (previously known as the Microsoft Knowledge Base or MSKB).

As an IT technician, you will be visiting these sites often; they serve to further illustrate and explain concepts covered in this text.

Goals for This Book

I have three main goals in mind while preparing you for the CompTIA A+ exams.

My first goal is to help you understand A+ topics and concepts quickly and efficiently. To do this, I try to get right to the facts that are necessary for the exam. To drive these facts home, the book incorporates figures, tables, real-world scenarios, and simple to-the-point explanations. Also, in Chapter 17, you can find test-taking tips and a preparation checklist that gives you an orderly step-by-step approach to taking the exam. Be sure to complete every item on the checklist! For students of mine that truly complete every item, there is an extremely high pass rate for the exams.

My second goal for this book is to provide you with more than 650 unique questions to prepare you for the exam. Between the Cram Quizzes and the practice exams, that goal has been met, and I think it will benefit you greatly. Because CompTIA reserves the right to change test questions at any time, it is difficult to foresee exactly what you will be asked on the exam; however I think
you will find that a good amount of the questions in this book are similar to the real questions. Regardless, to become a good technician, it is important to know the concept, not just memorize questions. To this effect each question has an explanation and maps back to the topic (and chapter) that was covered in the text. I’ve been using this method for more than a decade with my students (over two thousand of them) with great results.

My final goal is to provide support for this and all my titles, completing the life cycle of learning. I do this through my personal website: www.DavidLProwse.com. It has additional resources for you and is set up to take questions from you about my titles. Anyone can view the additional A+ resources, but you must register to post questions; however, all you need is a valid email address, so join my little community! I’ll try my best to get to your questions ASAP. All personal information is kept strictly confidential.

Good luck to you in your certification endeavors. I hope you benefit from this book. Enjoy!

Sincerely,
David L. Prowse

Exam Topics

Table I.1 lists the exam topics covered in each chapter of the book.

<table>
<thead>
<tr>
<th>Exam Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubleshooting Theory</td>
<td>1</td>
</tr>
<tr>
<td>Troubleshooting Examples and Concepts</td>
<td></td>
</tr>
<tr>
<td>Motherboard Components and Form Factors</td>
<td></td>
</tr>
<tr>
<td>The BIOS</td>
<td>2</td>
</tr>
<tr>
<td>Installing and Troubleshooting Motherboards</td>
<td></td>
</tr>
<tr>
<td>CPU 101</td>
<td>3</td>
</tr>
<tr>
<td>Installing and Troubleshooting CPUs</td>
<td></td>
</tr>
<tr>
<td>RAM Basics and Types of RAM</td>
<td>4</td>
</tr>
<tr>
<td>Installing and Troubleshooting DRAM</td>
<td></td>
</tr>
<tr>
<td>Understanding and Testing Power</td>
<td>5</td>
</tr>
<tr>
<td>Power Devices</td>
<td></td>
</tr>
<tr>
<td>Power Supplies</td>
<td></td>
</tr>
<tr>
<td>Magnetic Storage Media</td>
<td>6</td>
</tr>
<tr>
<td>Optical Storage Media</td>
<td></td>
</tr>
<tr>
<td>Solid State Storage Media</td>
<td></td>
</tr>
<tr>
<td>Exam Topic</td>
<td>Chapter</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Installing and Upgrading to Windows 7</td>
<td>7</td>
</tr>
<tr>
<td>Installing and Upgrading to Windows Vista</td>
<td></td>
</tr>
<tr>
<td>Installing and Upgrading to Windows XP</td>
<td></td>
</tr>
<tr>
<td>Windows User Interfaces</td>
<td>8</td>
</tr>
<tr>
<td>System Tools and Utilities</td>
<td></td>
</tr>
<tr>
<td>Files, File Systems, and Disks</td>
<td></td>
</tr>
<tr>
<td>Updating Windows</td>
<td>9</td>
</tr>
<tr>
<td>Maintaining Hard Disks</td>
<td></td>
</tr>
<tr>
<td>Repair Environments and Boot Errors</td>
<td>10</td>
</tr>
<tr>
<td>Windows Tools and Errors</td>
<td></td>
</tr>
<tr>
<td>Command-Line Tools</td>
<td></td>
</tr>
<tr>
<td>Installing, Configuring, and Troubleshooting Visible Laptop Components</td>
<td>11</td>
</tr>
<tr>
<td>Installing, Configuring, and Troubleshooting Internal Laptop Components</td>
<td></td>
</tr>
<tr>
<td>The Video Subsystem</td>
<td>12</td>
</tr>
<tr>
<td>The Audio Subsystem</td>
<td></td>
</tr>
<tr>
<td>Input/Output, Input Devices, and Peripherals</td>
<td></td>
</tr>
<tr>
<td>Printer Types and Technologies</td>
<td>13</td>
</tr>
<tr>
<td>Installing, Configuring, and Troubleshooting Printers</td>
<td></td>
</tr>
<tr>
<td>Networking Fundamentals</td>
<td>14</td>
</tr>
<tr>
<td>Network Cabling and Connectors</td>
<td></td>
</tr>
<tr>
<td>Troubleshooting Network Connectivity</td>
<td></td>
</tr>
<tr>
<td>Installing and Configuring a SOHO Network</td>
<td></td>
</tr>
<tr>
<td>Basics of Data Security</td>
<td>15</td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
</tr>
<tr>
<td>Malicious Software</td>
<td></td>
</tr>
<tr>
<td>File Security</td>
<td></td>
</tr>
<tr>
<td>Safety and Environmental Procedures</td>
<td>16</td>
</tr>
<tr>
<td>Professionalism and Communication Skills</td>
<td></td>
</tr>
<tr>
<td>Getting Ready and the Exam Preparation Checklist</td>
<td>17</td>
</tr>
<tr>
<td>Tips for Taking the Real Exam</td>
<td></td>
</tr>
<tr>
<td>Beyond the CompTIA A+ Certification</td>
<td></td>
</tr>
</tbody>
</table>
This page intentionally left blank
The central processing unit, or CPU, is quite often referred to as the “brain” of the computer. Today’s CPUs are like superbrains! A typical CPU today runs at 3GHz or higher, use two or more cores, and some can easily process 50 billion operations per second. That’s a good deal more than we would have seen just 5 years ago. Some mornings I have trouble processing the thought \textit{need coffee}! Of course we know that the human brain is much more sophisticated and functional than a CPU, but the CPU wins out when it comes to sheer calculating power.

You might hear the CPU referred to as a microprocessor, which technically it is. It’s a much smaller version of the processors that were used 50 years ago. And although microprocessor might be a more accurate term, it has become more acceptable to refer to it as CPU, which this chapter does. However, you also see CPU manufacturers such as Intel refer to them as processors, so for all intents and purposes, the three terms mean the same thing. Keep in mind that a computer has other processors used by video cards and elsewhere, but know that the CPU is the main processor.

This chapter discusses some CPU technologies and cooling methods and talks about the models of CPUs offered by Intel and AMD. Afterward, the chapter demonstrates how to install and troubleshoot the CPU.
CPU 101

The CPU is often the most-expensive component in the computer; it’s also one of, if not *the*, most important. The CPU’s main function is to execute instructions or programs. Its speed, or *clock rate*, is measured in Hertz. For example, at 2.66GHz, a CPU operates at 2.66 billion cycles per second; we speak more to this concept in a moment. But although the speed of the CPU might be important, other factors should also play into your decision when choosing a CPU, including the chipset on the motherboard, *CPU technology*, and the *brand of CPU*. Chapter 2, “Motherboards,” covers chipsets, but let’s go ahead and talk about the various CPU technologies and brands of CPUs now.

CPU Technology

CPU technology is a key factor when considering a CPU. It all comes back to the motherboard; the CPU must be compatible with the motherboard in a number of ways. It is important to think about the speed (clock rate) of the CPU you want to use and whether that speed can be supported by the motherboard, and if the CPU fits in the motherboard’s socket. Also, a decision has to be made as to whether to use a 32-bit or 64-bit CPU, and choose either a single-core or multi-core CPU; this will be based off the motherboard and the type of operating system you plan to install. Getting deeper into the technical side of the CPU, you might want to know the amount of cache included with the CPU, and the amount of power it requires.

Clock Rate

The *clock rate* is the frequency (or speed) of a component. It is rated in cycles per second and measured in hertz (Hz). For all practical purposes, the term clock rate is the same as the more commonly used term: *clock speed*.

Components are sold to consumers with a *maximum* clock rate, but they don’t always run at that maximum number. To explain, let me use a car analogy. The CPU is often called the “engine” of the computer, like a car engine. Well, your car’s speedometer might go up to 120MPH, but you’ll probably never drive at that maximum—for a variety of reasons! When it comes to CPUs, the stated clock rate is the *maximum* clock rate, and the CPU usually runs at a speed less than that; in fact, it can run at any speed below the maximum.

Now, we’re all familiar with speeds such as 2.4GHz, 3.0GHz, or 3.2GHz. But what is the basis of these speeds? Speed can be broken down into three categories that are interrelated:
- **Motherboard four clock speed**: The base clock speed of the motherboard. Also referred to as the system bus speed, this speed is generated by a quartz oscillating crystal soldered directly to the motherboard. For example, the base clock speed on the motherboard used in Chapter 2 is 333MHz.

- **External clock speed**: This is the speed of the front side bus (FSB), which connects the CPU to the Memory Controller Hub (northbridge) on the motherboard. This is usually variable and depends on the CPU you install. In addition, it is determined from the base clock speed of the motherboard. For example, our motherboard’s maximum external clock speed (or FSB) is 1333MHz. Simply put, this means that it is transferring four times the amount of data per cycle as compared to the original base clock speed. 333 MHz × 4 = 1,333MHz.

- **Internal clock speed**: This is the internal speed of the CPU. For this book I purchased the Intel Q8400 CPU that is rated at 2.66GHz. The CPU uses an internal multiplier that is also based off the motherboard base clock. The multiplier for this CPU is 8. The math is as follows: base clock speed × multiplier = internal clock speed. In our example, that would be 333MHz × 8 = 2.66GHz. Our motherboard can support faster CPUs also, for example, the Intel Q9650 that has an internal clock speed of 3.00GHz. This means that it has a multiplier of 9 (3.00GHz / 333MHz = 9). Some motherboards allow for overclocking (not ours), which enables the user to increase the multiplier within the BIOS, thereby increasing the internal clock speed of the CPU. This could possibly cause damage to the system, analogous to blowing the engine of a car when attempting to run a 10 second ¼ mile. So approach overclocking with caution.

Note

Quite often motherboard manufacturers state only the internal and external clock speeds (CPU and FSB); you might need to dig for more information concerning the base clock speed. To make matters more confusing, some manufacturers refer to the FSB as the system bus, but you can tell the difference. Just remember that the FSB is calculated from the base clock of the motherboard. Quite often, it’s multiplied by four. Currently, FSBS are between 800MHz and 1600MHz.

However, the external clock speed (FSB) isn’t actually a factor for AMD CPUs or newer Intel Core i7 CPUs because they have essentially done away with the FSB. Intel just recently started using the QuickPath Interconnect (QPI) technology in newer motherboards.
32-Bit Versus 64-Bit

The bulk of today's CPUs are 64-bit; it's a type of CPU architecture that incorporates registers that are 64 bits wide. These registers, or temporary storage areas, allow the CPU to work with and process 64-bit data types and provide support for up to one-terabyte of platform address space. 64-bit CPUs have been available for PCs since 2003. Examples of 64-bit CPUs include the AMD Phenom and Intel Duo Core CPUs.

The predecessor to the 64-bit CPU was the 32-bit CPU. Intel started developing well-known 32-bit CPUs as early as 1985 with the 386DX CPU (which ran at a whopping 33MHZ!), and AMD did likewise in 1991 with the Am386. A 32-bit CPU can't support nearly as much address space as a 64-bit CPU; 32-bit is limited to 4GB. Most editions of Windows are available in both 32-bit and 64-bit versions.

You will probably still see 32-bit technologies (such as the Pentium 4) in the field; however, due to applications' ever-increasing need for resources, these older CPUs continue to diminish, whereas 64-bit technologies (such as Core 2 Duo) will become more prevalent.

You might hear of the terms x86 and x64. x86 refers to older CPU names that ended in an 86—for example, the 80386 (shortened to just 386), 486, or 586 CPU and so on. Generally, when people use the term x86, they refer to 32-bit CPUs that enable 4GB of address space. x64 (or x86-64) refers to newer 64-bit CPUs that are a superset of the x86 architecture. This technology can run 64-bit software and 32-bit software and can address a maximum of 1TB.

Windows Vista and Windows XP come in 64-bit and 32-bit versions so that users from both generations of computers can run the software efficiently. Windows 2000 Professional was designed for 32-bit CPUs only.

Sockets

The socket is the electrical interface between the CPU and the motherboard. It attaches directly to the motherboard and houses the CPU. It also physically supports the CPU and heat sink and enables for easy replacement of the CPU.

