Welcome to *Upgrading and Repairing PCs, 19th Edition*. Since debuting as the first book of its kind on the market in 1988, no other book on PC hardware has matched the depth and quality of the information found in this tome. This edition continues *Upgrading and Repairing PCs*’ role as not only the best-selling book of its type, but also the most comprehensive and complete PC hardware reference available. This book examines PCs in depth, outlines the differences among them, and presents options for configuring each system.

More than just a minor revision, the 19th edition of *Upgrading and Repairing PCs* contains much new, revised, and reworked content. The PC industry is moving faster than ever, and this book is the most accurate, complete, and in-depth book of its kind on the market today.

I wrote this book for all PC enthusiasts who want to know everything about their PCs: how they originated; how they’ve evolved; how to upgrade, troubleshoot, and repair them; and everything in between. This book covers the full gamut of PC-compatible systems, from the oldest 8-bit machines to the latest high-end 64-bit multi-core processors and systems. If you need to know everything about PC hardware from the original to the latest technology on the market today, this book and the accompanying information-packed disc is definitely for you.

Upgrading and Repairing PCs also doesn’t ignore the less glamorous PC components. Every part of your PC plays a critical role in its stability and performance. Over the course of this book, you’ll find out exactly why your motherboard’s chipset might just be the most important part of your PC and what can go wrong when you settle for a run-of-the-mill power supply that can’t get enough juice to that monster processor you just bought. You’ll also find in-depth coverage of technologies such as new processors, chipsets, graphics, audio cards, PCI Express 2.x, Blu-ray drives, Serial ATA, USB and FireWire, and more—it’s all in here, right down to the guts-level analysis of your mouse and keyboard.

Book Objectives

Upgrading and Repairing PCs focuses on several objectives. The primary objective is to help you learn how to maintain, upgrade, and repair your PC system. To that end, *Upgrading and Repairing PCs* helps you fully understand the family of computers that has grown from the original IBM PC, including all PC-compatible systems. This book discusses all areas of system improvement, such as motherboards, processors, memory, and even case and power-supply improvements. The book discusses proper system and component care, specifies the most failure-prone items in various PC systems, and tells you how to locate and identify a failing component. You’ll learn about powerful diagnostics hardware and software that enable a system to help you determine the cause of a problem and how to repair it.

PCs are moving forward rapidly in power and capabilities. Processor performance increases with every new chip design. *Upgrading and Repairing PCs* helps you gain an understanding of all the processors used in PC-compatible computer systems.

This book covers the important differences between major system architectures, from the original Industry Standard Architecture (ISA) to the latest PCI Express interface standards. *Upgrading and Repairing PCs* covers each of these system architectures and their adapter boards to help you make decisions about which type of system you want to buy in the future and to help you upgrade and troubleshoot such systems.
The amount of storage space available to modern PCs is increasing geometrically. *Upgrading and Repairing* PCs covers storage options ranging from larger, faster hard drives to state-of-the-art storage devices.

When you finish reading this book, you should have the knowledge to upgrade, troubleshoot, and repair almost any system and component.

The 19th Edition DVD-ROM

The 19th edition of *Upgrading and Repairing* PCs includes a DVD containing valuable content that greatly enhances this book!

First, there's the all-new DVD video with new segments covering important PC components like processors, motherboards, chipsets, memory, hard disk drives, chassis, and power supplies. This includes tips that will help you select the best components when building or purchasing new systems and when upgrading or repairing existing ones. You'll also find a complete step-by-step guide to building a new PC from scratch, including tips that will make the build process run smoothly and help you build a durable, high-performance system that will be easy to upgrade or repair in the future.

The DVD-ROM content includes my venerable Technical Reference material, a repository of reference information that has appeared in previous editions of *Upgrading and Repairing* PCs but has been moved to the disc to make room for coverage of newer technologies. The DVD-ROM also includes the complete 16th Edition of this book, a comprehensive PC glossary, a detailed list of acronyms, and much more available in printable PDF format. There's more PC hardware content and knowledge here than you’re likely to find from any other single source.

My Website: informit.com/upgrading

Don't forget about the InformIT Upgrading website! Here, you’ll find a cache of helpful material to go along with the book you're holding. I’ve loaded this site with tons of material—mine as well as from other authors—ranging from video clips to book content and technology updates.

If you find that the video on this book’s disc isn’t enough, you’ll find even more of my previously recorded videos on the website. Not to mention that it is the best place to look for information on all of Que’s *Upgrading and Repairing* titles.

I also have a private forum (www.forum.scottmueller.com) designed exclusively to support those who have purchased my recent books and DVDs. I use the forum to answer questions and otherwise help my loyal readers. If you own one of my current books or DVDs, feel free to join in and post questions. I endeavor to answer each and every question personally, but I also encourage knowledgeable members to respond as well. Anybody can view the forum without registering, but to post a question of your own you will need to join. Even if you don’t join in, the forum is a tremendous resource because you can still benefit from all the reader questions I have answered over the years.

Be sure to check the informit.com/upgrading website for more information on all my latest books, videos, articles, FAQs, and more!

A Personal Note

When asked which was his favorite Corvette, Dave McLellan, former manager of the Corvette platform at General Motors, always said, “Next year’s model.” Now with the new 19th edition, next year’s model has just become this year’s model, until next year that is....
I believe this book is absolutely the best book of its kind on the market, and that is due in large part to the extensive feedback I have received from both my seminar attendees and book readers. I am so grateful to everyone who has helped me with this book through each edition, as well as all the loyal readers who have been using this book, many of you since the first edition was published. I have had personal contact with many thousands of you in the seminars I have been teaching since 1982, and I enjoy your comments and even your criticisms tremendously. Using this book in a teaching environment has been a major factor in its development. Some of you might be interested to know that I originally began writing this book in early 1985; back then it was self-published and used exclusively in my PC hardware seminars before being professionally published by Que in 1988.

In one way or another, I have been writing and rewriting this book for more than 20 years! In that time, *Upgrading and Repairing PCs* has proven to be not only the first but also the most comprehensive and yet approachable and easy-to-understand book of its kind. With this new edition, it is even better than ever. Your comments, suggestions, and support have helped this book to become the best PC hardware book on the market. I look forward to hearing your comments after you see this exciting new edition.

Scott
Memory Basics

This chapter discusses memory from both a physical and logical point of view. First, we’ll examine what memory is, where it fits into the PC architecture, and how it works. Then we’ll look at the various types of memory, speeds, and packaging of the chips and memory modules you can buy and install.

This chapter also covers the logical layout of memory, defining the various areas of memory and their uses from the system’s point of view. Because the logical layout and uses are within the “mind” of the processor, memory mapping and logical layout remain perhaps the most difficult subjects to grasp in the PC universe. This chapter contains useful information that removes the mysteries associated with memory and enables you to get the most out of your system.

Memory is the workspace for the processor. It is a temporary storage area where the programs and data being operated on by the processor must reside. Memory storage is considered temporary because the data and programs remain there only as long as the computer has electrical power or is not reset. Before the computer is shut down or reset, any data that has been changed should be saved to a more permanent storage device (usually a hard disk) so it can be reloaded into memory in the future.

Memory often is called RAM, for random access memory. Main memory is called RAM because you can randomly (as opposed to sequentially) access any location in memory. This designation is somewhat misleading and often misinterpreted. Read-only memory (ROM), for example, is also randomly accessible, yet is usually differentiated from the system RAM because it maintains data without power and can’t normally be written to. Although a hard disk can be used as virtual random access memory, we don’t consider that RAM either.

Over the years, the definition of RAM has changed from a simple acronym to become something that means the primary memory workspace the processor uses to run programs, which usually is constructed of a type of chip called dynamic RAM (DRAM). One of the characteristics of DRAM chips (and therefore most types of RAM in general) is that they store data dynamically, which really has two meanings. One meaning is that the information can be written to RAM repeatedly at any
time. The other has to do with the fact that DRAM requires the data to be refreshed (essentially rewritten) every few milliseconds or so; faster RAM requires refreshing more often than slower RAM. A type of RAM called static RAM (SRAM) does not require the periodic refreshing. An important characteristic of RAM in general is that data is stored only as long as the memory has electrical power.

Note

Both DRAM and SRAM memory maintain their contents only as long as power is present. However, a different type of memory known as flash memory does not. Flash memory can retain its contents without power, and it is most commonly used today in digital camera and player media and USB flash drives. As far as the PC is concerned, a flash memory device emulates a disk drive (not RAM) and is accessed by a drive letter, just as with any other disk or optical drive.

When we talk about a computer’s memory, we usually mean the RAM or physical memory in the system, which is mainly the memory chips or modules the processor uses to store primary active programs and data. This often is confused with the term *storage*, which should be used when referring to things such as disk and tape drives (although they can be used as a form of RAM called virtual memory).

RAM can refer to both the physical chips that make up the memory in the system and the logical mapping and layout of that memory. *Logical mapping* and *layout* refer to how the memory addresses are mapped to actual chips and what address locations contain which types of system information.

People new to computers often confuse main memory (RAM) with disk storage because both have capacities that are expressed in similar megabyte or gigabyte terms. The best analogy to explain the relationship between memory and disk storage I’ve found is to think of an office with a desk and a file cabinet.

In this popular analogy, the file cabinet represents the system’s hard disk, where both programs and data are stored for long-term safekeeping. The desk represents the system’s main memory, which allows the person working at the desk (acting as the processor) direct access to any files placed on it. Files represent the programs and documents you can “load” into the memory. For you to work on a particular file, it must first be retrieved from the cabinet and placed on the desk. If the desk is large enough, you might be able to have several files open on it at one time; likewise, if your system has more memory, you can run more or larger programs and work on more or larger documents.

Adding hard disk space to a system is similar to putting a bigger file cabinet in the office—more files can be permanently stored. And adding more memory to a system is like getting a bigger desk—you can work on more programs and data at the same time.

One difference between this analogy and the way things really work in a computer is that when a file is loaded into memory, it is a copy of the file that is actually loaded; the original still resides on the hard disk. Because of the temporary nature of memory, any files that have been changed after being loaded into memory must then be saved back to the hard disk before the system is powered off (which erases the memory). If the changed file in memory is not saved, the original copy of the file on the hard disk remains unaltered. This is like saying that any changes made to files left on the desktop are discarded when the office is closed, although the original files are still preserved in the cabinet.

Memory temporarily stores programs when they are running, along with the data being used by those programs. RAM chips are sometimes termed *volatile storage* because when you turn off your computer or an electrical outage occurs, whatever is stored in RAM is lost unless you saved it to your hard drive. Because of the volatile nature of RAM, many computer users make it a habit to save their work frequently—a habit I recommend. Many software applications perform periodic saves automatically in order to minimize the potential for data loss.
Physically, the *main memory* in a system is a collection of chips or modules containing chips that are usually plugged into the motherboard. These chips or modules vary in their electrical and physical designs and must be compatible with the system into which they are being installed to function properly. This chapter discusses the various types of chips and modules that can be installed in different systems.

To better understand physical memory in a system, you should understand what types of memory are found in a typical PC and what the role of each type is. Three main types of physical memory are used in modern PCs. (Remember, I’m talking about the type of memory chip, not the type of module that memory is stored on.)

- **ROM**—Read-only memory
- **DRAM**—Dynamic random access memory
- **SRAM**—Static RAM

The only type of memory you normally need to purchase and install in a system is DRAM. The other types are built in to the motherboard (ROM), processor (SRAM), and other components such as the video card, hard drives, and so on.

ROM

Read-only memory, or ROM, is a type of memory that can permanently or semipermanently store data. It is called read-only because it is either impossible or difficult to write to. ROM also is often referred to as *nonvolatile memory* because any data stored in ROM remains there, even if the power is turned off. As such, ROM is an ideal place to put the PC’s startup instructions—that is, the software that boots the system.

Note that ROM and RAM are not opposites, as some people seem to believe. Both are simply types of memory. In fact, ROM could be classified as technically a subset of the system’s RAM. In other words, a portion of the system’s random access memory address space is mapped into one or more ROM chips. This is necessary to contain the software that enables the PC to boot up; otherwise, the processor would have no program in memory to execute when it was powered on.

The main ROM BIOS is contained in a ROM chip on the motherboard, but there are also adapter cards with ROMs on them as well. ROMs on adapter cards contain auxiliary BIOS routines and drivers needed by the particular card, especially for those cards that must be active early in the boot process, such as video cards. Cards that don’t need drivers active at boot time typically don’t have a ROM because those drivers can be loaded from the hard disk later in the boot process.

Most systems today use a type of ROM called *electrically erasable programmable ROM (EEPROM)*, which is a form of flash memory. Flash is a truly nonvolatile memory that is rewritable, enabling users to easily update the ROM or firmware in their motherboards or any other components (video cards, SCSI cards, peripherals, and so on).

For more information on BIOS upgrades, see “Upgrading the BIOS,” p. 328 (Chapter 5, “BIOS”).

DRAM

Dynamic RAM (DRAM) is the type of memory chip used for most of the main memory in a modern PC. The main advantages of DRAM are that it is very dense, meaning you can pack a lot of bits into a very small chip, and it is inexpensive, which makes purchasing large amounts of memory affordable.
The memory cells in a DRAM chip are tiny capacitors that retain a charge to indicate a bit. The problem with DRAM is that it is dynamic—that is, its contents can be changed. With every keystroke or every mouse swipe, the contents of RAM change. And the entire contents of RAM can be wiped out by a system crash. Also, because of the design, it must be constantly refreshed; otherwise, the electrical charges in the individual memory capacitors will drain and the data will be lost. Refresh occurs when the system memory controller takes a tiny break and accesses all the rows of data in the memory chips. The standard refresh time is 15ms (milliseconds), which means that every 15ms, all the rows in the memory are automatically read to refresh the data.

Refreshing the memory unfortunately takes processor time away from other tasks because each refresh cycle takes several CPU cycles to complete. In older systems, the refresh cycling could take up to 10% or more of the total CPU time, but with modern systems running in the multigigahertz range, refresh overhead is now on the order of a fraction of a percent or less of the total CPU time. Some systems allow you to alter the refresh timing parameters via the CMOS Setup. The time between refresh cycles is known as t_{REF} and is expressed not in milliseconds, but in clock cycles (see Figure 6.1).

A soft error is a data error that is not caused by a defective chip. To avoid soft errors, it is usually safer to stick with the recommended or default refresh timing. Because refresh consumes less than 1% of modern system overall bandwidth, altering the refresh rate has little effect on performance. It is almost always best to use default or automatic settings for any memory timings in the BIOS Setup.
Many modern systems don’t allow changes to memory timings and are permanently set to automatic settings. On an automatic setting, the motherboard reads the timing parameters out of the serial presence detect (SPD) ROM found on the memory module and sets the cycling speeds to match.

DRAMs use only one transistor and capacitor pair per bit, which makes them very dense, offering more memory capacity per chip than other types of memory. Currently, DRAM chips are being prepared for production with densities up to 4Gb (512MB) per chip, which at one transistor per bit requires at least 4 billion transistors. The transistor count in memory chips is much higher than in processors, because in a memory chip the transistors and capacitors are all consistently arranged in a (normally square) grid of simple repetitive structures, unlike processors, which are much more complex circuits of different structures and elements interconnected in a highly irregular fashion.

The transistor for each DRAM bit cell reads the charge state of the adjacent capacitor. If the capacitor is charged, the cell is read to contain a 1; no charge indicates a 0. The charge in the tiny capacitors is constantly draining, which is why the memory must be refreshed constantly. Even a momentary power interruption, or anything that interferes with the refresh cycles, can cause a DRAM memory cell to lose the charge and thus the data. If this happens in a running system, it can lead to blue screens, global protection faults, corrupted files, and any number of system crashes.

DRAM is used in PC systems because it is inexpensive and the chips can be densely packed, so a lot of memory capacity can fit in a small space. Unfortunately, DRAM is also relatively slow, typically much slower than the processor. For this reason, many types of DRAM architectures have been developed to improve performance. These architectures are covered later in the chapter.

Cache Memory: SRAM

Another distinctly different type of memory exists that is significantly faster than most types of DRAM. SRAM stands for *static RAM*, which is so named because it does not need the periodic refresh rates like DRAM. Because of how SRAMs are designed, not only are refresh rates unnecessary, but SRAM is much faster than DRAM and much more capable of keeping pace with modern processors.

SRAM memory is available in access times of 0.45ns or less, so it can keep pace with processors running 2.2GHz or faster. This is because of the SRAM design, which calls for a cluster of six transistors for each bit of storage. The use of transistors but no capacitors means that refresh rates are not necessary because there are no capacitors to lose their charges over time. As long as there is power, SRAM remembers what is stored. With these attributes, why don’t we use SRAM for all system memory? The answers are simple.

Compared to DRAM, SRAM is much faster but also much lower in density and much more expensive (see Table 6.1). The lower density means that SRAM chips are physically larger and store fewer bits overall. The high number of transistors and the clustered design mean that SRAM chips are both physically larger and much more expensive to produce than DRAM chips. For example, a high-density DRAM chip might store up to 4Gb (512MB) of RAM, whereas similar sized SRAM chips can only store up to 72Mb (9MB). The high cost and physical constraints have prevented SRAM from being used as the main memory for PC systems.

Table 6.1 Comparing DRAM and SRAM

<table>
<thead>
<tr>
<th>Type</th>
<th>Speed</th>
<th>Density</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>Slow</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>SRAM</td>
<td>Fast</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
Even though SRAM is impractical for PC use as main memory, PC designers have found a way to use SRAM to dramatically improve PC performance. Rather than spend the money for all RAM to be SRAM memory, they design in a small amount of high-speed SRAM memory, used as cache memory, which is much more cost-effective. The SRAM cache runs at speeds close to or even equal to the processor and is the memory from which the processor usually directly reads from and writes to. During read operations, the data in the high-speed cache memory is resupplied from the lower-speed main memory or DRAM in advance. To convert access time in nanoseconds to MHz, use the following formula:

\[
1 / \text{nanoseconds} \times 1000 = \text{MHz}
\]

Likewise, to convert from MHz to nanoseconds, use the following inverse formula:

\[
1 / \text{MHz} \times 1000 = \text{nanoseconds}
\]

Today we have memory that runs faster than 1GHz (1 nanosecond), but up until the late 1990s, DRAM was limited to about 60ns (16MHz) in speed. Up until processors were running at speeds of 16MHz, the available DRAM could fully keep pace with the processor and motherboard, meaning that there was no need for cache. However, as soon as processors crossed the 16MHz barrier, the available DRAM could no longer keep pace, and SRAM cache began to enter PC system designs. This occurred way back in 1986 and 1987 with the debut of systems with the 386 processor running at speeds of 16MHz to 20MHz or faster. These were among the first PC systems to employ what’s called cache memory, a high-speed buffer made up of SRAM that directly feeds the processor. Because the cache can run at the speed of the processor, it acts as a buffer between the processor and the slower DRAM in the system. The cache controller anticipates the processor's memory needs and preloads the high-speed cache memory with data. Then, as the processor calls for a memory address, the data can be retrieved from the high-speed cache rather than the much lower-speed main memory.

Cache effectiveness can be expressed by a hit ratio. This is the ratio of cache hits to total memory accesses. A hit occurs when the data the processor needs has been preloaded into the cache from the main memory, meaning the processor can read it from the cache. A cache miss is when the cache controller did not anticipate the need for a specific address and the desired data was not preloaded into the cache. In that case the processor must retrieve the data from the slower main memory, instead of the faster cache. Any time the processor reads data from main memory, the processor must wait longer because the main memory cycles at a much slower rate than the processor. As an example, if the processor with integral on-die cache is running at 3.6GHz (3,600MHz) on a 1,333MHz bus, both the processor and the integral cache would be cycling at 0.28ns, while the main memory would most likely be cycling almost five times more slowly at 1,333MHz (0.75ns). So, every time the 3.6GHz processor reads from main memory, it would effectively slow down to only 1,333MHz. The slowdown is accomplished by having the processor execute what are called wait states, which are cycles in which nothing is done; the processor essentially cools its heels while waiting for the slower main memory to return the desired data. Obviously, you don’t want your processors slowing down, so cache function and design become more important as system speeds increase.

To minimize the processor being forced to read data from the slow main memory, two or three stages of cache usually exist in a modern system, called Level 1 (L1), Level 2 (L2), and Level 3 (L3). The L1 cache is also called integral or internal cache because it has always been built directly into the processor as part of the processor die (the raw chip). Because of this, L1 cache always runs at the full speed of the processor core and is the fastest cache in any system. All 486 and higher processors incorporate integral L1 cache, making them significantly faster than their predecessors. L2 cache was originally called external cache because it was external to the processor chip when it first appeared. Originally, this meant it was installed on the motherboard, as was the case with all 386, 486, and first-generation Pentium systems. In those systems, the L2 cache runs at motherboard and CPU bus speed because it is
installed on the motherboard and is connected to the CPU bus. You typically find the L2 cache physically adjacent to the processor socket in Pentium and earlier systems.

See “Cache Memory,” p. 64 (Chapter 3, “Processor Types and Specifications”).

In the interest of improved performance, later processor designs from Intel and AMD included the L2 cache as a part of the processor. In all processors since late 1999 (and some earlier models), the L2 cache is directly incorporated as a part of the processor die, just like the L1 cache. In chips with on-die L2, the cache runs at the full core speed of the processor and is much more efficient. By contrast, most processors from 1999 and earlier with integrated L2 had the L2 cache in separate chips that were external to the main processor core. The L2 cache in many of these older processors ran at only half or one-third the processor core speed. Cache speed is very important, so systems having L2 cache on the motherboard were the slowest. Including L2 inside the processor made it faster, and including it directly on the processor die (rather than as chips external to the die) is the fastest yet. Any chip that has on-die full core speed L2 cache has a distinct performance advantage over any chip that doesn’t.

A third-level or L3 cache has been present in some processors since 2001. The first desktop PC processor with L3 cache was the Pentium 4 Extreme Edition, a high-end chip introduced in late 2003 with 2MB of on-die L3 cache. Although it seemed at the time that this would be a forerunner of widespread L3 cache in desktop processors, later versions of the Pentium 4 Extreme Edition (as well as its successor, the Pentium Extreme Edition) dropped the L3 cache, instead using larger L2 cache sizes to improve performance. L3 cache made a return to PC processors in 2007 with the AMD Phenom and in 2008 with the Intel Core i7, both of which have four cores on a single die. L3 is especially suited to processors with four or more cores because it provides an on-die cache that all the cores can share. I expect L3 cache to be a staple in future multicore processors.

The key to understanding both cache and main memory is to see where they fit in the overall system architecture. See Chapter 4 for diagrams showing recent systems with different types of cache memory.

RAM Types and Performance

The speed and performance issue with memory is confusing to some because memory speed is sometimes expressed in nanoseconds (ns) and processor speed has always been expressed in megahertz (MHz) or gigahertz (GHz). Newer and faster types of memory usually have speeds expressed in MHz, thus adding to the confusion. Fortunately, you can easily translate MHz/GHz to ns, and vice versa.

A nanosecond is defined as one billionth of a second—a very short time indeed. To put some perspective on that, the speed of light is 186,282 miles (299,792 kilometers) per second in a vacuum. In one billionth of a second, a beam of light travels a mere 11.80 inches or 29.98 centimeters—less than the length of a typical ruler!

Chip and system speeds have often been expressed in megahertz (MHz), which is millions of cycles per second, or gigahertz (GHz), which is billions of cycles per second. Today’s processors run in the 2GHz–4GHz range with most performance improvements coming from changes in CPU design (such as multiple cores) rather than pure clock speed increases.

Because it is confusing to speak in these different terms for speeds, I thought it would be interesting to see how they compare. Earlier in this chapter I listed formulas you could use to mathematically convert these values. Table 6.2 shows the relationship between common nanosecond (ns) and megahertz (MHz) speeds associated with PCs from yesterday to today and tomorrow.
Table 6.2 The Relationship Between Megahertz (MHz) and Cycle Times in Nanoseconds (ns)

<table>
<thead>
<tr>
<th>Clock Speed</th>
<th>Cycle Time</th>
<th>Clock Speed</th>
<th>Cycle Time</th>
<th>Clock Speed</th>
<th>Cycle Time</th>
<th>Clock Speed</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.77MHz</td>
<td>210ns</td>
<td>250MHz</td>
<td>4.0ns</td>
<td>850MHz</td>
<td>1.18ns</td>
<td>2,700MHz</td>
<td>0.37ns</td>
</tr>
<tr>
<td>6MHz</td>
<td>167ns</td>
<td>266MHz</td>
<td>3.8ns</td>
<td>866MHz</td>
<td>1.15ns</td>
<td>2,800MHz</td>
<td>0.36ns</td>
</tr>
<tr>
<td>8MHz</td>
<td>125ns</td>
<td>300MHz</td>
<td>3.3ns</td>
<td>900MHz</td>
<td>1.11ns</td>
<td>2,900MHz</td>
<td>0.34ns</td>
</tr>
<tr>
<td>10MHz</td>
<td>100ns</td>
<td>333MHz</td>
<td>3.0ns</td>
<td>933MHz</td>
<td>1.07ns</td>
<td>3,000MHz</td>
<td>0.33ns</td>
</tr>
<tr>
<td>12MHz</td>
<td>83ns</td>
<td>350MHz</td>
<td>2.9ns</td>
<td>950MHz</td>
<td>1.05ns</td>
<td>3,100MHz</td>
<td>0.323ns</td>
</tr>
<tr>
<td>16MHz</td>
<td>63ns</td>
<td>366MHz</td>
<td>2.7ns</td>
<td>966MHz</td>
<td>1.04ns</td>
<td>3,200MHz</td>
<td>0.313ns</td>
</tr>
<tr>
<td>20MHz</td>
<td>50ns</td>
<td>400MHz</td>
<td>2.5ns</td>
<td>1,000MHz</td>
<td>1.00ns</td>
<td>3,300MHz</td>
<td>0.303ns</td>
</tr>
<tr>
<td>25MHz</td>
<td>40ns</td>
<td>433MHz</td>
<td>2.3ns</td>
<td>1,100MHz</td>
<td>0.91ns</td>
<td>3,400MHz</td>
<td>0.294ns</td>
</tr>
<tr>
<td>33MHz</td>
<td>30ns</td>
<td>450MHz</td>
<td>2.2ns</td>
<td>1,133MHz</td>
<td>0.88ns</td>
<td>3,500MHz</td>
<td>0.286ns</td>
</tr>
<tr>
<td>40MHz</td>
<td>25ns</td>
<td>466MHz</td>
<td>2.1ns</td>
<td>1,200MHz</td>
<td>0.83ns</td>
<td>3,600MHz</td>
<td>0.278ns</td>
</tr>
<tr>
<td>50MHz</td>
<td>20ns</td>
<td>500MHz</td>
<td>2.0ns</td>
<td>1,300MHz</td>
<td>0.77ns</td>
<td>3,700MHz</td>
<td>0.270ns</td>
</tr>
<tr>
<td>60MHz</td>
<td>17ns</td>
<td>533MHz</td>
<td>1.88ns</td>
<td>1,400MHz</td>
<td>0.71ns</td>
<td>3,800MHz</td>
<td>0.263ns</td>
</tr>
<tr>
<td>66MHz</td>
<td>15ns</td>
<td>550MHz</td>
<td>1.82ns</td>
<td>1,500MHz</td>
<td>0.67ns</td>
<td>3,900MHz</td>
<td>0.256ns</td>
</tr>
<tr>
<td>75MHz</td>
<td>13ns</td>
<td>566MHz</td>
<td>1.77ns</td>
<td>1,600MHz</td>
<td>0.63ns</td>
<td>4,000MHz</td>
<td>0.250ns</td>
</tr>
<tr>
<td>80MHz</td>
<td>13ns</td>
<td>600MHz</td>
<td>1.67ns</td>
<td>1,700MHz</td>
<td>0.59ns</td>
<td>4,100MHz</td>
<td>0.244ns</td>
</tr>
<tr>
<td>100MHz</td>
<td>10ns</td>
<td>633MHz</td>
<td>1.58ns</td>
<td>1,800MHz</td>
<td>0.56ns</td>
<td>4,200MHz</td>
<td>0.238ns</td>
</tr>
<tr>
<td>120MHz</td>
<td>8.3ns</td>
<td>650MHz</td>
<td>1.54ns</td>
<td>1,900MHz</td>
<td>0.53ns</td>
<td>4,300MHz</td>
<td>0.233ns</td>
</tr>
<tr>
<td>133MHz</td>
<td>7.5ns</td>
<td>666MHz</td>
<td>1.50ns</td>
<td>2,000MHz</td>
<td>0.50ns</td>
<td>4,400MHz</td>
<td>0.227ns</td>
</tr>
<tr>
<td>150MHz</td>
<td>6.7ns</td>
<td>700MHz</td>
<td>1.43ns</td>
<td>2,100MHz</td>
<td>0.48ns</td>
<td>4,500MHz</td>
<td>0.222ns</td>
</tr>
<tr>
<td>166MHz</td>
<td>6.0ns</td>
<td>733MHz</td>
<td>1.36ns</td>
<td>2,200MHz</td>
<td>0.45ns</td>
<td>4,600MHz</td>
<td>0.217ns</td>
</tr>
<tr>
<td>180MHz</td>
<td>5.6ns</td>
<td>750MHz</td>
<td>1.33ns</td>
<td>2,300MHz</td>
<td>0.43ns</td>
<td>4,700MHz</td>
<td>0.213ns</td>
</tr>
<tr>
<td>200MHz</td>
<td>5.0ns</td>
<td>766MHz</td>
<td>1.31ns</td>
<td>2,400MHz</td>
<td>0.42ns</td>
<td>4,800MHz</td>
<td>0.208ns</td>
</tr>
<tr>
<td>225MHz</td>
<td>4.4ns</td>
<td>800MHz</td>
<td>1.25ns</td>
<td>2,500MHz</td>
<td>0.40ns</td>
<td>4,900MHz</td>
<td>0.204ns</td>
</tr>
<tr>
<td>233MHz</td>
<td>4.3ns</td>
<td>833MHz</td>
<td>1.20ns</td>
<td>2,600MHz</td>
<td>0.38ns</td>
<td>5,000MHz</td>
<td>0.200ns</td>
</tr>
</tbody>
</table>

As you can see from Table 6.2, as clock speeds increase, cycle time decreases proportionately.

Over the development life of the PC, memory has had a difficult time keeping up with the processor, requiring several levels of high-speed cache memory to intercept processor requests for the slower main memory. More recently, however, systems using DDR, DDR2, and DDR3 SDRAM have memory bus performance equaling that of the processor bus. When the speed of the memory bus equals the speed of the processor bus, main memory performance is optimum for that system.

For example, using the information in Table 6.2, you can see that the 60ns DRAM memory used in the original Pentium and Pentium II PCs up until 1998 works out to be an extremely slow 16.7MHz! This slow 16.7MHz memory was installed in systems running processors up to 300MHz or faster on a processor bus speed of 66MHz, resulting in a large mismatch between processor bus and main memory performance. However, starting in 1998 the industry shifted to faster SDRAM memory, which was able to match the 66MHz speed of the processor bus at the time. From that point forward, memory has largely evolved in step with the processor bus, with newer and faster types coming out to match any increases in processor bus speeds.
By the year 2000, the dominant processor bus and memory speeds had increased to 100MHz and even 133MHz (called PC100 and PC133 SDRAM, respectively). Starting in early 2001, double data rate (DDR) SDRAM memory of 200MHz and 266MHz become popular. In 2002, DDR memory increased to 333MHz; in 2003, the speeds increased further to 400MHz. During 2004, we saw the introduction of DDR2, first at 400MHz and then at 533MHz. DDR2 memory continued to match processor bus speed increases in PCs during 2005 and 2006, rising to 667MHz and 800MHz, respectively, during that time. By 2007, DDR2 memory was available at speeds of up to 1,066MHz, and DDR3 came on the market at 1,066MHz and faster. In 2009, DDR3 memory became the most popular memory type in new systems, with standard speeds of up to 1,600MHz. Table 6.3 lists the primary types and performance levels of PC memory.

Table 6.3 PC Memory Types and Performance Levels

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Years Popular</th>
<th>Module Type</th>
<th>Voltage</th>
<th>Max. Clock Speed</th>
<th>Max. Throughput Single-Channel</th>
<th>Max. Throughput Dual-Channel</th>
<th>Max. Throughput Tri-Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Page Mode (FPM) DRAM</td>
<td>1987–1995</td>
<td>30/72-pin SIMM</td>
<td>5V</td>
<td>22MHz</td>
<td>177MBps</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Extended Data Out (EDO) DRAM</td>
<td>1995–1998</td>
<td>72-pin SIMM</td>
<td>5V</td>
<td>33MHz</td>
<td>266MBps</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Single Data Rate (SDR) SDRAM</td>
<td>1998–2002</td>
<td>168-pin DIMM</td>
<td>3.3V</td>
<td>133MHz</td>
<td>1,066MBps</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Rambus DRAM (RDRAM)</td>
<td>2000–2002</td>
<td>184-pin RIMM</td>
<td>2.5V</td>
<td>1,066MTps</td>
<td>2,133MBps</td>
<td>4,266MBps</td>
<td>N/A</td>
</tr>
<tr>
<td>Double Data Rate (DDR) SDRAM</td>
<td>2002–2005</td>
<td>184-pin DIMM</td>
<td>2.5V</td>
<td>400MTps</td>
<td>3,200MBps</td>
<td>6,400MBps</td>
<td>N/A</td>
</tr>
<tr>
<td>DDR2 SDRAM</td>
<td>2005–2008</td>
<td>240-pin DDR2 DIMM</td>
<td>1.8V</td>
<td>1,066MTps</td>
<td>8,533MBps</td>
<td>17,066MBps</td>
<td>N/A</td>
</tr>
<tr>
<td>DDR3 SDRAM</td>
<td>2008+</td>
<td>240-pin DDR3 DIMM</td>
<td>1.5V</td>
<td>1,600MTps</td>
<td>12,800MBps</td>
<td>25,600MBps</td>
<td>38,400MBps</td>
</tr>
</tbody>
</table>

MHz = Megacycles per second
MTps = Megatransfers per second
MBps = Megabytes per second
SIMM = Single inline memory module
DIMM = Dual inline memory module

The following sections look at these memory types in more detail.

Fast Page Mode DRAM

Standard DRAM is accessed through a technique called paging. Normal memory access requires that a row and column address be selected, which takes time. Paging enables faster access to all the data within a given row of memory by keeping the row address the same and changing only the column. Memory that uses this technique is called Page Mode or Fast Page Mode memory. Other variations on Page Mode were called Static Column or Nibble Mode memory.
Paged memory is a simple scheme for improving memory performance that divides memory into pages ranging from 512 bytes to a few kilobytes long. The paging circuitry then enables memory locations in a page to be accessed with fewer wait states. If the desired memory location is outside the current page, one or more wait states are added while the system selects the new page.

To improve further on memory access speeds, systems have evolved to enable faster access to DRAM. One important change was the implementation of burst mode access in the 486 and later processors. Burst mode cycling takes advantage of the consecutive nature of most memory accesses. After setting up the row and column addresses for a given access, using burst mode, you can then access the next three adjacent addresses with no additional latency or wait states. A burst access usually is limited to four total accesses. To describe this, we often refer to the timing in the number of cycles for each access. A typical burst mode access of standard DRAM is expressed as x-y-y-y; x is the time for the first access (latency plus cycle time), and y represents the number of cycles required for each consecutive access.

Standard 60ns-rated DRAM normally runs 5-3-3-3 burst mode timing. This means the first access takes a total of five cycles (on a 66MHz system bus, this is about 75ns total, or 5×15ns cycles), and the consecutive cycles take three cycles each (3×15ns = 45ns). As you can see, the actual system timing is somewhat less than the memory is technically rated for. Without the bursting technique, memory access would be 5-5-5-5 because the full latency is necessary for each memory transfer. The 45ns cycle time during burst transfers equals about a 22.2MHz effective clock rate; on a system with a 64-bit (8-byte) wide memory bus, this would result in a maximum throughput of 177MBps (22.2MHz×8 bytes = 177MBps).

DRAM memory that supports paging and this bursting technique is called Fast Page Mode (FPM) memory. The term comes from the capability of memory accesses to data on the same page to be done with less latency. Most 386, 486, and Pentium systems from 1987 through 1995 used FPM memory, which came in either 30-pin or 72-pin SIMM form.

Another technique for speeding up FPM memory is called interleaving. In this design, two separate banks of memory are used together, alternating access from one to the other as even and odd bytes. While one is being accessed, the other is being precharged, when the row and column addresses are being selected. Then, by the time the first bank in the pair is finished returning data, the second bank in the pair is finished with the latency part of the cycle and is now ready to return data. While the second bank is returning data, the first bank is being precharged, selecting the row and column address of the next access. This overlapping of accesses in two banks reduces the effect of the latency or precharge cycles and allows for faster overall data retrieval. The only problem is that to use interleaving, you must install identical pairs of banks together, doubling the number of modules required.

