Introduction

Welcome to the CompTIA A+ Exam Cram, Fourth Edition. This book prepares you for the CompTIA A+ Essentials Exam (number 220-701), and the CompTIA A+ Practical Application Exam (number 220-702) Imagine if you will, that you are at a testing center and have just been handed the passing scores for these exams. The goal of this book is to make that scenario a reality. I am very happy to have the opportunity to serve you in this endeavor. Together, we can accomplish your goal of attaining the CompTIA A+ certification.

Target Audience

The CompTIA A+ exams measure the necessary competencies for an entry-level IT professional with the equivalent knowledge of at least 500 hours of hands-on experience in the lab or field.

This book is for persons who have experience working with desktop PCs and laptops and want to cram for the A+ certification exam—cram being the key word. This book does not cover everything in the PC world; how could you in such a concise package? However, this guide is fairly thorough and should offer you a lot of insight…and a whole lot of test preparation.

If you do not feel that you have the required experience, have never attempted to troubleshoot a computer, or are new to the field, then I recommend the A+ Exam Certification Guide, which goes into much more depth than this text. On a side note, another great reference book that should be on every PC technician’s shelf is the latest edition of Upgrading and Repairing PCs by Scott Mueller, published by Que.

There are essentially two types of people that will be reading this book: those who want a job in the IT field, and those who want to keep their job. For those of you in the first group, the new CompTIA A+ certification can have a powerful career impact, increasing the chances of securing a position in the IT world. For those in the second group, preparing for the exams serves to keep your skills sharp, and your knowledge up to date, making you a well-versed and well-sought after technician.

Of course I know that some of you are picking this book up solely for the practice exams, which are by the way located directly after Chapter 17, “Taking the Real Exams,” and more are on the CD. But I recommend against
solely studying the practice questions. This book was designed from the ground up to build your knowledge in such a way that when you get to the practice exams, they will act as the final key to passing the real exams. The knowledge in the chapters is the cornerstone, whereas the practice exam questions are the battlements. Complete the entire book and you will have built yourself an impenetrable castle of knowledge.

About the Latest CompTIA A+ Exams

The newest versions of the exams (released in 2009) are known as the CompTIA A+ Essentials Exam (number 220-701), and the CompTIA A+ Practical Application Exam (number 220-702). There are quite a few changes and additions to these latest versions of the A+ exams including

- Windows Vista has been incorporated into the new objectives.
- Older operating systems such as Windows 95, 98, Me, and NT have been removed.
- Newer multicore processor technologies such as Core 2 Duo have been added.
- Newer hard drive and memory technologies have been added.
- The A+ troubleshooting process has been updated.
- Increased amount of networking and security topics, with increased difficulty.

This book covers all these changes and more within its covers.

For more information about how the A+ certification can help your career, or to download the latest official objectives, access CompTIA’s A+ webpage at http://www.comptia.org/certifications/listed/a.aspx.

Note: Those who have been certified in the most recent version of CompTIA A+ (2006 objectives) by taking 220-601 and one of the following: 220-602, 220-603 and 220-604 exams are eligible to update their currency through taking the CompTIA A+ bridge exam (one exam, BR0-003), which covers the new 2009 objectives.
About This Book

There is a lot of new information (and changing information) on the new A+ exams, so the people at Exam Cram and I decided to start this book from scratch. Every single bit of content is all new. The book is broken down into 17 chapters, each pertaining to particular objectives on the exam. Because the official CompTIA objectives can have very long names that sometimes deal with multiple subjects, I have divided the chapters into more manageable (and memorable) topics. All the questions in this book refer to these topics. Chapter topics and the corresponding CompTIA objectives are listed in the beginning of each chapter.

For the most part, I’ve structured the exam topics in this book to build on one another. Because of this I suggest that you read this entire book in order to best prepare for the CompTIA A+ exams. In the case that you want to review a particular topic, if your CD practice exam identifies a topic deficiency, for example, the topics are listed at the end of this introduction. In addition, you can use the index or the table of contents to quickly find the concept you are after.

Chapter Format and Conventions

Every Exam Cram chapter follows a standard structure and contains graphical clues about important information. The structure of each chapter includes the following:

- **Opening topics list:** This defines the topics to be covered in the chapter; it also lists the corresponding CompTIA A+ objective numbers.

- **Topical coverage:** The heart of the chapter. Explains the topics from a hands-on and a theory-based standpoint. This includes in-depth descriptions, tables, and figures geared to build your knowledge so that you can pass the exam. The chapters are broken down into between two and four topics each.

- **Cram Quiz questions:** At the end of each topic is a quiz. The quizzes, and ensuing explanations, are meant to gauge your knowledge of the subjects. If the answers to the questions don’t come readily to you, consider reviewing individual topics or the entire chapter. In addition to being in the chapters, you can find a PDF of all the Cram Quiz questions compiled in one place on the CD.
Additional Reading and Resources: At the end of each chapter, I list other sources of information, including books and websites, if you want to learn more about a particular topic.

Exam Alerts, Sidebars, and Notes: These are interspersed throughout the book. Watch out for them!

ExamAlert

This is what an Exam Alert looks like. Normally, an alert stresses concepts, terms, hardware, software, or activities that are likely to relate to one or more certification test questions.

Additional Elements

Beyond the chapters, there are a few more elements that I’ve thrown in for you. They include:

- **Practice Exams:** There are four practice exams in total, consisting of 100 questions each. Two of them are directly after Chapter 17 within the book. There is one for each CompTIA A+ exam. The other two are located on the CD that accompanies this book, again, one for each exam.

- **Cram Sheet:** The tear-out Cram Sheet is located right in the beginning of the book. This is designed to jam some of the most important facts you need to know for the exam into one small sheet, allowing for easy memorization.

The Hands-On Approach

For this book, I built a new desktop computer using components that I believe are a good example of what you will see in the field today, and for a while to come; and are representative of the types of technologies that will be covered in the exams. I refer to the components in this system from Chapter 2, “Motherboards” onward. I like to put things into context whenever possible. By referencing the parts in the computer during each chapter, I hope to infuse some real-world knowledge and to solidify the concepts you need to learn for the exam. I believe that this more hands-on approach can help you to visualize concepts better and recommend that every PC technician build their own PC at some point (if you haven’t already). This can really help to reinforce the ideas and concepts expressed in the book. I also recommend that you work
with two computers while going through this book: one with Windows Vista, and one with Windows XP. Another option is to run one computer with one of the operating systems mentioned and a virtual machine running the other operating system.

Within these pages I refer to various ancillary websites, most notably;

- Microsoft’s TechNet—http://technet.microsoft.com
- Microsoft Help and Support—http://support.microsoft.com (previously known as the Microsoft Knowledge Base or MSKB).

As an IT technician, you will be visiting these sites often; they serve to further illustrate and explain concepts covered in this text.

Goals for This Book

I have three main goals in mind while preparing you for the CompTIA A+ exams.

My first goal is to help you understand A+ topics and concepts quickly and efficiently. To do this, I try to get right to the facts that are necessary for the exam. To drive these facts home, the book incorporates figures, tables, real-world scenarios, and simple to-the-point explanations. Also, in Chapter 17, you can find test-taking tips and a preparation checklist that gives you an orderly step-by-step approach to taking the exam. Be sure to complete every item on the checklist! For students of mine that truly complete every item, there is an extremely high pass rate for the exams.

My second goal for this book is to provide you with more than 600 unique questions to prepare you for the exam. Between the Cram Quizzes and the practice exams, that goal has been met, and I think it will benefit you greatly. Because CompTIA reserves the right to change test questions at any time, it is difficult to foresee exactly what you will be asked on the exam; however I think you will find that a good amount of the questions in this book are similar to the real questions. Regardless, to become a good technician, it is important to know the concept, not just memorize questions. To this effect each question has an explanation and maps back to the topic (and chapter) that was covered in the text. I’ve been using this method for more than a decade with my students (over two thousand of them) with great results.

My final goal is to provide support for this and all my titles, completing the life cycle of learning. I do this through my personal website: www.DavidLProwse.com. It has additional resources for you and is set up to
take questions from you about my titles. The site requires free registration to gain access to the additional A+ resources or to post questions; however, all you need is a valid email address, so join my little community! I’ll try my best to get to your questions ASAP. All personal information is kept strictly confidential.

Good luck to you in your certification endeavors. I hope you benefit from this book. Enjoy!

Sincerely,

David L. Prowse

Exam Topics

Table I.1 lists the exam topics covered in each chapter of the book.

<table>
<thead>
<tr>
<th>Exam Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubleshooting Theory</td>
<td>1</td>
</tr>
<tr>
<td>Troubleshooting Examples and Concepts</td>
<td>1</td>
</tr>
<tr>
<td>Motherboard Components and Form Factors</td>
<td>2</td>
</tr>
<tr>
<td>The BIOS</td>
<td>2</td>
</tr>
<tr>
<td>Installing and Troubleshooting Motherboards</td>
<td>2</td>
</tr>
<tr>
<td>CPU 101</td>
<td>3</td>
</tr>
<tr>
<td>Installing and Troubleshooting CPUs</td>
<td>3</td>
</tr>
<tr>
<td>RAM Basics and Types of RAM</td>
<td>4</td>
</tr>
<tr>
<td>Installing and Troubleshooting DRAM</td>
<td>4</td>
</tr>
<tr>
<td>Understanding and Testing Power</td>
<td>5</td>
</tr>
<tr>
<td>Power Devices</td>
<td>5</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>5</td>
</tr>
<tr>
<td>Magnetic Storage Media</td>
<td>6</td>
</tr>
<tr>
<td>Optical Storage Media</td>
<td>6</td>
</tr>
<tr>
<td>Solid State Storage Media</td>
<td>6</td>
</tr>
<tr>
<td>Installing and Upgrading to Windows Vista</td>
<td>7</td>
</tr>
<tr>
<td>Installing and Upgrading to Windows XP</td>
<td>7</td>
</tr>
<tr>
<td>Windows User Interfaces</td>
<td>8</td>
</tr>
<tr>
<td>System Tools and Utilities</td>
<td>8</td>
</tr>
<tr>
<td>Files, File Systems, and Disks</td>
<td>8</td>
</tr>
<tr>
<td>Updating Windows</td>
<td>9</td>
</tr>
<tr>
<td>Maintaining Hard Disks</td>
<td>9</td>
</tr>
<tr>
<td>Repair Environments and Boot Errors</td>
<td>10</td>
</tr>
<tr>
<td>Windows Tools and Errors</td>
<td>10</td>
</tr>
<tr>
<td>Command-Line Tools</td>
<td>10</td>
</tr>
<tr>
<td>Exam Topic</td>
<td>Chapter</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Installing, Configuring, and Troubleshooting Visible Laptop Components</td>
<td>11</td>
</tr>
<tr>
<td>Installing, Configuring, and Troubleshooting Internal Laptop Components</td>
<td></td>
</tr>
<tr>
<td>The Video Subsystem</td>
<td>12</td>
</tr>
<tr>
<td>The Audio Subsystem</td>
<td></td>
</tr>
<tr>
<td>Input/Output, Input Devices, and Peripherals</td>
<td></td>
</tr>
<tr>
<td>Printer Types and Technologies</td>
<td>13</td>
</tr>
<tr>
<td>Installing, Configuring, and Troubleshooting Printers</td>
<td></td>
</tr>
<tr>
<td>Networking Fundamentals</td>
<td>14</td>
</tr>
<tr>
<td>Network Cabling and Connectors</td>
<td></td>
</tr>
<tr>
<td>Troubleshooting Network Connectivity</td>
<td></td>
</tr>
<tr>
<td>Installing and Configuring a SOHO Network</td>
<td></td>
</tr>
<tr>
<td>Basics of Data Security</td>
<td>15</td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
</tr>
<tr>
<td>Malicious Software</td>
<td></td>
</tr>
<tr>
<td>File Security</td>
<td></td>
</tr>
<tr>
<td>Safety and Environmental Procedures</td>
<td>16</td>
</tr>
<tr>
<td>Professionalism and Communication Skills</td>
<td></td>
</tr>
<tr>
<td>Getting Ready and the Exam Preparation Checklist</td>
<td>17</td>
</tr>
<tr>
<td>Tips for Taking the Real Exam</td>
<td></td>
</tr>
<tr>
<td>Beyond the CompTIA A+ Certification</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 5

Power

This chapter covers the following A+ exam topics:

- Understanding and Testing Power
- Power Devices
- Power Supplies

You can find a master list of A+ exam topics in the “Introduction.”

This chapter covers CompTIA A+ 220-701 objectives 1.3 and 2.5 and CompTIA A+ 220-702 objectives 1.1, 1.2, and 1.4.

Everything relies on power. Clean, well-planned power is imperative in a computer system. It’s so important, that I almost made this the first chapter of the book. I can’t tell you how many power-related issues I have troubleshooted in the past. Many of the issues that you see concerning power are due to lack of protection and improper planning, and as such you will see several questions (if not more) on the A+ exams regarding this subject.