The socket is either made of plastic or metal, with metal contacts for connectivity to each of the pins/lands of the CPU. A metal lever (retaining arm) locks the CPU in place. Figure 3.1 shows an example of an unlocked socket.
Historically the socket has been considered a ZIF, short for zero insertion force. This means that the CPU should connect easily into the socket, with no pressure or force involved during the installation. Installing the CPU into these ZIF sockets is kind of like moving a planchette over a Ouija board until the CPU falls into place! Today's newer Land Grid Array (LGA) sockets require you to place the CPU into the socket housing, but it still doesn’t require much force at all. The socket will have many pin inserts, or lands (on newer sockets), for the CPU to connect to. Pin 1 can be found in one of the corners and can be identified by one or more missing pins or pinholes depending on the type of socket. This helps you to orient the CPU, which also has the missing pin(s), or an arrow, in the corresponding corner. Here are two types of sockets you should know for the exam:

- **PGA**: Pin Grid Array sockets accept CPUs that have pins covering the majority of their underside. The pins on the CPU are placed in the pinholes of the socket, and the CPU is locked into place by a retaining arm. PGA has been in use since the late ‘80s, and is still in use on some motherboards today, but is quickly giving way to LGA.

- **LGA**: Land Grid Array sockets use lands that protrude out and touch the CPU’s contact points. This newer type of socket (also known as Socket T) offers better power distribution and less chance to damage the CPU compared to PGA. LGA has been used since the later versions of Pentium 4 and is commonly used today.

The CPU and socket must be compatible. For example, the motherboard we use has an LGA775 CPU socket, which is common but not the only socket
that Intel uses on its motherboards. The Q8400 CPU we use is designed to fit into the LGA775 socket, and several other CPUs are capable of fitting into this socket as well, but not all. For example some of Intel’s Extreme CPUs are packaged differently and might need a different socket, such as the LGA771, which means a different motherboard must be used. Common sockets used by AMD are the Socket AM2 and AM2+.

ExamAlert

When purchasing a CPU, make sure that it is compatible with the motherboard’s socket.

CPU Cache

Several types of cache are used in computers, but CPU cache is a special high-speed memory that reduces the time the CPU takes to access data. By using high-speed static RAM (SRAM) and because the cache is often located directly on, or even in the CPU, CPU cache can be faster than accessing information from dynamic RAM (DRAM) sticks. However, it will be limited in storage capacity when compared to DRAM. Cache is divided into levels:

- **Level 1:** L1 cache is built in to the CPU and gives fast access to the most frequently used data. This level cache is the first one accessed by the CPU and is usually found in small amounts. However, it is the fastest cache to be found, offering the lowest latency of any of the types of cache. One of the reasons for this is that it resides within the CPU core. Our Q8400 CPU has 4×32KB of L1 cache; 32KB for each core. You can find more information about multi-core technology later in this chapter.

- **Level 2:** L2 cache can be built on to the CPU or placed on a separate chip on the motherboard. L2 cache is accessed after L1 cache, and it serves the CPU with less frequently used data in comparison to L1 but still more frequently used than DRAM data. L2 cache feeds the L1 cache, which in turn feeds the CPU. L2 is not as fast as L1 cache but is superior to DRAM sticks. Today’s CPUs have the L2 cache directly on-die, and the cache takes up the majority of the CPU’s real estate. The Q8400 CPU we use for our build has a total of 4MB L2 cache.
Level 3: L3 cache comes in the largest capacities of the three types of cache and has the most latency; therefore, it is the slowest. If the CPU can’t find what it needs in L1, it moves to L2 and finally to L3. Or you could think of it this way: L3 cache feeds L2 cache, which feeds L1 cache, which in turn feeds the CPU with data. If the CPU can’t find the data it is seeking, it moves on to the DRAM sticks. L3 cache could be on-die or on-board, but most of today’s CPUs (if they use it at all) have it on-die. Newer AMD CPUs utilize a large amount of L3 cache, but most Intel CPUs do not use it, although this could obviously change in the future.

Generally, the more cache the better. The less the CPU needs to access DRAM, the faster it can calculate data.

Hyper-Threading

Intel’s Hyper-Threading (HT) enables a single CPU to accept and calculate two independent sets of instructions simultaneously, simulating two CPUs. The technology was designed so that single CPUs can compete better with true multi-CPU systems but without the cost involved. In an HT environment, only one CPU is present, but the operating system sees two virtual CPUs and divides the workload, or threads, between the two.

Hyper-Threading began during the Pentium 4 days, but is not used in Intel’s Core 2 CPUs. However, in 2009 it made a return with the Core i7 CPU.

Multi-Core Technologies

Whereas HT technology simulates multiple CPUs, *multi-core* CPUs physically contain two or more actual processor cores, in one CPU package. These

ExamAlert

Know the difference between L1 and L2 cache for the exam.

Note

Don’t confuse Hyper-Threading with HyperTransport used by AMD. HyperTransport is a high-speed, low latency, point-to-point link that increases communication speeds between various devices; AMD uses it so that CPUs can access system memory more efficiently.
newer CPUs can have 2, 4, or even 8 cores, each acting as a single entity, but in many cases sharing the CPU cache. This enables for more-efficient processing of data. Not only is less heat generated, but also a 1.8GHz dual-core CPU can process more data per second than a 3.6GHz single-core CPU.

Current examples of multi-core CPUs include Intel’s Core 2 Duo, Core 2 Quad, and Core 2 Extreme, and AMD’s X2 and Phenom CPUs. Intel’s new i7 Core CPUs combine multi-core technology with Hyper-Threading enabling for as many as eight simultaneous threads in a single CPU package. It just goes on and on!

ExamAlert

Know the differences between Hyper-Threading and multi-core technologies for the exam. Hyper-Threading enables a single core CPU to calculate two instruction sets simultaneously, whereas multi-core CPUs calculate two or more instruction sets simultaneously, one instruction set per core.

Power Consumption

Power consumption of CPUs is normally rated in watts. For example, the Q8400 is rated as a 95 watt-hour CPU. This rating is known as *thermal design point (TDP)*, and it signifies the maximum power that the computer’s cooling system needs to dissipate heat generated by the CPU. This doesn’t mean that it always uses that much power, but it should play into your decision when planning what power supply to use and what kind of cooling system. For more information on power supplies, see Chapter 5, “Power.” One hundred watts, or thereabouts, is a common amount for multi-core CPUs. They are more efficient than their predecessor single-core CPUs, such as the Pentium D that could use as much as 215 watts.

Because we are talking electricity, another important factor is voltage. CPUs are associated with a voltage range; for example, the Q8400 ranges from 0.86V—1.28V. It is important to monitor the voltage that is received by the CPU; you can do this in the BIOS. If the CPU goes beyond the specified voltage range for any extended length of time, it *will* damage the CPU. This becomes especially important for overclockers.

Brands of CPUs

For the average user, it doesn’t matter too much which CPU you go with. However, for the developer, gamer, video editor, or musician, it can make or
break your computer’s performance. Although the CompTIA A+ objectives cover only Intel and AMD (Advanced Micro Devices), you should be aware that there are others in the market. Intel and AMD dominate the PC and laptop arena, but other companies such as VIA have made great inroads into niche markets and are moving deeper into the laptop/mobile markets as well. CPU manufacturers use the make/model system. For example, the CPU we use is the Intel (make) Core 2 Quad Q8400 Yorkfield (model).

Intel Versus AMD

Intel and AMD are both good companies that make quality products, which leads to great competition. Which is better? In all honestly, it varies and depends on how you use the CPU. You can find advocates for both (albeit subjective advocates), and the scales are constantly tipping back and forth. On any given day, a specific Intel CPU might outperform AMD, and 3 months later, a different AMD CPU will outperform an Intel. It’s been that way for years now. Table 3.1 and Table 3.2 give a synopsis of currently offered CPUs by the two manufacturers, with the latest at the top and the oldest at the bottom. All these are 64-bit CPUs.

TABLE 3.1 Comparison of Intel CPUs (as of July, 2009)

<table>
<thead>
<tr>
<th>Intel CPU</th>
<th>Cores</th>
<th>Speed</th>
<th>L2 Cache</th>
<th>Bus Speed (FSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core i7 Extreme</td>
<td>4</td>
<td>3.29–3.33GHz</td>
<td>8MB</td>
<td>—</td>
</tr>
<tr>
<td>Core i7</td>
<td>4</td>
<td>2.66–3.06GHz</td>
<td>8MB</td>
<td>—</td>
</tr>
<tr>
<td>Core 2 Extreme</td>
<td>4</td>
<td>2.66–3.2GHz</td>
<td>4–12MB</td>
<td>1066–1600MHz</td>
</tr>
<tr>
<td>Core 2 Quad</td>
<td>4</td>
<td>2.4–3.0GHz</td>
<td>4–12MB</td>
<td>1066–1333MHz</td>
</tr>
<tr>
<td>Core 2 Duo</td>
<td>2</td>
<td>1.8–3.33GHz</td>
<td>2–6MB</td>
<td>800–1333MHz</td>
</tr>
</tbody>
</table>

Note

The Core i7 does away with the FSB. This is because Intel added an on-die memory controller (memory controller added directly to the CPU). Core i7 setups use a different chipset (for example the X58); within this chipset the QuickPath Interconnect (QPI) makes the connection between the CPU and the northbridge. The northbridge is referred to as the IOH (Input/Output Hub). However, you will probably not see questions concerning Core i7 on the exam because it is a fairly new technology.
TABLE 3.2 Comparison of AMD CPUs (as of July, 2009)

<table>
<thead>
<tr>
<th>AMD CPU</th>
<th>Cores</th>
<th>Speed</th>
<th>L2 Cache</th>
<th>L3 Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenom II X2, X3, X4</td>
<td>2−4</td>
<td>2.4–3.1GHz</td>
<td>512KB</td>
<td>Maximum of 6144KB</td>
</tr>
<tr>
<td>Phenom X4</td>
<td>4</td>
<td>1.8–2.6GHz</td>
<td>512KB</td>
<td>2048KB</td>
</tr>
<tr>
<td>Phenom X3</td>
<td>3</td>
<td>1.9–2.5GHz</td>
<td>512KB</td>
<td>2048KB</td>
</tr>
<tr>
<td>Athlon X2 and II X2</td>
<td>2</td>
<td>1.9–3.1GHz</td>
<td>512KB</td>
<td>—</td>
</tr>
</tbody>
</table>

Note

All the AMD models listed have an on-die memory controller and use HyperTransport technology instead of a front side bus. AMD CPUs utilize L3 cache whereas Intel CPUs do not; however, AMD CPUs in general use less L2 cache than Intel.

Whatever CPU you choose, make sure that you get a compatible motherboard. A few things to watch for are compatibility with the FSB (if applicable), chipset, socket type, and voltage. However, Intel and AMD have tools on their websites that make it easy for you to find compatible motherboards.

Cooling

Now that we know a CPU can effectively use as much electricity as a light bulb, we can understand why it gets so hot. Hundreds of millions of transistors are hammering away in these powerhouses, so we need to keep it and other devices in the computer cool. This is done in a few ways as outlined in this section.

Heat Sinks

The *heat sink* is a block of metal made to sit right on top of the CPU, with metal fins stretching away from the CPU. It uses conduction to direct heat away from the CPU and out through the fins. With passive heat sinks, that’s all there is to it. But with active heat sinks, a fan is attached to the top of the heat sink. The fan plugs into the motherboard for power and usually blows air into the heat sink and toward the CPU helping to dissipate heat through the heat sink fins. More powerful aftermarket CPU fans can be installed as well; just make sure that your power supply can handle the increased power requirements. In today’s motherboards the chipset’s northbridge and southbridge have passive heat sinks, but all new CPUs come with active heat sinks.
Traditionally heat sinks have been made of aluminum, but now you also see copper heat sinks used due to their superior conductivity.

Thermal Compound

The CPU cap and the bottom of the heat sink have slight imperfections in the metal. The best heat dissipation from CPU to heat sink would occur if the metal faces on each were completely and perfectly straight and flat, but you would find that only in a platinum-iridium alloy. So, to fill the tiny gaps and imperfections, thermal compound (aka thermal interface material or TIM) is used. One example of thermal compound is Arctic Silver, available online and at various electronics stores. Now, if this is a new installation, thermal compound is probably not needed. Most new CPUs’ heat sinks have factory applied thermal compound that spreads and fills the gaps automatically after you install the heat sink and boot the computer. However, if you need to remove the heat sink for any reason, for example to clean it, thermal compound should be applied to the CPU cap before re-installing the heat sink, or installing a new heat sink. To do this, first clean any old thermal compound off of the CPU cap and the heat sink with TIM remover such as Akasa TIM-Clean. Then, clean a credit card with isopropyl alcohol or denatured alcohol. Next, apply a small amount of thermal compound to the center of the CPU cap. (This is the top of the installed CPU. You don’t want to get any thermal compound on the actual CPU or motherboard.) With the credit card, spread the thermal compound carefully so that that you end up with a thin layer. Finally, install the heat sink. Try to do so in one shot without jostling the heat sink excessively.