Extended Data Out RAM (EDO)

In 1995, a newer type of DRAM called extended data out (EDO) RAM became available for Pentium systems. EDO, a modified form of FPM memory, is sometimes referred to as Hyper Page mode. EDO was invented and patented by Micron Technology, although Micron licensed production to many other memory manufacturers.

EDO memory consists of specially manufactured chips that allow a timing overlap between successive accesses. The name extended data out refers specifically to the fact that unlike FPM, the data output drivers on the chip are not turned off when the memory controller removes the column address to begin the next cycle. This enables the next cycle to overlap the previous one, saving approximately 10ns per cycle.
The effect of EDO is that cycle times are improved by enabling the memory controller to begin a new column address instruction while it is reading data at the current address. This is almost identical to what was achieved in older systems by interleaving banks of memory, but unlike interleaving, with EDO you didn’t need to install two identical banks of memory in the system at a time.

EDO RAM allows for burst mode cycling of 5-2-2-2, compared to the 5-3-3-3 of standard fast page mode memory. To do four memory transfers, then, EDO would require 11 total system cycles, compared to 14 total cycles for FPM. This is a 22% improvement in overall cycling time. The resulting two-cycle (30ns) cycle time during burst transfers equals a 33.3MHz effective clock rate, compared to 45ns/22MHz for FPM. On a system with a 64-bit (8-byte) wide memory bus, this would result in a maximum throughput of 266MBps (33.3MHz×8 bytes = 266MBps). Due to the processor cache, EDO typically increased overall system benchmark speed by only 5% or less. Even though the overall system improvement was small, the important thing about EDO was that it used the same basic DRAM chip design as FPM, meaning that there was practically no additional cost over FPM. In fact, in its heyday EDO cost less than FPM and yet offered higher performance.

EDO RAM generally came in 72-pin SIMM form. Figure 6.4 (later in this chapter) shows the physical characteristics of these SIMMs.

To actually use EDO memory, your motherboard chipset had to support it. Most motherboard chipsets introduced on the market from 1995 (Intel 430FX) through 1997 (Intel 430TX) offered support for EDO, making EDO the most popular form of memory in PCs from 1995 through 1998. Because EDO memory chips cost the same to manufacture as standard chips, combined with Intel’s support of EDO in motherboard chipsets, the PC market jumped on the EDO bandwagon full force.

One variation of EDO that never caught on was called burst EDO (BEDO). BEDO added burst capabilities for even speedier data transfers than standard EDO. Unfortunately, the technology was owned by Micron and not a free industry standard, so only one chipset (Intel 440FX Natoma) ever supported it. BEDO was quickly overshadowed by industry-standard SDRAM, which came into favor among PC system chipset and system designers over proprietary designs. As such, BEDO never really saw the light of production, and to my knowledge no systems ever used it.

SDRAM

SDRAM is short for *synchronous DRAM*, a type of DRAM that runs in synchronization with the memory bus. SDRAM delivers information in very high-speed bursts using a high-speed clocked interface. SDRAM removes most of the latency involved in asynchronous DRAM because the signals are already in synchronization with the motherboard clock.

As with any type of memory on the market, motherboard chipset support is required before it can be usable in systems. Starting in 1996 with the 430VX and 430TX, most of Intel’s chipsets began to support industry-standard SDRAM, and in 1998 the introduction of the 440BX chipset caused SDRAM to eclipse EDO as the most popular type on the market.

SDRAM performance is dramatically improved over that of FPM or EDO RAM. However, because SDRAM is still a type of DRAM, the initial latency is the same, but burst mode cycle times are much
faster than with FPM or EDO. SDRAM timing for a burst access would be 5-1-1-1, meaning that four memory reads would complete in only eight system bus cycles, compared to 11 cycles for EDO and 14 cycles for FPM. This makes SDRAM almost 20% faster than EDO.

Besides being capable of working in fewer cycles, SDRAM is also capable of supporting up to 133MHz (7.5ns) system bus cycling. Most PC systems sold from 1998 through 2002 included SDRAM memory.

SDRAM is sold in DIMM form and is normally rated by clock speed (MHz) rather than cycling time (ns), which was confusing during the initial change from FPM and EDO DRAM. Figure 6.5 (later in this chapter) shows the physical characteristics of DIMMs.

To meet the stringent timing demands of its chipsets, Intel created specifications for SDRAM called PC66, PC100, and PC133. For example, you would think 10ns would be considered the proper rating for 100MHz operation, but the PC100 specification promoted by Intel calls for faster 8ns memory to ensure all timing parameters could be met with sufficient margin for error.

In May 1999, the Joint Electron Device Engineering Council (JEDEC) created a specification called PC133. It achieved this 33MHz speed increase by taking the PC100 specification and tightening up the timing and capacitance parameters. The faster PC133 quickly caught on for any systems running a 133MHz processor bus. The original chips used in PC133 modules were rated for exactly 7.5ns or 133MHz; later ones were rated at 7.0ns, which is technically 143MHz. These faster chips were still used on PC133 modules, but they allowed for improvements in column address strobe latency (abbreviated as CAS or CL), which somewhat improves overall memory cycling time.

Note

JEDEC is the semiconductor engineering standardization body of the Electronic Industries Alliance (EIA), a trade association that represents all areas of the electronics industry. JEDEC was originally created in 1960 and governs the standardization of all types of semiconductor devices, integrated circuits, and modules. JEDEC has about 300 member companies, including memory, chipset, and processor manufacturers as well as practically any company involved in manufacturing computer equipment using industry-standard components.

The idea behind JEDEC is simple: to create open standards that can be freely adopted throughout the industry. For example, if one company were to create a proprietary memory technology, other companies who wanted to manufacture components compliant with that memory would have to pay license fees, assuming the company that owned the technology was interested in licensing at all! Parts would be more proprietary in nature, causing problems with interchangeability or sourcing reasonably priced replacements. In addition, those companies licensing the technology would have no control over the evolution of the technology or any future changes made by the owner company.

JEDEC prevents this type of scenario for things such as memory by getting all the memory manufacturers to work together to create shared industry standards covering memory chips and modules. JEDEC-approved standards for memory can then be freely shared by all the member companies, and no one single company has control over a given standard, or any of the companies producing compliant components. FPM, SDRAM, DDR, DDR2, and DDR3 are all examples of JEDEC memory standards used in PCs, whereas memory such as EDO and RDRAM are proprietary examples. You can find out more about JEDEC standards for memory and other semiconductor technology at www.jedec.org.

Table 6.4 shows the timing, rated chip speeds, and standard module speeds for various SDRAM DIMMs.
Table 6.4 SDRAM Timing, Actual Speed, and Rated Speed

<table>
<thead>
<tr>
<th>Timing</th>
<th>Rated Chip Speed</th>
<th>Standard Module Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>15ns</td>
<td>66MHz</td>
<td>PC66</td>
</tr>
<tr>
<td>10ns</td>
<td>100MHz</td>
<td>PC66</td>
</tr>
<tr>
<td>8ns</td>
<td>125MHz</td>
<td>PC100</td>
</tr>
<tr>
<td>7.5ns</td>
<td>133MHz</td>
<td>PC133</td>
</tr>
<tr>
<td>7.0ns</td>
<td>143MHz</td>
<td>PC133</td>
</tr>
</tbody>
</table>

SDRAM normally came in 168-pin DIMMs, running at several different speeds. Table 6.5 shows the standard single data rate SDRAM module speeds and resulting throughputs.

Table 6.5 JEDEC Standard SDRAM Module (168-pin DIMM) Speeds and Transfer Rates

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC66</td>
<td>10ns</td>
<td>66</td>
<td>1</td>
<td>66</td>
<td>8</td>
<td>533</td>
</tr>
<tr>
<td>PC100</td>
<td>8ns</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>8</td>
<td>800</td>
</tr>
<tr>
<td>PC133</td>
<td>7ns</td>
<td>133</td>
<td>1</td>
<td>133</td>
<td>8</td>
<td>1,066</td>
</tr>
</tbody>
</table>

MTps = Megatransfers per second
MBps = Megabytes per second
ns = Nanoseconds (billionths of a second)
DIMM = Dual inline memory module

Some module manufacturers sold modules they claimed were “PC150” or “PC166,” even though those speeds did not exist as official JEDEC or Intel standards, and no chipsets or processors officially supported those speeds. These modules actually used hand-picked 133MHz rated chips that could run overclocked at 150MHz or 166MHz speeds. In essence, PC150 or PC166 memory was PC133 memory that was tested to run at overclocked speeds not supported by the original chip manufacturer. This overclockable memory was sold at a premium to enthusiasts who wanted to overclock their motherboard chipsets, thereby increasing the speed of the processor and memory bus.

Caution

In general, PC133 memory is considered to be backward compatible with PC100 memory. However, some chipsets or motherboards had more specific requirements for specific types of 100MHz or 133MHz chips and module designs. If you need to upgrade an older system that requires PC100 memory, you should not purchase PC133 memory unless the memory is specifically identified by the memory vendor as being compatible with the system. You can use the online memory-configuration tools provided by most major memory vendors to ensure that you get the right memory for your system.
DDR SDRAM

Double data rate (DDR) SDRAM memory is a JEDEC standard that is an evolutionary upgrade in which data is transferred twice as quickly as standard SDRAM. Instead of doubling the actual clock rate, DDR memory achieves the doubling in performance by transferring twice per transfer cycle: once at the leading (falling) edge and once at the trailing (rising) edge of the cycle (see Figure 6.2). This effectively doubles the transfer rate, even though the same overall clock and timing signals are used.

DDR SDRAM first came to market in the year 2000 and was initially used on high-end graphics cards because there weren’t any motherboard chipsets to support it at the time. DDR finally became popular in 2002 with the advent of mainstream supporting motherboards and chipsets. From 2002 through 2005, DDR was the most popular type of memory in mainstream PCs. DDR SDRAM uses a DIMM module design with 184 pins. Figure 6.6 (later in this chapter) shows the 184-pin DDR DIMM.

![SDR vs DDR Cycling](image)

Figure 6.2 SDR (single data rate) versus DDR (double data rate) cycling.

DDR DIMMs come in a variety of speed or throughput ratings and normally run on 2.5 volts. They are basically an extension of the standard SDRAM DIMMs redesigned to support double clocking, where data is sent on each clock transition (twice per cycle) rather than once per cycle as with standard SDRAM. To eliminate confusion with DDR, regular SDRAM is often called **single data rate (SDR)**.

Table 6.6 compares the various types of industry-standard DDR SDRAM modules. As you can see, the raw chips are designated by their speed in megatransfers per second, whereas the modules are designated by their approximate throughput in megabytes per second.

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
<th>Dual-Channel Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1600</td>
<td>DDR200</td>
<td>100</td>
<td>2</td>
<td>200</td>
<td>8</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>PC2100</td>
<td>DDR266</td>
<td>133</td>
<td>2</td>
<td>266</td>
<td>8</td>
<td>2,133</td>
<td>4,266</td>
</tr>
</tbody>
</table>
Table 6.6 Continued

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
<th>Dual-Channel Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC2700</td>
<td>DDR333</td>
<td>166</td>
<td>2</td>
<td>333</td>
<td>8</td>
<td>2,667</td>
<td>5,333</td>
</tr>
<tr>
<td>PC3200</td>
<td>DDR400</td>
<td>200</td>
<td>2</td>
<td>400</td>
<td>8</td>
<td>3,200</td>
<td>6,400</td>
</tr>
</tbody>
</table>

*MTps = Megatransfers per second
MBps = Megabytes per second
DIMM = Dual inline memory module
DDR = Double data rate*

The major memory chip and module manufacturers normally produce parts that conform to the official JEDEC standard speed ratings. However, to support overclocking, several memory module manufacturers purchase unmarked and untested chips from the memory chip manufacturers, then independently test and sort them by how fast they run. These are then packaged into modules with unofficial designations and performance figures that exceed the standard ratings. Table 6.7 shows the popular unofficial speed ratings I’ve seen on the market. Note that because the speeds of these modules are beyond the standard default motherboard and chipset speeds, you won’t see any advantage to using them unless you are overclocking your system to match.

Table 6.7 Overclocked (non-JEDEC) DDR Module (184-pin DIMM) Speeds and Transfer Rates

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
<th>Dual-Channel Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC3500</td>
<td>DDR433</td>
<td>216</td>
<td>2</td>
<td>433</td>
<td>8</td>
<td>3,466</td>
<td>6,933</td>
</tr>
<tr>
<td>PC3700</td>
<td>DDR466</td>
<td>233</td>
<td>2</td>
<td>466</td>
<td>8</td>
<td>3,733</td>
<td>7,466</td>
</tr>
<tr>
<td>PC4000</td>
<td>DDR500</td>
<td>250</td>
<td>2</td>
<td>500</td>
<td>8</td>
<td>4,000</td>
<td>8,000</td>
</tr>
<tr>
<td>PC4200</td>
<td>DDR533</td>
<td>266</td>
<td>2</td>
<td>533</td>
<td>8</td>
<td>4,266</td>
<td>8,533</td>
</tr>
<tr>
<td>PC4400</td>
<td>DDR550</td>
<td>275</td>
<td>2</td>
<td>550</td>
<td>8</td>
<td>4,400</td>
<td>8,800</td>
</tr>
<tr>
<td>PC4800</td>
<td>DDR600</td>
<td>300</td>
<td>2</td>
<td>600</td>
<td>8</td>
<td>4,800</td>
<td>9,600</td>
</tr>
</tbody>
</table>

*MTps = Megatransfers per second
MBps = Megabytes per second
DIMM = Dual inline memory module
DDR = Double data rate*

The bandwidths listed in these tables are per module. Most chipsets that support DDR also support dual-channel operation—a technique in which two matching DIMMs are installed to function as a single bank, with double the bandwidth of a single module. For example, if a chipset supports standard PC3200 modules, the bandwidth for a single module would be 3,200MBps. However, in dual-channel mode, the total bandwidth would double to 6,400MBps. Dual-channel operation optimizes PC design by ensuring that the CPU bus and memory bus both run at exactly the same speeds (meaning throughput, not MHz) so that data can move synchronously between the buses without delays.
DDR2 SDRAM

DDR2 is simply a faster version of DDR memory: It achieves higher throughput by using differential pairs of signal wires to allow faster signaling without noise and interference problems. DDR2 is still double data rate, just as with DDR, but the modified signaling method enables higher clock speeds to be achieved with more immunity to noise and crosstalk between the signals. The additional signals required for differential pairs add to the pin count—DDR2 DIMMs have 240 pins, which is more than the 184 pins of DDR. The original DDR specification officially topped out at 400MHz (although faster unofficial overclocked modules were produced), whereas DDR2 starts at 400MHz and goes up to an official maximum of 1,066MHz. Table 6.8 shows the various official JEDEC-approved DDR2 module types and bandwidth specifications.

Table 6.8 JEDEC Standard DDR2 Module (240-pin DIMM) Speeds and Transfer Rates

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
<th>Dual-Channel Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC2-3200</td>
<td>DDR2-400</td>
<td>200</td>
<td>2</td>
<td>400</td>
<td>8</td>
<td>3,200</td>
<td>6,400</td>
</tr>
<tr>
<td>PC2-4200</td>
<td>DDR2-533</td>
<td>266</td>
<td>2</td>
<td>533</td>
<td>8</td>
<td>4,266</td>
<td>8,533</td>
</tr>
<tr>
<td>PC2-5300</td>
<td>DDR2-667</td>
<td>333</td>
<td>2</td>
<td>667</td>
<td>8</td>
<td>5,333</td>
<td>10,667</td>
</tr>
<tr>
<td>PC2-6400</td>
<td>DDR2-800</td>
<td>400</td>
<td>2</td>
<td>800</td>
<td>8</td>
<td>6,400</td>
<td>12,800</td>
</tr>
<tr>
<td>PC2-8500</td>
<td>DDR2-1066</td>
<td>533</td>
<td>2</td>
<td>1066</td>
<td>8</td>
<td>8,533</td>
<td>17,066</td>
</tr>
</tbody>
</table>

MTps = Megatransfers per second
MBps = Megabytes per second
DIMM = Dual inline memory module
DDR = Double data rate

The fastest official JEDEC-approved standard is DDR2-1066, which is composed of chips that run at an effective speed of 1,066MHz (really megatransfers per second), resulting in modules designated PC2-8500 having a bandwidth of 8,533MBps. However, just as with DDR, many of the module manufacturers produce even faster modules designed for overclocked systems. These are sold as modules with unofficial designations and performance figures that exceed the standard ratings. Table 6.9 shows the popular unofficial speed ratings I've seen on the market. Note that because the speeds of these modules are beyond the standard default motherboard and chipset speeds, you won't see any advantage to using these unless you are overclocking your system to match.

Table 6.9 Overclocked (non-JEDEC) DDR2 Module (240-pin DIMM) Speeds and Transfer Rates

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
<th>Dual-Channel Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC2-6000</td>
<td>DDR2-750</td>
<td>375</td>
<td>2</td>
<td>750</td>
<td>8</td>
<td>6,000</td>
<td>12,000</td>
</tr>
<tr>
<td>PC2-7200</td>
<td>DDR2-900</td>
<td>450</td>
<td>2</td>
<td>900</td>
<td>8</td>
<td>7,200</td>
<td>14,400</td>
</tr>
<tr>
<td>PC2-8000</td>
<td>DDR2-1000</td>
<td>500</td>
<td>2</td>
<td>1000</td>
<td>8</td>
<td>8,000</td>
<td>16,000</td>
</tr>
<tr>
<td>PC2-8800</td>
<td>DDR2-1100</td>
<td>550</td>
<td>2</td>
<td>1100</td>
<td>8</td>
<td>8,800</td>
<td>17,600</td>
</tr>
</tbody>
</table>
Table 6.9 Continued

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
<th>Dual-Channel Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC2-8888</td>
<td>DDR2-1111</td>
<td>556</td>
<td>2</td>
<td>1111</td>
<td>8</td>
<td>8,888</td>
<td>17,777</td>
</tr>
<tr>
<td>PC2-9136</td>
<td>DDR2-1142</td>
<td>571</td>
<td>2</td>
<td>1142</td>
<td>8</td>
<td>9,136</td>
<td>18,272</td>
</tr>
<tr>
<td>PC2-9200</td>
<td>DDR2-1150</td>
<td>575</td>
<td>2</td>
<td>1150</td>
<td>8</td>
<td>9,200</td>
<td>18,400</td>
</tr>
<tr>
<td>PC2-9600</td>
<td>DDR2-1200</td>
<td>600</td>
<td>2</td>
<td>1200</td>
<td>8</td>
<td>9,600</td>
<td>19,200</td>
</tr>
<tr>
<td>PC2-10000</td>
<td>DDR2-1250</td>
<td>625</td>
<td>2</td>
<td>1250</td>
<td>8</td>
<td>10,000</td>
<td>20,000</td>
</tr>
</tbody>
</table>

MTps = Megatransfers per second
MBps = Megabytes per second
DIMM = Dual inline memory module
DDR = Double data rate

In addition to providing greater speeds and bandwidth, DDR2 has other advantages. It uses lower voltage than conventional DDR (1.8V versus 2.5V), so power consumption and heat generation are reduced. Because of the greater number of pins required on DDR2 chips, the chips typically use fine-pitch ball grid array (FBGA) packaging rather than the thin small outline package (TSOP) chip packaging used by most DDR and conventional SDRAM chips. FBGA chips are connected to the substrate (meaning the memory module in most cases) via tightly spaced solder balls on the base of the chip is.

DDR2 DIMMs resemble conventional DDR DIMMs but have more pins and slightly different notches to prevent confusion or improper application. For example, the different physical notches prevent you from plugging a DDR2 module into a conventional DDR (or SDR) socket. DDR2 memory module designs incorporate 240 pins, significantly more than conventional DDR or standard SDRAM DIMMs.

JEDEC began working on the DDR2 specification in April 1998, and published the standard in September 2003. DDR2 chip and module production actually began in mid-2003 (mainly samples and prototypes), and the first chipsets, motherboards, and systems supporting DDR2 appeared for Intel processor–based systems in mid-2004. At that time variations of DDR2 such as G-DDR2 (Graphics DDR2) began appearing in graphics cards as well. Mainstream motherboard chipset support for DDR2 on Intel processor–based systems appeared in 2005. Notable for its lack of DDR2 support through 2005 was AMD, whose Athlon 64 and Opteron processor families included integrated DDR memory controllers. AMD processor–based systems first supported DDR2 in mid-2006, with the release of socket AM2 motherboards and processors to match. (AMD’s Socket F, also known as 1207 FX, also supports DDR2 memory.)

It is interesting to note that AMD was almost 2 years behind Intel in the transition from DDR to DDR2. This is because AMD included the memory controller in its Athlon 64 and all subsequent processors, rather than incorporating the memory controller in the chipset North Bridge, as with the more traditional Intel designs. Although there are advantages to integrating the memory controller in the CPU, one disadvantage is the inability to quickly adopt new memory architectures, because doing so requires that both the processor and processor socket be redesigned. However, with the release of the Core i7 processors in 2008, Intel also moved the memory controller from the chipset into the processor, thus putting Intel and AMD in the same situation as far as memory architectures are concerned.
DDR3

DDR3 is the latest JEDEC memory standard. It enables higher levels of performance along with lower power consumption and higher reliability than DDR2. JEDEC began working on the DDR3 specification in June of 2002, and the first DDR3 memory modules and supporting chipsets (versions of the Intel 3xx series) were released for Intel-based systems in mid-2007. Due to initial high cost and limited support, DDR3 didn’t start to become popular until late 2008 when Intel released the Core i7 processor, which included an integrated tri-channel DDR3 memory controller. In early 2009, popularity increased when AMD released Socket AM3 versions of the Phenom II, the first from AMD to support DDR3. During 2009, with full support from both Intel and AMD, DDR3 finally began to achieve price parity with DDR2, causing DDR3 to begin to eclipse DDR2 in sales.

DDR3 modules use advanced signal designs, including self-driver calibration and data synchronization, along with an optional onboard thermal sensor. DDR3 memory runs on only 1.5V, which is nearly 20% less than the 1.8V used by DDR2 memory. The lower voltage combined with higher efficiency reduces overall power consumption by up to 30% compared to DDR2.

DDR3 is most suited to systems where the processor and/or memory bus runs at 1,333MHz or higher, which is faster than the 1,066MHz maximum supported by DDR2. For higher-speed memory in standard (non-overclocked) systems, DDR3 modules rated PC3-10600 and PC3-12800 allow for throughputs of 10,667MBps and 12,800MBps, respectively. When combined in dual-channel operation, a pair of PC3-12800 modules result in a total throughput of an incredible 25,600MBps. Processors with tri-channel support, such as the Core i7, have memory bandwidths of 32,000MBps and 38,400MBps using DDR3-1333 and DDR3-1600, respectively. Table 6.10 shows the various official JEDEC-approved DDR3 module types and bandwidth specifications.

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
<th>Dual-Channel Transfer Rate (MBps)</th>
<th>Tri-Channel Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC3-6400</td>
<td>DDR3-800</td>
<td>400</td>
<td>2</td>
<td>800</td>
<td>8</td>
<td>6,400</td>
<td>12,800</td>
<td>19,200</td>
</tr>
<tr>
<td>PC3-8500</td>
<td>DDR3-1066</td>
<td>533</td>
<td>2</td>
<td>1066</td>
<td>8</td>
<td>8,533</td>
<td>17,066</td>
<td>25,600</td>
</tr>
<tr>
<td>PC3-10600</td>
<td>DDR3-1333</td>
<td>667</td>
<td>2</td>
<td>1333</td>
<td>8</td>
<td>10,667</td>
<td>21,333</td>
<td>32,000</td>
</tr>
<tr>
<td>PC3-12800</td>
<td>DDR3-1600</td>
<td>800</td>
<td>2</td>
<td>1600</td>
<td>8</td>
<td>12,800</td>
<td>25,600</td>
<td>38,400</td>
</tr>
</tbody>
</table>

MTps = Megatransfers per second
MBps = Megabytes per second
DIMM = Dual inline memory module
DDR = Double data rate

The fastest official JEDEC-approved standard is DDR3-1600, which is composed of chips that run at an effective speed of 1,600MHz (really megatransfers per second), resulting in modules designated PC3-12800 and having a bandwidth of 12,800MBps. However, just as with DDR and DDR2, many manufacturers produce nonstandard modules designed for overclocked systems. These are sold as modules with unofficial designations, clock speeds, and performance figures that exceed the standard ratings.

Table 6.11 shows the popular unofficial DDR3 speed ratings I’ve seen on the market. Note that because the speeds of these modules are beyond the standard default motherboard and chipset speeds,
you won't see any advantage to using them unless you are overclocking your system and your motherboard supports the corresponding overclocked processor and memory settings that these modules require. In addition, because these modules use standard-speed chips that are running overclocked, they almost always require custom voltage settings that are higher than the 1.5V used by standard DDR3 memory. For system stability, I generally don’t recommend using overclocked (higher voltage) memory, instead preferring to use only that which runs on the DDR3 standard 1.5V.

Table 6.11 Overclocked (non-JEDEC) DDR3 Module (240-pin DIMM) Speeds and Transfer Rates

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
<th>Dual-Channel Transfer Rate (MBps)</th>
<th>Tri-Channel Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC3-11000</td>
<td>DDR3-1375</td>
<td>688</td>
<td>2</td>
<td>1375</td>
<td>8</td>
<td>11,000</td>
<td>22,000</td>
<td>33,000</td>
</tr>
<tr>
<td>PC3-13000</td>
<td>DDR3-1625</td>
<td>813</td>
<td>2</td>
<td>1625</td>
<td>8</td>
<td>13,000</td>
<td>26,000</td>
<td>39,000</td>
</tr>
<tr>
<td>PC3-14400</td>
<td>DDR3-1800</td>
<td>900</td>
<td>2</td>
<td>1800</td>
<td>8</td>
<td>14,400</td>
<td>28,800</td>
<td>43,200</td>
</tr>
<tr>
<td>PC3-14900</td>
<td>DDR3-1866</td>
<td>933</td>
<td>2</td>
<td>1866</td>
<td>8</td>
<td>14,933</td>
<td>29,866</td>
<td>44,800</td>
</tr>
<tr>
<td>PC3-15000</td>
<td>DDR3-1866</td>
<td>933</td>
<td>2</td>
<td>1866</td>
<td>8</td>
<td>14,933</td>
<td>29,866</td>
<td>44,800</td>
</tr>
<tr>
<td>PC3-16000</td>
<td>DDR3-2000</td>
<td>1000</td>
<td>2</td>
<td>2000</td>
<td>8</td>
<td>16,000</td>
<td>32,000</td>
<td>48,000</td>
</tr>
</tbody>
</table>

MTps = Megatransfers per second

MBps = Megabytes per second

DIMM = Dual inline memory module

DDR = Double data rate

The 240-pin DDR3 modules are similar in pin count, size, and shape to the DDR2 modules; however, the DDR3 modules are incompatible with the DDR2 circuits and are designed with different keying to make them physically noninterchangeable.

RDRAM

Rambus DRAM (RDRAM) was a proprietary (non-JEDEC) memory technology found mainly in certain Intel-based Pentium III and 4 systems from 2000 through 2002. Intel had signed a contract with Rambus in 1996 ensuring it would both adopt and support RDRAM memory into 2001. Believing that any memory it endorsed would automatically become the most popular in the industry, Intel also invested heavily in Rambus at the time. Because RDRAM was a proprietary standard owned by Rambus, using or producing it would require licensing from Rambus, something that was not very popular with other memory and chipset manufacturers. Still, the technology was licensed and Intel originally promised that supporting chipsets and motherboards would be available in 1998.

Unfortunately there were problems in getting the supporting chipsets to market, with delays of many months resulting in memory manufacturers stockpiling RDRAM chips with no systems to support them, while conventional SDRAM and DDR meanwhile came into short supply. The delays resulted in an industrywide debacle that caused Intel to rethink and eventually abandon its investment in the technology. After 2001, Intel continued to support RDRAM in existing systems; however, new chipsets and motherboards rapidly shifted to DDR SDRAM. AMD wisely never invested in the RDRAM technology, and as a result no AMD-based systems were ever designed to use RDRAM.

Without Intel’s commitment to future chipset development and support, very few RDRAM-based systems were sold after 2002. Due to the lack of industry support from chipset and motherboard
manufacturers, RDRAM was only used in PCs for a short time, and will most likely not play a big part in any future PCs.

With RDRAM, Rambus developed what is essentially a chip-to-chip memory bus, with specialized devices that communicate at very high rates of speed. What might be interesting to some is that this technology was first developed for game systems and first made popular by the Nintendo 64 game system, and it subsequently was used in the Sony Playstation 2.

Conventional memory systems that use SDRAM are known as wide-channel systems. They have memory channels as wide as the processor’s data or memory bus, which for the Pentium and up is 64 bits, or even wider in dual-channel or tri-channel modes. The dual inline memory module (DIMM) is a 64-bit wide device, meaning data can be transferred to it 64 bits (or 8 bytes) at a time.

RDRAM modules, on the other hand, are narrow-channel devices. They transfer data only 16 bits (2 bytes) at a time (plus 2 optional parity bits), but at faster speeds. This was a shift away from a more parallel to a more serial design for memory and is similar to what has been happening with other evolving buses in the PC.

Each individual chip is serially connected to the next on a package called a Rambus inline memory module (RIMM), which looks similar to a DIMM module but which is not interchangeable. All memory transfers are done between the memory controller and a single device, not between devices. A single Rambus channel typically has three RIMM sockets and can support up to 32 individual RDRAM devices (the RDRAM chips) and more if buffers are used. However, most motherboards implement only two modules per channel (four sockets in a dual-channel design) to avoid problems with signal noise.

The RDRAM memory bus is a continuous path through each device and module on the bus, with each module having input and output pins on opposite ends. Therefore, any RIMM sockets not containing a RIMM must then be filled with a continuity module to ensure that the path is completed. The signals that reach the end of the bus are terminated on the motherboard.

The 16-bit single-channel RIMMs originally ran at 800MHz, so the overall throughput is 800×2, or 1.6GB per second for a single channel—the same as PC1600 DDR SDRAM. Pentium 4 systems typically used two banks simultaneously, creating a dual-channel design capable of 3.2GBps, which matched the bus speed of the original Pentium 4 processors. The RDRAM design features less latency between transfers because they all run synchronously in a looped system and in only one direction.

Newer RIMM versions ran at 1,066MHz in addition to the original 800MHz rate, but very few chipsets or motherboards were released to support the higher speed.

Each RDRAM chip on a RIMM1600 essentially operates as a standalone device sitting on the 16-bit data channel. Internally, each RDRAM chip has a core that operates on a 128-bit wide bus split into eight 16-bit banks running at 100MHz. In other words, every 10ns (100MHz), each RDRAM chip can transfer 16 bytes to and from the core. This internally wide yet externally narrow high-speed interface is the key to RDRAM.

Other improvements to the design include separating control and data signals on the bus. Independent control and address buses are split into two groups of pins for row and column commands, while data is transferred across the 2-byte wide data bus. The actual memory bus clock runs at 400MHz; however, data is transferred on both the falling and rising edges of the clock signal, or twice per clock pulse. The falling edge is called an even cycle, and the rising edge is called an odd cycle. Complete memory bus synchronization is achieved by sending packets of data beginning on an even cycle interval. The overall wait before a memory transfer can begin (latency) is only one cycle, or 2.5ns maximum.
Figure 6.2 (shown earlier) depicts the relationship between clock and data cycles; you can see the DDR clock and data cycles used by RDRAM and DDR SDRAM. An RDRAM data packet always begins on an even (falling) transition for synchronization purposes. The architecture also supports multiple, simultaneous interleaved transactions in multiple separate time domains. Therefore, before a transfer has even completed, another can begin.

Another important feature of RDRAM is that it is designed for low power consumption. The RIMMs themselves as well as the RDRAM devices run on only 2.5 volts and use low-voltage signal swings from 1.0V to 1.8V, a swing of only 0.8V total. RDRAMs also have four power-down modes and can automatically transition into standby mode at the end of a transaction, which offers further power savings.

A RIMM is similar in size and physical form to a DIMM, but they are not interchangeable. RIMMs are available in module sizes up to 1GB or more and can be added to a system one at a time because each individual RIMM technically represents multiple banks to a system. Note, however, that they have to be added in pairs if your motherboard implements dual-channel RDRAM and you are using 16-bit wide RIMMs.

RIMMs are available in four primary speed grades and usually run in a dual-channel environment, so they have to be installed in pairs, with each one of the pairs in a different set of sockets. Each set of RIMM sockets on such boards is a channel. The 32-bit version incorporates multiple channels within a single device and, as such, is designed to be installed individually, eliminating the requirement for matched pairs. Table 6.12 compares the various types of RDRAM modules. Note that the once-common names for RIMM modules, such as PC800, have been replaced by names that reflect the actual bandwidth of the modules to avoid confusion with DDR memory.

<table>
<thead>
<tr>
<th>Module Standard</th>
<th>Chip Type</th>
<th>Clock Speed (MHz)</th>
<th>Cycles per Clock</th>
<th>Bus Speed (MTps)</th>
<th>Bus Width (Bytes)</th>
<th>Transfer Rate (MBps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIMM1200</td>
<td>PC600</td>
<td>300</td>
<td>2</td>
<td>600</td>
<td>2</td>
<td>1,200</td>
</tr>
<tr>
<td>RIMM1400</td>
<td>PC700</td>
<td>350</td>
<td>2</td>
<td>700</td>
<td>2</td>
<td>1,400</td>
</tr>
<tr>
<td>RIMM1600</td>
<td>PC800</td>
<td>400</td>
<td>2</td>
<td>800</td>
<td>2</td>
<td>1,600</td>
</tr>
<tr>
<td>RIMM2100</td>
<td>PC1066</td>
<td>533</td>
<td>2</td>
<td>1,066</td>
<td>2</td>
<td>2,133</td>
</tr>
</tbody>
</table>

MTps = Megatransfers per second
MBps = Megabytes per second
RIMM = Rambus inline memory module

When Intel initially threw its weight behind the Rambus memory, it seemed destined to be a sure thing for success. Unfortunately, technical delays in the chipsets caused the supporting motherboards to be significantly delayed, and with few systems to support the RIMMs, most memory manufacturers went back to making SDRAM or shifted to DDR SDRAM instead. This caused the remaining available RIMMs being manufactured to be originally priced three or more times that of comparatively sized DIMMs.
Note
Rambus claimed it had patents that covered both standard and DDR SDRAM designs, contending that regardless of whether a company manufactured SDRAM, DDR, or RDRAM, it must pay royalties. Most of the cases that have gone to trial have so far ruled against Rambus, essentially invalidating its patents and claims on DDR and SDRAM. Many appeals are pending, and it will likely be a long time before the patent issues are resolved.

With support for RDRAM memory essentially gone by 2003, RDRAM quickly disappeared from the PC marketplace. Because RDRAM is in such limited supply, if you have existing systems with RDRAM memory, it is generally not cost effective to upgrade them by adding more memory.

Memory Modules
The CPU and motherboard architecture (chipset) dictates a particular computer’s physical memory capacity and the types and forms of memory that can be installed. Over the years, three primary changes have occurred in computer memory—it has gradually become faster, wider, and larger in capacity. The CPU and the memory controller circuitry dictate the speed, width, and maximum amount supported. The memory controller in a modern PC resides in either the processor or the motherboard chipset. Even though a system might physically support a given maximum amount of memory, the type of software you run may dictate how much memory can actually be used.

We’ve already discussed memory types, speeds, and widths. Modern memory modules are 64 bits wide, and depending on the memory controller design, they are accessed in single-, dual-, or tri-channel mode. In single-channel mode, the memory is read and written 64 bits at a time, whereas in dual- or tri-channel mode, the memory bus width increases to 128 bits or 192 bits, respectively. With the exception of the ill-fated RDRAM memory type, memory is one of the few components in the PC to remain massively parallel. Most other parts of the PC have transitioned to serial interface designs.

Maximum physical memory capacity is dictated by several factors. The first is the amount addressable by the processor itself, which is based on the number of physical address lines in the chip. The original PC processors (8086/8088) had 20 address lines, which resulted in those chips being able to recognize up to 1MB (2 to the 20th power bytes) of RAM. The 286/386SX increased memory addressing capability to 24 lines, making them capable of addressing 16MB (2 to the 24th power bytes). Modern x86 processors have from 32 to 36 address lines, resulting in from 4GB to 64GB of addressable RAM. Modern x86-64 (64-bit) processors have 40 address lines, resulting in a maximum of 1TB (1 terabyte) of supported physical RAM.

See “Processor Specifications,” p. 37 (Chapter 3).

The operating mode of the processor may place further limits on memory addressability. For example, when the processor is operating in backward-compatible real mode, only 1MB of memory is supported.

See “Processor Modes,” p. 45 (Chapter 3).