Imagine a scenario in which you work for a technical services division of a company. You are required to install a new, more powerful power supply in a computer that contains many devices and requires a lot of electricity. You need to install the computer in a new area of the company’s building. This requires you to plug the computer into an AC receptacle that has never been used or tested.

What kind of power supply should you select? How can you verify that the AC outlet is properly wired? And how can you protect the computer? This chapter answers all those questions and furnishes you with the knowledge you need to install, test, and troubleshoot power supplies and test power that comes from the wall outlet.
Understanding and Testing Power

The power for your computer is derived from electricity, which is basically the flow of electric charge. Electricity is defined and measured in several ways, most commonly

- Voltage, a representation of potential energy; sometimes it’s more simply referred to as pressure; its unit of measurement is volts (V).
- Wattage or electric power, the rate of electric energy in a circuit, measured in watts (W).
- Amperage or electric current, the movement of electric charge, measured in amperes or amps (A).
- Impedance, the amount of resistance to electricity, measured in ohms (Ω).

Each of these is covered in this chapter, but by far the most common of these that you will be testing is voltage. Here are two examples of voltages you are probably familiar with:

- 120 Volts AC (the voltage associated with many U.S. homes)
- 5 Volts DC (the voltage associated with some of the internal power connections in your PC)

The difference in these two examples (aside from the amount of volts) is that a house’s outlets use alternating current (AC), in which the flow of electrons alternate, and your computer, again internally, uses direct current (DC), in which the flow of electrons is one way.

ExamAlert

In AC, electron flow alternates.
In DC, electrons flow one way.

Back to our scenario; because you can’t control who wired the AC outlet that you will be connecting the computer to, or how clean the power is that comes from your municipality, you should test the outlet prior to plugging the computer in. Two good tools to use when testing are a receptacle tester and a multimeter.
Warning: Read through these sections carefully before attempting to test a live AC outlet. If you still feel unsure, contact a qualified electrician to test and make repairs to an AC outlet.

Testing an AC Outlet with a Receptacle Tester

Type B AC outlets are the most common, and might also be referred to as wall sockets, electric receptacles, or power points. It is type B that you need to be concerned with for the A+ exam. If any of the hot, neutral, or ground wires are connected improperly, the computer connected to the outlet is a sitting duck, just waiting for irreparable damage. To ensure that the AC outlet is wired properly, you can use a receptacle tester, like the one shown in Figure 5.1. These are inexpensive and are available at most home improvement stores and electrical supply shops. When you plug in the receptacle tester, it tells you if the receptacle is wired properly or indicates which wires are incorrect.

FIGURE 5.1 A common receptacle tester and labeled receptacle
In Figure 5.1 the test has passed. With this particular tester, two yellow lights tell you that the outlet is wired correctly. Any other combination of lights tells you that there is a wiring error. The different combinations are usually labeled on the tester itself; for example, an open ground error is displayed by one single, yellow light on this tester. Important: If you receive any erroneous readings or if there are no lights at all, do not use the outlet and contact your supervisor and/or building management so that they can bring in a licensed electrician to fix the problem.

ExamAlert
If you find an AC outlet is improperly wired, contact your supervisor and/or building management to resolve the problem.

Testing an AC Outlet with a Multimeter

Every PC technician should own a multimeter, and we use one throughout this chapter. A multimeter is a hand-held device that, among other things, can be used to measure amps and impedance, and to test voltage inside a computer and from AC outlets. It has two leads, a black and a red. Whenever using the multimeter, try to hold both of the multimeter leads with one hand, and hold them by the plastic handles; don’t touch the metal ends. It will be like holding chopsticks but is a safer method, reducing the severity of electric shock in the uncommon chance that one occurs. To test an AC outlet with a multimeter, run through the following steps:

1. Place the multimeter’s black lead in the outlet’s ground. (The parts of the outlet are labeled in Figure 5.1.)
2. Place the red lead in the hot opening.
3. Turn on the multimeter to test for volts AC (sometimes labeled as VAC). Hold the leads steady and check for readings. Optimally, the reading will hover around 115 volts or 120 volts depending on where you are in the United States. Watch the readings for a minute or so. Remember the reading or range of readings that display. A common reading is shown in Figure 5.2.
4. Turn off the multimeter.
5. Remove the red lead.
6. Remove the black lead.
What was your reading? A steady reading closest to 120 volts is desirable. It might be less in some areas, but the key is that it’s steady at one voltage; this is also known as clean power. If the reading fluctuates a lot, say between 113 volts and 121 volts, for example, you have one of the varieties of dirty power. This could be because too many devices use the same circuit or because power coming from electrical panel or from the municipal grid fluctuates, maybe because the panel or the entire grid is under/overloaded. A quick call to your company’s electrician can result in an answer and possibly a long-term fix. However, we are concerned with an immediate solution, which in this case will be to install an uninterruptible power supply (UPS) or other line-conditioning device between the computer and the AC outlet. This can regulate the output of AC to the computer.

ExamAlert

To keep an AC outlet’s voltage steady, use a UPS or line conditioner.

You can also test the neutral and ground wires in this manner. You should be especially concerned with whether the ground wire is connected properly.
Previously we showed how to test this with the receptacle tester, but to test this with the multimeter, connect the black lead to ground and the red lead to neutral. This should result in a reading of 0 volts. Any other reading means that the outlet is not grounded properly, which can result in damage to a computer that connects to it. You can also use a voltage detector, which is a pen-shaped device that beeps when it comes into contact with voltage. On a properly grounded outlet, the only part that should give audible beeps is the hot. Everything else including the screw and outlet plate should not register any sounds. If sounds do register by simply touching the outlet plate with the voltage detector, the outlet is not grounded properly. If this is the case, or if you got any other reading besides 0 volts on the multimeter, contact an electrician right away.

Cram Quiz

Cram Quiz

Answer these questions. The answers follow the last question. If you cannot answer these questions correctly, consider reading this section again until you can.

1. What tool would you use to test the amount of voltage that is coming from an AC outlet?
 - A. Multimeter
 - B. Voltage detector
 - C. Receptacle tester
 - D. Impedance tester

2. Which of the following is a representation of potential energy?
 - A. Wattage
 - B. Voltage
 - C. Impedance
 - D. Amperage

3. Which wire when tested should display zero volts on a multimeter?
 - A. Neutral
 - B. Hot
 - C. Ground
 - D. Red
Cram Quiz Answers

1. A. The multimeter is the only testing tool that can display voltage numerically.
2. B. Voltage is a representation of potential energy; an analogy for voltage would be water pressure in a pipe.
3. C. When testing the ground wire with a multimeter, it should display a reading of zero volts.
Utilizing proper power devices is part of a good preventative maintenance plan and helps to protect a computer. You need to protect against several things:

- Surges
- Spikes
- Sags
- Brownouts
- Blackouts

A surge in electrical power means that there is an unexpected increase in the amount of voltage provided. This can be a small increase or a larger increase known as a spike. A spike is a short transient in voltage that can be due to a short circuit, tripped circuit breaker, power outage, or lightning strike.

A sag is an unexpected decrease in the amount of voltage provided. Typically, sags are limited in time and in the decrease in voltage. However, when voltage reduces further, a brownout could ensue. During a brownout the voltage drops to such an extent that it typically causes the lights to dim and causes computers to shut off.

A blackout is when a total loss of power for a prolonged period occurs. Another problem associated with blackouts is the spike that can occur when power is restored. In the New York area, it is common to have an increased amount of tech support calls during July; this is attributed to lightning storms! Quite often this is due to improper protection.

Some devices have specific purposes, and others can protect against more than one of these electrical issues. Let’s describe a few of these devices.

Power Strips

A power strip is a group of sockets, usually in-line, with a flexible cable that plugs into an AC outlet. It enables for multiple devices to share a single receptacle in that outlet. Due to this, a maximum wattage rating can be applied to the device, for example, 3,000 watts is a decent amount. Interesting, a computer might have a 300-watt power supply, but on the average, it might use only 100 watts of that power while running. A monitor might use between 35 watts and 100 watts depending on the type of monitor. You can check the wattage rating on the back or side of most devices. Add the total for all
devices connected to the power strip, and remember not to exceed the maximum rating. This concept applies to other devices in this section including surge protectors and UPSs.

Power strips might not have surge protection functionality. If they don’t have surge protection capabilities, they cannot protect from any of the electrical issues (surges and spikes) listed in the previous section.

A power strip has a master on/off switch and usually has a 15-amp circuit breaker to prevent overloading. If an overload occurs, the circuit breaker trips, cutting power, and the device can usually be reset by pressing a black button normally located somewhere near the power button. Overloads occur because the power strip tries to pull too much current (amps) from the wall outlet, or when too much current is supplied to the power strip. As a rule of thumb, no more than four or five computers (and monitors) should use the same power strip and, therefore, the same circuit. This calls into question whether any other AC outlets connect to the same circuit. To find this out, a qualified electrician can use a circuit testing tool and locate all the outlets on the circuit in question, or this information might be included in your building’s electrical diagram. By the way, you can also calculate the amount of computers and monitors that can connect to a circuit by their amperage rating. For example, at AC (wall-outlet level) a typical computer would draw 2 to 3 amps and perhaps another 2 amps for the monitor maximum. (Keep in mind that these are estimates.) So on a standard 15-amp circuit, it would be wise to have no more than three computers and three monitors running simultaneously.

Surge Protectors

A surge protector or surge suppressor is a power strip that also incorporates a metal-oxide varistor (MOV) to protect against surges and spikes. Most power strips that you find in an office supply store or home improvement store have surge protection capability. The word varistor is a blend of the two terms variable resistor.

To protect against surges and spikes, use a surge protector!

Surge protectors are usually rated in joules, which are a way to measure energy, and in essence, the more joules the better. For computer systems, 1,000 joules or more is recommended. This joule rating gives you a sense of how
long the device can protect against surges and spikes. Surges happen more often than you might think, and every time a surge happens, part of the varistor is burned out. The higher the joule rating, the longer the varistor (and therefore the device) should last. Most of today’s surge protectors have an indicator light that informs you if the varistor has failed.

Because surges can occur over telephone lines, RG-6 cable lines, and network lines, it is common to see input and output ports for any or all these on a decent surge protector. Higher-quality surge protectors have multiple MOVs not only for the different connections such as AC and phone, but also have multiple MOVs for the individual wires in an AC connection.

Uninterruptible Power Supplies

An *uninterruptible power supply (UPS)* takes the functionality of a surge suppressor and combines that with a battery backup. So now, our computer is protected not only from surges and spikes, but also from sags, brownouts, and blackouts.

Use a UPS to protect your computer from power outages!

But the battery backup can’t last indefinitely! It is considered emergency power and typically keeps your computer system running for 5 to 30 minutes depending on the model you purchase. Figure 5.3 shows an example of a typical inexpensive UPS. Notice that some of the outlets on the device are marked for battery backup and surge protection, whereas others are for surge protection only.

Most UPS devices also act as line conditioners, protecting from over and under-voltage; they condition (or regulate) the voltage sent to the computer. The device shown, and most UPS devices today, has a USB connection so that your computer can communicate with the UPS. When there is a power outage, the UPS sends a signal to the computer telling it to shut down, suspend, or stand-by before the battery discharges completely. Most UPSs come with software that you can install that enables you to configure the computer with these options.
UPS devices’ output power capacity is rated in volt-amps (VA) and watts. Although you might have heard that volt-amps and watts are essentially the same, this is one of those times that they are somewhat different. The volt-amp rating is slightly higher due to the difference between apparent power (when in battery backup mode) and real power (when pulling regular power from the AC outlet). For example, the device in Figure 5.3 has a volt-amp rating of 350 VA but a wattage rating of 200 watts. Generally, this is enough for a computer, monitor, and a few other devices, but a second computer might be pushing it given the wattage rating. The more devices that connect to the UPS, the less time the battery can last if a power outage occurs; if too many devices are connected, there may be inconsistencies when the battery needs to take over. Thus many UPS manufacturers limit the amount of battery backup-protected receptacles. Connecting a laser printer to the UPS is not recommended due to the high current draw of the laser printer; and never connect a surge protector or power strip to one of the receptacles in the UPS, to protect the UPS from being overloaded.

ExamAlert

Do not connect laser printers to UPS devices.
The UPS normally has a lead-acid battery that, once discharged, requires 10 hours to 20 hours to recharge. This battery is usually shipped in a disconnected state. Before charging the device for use, you must first make sure that the battery leads connect to the UPS. If the battery ever needs to be replaced, a red light will usually appear accompanied by a beeping sound. Beeping can also occur if power is no longer supplied to the UPS by the AC outlet.

There are varying levels of UPS devices, which incorporate different technologies. For example, the cheaper standby UPS (known as an SPS) might have a slight delay when switching from AC to battery power, possibly causing errors in the computer operating system. Although it isn’t important to know these different technologies for the exam, you should realize that some care should be taken when planning the type of UPS to be used. When data is crucial, you had better plan for a quality UPS!