ExamAlert

Reapply thermal compound whenever removing and re-installing a heat sink.

Fans

Case fans are also needed to get the heat out of the case. The power supply has a built-in fan that is adequate for lesser systems. However, multi-core systems should have at least one extra exhaust fan mounted to the back of the case, and many cases today come with one for this purpose. An additional fan on the front of the case can be used as an intake of cool air. If you aren’t sure which way the fan blows, connect its power cable to the computer but don’t mount it; then hold a piece of paper against the fan. The side that pulls the paper toward it should be the side facing the front of the computer when it is
CPU 101

mounted. Some cases come with fans that are mounted to the top, which is also ingenious because heat rises. Another thing to consider is where the heat goes after it leaves the case. If the computer is in an enclosed area, the heat will have a hard time escaping and might end up back in the computer. Make sure there is airflow around the computer case. I have seen some people point the front of their computer toward an AC vent in the summer and even use special exhaust fans (such as bathroom fans) that butt up against the power supply or secondary exhaust fan on the case and lead hot air directly out of the house, but I digress.

Another possibility is a solution Intel developed called the Chassis Air Guide system, which is essentially a hollow tube that leads from the side of the case to the CPU, guiding cool room ambient air toward the CPU. For more information on the Intel Chassis Air Guide and Intel's Thermally Advanced Tested Chassis list, see the following link: http://www.intel.com/go/chassis/.

Of course, three or four fans can make a decent amount of noise, and they still might not be enough for the most powerful computers, especially the overclocked ones, which leads us to our next option.

Liquid Cooling Systems

Although still uncommon, liquid cooled systems are looked at as more of a viable option than they would have been 5 or 10 years ago. And newer water cooling kits can be used to not only cool the CPU, but also the chipset, hard drives, video cards, and more. A kit usually comes with a CPU water block, pump, radiator/fan, PVC tubing, and of course, coolant. The advantages are improved heat dissipation (if installed properly), higher overclocking rates, and support for the latest, hottest CPUs. The disadvantage as you can guess is the risk of a leak that can damage components. Due to the complexity of the installation, and the fact that most computers do not need this level of heat dissipation, liquid cooling is usually employed only by enthusiasts.

Cram Quiz

Answer these questions. The answers follow the last question. If you cannot answer these questions correctly, consider reading this section again until you can.

1. Which of these is the speed of the CPU?
 - A. External clock speed
 - B. FSB
 - C. Internal clock speed
 - D. System bus speed
2. Which of the following are 64-bit CPUs? (Select all that apply.)
 - A. Core 2 Duo
 - B. Phenom II
 - C. Pentium III
 - D. Celeron

3. Which is the fastest cache memory?
 - A. L2
 - B. L3
 - C. HTTP
 - D. L1

4. What does Hyper-Threading do?
 - A. It gives you multiple cores within the CPU.
 - B. It enables for four simultaneous threads to be processed by one CPU core.
 - C. It enables for two simultaneous threads to be processed by one CPU core.
 - D. It is a high-speed connection from the CPU to RAM.

5. What seals the tiny gaps between the CPU cap and the heat sink?
 - A. Thermal jelly
 - B. Peanut butter and jelly
 - C. 3-in-1 house oil
 - D. Thermal compound

6. What is the amount of power required to cool the computer?
 - A. FSB
 - B. TDP
 - C. MMX
 - D. TDK

7. Which kind of socket incorporates “lands” to ensure connectivity to a CPU?
 - A. PGA
 - B. Chipset
 - C. LGA
 - D. Copper
Cram Quiz Answers

1. **C.** The internal clock speed is the speed of the CPU, for example 2.4GHz. The external clock speed is the speed of the FSB, and the system bus speed (base clock) is what the internal clock speed is based off. An example of a base clock system bus speed would be 333MHz.

2. **A and B.** Intel's Core 2 Duo and AMD's Phenom II are both 64-bit CPUs. The Pentium III and Celeron are 32-bit CPUs.

3. **D.** L1 is the fastest cache memory and is located within the CPU’s core.

4. **C.** Hyper-Threading allows for an operating system to send two simultaneous threads to be processed by a single CPU core. The OS views the CPU core as two virtual processors. Multiple cores would infer multi-core technology that means that there are two physical processing cores within the CPU package. The high-speed connection used by AMD from the CPU to RAM is Hyper-Transport.

5. **D.** Thermal compound is used to seal the small gaps between the CPU and heat sink. Did I ever tell you about the time I found grape jelly inside a customer’s computer?

6. **B.** TDP (Thermal design point) is the amount of power required to cool a computer and is linked directly to the amount of heat a CPU creates.

7. **C.** LGA (Land Grid Array) is the type of socket that uses “lands” to connect the socket to the CPU. PGA sockets have pinholes that make for connectivity to the CPU’s copper pins.
Installing and Troubleshooting CPUs

This section delves into the hands-on steps involved when installing or troubleshooting a CPU. Installation of CPUs has actually become easier over time, especially with the advent of LGA sockets. However, troubleshooting a CPU can be just as much of a challenge as ever. It’s important to note that proper installation of a CPU can reduce the amount of CPU failures and the ensuing amount of CPU troubleshooting.

Installing CPUs

As with most computer components, installing a CPU is easy. But you must be careful, it can be easily damaged. Take it slow, and employ proper safety measures. We break it down into some simple steps:

1. **Select a CPU:** If you build a new computer, the CPU needs to be compatible with the motherboard for the type of CPU, speed, socket type, and voltage. If you upgrade a CPU, be sure that it is on the manufacturer’s compatible list (which can be found on its website). This might be the motherboard manufacturer, or it could be a proprietary computer manufacturer (such as HP or Dell).

 Power down the PC, disconnect the power cable (or turn off the kill switch), open the PC, and get your boxes of components ready!

2. **Employ ESD prevention methods:** Use an antistatic strap and mat. Remove the CPU and heat sink from the package and place them on an antistatic bag. (One usually comes with the motherboard, but you should have extra ones handy.) Make sure that the CPU’s lands (or pins) are facing up to avoid damage. Never touch the lands or pins of a CPU. Before touching any components, place both hands on an unpainted portion of the case chassis. For more information on ESD preventative measures, see Chapter 16, “Safety and Professionalism.”

3. **Ready the motherboard:** Some technicians prefer to install the CPU into the motherboard and then install the motherboard into the case. If so, place the motherboard on the antistatic mat. (The mat should be on
a hard flat surface.) If you install the CPU directly into an already installed motherboard, clear away any cables or other equipment that might get in the way or could possibly damage the CPU, heat sink, or fan.

4. **Install the CPU:** Be careful with the CPU! It is extremely delicate! Always touch the case chassis before picking up the CPU. Hold it by the edges (the way you would properly hold a CD) and do not touch any pins, lands, or other circuitry on the CPU. If you need to put it down, put it down on an antistatic mat with the pins/lands facing up. Most of the time a CPU will be installed to either an LGA socket or a PGA socket. The following two bullets show how to install a CPU into each type of socket.

- If you install to an LGA socket, unlock the socket by releasing the retaining arm and swinging it open as far as it can go. Open the socket hatch, unhook it if necessary, and remove any plastic cover. Next, place the CPU into the socket. One corner of the CPU has an arrow that should be oriented with the socket’s missing pin(s); both of these corresponding corners indicate pin 1, as shown in Figure 3.2. Carefully place the CPU into the socket. The lands on the CPU match up with the lands on the socket if it is oriented correctly. Make sure it is flush and flat within the socket. Close the cap, and secure the retaining arm underneath the tab that is connected to the socket, thus securing the CPU. Next, install the heat sink/fan assembly. On LGA sockets these usually have four plastic snap-in anchors. Carefully press each of these into and through the corresponding motherboard holes. Don’t use too much force! Then turn each of them one quarter turn to lock the heat sink in place. Make sure that the heat sink is installed flush with the CPU by inspecting the assembly from the side. You want to be positive of this before turning on the computer because the thermal compound will begin to expand and fill the imperfections right away. Plug the fan into the appropriate motherboard power connector, as shown in Figure 3.3. (These are usually labeled directly on the motherboard, or see your motherboard documentation for details on where to plug in the fan.)

Install the entire motherboard assembly into the case if that is your method of choice.
FIGURE 3.2 Orientation markings on the Q8400 CPU and LGA775 socket

FIGURE 3.3 An installed multi-core CPU with connected fan
If you install to a PGA socket, unlock the socket by moving the retaining arm out and upward until it is at a 90-degree angle to the motherboard. Then gently place the CPU into the ZIF socket. There will be an arrow on one corner of the CPU that should correspond to a missing pin (or arrow) on the socket. Don’t use force; slide the CPU around until it slips into the socket. Look at the CPU from the side and make sure it is flush with the socket. Lock down the retaining arm to keep the CPU in place. Then attach the heat sink/fan assembly to the metal clips that are on the sides of the socket. Make sure that the heat sink is installed flush with the CPU by inspecting the assembly from the side. You want to be positive of this before turning on the computer because the thermal compound will begin to expand and fill the imperfections right away. Attach the power cable for the fan to the motherboard. (See your motherboard documentation for details on where to plug the fan in.)

With some CPUs you might need to lock down the retaining arm after the heat sink/fan is installed. This depends on the CPU. Remember to RTM...read the manual!

Install the entire motherboard assembly into the case if is were your method of choice.

5. **Test the installation:** With the case still open, boot the computer to make sure that the BIOS POST recognizes the CPU as the right type and speed. Halt the POST if necessary to read the details, and when done, enter the BIOS and view the CPU information there as well. If the BIOS doesn’t recognize the CPU properly, check if a BIOS upgrade is necessary for the motherboard. Also make sure that the CPU fan is functional. Then view the details of the CPU within the BIOS. Be sure that the voltage reported by the BIOS is within tolerance. Then access the operating system (after it is installed) and make sure it boots correctly. Complete several full cycles and warm boots. Finally, view the CPU(s) within Windows and with CPU-Z:

- **Within Windows:** Check in the Device Manager to make sure that the CPU is identified correctly. Navigate to Start and right-click on Computer (My Computer in XP); then select Manage
from the drop-down menu. This brings up the Computer Management window. From here locate the Device Manager in the left window pane and click it. Now, from the list in the right window pane, there should be a category named Processors; click the plus sign to expand it, and the CPU you installed should be listed. In Figure 3.4 you can see a different system I am running that has a Core 2 Duo; the CPU shows up as two separate CPUs running at 2.5GHz. You can view similar information in Windows at the System Information window, which can be accessed by pressing Windows+R to open the Run prompt and typing **msinfo32** (in Vista) or **winmsd** (in XP).

| FIGURE 3.4 A Core 2 Duo CPU as shown in the Device Manager |

- **With CPU-Z:** The CPU-Z program can be downloaded from http://www.cpuid.com/cpuz.php; it is freeware that gathers all the information we just saw in the Device Manager and also identifies the voltage, clock speeds, cache memory, and much more. This is the program to use when analyzing and monitoring your CPU, as shown in Figure 3.5. When installed (which is easy), simply run it to analyze your CPU.

Finally, if everything looks okay, close up the case, and consider monitoring the heat during the first few hours of operation. This can usually be done within the BIOS or with third-party applications within Windows. If all went well, congratulate yourself on a job well done!
Troubleshooting CPUs

The most common issue with a CPU is when it isn’t installed properly or securely. This could possibly cause a complete failure when trying to turn the system on. If this happens, always check the power first, just in case. Another possibility is that the system will turn on, and power will be supplied to the system, but nothing else will happen: no POST, no display, no hard drive activity. In either of these situations, after checking power, make sure of the following:

- **Check the Big Four**: Remember that the CPU is part of the big four including the video card, RAM, and motherboard. Be sure to check these other components for simple connectivity problems, which could be the real culprit and not the CPU at all. In fact, always check connections first before taking the CPU assembly apart.

- **Fan is connected and functional**: Some motherboards have a safeguard that disables booting if the fan is defective or not plugged in. Or you might get a message on the screen or other type warning depending on the motherboard. Be sure that the fan is plugged into the correct power connector on the motherboard (or elsewhere), and verify that it turns when the computer is on. If the fan has failed, replacement fans can be purchased; just make sure that the new fan is compatible with the heat sink and motherboard.
- **Heat sink is connected properly**: Make sure that the heat sink is flush with the CPU cap and that it is securely fastened to the motherboard (or socket housing).

- **CPU is installed properly**: Make sure it was installed flush into the socket and that it was oriented correctly. Of course, this means removing the heat sink. If you do so, you should clean off excess thermal compound and reapply thermal compound to the CPU cap before reinstalling the heat sink.

ExamAlert

When troubleshooting the CPU, be sure to first check all connections, and then make sure the fan, heat sink, and CPU are secure and installed properly.

Note

As always, turn off the computer, unplug it, and employ ESD measures before working on the inside of the computer.

Here are a few more possible symptoms of a failing CPU:

- Unexplained crashes during boot up or during use.
- The computer locks after only a short time of use.
- Voltage is near, at, or above the top end of the allowable range.