Note that even though modern 64-bit processors can address up to 1TB, modern motherboards and/or chipsets generally limit the maximum amount of RAM to 8GB, 16GB, or 24GB. The type of software also has an effect. The 32-bit versions of Windows XP, Vista, and Windows 7 limit memory support to 4GB, whereas the 64-bit versions limit support to 8GB, 16GB, or 192GB, depending on the edition.

Note
See the “Chipsets” section in Chapter 4 for the memory limits on motherboard chipsets.
SIMMs, DIMMs, and RIMMs

Originally, PCs had memory installed via individual chips. They are often referred to as dual inline package (DIP) chips because of their physical designs. The original IBM XT and AT systems had 36 sockets on the motherboard for these individual chips—and more sockets could often be found on memory cards plugged into the bus slots. I remember spending hours populating boards with these chips, which was a tedious job.

Besides being a time-consuming and labor-intensive way to deal with memory, DIP chips had one notorious problem—they crept out of their sockets over time as the system went through thermal cycles. Every day, when you powered the system on and off, the system heated and cooled, and the chips gradually walked their way out of the sockets—a phenomenon called chip creep. Eventually, good contact was lost and memory errors resulted. Fortunately, reseating all the chips back in their sockets usually rectified the problem, but that method was labor intensive if you had a lot of systems to support.

The alternative to this at the time was to have the memory soldered into either the motherboard or an expansion card. This prevented the chips from creeping and made the connections more permanent, but it caused another problem. If a chip did go bad, you had to attempt desoldering the old one and resoldering a new one or resort to scrapping the motherboard or memory card on which the chip was installed. This was expensive and made memory troubleshooting difficult.

A chip was needed that was both soldered and removable, which was made possible by using memory modules instead of individual chips. Early modules had one row of electrical contacts and were called SIMMs (single inline memory modules), whereas later modules had two rows and were called DIMMs (dual inline memory modules) or RIMMs (Rambus inline memory modules). These small boards plug into special connectors on a motherboard or memory card. The individual memory chips are soldered to the module, so removing and replacing them is impossible. Instead, you must replace the entire module if any part of it fails. The module is treated as though it were one large memory chip.

Several different types of SIMMs, DIMMs, and RIMMs have been commonly used in desktop systems. The various types are often described by their pin count, memory row width, or memory type.

SIMMs, for example, are available in two main physical types—30-pin (8 bits plus an option for 1 additional parity bit) and 72-pin (32 bits plus an option for 4 additional parity bits)—with various capacities and other specifications. The 30-pin SIMMs are physically smaller than the 72-pin versions, and either version can have chips on one or both sides. SIMMs were widely used from the late 1980s to the late 1990s but have become obsolete.

DIMMs are available in four main types. SDR (single data rate) DIMMs have 168 pins, one notch on either side, and two notches along the contact area. DDR (double data rate) DIMMs, on the other hand, have 184 pins, two notches on each side, and only one offset notch along the contact area. DDR2 and DDR3 DIMMs have 240 pins, two notches on each side, and one near the center of the contact area. All DIMMs are either 64 bits (non-ECC/parity) or 72 bits (data plus parity or error-correcting code [ECC]) wide. The main physical difference between SIMMs and DIMMs is that DIMMs have different signal pins on each side of the module, resulting in two rows of electrical contacts. That is why they are called dual inline memory modules, and why with only 1" of additional length, they have many more pins than a SIMM.

Note

There is confusion among users and even in the industry regarding the terms single-sided and double-sided with respect to memory modules. In truth, the single- or double-sided designation actually has nothing to do with whether chips are physically located on one or both sides of the module, and it has nothing to do with whether the module is a SIMM or DIMM.
(meaning whether the connection pins are single- or double-inline). Instead the terms single-sided and double-sided are used to indicate whether the module has one or two internal banks (called ranks) of memory chips installed. A dual-rank DIMM module has two complete 64-bit wide banks of chips logically stacked so that the module is twice as deep (has twice as many 64-bit rows). In most (but not all) cases, this requires chips to be on both sides of the module; therefore, the term double-sided has often been used to indicate that a module has two ranks, even though the term is technically incorrect. Single-rank modules (incorrectly referred to as single-sided) can also have chips physically mounted on both sides of the module, and dual-rank modules can have chips physically mounted on only one side. I recommend using the terms single rank or dual rank instead because they are much more accurate and easily understood.

RIMMs also have different signal pins on each side. Three different physical types of RIMMs are available: a 16/18-bit version with 184 pins, a 32/36-bit version with 232 pins, and a 64/72-bit version with 326 pins. Each of these plugs into the same sized connector, but the notches in the connectors and RIMMs are different to prevent a mismatch. A given board will accept only one type. By far the most common type is the 16/18-bit version. The 32-bit version was introduced in late 2002, and the 64-bit version was introduced in 2004.

The standard 16/18-bit RIMM has 184 pins, one notch on either side, and two notches centrally located in the contact area. The 16-bit versions are used for non-ECC applications, whereas the 18-bit versions incorporate the additional bits necessary for ECC.

Figures 6.3 through 6.9 show a typical 30-pin (8-bit) SIMM, 72-pin (32-bit) SIMM, 168-pin SDRAM DIMM, 184-pin DDR SDRAM (64-bit) DIMM, 240-pin DDR2 DIMM, 240-pin DDR3 DIMM, and 184-pin RIMM, respectively. The pins are numbered from left to right and are connected through to both sides of the module on the SIMMs. The pins on the DIMM are different on each side, but on a SIMM, each side is the same as the other and the connections carry through. Note that all dimensions are in both inches and millimeters (in parentheses), and modules are generally available in error-correcting code (ECC) versions with 1 extra ECC (or parity) bit for every 8 data bits (multiples of 9 in data width) or versions that do not include ECC support (multiples of 8 in data width).

![Figure 6.3 A typical 30-pin SIMM.](image-url)
Figure 6.4 A typical 72-pin SIMM.

Figure 6.5 A typical 168-pin SDRAM DIMM.

Figure 6.6 A typical 184-pin DDR DIMM.
Figure 6.7 A typical 240-pin DDR2 DIMM.

Figure 6.8 A typical 240-pin DDR3 DIMM.
All these memory modules are fairly compact considering the amount of memory they hold and are available in several capacities and speeds. Table 6.13 lists the various capacities available for SIMMs, DIMMs, and RIMMs.

Table 6.13 SIMM, DIMM, and RIMM Capacities

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Standard Depth × Width</th>
<th>Parity/ECC Depth × Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Pin SIMM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256KB</td>
<td>256K×8</td>
<td>256K×9</td>
</tr>
<tr>
<td>1MB</td>
<td>1M×8</td>
<td>1M×9</td>
</tr>
<tr>
<td>4MB</td>
<td>4M×8</td>
<td>4M×9</td>
</tr>
<tr>
<td>16MB</td>
<td>16M×8</td>
<td>16M×9</td>
</tr>
<tr>
<td>72-Pin SIMM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1MB</td>
<td>256K×32</td>
<td>256K×36</td>
</tr>
<tr>
<td>2MB</td>
<td>512K×32</td>
<td>512K×36</td>
</tr>
<tr>
<td>4MB</td>
<td>1M×32</td>
<td>1M×36</td>
</tr>
<tr>
<td>8MB</td>
<td>2M×32</td>
<td>2M×36</td>
</tr>
<tr>
<td>16MB</td>
<td>4M×32</td>
<td>4M×36</td>
</tr>
<tr>
<td>32MB</td>
<td>8M×32</td>
<td>8M×36</td>
</tr>
<tr>
<td>64MB</td>
<td>16M×32</td>
<td>16M×36</td>
</tr>
<tr>
<td>128MB</td>
<td>32M×32</td>
<td>32M×36</td>
</tr>
<tr>
<td>168/184-Pin DIMM/DDR DIMM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8MB</td>
<td>1M×64</td>
<td>1M×72</td>
</tr>
<tr>
<td>16MB</td>
<td>2M×64</td>
<td>2M×72</td>
</tr>
<tr>
<td>32MB</td>
<td>4M×64</td>
<td>4M×72</td>
</tr>
<tr>
<td>64MB</td>
<td>8M×64</td>
<td>8M×72</td>
</tr>
<tr>
<td>128MB</td>
<td>16M×64</td>
<td>16M×72</td>
</tr>
<tr>
<td>256MB</td>
<td>32M×64</td>
<td>32M×72</td>
</tr>
<tr>
<td>512MB</td>
<td>64M×64</td>
<td>64M×72</td>
</tr>
<tr>
<td>1,024MB</td>
<td>128M×64</td>
<td>128M×72</td>
</tr>
<tr>
<td>2,048MB</td>
<td>256M×64</td>
<td>256M×72</td>
</tr>
</tbody>
</table>
Memory modules of each type and capacity are available in various speed ratings. Consult your motherboard documentation for the correct memory speed and type for your system. If a system requires a specific speed memory module, you can almost always substitute faster speeds if the one specified is not available. Generally, no problems occur in mixing module speeds, as long as you use modules equal to or faster than what the system requires. Because there’s little price difference between the various speed versions, I often buy faster modules than are necessary for a particular application, especially if they are the same cost as slower modules. This might make them more usable in a future system that could require the faster speed.

Because SDRAM and newer modules have an onboard serial presence detect (SPD) ROM that reports their speed and timing parameters to the system, most systems run the memory controller and memory bus at the speed matching the slowest module installed.

Note

A bank is the smallest amount of memory needed to form a single row of memory addressable by the processor. It is the minimum amount of physical memory that is read or written by the processor at one time and usually corresponds to the data bus width of the processor. If a processor has a 64-bit data bus, a bank of memory also is 64 bits wide. If the memory runs dual- or tri-channel, a virtual bank is formed that is two or three times the absolute data bus width of the processor.

You can’t always replace a module with a higher-capacity unit and expect it to work. Systems might have specific design limitations for the maximum capacity of module they can take. A larger-capacity module works only if the motherboard is designed to accept it in the first place. Consult your system documentation to determine the correct capacity and speed to use.

Registered Modules

SDRAM through DDR3 modules are available in unbuffered and registered versions. Most PC motherboards are designed to use unbuffered modules, which allow the memory controller signals to pass directly to the memory chips on the module with no interference. This is not only the cheapest design, but also the fastest and most efficient. The only drawback is that the motherboard designer
SIMMs, DIMMs, and RIMMs

must place limits on how many modules (meaning module sockets) can be installed on the board, and possibly also limit how many chips can be on a module. So-called double-sided modules that really have multiple banks of chips onboard might be restricted on some systems in certain combinations.

Systems designed to accept extremely large amounts of RAM (such as servers) often require registered modules. A registered module uses an architecture that has register chips on the module that act as an interface between the actual RAM chips and the chipset. The registers temporarily hold data passing to and from the memory chips and enable many more RAM chips to be driven or otherwise placed on the module than the chipset could normally support. This allows for motherboard designs that can support many modules and enables each module to have a larger number of chips. In general, registered modules are required by server or workstation motherboards designed to support more than four sockets. One anomaly is the initial version of the AMD Athlon 64 FX processor, which also uses registered memory because its Socket 940 design was based on the AMD Opteron workstation and server processor. Subsequent Socket 939, AM2, and Socket F versions of the Athlon FX no longer require registered memory.

To provide the space needed for the buffer chips, a registered DIMM is often taller than a standard DIMM. Figure 6.10 compares a typical registered DIMM to a typical unbuffered DIMM.

Tip

If you are installing registered DIMMs in a slimline case, clearance between the top of the DIMM and the case might be a problem. Some vendors sell low-profile registered DIMMs that are about the same height as an unbuffered DIMM. Use this type of DIMM if your system does not have enough head room for standard registered DIMMs. Some vendors sell only this type of DIMM for particular systems.

![Figure 6.10](image) A typical registered DIMM is taller than a typical unbuffered DIMM to provide room for buffer chips.
The important thing to note is that you can use only the type of module your motherboard (or chipset) is designed to support. For most, that is standard unbuffered modules or, in some cases, registered modules.

SIMM Details

The 72-pin SIMMs use a set of four or five pins to indicate the type of SIMM to the motherboard. These presence detect pins are either grounded or not connected to indicate the type of SIMM to the motherboard. Presence detect outputs must be tied to the ground through a 0-ohm resistor or jumper on the SIMM—to generate a high logic level when the pin is open or a low logic level when the motherboard grounds the pin. This produces signals the memory interface logic can decode. If the motherboard uses presence detect signals, a power-on self test (POST) procedure can determine the size and speed of the installed SIMMs and adjust control and addressing signals automatically. This enables autodetection of the memory size and speed.

Note

In many ways, the presence detect pin function is similar to the industry-standard DX coding used on modern 35mm film rolls to indicate the ASA (speed) rating of the film to the camera. When you drop the film into the camera, electrical contacts can read the film’s speed rating via an industry-standard configuration.

Presence detect performs the same function for 72-pin SIMMs that the serial presence detect (SPD) chip does for DIMMs.

Table 6.14 shows the Joint Electronic Devices Engineering Council (JEDEC) industry-standard presence detect configuration listing for the 72-pin SIMM family. JEDEC is an organization of U.S. semiconductor manufacturers and users that sets semiconductor standards.

<table>
<thead>
<tr>
<th>Size</th>
<th>Speed</th>
<th>Pin 67</th>
<th>Pin 68</th>
<th>Pin 69</th>
<th>Pin 70</th>
<th>Pin 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MB</td>
<td>100ns</td>
<td>Gnd</td>
<td>—</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
</tr>
<tr>
<td>1MB</td>
<td>80ns</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
<td>Gnd</td>
<td>—</td>
</tr>
<tr>
<td>1MB</td>
<td>70ns</td>
<td>Gnd</td>
<td>—</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1MB</td>
<td>60ns</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2MB</td>
<td>100ns</td>
<td>—</td>
<td>Gnd</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
</tr>
<tr>
<td>2MB</td>
<td>80ns</td>
<td>—</td>
<td>Gnd</td>
<td>—</td>
<td>Gnd</td>
<td>—</td>
</tr>
<tr>
<td>2MB</td>
<td>70ns</td>
<td>—</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2MB</td>
<td>60ns</td>
<td>—</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4MB</td>
<td>100ns</td>
<td>Gnd</td>
<td>Gnd</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
</tr>
<tr>
<td>4MB</td>
<td>80ns</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
<td>Gnd</td>
<td>—</td>
</tr>
<tr>
<td>4MB</td>
<td>70ns</td>
<td>Gnd</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4MB</td>
<td>60ns</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8MB</td>
<td>100ns</td>
<td>—</td>
<td>—</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
</tr>
<tr>
<td>8MB</td>
<td>80ns</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Gnd</td>
<td>—</td>
</tr>
<tr>
<td>8MB</td>
<td>70ns</td>
<td>—</td>
<td>—</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8MB</td>
<td>60ns</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Unfortunately, unlike the film industry, not everybody in the computer industry follows established standards. As such, presence detect signaling is not a standard throughout the PC industry. Different system manufacturers sometimes use different configurations for what is expected on these four pins. Compaq, IBM (mainly PS/2 systems), and Hewlett-Packard are notorious for this type of behavior. Many of the systems from these vendors require special SIMMs that are basically the same as standard 72-pin SIMMs, except for special presence detect requirements. Table 6.15 shows how IBM defines these pins.

<table>
<thead>
<tr>
<th>Pin 67</th>
<th>Pin 68</th>
<th>Pin 69</th>
<th>Pin 70</th>
<th>SIMM Type</th>
<th>IBM Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Not a valid SIMM</td>
<td>n/a</td>
</tr>
<tr>
<td>Gnd</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1MB 120ns</td>
<td>n/a</td>
</tr>
<tr>
<td>—</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
<td>2MB 120ns</td>
<td>n/a</td>
</tr>
<tr>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
<td>—</td>
<td>2MB 70ns</td>
<td>92F0102</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Gnd</td>
<td>8MB 70ns</td>
<td>64F3606</td>
</tr>
<tr>
<td>Gnd</td>
<td>—</td>
<td>Gnd</td>
<td>—</td>
<td>Reserved</td>
<td>n/a</td>
</tr>
<tr>
<td>—</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
<td>2MB 80ns</td>
<td>92F0103</td>
</tr>
<tr>
<td>Gnd</td>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
<td>8MB 80ns</td>
<td>64F3607</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Gnd</td>
<td>Reserved</td>
<td>n/a</td>
</tr>
<tr>
<td>Gnd</td>
<td>—</td>
<td>—</td>
<td>Gnd</td>
<td>1MB 85ns</td>
<td>90X8624</td>
</tr>
<tr>
<td>—</td>
<td>Gnd</td>
<td>—</td>
<td>Gnd</td>
<td>2MB 85ns</td>
<td>92F0104</td>
</tr>
<tr>
<td>Gnd</td>
<td>Gnd</td>
<td>—</td>
<td>Gnd</td>
<td>4MB 70ns</td>
<td>92F0105</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>Gnd</td>
<td>Gnd</td>
<td>4MB 85ns</td>
<td>79F1003 (square notch) L40-SX</td>
</tr>
<tr>
<td>Gnd</td>
<td>—</td>
<td>Gnd</td>
<td>Gnd</td>
<td>1MB 100ns</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Table 6.15 Continued

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>SIMM Type</th>
<th>IBM Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnd</td>
<td>—</td>
<td>Gnd</td>
<td>8MB 80ns</td>
<td>79F1004 (square notch) L40-SX</td>
</tr>
<tr>
<td>—</td>
<td>Gnd</td>
<td>Gnd</td>
<td>2MB 100ns</td>
<td>n/a</td>
</tr>
<tr>
<td>Gnd</td>
<td>Gnd</td>
<td>Gnd</td>
<td>4MB 80ns</td>
<td>87F9980</td>
</tr>
<tr>
<td>Gnd</td>
<td>Gnd</td>
<td>Gnd</td>
<td>2MB 85ns</td>
<td>79F1003 (square notch) L40-SX</td>
</tr>
</tbody>
</table>

— = No connection (open)
Gnd = Ground
Pin 67 = Presence detect 1
Pin 68 = Presence detect 2
Pin 69 = Presence detect 3
Pin 70 = Presence detect 4

Because these pins can have custom variations, you often must specify IBM, Compaq, HP, or generic SIMMs when you order memory for systems using 72-pin SIMMs. Although very few (if any) of these systems are still in service, keep this information in mind if you are moving 72-pin modules from one system to another or are installing salvaged memory into a system. Also, be sure you match the metal used on the module connectors and sockets. SIMM pins can be tin or gold plated, and the plating on the module pins must match that on the socket pins; otherwise, corrosion will result.

Caution

To have the most reliable system when using SIMM modules, you must install modules with gold-plated contacts into gold-plated sockets and modules with tin-plated contacts into tin-plated sockets only. If you mix gold contacts with tin sockets, or vice versa, you are likely to experience memory failures from 6 months to 1 year after initial installation because a type of corrosion known as fretting will take place. This has been a major problem with 72-pin SIMM-based systems because some memory and motherboard vendors opted for tin sockets and connectors while others opted for gold. According to connector manufacturer AMP’s “Golden Rules: Guidelines for the Use of Gold on Connector Contacts” (available at www.tycoelectronics.com/documentation/whitepapers/pdf/aurulrep.pdf) and “The Tin Commandments: Guidelines for the Use of Tin on Connector Contacts” (available at www.tycoelectronics.com/documentation/whitepapers/pdf/sncomrep.pdf), you should match connector metals.

If you are maintaining systems with mixed tin/gold contacts in which fretting has already occurred, use a wet contact cleaner. After cleaning, to improve electrical contacts and help prevent corrosion, you should use a liquid contact enhancer and lubricant called Stabilant 22 from D.W. Electrochemicals when installing SIMMs or DIMMs. The company’s website (www.stabilant.com) has detailed application notes on this subject that provide more technical details.

SDR DIMM Details

SDR (single data rate) DIMMs use a completely different type of presence detect than SIMMs, called serial presence detect (SPD). It consists of a small EEPROM or flash memory chip on the DIMM that contains specially formatted data indicating the DIMM’s features. This serial data can be read via the serial data pins on the DIMM, and it enables the motherboard to autoconfigure to the exact type of DIMM installed.

DIMMs can come in several varieties, including unbuffered and buffered as well as 3.3V and 5V. Buffered DIMMs have additional buffer chips on them to interface to the motherboard.
Unfortunately, these buffer chips slow down the DIMM and are not effective at higher speeds. For this reason, most PC systems (those that do not use registered DIMMs) use unbuffered DIMMs. The voltage is simple—DIMM designs for PCs are almost universally 3.3V. If you install a 5V DIMM in a 3.3V socket, it would be damaged, but fortunately keying in the socket and on the DIMM prevents that.

Modern PC systems use only unbuffered 3.3V DIMMs. Apple and other non-PC systems can use the buffered 5V versions. Fortunately, the key notches along the connector edge of a DIMM are spaced differently for buffered/unbuffered and 3.3V/5V DIMMs, as shown in Figure 6.11. This prevents inserting a DIMM of the wrong type into a given socket.

Figure 6.11 The 168-pin DRAM DIMM notch key definitions.

DDR DIMM Details

The 184-pin DDR DIMMs use a single key notch to indicate voltage, as shown in Figure 6.12. DDR DIMMs also use two notches on each side to enable compatibility with both low- and high-profile latched sockets. Note that the key position is offset with respect to the center of the DIMM to prevent inserting it backward in the socket. The key notch is positioned to the left, centered, or to the right of the area between pins 52 and 53. This is used to indicate the I/O voltage for the DDR DIMM and to prevent installing the wrong type into a socket that might damage the DIMM.

Figure 6.12 The 184-pin DDR SDRAM DIMM keying.

DDR2 DIMM Details

The 240-pin DDR2 DIMMs use two notches on each side to enable compatibility with both low- and high-profile latched sockets. The connector key is offset with respect to the center of the DIMM to
prevent inserting it backward in the socket. The key notch is positioned in the center of the area between pins 64 and 65 on the front (184/185 on the back), and there is no voltage keying because all DDR2 DIMMs run on 1.8V.

DDR3 DIMM Details

The 240-pin DDR3 DIMMs use two notches on each side to enable compatibility with both low- and high-profile latched sockets. The connector key is offset with respect to the center of the DIMM to prevent inserting it backward in the socket. The key notch is positioned in the center of the area between pins 48 and 49 on the front (168/169 on the back), and there is no voltage keying because all DDR3 DIMMs run on 1.5V.

RIMM Details

The 16/18-bit RIMMs are keyed with two notches in the center. This prevents a backward insertion and prevents the wrong type (voltage) RIMM from being used in a system. Currently, all RIMMs run on 2.5V, but proposed 64-bit versions will run on only 1.8V. To allow for changes in the RIMMs, three keying options are possible in the design (see Figure 6.13). The left key (indicated as “DATUM A” in Figure 6.13) is fixed in position, but the center key can be in three different positions spaced 1mm or 2mm to the right, indicating different types of RIMMs. The current default is option A, as shown in Figure 6.13 and Table 6.16, which corresponds to 2.5V operation.

![RIMM Keying Options](image)

Figure 6.13 RIMM keying options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Notch Separation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11.5mm</td>
<td>2.5V RIMM</td>
</tr>
<tr>
<td>B</td>
<td>12.5mm</td>
<td>Reserved</td>
</tr>
<tr>
<td>C</td>
<td>13.5mm</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

RIMMs incorporate an SPD device, which is essentially a flash ROM onboard. This ROM contains information about the RIMM’s size and type, including detailed timing information for the memory.
controller. The memory controller automatically reads the data from the SPD ROM to configure the system to match the RIMMs installed.

Figure 6.14 shows a typical PC RIMM installation. The RDRAM controller and clock generator are typically in the motherboard chipset North Bridge component. As you can see, the Rambus memory channel flows from the memory controller through each of up to three RIMM modules in series. Each module contains 4, 8, 16, or more RDRAM devices (chips), also wired in series, with an onboard SPD ROM for system configuration. Any RIMM sockets without a RIMM installed must have a continuity module, shown in the last socket in Figure 6.13. This enables the memory bus to remain continuous from the controller through each module (and, therefore, each RDRAM device on the module) until the bus finally terminates on the motherboard. Note how the bus loops from one module to another. For timing purposes, the first RIMM socket must be 6" or less from the memory controller, and the entire length of the bus must not be more than it would take for a signal to go from one end to another in four data clocks, or about 5ns.

Interestingly, Rambus does not manufacture the RDRAM devices (the chips) or the RIMMs; that is left to other companies. Rambus is merely a design company, and it has no chip fabs or manufacturing facilities of its own. It licenses its technology to other companies who then manufacture the devices and modules.

Determining a Memory Module’s Size and Features

Most memory modules are labeled with a sticker indicating the module’s type, speed rating, and manufacturer. If you are attempting to determine whether existing memory can be used in a new computer, or if you need to replace memory in an existing computer, this information can be essential. Figure 6.15 illustrates the markings on typical 512MB and 1GB DDR memory modules from Crucial Technologies.
Chapter 6 Memory

1. Module size
2. Module type and speed
3. CAS Latency
4. Crucial Technology part number

Figure 6.15 Markings on 512MB (top) and 1GB (bottom) DDR memory modules from Crucial Technology.

However, if you have memory modules that are not labeled, you can still determine the module type, speed, and capacity if the memory chips on the module are clearly labeled. For example, assume you have a memory module with chips labeled as follows:

MT46V64M8TG-7S

By using an Internet search engine such as Google and entering the number from one of the memory chips, you can usually find the data sheet for the memory chips. Consider the following example: Say you have a registered memory module and want to look up the part number for the memory chips (usually eight or more chips) rather than the buffer chips on the module (usually from one to three, depending on the module design). In this example, the part number turns out to be a Micron memory chip that decodes like this:

MT = Micron Technologies (the memory chip maker)
46 = DDR SDRAM
V = 2.5V DC
64M8 = 8 million rows × 8 (equals 64) × 8 banks (often written as 64 Meg × 8)
TG = 66-pin TSOP chip package
−75 = 7.5ns @ CL2 latency (DDR 266)

The full datasheet for this example is located at http://download.micron.com/pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf.

From this information, you can determine that the module has the following characteristics:

- The module runs at DDR266 speeds using standard 2.5V DC voltage.
- The module has a latency of CL2, so it can be used on any system that requires CL2 or slower latency (such as CL2.5 or CL3).
- Each chip has a capacity of 512Mb (64 × 8 = 512).
- Each chip contains 8 bits. Because it takes 8 bits to make 1 byte, the capacity of the module can be calculated by grouping the memory chips on the module into groups of eight. If each chip contains 512Mb, a group of eight means that the module has a size of 512MB (512Mb × 8 = 512MB). A dual-bank module has two groups of eight chips for a capacity of 1GB (512Mb × 8 = 1024MB, or 1GB).

If the module has nine instead of eight memory chips (or 18 instead of 16), the additional chips are used for parity checking and support ECC error correction on servers with this feature.

To determine the size of the module in MB or GB and to determine whether the module supports ECC, count the memory chips on the module and compare them to Table 6.17. Note that the size of each memory chip in Mb is the same as the size in MB if the memory chips use an 8-bit design.

<table>
<thead>
<tr>
<th>Number of Chips</th>
<th>Number of Bits in Each Bank</th>
<th>Module Size</th>
<th>Supports ECC?</th>
<th>Single or Dual Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>64</td>
<td>512MB</td>
<td>No</td>
<td>Single</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>512MB</td>
<td>Yes</td>
<td>Single</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>1GB</td>
<td>No</td>
<td>Dual</td>
</tr>
<tr>
<td>18</td>
<td>72</td>
<td>1GB</td>
<td>Yes</td>
<td>Dual</td>
</tr>
</tbody>
</table>

The additional chip used by each group of eight chips provides parity checking, which is used by the ECC function on most server motherboards to correct single-bit errors.

A registered module contains 9 or 18 memory chips for ECC plus additional memory buffer chips. These chips are usually smaller in size and located near the center of the module, as shown previously in Figure 6.10.

Note

Some modules use 16-bit wide memory chips. In such cases, only four chips are needed for single-bank memory (five with parity/ECC support) and eight are needed for double-bank memory (10 with parity/ECC support). These memory chips use a design listed as capacity × 16, like this: 256Mb × 16.
You can also see this information if you look up the manufacturer and the memory type in a search engine. For example, a web search for *Micron Unbuffered DIMM Design* locates a table showing various DIMM organization, SDRAM density, and other information for listed modules.

As you can see, with a little detective work, you can determine the size, speed, and type of a memory module—even if the module isn’t marked, as long as the markings on the memory chips themselves are legible.

Tip

If you are unable to decipher a chip part number, you can use a program such as HWINFO or SiSoftware Sandra to identify your memory module, as well as many other facts about your computer, including chipset, processor, empty memory sockets, and much more. You can download shareware versions of HWINFO from www.hwinfo.com and SiSoftware Sandra from www.sisoftware.net.

Memory Banks

Memory chips (DIPs, SIMMs, SIPPs, and DIMMs) are organized in banks on motherboards and memory cards. You should know the memory bank layout and position on the motherboard and memory cards.

You need to know the bank layout when adding memory to the system. In addition, memory diagnostics report error locations by byte and bit addresses, and you must use these numbers to locate which bank in your system contains the problem.

The banks usually correspond to the data bus capacity of the system’s microprocessor. Table 6.18 shows the widths of individual banks based on the type of PC.

Table 6.18 Memory Bank Widths on Various Systems

<table>
<thead>
<tr>
<th>Processor</th>
<th>Data Bus</th>
<th>Memory Bank Width</th>
<th>Memory Bank Width (Parity/ECC)</th>
<th>30-pin SIMMs per Bank</th>
<th>72-pin SIMMs per Bank</th>
<th>DIMMs per Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>8088</td>
<td>8-bit</td>
<td>8 bits</td>
<td>9 bits</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8086</td>
<td>16-bit</td>
<td>16 bits</td>
<td>18 bits</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>286</td>
<td>16-bit</td>
<td>16 bits</td>
<td>18 bits</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>386SX, SL, SLC</td>
<td>16-bit</td>
<td>16 bits</td>
<td>18 bits</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>486SLC, SLC2</td>
<td>16-bit</td>
<td>16 bits</td>
<td>18 bits</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>386DX</td>
<td>32-bit</td>
<td>32 bits</td>
<td>36 bits</td>
<td>4</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>486SX, DX, DX2, DX4, 5x86</td>
<td>32-bit</td>
<td>32 bits</td>
<td>36 bits</td>
<td>4</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>x86 and x86-64 running single-channel mode</td>
<td>64-bit</td>
<td>64 bits</td>
<td>72 bits</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>x86 and x86-64 running dual-channel mode</td>
<td>64-bit</td>
<td>128 bits</td>
<td>144 bits</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>x86 and x86-64 running tri-channel mode</td>
<td>64-bit</td>
<td>192 bits</td>
<td>216 bits</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
</tbody>
</table>
DIMMs are ideal for Pentium (and higher) systems because the 64-bit width of the DIMM exactly matches the 64-bit width of the Pentium processor data bus. Therefore, each DIMM represents an individual bank, and these can be added or removed one at a time. Many recent systems have been designed to use matched pairs or triples of memory modules for faster performance. So-called “dual-channel” and “tri-channel” designs treat two or three matched modules as a single bank of memory.

The physical orientation and numbering of the SIMMs or DIMMs used on a motherboard are arbitrary and determined by the board’s designers, so documentation covering your system or card comes in handy. You can determine the layout of a motherboard or an adapter card through testing, but that takes time and might be difficult, particularly after you have a problem with a system.

Caution

If your system supports dual- or tri-channel memory, be sure you use the correct memory sockets to enable multichannel operation. Check the documentation to ensure that you use the correct sockets. Most multichannel systems will still run in single-channel mode if the memory is not installed in a way that permits full multichannel operation, but performance is lower than if the memory were installed properly. Some systems provide dual-channel support if an odd number of modules are installed, as long as the total capacity of two modules installed in one channel equals the size of the single module in the other channel and all modules are the same speed and latency. Again, check your documentation for details.

Memory Module Speed

When you replace a failed memory module or install a new module as an upgrade, you typically must install a module of the same type and speed as the others in the system. You can substitute a module with a different (faster) speed but only if the replacement module’s speed is equal to or faster than that of the other modules in the system.

Some people have had problems when “mixing” modules of different speeds. With the wide variety of motherboards, chipsets, and memory types, few ironclad rules exist. When in doubt as to which speed module to install in your system, consult the motherboard documentation for more information.

Substituting faster memory of the same type doesn’t result in improved performance if the system still operates the memory at the same speed. Systems that use DIMMs or RIMMs can read the speed and timing features of the module from a special SPD ROM installed on the module and then set chipset (memory controller) timing accordingly. In these systems, you might see an increase in performance by installing faster modules, to the limit of what the chipset will support.

To place more emphasis on timing and reliability, there are Intel and JEDEC standards governing memory types that require certain levels of performance. These standards certify that memory modules perform within Intel’s timing and performance guidelines.

The same common symptoms result when the system memory has failed or is simply not fast enough for the system’s timing. The usual symptoms are frequent parity check errors or a system that does not operate at all. The POST might report errors, too. If you’re unsure of which chips to buy for your system, contact the system manufacturer or a reputable chip supplier.

See “Parity Checking,” p. 415 (this chapter).

Parity and ECC

Part of the nature of memory is that it inevitably fails. These failures are usually classified as two basic types: hard fails and soft errors.
The best understood are hard fails, in which the chip is working and then, because of some flaw, physical damage, or other event, becomes damaged and experiences a permanent failure. Fixing this type of failure normally requires replacing some part of the memory hardware, such as the chip, SIMM, or DIMM. Hard error rates are known as HERs.

The other, more insidious type of failure is the soft error, which is a nonpermanent failure that might never recur or could occur only at infrequent intervals. Soft error rates are known as SERs.

More than 20 years ago, Intel made a discovery about soft errors that shook the memory industry. It found that alpha particles were causing an unacceptably high rate of soft errors or single event upsets (SEUs, as they are sometimes called) in the 16KB DRAMs that were available at the time. Because alpha particles are low-energy particles that can be stopped by something as thin and light as a sheet of paper, it became clear that for alpha particles to cause a DRAM soft error, they would have to be coming from within the semiconductor material. Testing showed trace elements of thorium and uranium in the plastic and ceramic chip packaging materials used at the time. This discovery forced all the memory manufacturers to evaluate their manufacturing processes to produce materials free from contamination.

Today, memory manufacturers have all but totally eliminated the alpha-particle source of soft errors and more recent discoveries prove that alpha particles are now only a small fraction of the cause of DRAM soft errors.

As it turns out, the biggest cause of soft errors today is cosmic rays. IBM researchers began investigating the potential of terrestrial cosmic rays in causing soft errors similar to alpha particles. The difference is that cosmic rays are very high-energy particles and can’t be stopped by sheets of paper or other more powerful types of shielding. The leader in this line of investigation was Dr. J.F. Ziegler of the IBM Watson Research Center in Yorktown Heights, New York. He has produced landmark research into understanding cosmic rays and their influence on soft errors in memory. One interesting set of experiments found that cosmic ray–induced soft errors were eliminated when the DRAMs were moved to an underground vault shielded by more than 50 feet of rock.

Cosmic ray–induced errors are even more of a problem in SRAMs than DRAMS because the amount of charge required to flip a bit in an SRAM cell is less than is required to flip a DRAM cell capacitor. Cosmic rays are also more of a problem for higher-density memory. As chip density increases, it becomes easier for a stray particle to flip a bit. It has been predicted by some that the soft error rate of a 64MB DRAM is double that of a 16MB chip, and a 256MB DRAM has a rate four times higher. As memory sizes continue to increase, it’s likely that soft error rates will also increase.

Unfortunately, the PC industry has largely failed to recognize this cause of memory errors. Electrostatic discharge, power surges, or unstable software can much more easily explain away the random and intermittent nature of a soft error, especially right after a new release of an operating system or major application.

Although cosmic rays and other radiation events are perhaps the biggest cause of soft errors, soft errors can also be caused by the following:

- **Power glitches or noise on the line**—This can be caused by a defective power supply in the system or by defective power at the outlet.
- **Incorrect type or speed rating**—The memory must be the correct type for the chipset and match the system access speed.
- **RF (radio frequency) interference**—Caused by radio transmitters in close proximity to the system, which can generate electrical signals in system wiring and circuits. Keep in mind that the increased use of wireless networks, keyboards, and mouse devices can lead to a greater risk of RF interference.
- **Static discharges**—These discharges cause momentary power spikes, which alter data.
- **Timing glitches**—Data doesn’t arrive at the proper place at the proper time, causing errors. Often caused by improper settings in the BIOS Setup, by memory that is rated slower than the system requires, or by overclocked processors and other system components.
- **Heat buildup**—High-speed memory modules run hotter than older modules. RDRAM RIMM modules were the first memory to include integrated heat spreaders, and many high-performance DDR and DDR2 memory modules now include heat spreaders to help fight heat buildup.