Cram Quiz

Answer these questions. The answers follow the last question. If you cannot answer these questions correctly, consider reading this section again until you can.

1. Which device should you use to protect against power outages?
 - A. Multimeter
 - B. UPS
 - C. Fedex
 - D. Surge protector

2. You want a *cost-effective* solution to the common surges that can affect your computer. Which device would be the best solution?
 - A. UPS
 - B. Surge protector
 - C. Power strip
 - D. Line conditioner

3. Which of these is an unexpected increase in voltage?
 - A. Sag
 - B. Blackout
 - C. Spike
 - D. Whiteout
Cram Quiz Answers

1. B. The UPS is the only item listed that protects the computer from power outages like blackouts and brownouts.

2. B. A surge protector is the right solution at the right price. A UPS is a possible solution but costs more than a surge protector. A line conditioner also would be a viable solution but, again, is overkill. And a power strip doesn’t necessarily have surge protection functionality.

3. C. A spike (or a surge) is an unexpected increase in voltage. A sag is a decrease in voltage, a blackout is a power outage, and a whiteout is a blizzard, which could result in a blackout!
Power Supplies

Okay, now that we’ve tested our AC outlet and put some protective power devices into play, let’s go ahead and talk power supplies. The power supply is in charge of converting the alternating current (AC) drawn from the wall outlet into direct current (DC) to be used internally by the computer. It feeds the motherboard, hard drives, optical drives, and any other devices inside of the computer. Talk about a single point of failure! That is why many higher-end workstations and servers have redundant power supplies.

Planning Which Power Supply to Use

It is important to use a reliable brand of power supply that is UL listed (certified). There are a few other things to take into account when planning which power supply to use in your computer:

- Type of power supply and compatibility
- Wattage and capacity requirements
- Amount and type of connectors

Now, in our scenario we said that we need a power supply that can support many devices in our workstation; one that will output a lot of power. In this scenario the computer has two IDE hard drives, a CD-Burner, a DVD-ROM, one SATA drive, and a PCIe video card. And let’s just say that we use an ATX 12V 2.0 motherboard. So we need to look for a high–capacity, compatible ATX power supply with a decent amount of connectors for our devices. Let’s discuss planning now.

Types of Power Supplies and Compatibility

The most common form factor today is Advanced Technology Extended (ATX). Depending on the type of ATX, the main power connector to the motherboard will have 20 pins or 24 pins. Table 5.1 shows a few different form factors and their characteristics. The key is compatibility. In our scenario we have a previously built computer, which means that the case and motherboard are already compatible. If this computer was proprietary, we could go to the computer manufacturer’s website to find out the exact form factor, and possibly a replacement power supply for that model computer. Some third-party power supply manufacturers also offer replacement power supplies for proprietary systems. However, if this computer was custom built, we would need to find out the form factor used by the motherboard and/or case, and
should open the computer and take a look at all the necessary power connections. Then we need to find a compatible power supply according to those specifications from a third-party power supply manufacturer. Table 5.1 displays the form factors you need to know for the exam.

TABLE 5.1 Common Power Supply Form Factors

<table>
<thead>
<tr>
<th>Form Factor</th>
<th>Main Power Connector</th>
<th>Other Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATX</td>
<td>P1 20-pin connector</td>
<td>An older standard but you will still support it!</td>
</tr>
<tr>
<td>ATX 12V 1.0 - 1.3</td>
<td>P1 20-pin connector & P4 4 pin 12V connector</td>
<td>Supplemental 6-pin AUX connector provides additional 3.3V and 5V supplies to the motherboard.</td>
</tr>
<tr>
<td>ATX 12V 2.0</td>
<td>P1 24-pin connector (backward compatible)</td>
<td>▶ 6-pin AUX was removed. ▶ SATA power cable is required.</td>
</tr>
</tbody>
</table>

Figure 5.4 gives examples of a P1 20-pin (the white connector) and P1 24-pin connector (the black connector). Toward the left of the black connector you notice it has an additional four pins that can be separated from the main group of 20 pins. Both have locking tabs to keep the P1 connector fastened to the motherboard. (In the figure this is shown only on the 20-pin connector.)
There are many other types of form factors such as microATX, BTX, and NLX (covered in Chapter 2, “Motherboards”) and older form factors such as AT; however, the form factors listed in Table 5.1 are the important ones to know regarding power supplies for the A+ exam. For any other form factors, just remember that the power supply, case, and motherboard all need to be compatible.

Another important piece to consider is the type of case that is used. Larger cases require longer power cables to reach the devices. You can find the measurements for the cables on the power supply manufacturer’s website. There are several different types of cases that you need to be familiar with:

- **Desktop**: Lies horizontally, usually has one 5¼-inch drive bay.
- **Mini-tower**: Stands vertically, usually has two or three drive bays.
- **Mid-tower**: Usually has three or four bays.
- **Full tower**: Usually has six bays.
- **Slim line**: Compaq and the Playstation III and other third-party case manufacturers use this case design.

Many power supply manufacturers also make computer cases and often sell them as a package or to be purchased separately.

Wattage and Capacity Requirements

Power supplies are usually rated in watts. They are rated at a maximum amount that they can draw from the wall outlet and pass on to the computer’s devices. Remember that the computer will not always use all that power the way in which a light bulb does. And the amount depends on how many devices work and how much number crunching your processor does! In addition, when computers sleep or suspend, they use less electricity. What you need to be concerned with is the maximum amount of power all the devices
need collectively. Most power-supply manufacturers today offer models that range from 300 watts all the way up to 1,000 watts. Although 300 watts is a decent amount of power for many computers, it might not suffice in our scenario. Devices use a certain amount of power defined in amps and/or watts. By adding all of the devices power consumption together, we can get a clearer picture of how powerful a power supply we need. Consult the manufacturer’s web page of the device for exact requirements. We said that in our scenario the computer has two IDE hard drives, a CD-Burner, a DVD-ROM, a floppy drive, and one SATA drive and a PCIe video card. It also has a quad core processor and 2GB of RAM (in two sticks).

After doing the math, it appears that the computer in our scenario needs about 400 watts or so to run smoothly. The power supply we purchase should be rated slightly higher just in case, so in this scenario we would obtain a 450-watt or 500-watt power supply. Most power supplies are rated for 15 amps, so it is important to connect the computer to a 15-amp circuit or higher.

Amount and Type of Power Connectors

It is important to know how many of each type of power connector you need when planning which power supply to use. In our scenario we need four IDE power connectors (for the two hard drives, CD-Burner, and DVD-ROM), one floppy power connector, and one SATA power connector. You need to be familiar with each of these types of power connectors for the A+ exams. Be prepared to identify them by name and by sight. Table 5.2 defines the usage and voltages for the most common power connectors: Molex, mini, SATA, and PCIe, which are displayed in Figures 5.5 through 5.8.

<table>
<thead>
<tr>
<th>Power Connector</th>
<th>Usage</th>
<th>Pins and Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molex</td>
<td>IDE hard drives, optical drives, and other devices</td>
<td>Red (5V), black (G), black (G), yellow (12V)</td>
</tr>
<tr>
<td>Mini</td>
<td>Floppy drives</td>
<td>Red (5V), black (G), black (G), yellow (12V)</td>
</tr>
<tr>
<td>SATA</td>
<td>Serial ATA hard drives</td>
<td>15-pin, 3.3V, 5V, and 12V</td>
</tr>
<tr>
<td>PCIe</td>
<td>PCI Express cards</td>
<td>6-pin</td>
</tr>
</tbody>
</table>
FIGURE 5.5 Molex power connector

FIGURE 5.6 Mini power connector
FIGURE 5.7 SATA 15-pin power connector

FIGURE 5.8 PCIe 6-pin power connector
Installing the Power Supply

When the power supply arrives, we can install it. But first, let’s take a look at the back of the power supply to identify the components we see, as shown in Figure 5.9.

![Rear view of power supply](image)

On the top-left portion of Figure 5.9, we see a hard on/off switch sometimes referred to as a kill switch. This is a nice feature when troubleshooting PCs. Instead of disconnecting the power cable, we can shut off this switch. It works nicely in emergencies as well. Below that we see a red voltage selector switch. This should be set to 115V in the United States. It also has a 230V option to be used in other countries. (An additional adapter might be necessary for the different wall outlets you might encounter.) Never change the voltage selector switch while the computer is running. Be sure to check this setting before using the power supply. Some newer power supplies are now equipped with a universal input enabling you to connect the power supply to any AC outlet between 100V to 240V, without having to set a voltage switch. Below that we see the power cable inlet; this is known as a C14 inlet and is where we attach our power cord to the power supply. These inlets and cables that connect to them are defined by the IEC 60320 specification (previously the IEC 320 spec), and because of this many techs refer to the power cord as an IEC cable (which by the way stands for International Electrotechnical Commission).
This cord actually has a standard three-prong connector suitable for an AC outlet on one end and a C13 line socket on the other to connect to the power supply. To the right we see the power supply fan that is of great importance when troubleshooting power supplies.

If there is a power supply connected to the computer, turn off the computer and unplug the power supply. ATX motherboards are always receiving 5 volts even, when they are off, if the computer is plugged in. Be sure that you are employing antistatic methods. Remove the old power supply and prepare to install the new one.

You might want to test the power supply before installing it. This can be done by connecting a power supply tester (described in the next section), plugging in the power supply to the AC outlet, and turning on the hard on/off switch. Or you can test the power supply after it is installed by simply turning the computer on.

The power supply is placed inside the case and mounted with four standard screws that are screwed in from the back of the case. In some instances, a plastic housing inside the case might need to be removed. In addition, the power supply might not fit without the removal of other devices, such as the processor, and such, but in most cases (pun intended) you should install the power supply without too much trouble. Next, connect the P1 connector to the motherboard and attach the Molex, mini, SATA, and PCIe as necessary to their corresponding devices. Note that the P1 connector (20-pin or 24-pin main connector) can be plugged in only in one way and that there is a locking tab. Also, most other connectors are molded in such a way as to make it difficult to connect them backward. If you need a lot of strength to plug in the connector, check and make sure that it is oriented correctly. Don’t force the connection. Afterward, remove any antistatic protection, and finally, plug the power supply into the AC outlet, turn on the hard on/off switch (if the power supply has one), and turn on the computer. Check to see if the fan in the power supply is working and if the computer boots correctly.

Troubleshooting Power Supply Issues

Installation of the power supply was easy, and there aren’t usually many issues when doing so, but power supplies don’t last forever. Moreover, many issues that occur with power supplies are intermittent making the troubleshooting process a little tougher. Your best friends when troubleshooting power supplies are going to be a multimeter, power supply tester, and your eyes and ears. Of course, always make sure that the power supply connects to the AC
outlet properly before troubleshooting further. Here are a couple of the issues you may encounter with power supplies:

- Fan failure
- Fuse failure
- Quick death
- Slow death

Fan failure can be due to the fact that the power supply is old, extremely clogged with dirt, or that the fan was of cheaper design (without ball bearings). However, for the A+ exam it doesn’t make a difference. As far as A+ is concerned, if the fan fails, the power supply needs to be replaced, and it makes sense. Chances are, if the fan has failed, other components of the power supply are on their way out also. It is more cost-effective to a company to simply replace the power supply than to have a technician spend the time opening it and trying to repair it. More important, although it is possible to remove and replace the fan by opening the power supply, this can be a dangerous venture because the power supply holds an electric charge, so the A+ rule is to never open the power supply.

ExamAlert

Do not open a power supply! If it has failed, replace it with a working unit.

Fuse failure can occur due to an overload or due to the power supply malfunctioning. Either way, the proper course of action is to replace the power supply. Do not attempt to replace the fuse. Chances are that the power supply is faulty if the fuse is blown. If it so happens that you need to test an individual fuse that was lying around, then use your multimeter. Make sure that your red lead is connected to the ohms (\(\Omega \)) input and set the meter to Ohm (\(\Omega \)). Touch the probes to both ends of the fuse. A good fuse should show zero ohm or display continuity. A bad or “blown” fuse will not show any reading. This is an example of testing impedance.

If the power supply dies a quick death, it might be because of several reasons from an electrical spike to hardware malfunction. First make sure that the IEC cable is connected properly to the power supply and to the AC outlet. Sometimes, it can be difficult to tell whether the power supply has failed or if it’s something else inside or outside the computer system. You should check the AC outlet with your trusty receptacle tester and make sure that a circuit
hasn’t tripped, and verify that any surge protectors and/or UPS devices work properly. Depending on what you sense about the problem, you might decide to just swap out the power supply with a known good one. Otherwise, move on to the following numbered steps.

If the power supply is dying a slow death and is causing intermittent errors, it could be tough to troubleshoot. If you suspect intermittent issues, first make sure that the power cord is connected securely and then try swapping out the power supply with a known good one. Boot the computer and watch it for awhile to see if the same errors occur.