Sometimes, the CPU is just plain defective. It could have been received this way, or maybe it overheated. Perhaps there was a surge that damaged it, or maybe someone overclocked it too far, and it was the victim of overvoltage (and subsequent overheating). Regardless of these reasons, the CPU needs to be replaced. Now, by default CPUs come with a heat sink and fan, and if that is the case, install the CPU as you normally would. But in some cases, you can save money by purchasing the CPU only and use the existing heat sink. In this case, remember to clean excess thermal compound and then reapply thermal compound; but reapply to the CPU cap, not to the heat sink. If the CPU was installed properly, users don’t usually have many problems with it (aside from the overclockers). Keep this in mind when troubleshooting the CPU, or when troubleshooting an issue that might **appear** to be a CPU issue but is actually something else altogether.
Cram Quiz

Answer these questions. The answers follow the last question. If you cannot answer these questions correctly, consider reading this section again until you can.

1. You are troubleshooting a CPU and have already cut power, disconnected the power cable, opened the case, and put on your antistatic strap. What should you do next?
 - A. Check the BIOS.
 - B. Check connections.
 - C. Remove the CPU.
 - D. Test the motherboard with a multimeter.

2. You have installed the CPU and heat sink/fan assembly. What should you do next?
 - A. Apply thermal compound.
 - B. Boot the computer.
 - C. Plug in the fan.
 - D. Replace the BIOS jumper shunt.

3. What is a possible symptom of a failing CPU?
 - A. CPU is beyond the recommended voltage range.
 - B. Computer won’t boot.
 - C. BIOS reports low temperatures within the case.
 - D. Spyware is installed into the browser.

4. When deciding on a CPU for use with a specific motherboard, what does it need to be compatible with?
 - A. Case
 - B. Socket
 - C. Wattage range
 - D. PCI slots
Cram Quiz Answers

1. B. Check connections first; it is quick, easy, and a common culprit.

2. C. After installing the heat sink/fan assembly, plug in the fan to the appropriate connector on the motherboard.

3. A. If the CPU is running beyond the recommended voltage range for extended periods of time, it can be a sign of a failing CPU. If the computer won’t boot at all, another problem might have occurred, or the CPU might have already failed. Low case temperatures are a good thing (if they aren’t below freezing!) and spyware is unrelated, but we talk about it plenty in Chapter 15, “Security.”

4. B. The CPU needs to be compatible with the socket of the motherboard. The case doesn’t actually make much of a difference when it comes to the CPU. (Just make sure it’s large enough!) There is no wattage range, but you should be concerned with the voltage range of the CPU, and PCI slots don’t actually play into this at all because there is no direct connectivity between the two.
Additional Reading and Resources

Intel official product information:

Mueller, Scott. *Upgrading and Repairing PCs*. Que.
Symbols

% (percentage signs), 217
%username% variable, 217
#1-TuffTEST, 168, 180
3G, 448
4G, 448
32-bit CPU (central processing units), 58
64-bit CPU (central processing units), 58
220-701 CompTIA A+ practice exam
 exam answers, 540-552
 exam questions, 521-539
220-702 CompTIA A+ practice exams
 exam answers, 573-586, 598-608
 exam questions, 553-572, 587-597
802.3ab standard, 424
802.3u standard, 424
802.3z standard, 424
802.11 wireless, 449

A

AC (alternating current), 104
AC outlets
 electrical safety, 500
 regulating output, 107
 testing
 via multimeters, 106, 108
 via receptacle testers, 105
Accelerated Graphics Port (AGP), 352
Acronis True Image, 304
actions, documenting (six-step troubleshooting process), 13
 display issue example, 17
 power issue example, 18
Add/Remove Snap-ins window, 221
address types, IPv6, 421

addresses
 IP addresses, 415
 private addresses, 419
 public addresses, 419

administrative privileges, 221
administrative shares, 487
administrative tools, 220-221
ADSL (Asymmetrical Digital Subscriber Line), 447
Advanced Boot Options menu, 280-281
adware, 477
AGP (Accelerated Graphics Port), 352, 31, 33
AMD CPU (central processing units), 63-64
amperage (A), 104
AMR (audio/modem riser) buses, 32
analyzing network adapters, 422-424
answers to practice exams
 practice exam 1, 540-552
 practice exam 2, 573-586
 practice exam 3, 598-608
anti-malware software, 461
 HDD (hard disk drives) maintenance, 141
 updates, 275
antistatic devices, ESD (electrostatic discharges), 503
antistatic wrist straps, 19, 502
antivirus software, 478, 480-481
anycast addresses, 421
APIPA (automatic private IP addressing), 416
application windows, 212
applications
 troubleshooting network connectivity with, 442-443
Windows applications
 Command Prompt, 219
 Computer, 215-216
 Control Panel, 218
 Network, 218
 PowerShell, 219
 Windows Explorer, 216-218
Archive file attribute, 485
aspect ratio, 367
asymmetric key encryption, 493
Asymmetrical Digital Subscriber Line (ADSL), 447
attrib command, 486
ATX (Advanced Technology Extended)
 motherboards, 24, 35-37
 power supplies, 116-117
audio
 laptop audio subsystem, 329-330
 overview, 375
 quality, 378-379
 sound cards
 installing, 377-378
 overview, 375-376
 speakers, installing, 377
audio clusters, 34
authentication
 biometrics, 473
 BIOS security, 471-472
 definition of, 460
 logon process, 467-469
 passwords
 changing, 466
 password policy, 466-467
 strong passwords, 465
 smart cards, 472
 UAC (User Account Control), 470-471
 usernames, 465
automatic private IP addressing (APIPA), 416
Automatic Updates, 478
AV (antivirus) software, 478, 480-481
Backup and Restore (Windows 7), 272-273
Backup Status and Configuration (Windows Vista), 273
backups, 461. See also restore points
 Windows 7, 272-273
 Windows Vista, 273
 Windows XP, 273
bar code readers, 387
Basic Rate ISDN (BRI), 448
batteries
 disposal of, 505
 laptop batteries, 333
 lithium batteries
 BIOS password resets, 42
 CMOS, 39
Belarc Advisor, 168, 180, 198
biometric devices, 387
biometrics, 473
BIOS (Basic Input Output System), 39, 44-45
 accessing, 40
 configuring, 40-41
 downloading, 43
 flashing, 43-44
 identifying version of, 43
 passwords, resetting, 42
 POST (power-on self-tests), 40
 security, 471-472
 Setup utility, 40-41
 troubleshooting
 memory errors, 99
 motherboard-related issues, 50
 updating, 43
 HDD (hard disk drive)
 maintenance, 275
blackouts, 110
blank paper (printers), troubleshooting, 407
Blu-Ray data storage, 154
Blue Screen of Death (BSOD), 298-300
Bluetooth, 337, 449-450
Boot Device Priority (BIOS boot order), 41
boot disks, 145
boot errors
 Windows Vista Boot Errors, 285-287
 Windows XP/2000 Boot Errors, 287
boot files, 249
boot sector viruses, 476
BOOTMGR is missing (error message), 285
bootrec command, 311
bootstrapping
 BIOS (Basic Input Output System), 39-40
 POST (power-on self-tests), 40
botnets, 477
BRI (Basic Rate ISDN), 448
brownouts, 110
BSOD (Blue Screen of Death), 298-300
 troubleshooting, 99
BTX (Balanced Technology Extended)
 motherboards, 36-37
 power supplies, 118
buses. See also expansion buses
 AGP (Accelerated Graphics Port)
 buses, 31, 33
 AMR (audio/modem riser) buses, 32
 CNR (Communications and Networking Riser) buses, 32
 FSB (Front Side Buses), 28
 external clock speeds, 57
 IDE (Integrated Drive Electronics)
 buses, 28-29
 BIOS configuration, 42
 memory buses, 28
 PCI (Peripheral Component Interconnect) buses, 29, 32
 PCI Express x16 Interface, 28
 PCIe (Peripheral Component Interconnect Express) buses, 31, 33
 SATA (Serial ATA) buses, 29
 speed ratings, 28
cable Internet, 447

cable select drive configurations (PATA), 135

cables, 432-435
 EMI (electromagnetic interference), 506
 physical safety, 504
 RFI radio frequency interference), 506

caches
 CPU, 60-61
 HDD (hard disk drives), 138

cameras, 387

CAS (Column Address Strobe) latency (RAM), 90

case fans, 65-66

cathode ray tube (CRT), 362

causes (problem identification process)
 establishing theory of probable cause, 11
 display issue example, 15-16
 power issue example, 17
 testing theory of probable cause, 12
 display issue example, 16
 power issue example, 17

CD (Compact Discs)
 CD-R, 150
 CD-ROM, 149-150
 installing Windows Vista from, 181
 installing Windows XP from, 198
 CD-RW, 150
 data storage, 149-150, 153

cellular connectivity, 448

Cellular WAN, 337

CF (CompactFlash) cards, 161

changes to computers, identifying (problem identification process), 11

changing passwords, 466

cheat sheets (exam preparation), 515-516

chipsets, 29
 ICH (I/O Controller Hubs), 26
 bus connections, 28
 IDE buses, 28-29
 SATA buses, 29
 IOH (Input/Output Hubs), 26
 MCH (Memory Controller Hubs), 26, 80
 video card chipsets, 356

chkdsk command, 307-308

Class A networks, 418

Class B networks, 418

Class C networks, 418

Class D networks, 418

Class E networks, 418

Classic mode, reverting to, 238

clean power, 107

cleanup programs, HDD (hard disk drives) maintenance, 140, 270-271

clear speaking, 508

clearing data, 461

clock rates, 56-57
 external clock speeds, 57
 internal clock speeds, 57
 motherboards, 57

CMOS (complimentary metal-oxide semiconductors), 39
 password resets, 42

CNR (Communications and Networking Riser) buses, 32

coaxial cable, 435

color depth, 364-365

Command Prompt, 219, 307
 starting/stopping services, 234
 working with directories in, 251-252

Command Prompt option (Recovery Options), 284

command-line interface, opening, 437
commands
attrib, 486
bootrec, 311
chkdsk, 307-308
convert, 308
copy, 311
defrag, 309
diskpart, 309
drwtsn32, 296
dxdiag, 227
edit, 310-311
expand, 311
FDISK/MBR, 480
FIXBOOT, 312
FIXMBR, 312, 480
format, 309
ipconfig, 437-438
net, 441-442
netstat, 440-441
nslookup, 441
ping, 438-439
regedit, 239
regedit32, 239
SFC (System File Checker), 308
SYS, 480
taskmgr, 229
tracert, 439-440
xcopy, 309

communication skills, developing, 508-510
communications, laptop, 336-337
compatibility
DRAM (dynamic random-access memory), 98
power supplies, 116-117
printer installation, 399
compliance, security, 463
Component Video, 354
compression, 485
CompTIA A+, post certification development, 519

CompTIA A+ 220-701 practice exam
exam answers, 540-552
exam questions, 521-539

CompTIA A+ 220-702 practice exams
exam answers, 573-586, 598-608
exam questions, 553-572, 587-597

Computer Management, starting/stopping services, 233

Computer window, 215-216
comsetup.log, 205

configuring
BIOS (Basic Input Output System), 40-41, 472
IPv4, 414-417
network adapters, 422-424
password policy, 466-467
printers, 400
managing print jobs, 401
managing printer permissions, 405
pooling printers, 404
print spooling options, 402-403
separator pages, 406
setting printer priority, 401-402
sharing printers, 405
XPS (XML Paper Specification) feature (Windows Vista), 404

video settings
color depth, 364-365
drivers, 363-364
Multiple Monitor (DualView), 370-371
OSD (on-screen display), 369-370
refresh rate, 368-369
resolution, 365-368

connectors, video card, 354-355
consummables, 394
continuity testers, 433
Control Panel, 218
convert command, 308
cooling

CPU (central processing units)
- fans, 65-66
- heat sinks, 64
- liquid cooling systems, 66
- thermal compound (TIM), 65
- power supplies, 127

copy command, 311
copying folders, 492

CPU (central processing units), 55, 66-68
- 32-bit CPU, 58
- 64-bit CPU, 58
- AMD CPU, 63-64
- caches, 60-61
- clock rates, 56-57
- cooling systems
 - fans, 65-66
 - heat sinks, 64
 - liquid cooling systems, 66
 - thermal compound (TIM), 65
- function of, 56
- HT (Hyper-Threading), 61
- installing, 69
 - ESD prevention, 69
 - LGA sockets, 70
 - motherboard preparation, 69
 - PGA sockets, 72
 - testing installations, 72-73
- Intel CPU, 63-64
- laptop CPUs, 345-347
- memory controller integration, 80
- multi-core CPU, 61
- power consumption, 62
- RAM access, 80
- sockets, 58
 - compatibility, 59-60
 - LGA sockets, 59, 70
 - PGA sockets, 59, 72
- TDP (thermal design points), 62
- troubleshooting, 74-76