Most of these problems don’t cause chips to permanently fail (although bad power or static can damage chips permanently), but they can cause momentary problems with data.

How can you deal with these errors? The best way to deal with this problem is to increase the system’s fault tolerance. This means implementing ways of detecting and possibly correcting errors in PC systems. Three basic levels and techniques are used for fault tolerance in modern PCs:

- Nonparity
- Parity
- ECC

Nonparity systems have no fault tolerance at all. The only reason they are used is because they have the lowest inherent cost. No additional memory is necessary, as is the case with parity or ECC techniques. Because a parity-type data byte has 9 bits versus 8 for nonparity, memory cost is approximately 12.5% higher. Also, the nonparity memory controller is simplified because it does not need the logic gates to calculate parity or ECC check bits. Portable systems that place a premium on minimizing power might benefit from the reduction in memory power resulting from fewer DRAM chips. Finally, the memory system data bus is narrower, which reduces the amount of data buffers. The statistical probability of memory failures in a modern office desktop computer is now estimated at about one error every few months. Errors will be more or less frequent depending on how much memory you have.

This error rate might be tolerable for low-end systems that are not used for mission-critical applications. In this case, the extreme market sensitivity to price probably can’t justify the extra cost of parity or ECC memory, and such errors then must be tolerated.

Parity Checking

One standard IBM set for the industry is that the memory chips in a bank of nine each handle 1 bit of data: 8 bits per character plus 1 extra bit called the parity bit. The parity bit enables memory-control circuitry to keep tabs on the other 8 bits—a built-in cross-check for the integrity of each byte in the system.

Originally, all PC systems used parity-checked memory to ensure accuracy. Starting in 1994, most vendors began shipping systems without parity checking or any other means of detecting or correcting errors on the fly. These systems used cheaper nonparity memory modules, which saved about 10%–15% on memory costs for a system.

Parity memory results in increased initial system cost, primarily because of the additional memory bits involved. Parity can’t correct system errors, but because parity can detect errors, it can make the user aware of memory errors when they happen.

Since then, Intel and other chipset manufacturers have put support for ECC memory in many chipsets (especially so in their higher-end models). The low-end chipsets, however, typically lack support for either parity or ECC. If more reliability is important to you, make sure the systems you purchase have this ECC support.
How Parity Checking Works

IBM originally established the odd parity standard for error checking. The following explanation might help you understand what is meant by odd parity. As the 8 individual bits in a byte are stored in memory, a parity generator/checker, which is either part of the CPU or located in a special chip on the motherboard, evaluates the data bits by adding up the number of 1s in the byte. If an even number of 1s is found, the parity generator/checker creates a 1 and stores it as the ninth bit (parity bit) in the parity memory chip. That makes the sum for all 9 bits (including the parity bit) an odd number. If the original sum of the 8 data bits is an odd number, the parity bit created would be a 0, keeping the sum for all 9 bits an odd number. The basic rule is that the value of the parity bit is always chosen so that the sum of all 9 bits (8 data bits plus 1 parity bit) is stored as an odd number. If the system used even parity, the example would be the same except the parity bit would be created to ensure an even sum. It doesn't matter whether even or odd parity is used; the system uses one or the other, and it is completely transparent to the memory chips involved. Remember that the 8 data bits in a byte are numbered 0 1 2 3 4 5 6 7. The following examples might make it easier to understand:

<table>
<thead>
<tr>
<th>Data bit number:</th>
<th>0 1 2 3 4 5 6 7</th>
<th>Parity bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data bit value:</td>
<td>1 0 1 1 0 0 1 1</td>
<td>0</td>
</tr>
</tbody>
</table>

In this example, because the total number of data bits with a value of 1 is an odd number (5), the parity bit must have a value of 0 to ensure an odd sum for all 9 bits.

Here is another example:

<table>
<thead>
<tr>
<th>Data bit number:</th>
<th>0 1 2 3 4 5 6 7</th>
<th>Parity bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data bit value:</td>
<td>1 1 1 1 0 0 1 1</td>
<td>1</td>
</tr>
</tbody>
</table>

In this example, because the total number of data bits with a value of 1 is an even number (6), the parity bit must have a value of 1 to create an odd sum for all 9 bits.

When the system reads memory back from storage, it checks the parity information. If a (9-bit) byte has an even number of bits, that byte must have an error. The system can’t tell which bit has changed or whether only a single bit has changed. If 3 bits changed, for example, the byte still flags a parity-check error; if 2 bits changed, however, the bad byte could pass unnoticed. Because multiple bit errors (in a single byte) are rare, this scheme gives you a reasonable and inexpensive ongoing indication that memory is good or bad.

The following examples show parity-check messages for three types of older systems:

For the IBM PC: PARITY CHECK x
For the IBM XT: PARITY CHECK x yyyyy (z)
For the IBM AT and late model XT: PARITY CHECK x yyyyy
where x is 1 or 2:

1 = Error occurred on the motherboard.
2 = Error occurred in an expansion slot.

In this example, yyyyy represents a number from 00000 through FFFFF that indicates, in hexadecimal notation, the byte in which the error has occurred.

Also, (z) is (S) or (E):

(S) = Parity error occurred in the system unit.
(E) = Parity error occurred in an optional expansion chassis.
Note

An expansion chassis was an option IBM sold for the original PC and XT systems to add more expansion slots.

When a parity-check error is detected, the motherboard parity-checking circuits generate a nonmaskable interrupt (NMI), which halts processing and diverts the system’s attention to the error. The NMI causes a routine in the ROM to be executed. On some older IBM systems, the ROM parity-check routine halts the CPU. In such a case, the system locks up, and you must perform a hardware reset or a power-off/power-on cycle to restart the system. Unfortunately, all unsaved work is lost in the process.

Most systems do not halt the CPU when a parity error is detected; instead, they offer you the choice of rebooting the system or continuing as though nothing happened. Additionally, these systems might display the parity error message in a different format from IBM, although the information presented is basically the same. For example, most systems with a Phoenix BIOS display one of these messages:

Memory parity interrupt at xxxx:xxxx
Type (S)hut off NMI, Type (R)eboot, other keys to continue

or

I/O card parity interrupt at xxxx:xxxx
Type (S)hut off NMI, Type (R)eboot, other keys to continue

The first of these two messages indicates a motherboard parity error (Parity Check 1), and the second indicates an expansion-slot parity error (Parity Check 2). Notice that the address given in the form xxxx:xxxx for the memory error is in a segment:offset form rather than a straight linear address, such as with IBM’s error messages. The segment:offset address form still gives you the location of the error to a resolution of a single byte.

You have three ways to proceed after viewing this error message:

- You can press S, which shuts off parity checking and resumes system operation at the point where the parity check first occurred.
- You can press R to force the system to reboot, losing any unsaved work.
- You can press any other key to cause the system to resume operation with parity checking still enabled.

If the problem occurs, it is likely to cause another parity-check interruption. It’s usually prudent to press S, which disables the parity checking so you can then save your work. In this case, it’s best to save your work to a floppy disk to prevent the possible corruption of the hard disk. You should also avoid overwriting any previous (still good) versions of whatever file you are saving because you could be saving a bad file caused by the memory corruption. Because parity checking is now disabled, your save operations will not be interrupted. Then, you should power the system off, restart it, and run whatever memory diagnostics software you have to try to track down the error. In some cases, the POST finds the error on the next restart, but you usually need to run a more sophisticated diagnostics program—perhaps in a continuous mode—to locate the error.

Systems with an AMI BIOS display the parity error messages in one of the following forms:

ON BOARD PARITY ERROR ADDR (HEX) = (xxxxx)

or

OFF BOARD PARITY ERROR ADDR (HEX) = (xxxxx)
These messages indicate that an error in memory has occurred during the POST, and the failure is located at the address indicated. The first one indicates that the error occurred on the motherboard, and the second message indicates an error in an expansion slot adapter card. The AMI BIOS can also display memory errors in one of the following manners:

Memory Parity Error at xxxxx

or

I/O Card Parity Error at xxxxx

These messages indicate that an error in memory has occurred at the indicated address during normal operation. The first one indicates a motherboard memory error, and the second indicates an expansion slot adapter memory error.

Although many systems enable you to continue processing after a parity error and even allow disabling further parity checking, continuing to use your system after a parity error is detected can be dangerous. The idea behind letting you continue using either method is to give you time to save any unsaved work before you diagnose and service the computer, but be careful how you do this.

Note that these messages can vary depending not only on the ROM BIOS but also on your operating system. Protected mode operating systems, such as most versions of Windows, trap these errors and run their own handler program that displays a message different from what the ROM would have displayed. The message might be associated with a blue screen or might be a trap error, but it usually indicates that it is memory or parity related.

Caution

When you are notified of a memory parity error, remember the parity check is telling you that memory has been corrupted. Do you want to save potentially corrupted data over the good file from the last time you saved? Definitely not! Be sure you save your work with a different filename. In addition, after a parity error, save only to a floppy disk if possible and avoid writing to the hard disk; there is a slight chance that the hard drive could become corrupt if you save the contents of corrupted memory.

After saving your work, determine the cause of the parity error and repair the system. You might be tempted to use an option to shut off further parity checking and simply continue using the system as though nothing were wrong. Doing so is like unscrewing the oil pressure warning indicator bulb on a car with an oil leak so the oil pressure light won’t bother you anymore!

Error-Correcting Code (ECC)

ECC goes a big step beyond simple parity-error detection. Instead of just detecting an error, ECC allows a single bit error to be corrected, which means the system can continue without interruption and without corrupting data. ECC, as implemented in most PCs, can only detect, not correct, double-bit errors. Because studies have indicated that approximately 98% of memory errors are the single-bit variety, the most commonly used type of ECC is one in which the attendant memory controller detects and corrects single-bit errors in an accessed data word (double-bit errors can be detected but not corrected). This type of ECC is known as *single-bit error-correction double-bit error detection (SEC-DED)* and requires an additional 7 check bits over 32 bits in a 4-byte system and an additional 8 check bits over 64 bits in an 8-byte system. If the system uses SIMMs, two 36-bit (parity) SIMMs are added for each bank (for a total of 72 bits), and ECC is done at the bank level. If the system uses DIMMs, a single parity/ECC 72-bit DIMM is used as a bank and provides the additional bits. RIMMs are installed in singles or pairs, depending on the chipset and motherboard. They must be 18-bit versions if parity/ECC is desired.
ECC entails the memory controller calculating the check bits on a memory-write operation, performing a compare between the read and calculated check bits on a read operation, and, if necessary, correcting bad bits. The additional ECC logic in the memory controller is not very significant in this age of inexpensive, high-performance VLSI logic, but ECC actually affects memory performance on writes. This is because the operation must be timed to wait for the calculation of check bits and, when the system waits for corrected data, reads. On a partial-word write, the entire word must first be read, the affected byte(s) rewritten, and then new check bits calculated. This turns partial-word write operations into slower read-modify writes. Fortunately, this performance hit is very small, on the order of a few percent at maximum, so the tradeoff for increased reliability is a good one.

Most memory errors are of a single-bit nature, which ECC can correct. Incorporating this fault-tolerant technique provides high system reliability and attendant availability. An ECC-based system is a good choice for servers, workstations, or mission-critical applications in which the cost of a potential memory error outweighs the additional memory and system cost to correct it, along with ensuring that it does not detract from system reliability. If you value your data and use your system for important (to you) tasks, you’ll want ECC memory.

RAM Upgrades

Adding memory to a system is one of the most useful upgrades you can perform and also one of the least expensive—especially when you consider the increased performance of Windows and Linux when you give them access to more memory. In some cases, doubling the memory can practically double the speed of a computer.

The following sections discuss adding memory, including selecting memory chips, installing memory chips, and testing the installation.

Upgrade Options and Strategies

Adding memory can be an inexpensive solution; the cost of mainstream memory is extremely low, and adding more memory can give your computer’s performance a big boost.

How do you add memory to your PC? You have two options, listed in order of convenience and cost:

- Adding memory in vacant slots on your motherboard
- Replacing your current motherboard’s memory with higher-capacity memory

If you decide to upgrade to a more powerful computer system or motherboard, you usually can’t salvage the memory from your previous system. Most of the time it is best to plan on equipping a new board with the optimum type of memory that it supports.

Be sure to carefully weigh your future needs for computing speed and a multitasking operating system against the amount of money you spend to upgrade current equipment.

To determine at what point you should add memory, you can use the Performance Monitor (Perfmon.msc) built into Windows. You can launch it from the Start; Run dialog box or from a command prompt. To check memory usage, select Memory as the Performance object and enable the following counters:

- **Pages/Sec**—This counter measures the number of times per second that the system uses virtual (swapfile) memory rather than physical memory. A value above 20 indicates a potential problem. Check the virtual memory settings; if the counter remains above 20, and it is not during periods of heavy disk or file access, then you should consider installing more memory.
■ **Committed Bytes and Available Bytes**—Committed Bytes tracks virtual memory in use; Available Bytes tracks physical memory available. Add more memory if you run short of available bytes.

■ **Cache Bytes**—Measures the amount of RAM used for file system cache. Add more RAM if this amount drops below 4MB.

Tip
It is normal to see very high Pages/sec counts during periods of heavy disk or file access, such as when running a malware scan, indexing operation, defragmentation, etc. If the Available Bytes value doesn’t decrease as the Pages/sec value increases, then the high Pages/sec numbers are probably due to application-generated disk access, and is not indicative of any sort of insufficient memory problem or even a bottleneck in memory.

Before you add RAM to a system (or replace defective RAM chips), you must determine the memory modules required for your system. Your system documentation has this information.

If you need to replace a defective memory module or add more memory to your system, there are several ways to determine the correct module for your system:

■ **Inspect the modules installed in your system.** Each module has markings that indicate its capacity and speed. RAM capacity and speed were discussed in detail earlier in this chapter. You can write down the markings on the memory module and use them to determine the type of memory you need. Check with a local store or an online memory vendor for help.

■ **Look up your system using the online memory-configuration utility provided by your preferred memory vendor.** Originally, these configuration utilities were primarily for users of name-brand systems. However, most vendors have now added major motherboard brands and models to their databases. Therefore, if you know your system or motherboard brand and model, you can find the memory that is recommended.

■ **Download and run analysis software provided by the memory module maker or from a third party.** SiSoftware Sandra and similar programs use the SPD chip on each module to determine this information.

■ **Consult your system documentation.** I list this option last for a reason. If you have installed BIOS upgrades, you might be able to use larger and faster memory than your documentation lists as supported by your system. You should check the latest tech notes and documentation available online for your system and check the BIOS version installed in your system to determine which memory-related features it has. A BIOS upgrade might enable your system to use faster memory.

Adding the wrong modules to a system can make it as unreliable as leaving a defective module installed and trying to use the system in that condition.

Note
Before upgrading an older Pentium (P5 class) system beyond 64MB of RAM, be sure your chipset supports caching more than 64MB. Adding RAM beyond the amount supported by your L2 cache controller slows performance rather than increases it. Pentium II and later processors, including the AMD Athlon, Duron, and Sempron families, have the L2 cache controller integrated in the processor (not the chipset), which supports caching up to 4GB and beyond on most newer models.
Purchasing Memory

When purchasing memory, there are some issues you need to consider. Some are related to the manufacturing and distribution of memory, whereas others depend on the type of memory you are purchasing. This section covers some of the issues you should consider when purchasing memory.

Suppliers

Many companies sell memory, but only a few companies actually make memory. Additionally, only a few companies make memory chips, but many more companies make memory modules such as SIMMs, DIMMs, and RIMMs. Most of the companies that make the actual RAM chips also make modules containing their own chips. Other companies, however, strictly make modules; these companies purchase memory chips from several chip makers and then produce modules with these chips. Finally, some companies don’t make either the chips or modules. Instead, they purchase modules made by other companies and relabel them.

I refer to memory modules made by the chip manufacturers as first-party modules, whereas those made by module (but not chip) manufacturers I call second-party modules. Finally, those that are simply relabeled first- or second-party modules under a different name are called third-party modules. I always prefer to purchase first- or second-party modules if I can because they are better documented. In essence, they have a better pedigree and their quality is generally more assured. Not to mention that purchasing from the first or second party eliminates one or more middlemen in the distribution process as well.

First-party manufacturers (where the same company makes the chips and the modules) include Micron (www.crucial.com), Infineon (formerly Siemens), Samsung, Mitsubishi, Toshiba, NEC, and others. Second-party companies that make the modules (but not the chips) include Kingston, Viking, PNY, Simple Tech, Smart, Mushkin, and OCZ Technologies. At the third-party level you are not purchasing from a manufacturer but from a reseller or remarketer instead.

Most of the large manufacturers don’t sell small quantities of memory to individuals, but some have set up factory outlet stores where individuals can purchase as little as a single module. One of the largest memory manufacturers in the world, Micron, sells direct to the consumer at www.crucial.com. Because you are buying direct, the pricing at these outlets is often competitive with second- and third-party suppliers.

Considerations in Purchasing DIMMs

When you are purchasing DIMMs, here are the main things to consider:

- Do you need SDR, DDR, DDR2, or DDR3 versions?
- Do you need ECC or non-ECC?
- Do you need standard (unbuffered) or registered versions?
- What speed grade do you need?
- Do you need a specific column address strobe (CAS) latency?

Currently, DIMMs come in SDR (SDRAM), DDR, DDR2 and DDR3 versions. They are not interchangeable because they use completely different signaling and have different notches to prevent a mismatch. High-reliability systems such as servers can use ECC versions, although most desktop systems use the less-expensive non-ECC types. Most systems use standard unbuffered DIMMs, but file server
or workstation motherboards designed to support very large amounts of memory might require regis-
tered DIMMs (which also include ECC support). Registered DIMMs contain their own memory
registers, enabling the module to hold more memory than a standard DIMM. DIMMs come in a
variety of speeds, with the rule that you can always substitute a faster one for a slower one, but not
vice versa.

Another speed-related issue is the column address strobe (CAS) latency. Sometimes this specification is
abbreviated CAS or CL and is expressed in a number of cycles, with lower numbers indicating higher
speeds (fewer cycles). The lower CAS latency shaves a cycle off a burst mode read, which marginally
improves memory performance. Single data rate DIMMs are available in CL3 or CL2 versions. DDR
DIMMs are available in CL2.5 or CL2 versions. DDR2 DIMMs are available in CL 3, 4 or 5. DDR3
DIMMs are available in CL 7, 8, and 9. With all memory types, the lowest CL number is the fastest
(and usually the most expensive) memory type. You can mix DIMMs with different CAS latency
ratings, but the system usually defaults to cycling at the slower speeds of the lowest common
denominator.

Considerations in Purchasing Obsolete Memory

Many people are surprised to find that obsolete memory types cost much more than that used by cur-
rent systems. This is because of simple supply and demand, what is least popular generally costs the
most. This can make adding memory to older systems cost prohibitive.

Most Pentium systems after 1995 used EDO SIMMs that were non-ECC and rated for 60ns access time.
If your system is older than that, you might need FPM memory instead of EDO. The FPM and EDO
types are interchangeable in many systems, but some older systems do not accept the EDO type. Some
Pentium 4 systems use RIMMs, which are available in 184-pin and 232-pin versions. Although they
appear to be the same size, they are not interchangeable. If the system supports ECC, you might need
(or want) ECC versions. You can mix ECC and non-ECC modules, but in that case the system defaults
to non-ECC mode.

Tip

Instead of buying “new” obsolete memory for older systems, check with computer repair shops, Craigslist, or other users
who might have a collection of old parts.

High-reliability systems might want or need ECC versions, which have extra ECC bits. As with other
memory types, you can mix ECC and non-ECC types, but systems can’t use the ECC capability.

Replacing Modules with Higher-Capacity Versions

If all the memory module slots on your motherboard are occupied, your best option is to remove an
existing bank of memory and replace it with higher-capacity modules.

However, just because higher-capacity modules are available to plug into your motherboard, don’t
automatically assume the higher-capacity memory will work. Your system’s chipset, BIOS, and OS set
limits on the capacity of the memory you can use. Check your system or motherboard documenta-
tion to see which size modules work with it before purchasing the new RAM. You should make sure
you have the latest BIOS for your motherboard when installing new memory.

If your system supports dual- or triple-channel memory, you must use modules in matched pairs or
triples (depending on which type your system supports) and install them in the correct location on
the motherboard. You should consult your motherboard manual for details.

Installing Memory Modules

When you install or remove memory, you are most likely to encounter the following problems:

- Electrostatic discharge
- Improperly seated modules
- Incorrect memory configuration settings in the BIOS Setup

To prevent electrostatic discharge (ESD) when you install sensitive memory chips or boards, you shouldn't wear synthetic-fiber clothing or leather-soled shoes because these promote the generation of static charges. Remove any static charge you are carrying by touching the system chassis before you begin, or better yet, wear a good commercial grounding strap on your wrist. You can order one from any electronics parts store. A grounding strap consists of a conductive wristband grounded at the other end through a 1-meg ohm resistor by a wire clipped to the system chassis. Be sure the system you are working on is unplugged.

Caution

Be sure to use a properly designed commercial grounding strap; do not make one yourself. Commercial units have a 1-meg ohm resistor that serves as protection if you accidentally touch live power. The resistor ensures that you do not become the path of least resistance to the ground and therefore become electrocuted. An improperly designed strap can cause the power to conduct through you to the ground, possibly killing you.

Follow this procedure to install memory on a typical desktop PC:

1. Shut down the system and unplug it. As an alternative to unplugging it, you can turn off the power supply using the on/off switch on the rear of some power supplies. Wait about 10 seconds for any remaining current to drain from the motherboard.
2. Open the system. See the system or case instructions for details.
3. Connect a static guard wrist strap to your wrist and then to a metal portion of the system chassis, such as the frame. Make sure the metal plate on the inside of the wrist strap is tight against the skin of your wrist.
4. Some motherboards feature an LED that glows as long as the motherboard is receiving power. Wait until the LED dims before removing or installing memory.
5. Move obstructions inside the case, such as cables or wires, out of the way of the memory modules and empty sockets. If you must remove a cable or wire, note its location and orientation so you can replace it later.
6. If you need to remove an existing module, flip down the ejector tab at each end of the module and lift the module straight up out of the socket. Note the keying on the module.
7. Note the specific locations needed if you are inserting modules to operate in dual-channel mode. The sockets used for dual-channel memory might use a different-colored plastic to distinguish them from other sockets, but ultimately you should consult the documentation for your motherboard or system to determine the proper orientation.
8. To insert a module into a socket, ensure that the ejector tabs are flipped down on the socket you plan to use. DIMMs are keyed by notches along the bottom connector edges that are offset from the center so they can be inserted in only one direction, as shown in Figure 6.16.
Figure 6.16 DIMM keys match the protrusions in the DIMM sockets. SDR/DDR/DDR2/DDR3 DIMM keys are similar but not exactly the same.

9. Push down on the module until the ejector tabs lock into place in the notch on the side of the module. It’s important that you not force the module into the socket. If the module does not slip easily into the slot and then snap into place, it is probably not oriented or aligned correctly. Forcing the module could break it or the socket. If installing RIMMs, you need to fill any empty RIMM sockets with continuity modules. Refer to Figure 6.14 for details.

10. Replace any cables or wires you disconnected.

11. Close the system, reconnect the power cable, and turn on the PC.

The SIMMs used in older systems are oriented by a notch on one side of the module that is not present on the other side, as shown in Figure 6.17. The socket has a protrusion that must fit into this notched area on one side of the module. This protrusion makes installing a SIMM backward impossible unless you break the connector or the module. Figure 6.18 details the notch and locking clip.

After installing the memory and putting the system back together, you might have to run the BIOS Setup and resave with the new amount of memory being reported. Most newer systems automatically detect the new amount of memory and reconfigure the BIOS Setup settings for you. Most newer systems also don’t require setting any jumpers or switches on the motherboard to configure them for your new memory.

After configuring your system to work properly with the additional memory, you might want to run a memory-diagnostics program to ensure that the new memory works properly.
Troubleshooting Memory

Figure 6.17 The notch on this SIMM is shown on the left side. Insert the SIMM at a 45° angle and then tilt it forward until the locking clips snap into place.

Figure 6.18 This figure shows the SIMM inserted in the socket with the notch aligned, the locking clip locked, and the hole in the SIMM aligned with the tab in the socket.

Troubleshooting Memory

Memory problems can be difficult to troubleshoot. For one thing, computer memory is still mysterious to people because it is a kind of “virtual” thing that can be hard to grasp. The other difficulty is that memory problems can be intermittent and often look like problems with other areas of the system, even software. This section shows simple troubleshooting steps you can perform if you suspect you are having a memory problem.
To troubleshoot memory, you first need some memory-diagnostics testing programs. You already have several and might not know it. Every motherboard BIOS has a memory diagnostic in the POST that runs when you first turn on the system. In most cases, you also receive a memory diagnostic on a utility disk that came with your system. Many commercial diagnostics programs are on the market, and almost all of them include memory tests.

When the POST runs, it not only tests memory, but also counts it. The count is compared to the amount counted the last time BIOS Setup was run; if it is different, an error message is issued. As the POST runs, it writes a pattern of data to all the memory locations in the system and reads that pattern back to verify that the memory works. If any failure is detected, you see or hear a message. Audio messages (beeping) are used for critical or “fatal” errors that occur in areas important for the system’s operation. If the system can access enough memory to at least allow video to function, you see error messages instead of hearing beep codes.

See the disc accompanying this book for detailed listings of the BIOS beep and other error codes, which are specific to the type of BIOS you have. These BIOS codes are found in the Technical Reference section of the disc in printable PDF format for your convenience. For example, most Intel motherboards use the Phoenix BIOS. Several beep codes are used in that BIOS to indicate fatal memory errors.

If your system makes it through the POST with no memory error indications, there might not be a hardware memory problem, or the POST might not be able to detect the problem. Intermittent memory errors are often not detected during the POST, and other subtle hardware defects can be hard for the POST to catch. The POST is designed to run quickly, so the testing is not nearly as thorough as it could be. That is why you often have to boot from a standalone diagnostic disk and run a true hardware diagnostic to do more extensive memory testing. These types of tests can be run continuously and be left running for days if necessary to hunt down an elusive intermittent defect.

Fortunately several excellent memory test programs are available for free download. Here are some I recommend:

- **Microsoft Windows Memory Diagnostic**—http://oca.microsoft.com/en/windiag.asp
- **Memtest86**—www.memtest86.com

Not only are these free, but they are available in a bootable CD format, which means you don’t have to install any software on the system you are testing. The bootable format is actually required in a way since Windows and other OSs prevent the direct access to memory and other hardware required for testing. These programs use algorithms that write different types of patterns to all of the memory in the system, testing every bit to ensure it reads and writes properly. They also turn off the processor cache in order to ensure direct testing of the modules and not the cache. Some, such as Windows Memory Diagnostic, will even indicate the module that is failing should an error be encountered. Note that a version of the Windows Memory Diagnostic is also included with Windows 7/Vista. It can be found as part of the Administrative tools, as well as on the bootable install DVDs under the Repair option.

One problem with software based memory diagnostics is that they do only pass/fail type testing; that is, all they can do is write patterns to memory and read them back. They can’t determine how close the memory is to failing—only whether it worked. For the highest level of testing, the best thing to have is a dedicated memory test machine, usually called a *module tester*. These devices enable you to insert a module and test it thoroughly at a variety of speeds, voltages, and timings to let you know for certain whether the memory is good or bad. Versions of these testers are available to handle all types of memory modules. I have defective modules, for example, that work in some systems (slower ones) but not others. What I mean is that the same memory test program fails the module in one machine
but passes it in another. In the module tester, it is always identified as bad right down to the individual bit, and it even tells me the actual speed of the device, not just its rating. Companies that offer memory module testers include Tanisys (www.tanisys.com), CST (www.simmtester.com), and Innoventions (www.memorytest.com). They can be expensive, but for a high volume system builder or repair shop, using one of these module testers can save time and money in the long run.

After your operating system is running, memory errors can still occur, typically identified by error messages you might receive. Here are the most common:

- **Parity errors**—The parity-checking circuitry on the motherboard has detected a change in memory since the data was originally stored. (See the “How Parity Checking Works” section earlier in this chapter.)

- **General or global protection faults**—A general-purpose error indicating that a program has been corrupted in memory, usually resulting in immediate termination of the application. This can also be caused by buggy or faulty programs.

- **Fatal exception errors**—Error codes returned by a program when an illegal instruction has been encountered, invalid data or code has been accessed, or the privilege level of an operation is invalid.

- **Divide error**—A general-purpose error indicating that a division by 0 was attempted or the result of an operation does not fit in the destination register.

If you are encountering these errors, they could be caused by defective or improperly configured memory, but they can also be caused by software bugs (especially drivers), bad power supplies, static discharges, close proximity radio transmitters, timing problems, and more.

If you suspect the problems are caused by memory, there are ways to test the memory to determine whether that is the problem. Most of this testing involves running one or more memory test programs.

Another problem with software based diagnostics is running memory tests with the system caches enabled. This effectively invalidates memory testing because most systems have what is called a write-back cache. This means that data written to main memory is first written to the cache. Because a memory test program first writes data and then immediately reads it back, the data is read back from the cache, not the main memory. It makes the memory test program run very quickly, but all you tested was the cache. The bottom line is that if you test memory with the cache enabled, you aren’t really writing to the SIMM/DIMMs, but only to the cache. Before you run any memory test programs, be sure your processor/memory caches are disabled. Many older systems have options in the BIOS Setup to turn off the caches. Current software based memory test software such as the Windows Memory Diagnostic and Memtest86 automatically turn off the caches on newer systems.

The following steps enable you to effectively test and troubleshoot your system RAM. Figure 6.19 provides a boiled-down procedure to help you step through the process quickly.

First, let’s cover the memory-testing and troubleshooting procedures.

1. Power up the system and observe the POST. If the POST completes with no errors, basic memory functionality has been tested. If errors are encountered, go to the defect isolation procedures.

2. Restart the system and then enter your BIOS (or CMOS) Setup. In most systems, this is done by pressing the Del or F2 key during the POST but before the boot process begins (see your system or motherboard documentation for details). Once in BIOS Setup, verify that the memory count
is equal to the amount that has been installed. If the count does not match what has been installed, go to the defect isolation procedures.

3. Find the BIOS Setup options for cache and then set all cache options to disabled. Figure 6.20 shows a typical Advanced BIOS Features menu with the cache options highlighted. Save the settings and reboot to a bootable floppy or optical disc containing the memory diagnostics program.

![Flowchart](Image)

Figure 6.19 Testing and troubleshooting memory.
Follow the instructions that came with your diagnostic program to have it test the system base and extended memory. Most programs have a mode that enables them to loop the test—that is, to run it continuously, which is great for finding intermittent problems. If the program encounters a memory error, proceed to the defect isolation procedures.

If no errors are encountered in the POST or in the more comprehensive memory diagnostic, your memory has tested okay in hardware. Be sure at this point to reboot the system, enter the BIOS Setup, and reenable the cache. The system will run very slowly until the cache is turned back on.

If you are having memory problems yet the memory still tests okay, you might have a problem undetectable by simple pass/fail testing, or your problems could be caused by software or one of many other defects or problems in your system. You might want to bring the memory to a module tester for a more accurate analysis. Some larger PC repair shops have such a tester. I would also check the software (especially drivers, which might need updating), power supply, and system environment for problems such as static, radio transmitters, and so forth.

Memory Defect Isolation Procedures

To use these steps, I am assuming you have identified an actual memory problem that is being reported by the POST or disk-based memory diagnostics. If this is the case, see the following steps and Figure 6.21 for the steps to identify or isolate which module is causing the problem.
Figure 6.21 Follow these steps if you are still encountering memory errors after completing the steps in Figure 6.19.

1. Restart the system and enter the BIOS Setup. Under a menu usually called Advanced or Chipset Setup, select memory timing parameters, and set all to BIOS defaults. Save settings and reboot. Retest.

2. Save the settings, reboot, and retest using the testing and troubleshooting procedures listed earlier. If the problem has been solved, improper BIOS settings were the problem. If the problem remains, you likely do have defective memory, so continue to the next step.

3. Open the system for physical access to the modules on the motherboard. Identify the bank arrangement in the system. Using the manual or the legend silk-screened on the motherboard, identify which modules correspond to which banks. Remember that if you are testing a multi-channel system, you must be sure you remove all of the modules in the same channel.

If problem was solved, the improper BIOS settings were the culprit.

If problem is solved with all but bank one removed, the problem could be in one of the modules you removed. Add one at a time and retest. When problem appears, replace module.

If problem does not recur after removing/replacing modules, could be that contacts need to be cleaned.

Problem not solved

Problem solved

Problem solved

Problem solved

Problem solved

Problem not solved

Problem solved

Problem solved

Problem solved
4. Remove all the memory except the first bank and then retest using the troubleshooting and testing procedures listed earlier (see Figure 6.22). If the problem remains with all but the first bank removed, the problem has been isolated to the first bank, which must be replaced.

Change this setting to SPD to revert to the module's default memory timings.

5. Replace the memory in the first bank (preferably with known good spare modules, but you can also swap in others that you have removed) and then retest. If the problem still remains after testing all the memory banks (and finding them all to be working properly), it is likely the motherboard itself is bad (probably one of the memory sockets). Replace the motherboard and retest.

6. At this point, the first (or previous) bank has tested good, so the problem must be in the remaining modules that have been temporarily removed. Install the next bank of memory and retest. If the problem resurfaces now, the memory in that bank is defective. Continue testing each bank until you find the defective module.

7. Repeat the preceding step until all remaining banks of memory are installed and have been tested. If the problem has not resurfaced after you have removed and reinstalled all the memory, the problem was likely intermittent or caused by poor conduction on the memory contacts. Often simply removing and replacing memory can resolve problems because of the self-cleaning action between the module and the socket during removal and reinstallation.
The System Logical Memory Layout

The original PC had a total of 1MB of addressable memory, and the top 384KB of that was reserved for use by the system. Placing this reserved space at the top (between 640KB and 1,024KB, instead of at the bottom, between 0KB and 640KB) led to what is often called the \textit{conventional memory barrier}. The constant pressures on system and peripheral manufacturers to maintain compatibility by never breaking from the original memory scheme of the first PC has resulted in a system memory structure that is (to put it kindly) a mess. Almost two decades after the first PC was introduced, even the newest systems are limited in many important ways by the memory map of the first PCs.

The original PC used an Intel 8088 processor that could run only 16-bit instructions or code, which ran in what was called the \textit{real mode} of the processor. These early processors had only enough address lines to access up to 1MB of memory, and the last 384KB of that was reserved for use by the video card as video RAM, other adapters (for on-card ROM BIOS or RAM buffers), and finally the motherboard ROM BIOS.

The 286 processor brought more address lines, enough to allow up to 16MB of RAM to be used, and a new mode called protected mode that you had to be in to use it. One area of confusion was that RAM was now noncontiguous; that is, the operating system could use the first 640KB and the last 15MB, but not the 384KB of system reserved area that sat in between.

When Intel released the first 32-bit processor in 1985 (the 386DX), the memory architecture of the system changed dramatically. There were now enough address lines for the processor to use 4GB of memory, but this was accessible only in 32-bit protected mode, in which only 32-bit instructions or code could run. Unfortunately, it took 10 years for the industry to transition from 16-bit to 32-bit operating systems and applications. From a software instruction perspective, all the 32-bit processors since the 386 are really just faster versions of the same.

When AMD released the first x86-64 processor in 2003 (Intel followed suit in 2004), the 64-bit era was born. In addition to 16-bit and 32-bit modes, these chips have a 64-bit mode as well. 64-bit processors have three distinctly different modes, with different memory architectures in each. For backward compatibility, 64-bit processors can run in 64-bit, 32-bit, or 16-bit modes, and 32-bit processors can run in 32-bit or 16-bit modes, each with different memory limitations. For example, a 64-bit processor running in 32-bit mode can only address 4GB of RAM, and a 64-bit or 32-bit processor running in 16-bit mode can only address 1MB of RAM. All Intel-compatible PC processors begin operation in 16-bit real mode when they are powered on. When a 32-bit or 64-bit operating system loads, it is that operating system code that instructs the processor to switch into 32-bit or 64-bit protected mode.

When an operating system such as Windows is loaded, the processor is switched into 32-bit protected mode early in the loading sequence. Then, 32-bit drivers for all the hardware can be loaded, and then the rest of the operating system can load. In 32-bit protected mode, the operating systems and applications can access all the memory in the system up to 4GB. Similarly, on a 64-bit operating system, the system switches into 64-bit protected mode early in the boot process and loads 64-bit drivers, followed by the remainder of the operating system.