Whether the power supply has apparently failed completely or is possibly causing intermittent errors, and you can’t figure out the cause to this point, continue through the following steps:

1. Remove the computer case.

2. Connect a power supply tester, as shown in Figure 5.10, to the P1 connector and look at the results. (Make sure you have the correct power supply tester; this depends on whether you have a 20-pin or 24-pin power connector.) These power supply testers normally test for +12V, –12V, +5V, –5V, and 3.3V, but they might not test every individual pin. If there are error lights, no lights, or missing lights for specific voltages on the tester, replace the power supply. If all the lights are green, move on to the next step.
3. Use a multimeter to test the power supply. Use the same methodology for testing with a multimeter as in the beginning of this chapter.

 a. Turn off the hard on/off switch. (If there is one; if not, unplug the IEC cord.)

 b. With the main motherboard connector (P1) inserted into the motherboard, connect the black lead to a ground wire (or other source of ground) and insert the red lead to a colored voltage wire in the main power connector, as shown in Figure 5.11. You need to dig a little bit to get the lead in there but don’t press too hard. When the leads are stationary, move on to the next step.

 c. Turn on the hard on/off switch (or plug the IEC cord back in) and turn on the computer.
d. Turn on the multimeter to volts DC and view the results. In the figure you notice that we test an orange wire (which is rated for +3.3 volts). Generally, supply voltages should be within +/- 5 percent of the nominal value. Our result was +3.43 volts, which is within tolerance.

Note
If you have an analog multimeter, you would usually set this to 20 or higher. Just remember to move the decimal point in the reading for every increment higher than 20!

e. Shut off the multimeter and computer every time before moving to another wire. Check each of the wires for proper voltages. A chart of all the voltages for 20-pin and 24-pin connectors is available in Chapter 2.

f. If one of the wires fails or gives intermittent results, first verify you have a decent connection with the multimeter leads; then see if the wire just needs to be inserted into the main motherboard connector better, and if it continues, replace the power supply. If all the wires are fine (which is doubtful), move to the next step.

4. Swap the power supply with a known good power supply. Boot the computer and watch it for several minutes or longer to see if there are any strange and intermittent occurrences.

Remember that sometimes connections can be jarred loose inside and outside the computer. Check the IEC cord on both ends and all power connections inside the computer. This includes the main motherboard connector, Molex, mini, SATA, and PCIe connectors. Any one loose connector can have interesting results on your computer!

Heating and Cooling
Another thing to watch for is system overheating. This can happen for several reasons:

- Power supply fan failure
- Auxiliary case fan failure
- Inadequate amount of fans
Air flow is important on today’s computers because processors can typically operate at 3 gflops. That creates a lot of heat. Add to that the fact that the video card and other cards have their own on-board processors, it can get hot inside the computer case. Circulation is the key word here. Air should flow in the case from the front and be exhausted out the back. Any openings in the case or missing slot covers can cause circulation to diminish. If you have a computer that has a lot of devices, or does a lot of processing, or runs hot for any other reason, your best bet is to install a case fan in the front of the case, which pulls air into the case, and a second case fan in the back of the case, which with the power supply fan helps to exhaust hot air out the back. Also, try to keep the computer in a relatively cool area and leave space for the computer to expel its hot air! Of course there are other special considerations and options, such as liquid cooling, and special processor cooling methods, such as the Intel Chassis Air Guide, but they are not covered in the A+ exam.

Cram Quiz

Answer these questions. The answers follow the last question. If you cannot answer these questions correctly, consider reading this section again until you can.

1. Which device tests multiple wires of a power supply at the same time?
 - A. Multimeter
 - B. Power supply tester
 - C. Line conditioner
 - D. Surge protector

2. Which power connector would be used to power an IDE hard drive?
 - A. Molex
 - B. mini
 - C. P1
 - D. P8/P9

3. Which of the following uses a 24-pin main motherboard power connector?
 - A. ATX
 - B. ATX 12V 1.3
 - C. ATX 12V 2.0
 - D. ATX 5V 2.0
4. The red wire in a Molex connection is rated for what voltage?
 ☐ A. 12 volts
 ☐ B. 5 volts
 ☐ C. 3.3 volts
 ☐ D. 24 volts

Cram Quiz Answers

1. B. The power supply tester tests 3.3V, 5V, –5V, 12V, and –12V simultaneously. A multimeter tests only one wire at a time. Line conditioners and surge protectors are preventative devices, not testing devices.

2. A. Molex connectors power IDE devices. Mini connectors are for floppy drives, P1 is a name used for the main motherboard connector, and P8/P9 are legacy main power connectors for AT systems.

3. C. ATX 12V 2.0 combined the 20-pin and 4-pin connectors used in ATX 12V 1.3 into one 24-pin connector.

4. B. The red wire is rated for 5 volts. The yellow wire is rated for 12 volts and 3.3 volts is associated with the main motherboard connector (to feed the processor); 24 volts is not involved in the devices we discussed in this chapter.
Additional Reading and Resources

Power Supply Calculator from Journey Systems:
http://www.journeysystems.com/?power_supply_calculator

Index

NUMBERS

#1-TuffTEST, 168
3G, 432
4G, 432
32-bit CPU (central processing units), 58
64-bit CPU (central processing units), 58
220-701 CompTIA A+ practice exam answers, 524-535
questions, 503-523
220-702 CompTIA A+ practice exam answers, 558-570
questions, 537-557
802.11 wireless, 433
802.3ab standard, 408
802.3u standard, 408
802.3z standard, 408

A

AC (alternating current) outlets, 104
electrical safety, 482
regulating output, 107
testing, 105-108
Accelerated Graphics Port (AGP), 338

Acronis True Image, 290

actions, documenting (six-step troubleshooting process), 13
 display issue example, 17
 power issue example, 18

Add/Remove Snap-ins window, 208

addresses
 IP addresses, 401
 private addresses, 405
 public addresses, 405

administrative privileges, 208

administrative shares, 470

administrative tools, 207-208

ADSL (Asymmetrical Digital Subscriber Line), 431

Advanced Boot Options menu, 266-267

adware, 460

AGP (Accelerated Graphics Port) buses, 31-33, 338

AMD, CPU (central processing units), 63-64

amperage (A), 104

AMR (audio/modem riser) buses, 32

answers (practice exams)
 practice exam 1, 524-535
 practice exam 2, 558-570

antimalware, 445
 HDD (hard disk drives) maintenance, 141, 263
 updates, 263

antistatic devices
 ESD (electrostatic discharges), 485
 wrist straps, 19, 484

antivirus software, 461-464

APIPA (automatic private IP addressing), 402

applications, 200
 network connectivity, troubleshooting, 426-427
 Windows applications
 Command Prompt, 206
 Computer, 203-204
 Control Panel, 205
 Network, 206
 Windows Explorer, 204-205

Archive file attribute, 468

aspect ratio, 353

asymmetric key encryption, 476

Asymmetrical Digital Subscriber Line (ADSL), 431

attrib command, 469

ATX (Advanced Technology Extended)
 motherboards, 24, 35-37
 power supplies, 116-117

audio
 clusters, 34
 laptop audio subsystems, 315-316
 overview, 361
 quality of, 364-365
 sound cards, 361-364
 speakers, installing, 363

authentication
 biometrics, 456
 BIOS security, 454-455
 definition of, 444
 logon process, 451-453
 passwords
 changing, 450
 password policy, 450-451
 strong passwords, 449
 smart cards, 455
 UAC (User Account Control), 453-454
 usernames, 449
automatic private IP addressing (APIPA), 402
Automatic Updates, 461
AV (antivirus) software, 461-464

B

backups, 445. See also restore points
Backup Status and Configuration (Windows Vista), 260
HDD (hard disk drives)
Windows Vista, 260
Windows XP, 261
bar code readers, 373
Basic Rate ISDN (BRI), 432
batteries
CMOS batteries, 39, 42
disposal of, 487
laptops, 319
lithium batteries, 39, 42
Belarc Advisor, 168, 186
biometrics, 373, 456
BIOS (Basic Input Output System), 39, 45
accessing, 40
configuring, 40-41
downloading, 43
flashing, 43-44
identifying version of, 43
passwords, resetting, 42
POST (power-on self-tests), 40
Setup utility, 40-41
troubleshooting
memory errors, 99
motherboard-related issues, 50
updating, 43, 263
blackouts, 110
blank paper (printers), troubleshooting, 393
Blu-Ray data storage, 154
Blue Screen of Death (BSOD), 284-286
Bluetooth, 323, 433-434
Boot Device Priority (BIOS boot order), BIOS configuration, 41
boot disks, 145
boot errors, 271-273
boot files, 236
boot sector viruses, 459
“BOOTMGR is missing” error message, 271
bootrec command, 297
bootstrapping
BIOS (Basic Input Output System), 39-40
POST (power-on self-tests), 40
botnets, 460
BRI (Basic Rate ISDN), 432
brownouts, 110
BSOD (Blue Screen of Death), 99, 284-286
BTX (Balanced Technology Extended)
motherboards, 36-37
power supplies, 118
buses. See also PC cards
AGP (Accelerated Graphics Port) buses, 31-33
AMR (audio/modem riser) buses, 32
CNR (Communications and Networking Riser) buses, 32
FSB (Front Side Buses), 28, 57
IDE (Integrated Drive Electronics) buses, 28-29, 42
memory buses, 28
PCI (Peripheral Component Interconnect) buses, 29, 32
PCI Express x16 Interface, 28
PCIe (Peripheral Component Interconnect Express) buses, 31-33
SATA (Serial ATA) buses, 29
speed ratings, 28

cable
cable Internet, 431
interference
 EMI (electromagnetic interference), 488
 RFI radio frequency interference), 488
physical safety, 486
cable select drive configurations (PATA), 135
caches
 CPU, 60-61
 HDD (hard disk drives), 138
cameras
digital cameras, 373
 web cameras, 373
CAS (Column Address Strobe) latency, RAM, 90
case fans, 65-66
cathode ray tube (CRT), 348
causes (problem identification process)
establishing theory of probable cause, 11
display issue example, 15-16
 power issue example, 17
testing theory of probable cause, 12
display issue example, 16
 power issue example, 17
CD-ROMs
data storage, 149-150
 installing
 Windows Vista, 169
 Windows XP, 186
CD-Rs, 150
CD-RWs, 150
CDs (Compact Discs), data storage, 149-150, 153
cellular connectivity, 432
Cellular WAN, 323
CF (CompactFlash) cards, 161
changes to computers, identifying (problem identification process), 11
cheat sheets (exam preparation), 497-498
chipsets, 29
 ICH (I/O Controller Hubs), 26
 bus connections, 28
 IDE buses, 28-29
 SATA buses, 29
 IOH (Input/Output Hubs), 26
 MCH (Memory Controller Hubs), 26, 80
 video card chipsets, 342
chkdsk command, 293-294
Class A networks, 404
Class B networks, 404
Class C networks, 404
Class D networks, 404
Class E networks, 404
Classic mode, reverting to, 225
clean power, 107
cleanup programs, HDD (hard disk drives) maintenance, 140, 258-259
clear speaking, 490
clearing data, 445
clock rates, 56-57
CMOS (complimentary metal-oxide semiconductors), 39, 42
CNR (Communications and Networking Riser) buses, 32
coaxial cable, 419
color depth, 350-351
Command Prompt, 206, 221, 238-239, 270, 293
command-line interface, opening, 421
communication skills, developing, 490-492
compatibility
 DRAM (dynamic random-access memory), 98
 power supplies, 116-117
 printer installation, 385
Component Video, 340
compression, 468
CompTIA A+
 220-701 practice exam
 answers, 524-535
 questions, 503-523
 220-702 practice exam
 answers, 558-570
 questions, 537-557
 post certification development, 501
Computer Management,
 starting/stopping services, 220
Computer window, 203-204
comsetup.log, 193
configuring
 BIOS, 40-41, 455
 IPv4, 400-403
 network adapters, 406-408
 password policy, 450-451
 printers, 386
 managing print jobs, 387
 managing printer permissions, 391
 pooling printers, 390
 print spooling options, 388-389
 separator pages, 392
 setting printer priority, 387-388
 sharing printers, 391
 XPS (XML Paper Specification) feature (Windows Vista), 390
video settings
 color depth, 350-351
 drivers, 349-350
 Multiple Monitor (DualView), 356-357
 OSD (on-screen display), 355-356
 refresh rate, 354-355
 resolution, 351-354
Windows
 administrative tools, 207-208
 boot files, 236
 directory structure, 235
 file systems, 244
 formatting disks, 240-243
 Indexing service, 237-238
 MMC (Microsoft Management Console), 208
 mounting disks, 244-245
 overview, 197
 partitioning disks, 240-243
 power management, 222-223
 RAID disks, 245-247
 starting/stopping services, 220-221
 user customizations, 225-226
 user migration, 223-225
consummables, 380
continuity testers, 417
Control Panel, 205
convert command, 294
cooling
power supplies, 127
cooling systems
fans, 65-66
heat sinks, 64
liquid cooling systems, 66
power supplies, 127
TIM (thermal interface material), 65
copy command, 297
copying folders, 475
CPU (central processing units), 55, 67-68
32-bit CPU, 58
64-bit CPU, 58
AMD CPU, 63-64
caches, 60-61
clock rates, 56-57
cooling systems
fans, 65-66
heat sinks, 64
liquid cooling systems, 66
thermal compound (TIM), 65
function of, 56
HT (Hyper-Threading), 61
installing
ESD prevention, 69
LGA sockets, 70
motherboard preparation, 69
PGA sockets, 72
testing installations, 72-73
Intel CPU, 63-64
memory controller integration, 80
multi-core CPU, 61
power consumption, 62
RAM access, 80
sockets, 58-59
compatibility, 60
LGA sockets, 70
PGA sockets, 72
TDP (thermal design points), 62
troubleshooting, 74-76
CPU-Z, testing CPU installations, 73
CRT (cathode ray tube), 348
Ctrl+Alt+Del login functionality, 452
customers, listening to (professionalism), 490
customizing user environment, 225-226