CPU-Z, 73

CRT (cathode ray tube), 362

Ctrl+Alt+Del login functionality, 468

customers, listening to (professional-ism), 508

customizing user environment, 238-239

D

data backups, 461
data removal, 461
data security
 - data sensitivity, 462-463
 - security compliance, 463
 - technologies, 460-462
 - threats, 460-461

data sensitivity, 462-463

data storage
 - Blu-Ray, 154
 - CD (Compact Discs), 149, 153
 - CD-R, 150
 - CD-ROM, 149-150
 - CD-RW, 150
 - CF (CompactFlash) cards, 161
 - DVD (Digital Versatile Discs, 151-153
 - floppy disk drives, 143
 - boot disks, 145
 - installing, 144
 - troubleshooting, 144
 - HDD (hard disk drives), 132
 - antimalware, 141
 - backups, 272-273
 - caches, 138
 - cleanup programs, 140, 270-271
 - components of, 132
 - data transfer rates, 137
 - defragging, 141, 271
 - determining drive specifications, 137-138
 - installing, 139
 - latency, 138
manually deleting Internet files, 270
manually deleting temporary files, 270
NAS (Network Attached Storage), 143
PATA (Parallel ATA), 133-135
preventive maintenance, 140-141, 270-271, 275-276
restore points, 274
rotational speeds, 138
SATA (Serial ATA), 135-136, 140
SCSI (Small Computer System Interface), 138-139
troubleshooting, 141-143
Ultra ATA hard drives, 139
magnetic storage media, 132-147
optical storage media, 149-155
SD (Secure Digital) cards, 159
SDIO (Secure Digital Input Output) cards, 160
solid-state storage media, 156-162
tape drives, 145
USB flash drives, 156-157
formatting, 158
memory, 158
troubleshooting, 158
data transfer rates, HDD (hard disk drives), 137
date/time (BIOS configuration), 41
DC (direct current), 104
DDR (Double Data Rate), 84-85
DDR2 (Double Data Rate 2), 86
DDR3 (Double Data Rate 3), 87
DDR4 (Double Data Rate 4), 88
Debugging Mode option (Advanced Boot Options menu), 281
defrag command, 309
defragging HDD (hard disk drives), 141, 271
degaussing, 370
deleting. See removing
desktop, 210
destroying data, 462
device drivers, video drivers, 363-364
Device Manager, 225-226, 290-293
dial-up connectivity, 446
dialog boxes, Windows Security, 467
digital cameras, 387
digital optical ports, 376
digital signatures, 227
digital subscriber line (DSL), 447
Digital Visual Interface (DVI), 354
direct-sequence spread spectrum (DSSS), 449
Directory Services Restore Mode option (Advanced Boot Options menu), 281
directory structure for Windows Vista, 248
dirty power, 107
Disable driver signature enforcement option (Advanced Boot Options menu), 281
disabling
fast user switching, 467
visual effects, 238
Welcome screen, 467
Disk Cleanup, 140, 270-271
Disk Defragmenter, 271
disk images, installing from
 Windows 7, 169
 Windows Vista, 182
 Windows XP, 199
Disk Management, 253-256
diskpart command, 309
disks. See also HDD (hard disk drives)
 formatting, 253-256
 mounting, 257-258
 partitioning, 253-256
 RAID, 259-260
display controls, 324-325
displays
 CRT, 362
 LCD, 361-362
displays

projectors, 362-363
troubleshooting, 19
element of, 15-16

disposal of hardware/equipment,
safety, 505-506
distractions, avoiding (professional-
ism), 509
docking stations, 335
documentation
findings/solutions (six-step
troubleshooting process), 13
display issue example, 17
power issue example, 18
motherboards
installing, 25-26
Technical Product Specification
PDF, 27
MSDS (material safety data sheets),
505
reviewing (problem identification
process), 11
double-sided memory modules, 90
Downlevel phase (Vista installation),
190
downloading
BIOS (Basic Input Output System),
43
updates, 478
Dr. Watson, 296
DRAM (dynamic random-access
memory), 82
compatibility, 98
installing, 94-95
ESD prevention, 95
motherboards, 95
testing installations, 96
RDRAM (Rambus DRAM), 88
SDRAM (synchronous DRAM),
82-83
troubleshooting, 98-101
Driver Signing, 227
drivers, video, 363-364
drives. See disks

drwtsn32 command, 296
DSL (digital subscriber line), 447
DSSS (direct-sequence spread
spectrum), 449
dual channel RAM (random access
memory), 89
DualView, 326-327, 370-371
duplex settings, 423
DVD (Digital Versatile Discs), data
storage, 151-153
DVD-ROM, installing from
Windows 7, 169
Windows Vista, 181
DVI (Digital Visual Interface), 354
dxdiag, 227-228
dynamic IP addresses, 415

E

Easy Transfer, 237
ECC (Error Correction Code), RAM, 91
edit command, 310-311
EEPROM (Electrically Erasable
Programmable ROM) chips, 39
EFS (Encrypting File System), 257,
493-495
electrical safety, 500
AC outlets, 500
ESD (electrostatic discharge),
502-504
monitors
CRT monitors, 500-501
LCD monitors, 501
power supplies, 500
printers, 501
surge protectors, 502
UPS (uninterruptible power sup-
plies), 502
EMI (electromagnetic interference),
506
Enable Boot Logging option
(Advanced Boot Options menu), 281
Enable low-resolution video (640x480) option (Advanced Boot Options menu), 281

Encrypting File System (EFS), 257, 493-495

cryptography, 461
 asymmetric key encryption, 493
 definition of, 492
 symmetric key encryption, 493
 in Windows, 493-495
 wireless encryption, 453

ergonomics, 505

error reporting, 300-301

erroses
 boot errors
 Windows 7 Boot Errors, 287
 Windows Vista Boot Errors, 285-287
 error reporting, 300-301
 stop errors, 298-300

ESD (electrostatic discharge), 18-19, 502-504
 CPU installation, 69
 DRAM installations, 95
 troubleshooting motherboard-related issues, 50

Ethernet, 336, 424

Event Viewer, 294-296

exams. See also practice exams
 post certification development, 519-520
 preparing for
 cheat sheets, 515-516
 exam day tips/tricks, 516-518
 exam preparation checklist, 513-515
 scheduling exams, 513, 516

exFAT (Extended File Allocation Table), 257

expand command, 311

expansion buses, 352-353
 AGP (Accelerated Graphics Port), 31, 33
 AMR (audio/modem riser), 32
 CNR (Communications and Networking Riser), 32
 PCI (Peripheral Component Interconnect), 29, 32
 PCIe (Peripheral Component Interconnect Express), 31, 33

extension devices, 334-336

expectations, setting/meeting (professionalism), 508

Extended File Allocation Table (exFAT), 257

external clock speeds, 57

F

fans, 65-66
 troubleshooting, 124

FAST (Files and Settings Transfer) Wizard, 237

fast user switching, disabling, 467

FAT16, 257

FAT32, 257

FAT64, 257

FDISK/MBR command, 480

file security
 definition of, 485
 file attributes, 485
 folder sharing
 copying folders, 492
 moving folders, 492
 overview, 486-487
 permission inheritance and propagation, 491
 in Windows Vista, 490-491
 in Windows XP, 488-489

hidden files, 486

file systems, 257

File Transfer Protocol (FTP), 429

files
 boot files, 249
 comsetup.log, 205
file security
definition of, 485
file attributes, 485
directory security, 486
hidden files, 486
file systems, 257
hidden files, 486
indexing, 250-251
migration, 191, 205
PostGatherPnPList.log, 191
PreGatherPnPList.log, 191
setup.log, 204
setupact.log, 191, 204
setupapi.app.log, 191
setupapi.dev.log, 191
setupapi.log, 204
setuperr.log, 191, 204
setuplog.txt, 204
Windows 7 setup log files, 174
Windows Vista installation log files, 191
Windows XP installation log files, 204
Winsat.log, 191

Files and Settings Transfer (FAST) Wizard, 237
findings, documenting (six-step troubleshooting process), 13
display issue example, 17
power issue example, 18
firewalls
updates, 275
Windows Firewall, 443, 479
FireWire, 385
FireWire (IEEE 1394a) ports, 33
FIXBOOT command, 312
/fixboot option (bootrec command), 311
FIXMBR command, 312, 480
/fixmbr option (bootrec command), 312
flash drives, 156-157
formatting, 158
memory, 158
troubleshooting, 158
flashing BIOS, 43-44, 472
flicker, 368
floppy disk drives, 143
boot disks, 145
installing, 144
troubleshooting, 144
folders
copying, 492
moving, 492
sharing
overview, 486-487
permission inheritance and propagation, 491
in Windows Vista, 490-491
in Windows XP, 488-489
format command, 309
formatting
disks, 253-256
USB flash drives, 158
front panel ports, 34
FRU (field replaceable units), power supplies as, 500
FSB (Front Side Buses), 28
external clock speeds, 57
FTP (File Transfer Protocol), 429
full-duplex, 423
function keys, 318-319
functionality, verifying (six-step troubleshooting process), 12-13
display issue example, 16
power issue example, 18
fuses, troubleshooting power supply fuses, 124
G
garbage printouts, troubleshooting, 408
gateway addresses, 416
Ghost, 304
ghosted images (printers), troubleshooting, 408
GPF (general protection faults), troubleshooting, 100
GPU (graphics processor unit), 324
video card GPU, 356

H
half-duplex, 423
hard drives. See HDD (hard disk drives)
hard faults (page faults), troubleshooting, 100
hardware
 compatibility
 for Windows Vista, 180
 for Windows XP, 198
disposal of, 505-506
recycling, 505-506
requirements
 for Windows 7, 167-168
 for Windows Vista, 179-180
 for Windows XP, 197
hash algorithms, 493
hashing, 493
HD (high definition), 324
HDD (hard disk drives), 132
 antimalware, 141
backups
 Windows 7, 272-273
 Windows Vista, 273
 Windows XP, 273
caches, 138
cleanup programs, 140, 270-271
components of, 132
data transfer rates, 137
defragging, 141, 271
installing, 139
testing installations, 140
Internet files, deleting manually, 270
laptops, 342-343
latency, 138
NAS (Network Attached Storage), 143
PATA (Parallel ATA), 133, 135
cable select drive configurations, 135
master drive configurations, 134
single drive configurations, 134
slave drive configurations, 135
preventive maintenance, 140-141, 270-271, 275-276
restore points, 274
rotational speeds, 138
SATA (Serial ATA), 135-136
 installing, 140
SCSI (Small Computer System Interface), 138-139
specifications, determining, 137-138
temporary files, deleting manually, 270
troubleshooting, 141-143
Ultra ATA hard drives, installing, 139
HDMI (High-Definition Multimedia Interface), 354
Health Insurance Portability and Accountability Act (HIPAA), 463
heat, physical safety, 504
heat sinks, 64
heavy items, physical safety, 504
hibernation, 235
Hidden file attribute, 485
hidden files, 486
high definition (HD), 324
High-Definition Multimedia Interface (HDMI), 354
HIPAA (Health Insurance Portability and Accountability Act), 463
hives (Registry), 240
HKEY_CLASSES_ROOT Registry hive, 240
HKEY_CURRENT_CONFIG Registry hive, 240
HKEY_CURRENT_USER Registry hive, 240
HKEY_LOCAL_MACHINE Registry hive, 240
HKEY_USERS Registry hive, 240
hot components, physical safety, 504
hot docking, 336
hot swappable devices, removing, 229
HT (Hyper-Threading), 61
HTTP (Hypertext Transfer Protocol), 429
hubs, 424

i.Link (IEEE 1394a) ports, 33
I/O ports. See ports
ICH (I/O Controller Hubs), 26
bus connections, 28
IDE buses, 28-29
SATA buses, 29
icons, 211
IDE (Integrated Drive Electronics) buses, 28-29
BIOS configuration, 42
identifying
changes to computers (problem identification process), 11
problems (six-step troubleshooting process), 10-11
display issue example, 15
power issue example, 17
IEEE 1394, 385
IEEE 1394a (FireWire/i.Link) ports, 33
impact printers, 396
impedence, 104
Indexing service, 250-251
Infrared, 337
inheritance, permissions, 491
ink/toner cartridges, disposal of, 506

inkjet printers, 395
peizeoelectric inkjets, 395
printing process, 395
thermal inkjets, 395
input devices, 386-387
laptop input devices
function keys, 318-319
keyboards, 318-322
pointing devices, 323
stylus, 323
installing
CPU (central processing units), 69
ESD prevention, 69
LGA sockets, 70
motherboard preparation, 69
PGA sockets, 72
testing installations, 72-73
DRAM (dynamic random-access memory), 94-95
testing installations, 96
floppy disk drives, 144
HDD (hard disk drives), 139
testing installations, 140
laptop memory, 344-345
motherboards, 46-47
documentation, 25-26
power supplies, 122-123
printers
calibrating printers, 400
compatibility, 399
device connections, 399-400
printer driver installation, 399
testing installations, 400
snap-ins, 221
sockets
LGA sockets, 70
PGA sockets, 72
sound cards, 377-378
speakers, 377
video cards, 357-360
Windows 7
installation methods, 169-170
step-by-step installation process, 170-173
Windows Vista
installation methods, 181-182
partitions, creating, 186-187
step-by-step installation process, 183-185
Windows XP
installation methods, 198-200
step-by-step installation process, 200-203