The 32-bit editions of Windows support 4GB of physical memory (RAM). What many don’t realize is that the PC system hardware uses some or all of the fourth gigabyte for the BIOS, motherboard resources, memory mapped I/O, PCI configuration space, device memory (graphics aperture), VGA memory, and so on. This means that if you install 4GB (or more) RAM, none of it past 4GB will be seen at all, and most or all of the fourth gigabyte (that is, the RAM between 3GB and 4GB) will be disabled because it is already occupied by other system hardware. This is called the \textit{3GB limit}, which is analogous to the 640K memory limit we had on 16-bit systems in the 1980s. The 16-bit addressing supported 1MB, but the upper 384K was already in use by the system hardware (BIOS, video, adapter ROM, and so on).
Figure 6.23 shows the memory map for a modern system using an Intel G45 chipset, which supports a maximum of 16GB of RAM. For a 32-bit OS, the line labeled “Top of usable DRAM (32-bit OS)” is at 4,096MB. Note that the PCI memory range, FLASH, APIC (Advanced Programmable Interrupt Controller), and Reserved areas take up a total of 770MB of the memory below 4GB. You can also see the 384K (0.375MB) of memory below 1MB that is used by the system as well. This means that if you are running a 32-bit OS, even if you have 4GB of RAM installed, the amount usable by the OS would be 4,096MB – 770MB – 0.375MB, which is 3,325.625MB (or about 3.24GB, rounded down).

Can any of that unused memory between 3GB and 4GB be reclaimed? For those running a 32-bit OS, the answer is no. However, if you are running a 64-bit OS on a system that supports memory remapping (primarily a function of the motherboard chipset and BIOS), then the answer is yes. Most newer motherboard chipsets have a feature that can remap the otherwise disabled RAM in the fourth GB to the fifth (or higher) GB, where it will be both visible to and usable by a 64-bit OS. Note, however, that if the motherboard doesn’t support remapping, then even when a 64-bit OS is being run, the memory will be lost.
Note that the 3GB limit is not as strictly defined as it was with the 640K limit. This means that if you do install 4GB, you might get to use as much as 3.5GB of it, or possibly as little as 2.5GB or less. It depends largely on the types of buses in the system as well as the type and number of video cards installed. With a single low-end video card, you may have access to 3.5GiB. However, on a newer system with two or more PCIe x16 slots, and especially with two or more high-end PCI Express video cards installed, you may drop the usable limit to something close to 2GiB.

For running 32-bit editions of Windows, I used to recommend installing a maximum of 3GB RAM, because most if not all of the fourth GB is unusable. However, on systems that support dual-channel memory, it is often just cheaper to install two 2GB modules to get 4GB than it is to install two 1GB modules and two 512MB in order to get 3GB. On desktop systems that support dual-channel memory, you would not want to install three 1GB modules, because in that case not all the memory would run in dual-channel mode.
Index

Numbers
-5V power sources, 915-916
-12V power sources, 915-916
0.85" drives, 518
1" hard drives, 518
1st ATAPI CD-ROM Drive setting (Boot menu), 363
1st Boot Device setting (Boot menu), 363
1st Hard Disk Drive setting (Boot menu), 363
1st Removable Device setting (Boot menu), 363
1.2MB 5 1/4" floppy drives, 571
1.44MB 3 1/2" floppy drives, 570-571
1.8" hard drives, 517
2nd Boot Device setting (Boot menu), 363
2.1GB barrier (CHS), 477
2 1/2" ATA drive cables, 1059
2 1/2" hard drives, 517
2.88MB 3 1/2" floppy drives, 571
3D graphics accelerators, 699
3D chipsets, 708
alpha blending, 702
animation, 701
anisotropic filtering, 703
antialiasing, 701, 703
APIs (application programming interfaces), 704
DirectX, 705
OpenGL, 705
bilinear filtering, 702
deep cueing, 701
displacement mapping, 702
dual-GPU scene rendering
ATI CrossFire/CrossFire X, 707-708
NVIDIA SLI, 706-707
environment-based bump mapping, 702
flat shading, 699
floating-point calculations, 703
fogging, 701
Gouraud shading, 699, 702
hardware/software acceleration, 704
history of, 699-700
image abstractions, 701
image rendering, 701-704
keyframe interpolation, 703
MIP mapping, 701-702
perspective correction, 701
primitives, 701
scan conversion, 701
shading, 701
software optimization, 704
stencil buffering, 702
T&L (transform and lighting), 703
T-buffers, 703
texture mapping, 699-701
textures, 701
trilinear filtering, 702
vertex and pixel shading, 703
vertex skinning, 703
vertices, 701
visible surface determination, 701
Z-buffering, 702
3DNow! technology, 73
3G (Third Generation), 846
3M Ergonomic Mouse, 833-834
3rd Boot Device setting (Boot menu), 364
3x series chipsets (Intel), 223-226
+3.3V power sources, 914
3 1/2" drive enclosure, 1059
3 1/2" floppy disk media, 580-581
3 1/2" floppy drives
1.44MB, 570-571
2.88MB, 571
720KB, 571
3 1/2" half-height drives, 517
4-pin +12V power connectors (ATX), 949-950
4-way set associative cache, 68
4.2GB barrier (CHS), 477-478
4th Boot Device setting (Boot menu), 364
4x series chipsets (Intel), 224-226
5-pin DIN keyboard connectors, 815
+5V power sources, 914
5.1 Surround sound, 763
5 1/4" floppy drives, 571
5 1/4" hard drives, 516-517
5x series chipsets (Intel), 226-229
6-pin auxiliary power connectors (ATX), 944-945
6-pin mini-DIN keyboard connectors, 815
7.1 Surround sound, 763
8B/10B encoding, 458
8-bit (bidirectional) parallel ports, 798
8-bit ISA (Industry Standard Architecture) buses, 280-281
DMA (direct memory access) channels, 300
interrupts, 296
8-bit processors, 101-102
8-pin +12V power connectors (ATX), 951-952
8.4GB barrier (CHS), 481-482
9-pin serial port connectors, 794
9-pin-to-25-pin serial port connectors, 794
10BASE-T, 872
+12V power sources, 914
14.31818Mhz crystals, 151
16-bit ISA (Industry Standard Architecture) buses, 282
DMA (direct memory access) channels, 300-301
interrupts, 297
16-bit processors
16-bit to 64-bit processor architecture evolution, 36-37
286, 102-103
386SX, 104-105
8086, 101
20-pin main power connectors (ATX), 940-942
25-pin parallel port connectors, 796
25-pin serial port connectors, 794
30-pin SIMMs (single inline memory modules), 397-398, 401
32-bit ISA (Industry Standard Architecture) buses, 282
32-bit processors
386, 103-104
386DX, 104
386SL, 105
486
486DX, 106
486SL, 107
AMD 486 (5x86), 108
DX2/OverDrive, 107
main features, 105-106
Intel-compatible, AMD-K5, 114
Pentium
address bus width, 109
addressable memory, 109
BTB (branch target buffer), 109
FDIV (floating-point divide) bug, 113-114
first-generation, 110
instruction processing, 109
math coprocessor, 109
second-generation, 110-112
specifications, 108-109
superscalar architecture, 108
twin data pipelines, 108-109
Pentium-MMX, 112-113
AMD Athlon 64 FX, 140-143
Celeron, 114-115, 123-124
Pentium II, 114-117
cache, 121
DIB (Dual Independent Bus), 120
die sizes, 119
iCOMP 2.0 Index rating, 120
MMX technology, 120
power usage, 120
SEC (Single Edge Contact) packaging, 117-119
specifications, 120
speeds, 119-120
transistors, 119
Pentium III, 114-115, 121-122
Pentium Pro, 114-115
cache, 115
DIB (Dual Independent Bus), 115
Dual Cavity PGA packaging, 115
integrated L2 cache, 117
MCM (multichip module), 115
specifications, 115
speeds, 116
transistors, 115
VID (voltage identification) pins, 117
72-pin SIMMs (single inline memory modules), 397-399
capacities, 401
presence detect pin configurations, 404-406
086 processors, 101
1xx-243xxx POST (power on self test) codes, 1042-1045
100BASE-TX, 872
101-key keyboards, 802-803, 813
104-key keyboards, 803-804
137GB barrier, 482-484
168-pin DIMMs (dual inline memory modules), 399-401
184-pin DIMMs (dual inline memory modules), 399-401, 407
184-pin RIMMs (Rambus inline memory modules), 401-402
240-pin DDR2 DIMM capacity, 402
illustration, 400
notch key definitions, 407
240-pin DDR3 DIMM illustration, 400
notch key definitions, 408
286 processors, 102-103
305 RAMAC (Random Access Method of Accounting and Control) drives, 489
360KB 5 1/4" floppy drives, 571
386 processors, 103-104
386DX, 104
386SL, 105
386SX, 104-105
82350 chipsets, 206
Intel chipsets, 206-207
486 processors
486DX, 106
486SL, 107
82350 chipsets, 206
AMD 486 (5x86), 108
DX2/OverDrive, 107
Intel chipsets, 206-207
main features, 105-106
sockets, 86-88
528MB barrier (CHS), 472-474
555.2 Harmonics standard (IEC), 969
586 processors. See Pentium processors
686 processors. See sixth-generation processors
720KB 3 1/2" floppy drives, 571
726 Tape Unit, 489
755/755FX chipsets (SiS), 255
756 chipsets (SiS), 256
760/760GX chipsets (SiS), 256-257
761/761GX chipsets (SiS), 257
802.11a Wi-Fi standard, 871, 875-876
802.11b Wi-Fi standard, 871, 874-875
802.11g Wi-Fi standard, 876
802.11n Wi-Fi standard, 871, 876-877
915 chipsets (Intel), 220-221
925X chipsets (Intel), 221
945 Express chipsets (Intel), 221
955X chipsets (Intel), 222
96x series chipsets (Intel), 222-223
975X chipsets (Intel), 222
1000-3-2 Harmonics standard (IEC), 969
1000-3-3 Flicker standard (IEC), 969
1394b S3200 standard (IEEE), 783
1394b standard (IEEE), 782-784
8000 (8151) chipsets (AMD), 249-250
8008 processors, 33
80186 processors, 33
80188 processors, 33
80186 processors, 34, 101
80188 processors, 34, 101-102
80286 processors, 102-103
80386 processors, 102-103
80486 processors, 102-103
80586 processors, 102-103
80686 processors, See sixth-generation processors
82350 chipsets (Intel), 206
82C206 chips, 199
82C836 SCAT (Single Chip AT) chipsets, 199
9100A electronic calculator (Hewlett-Packard), 20
AC’97 integrated audio, 750-752
Accelerated Graphics Port (AGP) buses, 269, 292-294, 682-683
accelerated hub architecture (AHA), 204
acceleration (hardware/software), 704
Access Mode setting (Drive Configuration menu), 352
access points, 895-897
access times
CD drives, 658
DVD drives, 658
of hard drives, 551
acclimating to temperatures (hard drives), 543
Acer Laboratories. See ULi Electronics
ACM (Adaptive Contrast Management), 717
ACPI (Advanced Configuration and Power Interface), 368-369, 976-979
ACPI Suspend Mode (or ACPI Suspend State) setting (Power menu), 362
active heatsinks, 157-159
Active Management Technology (AMT), BIOS Setup settings, 356
active-matrix LCD (liquid crystal display) monitors, 719
active PFC (power factor correction), 969
active preventative maintenance, 1068
 cleaning, 1069
 chemical-freeze sprays, 1071
 compressed air, 1071
 connectors, 1072
 contact cleaners
 lubricants, 1070
 contacts, 1072
 disassembly, 1072
 disassembly and cleaning tools, 1070
 erasers, 1072
 keyboards, 1073
 mouse devices, 1073
 swabs, 1071-1072
 vacuum cleaners, 1071
tool/supply vendors, 1056
weekly and monthly checklists, 1068-1069
actuator mechanisms, 518
 comparison of, 534
 dedicated servo, 540
disk sweep, 538
embedded servo, 539-540
gray code, 537
servowriters, 537
thermal recalibration, 538
wedge servo, 539
stepper motors, 535
voice-coil actuators, 535-537
ad hoc mode, 897
adapters. See specific adapters
Adaptive Contrast Management (ACM), 717
Adaptive Differential Pulse Code Modulation (ADPCM), 747
ADCs (analog-to-digital converters), 749
AddOn ROM Display Mode setting (Boot menu), 364
address buses, 43-44, 109
ADDRESS MARK sector data, 523
address storing (switches), 893
addressable memory (Pentium), 109
addresses
 CMOS RAM addresses, 259, 337-339
 port addresses, 301
 bus-based device port addresses, 302-304
 chipset-based device port addresses, 302
 motherboard-based device port addresses, 302
addressing sectors
 CHS (cylinder head sector)
 2.1GB barrier, 477
 4.2GB barrier, 477-478
 8.4GB barrier, 481-482
 528MB barrier, 472-474
 BIOS commands versus ATA commands, 472
 CHS bit-shift translation, 474-476
 CHS/LBA conversions, 471

A
A-Link architecture, 206
a-Si (hydrogenated amorphous silicon), 719
ABC (Atanasoff-Berry Computer), 10
ABIOS for IBM PS/2 Computers and Compats, 327
AC power switches
 AC adapters for speakers, 761
 front panel, 935-937
 integral, 935
AC ripple, 968
LBA (logical block address)
137GB barrier and beyond, 482-484
BIOS commands versus ATA commands, 472
CHS/LBA conversions, 471 compared to CHS (cylinder head sector), 470-471
LBA-assist translation, 478-481
prefixes for decimal/binary multiples, 467-468
Adesso mechanical-switch keyboards, 805
adjusting monitors, 735-736
AdLib sound card, 739
ADPCM (Adaptive Differential Pulse Code Modulation), 747
ADSL (Asymmetric DSL), 843
Advanced Configuration and Power Interface (ACPI), 368-369, 976-979
Advanced Host Controller Interface (AHCI), 461-462
Advanced menus (BIOS Setup)
 Boot Configuration, 348
 Chipset Configuration, 348-350
 Drive Configuration, 352-355
 Event Log Configuration, 356
 Fan Control Configuration, 359
 Floppy Configuration, 355-356
 hardware monitoring display, 359
 Memory Configuration, 347-348
 overview, 345-346
 PCI Configuration, 346
 PCI Express Configuration, 346-347
 Peripheral Configuration, 350-352
 USB Configuration, 358-359
 Video Configuration, 357
Advanced Optical Disc (AOD), 629-630
Advanced Power Management. See APM
advanced programmable interrupt controller (APIC), 111, 299
Advanced Run Length Limited (ARLL), 503
AFC (antiferromagnetically coupled) media, 532
After Power Failure setting (Power menu), 362
AGC (automatic gain control) circuitry, 616
AGP (Accelerated Graphics Port) buses, 269, 292-294, 682-683
AGP/PCI Burn-in Mode setting (Chipset Configuration menu), 349
AHA (accelerated hub architecture), 204
AHCI (Advanced Host Controller Interface), 461-462
algorithms, ADPCM (Adaptive Differential Pulse Code Modulation), 747
Alderwood (925X) chipsets, 221
ALi Corporation. See ULi Electronics
allocation units, 528
alpha blending, 702
alpha particles, 414
Alps Electric mechanical keys switches, 805
Altair, 13-14, 20
aluminum foil, 1011
aluminum in hard disks, 491
aluminum/magnesium alloy platters, 530
Am5x86(TM)-P75 processor (AMD), 108
AMD
 chips
 AMD-750, 202
 AMD-760, 202
 AMD 8000 (8151), 249-250
 AMD/ATI chipsets, 250-252
 reference table, 238-239
 processors
 Am5x86(TM)-P75, 108
 Athlon, 137-138, 202
 Athlon 64, 140-143
 Athlon 64 FX, 140-146
 Athlon 64 X2, 144-146
 Athlon MP, 139-140
 Athlon XP, 138-139
 codenames, 100-101
 development of, 35-36
Duron, 138, 202
K5, 114
K6, 73, 136
K10 (Phenom), 146-147
Sempron, 143-144
specifications, 40-42
SYSmark 2004 scores, 53-55
SYSmark 2004 SE scores, 55-57
SYSmark 2007 preview scores, 57-63
AMI (American Megatrends, Inc.)
 AMI BIOS, 325-326
 AMIMIBID (AMI Motherboard ID) program, 326
 BIOS error messages, 371-372
 POST error codes, 1036-1037
AMIDiag Suite software, 1048
AMIBID (AMI Motherboard ID) utility program, 326
amorphous state, 605
amplification, 760
amplitude, 748
AMR (anisotropic magneto-resistant) heads, 495-496
AMR (Audio Modem Riser), 270
AMT (Active Management Technology), 356
analog-to-digital converters (ADCs), 749
Andromeda Research Labs, 322
animation, 701
anisotropic filtering, 703
anisotropic magneto-resistant (AMR) heads, 495-496
antennas, 899
antialiasing, 701-703
antiferromagnetically coupled (AFC) media, 532
AOD (Advanced Optical Disc), 629-630
Aperture Size setting (Video Configuration menu), 357
aperture, numerical, 628
APIC (advanced programmable interrupt controller), 111, 299
APIs (application programming interfaces), 704
definition of, 316
DirectX, 705-706
OpenGL, 705
APM (Advanced Power Management)
 APM setting (Power menu), 362
 system states, 976
Apple
 Apple I, 14
 Apple II, 14
 Mac OS X, 22-23
 proprietary design, 17
 QuickTime Pro, 728
 shift to PC-based architecture, 17
application programming interfaces. See APIs
architecture, layered system architecture, 315-316
archiving to tape drive, 582-583
ARCnet, 871
areal density, 506-508
ARLL (Advanced Run Length Limited), 503
ASCR (ASUS Smart Contrast Ratio), 717
ASF Support setting (Boot Configuration menu), 348
aspect ratio, 710-711
assembling systems. See system assembly
ASUS Smart Contrast Ratio (ASCR), 717
Asymmetric DSL (ADSL), 843
asymmetrical networks, 841
asynchronous, 791
AT Attachment. See ATA
AT-bus. See ISA buses
AT commands, 853
AT motherboards
 Baby-AT, 174-175
 full-size AT, 172-174
 power supply connectors, 937-939
AT&T
 DSL plans, 844-845
 U-verse, 845
ATA (AT Attachment)
 ATA-1 standard, 440
 ATA-2 standard, 440
 ATA-3 standard, 441
 ATA/ATAPI-4 standard, 441-442
 ATA/ATAPI-5 standard, 442-443
 ATA/ATAPI-6 standard, 443-444
 ATA/ATAPI-7 standard, 444
 ATA/ATAPI-8 standard, 445
 ATAPI (AT Attachment Packet Interface), 466-467
 backward compatibility, 439
 busmaster ATA, 455
 CAM ATA (Common Access Method ATA), 437
 capacity limitations, 546
 CHS (cylinder head sector) addressing, 472-474
 commands, 463-464
 connectors, 443
 drive capacity limitations, 467
 2.1GB barrier, 477
 4.2GB barrier, 477-478
 8.4GB barrier, 481-482
 137GB barrier and beyond, 482-484
 BIOS commands versus ATA commands, 472
 BIOS limitations, 468-470
 CHS bit-shift translation, 474-476
 CHS limitations, 472-474
 CHS versus LBA, 470-471
 CHS/LBA conversions, 471
 LBA-assist translation, 478-481
 table of, 468
 endecs, 436
 history of, 436-438
 HPAs (host protected areas), 465-466
 operating system limitations, 484-485
 overview, 435
 PATA (Parallel ATA), 438
 DMA (direct memory access) transfer modes, 455
 dual-drive configurations, 451-454
 I/O cables, 448-450
 I/O connectors, 445-448
 PIO (Programmed I/O) transfer modes, 454
 signals, 450-451
 precursors to, 435-436
 RAID (redundant array of independent disks), 485-488
 reliability, 436
SATA (Serial ATA)
 8B/10B encoding, 458
 AHCI (Advanced Host Controller Interface), 461-462
 backward compatibility, 456
 BIOS setup, 460-461
 data connector pinouts, 460
 differential NRZ (Non Return to Zero), 458
 host adapters, 459
 overview, 456
 power connector pinouts, 460
 power connectors, 960-961
 Serial ATA International Organization, 438-457
 signal and power connectors, 459
 transfer modes, 457-458, 462-463
 Security Mode, 464-465
 standards organizations, 438-439
ATA/IDE Configuration setting (Drive Configuration menu), 352
ATAINF utility, 464
Atanasoff, John V., 10
Atanasoff-Berry Computer (ABC), 10
ATAPI (AT Attachment Packet Interface), 268, 466-467
Athlon (AMD), 137-138
 Athlon chipsets
 MuTIOL architecture, 244
 nForce/nForce2, 245-246
 Radeon IGP, 247-249
 reference table, 238-239
 SiS chipset reference tables, 242-244
 VIA chipset reference tables, 239-242
 Athlon 64 chipsets, 140-143
 AMD 8000 (8151), 249-250
 AMD/ATI, 250, 252
 K8T800/K8T800 Pro/K8M800, 252
 K8T890/K8M890, 253
 nForce 410/430 series, 255
nForce Professional series, 254-255
nForce3 150/nForce3 Pro 150, 253-254
nForce3 250 family, 254
nForce4 series, 254-255
SiS755/755FX, 255
SiS756, 256
SiS760/760GX, 256-257
SiS761/761GX, 257

Athlon (AMD)

Athlon 64 FX, 140-146
Athlon 64 X2, 144-146
Athlon MP, 139-140
Athlon XP, 138-139

ATI

chipsets
- A-Link architecture, 206
- Radeon IGP, 247-249
- reference table, 233-236
- CrossFire/CrossFire X, 707-708

ATX motherboards, 183-184
- color coding, 188
- extended ATX, 188
- FlexATX, 190-192
- identifying, 186
- microATX, 188-190
- Mini-ATX, 185
- ports, 186
- power supply connectors, 920-922, 939
 - 4-pin +12V power connectors, 949-950
 - 6-pin auxiliary power connectors, 944-945
 - 8-pin +12V power connectors, 951-952
 - 20-pin main power connectors, 940-942
 - ATX/ATX12V 1.x, 939-945
 - ATX12V 2.x 24-pin, 920-922, 945-947
- backward/forward compatibility, 952-955
- Dell proprietary ATX design, 955-957
- maximum power-handling capabilities, 943-944
- Molex Mini-Fit Jr. power connectors, 942-943

PCG (Platform Compatibility Guide), 948-949
VRM (voltage regulator module), 947-948
specification, 188
maximum power-handling capabilities, 943-944
Molex Mini-Fit Jr. power connectors, 942-943

sound production features, 747-748
total harmonic distortion, 749
troubleshooting, 755-760
USB-based audio processors, 745
volume control, 745-746
sound properties, 748

speakers
- AC adapters, 761
- amplification, 760
- connecting, 745-755
- DBB (dynamic bass boost), 761
- frequency response, 760
- interference, 762
- magnetic shielding, 760
- overview, 760
- satellite speakers, 761
- sleep feature, 761
- surround sound, 762-763
total harmonic distortion, 760
troubleshooting, 758
volume control, 761
- watts, 761
troubleshooting, 1083-1084

audio data information
- in CDs, 593
- in DVDs, 613-614

Audio Modem Riser (AMR), 270
AUTOEXEC.BAT file, 1053
automated bootable media images, upgrading flash ROM from, 332-333
automatic drive detection, 1026
Automatic Fan Detection setting (Fan Control Configuration menu), 359
automatic gain control (AGC) circuitry, 616
automatic head parking, 541
aux in connectors, 744
auxiliary power connectors (ATX), 944-945
Auxiliary Power setting (Peripheral Configuration menu), 351
average access times, 551
average seek times, 551

audio

CDs. See CDs
- front panel audio connector
- connector pinout, 266
- headphones, 761
- integrated audio chipsets
 - AC’97 integrated audio, 750-752
 - Intel “Azalia” HD Audio, 753
- microphones, 763-764
- overview, 739
- POST beep codes, 1035
- AMI BIOS, 1036-1037
- Award BIOS/Phoenix FirstBIOS, 1037-1038
- IBM BIOS, 1042
- Phoenix BIOS, 1039-1042

sound cards
- AdLib, 739
- choosing, 1006
- connectors, 742-744
- data compression, 746-747
- DirectX, 740
- drivers, 747
- DSPs (digital signal processors), 747
- frequency response, 749
- history of, 739
- installing, 753-755
- integrated audio chipsets, 750
- legacy audio support, 740-741
- MIDI support features, 746
- monophonic/stereophonic, 746
- resource conflicts, 756
- sampling, 749
- SNR (signal-to-noise ratio), 749
- Sound Blaster, 740
- Sound Blaster Pro, 740

sound properties, 748

ATX motherboards, 183-184
- color coding, 188
- identified ATX, 188
- identifying ATX, 186
- microATX, 188-190
- Mini-ATX, 185

ports, 186

power supply connectors, 920-922, 939
- 4-pin +12V power connectors, 949-950
- 6-pin auxiliary power connectors, 944-945
- 8-pin +12V power connectors, 951-952
- 20-pin main power connectors, 940-942
- ATX/ATX12V 1.x, 939-945
- ATX12V 2.x 24-pin, 920-922, 945-947

backward/forward compatibility, 952-955
Dell proprietary ATX design, 955-957
maximum power-handling capabilities, 943-944
Molex Mini-Fit Jr. power connectors, 942-943

audio

CDs. See CDs
- front panel audio connector
- connector pinout, 266
- headphones, 761
- integrated audio chipsets
 - AC’97 integrated audio, 750-752
 - Intel “Azalia” HD Audio, 753
- microphones, 763-764
- overview, 739
- POST beep codes, 1035
- AMI BIOS, 1036-1037
- Award BIOS/Phoenix FirstBIOS, 1037-1038
- IBM BIOS, 1042
- Phoenix BIOS, 1039-1042

sound cards
- AdLib, 739
- choosing, 1006
- connectors, 742-744
- data compression, 746-747
- DirectX, 740
- drivers, 747
- DSPs (digital signal processors), 747
- frequency response, 749
- history of, 739
- installing, 753-755
- integrated audio chipsets, 750
- legacy audio support, 740-741
- MIDI support features, 746
- monophonic/stereophonic, 746
- resource conflicts, 756
- sampling, 749
- SNR (signal-to-noise ratio), 749
- Sound Blaster, 740
- Sound Blaster Pro, 740

sound production features, 747-748
- total harmonic distortion, 749
- troubleshooting, 755-760
- USB-based audio processors, 745
- volume control, 745-746

sound properties, 748

speakers
- AC adapters, 761
- amplification, 760
- connecting, 745-755
- DBB (dynamic bass boost), 761
- frequency response, 760
- interference, 762
- magnetic shielding, 760
- overview, 760
- satellite speakers, 761
- sleep feature, 761
- surround sound, 762-763
- total harmonic distortion, 760
- troubleshooting, 758
- volume control, 761
- watts, 761
- troubleshooting, 1083-1084

audio data information
- in CDs, 593
- in DVDs, 613-614

Audio Modem Riser (AMR), 270
AUTOEXEC.BAT file, 1053
automated bootable media images, upgrading flash ROM from, 332-333
automatic drive detection, 1026
Automatic Fan Detection setting (Fan Control Configuration menu), 359
automatic gain control (AGC) circuitry, 616
automatic head parking, 541
aux in connectors, 744
auxiliary power connectors (ATX), 944-945
Auxiliary Power setting (Peripheral Configuration menu), 351
average access times, 551
average seek times, 551
Award BIOS
POST error codes, 372, 1037-1038
POST onscreen messages, 1038-1039
Azalia HD Audio, 753
azimuth, 536

Baby-AT motherboards, 174-175
backup power supply
standby power supply, 990-991
UPS (uninterruptible power supply), 991-992
backups
of CMOS RAM, 330-331
of ROM BIOS, 330
to tape drives, 582-583
backward compatibility
ATA (AT Attachment), 439
DVD drives, 641
motherboard power connectors, 952-955
SATA (Serial ATA), 456
bad pixels (LCDs), 736-737
Balanced Technology Extended (BTX) motherboards, 180-182
ball-driven mouse devices, 822-823
bandwidth
of AGP (Accelerated Graphics Port) buses, 294
of buses, 271-275
cable bandwidth, 840-841
DDR SDRAM (double data rate SDRAM), 388-389
DDR2 SDRAM, 390
DDR3 SDRAM, 392-393
of ISA (Industry Standard Architecture) buses, 280
RDRAM (Rambus DRAM), 395
SDRAM (synchronous DRAM), 387
banks (memory), 402, 412-413
BAPCo SYSmark, 49
Bardeen, John, 11
Base I/O Address (for the Parallel Port) setting (Peripheral Configuration menu), 351
Base I/O Address (for the Serial Port) setting (Peripheral Configuration menu), 351
base memory, 345
basic input/output system. See ROM BIOS
batteries
battery connectors, 267
lithium coin cell batteries, 1060
replacing, 996
RTC/NVRAM
modern CMOS batteries, 993-995
obsolete/unique CMOS batteries, 995
troubleshooting, 996
baud rates, 853-854
BBUL (bumpless build-up layer), 84
BD (Blu-ray) discs, 627-629
BD-R, 628
BD-RE, 628
BD-ROM, 628
BDF (Blu-ray Disc Founders), 627
bearings, fluid dynamic
bearings, 544
Bearlake (3x series) chipsets, 223-226
BEDO RAM (burst extended data out RAM), 385
beep error codes (POST), 1035
AMI BIOS, 1036-1037
Award BIOS/Phoenix FirstBIOS, 1037-1038
IBM BIOS, 1042
Phoenix BIOS
Phoenix BIOS 4 and later, 1041-1042
Phoenix BIOS 486 and earlier, 1039-1041
bench testing, 985
benchmarks, 49
iCOMP 2.0 index ratings, 52
SYSmark 2004 scores, 53-55
SYSmark 2004 SE scores, 55-57
SYSmark 2007 preview scores, 57-63
Berkeley, Edmund C., 20
Berry, Clifford, 10
BF (bus frequency) pins, 82
bidirectional (8-bit) parallel ports, 798
bilinear filtering, 702
binary digits (bits), 11
binary multiples
IEC prefixes, 578
prefixes for, 467-468
BIOS (basic input/output system). See ROM BIOS
The BIOS Companion (Croucher), 327
BIOS RAM checksum error – System halted (error message), 1038
bit-level ECC (error correction codes), 486
bit-shift translation (CHS), 474-476
bits (binary digits), 11
bit cells, 492
bit rates, 853-854
merge bits, 597
parity bits, 415
blanks, 149
BLER (block error rate), 596
Blinkenlights Archaeological Institute, 20
block error rate (BLER), 596
Block Mode PIO (Programmed I/O), 454
blocked data with distibuted parity, 486
blocked data with double distibuted parity, 486
blocked data with parity, 486
Blu-ray Disc Founders (BDF), 627
Blu-ray discs, 627-629, 651
Blue Book standard (CD EXTRA), 637
Bluetooth, 835, 878-879, 899
Board ID setting (BIOS Maintenance menu), 343
bonding, 81
Boot Configuration menu (BIOS Setup), 348
Boot menu (BIOS Setup), 363-365
boot process
BIOS boot error messages
AMI BIOS messages, 371-372
Award BIOS messages, 372
Compaq BIOS messages, 372
IBM BIOS messages, 370-371
overview, 370
Phoenix BIOS messages, 372
Index

BIOS Setup settings, 363-365
boot floppy disks, 662
bootable CDs, 662-663, 666
bootable DVDs, 662-663
booting from CD-ROM, 1051
DOS, 1053
MBR boot error messages, 372-373
Error loading operating system, 373-374
Invalid partition table, 373
Missing operating system, 374
operating system independent, 1049-1053, 1080-1082
overview, 1048-1049
quiet boots, 329
troubleshooting, 1080, 1087-1088
Windows 9x/Me, 1054
Windows NT/2000/XP, 1054-1055
Windows Vista/7, 1056
boot ROM (read-only memory), 328
Boot to Network setting (Boot menu), 364
Boot to Optical Devices setting (Boot menu), 364
Boot to Removable Devices setting (Boot menu), 364
Boot Up Floppy Seek feature (BIOS Setup), 366
Boot Up System Speed feature (BIOS Setup), 366
bootable CDs, creating, 662-663, 666
bootable DVDs, creating, 662-663
bootstrap loader, 318
bootstrap troubleshooting
approach, 1079-1080
bouncing keystrokes, 810
boutique heatsinks, 161
boxed processors, 1000-1001
branch prediction, 73-74, 109
branch target buffer (BTB), 109
Brattain, Walter, 11
Break codes (keyboards), 813
bridges, wireless, 899
brightness (monitors), 717
broadband networks, 840

broadband technology
CATV (cable TV)
cable bandwidth, 840-841
cable modems, 838-840
cable pricing, 841
overview, 838
comparison of access types, 850
DSL (digital subscriber line), 841
ADSL (Asymmetric DSL), 843
availability, 842-843
CAP (carrierless amplitude/phase), 842
DMT (discrete multitone), 842
DSL pricing, 844-845
DSLAM (DSL access multiplexer), 842
how it works, 842
low-pass filters, 842
SDSL (Symmetrical DSL), 843
security, 843
self-installing, 843-844
transceivers, 842
ISDN (Integrated Services Digital Network), 848-849
leased lines, 849-850
overview, 837-838
satellite broadband
HughesNet, 846-847
overview, 846
performance issues, 848
StarBand, 848
WildBlue, 847
service interruptions, 860-861
speeds, 850
status LEDs, 863
wireless broadband, 845-846
Broadwater (96x) chipsets, 222-223
BTB (branch target buffer), 109
BTX motherboards, 180-182
bucking spring capacitive keyswitches, 809-810
buffered DIMMs (dual inline memory modules), 406
buffering
buffer underruns, 661-662
buffered DIMMs (dual inline memory modules), 406
stencil buffering, 702
T-buffers, 703
TLB (translation lookaside buffer), 69
Z-buffers, 702
bugs
FDIV (floating-point divide), 113-114
processor bugs, 100
building systems. See system assembly
bumpless build-up layer (BBUL), 84
burn-in testing, 348, 1048
BURN-Proof technology, 661
burning CDs, 601, 661-662
buffer underruns, 661-662
recording software, 660
ROM (read-only memory), 321
burst extended data out RAM (BEDO RAM), 385
bus frequency (BF) pins, 82
bus masters, 69
bus snooping, 69
bus topology, 891
buses
address buses, 43-44
AGP (Accelerated Graphics Port), 269, 292-294
bandwidth, 271-275
bus masters, 69
bus snooping, 69
calculating speed of, 278
definition of, 269
DIB (Dual Independent Bus) architecture, 74-75
DMA (direct memory access) channels, 300-301
EISA (Extended Industry Standard Architecture), 284, 296
external data buses, 42-43
HyperTransport bus, 206
I/O port addresses, 301
bus-based device port addresses, 302-304
chipset-based device port addresses, 302
motherboard-based device port addresses, 302
identifying, 280

broadband technology
CATV (cable TV)
cable bandwidth, 840-841
cable modems, 838-840
cable pricing, 841
overview, 838
comparison of access types, 850
DSL (digital subscriber line), 841
ADSL (Asymmetric DSL), 843
availability, 842-843
CAP (carrierless amplitude/phase), 842
DMT (discrete multitone), 842
DSL pricing, 844-845
DSLAM (DSL access multiplexer), 842
how it works, 842
low-pass filters, 842
SDSL (Symmetrical DSL), 843
security, 843
self-installing, 843-844
transceivers, 842
ISDN (Integrated Services Digital Network), 848-849
leased lines, 849-850
overview, 837-838
satellite broadband
HughesNet, 846-847
overview, 846
performance issues, 848
StarBand, 848
WildBlue, 847
service interruptions, 860-861
speeds, 850
status LEDs, 863
wireless broadband, 845-846
Broadwater (96x) chipsets, 222-223
BTB (branch target buffer), 109
BTX motherboards, 180-182
bucking spring capacitive keyswitches, 809-810
buffered DIMMs (dual inline memory modules), 406
buffering
buffer underruns, 661-662
buffered DIMMs (dual inline memory modules), 406
stencil buffering, 702
T-buffers, 703
TLB (translation lookaside buffer), 69
Z-buffers, 702
bugs
FDIV (floating-point divide), 113-114
processor bugs, 100
building systems. See system assembly
bumpless build-up layer (BBUL), 84
burn-in testing, 348, 1048
BURN-Proof technology, 661
burning CDs, 601, 661-662
buffer underruns, 661-662
recording software, 660
ROM (read-only memory), 321
burst extended data out RAM (BEDO RAM), 385
bus frequency (BF) pins, 82
bus masters, 69
bus snooping, 69
bus topology, 891
buses
address buses, 43-44
AGP (Accelerated Graphics Port), 269, 292-294
bandwidth, 271-275
bus masters, 69
bus snooping, 69
calculating speed of, 278
definition of, 269
DIB (Dual Independent Bus) architecture, 74-75
DMA (direct memory access) channels, 300-301
EISA (Extended Industry Standard Architecture), 284, 296
external data buses, 42-43
HyperTransport bus, 206
I/O port addresses, 301
bus-based device port addresses, 302-304
chipset-based device port addresses, 302
motherboard-based device port addresses, 302
identifying, 280
internal data buses, 44
IRQs (interrupt request channels), 295
 8-bit ISA bus interrupts, 296
 16-bit ISA/EISA/MCA bus interrupts, 297-298
Advanced Programmable Interrupt Controller (APIC), 299
conflicts, 299-300
edge-triggered interrupt sensing, 295
interrupt sharing, 296
maskable interrupts, 296
PCI interrupts, 298
PCI IRQ Steering, 296
ISA (Industry Standard Architecture), 270
 8-bit, 280-281
 16-bit, 282
 32-bit, 282
DMA (direct memory access) channels, 300-301
interrupts, 296-297
local buses, 285
MCA (microchannel architecture), 282-284, 296
MuTIOL architecture, 244
NICs (network interface cards), 880
overclocking, 155
PCI (Peripheral Connect Interface), 287-289
 adapter cards, 288
 board configurations, 288-289
 bus types, 287-288
 interrupts, 298
 PCI Express, 290-292
 specifications, 286
PCI buses, 269
PCI Express buses, 269
processor bus speeds, 383
processor buses, 269, 275-279
S-100 bus, 14
USB. See USB (Universal Serial Bus)
VESA (Video Electronics Standards Association), 285-286
video memory bus width, 680