D
data backups, 445
data removal, 445
data security
data security technologies, 444-446
data sensitivity, 446-447
security compliance, 447
threats, 444-445
data sensitivity, 446-447
data storage
Blu-Ray, 154
CD-ROMs, 149-150
CD-Rs, 150
CD-RWs, 150
CDs (Compact Discs), 149-150, 153
CF (CompactFlash) cards, 161
DVD (Digital Versatile Discs), 151-153
floppy disk drives, 143-145
HDD (hard disk drives)
antimalware, 141
backups, 260-261
caches, 138
cleanup programs, 140, 258-259
components of, 132
data transfer rates, 137
defragging, 141, 259
determining drive specifications, 137-138
installing, 139
latency, 138
manually deleting Internet files, 258
manually deleting temporary files, 258
NAS (Network Attached Storage), 143
PATA (Parallel ATA), 133-135
preventive maintenance, 140-141, 258-259, 262-264
restore points, 261
rotational speeds, 138
SATA (Serial ATA), 135-136, 140
SCSI (Small Computer System Interface), 138-139
troubleshooting, 141-143
Ultra ATA hard drives, 139
magnetic storage media, 132-147
optical storage media, 149-155
SD (Secure Digital) cards, 159
SDIO (Secure Digital Input Output) cards, 160
solid-state storage media, 156-162
tape drives, 145
USB flash drives, 156-158
data transfer rates, HDD (hard disk drives), 137
date/time, BIOS configuration, 41
DC (direct current), 104
DDR (Double Data Rate), 84-85
DDR2 (Double Data Rate 2), 86
DDR3 (Double Data Rate 3), 87
DDR4 (Double Data Rate 4), 88
Debugging Mode option (Advanced Boot Options menu), 267
defragging HDD (hard disk drives), 141, 259, 295
degaussing, 356
deleting
 Internet files from HDD (hard disk drives), 258
 temporary files from HDD (hard disk drives), 258
desktop, 198
destroying data, 446
Device Manager, 212-213, 276-279
dial-up connectivity, 430
digital cameras, 373
digital optical ports, 362
digital signatures, 214
digital subscriber line (DSL), 431
Digital Visual Interface (DVI), 340
direct-sequence spread spectrum (DSSS), 433
Directory Services Restore Mode option (Advanced Boot Options menu), 267
directory structure for Windows Vista, 235
dirty power, 107
Disable automatic system on system failure option (Advanced Boot Options menu), 267
Disable driver signature enforcement option (Advanced Boot Options menu), 267
disabling
 fast user switching, 451
 visual effects, 225
 Welcome screen, 451
Disk Cleanup program, HDD (hard disk drives), 140, 258-259
Disk Defragmenter, 259
disk images, installing
 Windows Vista from, 170
 Windows XP from, 187
Disk Management, 240-243
diskpart command, 295

disks
 formatting, 240-243
 mounting, 244-245
 partitioning, 240-243
 RAID, 245-247

displays
 controls, 310-311
 CRT, 348
 LCD, 347-348
 projectors, 348-349
 troubleshooting, 15-16, 19

disposal of hardware/equipment, safety, 487-488
distractions, avoiding (professionalism), 491
docking stations, 321
documentation
 findings/solutions (six-step troubleshooting process), 13
 display issue example, 17
 power issue example, 18
 motherboards
 installing, 25-26
 Technical Product Specification PDF, 27
 MSDS (material safety data sheets), 487
 reviewing (problem identification process), 11
double-sided memory modules, 90
Downlevel phase (Vista installation), 178
downloading
 BIOS (Basic Input Output System), 43
 updates, 461
Dr. Watson, 282

DRAM (dynamic random-access memory), 82
 compatibility, 98
 installing, 94-96
 RDRAM (Rambus DRAM), 88
 SDRAM (synchronous DRAM), 82-83
 troubleshooting, 98-101
Driver Signing, 214
drwtsn32 command, 282
DSL (digital subscriber line), 431
DSSS (direct-sequence spread spectrum), 433
dual channel RAM (random access memory), 89
DualView, 312-313, 356-357
duplex settings, 407
DVD-ROMs, installing Windows Vista from, 169
DVDs (Digital Versatile Discs), data storage, 151-153
DVI (Digital Visual Interface), 340
DxDiag, 214-215
dynamic IP addresses, 401

E

Easy Transfer, 224
ECC (Error Correction Code), RAM, 91
edit command, 296-297
EEPROM (Electrically Erasable Programmable ROM) chips, 39
EFS (Encrypting File System), 244, 476-478
electrical safety
 AC outlets, 482
 ESD (electrostatic discharge), 484-486
monitors
 CRT monitors, 482-483
 LCD monitors, 483
power supplies, 482
printers, 483
surge protectors, 484
UPS (uninterruptible power supplies), 484
EMI (electromagnetic interference), 488
Enable Boot Logging option
 (Advanced Boot Options menu), 267
Enable low-resolution video (640x480)
 option (Advanced Boot Options menu), 267
Encrypting File System (EFS), 244, 476-478
cipher, 445
 asymmetric key encryption, 476
definition of, 475
in Windows, 476-478
symmetric key encryption, 476
wireless encryption, 437
ergonomics, 487
errors
 boot errors, 271-273
 error messages
 “BOOTMGR is missing,” 271
 “Invalid boot.ini,” 273
 “NTDETECT failed,” 273
 “NTLDR is missing,” 273
 “The Windows Boot Configuration Data file is missing required information,” 272
reporting, 286-287
stop errors, 284-286
ESD (electrostatic discharges), 18-19, 484-486
 CPU installation, 69
 DRAM installations, 95
troubleshooting, 50

Ethernet, 322, 408
Event Viewer, 280-282
exams
 220-701 CompTIA A+ practice exam
 answers, 524-535
 questions, 503-523
 220-702 CompTIA A+ practice exam
 answers, 558-570
 questions, 537-557
post certification development, 501-502
preparing for
 cheat sheets, 497-498
 exam day tips/tricks, 498-500
 exam preparation checklist, 495-497
 scheduling exams, 495, 498
expand command, 297
expansion buses, 338-339. See also
PC cards
 AGP (Accelerated Graphics Port), 31-33
 AMR (audio/modem riser), 32
 CNR (Communications and Networking Riser), 32
 PCI (Peripheral Component Interconnect), 29, 32
 PCIe (Peripheral Component Interconnect Express), 31-33
expectations, setting/meeting (professionalism), 490
external clock speeds, 57

F
fans (cooling systems), 65-66, 124
FAST (Files and Settings Transfer)
 Wizard, 224
fast user switching, disabling, 451
FAT16, 244
FAT32, 244

FDISK/MBR command, 463

File Transfer Protocol (FTP), 413

files
 boot files, 236
 comsetup.log, 193
 file systems, 244
 hidden files, 469
 indexing, 237-238
 miglog.xml, 179
 NetSetup.log, 193
 PostGatherPnPList.log, 179
 PreGatherPnPList.log, 179

security
 definition of, 468
 file attributes, 468
 folder sharing, 469-475
 hidden files, 469
 setup.log, 192
 setupact.log, 179, 192
 setupapi.app.log, 179
 setupapi.dev.log, 179
 setupapi.log, 192
 setuperr.log, 179, 192
 setuplog.txt, 192
 Windows Vista installation log files, 179
 Windows XP installation log files, 192
 Winsat.log, 179

Files and Settings Transfer (FAST) Wizard, 224

findings, documenting (six-step troubleshooting process), 13
 display issue example, 17
 power issue example, 18

firewalls
 updates, HDD (hard disk drive)
 maintenance, 263
 Windows Firewall, 427, 462

FireWire, 371

FireWire (IEEE 1394a) ports, 33

FIXBOOT command, 298

/fixboot option (bootrec command), 297

FIXMBR command, 298, 463

/fixmbr option (bootrec command), 298

flash drives, 156-158

flashing BIOS (Basic Input Output System), 43-44, 455

Flickr, 354

floppy disk drives, 143-145

folders
 copying, 475
 moving, 475
 sharing, 469-475

format command, 295

formatting
 disks, 240-243
 USB flash drives, 158

front panel ports, 34

FRU (field replaceable units), power supplies as, 482

FSB (Front Side Buses), 28, 57

FTP (File Transfer Protocol), 413

full-duplex, 407

function keys, 304-305

functionality, verifying (six-step troubleshooting process), 12-13
 display issue example, 16
 power issue example, 18

fuses (power supplies), troubleshooting, 124
garbage printouts, troubleshooting, 394

gateway addresses, 402

Ghost, 290

ghosted images (printers), troubleshooting, 394

GPF (general protection faults), troubleshooting, 100

GPU (graphics processor units), 310, 342

defragging, 141, 259
installing, 139-140
Internet files, deleting manually, 258
laptop hard drives, 328-329
latency, 138
NAS (Network Attached Storage), 143
PATA (Parallel ATA), 133-135
preventive maintenance, 140-141, 258-259, 262-264
restore points, 261
rotational speeds, 138
SATA (Serial ATA), 135-136, 140
SCSI (Small Computer System Interface), 138-139
specifications, determining, 137-138
temporary files, deleting manually, 258
troubleshooting, 141-143
Ultra ATA hard drives, installing, 139

HDMI (High-Definition Multimedia Interface), 340

Health Insurance Portability and Accountability Act (HIPAA), 447

heat
heat sinks, 64
hot components, physical safety, 486

heavy items, physical safety, 486

hibernation, 222

hidden files, 468-469

high definition (HD), 310

High-Definition Multimedia Interface (HDMI), 340

HIPAA (Health Insurance Portability and Accountability Act), 447

hives (Registry), 227

HKEY_CLASSES_ROOT Registry hive, 227
HKEY_CURRENT_CONFIG Registry hive, 227
HKEY_CURRENT_USER Registry hive, 227
HKEY_LOCAL_MACHINE Registry hive, 227
HKEY_USERS Registry hive, 227
hot components, physical safety, 486
hot docking, 322
hot swappable devices, removing, 216
HT (Hyper-Threading), 61
HTTP (Hypertext Transfer Protocol), 413
hubs, 408
i.Link (IEEE 1394a) ports, 33
I/O (input/output) ports, 33
ICH (I/O Controller Hubs), 26-29
icons, 199
IDE (Integrated Drive Electronics) buses, 28-29, 42
identifying
changes to computers (problem identification process), 11
problems (six-step troubleshooting process), 10-11
display issue example, 15
power issue example, 17
IEEE 1394 ports, 371
IEEE 1394a (FireWire/i.Link) ports, 33
impact printers, 382
impedence, 104
Indexing service, 237-238
Infrared, 323
inheritance, permissions, 474
ink/toner cartridges
disposal of, 488
laser printers, 380
inkjet printers, 381
input devices (laptops), 372-373
function keys, 304-305
keyboards, 304-308
pointing devices, 309
stylus, 309
installing
CPU (central processing units)
ESD prevention, 69
LGA sockets, 70
motherboard preparation, 69
PGA sockets, 72
testing installations, 72-73
DRAM (dynamic random-access memory), 94-96
floppy disk drives, 144
HDD (hard disk drives), 139-140
laptop memory, 330-331
motherboards, 25-26, 46-47
power supplies, 122-123
printers, 385-386
snap-ins, 208
sockets
LGA sockets, 70
PGA sockets, 72
sound cards, 363-364
speakers, 363
video cards, 343-346
Windows Vista
installation methods, 169-170
partitions, creating, 174-175
step-by-step installation process, 171-173
Windows XP
installation methods, 186-188
step-by-step installation process, 188-191
Integrated Services Digital Network (ISDN), 432
Intel, CPU (central processing units), 63-64
interference
 EMI (electromagnetic interference), 488
 RFI (radio frequency interference), 488
internal clock speeds, 57
Internet files, manually deleting from HDD (hard disk drives), 258
“Invalid boot.ini” error message, 273
inverter boards, 314-315
IOH (Input/Output Hubs), 26
IP addresses, configuring, 401
ipconfig command, 421-422
IPv4
 Classes, 403-405
 configuring, 400-403
IrDA wireless ports, 323
ISDN (Integrated Services Digital Network), 432