Institute of Electrical and Electronics Engineers (IEEE) 1394, 385
Integrated Services Digital Network (ISDN), 448

Intel CPU (central processing units), 63-64

interference
EMI (electromagnetic interference), 506
RFI (radio frequency interference), 506

internal clock speeds, 57

Internet files, manually deleting, 270
Invalid boot.ini (error message), 287

inverter boards
replacing, 328-329
troubleshooting, 328

IOH (Input/Output Hubs), 26
IP addresses, configuring, 415

ipconfig command, 437-438
IPv4
Classes, 417-419
configuring, 414-417
IPv6 versus, 420
IPv6, 420-421
IrDA wireless ports, 337
ISDN (Integrated Services Digital Network), 448

J
jams (paper), troubleshooting, 406-407
jump drives. See flash drives

K
keyboards, 387
function keys, 318-319
laptop keyboards
overview, 318-319
replacing, 320-322
troubleshooting, 320
KVM Switches, 387

L
LANs (local area networks), 426
laptops
audio subsystem, 329-330
communications, 336-337
components, 318
CPUs, 345-347
expansion devices, 334-336
function keys, 318-319
hard drives, 342-343
keyboards
overview, 318-319
replacing, 320-322
troubleshooting, 320
memory, 343-345
optical discs, 330
overview, 315-316
pointing devices, 323
ports, 317
power, 330-333
stylus, 323
system board, 345-347
video subsystem, 324
display controls, 324-325
DualView, 326-327
GPU, 324
LCD, 324
 resolutions, 324
 troubleshooting, 328-329
laser printers, 392
 advantages of, 394
 electrical safety, 501
 printing process, 393-394
 toner cartridges, 394
Last Known Good Configuration
 option (Advanced Boot Options menu), 281
latency, 423
 HDD (hard disk drives), 138
 RAM, 90
LCD (liquid crystal display), 324, 361-362
 troubleshooting, 328
LGA (Land Grid Array) sockets, 59
 installing, 70
Libraries, 217
lines/smearing (printers), troubleshooting, 407
liquid cooling systems, 66
liquid crystal display (LCD), 324, 361-362
listening to customers (professionalism), 508
lithium batteries, 332-333
 BIOS password resets, 42
 CMOS, 39
local area networks (LANs), 426
Local Group Policy Editor, 467
local printers, 397
log files
 Windows 7 setup log files, 174
 Windows Vista installation log files, 191
 Windows XP installation log files, 204
logic, using while troubleshooting, 19
logon process, security, 467-469
loose connections, troubleshooting, 320
Love Bug virus, 475
low on virtual memory errors, troubleshooting, 100
lumens, 362
macro viruses, 476
magnetic storage media, 132, 146-147
 floppy disk drives, 143
 boot disks, 145
 installing, 144
 troubleshooting, 144
HDD (hard disk drives), 132
 antimalware, 141
 backups, 272-273
 caches, 138
 cleanup programs, 140, 270-271
 components of, 132
 data transfer rates, 137
 defragging, 141, 271
 determining drive specifications, 137-138
 installing, 139
 latency, 138
 manually deleting Internet files, 270
 manually deleting temporary files, 270
 NAS (Network Attached Storage), 143
 PATA (Parallel ATA), 133-135
 preventive maintenance, 140-141, 270-271, 275-276
 restore points, 274
 rotational speeds, 138
 SATA (Serial ATA), 135-136, 140
 SCSI (Small Computer System Interface), 138-139
 troubleshooting, 141-143
 Ultra ATA hard drives, 139
tape drives, 145
maintenance, HDD (hard disk drives), 140-141, 270-271, 275-276
malware, 460
 definition of, 475
spyware
 definition of, 477
 preventing and troubleshooting, 481-483
trojan horses, definition of, 477
viruses
 definition of, 475
 preventing and troubleshooting, 478-481
types of viruses, 475-476
worms, definition of, 476
managing
 devices
 Device Manager, 225-226
 Driver Signing, 227
 DxDiag, 227-228
 System Information Tool, 227
 power, 235-236
printers
 print jobs, 401
 printer permissions, 405
master drive configurations (PATA), 134
mATX (microATX) motherboards, 36-37
MCH (Memory Controller Hubs), 26
memory
 laptop memory, 343-345
 low on virtual memory errors, troubleshooting, 100
memory controllers
 CPU integration, 80
 MCH (Memory Controller Hubs), 80
out of memory errors, troubleshooting, 100, 407
RAM (random-access memory), 79, 91-93
 CPU access to, 80
 DDR, 84-85
 DDR2, 86
 DDR3, 87
 DDR4, 88
types of memory:
 double-sided memory modules, 90
 DRAM (dynamic random-access memory), 82, 94-96, 98-101
types of memory (continued):
 dual channel RAM, 89
 ECC (Error Correction Code), 91
 memory latency, 90
 nonparity, 90-91
 parity, 90
 RDRAM, 88
 SDRAM, 82-83
 single channel RAM, 88-89
 single-sided memory modules, 90
 SRAM (static random-access memory), 81-82
 volatile RAM, 81
 ROM (read-only memory), 82
 USB flash drives, 158
 video card memory, 356
 virtual memory, 232-233
memory buses, 28
metadata, 217
metafolders, 217
microATX (Advanced Technology Extended)
 motherboards, 36-37
 power supplies, 118
microprocessors. See CPU (central processing units)
Microsoft Challenge-Handshake Authentication Protocol (MS-CHAP), 495
Microsoft Management Console (MMC), 221
Microsoft System Configuration Utility. See Msconfig
MIDI (Musical Instrument Digital Interface), 387
miglog.xml, 191
migrating user data, 236-238
minimum requirements. See hardware, requirements

MMC (Microsoft Management Console), 221

modems, 337

monitors
 CRT monitors, electrical safety, 500-501
 LCD monitors, electrical safety, 501
 troubleshooting, 19
 example of, 15-16

motherboards, 23, 37-38
 ATX (Advanced Technology Extended) motherboards, 24, 35-37
 BTX (Balanced Technology Extended) motherboards, 36-37
 buses. See also expansion buses
 AGP (Accelerated Graphics Port), 31, 33
 AMR (audio/modem riser), 32
 CNR (Communications and Networking Riser), 32
 DSB (Front Side Buses), 28
 expansion buses, 29, 31-33
 IDE (Integrated Drive Electronics), 28-29, 42
 memory buses, 28
 parallel buses, 28-29
 PCI (Peripheral Component Interconnect), 29, 32
 PCI Express x16 Interface, 28
 PCIe (Peripheral Component Interconnect Express), 31, 33
 SATA (Serial ATA), 29
 speed ratings, 28
chipsets, 29
 ICH (I/O Controller Hubs), 26, 28
 IOH (Input/Output Hubs), 26
 MCH (Memory Controller Hubs), 26, 80
 clock speeds, 57
 CPU installation, 69
 CPU sockets, compatibility, 59-60
 documentation
 installations, 25-26
 Technical Product Specification PDF, 27
 DRAM installations, 95
 front panel ports, 34
 I/O (input/output) ports, 33
 installing, 46-47
 documentation, 25-26
 main components of, 24
 microATX (mATX) motherboards, 36-37
 NLX (New Low Profile Extended) motherboards, 36-37
 troubleshooting, 47-49, 51-52
 BIOS-related issues, 50
 component failures, 51
 ESD-related issues, 50
 manufacturing defects, 51

mounting drives, 257-258

mouse devices, 387

moving folders, 492

MS-CHAP (Microsoft Challenge-Handshake Authentication Protocol), 495

Msconfig, 231-232, 298

MSDS (material safety data sheets), 505

multi-core CPU (central processing units), 61

multicast addresses, 421

multimeters
 AC outlet tests, 106, 108
 testing power supplies, 126

multipartite viruses, 476

Multiple Monitor (DualView), 370-371

Multiple Monitor technology, 327

Musical Instrument Digital Interface (MIDI), 387

My Computer, 215-216
NAS (Network Attached Storage), 143
native resolution, 361
net command, 441-442
NetSetup.log, 205
netstat command, 440-441
network adapters, 422-424
wireless network adapters, 450-453, 455
network installation
of Windows 7, 169
of Windows Vista, 181
of Windows XP, 199
network interface card (NIC), 414
network printers, 397
Network window, 218
networking
cables, 432-435
EMI (electromagnetic interference), 506
hubs, 424
IPv4
Classes, 417-419
configuring, 414-417
IPv6 versus, 420
IPv6, 420-421
LANs (local area networks), 426
latency, 423
network adapters, 422-424
network interface card (NIC), 414
overview, 413-414
ports, 427-430
protocols. See protocols
proxy servers, 425
repeaters, 424
routers, 425
SOHO (small office home office)
networks
802.11 wireless, 449
Bluetooth, 449-450
cable Internet, 447
cellular, 448
dial-up, 446
DSL (digital subscriber line, 447
ISDN, 448
overview, 446
port forwarding, 454
port triggering, 454
routers, 450-453, 455
satellite connectivity, 447
wireless network adapters, 450-453, 455
switches, 425
troubleshooting network connectivity
applications, 442-443
ipconfig, 437-438
net, 441-442
netstat, 440-441
nslookup, 441
ping, 438-439
tracert, 439-440
VPNs (virtual private networks), 426
WANs (wide area networks), 426
WAPs (wireless access points), 425
NIC (network interface card), 414
NLX (New Low Profile Extended)
motherboards, 36-37
power supplies, 118
nodes, 419
nonparity, RAM, 90-91
northbridge. See MCH (Memory
Controller Hubs), 80
nslookup command, 441
NTBackup (Windows XP), 273
NTDETECT failed (error message), 287
NTFS (NT File System), 257
NTFS permissions, 488
NTLDR is missing (error message), 287
OFDM (orthogonal frequency-division multiplexing), 449
ohms, 104
on-screen display (OSD), 369-370
Online configuration phase (Vista installation), 191
opening command-line interface, 437
operating system optimization
 with Msconfig, 231-232
 with power management, 235-236
 with Task Manager, 229-231
 with virtual memory, 232-233
optical discs, 330
optical storage media, 149, 154-155
 Blu-Ray, 154
 CD (Compact Discs), 149, 153
 CD-R, 150
 CD-ROM, 149-150
 CD-RW, 150
 DVD (Digital Versatile Discs), 151-153
optimizing operating system
 with Msconfig, 231-232
 with power management, 235-236
 with Task Manager, 229-231
 with virtual memory, 232-233
orthogonal frequency-division multiplexing (OFDM), 449
OSD (on-screen display), 369-370
out of memory errors, troubleshooting, 100, 407
outcomes, documenting (six-step troubleshooting process, 13
 display issue example, 17
 power issue example, 18
outlets. See also power
 electrical safety, 500
 regulating output, 107
 testing
 via multimeters, 106, 108
 via receptacle testers, 105
Outlook, 442
overheating power supplies, 127

page faults (hard faults), troubleshooting, 100
page printers, 392
paper, troubleshooting blank paper, 407
paper jams, troubleshooting, 406-407
parallel buses
 IDE (Integrated Drive Electronics), 28-29
 BIOS configuration, 42
 SATA (Serial ATA), 29
parallel ports, 386
parity, RAM, 90
partitioning disks, 253-256, 259-260
partitions, creating during Windows Vista installation, 186-187
passwords
 BIOS
 configuring in, 42
 resetting in, 42
 changing, 466
 password policy, 466-467
 strong passwords, 465
PATA (Parallel ATA) hard drives, 133, 135
 cable select drive configurations, 135
 master drive configurations, 134
 single drive configurations, 134
 slave drive configurations, 135
patch testers, 433
PC Check, 168, 180
PC Diagnostic tools, 168, 180
PCI (Peripheral Component Interconnect) buses, 29, 32, 352
PCI Express x16 Interface, 28
PCIe (Peripheral Component Interconnect Express) buses, 31, 33, 352
power supplies, 128-129
 ATX form factor, 116-117
 BTX form factor, 118
capacity requirements, 118-119
compatibility, 116-117
cooling, 127
electrical safety, 500
installing, 122-123
microATX form factor, 118
NLX form factor, 118
overheating, 127
power connectors, 119-120
testing, 126
troubleshooting, 123-127
wattage (W), 118-119
sags, 110
spikes, 110
surge protectors, 111-112
surges, 110
UPS (uninterruptible power supplies), 112-113
voltage (V), 104
 sags, 110
 wattage (W), 104
 power supplies, 118-119
power consumption
 CPU (central processing units, 62
power issues, troubleshooting, 19
 example of, 17-18
power management, 235-236
 BIOS configuration, 42
power supply
 FRU (field replaceable units), 500
 for laptops, 330-333
PowerShell, 219
practice exam 1
 exam answers, 540-552
 exam questions, 521-539
practice exam 2
 exam answers, 573-586
 exam questions, 553-572
practice exam 3
 exam answers, 598-608
 exam questions, 587-597
PreGatherPnPList.log, 191
preparing for exams
 cheat sheets, 515-516
 exam day tips/tricks, 516-518
 exam preparation checklist, 513-515
 scheduling exams, 513, 516
preventing
 spyware, 481-483
 viruses, 478-481
preventive maintenance, HDD (hard disk drives), 140-141, 270-271, 275-276
printers, 391, 397-398
 configuring, 400
 managing print jobs, 401
 managing printer permissions, 405
 pooling printers, 404
 print spooling options, 402-403
 separator pages, 406
 setting printer priority, 401-402
 sharing printers, 405
 XPS (XML Paper Specification) feature (Windows Vista), 404
consummables, 394
impact printers, 396
ink/toner cartridges, disposal of, 506
inkjet printers, 395
 piezoelectric inkjets, 395
 printing process, 395
 thermal inkjets, 395
installing
 calibrating printers, 400
 compatibility, 399
 device connections, 399-400
 printer driver installation, 399
testing installations, 400
laser printers, 392
 advantages of, 394
electrical safety, 501
printing process, 393-394
toner cartridges, 394
local printers, 397
network printers, 397
page printers, 392
thermal printers, 396
troubleshooting, 406-411
prioritizing printers, 401-402
private addresses, 419
probable cause (six-step troubleshooting process)
establishing theory of, 11
display issue example, 15-16
power issue example, 17
testing theory of, 12
display issue example, 16
power issue example, 17