Buscom, 32
busmaster ATA (AT Attachment), 455
busmaster DMA (direct memory access), 455
buttons (mouse), 822
Byte mode (parallel ports), 798

C
C1E setting (BIOS Maintenance menu), 343
cable bandwidth, 840-841
Cable Detected setting (Drive Configuration menu), 353
cable modems, 838-840
cable pricing, 841
cable select (CS) pins, 451-453
cable select (CSEL) signals, 451
cable TV. See CATV (cable TV)
CableLabs Certified cable modems, 838
cables, 882
cable distance limitations, 889-890
cable-ties, 1059
choosing, 908-909, 1007
connecting, 1027
FIC (flex interconnect cable), 498
floppy disk controller cables, 575-577
grounding loops, 884
hard drive cables, 545
installation, 1021-1022, 1027
keyboard cables, 818
PATA (Parallel ATA) I/O cables, 448-450
testing with DMMs (digital multimeters), 818
Thicknet, 882
Thinnet, 882
twisted-pair, 883
 building, 885-889
 Category 3 cable, 884
 Category 5 cable, 884
 Category 5e cable, 884
 Category 6 cable, 884
Category 7 cable, 885
crossover cables, 886-887
STP (shielded twisted pair), 883-884
UTP (unshielded twisted pair), 883
wiring standards, 886
cache
 bus snooping, 69
cache controllers, 69
definition of, 63-64, 380
direct-mapped cache, 68four-way set associative cache, 68, 115
fully associative mapped cache, 68
hard disk drive cache programs, 552
hit ratio, 380
Level 1, 64, 380
 cache misses, 65
cache operation, 65-66
 importance of, 64
NexGen Nx586 processors, 135
Pentium II processors, 121
Pentium Pro processors, 115
Pentium-MMX improvements, 71
Level 2, 66, 380
 Pentium II processors, 121
 Pentium III processors, 122
 Pentium Pro processors, 117
Level 3, 66, 381
nonblocking cache, 69
overview, 379, 1002
Pentium II processors, 121
Pentium Pro processors, 115
performance and design, 67-68
set associative cache, 68
speed, 69
TLB (translation lookaside buffer), 69
two-way set associative cache, 115
write-back cache, 427
write-through cache, 69
caddy load mechanism (CD/DVD drives), 659
Cady, Walter G., 150
calculations
floating-point calculations, 703
power consumption, 970-972
video RAM, 679-680

calculators
9100A electronic calculator
(Hewlett-Packard), 20
IBM701 Defense Calculator, 489

CAM ATA (Common Access
Method ATA), 437
Canadian Standards Agency
(CSA) power supply safety
certifications, 969
CAP (carrierless
amplitude/phase), 842
capacitive keyswitches, 809-810

capacity
ATA drive capacity
limitations, 467
2.1GB barrier, 477
4.2GB barrier, 477-478
8.4GB barrier, 481-482
137GB barrier and beyond,
482-484
BIOS commands versus ATA
commands, 472
BIOS limitations, 468-470
CHS bit-shift translation,
474-476
CHS limitations, 472-474
CHS versus LBA, 470-471
CHS/LBA conversions, 471
LBA-assist translation,
478-481
table of, 468
of CD-R discs, 601
of CDs, 586, 596-597
of DVDs, 615-618
of flash memory cards, 565-566
of floppy disks, 577
of hard drives, 514-515
BIOS limitations, 546-548
capacity limitations, 546
operating system
limitations, 548
of magnetic storage, 505-506
capturing video, 727-730
card/edge connectors, 281
card readers, 567
care and maintenance. See also
troubleshooting
CD/DVD drives, 660
CDs/DVDs, 587, 667-668
cleaning. See cleaning, 1072
floppy disks
magnetic fields, 581
metal detectors, 582
temperatures, 581
x-ray machines, 581-582
keyboards, 817
cleaning, 819-820
defective cables, 818
keyboard disassembly, 819
stuck keyswitches, 818
keyswitches, 806
monitors, 733-734
mouse, 828
power-protection systems
backup power, 990
line conditioners, 990
overview, 987-989
phone line surge protectors,
989-990
surge protectors, 989
preventative maintenance
active/passive, 1068
cleaning. See cleaning
dust, 1077
heating and cooling,
1073-1074
operating
environment, 1073
pollutants, 1077
power cycling, 1074-1075
power-line noise, 1075-1076
RFI (radio-frequency
interference), 1076
static electricity, 1075
tool/supply vendors, 1056
weekly and monthly
checklists, 1068-1069
safety, 1060-1061
System Restore, 1068
tools, 1056
2 1/2” ATA drive cables and
adapters, 1059
3 1/2” drive enclosure, 1059
cleaning materials, 1059
data transfer cables and
adapters, 1059
DMMs (digital multimeters),
1059, 1062-1063
electric screwdrivers,
1058, 1066
electrical testing
equipment, 1061
ESD (electrostatic discharge)
protection kits, 1060
files, 1059
flashlights, 1058
hemostats, 1058
infrared thermometers, 1067
lithium coin cell
batteries, 1060
logic probes, 1064
loopback connector,
1061-1062
markers/pens, 1059
memory testers, 1065-1066
needle-nose pliers, 1058
nut drivers, 1057
nylon cable-ties, 1059
outlet testers, 1064-1065
parts grabbers, 1057, 1067
PS/2 Y adapter, 1059
screwdrivers, 1057
spare parts, 1060
temperature probes, 1066
Torx drivers, 1057
tweezers, 1057
USB/FireWire cable
adapter, 1060
prises/clamps, 1059
Windows 98/98SE or Me
Startup floppy, 1059
Windows 98 2000/XP
bootable CD, 1059
wire cutters, 1059
wire strippers, 1059

carrierless amplitude/phase
(CAP), 842
cases, 999-1000
cover assembly, 1027
definition of, 29
mounting motherboards in,
1015-1019
no-tool, 1057

Casper’s Electronics, 322
Cassette BASIC, 370
Category 3 cables, 884
Category 5 cables, 884
Category 5e cables, 884
Category 6 cables, 884
Category 7 cables, 885
CATV (cable TV)
cable bandwidth, 840-841
cable modems, 838-840
cable pricing, 841
overview, 838
CAV (constant angular velocity) technology, 653
CBIOS for IBM PS/2 Computers and Compatible, 327
CCITT (Comite Consultatif International Telephonique et Telegraphique), 852
CD-DA, 631
CD drives. See also CDs
access times, 658
audio connectors, 268
bootable CDs, 666
booting from, 1051
booting from floppy disk, 662
buffer underruns, 661-662
buffers/cache, 658
CAV (constant angular velocity) technology, 653
choosing, 1005
CLV (constant linear velocity) technology, 653
data transfer rates, 652-653
definition of, 29
DMA and Ultra-DMA, 658
drive sealing, 660
firmware updates, 668-669
history of, 586-587
interfaces, 659
laser operation, 589
loading mechanisms, 659-660
mechanical drive operation, 590
MultiRead specifications, 606-607
self-cleaning lenses, 660
table of CD-ROM drive speeds and transfer rates, 654-655
troubleshooting, 1089
disc read failures, 663-666
disc write failures, 664-665
problems burning discs with Windows built-in recording, 666
slow drive speeds, 665
CD-Erasable. See CD-RW
CD EXTRA, 637
CD-R
capacity, 601
collection and technology, 600-601
copy protection, 649
disc read errors, 663-666
DRM (digital rights management), 649-650
For Music Use Only discs, 648
media color, 601-603
media recording speed ratings, 603
overview, 599-600
CD-RW, 603-606
copy protection, 649
disc read errors, 663-666
disc write errors, 665
DRM (digital rights management), 649-650
For Music Use Only discs, 648
overview, 599-600
CD SPDIF (Sony/Philips Digital Interface) in/out sound card connectors, 744
CD TEXT, 595
CDs
audio data information, 593
Blue Book standard (CD EXTRA), 637
bootable CDs, 662-663, 666
burning, 661-662
capacity, 586, 596-597
care and maintenance, 587, 667-668
CD TEXT discs, 595
CD-DA, 631
CD-R
capacity, 601
collection and technology, 600-601
disc read errors, 663-666
disc write errors, 665
overview, 599-600
construction and technology, 587
copy protection, 596, 649
DRM (digital rights management), 649-650
DualDisc, 638-639
EFM data encoding, 597-599
file systems
HFS (Hierarchical File System), 646
High Sierra, 643
ISO 9660, 643-644
Joliet, 645
RocK Ridge, 646
table of file system formats, 642
UDF (Universal Disk Format), 645-646
form factor, 586
frames, 593
history of, 586-587
hub clamping area, 591
LabeLFlash direct disc labeling system, 663
lands, 589
lead-in, 591
lead-out, 591
LightScribe direct disc labeling system, 663
mass production, 587-589
Mount Rainier standard, 646-647
multisession recording, 632-633
DAO (Disc-at-Once) recording, 633
packet writing, 633-635
Track-at-Once, 633
Orange Book standard, 632
PCA (power calibration area), 591
Photo CD, 635
Picture CD, 636
pits, 589
PMA (power memory area), 591
program area, 591
read errors, 595-596
recording software, 660
ripping, 647-648
sampling rates, 593-594
Scarlet Book standard (SA-CD), 637-638
sector modes and forms, 632
sectors, 593
subcode bytes, 594-595
Super Video CDs, 636
table of CD formats, 630-631
technical parameters, 592-593
tracks, 590-592
troubleshooting
disc read failures, 663-666
disc write failures, 664-665
problems burning discs with Windows built-in recording, 666
virgin CDs, 600
White Book standard (Video CD), 636
Windows 2000/XP bootable CD, 1059

celeron processors, 114-115, 123
celeron 4 chipsets
ATI chipsets, 233, 236
Intel 915, 220-221
Intel 925X, 221
Intel 945 Express, 221
Intel 955X, 222
Intel 96x series, 222-223
Intel 975X, 222
Intel chipsets reference tables, 214-220
SiS chipset reference tables, 229-232
ULi chipset reference tables, 232-234
VIA chipset reference tables, 236-238
VIA Modular Architecture Platforms (V-MAP), 238
Celerons D, 124
history of, 123
iCOMP 2.0 index ratings, 52
cell phones, tethering, 846
cells, bit cells (transition cells), 492
central processing units (CPUs).
See processors
central switch (CS), 842
certifications, power supply safety certifications, 969-970

cFX12V power supply, 928-931
chassis
chassis intrusion connectors, 267
definition of, 29
thermally advantaged chassis cooling fans, 163
maximum heatsink inlet temperatures, 164
processor ducts, 165-168
specifications, 164-165
Chassis Intrusion setting
(Security menu), 361
checkpoint codes (POST), 1035
chemical cleaners, 1070-1071
Chernobyl virus, 331
chip creep, 397
chip on ceramic (COC) technology, 498
chips
chip creep, 397
CISC (Complex Instruction Set Computer), 71
EEPROM (electronically erasable programmable ROM), 323-324, 331-337
EPROM (erasable programmable ROM), 322-323
flash ROM, 323-324
keyboard controller chips, upgrading, 331
memory chips. See modules
OTP (one-time programmable) chips, 321
RISC (Reduced Instruction Set Computer), 71, 108
RTC/NVRAM (real-time clock/nonvolatile memory) chips, 316
Super I/O chips, 258-259

Chips and Technologies, 199

Chipset Configuration menu (BIOS Setup), 348-350
chipsets, 198
3D chipsets, 708
56Kbps modems, 858
82C206 chips, 199
82C836 SCAT (Single Chip AT) chipsets, 199

AMD
AMD-750, 202
AMD-760, 202
AMD 8000 (8151), 249-250
AMD/ATI chipsets, 250-252
reference table, 238-239
AT motherboards, 198-199

ATI
A-Link architecture, 206
Radeon IGP, 247-249
reference table, 233-236
CS8220 chipset, 199
databooks, 1002
documentation, 312
history and development, 198-200
hub architecture, 204-205
industry control of, 24
integrated video/motherboard chipsets, 673-675

Intel, 200
3x series, 223-226
4x series, 224-226
5x series, 226-229
386/486 chipsets, 206-207
915, 220-221
925X, 221
945 Express, 221
955X, 222
96x series, 222-223
975X, 222
82350 chipsets, 206
Extreme Graphics Architecture, 201-202
model numbers, 201
North Bridge, 202-204
Pentium 4 chipset reference tables, 214-220
Pentium chipsets, 207-208
Pentium Pro chipset reference tables, 209-212
South Bridge, 202-204
Super I/O chips, 202

NEAT (New Enhanced AT)
CS8221 chipset, 199

NVIDIA
nForce 410/430 series, 255
nForce Professional series, 254-255
nForce/nForce2, 245-246
nForce3 150/nForce3 Pro
150, 253-254
nForce3 250 family, 254
nForce4 series, 254-255
overview, 1001-1002
PC/XT motherboards, 198-199
SiS (Silicon Integrated Systems)
Athlon/Duron chipset
reference tables, 242-244
MuTIOL architecture, 206, 244
Pentium 4/Pentium D
chipset reference tables, 229-232
SiS755/755FX, 255
SiS756, 256
SiS760/760GX, 256-257
SiS761/761GX, 257
Super I/O chips, 258-259
top 25 companies ranked by
sales, 25
ULi Pentium 4 chipset reference
tables, 232-234
VIA Technologies
Athlon/Duron chipset
reference tables, 239-242
K8T800/K8T800
Pro/K8M800, 252
K8T890/K8M890, 253
Pentium 4 chipset reference
tables, 236-238
V-Link architecture, 206
VIA Modular Architecture
Platforms (V-MAP), 238
video adapter chipsets
identifying, 677
video processor, 676
CHS (cylinder head sector)
addressing
2.1GB barrier, 477
4.2GB barrier, 477-478
528MB barrier, 472-474
CHS bit-shift translation, 474-476
CHS/LBA conversions, 471
compared to LBA (logical block
address), 470-471
CIH virus, 331
CIRC (cross-interleave Reed-
Solomon code), 595-596
Cirque Glidepoint, 832
CISC (Complex Instruction Set
Computer) chips, 71
citrus-based cleaners, 1070
clamps, 1059
Clean Boot CD package, 333
clean-room approach, 326
cleaning, 1069. See also care and
maintenance
CD/DVD drives, 660
CDs, 667
chemical-free sprays, 1071
compressed air, 1071
connectors, 1072
contact cleaners/
lubricants, 1070
contacts, 1072
disassembly and cleaning tools,
1070-1072
erasers, 1072
keyboards, 819-820, 1073
keyswitches, 806
mouse, 828
mouse devices, 1073
swabs, 1071-1072
vacuum cleaners, 1071
Clear All DMI Event Log setting
(Event Logging menu), 356
Clear All Passwords setting (BIOS
Maintenance menu), 343
Clear Trusted Platform Module
setting (BIOS Maintenance
menu), 343
Clear User Password setting
(Security menu), 361
ClickLock feature
(IntelliMouse), 828
client/server networks, 867-870
clock doubling, 107
clock signals, 49, 501
clock speed (processors), 49-51,
151-152, 382. See also
overclocking
Am5x86(TM)-P75
processor, 108
clock signal, 49
iCOMP 2.0 index ratings, 52
number of pipelines per
CPU, 51
Pentium II processors, 119-120
Pentium III processors, 122
Pentium Pro processors, 116
SYSmark 2004 scores, 53-55
SYSmark 2004 SE scores, 55-57
SYSmark 2007 preview scores,
57-63
wait states, 50
closed loop feedback
mechanism, 536
clusters, 528
CLV (constant linear velocity)
technology, 563
CMOS battery failed (error
message), 1038
CMOS checksum error – Defaults
loaded (error message), 1038
CMOS RAM
addresses, 337-339
backing up, 330-331
batteries
modern CMOS batteries, 993-995
obsolete/unique CMOS
batteries, 995
troubleshooting, 996
configuring with BIOS Setup.
See Setup program (BIOS)
definition of, 316-317
diagnostic status byte codes,
339-340
motherboard addresses, 259
CNR (Communications and
Networking Riser), 270, 751
coaxial cables, 882
COC (chip on ceramic)
technology, 498
code-free DVD players, 651
codecs, 728
codenames for processors,
100-101
coefficacy of floppy disks, 579
color coding
ATX motherboards, 188
power switch connectors, 936
Colossus, 10
COM ports. See serial ports
combo adapters, 881
Comite Consultatif International
Telephonique et Telegraphique
(CCITT), 852
commands. See
specific commands
commercial diagnostic software, 1048
Common Access Method ATA (CAM ATA), 437
communication ports, 794
Communications and Networking Riser (CNR), 270, 751
compact disc read-only memory. See CD drives; CDs
compact form factor (CFX12V) power supply, 928-931
CompactFlash, 559-560
CompactFlash Association website, 560
Compaq ATA. See ATA (AT Attachment) BIOS error messages, 372 reverse engineering of IBM software, 21-22
compatibility DVD drives, 641 buses, 280 recordable DVD, 620-621 Sound Blaster Pro sound cards, 740 compatible mode (parallel ports), 798 Complex Instruction Set Computer (CISC) chips, 71 Compliance Test Pattern setting (PCI Express Configuration menu), 346 component benchmarks, 49 component video, 728 composite ferrite heads, 494 compressed air, cleaning keyboards with, 819, 1071 compression codecs, 728 MNP5 standard, 856 sound card data, 746-747 V.42bis standard, 856 V.44 standard, 856 computer history. See history of computers CONFIG.SYS file, 1053
configuration documentation of, 1011 hard drives automatic drive detection, 1026 overview, 1022-1023 networks software, 910-911 parallel ports, 799 PATA (Parallel ATA) dual-drive configurations, 451-454 power supply, 1019-1021 processor operating voltages, 98 SATA (Serial ATA), 460-461 serial ports, 795 system-configuration templates, 306-308 configuration jumper, 343 Configure SATA as setting (Drive Configuration menu), 353 conflicts, IRQs (interrupt request channels), 299-300 connectors ATA (AT Attachment), 443 card/edge connectors, 281 cleaning procedures, 1072 floppy drive power and data connectors, 574-575 floppy power connectors, 958-960 hard drive connectors, 545 keyboard/mouse interface connectors hybrid mouse, 826 keyboard connectors, 814-816 PS/2 mouse interfaces, 825-826 serial interface, 825 troubleshooting, 818 USB (Universal Serial Bus), 827 motherboard connectors, 259-265 4-pin +12V power connectors, 949-950 8-pin +12V power connectors, 951-952 alternative single-row front panel connector pinouts, 263 AMR (Audio Modem Riser), 270 AT, 937-939 ATAPI-style line-in connectors, 268 ATX/ATX12V 1.x, 939-940, 942-945 ATX12V 2.x 24-pin, 945-947 backward/forward compatibility, 952-955 battery connectors, 267 CD audio connectors, 268 chassis intrusion connectors, 267 CNR (Communications and Networking Riser), 270 Dell proprietary ATX design, 955-957 front panel audio connector pinout, 266 front panel IEEE 1394 (FireWire/i.LINK) connector pinout, 265 front panel switch/LED connector pinouts, 260-262 front panel USB header connector pinout, 264 infrared data front panel connector pinout, 267 LED and keylock connectors, 267 microprocessor fan power connectors, 269 multiple power connectors, 939-940 overview, 937 PCG (Platform Compatibility Guide), 948-949 power LED indications, 262 power switch connectors, 934-936 speaker connectors, 267 telephony connectors, 268 VRM (voltage regulator module), 947-948 Wake on LAN connectors, 268 Wake on Ring connectors, 268
cyclical redundancy checking (CRC) | Index 1107

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATA (Parallel ATA) I/O connectors</td>
<td>445-448</td>
</tr>
<tr>
<td>PCI Express x16 Graphics Power connectors</td>
<td>961-963</td>
</tr>
<tr>
<td>peripheral power connectors</td>
<td>958</td>
</tr>
<tr>
<td>SATA (Serial ATA)</td>
<td>960-961</td>
</tr>
<tr>
<td>data connector pinouts</td>
<td>460</td>
</tr>
<tr>
<td>host adapters</td>
<td>459</td>
</tr>
<tr>
<td>power connector pinouts</td>
<td>460</td>
</tr>
<tr>
<td>signal and power connectors</td>
<td>459</td>
</tr>
<tr>
<td>sound card connectors</td>
<td>742-744</td>
</tr>
<tr>
<td>aux in</td>
<td>744</td>
</tr>
<tr>
<td>CD SPDIF in/out</td>
<td>744</td>
</tr>
<tr>
<td>line in sound card connectors</td>
<td>743</td>
</tr>
<tr>
<td>line out sound card connectors</td>
<td>743</td>
</tr>
<tr>
<td>MIDI in/out</td>
<td>744</td>
</tr>
<tr>
<td>mono in sound card connectors</td>
<td>743</td>
</tr>
<tr>
<td>optical SPDIF in/out</td>
<td>744</td>
</tr>
<tr>
<td>rear out sound card connectors</td>
<td>743</td>
</tr>
<tr>
<td>SPDIF in/out</td>
<td>744</td>
</tr>
<tr>
<td>TAD (Telephone Answering Device) in</td>
<td>744</td>
</tr>
<tr>
<td>USB (Universal Serial Bus) connectors</td>
<td>770-772</td>
</tr>
<tr>
<td>wired network adapter connectors</td>
<td>881-882</td>
</tr>
<tr>
<td>Conner Peripherals, Inc. 2.5” drives</td>
<td>517</td>
</tr>
<tr>
<td>constant angular velocity (CAV) technology</td>
<td>653</td>
</tr>
<tr>
<td>constant linear velocity (CLV) technology</td>
<td>653</td>
</tr>
<tr>
<td>constant voltage power supply</td>
<td>914</td>
</tr>
<tr>
<td>consumption of power supply, calculating</td>
<td>970-972</td>
</tr>
<tr>
<td>contact cleaners/lubricants</td>
<td>1070</td>
</tr>
<tr>
<td>contact start stop (CSS) design</td>
<td>519</td>
</tr>
<tr>
<td>contacts, cleaning</td>
<td>1072</td>
</tr>
<tr>
<td>content scramble system (CSS)</td>
<td>651-652</td>
</tr>
<tr>
<td>contrast (monitors)</td>
<td>717</td>
</tr>
<tr>
<td>controllers</td>
<td>69</td>
</tr>
<tr>
<td>cache controllers</td>
<td>258, 574</td>
</tr>
<tr>
<td>floppy controllers</td>
<td>811</td>
</tr>
<tr>
<td>conventional memory</td>
<td>345</td>
</tr>
<tr>
<td>conventional memory barrier</td>
<td>432</td>
</tr>
<tr>
<td>converting sector addresses</td>
<td>471</td>
</tr>
<tr>
<td>cooling. See heating/cooling issues</td>
<td>443</td>
</tr>
<tr>
<td>coppermine</td>
<td>79</td>
</tr>
<tr>
<td>coprocessors. See math coprocessors</td>
<td></td>
</tr>
<tr>
<td>copy protection</td>
<td>21</td>
</tr>
<tr>
<td>CDs</td>
<td>596, 649</td>
</tr>
<tr>
<td>DVDs</td>
<td></td>
</tr>
<tr>
<td>CSS (content scramble system)</td>
<td>651-652</td>
</tr>
<tr>
<td>ProtectDisc</td>
<td>652</td>
</tr>
<tr>
<td>region codes used by Blu-ray disc</td>
<td>651</td>
</tr>
<tr>
<td>RPC (regional playback control)</td>
<td>650-651</td>
</tr>
<tr>
<td>copyright protection</td>
<td>21</td>
</tr>
<tr>
<td>cordless input devices. See wireless input devices</td>
<td></td>
</tr>
<tr>
<td>Core 2 processors</td>
<td></td>
</tr>
<tr>
<td>chipsets</td>
<td></td>
</tr>
<tr>
<td>Intel 3x series</td>
<td>223-226</td>
</tr>
<tr>
<td>Intel 4x series</td>
<td>224-226</td>
</tr>
<tr>
<td>Intel 5x series</td>
<td>226-229</td>
</tr>
<tr>
<td>overview</td>
<td>130-132</td>
</tr>
<tr>
<td>Core i processors (Intel)</td>
<td>133-134</td>
</tr>
<tr>
<td>cosmic ray-induced errors</td>
<td>414</td>
</tr>
<tr>
<td>cover assembly (cases)</td>
<td>1027</td>
</tr>
<tr>
<td>CPC Override setting (Memory Configuration menu)</td>
<td>347</td>
</tr>
<tr>
<td>CPU at mmm (error message)</td>
<td>1038</td>
</tr>
<tr>
<td>CPU Fan Control setting (Fan Control Configuration menu)</td>
<td>359</td>
</tr>
<tr>
<td>CPU Frequency Multiplier setting (BIOS Maintenance menu)</td>
<td>344</td>
</tr>
<tr>
<td>CPU Internal Cache/External Cache feature (BIOS Setup)</td>
<td>366</td>
</tr>
<tr>
<td>CPU Microcode Update Revision setting (BIOS Maintenance menu)</td>
<td>344</td>
</tr>
<tr>
<td>CPU Stepping Signature setting (BIOS Maintenance menu)</td>
<td>344</td>
</tr>
<tr>
<td>CPU-Z</td>
<td>201</td>
</tr>
<tr>
<td>CPUs (central processing units). See processors</td>
<td></td>
</tr>
<tr>
<td>crashes, head crashes</td>
<td>519</td>
</tr>
<tr>
<td>CRC (cyclical redundancy checking)</td>
<td>443</td>
</tr>
<tr>
<td>CRC sector data</td>
<td>523-524</td>
</tr>
<tr>
<td>Creative, Sound Blaster sound cards</td>
<td>740</td>
</tr>
<tr>
<td>cross-interleave Reed-Solomon code (CIRC)</td>
<td>595-596</td>
</tr>
<tr>
<td>CrossFire (ATI)</td>
<td>707-708</td>
</tr>
<tr>
<td>CrossFire power connectors</td>
<td>961-963</td>
</tr>
<tr>
<td>crossover UTP (unshielded twisted-pair) cables</td>
<td>886-887</td>
</tr>
<tr>
<td>CRT (cathode ray tube) monitors</td>
<td></td>
</tr>
<tr>
<td>curved picture tubes</td>
<td>722</td>
</tr>
<tr>
<td>dot pitch</td>
<td>721</td>
</tr>
<tr>
<td>electron guns</td>
<td>720</td>
</tr>
<tr>
<td>FST (flat square tube) designs</td>
<td>722</td>
</tr>
<tr>
<td>persistence</td>
<td>721</td>
</tr>
<tr>
<td>raster</td>
<td>722</td>
</tr>
<tr>
<td>refresh rate</td>
<td>721-722</td>
</tr>
<tr>
<td>shadow masks</td>
<td>721</td>
</tr>
<tr>
<td>slotted masks</td>
<td>721</td>
</tr>
<tr>
<td>crystals, quartz</td>
<td>149-150</td>
</tr>
<tr>
<td>CS (cable select)</td>
<td>451-453</td>
</tr>
<tr>
<td>CS (central switch)</td>
<td>842</td>
</tr>
<tr>
<td>CS8220 chipset</td>
<td>199</td>
</tr>
<tr>
<td>CS8221 chipset</td>
<td>199</td>
</tr>
<tr>
<td>CSA (Canadian Standards Agency) power supply safety certifications</td>
<td>969</td>
</tr>
<tr>
<td>CSA Device setting (Chipset Configuration menu)</td>
<td>349</td>
</tr>
<tr>
<td>CSEL (cable select) signals</td>
<td>451</td>
</tr>
<tr>
<td>CSS (contact start stop)</td>
<td>519</td>
</tr>
<tr>
<td>CSS (content scramble system)</td>
<td>651-652</td>
</tr>
<tr>
<td>CST</td>
<td>1066</td>
</tr>
<tr>
<td>curved picture tubes</td>
<td>722</td>
</tr>
<tr>
<td>custom PROM (programmable ROM) programming</td>
<td>322</td>
</tr>
<tr>
<td>cycle times</td>
<td>382</td>
</tr>
<tr>
<td>cyclical redundancy checking (CRC)</td>
<td>443</td>
</tr>
</tbody>
</table>
cycling power, 972-975

Cylinder head sector addressing. See CHS addressing

CYLINDER NUMBER sector data, 523

cylinders, 518, 573

Cyrix
integrated video/motherboard chipsets, 673
processor codenames, 100-101

d-limonene, 1070

D. W. Electrochemicals Stabilant 22a, 806

DACs (digital-to-analog converters), 681, 749

DAE (digital audio extraction), 647

daisy chains, 451

DAO (Disc-at-Once) recording, 633

dASP (drive action/slave present) signals, 451

data bits, 852

data buses. See buses

data compression
codecs, 728
sound cards, 746-747
standards, 856

data encoding. See encoding

Data Over Cable Service Interface Specification (DOCSIS) standards, 839

data pipelines
number per CPU, 51
Pentium processors, 108
u-pipes/v-pipes, 109

DATA sector data, 523-524

DATA SYNC VFO LOCK sector data, 523

data transfer
data transfer cables, 1059
PATA DMA (direct memory access) transfer modes, 455
PATA PIO (Programmed I/O) transfer modes, 454
transfer rates. See transfer rates

data zone (DVDs), 611

databooks, 1002
dataflow analysis, 73-74
DataMaster design, 15

DB (decibels), 748

DB-9 connectors, 825, 881

DB-15 cable (Thicknet), 882

DB-25 connectors, 825

DBB (dynamic bass boost), 761

DC voltages
negative voltages, 915-916
positive voltages
voltage rails, 914-915
voltage regulators, 915

DCMA (Digital Millennium Copyright Act), 650

DDC (Display Data Channel), 689

DDR DIMM
capacity, 401
illustration, 399
notch key definitions, 407

DDR SDRAM, 388-389, 678, 1003

DDR2 DIMM
capacity, 402
illustration, 400
notch key definitions, 407

DDR2 SDRAM, 390-393

DDR2 Voltage setting (Chipset Configuration menu), 349

DDR3 DIMM
illustration, 400
notch key definitions, 408

DDR3 SDRAM, 392-393

DDWG (Digital Display Working Group), 687

De Forest, Lee, 11
dead pixels (LCDs), 736
debouncing keystrokes, 810
decibels (db), 748
decimal-based multiples, prefixes for, 467-468
dedicated servo mechanisms, 540

Default Frequency Ratio setting (BIOS Maintenance menu), 344
deferred writes, 788

delayed writes, 788

Dell proprietary ATX power connectors, 955-957

density
areal density, 506-508
of floppy disks, 579
of tracks, 520
depot repair, 738
depth cueing, 701
designing systems. See system assembly

Desktop Form Factors website, 1001

Desktop Management Interface (DMI), 356

Deutsche Industrie Norm (DIN), 802
device drivers. See drivers

Device Wire Adapter (DWA), 779

DHCP (Dynamic Host Configuration Protocol), 901-902
diagnostic software
commercial diagnostics, 1048
free/user-supported diagnostics, 1048
manufacturer-supplied software, 1034
network interface adapters, 1046
operating system diagnostics, 1047
operating system software, 1034
overview, 1033
peripheral diagnostics software, 1034
POST. See POST (power on self test)
diagnostic status byte codes (CMOS RAM), 339-340
diagnostic tools. See specific tools
dialup modems
56Kbps modems, 856-857
chipsets, 858
limitations, 857-858
Modem-on-Hold feature, 859
PCM Upstream feature, 859
speed, 858
V.90 standard, 858
V.92 standard, 859-860
asynchronous versus synchronous communications, 851
AT commands, 853
baud rates, 853-854
bit rates, 853-854
data bits, 852
data-compression standards, 856
DMI (Direct Media Interface)

Index

error-correction protocols, 855-856
modem standards and protocols, 852-853
modulation standards, 854-855
overview, 851-852
parity, 852
stop bits, 852
TCP/IP, 903-904