J - K - L
jams (paper), troubleshooting, 392-393
jump drives, 156-158

keyboards, 373
 function keys, 304-305
 laptop keyboards, 304-308
KVM Switches, 373

LANs (local area networks), 410
laptops
 audio subsystem, 315-316
 communications, 322-323
 components, 304
 CPUs, 331-333
 expansion devices, 320-322
 function keys, 304-305
 hard drives, 328-329
 keyboards, 304-308
 memory, 329-331
 optical discs, 316
 overview, 301-302
 pointing devices, 309
 ports, 303
 power, 316-319
 stylus, 309
 system board, 331-333
 video subsystem
 display controls, 310-311
 DualView, 312-313
 GPU, 310
 LCD, 310
 resolutions, 310
 troubleshooting, 314-315
laser printers, 378
 advantages of, 380
 electrical safety, 483
 printing process, 379-380
 toner cartridges, 380
Last Known Good Configuration option (Advanced Boot Options menu), 267
latency, 90, 138, 407
LCD (liquid crystal displays), 310, 314, 347-348, 483
LGA (Land Grid Array) sockets, 59, 70
lines/smearing (printers), troubleshooting, 393
liquid cooling systems, 66
listening to customers (professionalism), 490
lithium batteries, 318-319
 BIOS password resets, 42
 CMOS, 39
local area networks (LANs), 410
Local Group Policy Editor, 451
local printers, 383
log files
 Windows Vista installation log files, 179
 Windows XP installation log files, 192
logic, using while troubleshooting, 19
logon process, security, 451-453
loose connections, troubleshooting, 306
Love Bug virus, 458
low on virtual memory errors, troubleshooting, 100
lumens, 348

M

macro viruses, 459
magnetic storage media, 146-147
 floppy disk drives, 143-145
 HDD (hard disk drives), 132
 antimalware, 141
 backups, 260-261
 caches, 138
 cleanup programs, 140, 258-259
 components of, 132
 data transfer rates, 137
 defragging, 141, 259
 determining drive specifications, 137-138
 installing, 139
 latency, 138
 manually deleting Internet files, 258
 manually deleting temporary files, 258
 NAS (Network Attached Storage), 143
 PATA (Parallel ATA), 133-135
 preventive maintenance, 140-141, 258-259, 262-264
 restore points, 261
 rotational speeds, 138
 SATA (Serial ATA), 135-136, 140
 SCSI (Small Computer System Interface), 138-139
 troubleshooting, 141-143
 Ultra ATA hard drives, 139
 tape drives, 145
maintenance, HDD (hard disk drives), 140-141, 258-259, 262-264
malware, 444
 definition of, 458
 spyware, 460, 464-466
 trojan horses, 460
 viruses, 458-464
 worms, 459
managing
 devices with
 Device Manager, 212-213
 Driver Signing, 214
 DxDiag, 214-215
 System Information Tool, 214
 power, 222-223
 printers
 print jobs, 387
 printer permissions, 391
master drive configurations (PATA), 134
mATX (microATX) motherboards, 36-37
MCH (Memory Controller Hubs), 26
memory
 laptop memory, 329-331
 low on virtual memory errors, troubleshooting, 100
 memory buses, 28
 memory controllers, 80
 out of memory errors, troubleshooting, 100, 393
 RAM (random-access memory), 79, 92-93
 CPU access to, 80
 DDR, 84-85
 DDR2, 86
 DDR3, 87
 DDR4, 88
double-sided memory modules, 90
 DRAM (dynamic random-access memory), 82, 94-101
dual channel RAM, 89
ECC (Error Correction Code), 91
memory latency, 90
nonparity, 90-91
parity, 90
RDRAM, 88
SDRAM, 82-83
 single channel RAM, 88-89
 single-sided memory modules, 90
 SRAM (static random-access memory), 81-82
 volatile RAM, 81
ROM (read-only memory), 82
USB flash drives, 158
video card memory, 342
virtual memory, 100, 219-220
microATX (Advanced Technology Extended)
 motherboards, 36-37
 power supplies, 118

microphones, 373
microprocessors. See CPU (central processing units)
Microsoft Challenge-Handshake Authentication Protocol (MS-CHAP), 478
Microsoft Management Console (MMC), 208
Microsoft System Configuration Utility. See Msconfig
MIDI (Musical Instrument Digital Interface), 373
miglog.xml, 179
migrating user data, 223-225
MMC (Microsoft Management Console), 208
modems, 323
monitors
 CRT monitors, 482-483
electrical safety, 482-483
 LCD monitors, 310, 314, 347-348, 483
troubleshooting, 15-16, 19
motherboards, 23, 38
 ATX (Advanced Technology Extended) motherboards, 24, 35-37
 BTX (Balanced Technology Extended) motherboards, 36-37
 buses. See also PC cards
 AGP (Accelerated Graphics Port), 31-33
 AMR (audio/modem riser), 32
 CNR (Communications and Networking Riser), 32
 DSB (Front Side Buses), 28
 expansion buses, 29-33
 IDE (Integrated Drive Electronics), 28-29
 memory buses, 28
 parallel buses, 28-29
PCI (Peripheral Component Interconnect), 29, 32
PCI Express x16 Interface, 28
PCIe (Peripheral Component Interconnect Express), 31-33
SATA (Serial ATA), 29
speed ratings, 28
chipsets, 29
ICH (I/O Controller Hubs), 26-28
IOH (Input/Output Hubs), 26
MCH (Memory Controller Hubs), 26, 80
clock speeds, 57
CPU
installation, 69
socket compatibility, 59-60
documentation
installations, 25-26
Technical Product Specification PDF, 27
DRAM installations, 95
front panel ports, 34
I/O (input/output) ports, 33
installing, 25-26, 46-47
main components of, 24
microATX (mATX) motherboards, 36-37
NLX (New Low Profile Extended) motherboards, 36-37
troubleshooting, 47-52
mounting drives, 244-245
mouse devices, 373
moving folders, 475
MS-CHAP (Microsoft Challenge-Handshake Authentication Protocol), 478
Msconfig, 218-219, 284
MSDS (material safety data sheets), 487
multi-core CPU (central processing units), 61
multimeters
AC outlet tests, 106-108
testing power supplies, 126
multipartite viruses, 459
Multiple Monitor technology, 313, 356-357
Musical Instrument Digital Interface (MIDI), 373
My Computer, 203-204
N
NAS (Network Attached Storage), 143
native resolution, 347
net command, 425-426
NetSetup.log, 193
netstat command, 424-425
network adapters, 406-408, 434-439
network installations
Windows Vista, 169
Windows XP, 187
network interface cards (NIC), 400
Network window, 206
networking
cables, 416-419
EMI (electromagnetic interference), 488
hubs, 408
IPv4
Classes, 403-405
configuring, 400-403
LANs (local area networks), 410
latency, 407
network adapters, 406-408
NIC (network interface cards), 400
overview, 399-400
ports, 411-414
printers, 383
proxy servers, 409
repeaters, 408
routers, 409
SOHO (small office home office) networks
 802.11 wireless, 433
 Bluetooth, 433-434
cable Internet, 431
cellular, 432
dial-up, 430
DSL (digital subscriber line), 431
ISDN, 432
overview, 430
port forwarding, 438
port triggering, 438
routers, 434-439
satellite connectivity, 431
wireless network adapters, 434-439
switches, 409
troubleshooting network connectivity with
 applications, 426-427
 ipconfig, 421-422
 net, 425-426
 netstat, 424-425
 nslookup, 425
 ping, 422-423
 tracert, 423-424
VPNs (virtual private networks), 410
WANs (wide area networks), 410
WAPs (wireless access points), 409
NIC (network interface card), 400
NLX (New Low Profile Extended)
motherboards, 36-37
power supplies, 118

nodes, 405
nonparity, RAM, 90-91
northbridge. See MCH (Memory Controller Hubs)
nslookup command, 425
NTBackup (Windows XP), 261
"NTDETECT failed" error message, 273
NTFS, 244, 471
"NTLDR is missing" error message, 273

OFDM (orthogonal frequency-division multiplexing), 433
ohms, 104
on-screen display (OSD), 355-356
Online configuration phase (Vista installation), 179
optical discs, 316
optical storage media, 155
 Blu-Ray, 154
 CD-ROMs, 149-150
 CD-Rs, 150
 CD-RWs, 150
 CDs, 149-150, 153
 DVD (Digital Versatile Discs), 151-153
OS (operating systems), optimizing with
 Msconfig, 218-219
 power management, 222-223
 Task Manager, 216-218
 virtual memory, 219-220
OSD (on-screen display), 355-356
out of memory errors, troubleshooting, 100, 393
outcomes, documenting (six-step troubleshooting process), 13
 display issue example, 17
 power issue example, 18
outlets (power). See also power, power strips
 AC outlets, 105-108
 electrical safety, 482
Outlook (MS), 426
overheating power supplies, 127

P

page faults (hard faults), troubleshooting, 100
page printers, 378
paper, troubleshooting
 blank paper printing errors, 393
 jams, 392-393
parallel buses
 IDE (Integrated Drive Electronics), 28-29, 42
 SATA (Serial ATA), 29
parallel ports, 372
parity, RAM, 90
partitioning disks, 240-247
partitions, creating during Windows Vista installation, 174-175
passwords
 BIOS, 42
 changing, 450
 password policy, 450-451
 strong passwords, 449
PATA (Parallel ATA) hard drives, 133-135
patch testers, 417
PC Cards, 32. See also expansion buses
PC Check, 168
PC Diagnostic tools, 168
PCI (Peripheral Component Interconnect) buses, 29, 32, 338
PCI Express x16 Interface, 28
PCI Express (PCI Express), 338
PCIe (Peripheral Component Interconnect Express) buses, 31-33
PCMCIA (Personal Computer Memory Card International Association), PC Cards, 32
percentage signs (%), 205
Performance tool, 282-284
Peripheral Component Interconnect (PCI), 338
peripherals, 372-373
 monitors
 CRT monitors, 482-483
 electrical safety, 482-483
 LCD monitors, 310, 314, 347-348, 483
 troubleshooting, 15-16, 19
 printers, 377, 384
 configuring, 386-392
 consummables, 380
 electrical safety, 483
 impact printers, 382
 ink/toner cartridges, 380, 488
 inkjet printers, 381
 installing, 385-386
 laser printers, 378-380, 483
 local printers, 383
 network printers, 383
 page printers, 378
 thermal printers, 382
 troubleshooting, 392-397
permissions
 inheritance and propagation, 474
 NTFS permissions, 471
PGA (Pin Grid Array) sockets, 59, 72

physical safety
 cable, 486
 ergonomics, 487
 heavy items, 486
 hot components, 486

piezoelectric inkjet printers, 381

ping command, 422-423

pixel dimensions, 351

plans of action, establishing (six-step troubleshooting process), 12
 display issue example, 16
 power issue example, 18

pointing devices, 309

polymorphic viruses, 459

pooling printers, 390

POP3 (Post Office Protocol Version 3), 413

ports, 411-414
 audio clusters, 34
 definition of, 368
 digital optical ports, 362
 forwarding, 438
 front panel ports, 34
 I/O (input/output) ports, 33
 IEEE 1394, 371
 IEEE 1394a (FireWire/i.Link) ports, 33
 laptop ports, 303
 port replicators, 322
 PS/2, 372
 RJ45 LAN ports, 34
 serial versus parallel, 372
 Sony/Phillips Digital Interconnect Format (S/PDIF), 362
 triggering, 438
 USB (Universal Serial Bus) ports, 33, 368-371