Problem Reports and Solutions, 296
problems, identifying (six-step troubleshooting process), 10-11
display issue example, 15
power issue example, 17

professionalism, 508-510
Program Compatibility Wizard, 244
program viruses, 476
projectors, 362-363
PROM (Programmable ROM) chips, 39
protocols
APPIPA (automatic private IP addressing), 416
FTP (File Transfer Protocol), 429
HTTP (Hypertext Transfer Protocol), 429
IPv4
 Classes, 417-419
 configuring, 414-417
IPv6 versus, 420
IPv6, 420-421
POPO (Post Office Protocol Version 3), 429
ports, 427-430
SMTP (Simple Mail Transfer Protocol), 429
TCP/IP (Transmission Control Protocol/Internet Protocol), 414
TELNET, 429
proxy servers, 425
PS/2 ports, 386
public addresses, 419
punctuality (professionalism), 508
purging data, 461

Q
quality of audio, 378-379
questioning users (problem identification process), 10
Quick Launch, 212

R
RAID (Redundant Array of Inexpensive Disks), 259-260
RAM (random-access memory), 79, 87, 91-93. See also memory
 CPU access to, 80
 DDR (Double Data Rate), 84-85
 DDR2 (Double Data Rate 2), 86
 DDR3 (Double Data Rate 3), 87
 DDR4 (Double Data Rate 4), 88
dual channel RAM, 89
double-sided memory modules, 90
DRAM (dynamic random-access memory), 82
 compatibility, 98
 installing, 94-96
 RDRAM, 88
 SDRAM, 82-83
troubleshooting, 98-101
ECC (Error Correction Code), 91
memory latency, 90
nonparity, 90-91
parity, 90
single channel RAM, 88-89
single-sided memory modules, 90
SRAM (static random-access memory), 81-82
volatile RAM, 81
RDRAM (Rambus DRAM), 88
Read-only file attribute, 485
/rebuildbcd option (bootrec command), 312
receptacle testers, AC outlet tests, 105
Recovery Command Prompts, 310
copy, 311
edit, 310-311
expand, 311
recovery environment commands, 311-312
Recovery Console, 284-285
recovery discs, installing from
Windows 7, 170
Windows Vista, 182
Windows XP, 200
recovery environment commands, 311-312
recycling hardware/equipment, safety, 505-506
Redundant Array of Inexpensive Disks (RAID), 259-260
refresh rate, 368-369
regedit command, 239
regedit32 command, 239
Regional and Language Options, 239
Registry, 239, 241
Reliability and Performance Monitor, 297-298
Remote Assistance, 242
Remote Desktop, 242-243
removing
hot swappable devices, 229
Internet files from HDD (hard disk drives), 270
snap-ins, 221
temporary files from HDD (hard disk drives), 270
repair tools, 279
Advanced Boot Options menu, 280-281
Recovery Console, 284-285
WinRE (Windows Recovery Environment), 282-284
repeaters, 424
replacing
inverter boards, 328-329
laptop keyboards, 320-322
reporting errors, 300-301
resolution, 365, 367-301
changing, 367
of laptops, 324
native resolution, 361
table of, 366
resolving problems (six-step troubleshooting process), establishing plans of action, 12
display issue example, 16
power issue example, 18
restore points, 274. See also backups
restoring Windows, 301
to an earlier condition, 303
with System Restore, 303-304
from Windows Vista complete PC backup, 302
from Windows XP’s ASR backup, 302
results, documenting (six-step troubleshooting process), 13
display issue example, 17
power issue example, 18
reviewing documentation (problem identification process, 11
RFI (radio frequency interference), 506
RJ45 LAN ports, 34
ROM (Read-Only Memory) chips, 39, 82
rotational speeds, 138
routers, 425, 450-453, 455
 SOHO routers
 port forwarding, 454
 port triggering, 454
 security, 453

S

S-Video (Separate Video, 354)
S/PDIF (Sony/Phillips Digital Interconnect Format) port, 376
Safe Mode, 482
Safe Mode option (Advanced Boot Options menu), 280
Safe Mode with Command Prompt option (Advanced Boot Options menu), 280
Safe Mode with Networking option (Advanced Boot Options menu), 280
Safely Remove option, 229
safety, 507
 disposal of hardware/equipment, 505-506
 electrical safety, 500
 AC outlets, 500
 CRT monitors, 500-501
 ESD (electrostatic discharge), 502-504
 LCD monitors, 501
 power supplies, 500
 printers, 501
 surge protectors, 502
 UPS (uninterruptible power supplies), 502
 MSDS (material safety data sheets), 505
physical safety
 cable, 504
 ergonomics, 505
 heavy items, 504
 hot components, 504
recycling hardware/equipment, 505-506
sags (power), 110
sanitizing data, 461
Sarbanes-Oxley (SOX), 463
SATA (Serial ATA)
 buses, 29
 hard drives, 135-136
 installing, 140
satellite connectivity, 447
Scan Line Interleave (SLI), 360
/ScanOS option (bootrec command), 312
scheduling exams, 513, 516
screen switching, 325
SCSI (Small Computer System Interface) hard drives, 138-139
SD (Secure Digital) cards, 159
SDIO (Secure Digital Input Output) cards, 160
SDRAM (synchronous DRAM), 82-83
SDSL (Symmetrical Digital Subscriber Line), 447
security
 administrative privileges, 221
 authentication
 biometrics, 473
 BIOS security, 471-472
 logon process, 467-469
 passwords, 465-467
 smart cards, 472
 UAC (User Account Control, 470-471
 usernames, 465
data security
 data security technologies, 460-462
 data sensitivity, 462-463
 security compliance, 463
 threats, 460-461
encryption
 asymmetric key encryption, 493
 definition of, 492
 symmetric key encryption, 493
 in Windows, 493-495
 wireless encryption, 453
file security
 definition of, 485
 file attributes, 485
 folder sharing, 486-492
 hidden files, 486
malware
 definition of, 475
 preventing and troubleshooting, 478-483
 spyware, 477, 481-483
 trojan horses, 477
 viruses, 475-476, 478-481
 worms, 476
overview, 459
 smart cards, 473
security compliance, 463
Separate Video (S-Video), 354
separator pages (printers), 406
serial ports, 386
servers, proxy servers, 425
service packs. See SP (service packs)
services, 233
 Indexing, 250-251
 starting/stopping
 in Command Prompt, 234
 in Computer Management, 233
setup.log, 204
setupact.log, 191, 204
setupapi.app.log, 191
setupapi.dev.log, 191
setupapi.log, 204
setuperr.log, 191, 204
setuplog.txt, 204
SFC (System File Checker), 308
sharing
 folders
 overview, 486-487
 permission inheritance and propagation, 491
 in Windows Vista, 490-491
 in Windows XP, 488-489
 printers, 405
shielded twisted pair (STP), 434
Sidebar, 212
SIM (Subscriber Identity Module) cards, 160
SIM (System Image Manager), 169, 181
Simple Mail Transfer Protocol (SMTP), 429
single channel RAM (random access memory), 88-89
single drive configurations (PATA), 134
single-sided memory modules, 90
six-step troubleshooting process, 10, 14, 304-305
 display issue example, 15-16
 documenting solutions, 13
 power issue example, 17
 establishing plans of action, 12
 display issue example, 16
 power issue example, 18
 establishing theory of probable cause, 11
 display issue example, 15-16
 power issue example, 17
 identifying the problem, 10-11
 display issue example, 15
 power issue example, 17
 power issue example, 17-18
 testing theory of probable cause, 12
 display issue example, 16
 power issue example, 17
 verifying system functionality, 12-13
 display issue example, 16
 power issue example, 18
slave drive configurations (PATA), 135
Sleep, 236
SLI (Scan Line Interleave), 360
small office home office networks. See SOHO networks
smart cards, 472-473
smearing/lines (printers), troubleshooting, 407
SMTP (Simple Mail Transfer Protocol), 429
snap-ins, adding/removing, 221
SO-DIMMs, installing into laptops, 344-345
social engineering, 460
sockets
CPU sockets, 58
compatibility, 59-60
LGA (Land Grid Array) sockets, 59
installing, 70
PGA (Pin Grid Array) sockets, 59
installing, 72
software, malware
definition of, 475
spyware, 477, 481-483
trojan horses, 477
viruses, 475-476, 478-481
worms, 476
SOHO (small office home office) networks
802.11 wireless, 449
Bluetooth, 449-450
cable Internet, 447
cellular, 448
dial-up, 446
DSL (digital subscriber line), 447
ISDN, 448
overview, 446
port forwarding, 454
port triggering, 454
routers, 450-453, 455
satellite connectivity, 447
wireless network adapters, 450-453, 455
solid-state storage media, 156, 162
CF (CompactFlash) cards, 161
SD (Secure Digital) cards, 159
SDIO (Secure Digital Input Output) cards, 160
USB flash drives, 156-157
formatting, 158
memory, 158
troubleshooting, 158
solutions documenting (six-step troubleshooting process), 13
display issue example, 17
power issue example, 18
solutions, implementing (six-step troubleshooting process), 12
display issue example, 16
power issue example, 18
Sony/Phillips Digital Interconnect Format (S/PDIF) port, 376
sound cards
installing, 377-378
overview, 375-376
SOX (Sarbanes-Oxley), 463
SP (service packs), Windows updates, 264-265
speakers, installing, 377
speaking clearly, 508
spikes (power), 110
spooling (printers, 402-403
spyware
definition of, 477
preventing and troubleshooting, 481-483
SRAM (static random-access memory), 81-82
standby, 235
Start menu, 212
configuring, 214-215
Start Windows Normally option (Advanced Boot Options menu), 281
starting services
in Command Prompt, 234
in Computer Management, 233
startup issues, troubleshooting, 19
eample of, 17-18
Startup Repair option (Recovery Options), 284
Startup Restore option (Recovery Options), 284
static IP addresses, 415
status indicators, 422
stealth viruses, 476
stop errors, 298-300
troubleshooting, 99
stopping services
in Command Prompt, 234
in Computer Management, 233
storing data
Blu-Ray, 154
CD (Compact Discs), 149, 153
CD-R, 150
CD-ROM, 149-150
CD-RW, 150
CF (CompactFlash) cards, 161
DVD (Digital Versatile Discs), 151-153
floppy disk drives, 143
boot disks, 145
installing, 144
troubleshooting, 144
HDD (hard disk drives), 132
antimalware, 141
backups, 272-273
caches, 138
cleanup programs, 140, 270-271
components of, 132
data transfer rates, 137
defragging, 141, 271
determining drive specifications, 137-138
installing, 139
latency, 138
manually deleting Internet files, 270
manually deleting temporary files, 270
NAS (Network Attached Storage), 143
PATA (Parallel ATA), 133-135
preventive maintenance, 140-141, 270-271, 275-276
restore points, 274
rotational speeds, 138
SATA (Serial ATA), 135-136, 140
SCSI (Small Computer System Interface), 138-139
troubleshooting, 141-143
Ultra ATA hard drives, 139
magnetic storage media, 132-147
optical storage media, 149-155
SD (Secure Digital) cards, 159
SDIO (Secure Digital Input Output) cards, 160
solid-state storage media, 156-162
tape drives, 145
USB flash drives, 156-157
formatting, 158
memory, 158
troubleshooting, 158
STP (shielded twisted pair), 434
strong passwords, 465
stuck keys, troubleshooting, 320
stylus, 323
surge protectors, 111-112
electrical safety, 502
HDD (hard disk drive) maintenance, 275
surges (power), 110
switches, 425
symmetric key encryption, 493
Symmetrical Digital Subscriber Line (SDSL), 447
SYS command, 480
system boards, laptop, 345-347
system failure, 460
System file attribute, 485
System File Checker (SFC), 308
system functionality, verifying (six-step troubleshooting process), 12-13
display issue example, 16
power issue example, 18
testing
AC outlets
 multimeters, 106, 108
 receptacle testers, 105
CPU installations, 72-73
 CPU-Z, 73
 Windows, 72
DRAM installations, 96
HDD (hard disk drive) installations, 140
power supplies, 126
printer installations, 400
time of probable cause (six-step troubleshooting process), 12
 display issue example, 16
 power issue example, 17
twisted pair cable, 433-434
tests. See exams
time of probable cause (six-step troubleshooting process)
establishing, 11
 display issue example, 15-16
 power issue example, 17
testing, 12
 display issue example, 16
 power issue example, 17
thermal compound (TIM), 65
thermal inkjet printers, 395
thermal printers, 396
temporary files, manually deleting, 270
thinking logically while troubleshooting, 19
threats, 460-461
throughput (data). See data transfer rates
TIM (thermal interface material), 65
time-domain reflectometers (TDR), 434
time/date, BIOS configuration, 41
throughput, 434
toner cartridges
 disposal of, 506
 laser printers, 394
throughput, 434
tools, 279. See also commands