DIB (Dual Independent Bus) architecture, 74-75
Pentium II processors, 120
Pentium Pro processors, 115
dies, 79, 110, 119
differential NRZ (nonreturn to zero), 458
digital audio extraction (DAE), 647
digital display interfaces
DisplayPort, 693-697
DVI (Digital Video Interface), 687-690
HDMI (High Definition Multimedia Interface), 690-693
overview, 687
Digital Display Working Group (DDWG), 687
digital infrared thermometers, 985
digital light processing (DLP) projectors, 724-725
digital micromirror device (DMD), 724
Digital Millennium Copyright Act (DCMA), 650
digital multimeters. See DMMs
Digital Research, 15
DR-DOS, 22
digital rights management (DRM), 649-650
digital signal processors (DSPs), 747
digital subscriber line. See DSL
digital versatile discs. See DVDs
Digital Video Express (DIVX), 641
Digital Video Interface (DVI), 687-690
digital-to-analog converters (DACs), 681, 749
DIMMs (dual inline memory modules), 397, 1002
buffered, 406
buying tips, 421-422
capacities, 401-402
DDR DIMM, 399, 407
DDR2 DIMM, 400, 407
DDR3 DIMM, 400, 408
SDR DIMMs, 406-407
SDRAM DIMM, 399
SPD (serial presence detect), 406
unbuffered, 407
DIN (Deutsche Industrie Norm), 802
DIP (dual inline package) chips, 397
direct disc labeling systems, 663
Direct Media Interface (DMI), 204, 217
direct memory access. See DMA
direct overwrite, 605
direct-mapped cache, 68
DirectShow, 728
DirectX, 705-706, 740
disabling parity-checking, 417
disassembly
 cleaning procedures, 1072
 of keyboards, 819
Disc-at-Once (DAO) recording, 633
disc-stamping operation (CDs), 588
Discard Changes command (BIOS Exit menu), 365
discrete multitone (DMT), 842
discs. See CDs; DVDs
DiscT@2 ("disk tattoo") technology, 663
DISK BOOT FAILURE (error message), 372
Disk Change signal, 578-579
disk drive power connectors, 958
disk sweep, 538
Diskette Controller setting (Floppy Configuration menu), 355
Diskette Write Protect setting (Floppy Configuration menu), 355
disks (floppy). See floppy disks
 displacement mapping, 702
Display Data Channel (DDC), 689
display interface (video)
digital display interfaces
DisplayPort, 693-697
DVI (Digital Video Interface), 687-690
HDMI (High Definition Multimedia Interface), 690-693
overview, 687
overview, 683-684
SVGA (Super VGA), 686
TV display interfaces, 698-699
VGA (Video Graphics Array), 684-686
XGA (Extended Graphics Array), 686-687
Display Power Management Signaling (DPMS), 718
Display Setup Prompt setting (Boot Configuration menu), 348
Display switch is set incorrectly (error message), 1038
DisplayMate, 732
DisplayPort, 693-697
displays. See monitors
distributed parity, blocked data with, 486
divide errors, 427
DIVX (Digital Video Express), 641
dL (digital light processing) projectors, 724-725
DMA (direct memory access) busmaster DMA, 455
CD/DVD utilization, 658
channels, 300-301, 756
multiword, 455
singleword, 455
UDMA (Ultra-DMA), 441-444
Ultra-DMA, 456
DMA Mode setting (Drive Configuration menu), 353
DMD (digital micromirror device), 724
DMI (Desktop Management Interface), 356
DMI (Direct Media Interface), 204, 217
DMI Event Log setting (Event Logging menu), 356
DMMs (digital multimeters), 818, 982, 1059, 1062-1063
back probing, 983-985
buying tips, 982-983
measuring voltage with, 983-985
DMT (discrete multitone), 842
DOCSIS (Data Over Cable Service Interface Specification) standards, 839
documentation of chipsets, 312
Global Engineering Documents, 439
of motherboards, 312
of physical configuration, 1011
Dolby Digital surround sound, 763
doping, 12, 79
DOS boot process, 1053
capacity limitations, 548
DPMI (DOS protected mode interface), 47
drive limitations, 484
extenders, 47
dot pitch, 711, 721
double distributed parity, blocked data with, 486
Double-Density recording, 502
double-sided memory modules, 397
DPMI (DOS protected mode interface), 47
DPMS (Display Power Management Signaling), 718
DR-DOS, 22
DR-DOS/OpenDOS Enhancement Project, 22
DRAM (dynamic RAM)
compared to SRAM, 379-380
DDR SDRAM, 388-389
DDR2 SDRAM, 390-393
DDR3 SDRAM, 392-393
FPO DRAM (Fast Page Mode DRAM), 383-384
overview, 377-379
RDRAM (Rambus DRAM), 393-396
SDRAM (synchronous DRAM), 385-387
drive action/slave present (DASP) signals, 451
Drive Configuration menu (BIOS Setup), 352-355
Drive Installed setting (Drive Configuration menu), 353
drivers. See also ROM BIOS definition of, 21
sound card drivers, 747
video drivers, 732-733
drives. See CD drives; DVD drives; floppy drives; hard drives
DRM (digital rights management), 649-650
DSK (Dvorak Simplified Keyboard), 817
DSL (digital subscriber line), 841
ADSL (Asymmetric DSL), 843
availability, 842-843
CAP (carrierless amplitude/phase), 842
DMT (discrete multitone), 842
DSL pricing, 844-845
DSLAM (DSL access multiplexer), 842
how it works, 842
low-pass filters, 842
SDSL (Symmetrical DSL), 843
security, 843
self-installing, 843-844
transceivers, 842
DSLAM (DSL access multiplexer), 842
DSPs (digital signal processors), 747
DTS Surround sound, 763
DTX motherboards, 192
Dual Cavity PGA packaging, 115
dual-channel memory, 413
dual-core processors. See multicore processors
dual-drive PATA (Parallel ATA) configuration, 451-454
dual-GPU scene rendering
ATI CrossFire/CrossFire X, 707-708
NVIDIA SLI, 706-707
Dual Independent Bus architecture (DIB), 74-75
dual inline memory modules. See DIMMs
dual inline package (DIP) chips, 397
dual-link DVI, 688
dual-speed hubs, 895
dual-speed switches, 895
DualDisc, 638-639
Dualview, 726
Duron chipsets, 138, 202
MuTIOL architecture, 244
nForce/nForce2, 245-246
Radeon IGP, 247-249
reference table, 238-239
SiS chipset reference tables, 242-244
VIA chipset reference tables, 239-242
dust, 1071, 1077
DVD CCA (DVD Copy Control Association), 650
DVD drives. See also DVDs
access times, 658
booting from floppy disk, 662
buffers/cache, 658
choosing, 1005
compatibility, 641
definition of, 29
DMA and Ultra-DMA, 658
drive sealing, 660
DVD Multi specification, 627
firmware updates, 668-669
interfaces, 659
loading mechanisms, 659-660
MultiRead specifications, 606-607
self-cleaning lenses, 660
speed, 656
troubleshooting, 1089
disc read failures, 663-666
disc write failures, 664-665
problems burning discs with Windows built-in recording, 666
slow drive speeds, 665
copy protection
 APS (analog protection system), 652
 CSS (content scramble system), 651-652
 region codes used by Blu-ray disc, 651
 RPC (regional playback control), 650-651
data zone, 611
DIVX (Digital Video Express), 641
dVD Forum, 609
dVD Multi specification, 627
dVDs. See also DVD drives
 audio data information, 613-614
 bootable DVDs, 662-663
 capacity, 615-618
 care and maintenance, 667-668
 construction and technology, 609-610
DVI (Digital Video Interface), 687-690
DVI-D (integrated) connector, 689
DVI-I (integrated) connector, 689
DVMT Mode setting (Video Configuration menu), 357
Dvorak, August, 817
Dvorak keyboard layout, 817
Dvorak Simplified Keyboard (DSK), 817
DWA (Device Wire Adapter), 779
DX2/OverDrive processors, 107
dynamic bass boost (DBB), 761
dynamic execution, 73-74
dynamic RAM. See DRAM
ED (extra-high density) floppy format, 510
EDD (Enhanced Disk Drive) specifications, 475
dynamic execution, 73-74
electrical power. See power supply
electroforming, 588
electromagnetic emissions (CRTs), 722-723
electromagnetism, 490
electron guns (CRT), 720
comparison of, 504-505
EFM (eight to fourteen modulation) data encoding, 597-599
EFM+ (eight to sixteen) data encoding, 619
FM (Frequency Modulation), 502
MFM (Modified Frequency Modulation), 492, 502
overview, 500-501
RLL (Run Length Limited), 492, 502-504
endecs, 436, 500
Energy 2000 standard, 718
Energy Lake setting (Power menu), 362
energy-saving features. See power management
Energy Star standard, 718, 975
Englebart, Douglas, 821
Enhanced 101-key keyboards, 802-803, 813
Enhanced 3DNow! technology, 73
Enhanced Capabilities (ECP) parallel ports, 799
Enhanced Disk Drive (EDD), 475
Enhanced Parallel Port (EPP), 798-799
ENIAC (Electrical Numerical Integrator and Calculator), 10
evironmental acclimation (hard drives), 543
EPP (Enhanced Parallel Port), 798-799
EPROM (erasable programmable ROM), 322-323
EPS power supply, 926-928
EPS12V power supply, 926-928
erasable programmable ROM (EPROM), 322-323
erasers, 323, 1072
ergonomic keyboards, 817
Ergonomic Mouse, 833-834
Ergonomic Resources mechanical-switch keyboards, 805
error correction codes (ECC), 418-419, 486
error-correction protocols, 855-856
Error loading operating system (error message), 373-374
error messages. See also troubleshooting
ACPI (Advanced Configuration and Power Interface) error codes, 368
BIOS error messages
AMI BIOS messages, 371-372
Award BIOS messages, 372
Compaq BIOS messages, 372
IBM BIOS messages, 370-371
overview, 369-370
Phoenix BIOS messages, 372
CD read errors, 595-596
DVD errors, 614-615
Fatal Exception errors, 1082
MBR boot error messages,
372-373
Error loading operating system, 373-374
Invalid partition table, 373
Missing operating system,
374
memory errors, 427
Missing operating system,
1087-1088
POST errors. See POST (power on self test)
POST (power on self test), 1036
Award BIOS, 1042-1045
Award BIOS/Phoenix FirstBIOS, 1038-1039
IBM/lenovo BIOS
POST/Diagnostics, 1045-1046
soft errors, 378, 414-415
STOP errors, 1082
ESD (electrostatic discharge), 423, 1010-1011, 1060
Estridge, Don, 14
Ethernet, 870-871
cables, 882
definition of, 871-872
Fast Ethernet, 871-872
Gigabit Ethernet, 871-872
hubs, 892-893, 909
compared to switches, 893-895
dual-speed, 895
managed/unmanaged, 893
placement of, 896
ports, 895-896
stackable, 895
switches
address storing, 893
choosing, 909
compared to hubs, 893-895
dual-speed, 895
placement of, 896
ports, 895-896
stackable, 895
Wi-Fi (Wireless Fidelity)
access points, 895-897
DHCP support, 901-902
NICs (network interface cards), 897
point-to-point topology, 899
security, 899-901
signal boosters, 899
specialized antennas, 899
star topology, 899
users per access point, 901
wireless bridges, 899
wireless repeaters, 899
wireless routers, 899
wireless Ethernet
802.11a standard, 871, 875-876
802.11b standard, 871, 874-875
802.11g standard, 876
802.11n standard, 871, 876-877
choosing a wireless Ethernet standard, 878
overview, 873-874
even cycles (RDRAM), 394
Event Log Capacity setting
(Event Logging menu), 356
Event Log Configuration menu
(BIOS Setup), 356
Event Log Validity setting (Event Logging menu), 356
Exit Discarding Changes command (BIOS Exit menu), 365
Exit menu (BIOS Setup), 365
Exit Saving Changes command (BIOS Exit menu), 365
expansion cards, 1027
extended ATX motherboards, 188
extended ATX power supply, 928
Extended Burn-in Mode setting (Chipset Configuration menu), 349
Extended Configuration setting (Chipset Configuration menu), 349
extended data out RAM (EDO RAM), 384-385
Extended Graphics Array (XVGA), 686-687
Extended Industry Standard Architecture (EISA) buses, 284, 296
extended memory, 345
extenders (DOS), 47
external cache. See Level 2 cache
external data buses, 42-43
external speakers. See speakers
extra-high density (ED) floppy format, 510
extranets, 866
Extreme Edition processors, 128-129
Extreme Graphics Architecture, 201-202
extremely low frequency (ELF) emissions, 722

DMMs (digital multimeters)
back probing, 983-985
buying tips, 982-983
measuring voltage with, 983-985
inadequate cooling, 981-982
overloaded power supply, 980-981
variable voltage transformers, 985
Fan Control Configuration menu (BIOS Setup), 359
fans, 163
BIOS Setup settings, 359
power connectors, 269
Faraday, Michael, 490
Fast Ethernet, 871-872
Fast Mode parallel ports, 798-799
Fast Page Mode DRAM (FPO DRAM), 383-384
Fast POST, 328
Fastchip, 324
FAT (file allocation table), 528
FAT32 (file allocation table, 32-bit), 528
fatal exception errors, 427, 1034, 1082
fathers (CDs), 588
fault tolerance
ECC (error correcting code), 418-419
parity checking, 415-418
FC-PGA (flip-chip pin grid array), 83
FCC (Federal Communications Commission) power supply safety certifications, 970
FDDI (Fiber Distributed Data Interface), 891
FDIV (floating-point divide) bug, 113-114
Femto air bearing sliders, 500
ferrite read/write heads, 494
FHSS (frequency hopping spread spectrum), 878
Fiber Distributed Data Interface (FDDI), 891
FIC (flex interconnect cable), 498
fields, magnetic, 491-492

Fifth SATA Master setting (Drive Configuration menu), 354
fifth-generation processors
chipset reference table, 207-208
Intel-compatible, 114
MMX (multimedia extensions), 71-72
Pentium
address bus width, 109
addressable memory, 109
BTB (branch target buffer), 109
FDIV (floating-point divide) bug, 113-114
first-generation, 110
instruction processing, 109
math coprocessor, 109
second-generation, 110-112
specifications, 108-109
superscalar architecture, 108
twin data pipelines, 108-109
Pentium-compatible, 73, 136
Pentium-MMX, 112-113
SSE (Streaming SIMD Extensions), 72-73
file allocation table (FAT), 528
file systems
CD file systems, 642
HFS (Hierarchical File System), 646
High Sierra, 643
ISO 9660, 643-644
Joliet, 645
Rock Ridge, 646
table of file system formats, 642
UDF (Universal Disk Format), 645-646
FAT (file allocation table), 528
FAT32 (file allocation table, 32-bit), 528
NTFS (Windows NT File System), 528
files. See specific files
files (metal), 1059
filtering
air filters, 542-543
anisotropic filtering, 703
bilinear filtering, 702
low-pass filters, 842
polarizing LCD filters, 718-719
trilinear filtering, 702

FireWire
compared to USB, 784-788
FireWire 400, 781-782
FireWire 800, 781-784
FireWire 3200, 783
hot-plugging, 788-791
overview, 780-781
speed of, 785-788
tailgates, 442

firmware upgrades, 314, 324, 668-669, 676

First SATA Master setting (Drive Configuration menu), 354

first-generation Pentium processors, 110

first-generation processors
8086, 101
8088, 101-102

first-party memory modules, 421
FirstBIOS (Phoenix), 326

Fixed Disk Boot Sector setting (BIOS Maintenance menu), 344

fixed disk drives. See hard drives

flash memory, 323-324, 376, 557-559
capacities, 565-566
CompactFlash, 559-560
comparison of, 564-566
MMC (MultiMediaCard), 560
NAND (Not AND), 558
NOR (Not OR), 558
PC Card, 561
physical size, 559
reading, 567
recovering, 334-337
SD (SecureDigital), 560
SmartMedia, 560
Sony Memory Stick, 560
Sony Memory Stick Pro, 561
SSD (solid-state drive)
definition of, 561
physical SSDs, 562-564
virtual SSD (RAMdisk), 561-562
with Windows 7, 563
upgrading, 331-332
with automated bootable media images, 332-333
with user-created bootable media, 333-334
Windows executable upgrades, 332
write protection, 331
USB flash drives, 564
xD-Picture Card, 561

flashlights, 1058
Flat Panel Display-Link (FPD-Link), 687

flat shading, 699
flat square tube (FST) monitors, 722
flex interconnect cable (FIC), 498
flex ATX motherboards, 190-192
flex ATX power supply, 933
flexible motherboards, 90
flicker (screen), 722
flicker-free refresh rates, 715
flip-chip pin grid array (FC-PGA), 83

floating-point calculations, 703
floating-point divide (FDIV) bug, 113-114
floating-point units (math coprocessors), 99

Floppy A setting (Floppy Configuration menu), 356
Floppy Configuration menu (BIOS Setup), 355-356
floppy disks
booting from, 662
care and handling
magnetic fields, 581
metal detectors, 582
temperatures, 581
x-ray machines, 581-582
ED (extra-high density) floppy format, 510
media specifications
3 1/2" floppy disk media, 580-581
tunnel erasure, 573-574

floppy power connectors, 958-960
floppy upgrade boards, 328

Flowers, Tommy, 10

fluid dynamic bearings, 544
flux, 492
FM encoding, 502
FM synthesis, 746
foam element keyswitches, 806
fogging, 701
For Music Use Only discs, 648
foreign languages, international keyboard layouts, 814
Form Factors website, 188
formatted floppy drive parameters, 569-570

floppy drives
1.2MB 5 1/4" drives, 571
1.44MB 3 1/2" drives, 570-571
2.88MB 3 1/2" drives, 571
360KB 5 1/4" drives, 571
720KB 3 1/2" drives, 571

BIOS Setup settings, 355-356
capacity, 577
card cables, 575-577
collectors, 574
cylinders, 573
definition of, 29
disk Change signal, 578-579
disk formats, 577
floppy disk media specifications
3 1/2" floppy disk media, 580-581
coercivity, 579
density, 579
disk thickness, 580
table of, 579
formatted parameters, 569-570
formatting, 578
head actuator mechanisms, 573
history of, 569
interfaces, 571
power and data connectors, 574-575
power connectors, 958-960
read/write heads, 571-573
sectors, 577
tracks, 577

formatting, 578
head actuator mechanisms, 573
history of, 569
interfaces, 571
power and data connectors, 574-575
power connectors, 958-960
read/write heads, 571-573
sectors, 577
tracks, 577

for Music Use Only discs, 648
foreign languages, international keyboard layouts, 814
Form Factors website, 188
formatted floppy drive parameters, 569-570
formatting
floppy drives, 578
hard drives
 high-level formatting, 524-525, 528-529
 low-level formatting, 524-527
 partitions, 527-528
forum.scottmueller.com, 2
four-way set associative cache, 68, 115
Fourth SATA Master setting (Drive Configuration menu), 354
fourth-generation (486) processors
 486DX, 106
 486SL, 107
 AMD 486 (5x86), 108
 DX2/OverDrive, 107
 main features, 105-106
Fowler-Nordheim tunneling, 558
FPD-Link (Flat Panel Display-Link), 687
FPO DRAM (Fast Page Mode DRAM), 383-384
FPUs (floating point units), 109
 FDIV (floating-point divide) bug, 113-114
Frame Buffer Size setting (Video Configuration menu), 357
frames (DVDs), 613-614
fraudulent processors, 82
free diagnostic software, 1048
FreeDOS, 22
frequency hopping spread spectrum (FHSS), 878
frequency modulation (FM)
 FM encoding, 502
 FM synthesis, 746
frequency response, 749, 760
frequency-shift keying (FSK), 855
frequency synthesizers, 151
frequency timing generator (FTG), 151
fretting, 406
Front Panel 1394 Port 1 setting (Peripheral Configuration menu), 351
Front Panel 1394 Port 2 setting (Peripheral Configuration menu), 351
front panel motherboard-controlled switches, 934-935
front panel power supply AC switches, 935-937
frozen systems, troubleshooting, 1086-1090
FSB (front side bus). See buses
FSK (frequency-shift keying), 855
ESP (Fortron Source Power), 933
FST (flat square tube) monitors, 722
FTG (frequency timing generator), 151
Fujiwara, T., 510
Full On state (APM), 976
full-duplex operation, 880
full-duplex protocols, 855
full-size AT motherboards, 172-174
fully associative mapped cache, 68
functions (USB), 767
FutureMark, 53

G
Gamberg, Richard, 860
gang programmers, 321
Gate A20 Option feature (BIOS Setup), 366
GDDR2 SDRAM, 678
GDDR3 SDRAM, 678-679
GDDR4 SDRAM, 679
GDDR5 SDRAM, 679
generic hubs, 767
general images (monitors), 722
GHz (gigahertz), 37, 381

Giant Brains, or Machines That Think (Berkeley), 20
giant magneto-resistive (GMR) heads, 497-498
Gib (gigabinarybytes), 473
Gigabit Ethernet, 871-872
Gigabyte Face Wizard, 329
gigahertz (GHz), 37, 381
glass in hard disks, 491
Glidepoint, 832

Global Engineering
 Documents, 439
global protection faults, 427
GM Vehicle Calibration
 Information website, 324
GMR (giant magneto-resistive) heads, 497-498
Gouraud shading, 699, 702
GParted Live, 528
GPU (video graphics processor), 676
Grantsdale (915) chipsets, 220-221
Graphene-based transistors, 13
graphics
 3D graphics accelerators. See 3D graphics accelerators
 Extreme Graphics Architecture, 201-202
graphics adapters. See video adapters
gray code, 537
grounding loops, 884
Grove, Andrew, 31

H
half-bridge forward converting switching power supply, 963
half-duplex operation, 880
half-duplex protocols, 855
Halt On setting (Boot menu), 364
hand tools, 1056
 3 1/2" drive enclosure, 1059
 cleaning materials, 1059
 data transfer cables and adapters, 1059
 electric screwdrivers, 1058
 ESD (electrostatic discharge) protection kits, 1060
 files, 1059
 flashlights, 1058
 hemostats, 1058
 lithium coin cell batteries, 1060
 markers/pens, 1059
 needle-nose pliers, 1058
 nut drivers, 1057
 nylon cable ties, 1059
 parts grabbers, 1057, 1067
 PS/2 Y adapter, 1059
screwdrivers, 1057
spare parts, 1060
Torx drivers, 1057
tweezers, 1057
USB/FireWire cable adapter, 1060
vises/clamps, 1059
Windows 2000/XP bootable CD, 1059
Windows 98 Startup floppy, 1059
wire cutters, 1059
wire strippers, 1059
HARD DISK initializing. Please wait a moment (error message), 1038
HARD DISK INSTALL FAILURE (error message), 1038
Hard Disk Pre-Delay setting (Drive Configuration menu), 353
Hard disk(s) diagnosis fail (error message), 1038
Hard Drive setting (Power menu), 362
hard drives. See also ATA (AT Attachment); magnetic storage
0.85-inch drive, 518
305 RAMAC (Random Access Method of Accounting and Control) drives, 489
actuators, 518
air filters, 542-543
areal density, 506-508
ATA drive capacity limitations, 467
2.1GB barrier, 477
4.2GB barrier, 477-478
8.4GB barrier, 481-482
137GB barrier and beyond, 482-484
BIOS commands versus ATA commands, 472
BIOS limitations, 468-470
CHS bit-shift translation, 474-476
CHS limitations, 472-474
CHS versus LBA, 470-471
CHS/LBA conversions, 471
LBA-assist translation, 478-481
table of, 468
BIOS Setup settings, 352-355
cables/connectors, 545
capacity, 514-515
BIOS limitations, 546-548
capacity limitations, 546
operating system limitations, 548
choosing, 1004-1005
configuration
automatic drive detection, 1026
overview, 1022-1023
cost of, 515, 556
CSS (contact start stop) design, 519
cylinders, 518
definition of, 29, 513
dual-drive configurations (PATA), 451-454
form factors
1" hard drives, 518
1.8" hard drives, 517
2.5" hard drives, 517
3.5" half-height drives, 517
5.25" drives, 516-517
table of, 515-516
heads, 519-520
air bearing, 520
automatic head parking, 541
HDAs (head disk assemblies), 520
head actuator mechanisms, 534-537
head crashes, 519
head/medium interaction, 520-521
head sliders, 498-500
read/write heads, 493-498, 509-511, 532-534
heating/cooling issues, 543
high-level formatting, 524-525, 528-529
hot-swappable drives, 790
installation, 1023-1026
load/unload mechanism, 520
logic boards, 544-545
low-level formatting, 524-525
standard recording, 525
ZBR (zoned-bit recording), 525-527
Microdrive, 518
mirroring, 486
operating system limitations, 484-485
partitioning, 527-528
performance
access times, 551
average seek times, 551
cache programs, 552
interleave, 552
latency, 551
transfer rates, 548-550
platters, 518, 530
RAID (redundant array of independent disks), 327, 485-488
recording media, 530
AFC (antiferromagnetically coupled), 532
oxide, 531
thin-film, 531
reliability
MTBF (mean time between failures), 553
PFA (Predictive Failure Analysis), 554
S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology), 553-555
Safe Removal settings, 789-790
sectors, 518, 521
data bytes, 522
fields, 523-524
gaps in, 522
headers/trailers, 522
No-ID recording, 522
No-ID sector formatting, 522
numbering, 521
typical track/sector format, 523
usable space, 522-523
seek times, 515
servo mechanisms, 537-540
dedicated servo, 540
disk sweep, 538
embedded servo, 539-540
gray code, 537
servowriters, 537
thermal recalibration, 538
wedge servo, 539
spin rates, 519
spindle motors, 543-544
striping, 486
striping with parity, 486
technological advancements, 514-515
tracks, 518-523
defined, 521
densities, 520
typical track/sector format, 523
transfer rates, 515
troubleshooting, 1087-1090
Winchester drives, 514
zones, 526
hard error rates (HERs), 414
hard memory fails, 414
hardcards, 436
hardware monitoring display (BIOS Setup), 359
hardware resources, 1007-1008
harmonic distortion, 749, 760
Haughton, Ken, 514
HavokFX, 708
HD-DVD, 629-630
HDAs (head disk assemblies), 520
HDMI (High Definition Multimedia Interface), 690-693
Head 0 (floppy drives), 571
Head 1 (floppy drives), 571
head actuator mechanisms
comparison of, 534
floppy drives, 573
servo mechanisms
dedicated servo, 540
disk sweep, 538
embedded servo, 539-540
gray code, 537
servowriters, 537
thermal recalibration, 538
wedge servo, 539
stepper motors, 535
voice-coil actuators, 535-537
head crashes, 519
head disk assemblies (HDAs), 520
HEAD NUMBER sector data, 523
head sliders, 498-500
head/medium interaction (hard drives), 520
headers (sector), 522
headphones, 761
heads, 519
air bearing, 520
automatic head parking, 541
cautions, 520
floppy drives
head actuator mechanisms, 573
read/write heads, 571, 573
HDAs (head disk assemblies), 520
head actuator mechanisms
comparison of, 534
stepper motors, 535
voice-coil actuators, 535-537
head crashes, 519
head/medium interaction, 520-521
read/write heads, 491, 532-534
ferrite, 494
GMR (giant magneto-resistive), 497-498
MIG (Metal-In-Gap), 494-495
MR (magneto-resistive), 495-496
overview, 493-494
PMR (perpendicular magnetic recording), 509-511
TF (thin film), 495
servo mechanisms, 537-540
dedicated servo, 540
disk sweep, 538
embedded servo, 539-540
gray code, 537
servowriters, 537
thermal recalibration, 538
wedge servo, 539
heat spreaders, 84
heating/cooling issues
cooling fans, 1007
floppy disks, 581
hard disk temperature acclimation, 543
heatsinks
active heatsinks, 157-159
boutique heatsinks, 161
choosing, 1006
heatsink clips, 157
installation, 162, 1012-1013
passive heatsinks, 160
purchasing, 160
ratings and calculations, 161-162
infrared thermometers, 1067
liquid cooling, 162-163
maximum heatsink inlet temperatures, 164
positive-pressure-ventilation design, 922
power supply, 981-982
preventative maintenance, 1073-1074
temperature probes, 1066
thermally advantaged chassis cooling fans, 163
maximum heatsink inlet temperatures, 164
processor ducts, 165-168
specifications, 164-165
troubleshooting, 1086-1087
heatsinks, 157, 1006
active heatsinks, 157-159
boutique heatsinks, 161
heatsink clips, 157
installation, 162, 1012-1013
maximum heatsink inlet temperatures, 164
passive heatsinks, 160
purchasing, 160
ratings and calculations, 161-162
help. See diagnostic software; troubleshooting
hemostats, 1058
HERs (hard error rates), 414
Hertz (Hz), 748
Hertz, Heinrich Rudolph, 50
heterogeneous adapters, 727
Hewlett-Packard 9100A electronic calculator, 20
HFC (hybrid fiber/coax) networks, 838
HFS (Hierarchical File System), 646
Hi-Flex AMI BIOS, 325
Hibernate (S4) state, 975
HID (Human Interface Device) codes, 814
Hierarchical File System (HFS), 646
High Definition Multimedia Interface (HDMI), 690-693
high memory area (HMA), 47
Home networks
 Ethernet. See Ethernet
 HomePNA, 905
 powerline networks, 906-907
HomePlug 1.0, 906
HomePlug AV, 907
HomePNA, 905
homogeneous adapters, 726
horizontal frequency, 714-716
host adapters. See controllers
Host Burn-in Mode setting
 (Chipset Configuration menu), 349
Host Burn-in Mode Type setting
 (Chipset Configuration menu), 349
host interface adapters. See ATA
 (AT Attachment); SCSI (small
computer system interface)
host protected areas (HPAs),
 340-341, 442, 465-466
Host Spread Spectrum setting
 (Chipset Configuration menu), 349
Host Wire Adapter (HWA), 779
hot-plugging, 772, 788-791
hot-swappable drives, 790
HP
 KittyHawk, 518
 LightScribe, 663
HPAs (host protected areas),
 340-341, 442, 465-466
HPET setting (Chipset
 Configuration menu), 349
HT (Hyper-Threading)
 Technology, 75-76
hub architecture (chipsets),
 204-205
hub clamping area
 CDs, 591
 DVDs, 610
hubs, 766-767, 892-893
 AHA (accelerated hub
 architecture), 204
 buying tips, 909
 chipset hub architecture,
 204-205
 compared to switches, 893-895
dual-speeds, 895-896
I998xxxx-I99906xx POST (power
 on self test) codes, 1045
IA-32 mode, 45-46
IA-32 virtual real mode, 46-47
IA-32e 64-bit extension mode,
 47-49
IA-64 processors, 36
IBM
 305 RAMAC (Random Access
 Method of Accounting and
 Control) drives, 489
 726 Tape Unit, 489
index
Home networks
 Ethernet. See Ethernet
 HomePNA, 905
 powerline networks, 906-907
HomePlug 1.0, 906
HomePlug AV, 907
HomePNA, 905
homogeneous adapters, 726
horizontal frequency, 714-716
host adapters. See controllers
Host Burn-in Mode setting
 (Chipset Configuration menu), 349
Host Burn-in Mode Type setting
 (Chipset Configuration menu), 349
host interface adapters. See ATA
 (AT Attachment); SCSI (small
computer system interface)
host protected areas (HPAs),
 340-341, 442, 465-466
Host Spread Spectrum setting
 (Chipset Configuration menu), 349
Host Wire Adapter (HWA), 779
hot-plugging, 772, 788-791
hot-swappable drives, 790
HP
 KittyHawk, 518
 LightScribe, 663
HPAs (host protected areas),
 340-341, 442, 465-466
HPET setting (Chipset
 Configuration menu), 349
HT (Hyper-Threading)
 Technology, 75-76
hub architecture (chipsets),
 204-205
hub clamping area
 CDs, 591
 DVDs, 610
hubs, 766-767, 892-893
 AHA (accelerated hub
 architecture), 204
 buying tips, 909
 chipset hub architecture,
 204-205
 compared to switches, 893-895
dual-speeds, 895-896
I998xxxx-I99906xx POST (power
 on self test) codes, 1045
IA-32 mode, 45-46
IA-32 virtual real mode, 46-47
IA-32e 64-bit extension mode,
 47-49
IA-64 processors, 36
IBM
 305 RAMAC (Random Access
 Method of Accounting and
 Control) drives, 489
 726 Tape Unit, 489
BIOS error messages, 370-371
POST beep codes, 1042
POST display error codes, 1042-1045
clones, 19
compatibles, 19
development of magnetic storage, 489-490
Enhanced 101-key keyboard, 802-803, 813
history of IBM PCs, 14-15, 101-102
IBM701 Defense Calculator, 489
MicroDrive, 518, 568-569
PS/2 mouse interfaces, 825-826
TrackPoint, 829-831
ICH (I/O Controller Hub), 204
iCOMP 2.0 index ratings, 52, 120
ICs (integrated circuits), 13
ID error detection (IED) codes, 613
ID VFO LOCK sector data, 523
IDE (Integrated Drive Electronics). See ATA (AT Attachment)
IDENTIFY DRIVE command (ATA), 463
IDs
ID strings (BIOS), viewing, 326
PnP (Plug and Play) device IDs, 367
IEC (International Electrotechnical Commission), 505, 969
IEC prefixes (binary multiples), 578
IED (ID error detection) codes, 613
IEEE (Institute of Electrical and Electronic Engineers)
802.11a standard (wireless Ethernet), 871, 875-876
802.11b standard (wireless Ethernet), 871, 874-875, 899-901
802.11g standard (wireless Ethernet), 876
802.11n standard (wireless Ethernet), 871, 876-877
IEEE 1284 standard, 796-798
IEEE 1394
1394 standard, 780-781
1394a standard, 781-782
1394b S3200 standard, 783
1394b standard, 782-784
CD/DVD drives, 659
compared to USB, 784-788
hot-plugging, 788-791
motherboard front panel
IEEE 1394 connector pinout, 265
overview, 780
speed of, 785-788
IGPs (integrated graphics processors), 245
IMA (Interactive Multimedia Association), 747
image abstractions, 701
image mastering application program interface (IMAPI), 634
images. See graphics
IMAPI (image mastering application program interface), 634
ImgBurn, 333
in-plane switching (IPS), 719
Inactivity Timer setting (Power menu), 362
inductive power, 968
industry control of PC hardware/software, 20-26
Industry Standard Architecture. See ISA buses
InformIT Upgrading website, 2
infrared (IR) input devices, 834
infrared data front panel connector pinout, 267
infrared thermometers, 985, 1067
infrastructure mode, 897
initial program load (IPL) ROM, 328
input devices
BIOS Setup settings, 350-352
choosing, 1005
diagnostics software, 1034
keyboards, 801
104-key, 803-804
buying tips, 820-821
cleaning, 819-820, 1073
connectors, 814-816, 818
controllers, 811
definition of, 29
disassembling, 819
DSK (Dvorak Simplified Keyboard), 817
Enhanced 101-key, 802-803, 813
ergonomic, 817
international layouts, 814
key matrix, 810
key numbers, 813-814
keyboard interface, 810-811
keyswitch design, 804-810
scan codes, 813-814
skins, 820
troubleshooting, 817-818
typematic functions, 811-813
USB (Universal Serial Bus), 816-817
mouse
ball-driven mouse, 822-823
buttons, 822
cleaning, 828, 1073
components, 821-822
definition of, 29
Ergonomic Mouse, 833-834
history of, 821
hybrid mouse, 826
manufacturers, 821
optical mouse, 823-824
power connectors, 958
PS/2 mouse interfaces, 825-826
scroll wheels, 828
serial interfaces, 825
troubleshooting, 827-828
USB (Universal Serial Bus), 827
pointing devices, 829-831
touch pads, 832
trackballs, 821, 833
wireless
Bluetooth, 835
IR (infrared), 834
power management, 835-836
proprietary radio frequency, 834
troubleshooting, 836
input range (power supply), 967
installation
cables, 1027
CD/DVD firmware, 669
DSL (digital subscriber line), 843-844
expansion cards, 1027
hard drives, 1023-1026
heatsinks, 162, 1012-1013
memory modules, 1014-1015
motherboard cables, 1021-1022
networks software, 910
NICs (network interface cards), 907-908
operating systems, 1030-1031
power supply, 1019-1021
processor ducts, 166-167
processors, 1012-1013
RAM (random access memory), 423-424
RIMMs (Rambus inline memory modules), 409
sound cards
expansion slot selection, 753-754
speaker connections, 754-755
stereo system
connections, 755
video adapters, 1026-1027
Institute of Electrical and
Electronic Engineers. See IEEE
instruction processing
(Pentium), 109
instruction sets (math coprocessors), 99
INT13h
BIOS CHS parameter limits, 473
commands, 472
INTA# interrupts, 298
INTB# interrupts, 298
INTC# interrupts, 298
INTD# interrupts, 298
integral cache. See Level 1 cache
Integral Peripherals 1.8” hard
drives, 517
integral power supply AC
switches, 935
integrated adapters, 1004
integrated audio chipsets
AC’97 integrated audio, 750-752
Intel Azalia HD Audio, 753
integral circuits (ICs), 13
Integrated Drive Electronics
(IDE). See ATA (AT Attachment)
ingegrated graphics processors
(IGPs), 245
integrated Level 2 cache, 117
Integrated Services Digital
Network (ISDN), 848-849
integrated video/motherboard
chipsets, 673-675
Intel
4004 processor, 32
8008 processor, 33
8085 processor, 33
8086 processor, 34
8088 processor, 34
Azalia HD Audio, 753
BTX motherboards, 180-182
chipsets, 200
3x series, 223-226
4x series, 224-226
5x series, 226-229
386/486chipsets, 206-207
915, 220-221
925X, 221
945 Express, 221
955X, 222
96x series, 222-223
975X, 222
82350 chipsets, 206
hub architecture, 204-205
Intel Chipset Identification
Utility, 201
Intel Extreme Graphics
Architecture, 201-202
model numbers, 201
North Bridge, 202-204
Pentium 4 chipset reference
tables, 214-220
Pentium chipsets, 207-208
Pentium Pro chipset
reference tables, 209-212
quick reference of Pentium 4
chipsets, 218
South Bridge, 202-204
Super I/O chips, 202
Extreme Graphics Architecture,
201-202
iCOMP 2.0 index ratings,
52, 120
industry control, 24-25
Intel-compatible processors
AMD 486 (5x86), 108
AMD Athlon, 137-138
AMD Athlon MP, 139-140
AMD Athlon XP, 138-139
AMD Duron, 138
AMD-K5, 114
AMD-K6, 73, 136
NexGen Nx586, 135-136
Sempron, 143-144
Intel Quick Resume Technology
setting (Power menu), 362
Intel RAID Technology setting
(Drive Configuration
menu), 353
Intel Rapid BIOS Boot setting (Boot menu), 364
IntelliMouse Explorer, 823
INTER-RECORD GAP sector data, 523-524
Interactive Multimedia Association (IMA), 747
interfaces. See also connectors
ATA (AT Attachment). See ATA floppy drive interfaces, 571
for CD/DVD drives, 659
keyboard interface, 810-811
bouncing/debouncing keystrokes, 810
USB Legacy support, 811, 816
interference
RFI (radio-frequency interference), 1076
with speakers, 762
interlaced mode, 717
interleave, 384, 552
internal hub spindle motors, 544
internal Level 1 cache. See Level 1 cache
internal Level 2 cache. See Level 2 cache
internal registers, 44
International Electrotechnical Committee (IEC), 505, 969
international keyboard layouts, 814
International Organization for Standardization (ISO) 9660 standard, 643-644
International Telecommunication Union. See ITU
Internet connections, 861
broadband technology
CATV (cable TV), 838-841
comparison of access types, 840
DSL (digital subscriber line), 841-845
ISDN (Integrated Services Digital Network), 848-849
leased lines, 849-850
overview, 837-838
satellite broadband, 846-848
service interruptions, 860-861
Internet Protocol (IP), 903
Internetwork Packet Exchange (IPX), 904
interpolation, 596
Interrupt (for the Parallel Port) setting (Peripheral Configuration menu), 351
Interrupt (for the Serial Port) setting (Peripheral Configuration menu), 351
interrupt request channels. See IRQs
interrupt sharing, 296
intranets, 866
Invalid partition table (error message), 373
IO.SYS file, 1054
IOAPIC Enable setting (Chipset Configuration menu), 349
ion bombardment, 12
IP (Internet Protocol), 903
IPL (initial program load) ROM, 328
IPS (in-plane switching), 719
IPX (Internetwork Packet Exchange), 904
IR (infrared) input devices, 834
iron oxide recording media, 491, 531
IRQs (interrupt request channels)
8-bit ISA bus interrupts, 296
16-bit ISA/EISA/MCA interrupts, 297-298
Advanced Programmable Interrupt Controller (APIC), 299
conflicts, 299-300
delta-trigged interrupt sensing, 295
tent interrupt sharing, 296
maskable interrupts, 296
PCI interrupts, 298
PCI IRQ Steering, 296
sound card conflicts, 756
IRs (infrared thermometers), 1067
ISA (Industry Standard Architecture) buses, 270
8-bit, 280-281
16-bit, 282
32-bit, 282
DMA (direct memory access) channels, 300-301
interrupts, 296-297
ISA Enable Bit setting (Chipset Configuration menu), 350
ISDN (Integrated Services Digital Network), 848-849
ISO (International Organization for Standardization) 9660 standard, 643-644
isolating memory defects, 429-431
Itanium processors (Intel), 36
ITU (International Telecommunication Union), 852
V.42 standard, 855
V.42bis standard, 856
ITU (International Telecommunication Union), 856
V.44 standard, 856
V.90 standard, 858
V.92 standard, 859-860
ITX motherboards, 192-194
Iwasaki, Shun-ichi, 510