positive outlook, maintaining (professionalism), 490

POST (power-on self-tests), 40

Post Office Protocol Version 3 (POP3), 413

PostGatherPnPList.log, 179

power, 103, 115
 AC (alternating current) outlets, 104
 electrical safety, 482
 regulating output, 107
 testing, 105-108
 amperage (A), 104
 blackouts, 110
 brownouts, 110
 clean power, 107
 consumption, CPU (central processing units), 62
 DC (direct current), 104
 dirty power, 107
 impedance, 104
 managing, 42, 222-223
 ohms, 104
 power connectors, 119-120
 power strips, 110-111
 power supplies, 128-129
 ATX form factor, 116-117
 BTX form factor, 118
 capacity requirements, 118-119
 compatibility, 116-117
 cooling, 127
 electrical safety, 482
 FRU (field replaceable units), 482
 installing, 122-123
 laptops, 316-319
 microATX form factor, 118
 NLX form factor, 118
 overheating, 127
 power connectors, 119-120
testing, 126
troubleshooting, 123-127
wattage (W), 118-119
sags, 110
spikes, 110
surge protectors, 110-112
troubleshooting, 17-19
UPS (uninterruptible power supplies), 112-113
voltage (V), 104, 110
wattage (W), 104, 118-119
practice exams
220-701 CompTIA A+ practice exam
answers, 524-535
questions, 503-523
220-702 CompTIA A+ practice exam
answers, 558-570
questions, 537-557
PreGatherPnPList.log, 179
preparing for exams
cheat sheets, 497-498
exam day tips/tricks, 498-500
exam preparation checklist, 495-497
scheduling exams, 495, 498
preventive maintenance
HDD (hard disk drives), 140-141, 258-259, 262-264
spyware, 464-466
viruses, 461-464
printers, 377, 383-384
calibrating, 386
compatibility, 385
configuring, 386
managing print jobs, 387
managing printer permissions, 391
pooling printers, 390
print spooling options, 388-389
separator pages, 392
setting printer priority, 387-388
sharing printers, 391
XPS (XML Paper Specification) feature (Windows Vista), 390
consummables, 380
driver installation, 385
impact printers, 382
ink/toner cartridges, 380, 488
inkjet printers, 381
installing, 385-386
laser printers, 378-380, 483
local printers, 383
network printers, 383
page printers, 378
prioritizing, 387-388
testing installations, 386
thermal printers, 382
troubleshooting, 392-397
private addresses, 405
probable cause (six-step troubleshooting process)
establishing theory of, 11
display issue example, 15-16
power issue example, 17
testing theory of, 12
display issue example, 16
power issue example, 17
Problem Reports and Solutions, 282
problems, identifying (six-step troubleshooting process), 10-11
display issue example, 15
power issue example, 17
professionalism, 490-492
Program Compatibility Wizard, 231
program viruses, 459
projectors, 348-349
PROM (Programmable ROM) chips, 39

protocols
 APIPA (automatic private IP addressing), 402
 FTP (File Transfer Protocol), 413
 HTTP (Hypertext Transfer Protocol), 413
 IPv4
 Classes, 403-405
 configuring, 400-403
 POP3 (Post Office Protocol Version 3), 413
 ports, 411-414
 SMTP (Simple Mail Transfer Protocol), 413
 TCP/IP (Transmission Control Protocol/Internet Protocol), 400
 TELNET, 413
proxy servers, 409
PS/2 ports, 372
public addresses, 405
punctuality (professionalism), 490
purging data, 445

Q - R

quality of audio, 364-365
questioning users (problem identification process), 10
Quick Launch, 200

RAID (Redundant Array of Inexpensive Disks), 245-247
RAM (random-access memory), 79, 91-93
 CPU access to, 80
 DDR (Double Data Rate), 84-85
 DDR2 (Double Data Rate 2), 86
 DDR3 (Double Data Rate 3), 87
 DDR4 (Double Data Rate 4), 88
double-sided memory modules, 90
DRAM (dynamic random-access memory)
 compatibility, 98
 installing, 94-96
 RDRAM, 88
 SDRAM, 82-83
troubleshooting, 98-101
dual channel RAM, 89
ECC (Error Correction Code), 91
memory latency, 90
nonparity, 90-91
parity, 90
single channel RAM, 88-89
single-sided memory modules, 90
SRAM (static random-access memory), 81-82
volatile RAM, 81
RDRAM (Rambus DRAM), 88
Read-only file attribute, 468
/rebuildbcd option (bootrec command), 298
receptacle testers, AC outlet tests, 105
Recovery Command Prompts
 copy, 297
 edit, 296-297
 expand, 297
 recovery environment commands, 297-298
Recovery Console, 270-271
recovery discs, installing
 Windows Vista from, 170
 Windows XP from, 188
recovery environment commands, 297-298
recycling hardware/equipment, safety, 487-488

Redundant Array of Inexpensive Disks (RAID), 245-247

refresh rate, 354-355

regedit command, 226

regedt32 command, 226

Regional and Language Options, 226

Registry, 226, 228

Reliability and Performance Monitor, 282-284

Remote Assistance, 229

Remote Desktop, 229-230

removing

hot swappable devices, 216

snap-ins, 208

repair tools, 265

Advanced Boot Options menu, 266-267

Recovery Console, 270-271

WinRE (Windows Recovery Environment), 268-270

repeaters, 408

replacing

inverter boards, 314-315

laptop keyboards, 306-308

reporting errors, 286-287

resolution, 351, 354

changing, 353

laptops, 310

native resolution, 347

table of, 352

resolving problems (six-step troubleshooting process), establishing plans of action, 12

display issue example, 16

power issue example, 18

restoring Windows, 287. See also backups

restore points, 261

System Restore, 289-290

to an earlier condition, 289

Windows Vista complete PC backups, 288

Windows XP’s ASR backups, 288

results, documenting (six-step troubleshooting process), 13

display issue example, 17

power issue example, 18

reviewing documentation (problem identification process), 11

RFI (radio frequency interference), 488

RJ45 LAN ports, 34

ROM (read-only memory), 39, 82

rotational speeds, HDD (hard disk drives), 138

routers, 409, 434-439

S

S-Video (Separate Video), 340

S/PDIF (Sony/Phillips Digital Interconnect Format) port, 362

Safe Mode option, 266, 465

Safe Mode with Command Prompt option (Advanced Boot Options menu), 266

Safe Mode with Networking option (Advanced Boot Options menu), 266

Safely Remove option, 216

safety, 489

disposal of hardware/equipment, 487-488

electrical safety

AC outlets, 482

CRT monitors, 482-483
ESD (electrostatic discharge), 484-486
LCD monitors, 483
power supplies, 482
printers, 483
surge protectors, 484
UPS (uninterruptible power supplies), 484
MSDS (material safety data sheets), 487
physical safety
cable, 486
ergonomics, 487
heavy items, 486
hot components, 486
recycling hardware/equipment, 487-488
sags (power), 110
sanitizing data, 445
Sarbanes-Oxley (SOX), 447
SATA (Serial ATA) buses, 29
SATA (Serial ATA) hard drives, 135-136, 140
satellite connectivity, 431
Scan Line Interleave (SLI), 346
/ScanOS option (bootrec command), 298
scheduling exams, 495, 498
screen switching, 311
SCSI (Small Computer System Interface) hard drives, 138-139
SD (Secure Digital) cards, 159
SDIO (Secure Digital Input Output) cards, 160
SDRAM (synchronous DRAM), 82-83
SDSL (Symmetrical Digital Subscriber Line), 431
Secure Shell (SSH), 413

security

administrative privileges, 208
authentication
biometrics, 456
BIOS security, 454-455
logon process, 451-453
passwords, 449-451
smart cards, 455
UAC (User Account Control), 453-454
usernames, 449
compliance, 447
data security
data security technologies, 444-446
data sensitivity, 446-447
security compliance, 447
threats, 444-445
encryption
asymmetric key encryption, 476
definition of, 475
in Windows, 476-478
symmetric key encryption, 476
wireless encryption, 437
file security
definition of, 468
file attributes, 468
folder sharing, 469-475
hidden files, 469
malware
definition of, 458
preventing and troubleshooting, 461-466
spyware, 460, 464-466
trojan horses, 460
viruses, 458-464
worms, 459
Overview, 443

Smart cards, 456

Separate Video (S-Video), 340

Separator pages (printers), 392

Serial ports, 372

Service packs (SP), Windows updates, 252-253

Services

Indexing services, 237-238

Starting/stopping in

Command Prompt, 221

Computer Management, 220

Setup.log, 192

Setupact.log, 179, 192

Setupapi.app.log, 179

Setupapi.dev.log, 179

Setupapi.log, 192

Setuperr.log, 179, 192

Setuplog.txt, 192

SFC (System File Checker), 294

Sharing

Folders

Overview, 469-470

Permission inheritance and propagation, 474

Windows Vista, 473-474

Windows XP, 471-472

Printers, 391

Shielded twisted pair (STP), 418

Sidebar, 200

SIM (Subscriber Identity Module) cards, 160

SIM (System Image Manager), 170

Simple Mail Transfer Protocol (SMTP), 413

Single channel RAM (random access memory), 88-89

Single drive configurations (PATA), 134

Single-sided memory modules, 90

Six-step troubleshooting process, 14, 290-291

display issue example, 15-16

documenting solutions, 13

display issue example, 17

Power issue example, 18

Establishing plans of action, 12

display issue example, 16

Power issue example, 18

Establishing theory of probable cause, 11

display issue example, 15-16

Power issue example, 17

Identifying the problem, 10-11

display issue example, 15

Power issue example, 17

Power issue example, 17-18

Testing theory of probable cause, 12

display issue example, 16

Power issue example, 17

Verifying system functionality, 12-13

display issue example, 16

Power issue example, 18

Slave drive configurations (PATA), 135

Sleep mode, 223

SLI (Scan Line Interleave), 346

Small office home office (SOHO) networks

802.11 wireless, 433

Bluetooth, 433-434

cable Internet, 431

Cellular, 432

dial-up, 430

DSL (digital subscriber line), 431

ISDN, 432

Overview, 430

Port forwarding, 438

Port triggering, 438
routers, 434-439
satellite connectivity, 431
wireless network adapters, 434-439
smart cards, 455-456
smearing/lines (printers), troubleshooting, 393
SMTP (Simple Mail Transfer Protocol), 413
snap-ins, adding/removing, 208
SO-DIMMs, laptop installations, 330-331
social engineering, 444
sockets
 CPU sockets, 58-60
 LGA (Land Grid Array) sockets, 59, 70
 PGA (Pin Grid Array) sockets, 59, 72
SOHO (small office home office) networks
 802.11 wireless, 433
 Bluetooth, 433-434
 cable Internet, 431
 cellular, 432
dial-up, 430
 DSL (digital subscriber line), 431
 ISDN, 432
 overview, 430
 port forwarding, 438
 port triggering, 438
 routers, 434-439
 satellite connectivity, 431
 wireless network adapters, 434-439
solid-state storage media, 162
 CF (CompactFlash) cards, 161
 SD (Secure Digital) cards, 159
 SDIO (Secure Digital Input Output) cards, 160
 USB flash drives, 156-158
solutions (six-step troubleshooting process)
 documenting, 13
 display issue example, 17
 power issue example, 18
 implementing, 12
 display issue example, 16
 power issue example, 18
Sony/Phillips Digital Interconnect Format (S/PDIF) ports, 362
sound cards, 361-364
SOX (Sarbanes-Oxley), 447
SP (service packs), Windows updates, 252-253
speakers, installing, 363
speaking clearing, 490
spikes (power), 110
spooling (printers), 388-389
spyware, 460, 464-466
SRAM (static random-access memory), 81-82
SSH (Secure Shell), 413
standby, 222
Start menu, 200-203
Start Windows Normally option (Advanced Boot Options menu), 267
starting services in
 Command Prompt, 221
 Computer Management, 220
startup issues, troubleshooting, 17-19
Startup Repair option (Recovery Options), 270
Startup Restore option (Recovery Options), 270
static IP addresses, 401
status indicators, 406
stealth viruses, 459
stop errors, 99, 284-286
stopping services in
Command Prompt, 221
Computer Management, 220

storing data
Blu-Ray, 154
CD-ROMs, 149-150
CD-Rs, 150
CD-RWs, 150
CDs, 149-150, 153
CF (CompactFlash) cards, 161
DVD (Digital Versatile Discs), 151-153
floppy disk drives, 143-145
HDD (hard disk drives)
antimalware, 141
backups, 260-261
caches, 138
cleanup programs, 140, 258-259
components of, 132
data transfer rates, 137
defragging, 141, 259
determining drive specifications, 137-138
installing, 139
latency, 138
manually deleting Internet files, 258
manually deleting temporary files, 258
NAS (Network Attached Storage), 143
PATA (Parallel ATA), 133-135
preventive maintenance, 140-141, 258-259, 262-264
restore points, 261
rotational speeds, 138
SATA (Serial ATA), 135-136, 140
SCSI (Small Computer System Interface), 138-139
troubleshooting, 141-143
Ultra ATA hard drives, 139
magnetic storage media, 132-147
optical storage media, 149-155
SD (Secure Digital) cards, 159
SDIO (Secure Digital Input Output) cards, 160
solid-state storage media, 156-162
tape drives, 145
USB flash drives, 156-158
STP (shielded twisted pair), 418
strong passwords, 449
stuck keys, troubleshooting, 306
stylus, 309
surge protectors, 110-112
electrical safety, 484
HDD (hard disk drive) maintenance, 262
switches, 409
symmetric key encryption, 476
Symmetrical Digital Subscriber Line (SDSL), 431
SYS command, 463
system boards, laptops, 331-333
system failure, 444
System file attribute, 468
System File Checker (SFC), 294
system functionality, verifying (six-step troubleshooting process), 12-13
display issue example, 16
power issue example, 18
System Image Manager (SIM), 170
System Information Tool, 214
System Recovery Options window, 269-270
System Restore, 261, 289-290
system tools
Device Manager, 212-213
Driver Signing, 214
DxDiag, 214-215
Msconfig, 218-219
Program Compatibility Wizard, 231
Registry, 226, 228
Remote Assistance, 229
Remote Desktop, 229-230
Safely Remove option, 216
System Information Tool, 214
Task Manager, 216-218
virtual memory, 219-220
systray (System Tray), 200