Advanced Boot Options menu, 280-281
Recovery Console, 284-285
WinRE (Windows Recovery Environment, 282-284
touch pads, 323
touch screens, 387
tracert command, 439-440
TrackPoint, 323
Transmission Control Protocol/Internet Protocol (TCP/IP), 414
trojan horses, definition of, 477
troubleshooting, 20-21

BIOS (Basic Input Output Systems)
 memory errors, 99
 motherboard-related issues, 50
boot errors
 Windows Vista Boot Errors, 285-287
 Windows XP/2000 Boot Errors, 287
BSOD (Blue Screen of Death), 99
command-line tools, 307
 chkdsk, 307-308
 Command Prompt, 307
 convert, 308
defrag, 309
diskpart, 309
format, 309
SFC (System File Checker), 308
xcopy, 309
CPU (central processing units), 74-76
DRAM (dynamic random-access memory), 98-101
error reporting, 300-301
ESD (electrostatic discharge), 18-19, 502-504
fans, 124
floppy disk drives, 144
fuses, power supply fuses, 124
GPF (general protection faults), 100
hard faults (page faults), 100
HDD (hard disk drives), 141-143
laptops
 audio subsystem, 329-330
 communications, 336-337
 CPUs, 345-347
 expansion devices, 334-336
 hard drives, 342-343
 keyboards, 320-322
 memory, 343-345
 optical discs, 330
 power, 330-333
 system board, 345-347
 video issues, 328-329
low on virtual memory errors, 100
monitors, 15-16, 19
motherboards, 47-49, 51-52
 BIOS-related issues, 50
 component failures, 51
 ESD-related issues, 50
 manufacturing defects, 51
network connectivity
 applications, 442-443
 ipconfig, 437-438
 net, 441-442
 netstat, 440-441
 nslookup, 441
 ping, 438-439
 tracert, 439-440
out of memory errors, 100
page faults (hard faults), 100
paper jams, 406-407
power issues, 17-19
power supplies, 123-127
printers, 406-411
recovery Command Prompts
 copy, 311
 edit, 310-311
 expand, 311
recovery environment commands, 311-312
repair tools, 279
 Advanced Boot Options menu, 280-281
 Recovery Console, 284-285
 WinRE (Windows Recovery Environment), 282-284
restoring Windows, 301
 to an earlier condition, 303
 with System Restore, 303-304
 from Windows Vista complete PC backup, 302
 from Windows XP's ASR backup, 302
six-step process, 10, 14, 304-305
 display issue example, 15-16
 documenting solutions, 13, 17-18
 establishing plans of action, 12, 16, 18
 establishing theory of probable cause, 11, 15-17
 identifying the problem, 10-11, 15, 17
 power issue example, 17-18
 testing theory of probable cause, 12, 16-17
 verifying system functionality, 12-13, 16, 18
spyware, 481-483
startup issues, 17-19
stop errors, 99, 298-300
testing logically, 19
USB flash drives, 158
user error, 19
video cards, 357-360
viruses, 478-481
Windows 7 installation, 174-176
Windows tools
 Device Manager, 290-293
 Dr. Watson, 296
 Event Viewer, 294-296
 Msconfig, 298
 Problem Reports and Solutions, 296
 Reliability and Performance Monitor, 297-298
Windows Vista installation, 190-193
Windows XP installation, 204-205
TV tuner cards, 360
twisted pair cables, 432

U

UAC (User Account Control), 470-471
Ultra ATA hard drives, installing, 139
unauthorized access, 460
unicast addresses, 421
Universal Serial Bus (USB), 382-385
unshielded twisted pair (UTP) cables, 432
updates
 antimalware, 275
 BIOS, 43, 275
downloading, 478
 firewalls, 275
 Windows updates, 268-269, 275
 SP (service packs), 264-265
 Windows Update, 266-267
Upgrade Advisor, 203
upgrading
 to Windows 7, 173-174
 to Windows Vista, 188, 190
 to Windows XP, 203
UPS (uninterruptible power supplies), 112-113
 electrical safety, 502
 HDD (hard disk drive) maintenance, 275
USB (Universal Serial Bus) ports, 33, 382-385
USB flash drives, 156-157
 formatting, 158
 memory, 158
 troubleshooting, 158
User Account Control (UAC), 470-471
user error, troubleshooting, 19
user state, 237
User State Migration Tool (USMT), 237
usernames, 465

users
 customizing user environment, 238-239
 ergonomics, 505
 logon process, security, 467-469
 migrating user data, 236-238
 passwords
 changing, 466
 password policy, 466-467
 strong passwords, 465
 questioning (problem identification process), 10
 state, 237
 UAC (User Account Control), 470-471
 user awareness, 462
 usernames, 465

USMT (User State Migration Tool), 237

UTP (unshielded twisted pair) cables, 432

V

verifying
 system functionality (six-step troubleshooting process, 12-13
 display issue example, 16
 power issue example, 18
 Windows 7 installation, 174-176
 Windows Vista installation, 190-193
 Windows XP installation, 204-205

versions
 of Windows 7, 166-167
 of Windows Vista, 178-179
 of Windows XP, 196-197

vertical refresh rate, 368-369

VGA (Video Graphics Array), 354

video subsystem
 laptop video subsystem, 324
 display controls, 324-325
 DualView, 326-327
 GPU, 324
 LCD, 324
 resolutions, 324
 troubleshooting, 328-329
 overview, 351
 video cards, 352
 chipsets, 356
 connector types, 354-355
 expansion busses, 352-353
 GPU, 356
 installing, 357-360
 memory, 356
 SLI and TV tuner/capture cards, 360-361
 troubleshooting, 357-360
 video displays
 CRT, 362
 LCD, 361-362
 projectors, 362-363
 video settings
 color depth, 364-365
 drivers, 363-364
 Multiple Monitor (DualView), 370-371
 OSD (on-screen display), 369-370
 refresh rate, 368-369
 resolution, 365-368

virtual memory, 232-233
 low on virtual memory errors, troubleshooting, 100

virtual private networks (VPNs), 426

viruses
 definition of, 475
 preventing and troubleshooting, 478-481
 types of viruses, 475-476

Vista
 Backup Status and Configuration, 273
 boot errors, 285-287
 boot files, 249
 directory structure, 248
 folder sharing, 490-491
hardware compatibility, 180
Indexing service, 250-251
installing
 installation methods, 181-182
 partitions, creating, 186-187
 step-by-step installation process, 183-185
minimum requirements, 179-180
restoring
 to an earlier condition, 303
 from Windows Vista complete PC backup, 302
troubleshooting installation, 190-193
upgrading to, 188, 190
verifying installation of, 190-193
versions, 178-179
XPS (XML Paper Specification) feature, 404
visual effects, disabling, 238
volatile RAM (random access memory), 81
voltage (V), 104
 Wattage (W), 104
 power supplies, 118-119
webcams, 387
Welcome Center, configuring, 215
Welcome screen, disabling, 467
wide area networks (WANs), 426
Widescreen Extended Graphics Array (WXGA), 324
Widescreen Super Extended Graphics Array Plus (WSXGA+), 324
Windows. See also Windows 7; Windows Vista; Windows XP
 applications
 Command Prompt, 219
 Computer, 215-216
 Control Panel, 218
 Network, 218
 PowerShell, 219
 Windows Explorer, 216-218
components
 application windows, 212
 desktop, 210
 icons, 211
 Quick Launch, 212
 Sidebar, 212
 Start menu, 212, 214-215
 System Tray, 212
 taskbar, 212, 214-215
 Welcome Center, configuring, 215
 Windows Aero, configuring, 215
WANs (wide area networks), 426
WAPs (wireless access points), 425
Wattage (W), 104
 power supplies, 118-119
webcams, 387
Welcome Center, configuring, 215
Welcome screen, disabling, 467
wide area networks (WANs), 426
Widescreen Extended Graphics Array (WXGA), 324
Widescreen Super Extended Graphics Array Plus (WSXGA+), 324
Windows. See also Windows 7; Windows Vista; Windows XP
 applications
 Command Prompt, 219
minimum requirements, 167-168
troubleshooting installation, 174-176
upgrading to, 173-174
verifying installation of, 174-176
versions, 166-167
Windows 7 Logo’d Products List, 173
Windows Aero, configuring, 215
The Windows Boot Configuration
Data file is missing required
information (error message), 286
Windows Compatibility Center, 168, 173
Windows Complete PC Restore
option (Recovery Options), 284
Windows configuration
administrative tools, 220-221
boot files, 249
directory structure, 248
disks
formatting, 253-256
mounting, 257-258
partitioning, 253-256
RAID, 259-260
file systems, 257
Indexing service, 250-251
MMC (Microsoft Management
Console), 221
power management, 235-236
services, starting/ stopping, 233
in Command Prompt, 234
in Computer Management, 233
system tools
Device Manager, 225-226
Driver Signing, 227
DxDiag, 227-228
Msconfig, 231-232
Program Compatibility Wizard, 244
Registry, 239, 241
Remote Assistance, 242
Remote Desktop, 242-243
Safely Remove option, 229
System Information Tool, 227
Task Manager, 229-231
virtual memory, 232-233
Windows XP Mode, 244
user customizations, 238-239
user migration, 236-238
Windows Easy Transfer, 237
Windows Explorer, 216-218
Windows Firewall, 443, 479
Windows Logo’d Products, 168
Windows Memory Diagnostic Tool
(Recovery Options), 284
Windows Preinstallation Environment
phase (Vista installation), 191
Windows Recovery Environment
(WinRE), 282-284
Windows Security dialog box, 467
Windows System Image Manager
(SIM), 169, 181
Windows System Information tool,
168, 180, 198
Windows Update, 266-267
Windows Upgrade Advisor, 173
Windows Vista
Backup Status and Configuration,
273
boot errors, 285-287
boot files, 249
directory structure, 248
folder sharing, 490-491
hardware compatibility, 180
Indexing service, 250-251
installing
installation methods, 181-182
partitions, creating, 186-187
step-by-step installation process,
183-185
minimum requirements, 179-180
restore points, creating, 274
restoring
to an earlier condition, 303
from Windows Vista complete PC
backup, 302
troubleshooting installation, 190-193
upgrading to, 188, 190
verifying installation of, 190-193
versions, 178-179
XPS (XML Paper Specification) feature, 404
Windows Vista Logo’d Products List, 180, 188
Windows Vista Upgrade Advisor, 188
Windows Welcome phase (Vista installation, 191
Windows XP
boot errors, 287
boot files, 249
folder sharing, 488-489
hardware compatibility, 198
Indexing service, 250-251
installing
installation methods, 198-200
step-by-step installation process, 200-203
minimum requirements, 197
NTBackup, 273
restore points, creating, 274
restoring
to an earlier condition, 303
from ASR backup, 302
with System Restore, 303-304
troubleshooting installation, 204-205
upgrading to, 203
verifying installation of, 204-205
versions, 196-197
Windows XP Logo’d Products List, 198, 203
Windows XP Mode, 244
WinRE (Windows Recovery Environment), 282-284
Winsat.log, 191
wireless access points (WAPs), 425
wireless network adapters, 450-453, 455
wizards
FAST (Files and Settings Transfer) Wizard, 237
Program Compatibility Wizard, 244
worms, definition of, 476
WSXGA+ (Widescreen Super Extended Graphics Array Plus), 324
WXGA (Widescreen Extended Graphics Array), 324
X-Z
xcopy command, 309
XP
boot errors, 287
boot files, 249
folder sharing, 488-489
hardware compatibility, 198
Indexing service, 250-251
installing
installation methods, 198-200
step-by-step installation process, 200-203
minimum requirements, 197
restoring
to an earlier condition, 303
from ASR backup, 302
with System Restore, 303-304
troubleshooting installation, 204-205
upgrading to, 203
verifying installation of, 204-205
versions, 196-197
XPS (XML Paper Specification) feature (Windows Vista), 404
zombies, 477