tape drives, 145
Task Manager, 97, 216-218
Task Scheduler, 226
taskbar, 200-203
TCP/IP (Transmission Control Protocol/Internet Protocol), 400
TDP (thermal design points), 62
TDR (time-domain reflectometers), 418
Technical Product Specification PDF, 27
TELNET, 413
temporary files, manually deleting from HDD (hard disk drives), 258
testing
AC outlets, 105-108
CPU installations, 72-73
DRAM installations, 96
HDD (hard disk drive) installations, 140
power supplies, 126
printer installations, 386
theory of probable cause (six-step troubleshooting process), 12
display issue example, 16
power issue example, 17
twisted pair cable, 417-418

tests. See exams
“The Windows Boot Configuration Data file is missing required information” error message, 272
theory of probable cause (six-step troubleshooting process)
establishing, 11
display issue example, 15-16
power issue example, 17
testing, 12
display issue example, 16
power issue example, 17
thermal printers, 381-382
thinking logically while troubleshooting, 19
threats, 444-445
throughput (data). See data transfer rates
TDP (thermal design points), 62
time-domain reflectometers (TDR), 418
time/date, BIOS configuration, 41
toner/ink cartridges
disposal of, 488
laser printers, 380
touch pads, 309
touch screens, 373
tracert command, 423-424
TrackPoint, 309
Transmission Control Protocol/Internet Protocol (TCP/IP), 400
trojan horses, 460
troubleshooting, 20-21
BIOS (Basic Input Output Systems)
memory errors, 99
motherboard-related issues, 50
boot errors
Windows 2000 Boot Errors, 273
Windows Vista Boot Errors, 271-273
Windows XP Boot Errors, 273
BSOD (Blue Screen of Death), 99
command-line tools
 chkdsk, 293-294
 Command Prompt, 293
 convert, 294
 defrag, 295
 diskpart, 295
 format, 295
 SFC (System File Checker), 294
 xcopy, 295
CPU (central processing units),
 74-76
DRAM (dynamic random-access
memory), 98-101
error reporting, 286-287
ESD (electrostatic discharges),
 18-19, 484-486
fans, 124
floppy disk drives, 144
fuses (power supplies), 124
GPF (general protection faults), 100
hard faults (page faults), 100
HDD (hard disk drives), 141-143
laptops
 audio subsystem, 315-316
 communications, 322-323
 CPUs, 331-333
 expansion devices, 320-322
 hard drives, 328-329
 keyboards, 306-308
 memory, 329-331
 optical discs, 316
 power, 316-319
 system board, 331-333
 video issues, 314-315
low on virtual memory errors, 100
monitors, 15-16, 19
motherboards, 47-52
network connectivity
 applications, 426-427
 ipconfig, 421-422
 net, 425-426
 netstat, 424-425
 nslookup, 425
 ping, 422-423
 tracert, 423-424
out of memory errors, 100
page faults (hard faults), 100
paper jams, 392-393
power issues, 17-19
power supplies, 123-127
printers, 392-397
recovery Command Prompts
 copy, 297
 edit, 296-297
 expand, 297
 recovery environment commands,
 297-298
repair tools, 265
 Advanced Boot Options menu,
 266-267
 Recovery Console, 270-271
 WinRE (Windows Recovery
 Environment), 268-270
restoring Windows, 287
 System Restore, 289-290
 to an earlier condition, 289
 Windows Vista complete PC
 backup, 288
 Windows XP’s ASR backup, 288
six-step troubleshooting process, 14,
 290-291
display issue example, 15-16
documenting solutions, 13, 17-18
establishing plans of action, 12,
 16-18
establishing theory of probable cause, 11, 15-17
identifying the problem, 10-11, 15-17
power issue example, 17-18
testing theory of probable cause, 12, 16-17
verifying system functionality, 12-13, 16-18
spyware, 464-466
startup issues, 17-19
stop errors, 99, 284-286
thinking logically, 19
USB flash drives, 158
user error, 19
video cards, 343-346
viruses, 461-464
Windows tools
 Device Manager, 276-279
 Dr. Watson, 282
 Event Viewer, 280-282
 Msconfig, 284
 Problem Reports and Solutions, 282
 Reliability and Performance Monitor, 282-284
Windows Vista installation, 178-181
Windows XP installation, 192-193
TV tuner cards, 346
twisted pair cables, 416

updates
antimalware, HDD (hard disk drive) maintenance, 263
BIOS, 43, 263
downloading, 461
firewalls, HDD (hard disk drive) maintenance, 263
Windows, 256-257
 HDD (hard disk drive) maintenance, 263
 SP (service packs), 252-253
 Windows Update, 254-255
upgrading to
 Windows Vista, 176-178
 Windows XP, 191
UPS (uninterruptible power supplies), 112-113
electrical safety, 484
 HDD (hard disk drive) maintenance, 262
USB (Universal Serial Buses), 368-371
USB ports, 33
USB flash drives, 156-158
users
customizing user environment, 225-226
ergonomics, 487
errors, troubleshooting, 19
logon process, security, 451-453
migrating user data, 223-225
passwords
 changing, 450
 password policy, 450-451
 strong passwords, 449
questioning (problem identification process), 10
state, 224
UAC (User Account Control), 453-454
Ultra ATA hard drives, installing, 139
unauthorized access, 444
Universal Serial Bus (USB), 368-371
unshielded twisted pair (UTP) cables, 416

U

UAC (User Account Control), 453-454
Ultra ATA hard drives, installing, 139
unauthorized access, 444
Universal Serial Bus (USB), 368-371
unshielded twisted pair (UTP) cables, 416
user awareness, 446
usernames, 449

USMT (User State Migration Tool), 224

UTP (unshielded twisted pair) cables, 416

V

verifying
 system functionality (six-step troubleshooting process), 12-13
 display issue example, 16
 power issue example, 18
Windows Vista installation, 178-181
Windows XP installation, 192-193

versions of
Windows Vista, 166-167
Windows XP, 184-185

vertical refresh rate, 354-355

VGA (Video Graphics Array), 340

video systems
 laptop video subsystems
 display controls, 310-311
 DualView, 312-313
 GPU, 310
 LCD, 310
 resolutions, 310
 troubleshooting, 314-315
 overview, 337

video cards
 chipsets, 342
 connector types, 340-341
 expansion busses, 338-339
 GPU, 342
 installing, 343-346
 memory, 342
 SLI and TV tuner/capture cards, 346-347
 troubleshooting, 343-346

video displays
 CRT, 348
 LCD, 347-348
 projectors, 348-349

video settings
 color depth, 350-351
 drivers, 349-350
 Multiple Monitor (DualView), 356-357
 OSD (on-screen display), 355-356
 refresh rate, 354-355
 resolution, 351-354

virtual memory, 100, 219-220

virtual private networks (VPNs), 410

viruses
 definition of, 458
 preventing and troubleshooting, 461-464
 types of viruses, 458-459

Vista
 Backup Status and Configuration, 260
 boot errors, 271-273
 boot files, 236
 Compatibility Center, 168, 176
 directory structure, 235
 folder sharing, 473-474
 hardware compatibility, 168
 Indexing service, 237-238

installing
 installation methods, 169-170
 partitions, 174-175
 step-by-step installation process, 171-173
 troubleshooting, 178-181
verifying, 178-181
Windows Preinstallation Environment phase, 179
Windows Welcome phase, 179
Logo’d Products List, 168, 176
minimum requirements, 167-168
restoring
restore points, 261
to an earlier condition, 289
Windows Vista complete PC backup, 288
upgrading to, 176-178
versions, 166-167
Windows Welcome phase (Vista installation), 179
XPS (XML Paper Specification) feature, 390
visual effects, disabling, 225
volatile RAM (random access memory), 81
voltage (V), 104, 110
VPNs (virtual private networks), 410
WANs (wide area networks), 410
WAPs (wireless access points), 409
wattage (W), 104, 118-119
web cameras, 373
Welcome Center, configuring, 203
Welcome screen, disabling, 451
Widescreen Extended Graphics Array (WXGA), 310
Widescreen Super Extended Graphics Array Plus (WSXGA+), 310
Windows
applications
Command Prompt, 206
Computer, 203-204
Control Panel, 205
Network, 206
Windows Explorer, 204-205
components
application windows, 200
desktop, 198
icons, 199
Quick Launch, 200
Sidebar, 200
Start menu, 200-203
System Tray, 200
taskbar, 200-203
Welcome Center, 203
Windows Aero, 203
configuration
administrative tools, 207-208
boot files, 236
directory structure, 235
file systems, 244
formatting disks, 240-243
Indexing service, 237-238
MMC (Microsoft Management Console), 208
mounting disks, 244-245
overview, 197
partitioning disks, 240-243
power management, 222-223
RAID disks, 245-247
starting/stopping services, 220-221
user customizations, 225-226
user migration, 223-225
CPU, testing installations, 72
encryption, 476-478
firewalls, 427, 462
HDD (hard disk drive) maintenance, 263
updates, 263
system tools
Device Manager, 212-213, 276-279
Dr. Watson, 282
Driver Signing, 214
DxDiag, 214-215
Event Viewer, 280-282
Msconfig, 218-219, 284
Problem Reports and Solutions, 282
Program Compatibility Wizard, 231
Registry, 226-228
Reliability and Performance Monitor, 282-284
Remote Assistance, 229
Remote Desktop, 229-230
 Safely Remove option, 216
System Information Tool, 214
Task Manager, 216-218
virtual memory, 219-220
updates, 256-257
HDD (hard disk drive) maintenance, 263
SP (service packs), 252-253
Windows Update, 254-255

Windows Aero, configuring, 203
Windows Boot Configuration Data file is missing required information” error message, “The, 272
Windows Complete PC Restore option (Recovery Options), 270
Windows Easy Transfer, 224
Windows Explorer, 204-205
Windows Memory Diagnostic Tool (Recovery Options), 270
Windows Preinstallation Environment phase (Vista installation), 179
Windows Recovery Environment (WinRE), 268-270
Windows Security dialog box, 451
Windows System Image Manager (SIM), 170
Windows System Information tool, 168, 186
Windows Update, 254-255

Windows Vista
Backup Status and Configuration, 260
boot errors, 271-273
boot files, 236
Compatibility Center, 168, 176
directory structure, 235
folder sharing, 473-474
hardware compatibility, 168
Indexing service, 237-238
installing
installation methods, 169-170
partitions, 174-175
step-by-step installation process, 171-173
troubleshooting, 178-181
verifying, 178-181
Windows Preinstallation Environment phase, 179
Windows Welcome phase, 179
Logo’d Products List, 168, 176
minimum requirements, 167-168
restoring
restore points, 261
to an earlier condition, 289
Windows Vista complete PC backup, 288
upgrading to, 176-178
versions, 166-167
Windows Welcome phase (Vista installation), 179
XPS (XML Paper Specification) feature, 390

Windows XP
boot errors, 273
boot files, 236
folder sharing, 471-472
hardware compatibility, 186
Indexing service, 237-238
installing
installation methods, 186-188
step-by-step installation process, 188-191
troubleshooting, 192-193
verifying, 192-193
Logo’d Products List, 186, 191
minimum requirements, 185
NTBackup, 261
restoring
ASR backups, 288
restore points, 261
System Restore, 289-290
to an earlier condition, 289
upgrading to, 191
versions, 184-185
WinRE (Windows Recovery Environment), 268-270
Winsat.log, 179
wireless access points (WAPs), 409
wireless network adapters, 434-439
wizards
FAST (Files and Settings Transfer) Wizard, 224
Program Compatibility Wizard, 231

worms, 459
WSXGA+ (Widescreen Super Extended Graphics Array Plus), 310
WXGA (Widescreen Extended Graphics Array), 310

X
copy command, 295
XP
boot errors, 273
boot files, 236
folder sharing, 471-472
hardware compatibility, 186
Indexing service, 237-238
installing
installation methods, 186-188
step-by-step installation process, 188-191
troubleshooting, 192-193
verifying, 192-193
Logo’d Products List, 186, 191
minimum requirements, 185
NTBackup, 261
restoring
ASR backups, 288
restore points, 261
System Restore, 289-290
to an earlier condition, 289
upgrading to, 191
versions, 184-185
XPS (XML Paper Specification) feature (Windows Vista), 390

Y - Z
zombies, 460