JEDEC (Joint Electron Device Engineering Council), 386
Jitter, 766
Jobs, Steve, 14, 821
Joliet file system, 645
JPEG (Joint Photographic Experts Group), 728
Jscreenshot, 737
jumper settings for ATA (AT Attachment) drives, 452

K-Lite Codec Pack, 642
K10 (Phenom) processors, 146-147
K5 processors (AMD), 114
K6 processors (AMD)
3DNow! technology, 73
motherboard compatibility, 136
technical features, 136
K56flex chipsets, 858
K8M890 chipsets (VIA), 253
K8T800/K8T800 Pro/K8M800 chipsets (VIA), 252
K8T890 chipsets (VIA), 253
Katmai New Instructions (KNI), 72
key matrix, 810
key numbers (keyboards), 813-814
Keyboard error or no keyboard present (error message), 1038
Keyboard is locked out – Unlock the key (error message), 1038
Keyboard Select setting (Power menu), 362
keyboards, 801
104-key, 803-804
buying tips, 820-821
choosing, 1005
cleaning, 819-820, 1073
connectors, 814-818
controller chips, upgrading, 331
controllers, 811
definition of, 29
disassembling, 819
DSK (Dvorak Simplified Keyboard), 817
Enhanced 101-key, 802-803, 813
ergonomic, 817
international layouts, 814
key matrix, 810
key numbers, 813-814
keyboard interface, 810-811
bouncing/debouncing keystrokes, 810
USB Legacy support, 811, 816
keyswitch design, 804
keyswitches, 804
capacitive, 809-810
foam element, 806
membrane, 807-808
pure mechanical, 805-806
rubber dome, 807
troubleshooting, 818
KeyTronic EMS keyboards, 806
Kilby, Jack, 13
kilovolt-amperes-reactive (KVAR), 968
Kinesis mechanical-switch keyboards, 805
KittyHawk, 518
KNI (Katmai New Instructions), 72
known-good spare troubleshooting technique, 1078-1079
KVAR (kilovolt-amperes-reactive), 968

L-Chs parameters, 475
L1 cache. See Level 1 cache
L2 cache. See Level 2 cache
LabelFlash, 663
lands, 92
in CDs, 587-589
in DVD, 609
LANs (local area networks), 866
LAPM (Link Access Procedure for Modems), 885
laptop processors
386SL, 105
486SL, 107
Larson, Earl R., 10
Laser Beam Recorder (LBR), 587
lasers (CD drives), 589
latency, 551
Layer Jump Recording (LJR), 624
layered architecture, 315-316
layout (memory), 376, 432-434
lazy write, 788-789
LBA (logical block address)
addressing
137GB barrier and beyond, 482-484
CHS/LBA conversions, 471
compared to CHS (cylinder head sector), 470-471
LBA-assist translation, 478-481

LBR (Laser Beam Recorder), 587

LCD (liquid crystal display) monitors
active-matrix displays, 719
advantages of, 719
bad pixels, 736-737
dead pixels, 736
disadvantages of, 720
display interfaces. See display interfaces (video), 690
how it works, 718-719
projectors, 724-725
selection criteria, 720
stuck pixels, 736

lead-in area
in CDs, 591
in DVDs, 610

lead-out area
in CDs, 591
in DVDs, 611

leashed lines, 849-850

LED connectors, 267

legacy audio support, 740-741

legacy cards, 309

Legacy Front Panel Audio setting
(Peripheral Configuration menu), 351

Legacy IDE Channels setting
(Drive Configuration menu), 353

legacy motherboards, 90

legacy ports, 1003

legacy power management, 979

Legacy support, 811, 816

legal issues
copyright protection, 21
licensing
Mac OS X, 22-23
MS-DOS, 22
patents, 21

Lempel, Abraham, 856

Lenovo POST display error codes, 1045-1046

Level 0 (RAID), 486
Level 1 (RAID), 486

Level 1 cache, 380
cache misses, 65
cache operation, 65-66
importance of, 64
NexGen Nx586 processors, 135
Pentium II processors, 121
Pentium Pro processors, 115
Pentium-MMX improvements, 71

Level 2 (RAID), 486
Level 2 cache, 66, 380
Pentium II processors, 121
Pentium III processors, 122
Pentium Pro processors, 117
performance and design, 67-68

Level 3 (RAID), 486

Level 3 cache, 66, 381

Level 4 (RAID), 486
Level 5 (RAID), 486
Level 6 (RAID), 486

Level 10 (RAID), 486
level-sensitive interrupts, 298
Lexar Memory Stick Pro, 561
LFX12V power supply, 931
licensing
Mac OS X, 22-23
MS-DOS, 22
LIF (low insertion force) sockets, 88

LightScribe, 663
LIM (Lotus Intel Microsoft), 105
Limit CPUID MaxVal setting
(Boot Configuration menu), 348
line conditioners, 990
line in sound card connectors, 743
line out sound card connectors, 743
line regulation (power supply), 968
linear density (floppy disks), 579
linear power supply, 963
linear voice-coil actuators, 536-537
Link Access Procedure for Modems (LAPM), 855
Link Stability Algorithm setting
(PCI Express Configuration menu), 346

liquid cooling, 162-163
lithium coin cell batteries, 1060
LJR (Layer Jump Recording), 624
LIF. See low-level formatting
Load Custom Defaults command
(BIOS Exit menu), 365
Load Optimal Defaults command
(BIOS Exit menu), 365
load regulation (power supply), 968
load/unload head mechanism, 520
loading mechanisms (CD/DVD drives), 659-660
loads (power supply), 963-964
apparent power, 968
inductive, 968
load regulation, 968
maximum load current, 967
minimum load current, 967
nonlinear, 969
reactive power, 968
resistive, 968
working power, 968

local area networks (LANs), 866
local buses
PCI. See PCI buses
VESA local bus, 285-286
locations for serial ports, 791-795
locked systems, troubleshooting, 1086-1090
logic boards, 544-545
logic probes, 1064

logical block address. See LBA addressing
logical formatting. See high-level formatting
logical mapping (memory), 376
logical memory, 432-434
logical ring topology, 892
Logitech mouse devices, 821
longitudinal density (floppy disks), 579
loopback connector, 1061-1062
Lotus Intel Microsoft (LIM), 105
low insertion force (LIF) sockets, 88
low-level formatting, 524-525
standard recording, 525
ZBR (zoned-bit recording), 525-527
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
<th>low-pass filters, 842</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>low profile form factor (LFX12V) power supply, 931</td>
</tr>
<tr>
<td></td>
<td></td>
<td>low-temperature polysilicon (p-Si), 719</td>
</tr>
<tr>
<td></td>
<td></td>
<td>low volume, troubleshooting, 757-758</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lowest System Fan Speed setting (Fan Control Configuration menu), 359</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPX motherboards, 175-177, 937-939</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lubricants, 1070</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAC OS X, 22-23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macromedia SafeAudio, 649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnetic disk media, 557</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnetic fields, 491-492, 581</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnetic flux, 492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnetic shielding, 760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnetic storage areal density, 506-508</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bit cells (transition cells), 492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>capacity measurements, 505-506</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disk/tape material, 491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electromagnetism, 490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>encoding schemes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARLL (Advanced Run Length Limited), 503</td>
</tr>
<tr>
<td></td>
<td></td>
<td>comparison of, 504-505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FM (Frequency Modulation), 502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFM (Modified Frequency Modulation), 492, 502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>overview, 500-501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RLL (Run Length Limited), 492, 502-504</td>
</tr>
<tr>
<td></td>
<td></td>
<td>flux, 492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>head sliders, 498-500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high-capacity magnetic storage devices, 569</td>
</tr>
<tr>
<td></td>
<td></td>
<td>history of, 489-490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnetic fields, 491-492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microdrive technology, 568-569</td>
</tr>
<tr>
<td></td>
<td></td>
<td>overview, 489</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMR (perpendicular magnetic recording), 509-511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRML (Partial-Response, Maximum-Likelihood), 505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>read process, 493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>read/write heads, 491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ferrite, 494</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GMR (giant magneto-resistive), 497-498</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIG (Metal-In-Gap), 494-495</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MR (magneto-resistive), 495-496</td>
</tr>
<tr>
<td></td>
<td></td>
<td>overview, 493-494</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TF (thin film), 495</td>
</tr>
<tr>
<td></td>
<td></td>
<td>write process, 492-493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnetic tape media, 558</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magneto-optical (MO) drives, 584</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magneto-resistive (MR) heads, 495-496</td>
</tr>
<tr>
<td></td>
<td></td>
<td>main memory. See RAM (random access memory)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>main menu (BIOS Setup), 344-345</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance menu (BIOS Setup), 343-344</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maintenance. See care and maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Make codes (keyboards), 813</td>
</tr>
<tr>
<td></td>
<td></td>
<td>managed hubs, 893</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manufacturer-supplied diagnostic software, 1034</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manufacturing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CDs, 587-589</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manufacturing tests, 369</td>
</tr>
<tr>
<td></td>
<td></td>
<td>processors .09 micron</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manufacturing, 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.13 micron</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manufacturing, 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bonding, 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>coppermine, 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dies, 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>doping, 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>metallization layers, 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>photolithography, 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>process/wafer size transitions, 80-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>processor remarking, 82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>silicon, 77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>silicon on insulator (SOI), 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steppers, 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>test process, 82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>yields, 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mapping displacement mapping, 702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>environment-based bump mapping, 702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIP mapping, 701-702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>texture mapping, 701</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mark DMI Events As Read setting (Event Logging menu), 356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mask ROM (read-only memory), 320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maskable interrupts, 296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mass-producing CDs, 587-589</td>
</tr>
<tr>
<td></td>
<td></td>
<td>master development (CDs), 587</td>
</tr>
<tr>
<td></td>
<td></td>
<td>master drives (ATA), 451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>master position (ATA), 443</td>
</tr>
<tr>
<td></td>
<td></td>
<td>master separation (CDs), 588</td>
</tr>
<tr>
<td></td>
<td></td>
<td>math coprocessors FDIV (floating-point divide) bug, 113-114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentium processors, 109 processors, 99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matrix math extensions (MMX), 71-72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mauchly, John W., 10, 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum Capacity setting (Drive Configuration menu), 353</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maximum load current (power supply), 967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MBOA-SIG (Multiband OFDM Alliance Special Interest Group), 778</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MBR boot error messages, 372-373</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error loading operating system, 373-374</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invalid partition table, 373</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Missing operating system, 374</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCA (microchannel architecture) buses, 282-284, 296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCH (Memory Controller Hub), 204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCH Voltage Override setting (Chipset Configuration menu), 350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCM (multichip module), 115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCPs (media and communications processors), 245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean Time Between Failures (MTBF), 553, 967</td>
</tr>
</tbody>
</table>
Mean Time To Failure (MTTF), 967
measuring voltage, 983-985
mechanical keyswitches, 804
capacitive, 809-810
foam element, 806
membrane, 807-808
pure mechanical, 805-806
rubber dome, 807
troubleshooting, 818
media
media and communications processors (MCPs), 245
recording media, 530
AFC (antiferromagnetically coupled), 532
media color, 601-603
media layers, 601
oxide, 531
speed ratings, 603
thin-film, 531
media-density-selector (floppy disks), 581
MediaGX, 673
megahertz (MHz), 37, 381-382
membrane keyswitches, 807-808
memcor, 530
memory. See RAM; ROM BIOS
Memory Configuration menu (BIOS Setup), 347-348
Memory Controller Hub (MCH), 204
Memory Correction setting (Memory Configuration menu), 347
Memory Frequency setting (Memory Configuration menu), 347
memory management unit (MMU), 103
Memory Mode setting (Memory Configuration menu), 347
Memory Stick, 560
Memory Stick Pro, 561
Memory Test (error message), 1039
Memory test fail (error message), 1039
memory testers, 1065-1066
Memtest86, 426
merge bits, 597
merged MR (magneto-resistive) heads, 496
messages (error). See error messages
metal detectors, risks to floppy disks, 582
Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), 11-12
Metal-In-Gap (MIG) heads, 494-495
metal-oxide varistors (MOV), 989
metalization
in CDs, 588
in processors, 79
mezzanine buses. See PCI (Peripheral Connect Interface) buses
MFU (Modified Frequency Modulation), 492, 502
MHz (megahertz), 37, 381-382
Micro A/B connectors (USB), 772
micro-AT motherboards, 175
Micro Instrumentation and Telemetry Systems, 13
microATX motherboards, 185
Microcode Revision setting (BIOS Maintenance menu), 344
microcode, reprogrammable, 100
MicroDrive, 518, 568-569
Microid Research (MR), 327
Microm Network Protocol (MNP), 853, 856
microphones, 763-764
microprocessors. See processors
MicroSD, 560
Microsoft
DirectShow, 728
DirectX, 705-706, 740
industry control, 20-23
mouse devices, 821-823
MS-DOS, 22
PC Design Guides, 26-27
Windows Memory Diagnostic, 426
MIDI (Musical Instrument Device Interface)
connectors, 744
sound card support, 746
MIG (Metal-In-Gap) heads, 494-495
Mini A/B connectors (USB), 772
mini-AT motherboards, 175
mini-ATX motherboards, 185
mini-DTX motherboards, 192
mini-ITX motherboards, 192-194
mini-LPX motherboards, 175-177
mini-tower cases, 1000
Mini-Winchester sliders, 498
minimum load current (power supply), 967
MiniSD, 560
MIP mapping, 702
mirroring disks, 486
misses (cache), 380
Missing operating system (error message), 374, 1087-1088
MITS Altair, 13-14, 20
MMC (MultiMediaCard), 560
MMU (memory management unit), 103
MMX (multimedia extensions), 71-72
MNP (Microm Network Protocol), 853, 856
MO (magneto-optical) drives, 584
Model 5100 PC, 14
Model 5150 PC, 14
model numbers (Intel), 201
Modem-on-Hold feature, 859
modems
cable modems, 838-840
troubleshooting, 1082-1083
Modemsite, 860
modes
PATA DMA (direct memory access) transfer modes, 455
PATA PIO (Programmed I/O) transfer modes, 454
processor modes
IA-32 mode, 45-46
IA-32 virtual real mode, 46-47
IA-32e 64-bit extension mode, 47-49
real mode, 45
Modified Frequency Modulation (MFM), 492, 502
modulation standards, 854-855
module testers, 426
modules (memory)
buying tips, 421-422
determining module size/features, 409-412
DIMMs (dual inline memory modules), 397
buffered, 406
buying tips, 421-422
capacities, 401-402
DDR DIMM, 399, 407
DDR2 DIMM, 400, 407
DDR3 DIMM, 400, 408
SDR DIMMs, 406-407
SDRAM DIMM, 399
unbuffered, 407
DIP (dual inline package) chips, 397
double-sided, 397
dual-channel memory, 413
ECC (error correcting code), 418-419
hard fails, 414
installation, 423-424
maximum installable memory, 396
memory banks, 402, 412-413
module speeds, 413
parity checking, 415-418
registered modules, 402-404
RIMMs (Rambus inline memory modules), 398
buying tips, 422
capacities, 402
installation, 409
keying options, 408
SIMMs (single inline memory modules), 397
buying tips, 422
capacities, 401
frettin, 406
installation, 424
presence detect pin configurations, 404-406
typical 30-pin SIMM, 398
typical 72-pin SIMM, 399
single-sided, 397
soft errors, 414-415
troubleshooting, 425-426
error messages, 427
memory defect isolation procedures, 429-431
step-by-step procedure, 427-429
with diagnostics, 426
with module testers, 426
with POST (Power On Self Test), 426
unbuffered modules, 402
upgrading to higher-capacity modules, 422
upgrade options and strategies, 419-420
Molex Mini-Fit Jr. power connectors (ATX), 942-943
monitors. See also display interface (video);
video adapters adjusting, 735-736
aspect ratio, 710-711
bad pixels, 736-737
care and maintenance, 733-734
CRT (cathode ray tube) curved picture tubes, 722
dot pitch, 721
electron guns, 720
FST (flat square tube) designs, 722
persistence, 721
raster, 722
refresh rate, 721-722
shadow masks, 721
slotted masks, 721
dead pixels, 736
display size, 708
DLP projectors, 724-725
emissions, 722-723
horizontal frequency, 714-716
image brightness and contrast, 717
interlaced versus noninterlaced modes, 717
LCD (liquid crystal display) active-matrix displays, 719
advantages of, 719
disadvantages of, 720
how it works, 718-719
projectors, 724-725
selection criteria, 720
multiple monitors Dualview, 726
heterogeneous adapters, 727
homogeneous adapters, 726
overview, 725-726
overview, 671, 708
pixels, 711-714
plasma displays, 723
repairing, 738
resolution, 709-710
stuck pixels, 736
testing, 732-735
troubleshooting, 737-738, 1084-1085
vertical frequency, 714-716
mono in sound card connectors, 743
monophonic sound cards, 746
Moore’s Law, 16
Moore, Gordon, 16, 31
MOS Technologies 6502 processor, 33
MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), 11-12
Motherboard Homeworld’s Mobot search engine, 311
motherboards AT, 937-939
ATX, 183-184
color coding, 188
identifying, 186
ports, 186
power supply, 920-922
specification, 188
Baby-AT motherboards, 174-175
BIOS. See ROM BIOS
BTX, 180-182
buses. See buses
cables, 1021-1022
chipsets. See chipsets
CMOS RAM addresses, 259
connectors, 259-260, 264-265
alternative single-row front panel connector pinouts, 263
AMR (Audio Modem Riser), 270
ATAPI-style line-in connectors, 268
battery connectors, 267
CD audio connectors, 268
chassis intrusion connectors, 267
CNR (Communications and Networking Riser), 270
front panel audio connector pinout, 266
front panel IEEE 1394 (FireWire/i.LINK) connector pinout, 265
front panel switch/LED connector pinouts, 260-262
front panel USB header connector pinout, 264
infrared data front panel connector pinout, 267
LED and keylock connectors, 267
microprocessor fan power connectors, 269
power LED indications, 262
speaker connectors, 267
telephony connectors, 268
Wake on LAN connectors, 268
Wake on Ring connectors, 268
definition of, 28
Desktop Form Factors website, 1001
documentation, 312
DTX, 192
extended ATX, 188
FlexATX, 190-192
flexible motherboards, 90
full-size AT, 172-174
industry control of, 23
integrated adapters, 1004
Intel-compatible, 136
ITX, 192-194
legacy motherboards, 90
LPX, 175-177, 937-939
memory, 1002
DDR SDRAM (double data rate SDRAM), 1003
DIMMs (dual inline memory modules), 1002
installation, 1014-1015
microATX, 188-190
Mini-ATX, 185
Mini-DTX, 192
Mini-ITX, 192-194
mounting in case, 1015-1019
NLX motherboards, 178-180
overview, 1001
PC motherboards, 172-173
PnP (Plug and Play) BIOS component, 309-310
hardware component, 309
operating system component, 310
ports, 1003-1004
power connectors. See power supply
processor sockets/slots, 195-198
proprietary designs, 194
PS/2 mouse interfaces, 825-826
resource conflicts, 304-305
PnP (Plug and Play), 309-310
preventing, 305
system-configuration templates, 306-308
ROM BIOS. See ROM BIOS selection criteria, 310-312
summary of form factors, 171-172
Super I/O chips, 258-259
troubleshooting, 1090-1091
Tualatin-ready, 90
voltage regulators, 915
WTX, 180
XT, 172-173
mothers (CDs), 588
Motion Picture Experts Group (MPEG), 728, 747
motors
spindle motors, 543-544
stepper motors, 535
Mount Rainier standard, 635, 646-647
mounting motherboards, 1015-1019
mouse
ball-driven mouse, 822-823
buttons, 822
choosing, 1005
cleaning, 828, 1073
components, 821-822
definition of, 29
Ergonomic Mouse, 833-834
history of, 821
hybrid mouse, 826
manufacturers, 821
optical mouse, 823-824
PS/2 mouse interfaces, 825-826
scroll wheels, 828
serial interfaces, 825
troubleshooting, 827-828
USB (Universal Serial Bus), 827
wireless
Bluetooth, 835
IR (infrared), 834
power management, 835-836
proprietary radio frequency, 834
troubleshooting, 836
MOVs (metal-oxide varistors), 989
MPEG (Motion Picture Experts Group), 728, 747
MPEG-2 decoders, 641
MPR I emissions standard, 723
MPR II emissions standard, 723
MPS 1.1 (Multiprocessor Specification), 117
MR (Microid Research), 327
MR (magneto-resistive) heads, 495-496
MS-DOS, 22
MSAUs (multistation access units), 892
MSDOS.SYS file, 1053
Multiband OFDM Alliance Special Interest Group (MBOA-SIG), 778
multichip module (MCM), 115
multicore processors, 76-77
AMD Athlon 64 X2, 144-146
AMD 64 FX, 144-146
AMD K10 (Phenom), 146-147
Intel Core 2, 130-132
Intel Extreme Edition, 128-129
Intel Nehalem (Core i), 133-134
Intel Pentium D, 128-129
multidomain vertical alignment (MVA), 719
multiformat rewritable DVD drives, 627
Multimedia CD, 608
multimedia extensions (MMX), 71-72
MultiMediaCard (MMC), 560
MultiMediaCard Association website, 560
multimeters, 1059, 1062-1063
multiple branch prediction, 73-74
multiple monitors
Dualview, 726
heterogeneous adapters, 727
homogeneous adapters, 726
overview, 725-726
Multiprocessor Specification (MPS) 1.1, 117
MultiRead specifications, 606-607
multisession recording (CDs), 632-633
DAO (Disc-at-Once) recording, 633
packet writing, 633-635
Track-at-Once, 633
multistation access units (MSAUs), 892
multiword DMA (direct memory access), 455
music. See audio
MuTIOL architecture, 206, 244
MVA (multidomain vertical alignment), 719
Mylar, 491

NCITS (National Committee on Information Technology Standards), 438
NEAT (New Enhanced AT)
CS8221 chipset, 199
needle-nose pliers, 1058
negative DC voltages, 915-916
Nehalem (Core i) processors, 133-134
nested RAID levels, 486-487
NetBEUI, 904
NetBIOS, 904
NetWare drive limitations, 484
network interface adapters, 1046
network interface cards. See NICs

networking
ad hoc mode, 897
ARCnet, 871
benefits of, 865-866
broadband technology
CATV (cable TV), 838-841
cables
comparison of access types, 850
dsl (digital subscriber line), 841-845
ISDN (Integrated Services Digital Network), 848-849
leased lines, 849-850
overview, 837-838
satellite broadband, 846-848
service interruptions, 860-861
speeds, 850
status LEDs, 863
wireless broadband, 845-846
cables
cable distance limitations, 889-890
choosing, 908-909
grounding loops, 884
Thicknet, 882
Thinnet, 882
twisted-pair, 883-889
client/server networks, 867-870
definition of, 865
dialup modems
56Kbps modems, 856-860
asynchronous versus synchronous communications, 851
AT commands, 853
baud rates, 853-854
bit rates, 853-854
data bits, 852
data-compression standards, 856
error-correction protocols, 855-856
modem standards and protocols, 852-853
modulation standards, 854-855
overview, 851-852
parity, 852
stop bits, 852
extranets, 866
hardware worksheet, 909
HFC (hybrid fiber/coax) networks, 838
HomePNA, 905
hubs, 892-893
choosing, 909
compared to switches, 893-895
dual-speed, 895
managed/unmanaged, 893
placement of, 896
ports, 895-896
stackable, 895
infrastructure mode, 897
Internet, 866
intranets, 866
LANs (local area networks), 866
minimum requirements, 866-867
network cards, 328
networks software, 910-911
NICs (network interface cards), 879
bus types, 880
connectors, 881-882
costs, 880

NAND (Not AND) flash memory, 558
Nano-ITX motherboards, 194
nanoseconds, 381
narrow-channel systems, 394
National Committee on Information Technology Standards (NCITS), 438
National Television System Committee (NTSC), 698
Onboard Audio setting (Peripheral Configuration menu)

full-duplex, 880
half-duplex, 880
installation, 907-908
speed, 880
testing, 908

Wi-Fi (Wireless Fidelity), 897
peer-to-peer networks, 868-870
topologies. See protocols.
recording network information, 909
WANs (wide area networks), 866
with Windows Vista/7, 911-912

Neumann, John von, 10
New Enhanced AT (NEAT)
CS8221 chipset, 199
NewEgg.com, 1001
NexGen Nx586 processors, 135-136
nForce chipsets, 245-246
nForce 410/430 series, 255
nForce Professional series, 254-255
nForce/nForce2, 245-246
nForce3 150, 253-254
nForce3 250 family, 254
nForce3 Pro 150, 253-254
nForce4 series, 254-255
nibble mode (parallel ports), 798

Nibble Mode memory. See FPO DRAM (Fast Page Mode DRAM)
Nicely, Thomas R., 113
nitor (nickel-ferrite) film, 496
NICs (network interface cards), 879
type, 880
collectors, 881-882
costs, 880
dublex, 880
half-dublex, 880
installation, 907-908
speed, 880
testing, 908
Wi-Fi (Wireless Fidelity), 897
NiFe (nickel-ferrite) film, 496
nts, 717
NLX motherboards, 178-180
NMIs (nonmaskable interrupts), 417
NMOS transistors, 12
No boot device available (error message), 372
NO ROM BASIC - SYSTEM
HALTED (error message), 372
No-ID recording, 522
No-ID sector formatting, 522
no-tool cases, 1057
Noble, David, 569
Non Return to Zero (NRZ), 458
Non Return to Zero Inverted (NRZI), 767
Non-System disk or disk error (error message), 372
nblocking cache, 69
ncontact thermometers, 985
oninterlaced mode, 717
onlinear power, 969
nonmaskable interrupts (NMIs), 417
nonvolatile memory. See ROM BIOS
onvolatile RAM (NVRAM).
See CMOS RAM
onvolatile storage, 513. See also hard drives
NOR (Not OR) flash memory, 558
North Bridge chipsets, 202-204. See also specific chipsets
Novell NetWare drive limitations, 484

Noyce, Robert, 13, 31
NRZ (Non Return to Zero), 458
NRZI (Non Return to Zero Inverted), 767
Ntdetect.com, 1054
NTFS (Windows NT File System), 528
NTSC (National Television System Committee), 698
numerical aperture, 628
Numlock setting (Boot Configuration menu), 348
nut drivers, 1057
NVIDIA chipsets
nForce 410/430 series, 255
nForce Professional series, 254-255
nForce/nForce2, 245-246
nForce3 150/nForce3 Pro 150, 253-254
nForce3 250 family, 254
nForce4 series, 254-255
SLI, 706-707
NVRAM (nonvolatile RAM).
See CMOS RAM
Nx586 processors (NexGen), 135-136
nylon cable-ties, 1059

object-code compatibility, 102
obsolete power supply form factors, 920
OCCT, 1048
odd cycles (RDRAM), 394
odd parity, 416
OEMs (original equipment manufacturers), 325, 1001
Oersted, Hans Christian, 490
OFDM (orthogonal frequency division multiplexing), 906
Off state (APM), 976
Onboard 1394 setting (Peripheral Configuration menu), 351
Onboard Audio setting (Peripheral Configuration menu), 351
Onboard Chip SATA setting (Drive Configuration menu), 353
Onboard LAN Boot ROM setting (Peripheral Configuration menu), 351
Onboard LAN setting (Peripheral Configuration menu), 351
Onboard Video Memory Size setting (Video Configuration menu), 357
one-sided sound, troubleshooting, 757
one-time programmable (OTP) chips, 321
onscreen messages (POST), 1036
- Award BIOS/Phoenix FirstBIOS, 1038-1039
- IBM BIOS, 1042-1045
- IBM/Lenovo BIOS POST/Diagnostics, 1045-1046
OpenGL, 705
operating environment, preventative maintenance, 1073
operating range (power supply), 967
operating systems
- definition of, 21
- diagnostic software, 1034, 1047
- DR-DOS, 22
- drive limitations, 484-485
- FreeDOS, 22
- hard disk capacity limitations, 548
- installation, 1030-1031
- Mac OS X, 22-23
- MS-DOS, 22
operating-system-independent boot process, 1049-1053, 1080-1082
opposite track path (OTP), 617
optical mouse devices, 823-824
optical SPDIF in/out connectors, 744
optical storage
- Blu-ray discs, 627-629
- care and maintenance, 667-668
- CD drives
 - access times, 658
 - bootable CDs, 666
booting from floppy disk, 662
buffer underruns, 661-662
buffers/cache, 658
CAV (constant angular velocity) technology, 653
CLV (constant linear velocity) technology, 653
data transfer rates, 652-653
DMA and Ultra-DMA, 658
drive sealing, 660
firmware updates, 668-669
history of, 586-587
interfaces, 659
laser operation, 589
loading mechanisms, 659-660
mechanical drive operation, 590
Mount Rainier standard, 646-647
MultiRead specifications, 606-607
self-cleaning lenses, 660
table of CD-ROM drive speeds and transfer rates, 654-655
troubleshooting, 663-666
CDs
- audio data information, 593
- Blue Book standard (CD EXTRA), 637
- bootable CDs, 662-663, 666
- burning, 601, 661-662
- capacity, 586, 596-597
- care and handling, 587
- CD-DA, 631
- CD-R, 599-603
- CD-ROM, 631
- CD-RW, 599-600, 603-606
- CD TEXT discs, 595
- construction and technology, 587
- copy protection, 596, 649
- DRM (digital rights management), 649-650
- DualDisc, 638-639
- EFM data encoding, 597-599
- file systems, 642-646
- For Music Use Only discs, 648
- form factor, 586
- frames, 593
- history of, 586-587
- hub clamping area, 591
- LabelFlash direct disc labeling system, 663
- lands, 589
- lead-in, 591
- lead-out, 591
- LightScribe direct disc labeling system, 663
- mass production, 587-589
- Mount Rainier standard, 646-647
- multisession recording, 632-635
- Orange Book standard, 632
- PCA (power calibration area), 591
- Photo CD, 635
- Picture CD, 636
- pits, 589
- PMA (power memory area), 591
- program area, 591
- read errors, 595-596
- recording software, 660
- ripping, 647-648
- sampling rates, 593-594
- Scarlet Book standard (SA-CD), 637-638
- sector modes and forms, 632
- sectors, 593
- subcode bytes, 594-595
- Super Video CDs, 636
- table of CD formats, 630-631
- technical parameters, 592-593
- tracks, 590-592
- White Book standard (Video CD), 636
DVD drives
- access times, 658
- booting from floppy disk, 662
- buffers/cache, 658
- compatibility, 641
- DMA and Ultra-DMA, 658
- drive sealing, 660
- DVD Multi specification, 627
firmware updates, 668-669
interfaces, 659
loading mechanisms, 659-660
MultiRead specifications, 606-607
self-cleaning lenses, 660
speed, 656
troubleshooting, 663-666

DVDs
audio data information, 613-614
bootable DVDs, 662-663
capacity, 615-618
construction and technology, 609-610
copy protection, 650-652
data zone, 611
DIVX (Digital Video Express), 641
DVD-5, 615
DVD-9, 616
DVD-10, 616
DVD-18, 616
DVD drive and media compatibility, 620-621
DVD Forum, 609
DVD+R, 625-627
DVD+R DL, 627
DVD+RW, 625-627
DVD+RW Alliance, 609
DVD-R, 622-623
DVD-R DL, 624
DVD-RAM, 621-622
DVD-RW, 624
DVD-Video, 608
EFM+ data encoding, 619
error handling, 614-615
frames, 613-614
history of, 608-609
hub clamping area, 610
LabelFlash direct disc labeling system, 663
lead-in zone, 610
lead-out zone, 611
LightScribe direct disc labeling system, 663
OTP (opposite track path) construction, 617
overview, 607-608
playing on PCs, 641-642
PTP (parallel track path) construction, 617
sectors, 613-614
table of DVD formats and standards, 639-640
table of recordable DVD standards, 620
technical parameters, 611-613
tracks, 610-611
HD-DVD, 629-630
overview, 585
troubleshooting
disc read failures, 663-666
disc write failures, 664-665
firmware updates, 668-669
problems burning discs with Windows built-in recording, 666
slow drive speeds, 665
Optical Storage Technology Association (OSTA), 645-646
optimal resolution, 715
optimizing performance.
See performance
Orange Book standard, 632
original equipment manufacturers (OEMs), 325
orthogonal frequency division multiplexing (OFDM), 906
OS/2 Warp, 484
OSTA (Optical Storage Technology Association), 645-646
OSX86 Project, 23
OTP (one-time programmable), 321
OTP (opposite track path), 617
outlet testers, 1064-1065
output ratings (power supply), 964-966
overburning CDs, 601
overclocking, 112, 148-149
CPU voltage settings, 156-157
bus speeds and multipliers, 155
modern PC clocks, 151-152
Pentium III processors, 122
pitfalls, 155-156
quartz crystals, 149-150
tips and guidelines, 153-154
OverDrive processors, 107
overheating. See heating/cooling issues
overloading power supply, 980-981
Override enabled – Defaults loaded (error message), 1039
overvoltage protection (power supply), 967
oxide media, 531

P

P-CAV (Partial-CAV) technology, 653
P-CHS parameters, 475
p-Si (low-temperature polysilicon), 719
P1 processors. See first-generation processors, 101-102
P2 processors. See second-generation processors
P3 processors. See third-generation processors
P4 connector, 940
P4 processors. See fourth-generation processors
P5 processors. See fifth-generation processors
P6 processors. See sixth-generation processors
P8 power supply connectors, 937-939
P9 power supply connectors, 937-939
PAC (PCI/AGP Controller).
See North Bridge chipsets
packaging processors
BBUL (bumpless build-up layer), 84
Dual Cavity PGA packaging, 115
FC-PGA (flip-chip pin grid array), 83
PGA (pin grid array), 83-84
SEC (single edge contact), 84, 117-119
part numbers (ROM)
 EEPROM (electronically erasable
 programmable ROM), 324
 PROM (programmable
 ROM), 320
Partial-CAV (P-CAV)
technology, 653
Partial-Response, Maximum-
Likelihood (PRML), 505
Partition Resizer, 528
partitioning hard drives, 527-528
parts grabbers, 1057, 1067
passive heatsinks, 160
passive PFC (power factor
correction), 969
passive preventative
maintenance, 1068
dust, 1077
heating and cooling, 1073-1074
operating environment, 1073
pollutants, 1077
power cycling, 1074-1075
power-line noise, 1075-1076
RFI (radio-frequency
interference), 1076
static electricity, 1075
passive PFC (power factor
maintenance), 1068
passwords, 360
PATA (Parallel ATA), 438
CD/DVD drive interfaces, 659
definition of, 435
DMA (direct memory access)
transfer modes, 455
dual-drive configurations,
451-454
I/O cables, 448-450
I/O connectors, 445-448
PIO (Programmed I/O) transfer
modest, 454
signals, 450-451
patents, 21
PC Card, 561
PC Design Guides, 26-27
PC motherboards, 172-173
PC Power and Cooling, 987
PC133 memory, 387
PC99 Design Guide website, 742
PCA (power calibration
area), 591
PCDEVS.TXT file, 368
PCG (Platform Compatibility
Guide), 948-949
PCI (Peripheral Connect
Interface) buses, 269, 287-289
adapter cards, 288
board configurations, 288-289
bus types, 287-288
interrupts, 298
PCI Express, 269, 290-292, 683
specifications, 286
PCIE (PCI Express), 269,
290-292, 683
PCI Express x16 Link Retrain setting
(PCI Express Configuration
menu), 347
PCle (PCI Express), 269,
290-292, 683
PCle x16 Link Retrain setting
(PCI Express Configuration
menu), 347
PCKeyboard.com, 810
PCM (pulse code
modulation), 855
PCMCIA (Personal Computer
Memory Card International
Association). See PC Card, 561
PCs (personal computers)
definition of, 19-20
history of
 Apple I, 14
 Apple II, 14
 IBM Model 5100, 14
 IBM Model 5150, 14
PACKAGING PROCESSORS
 SECC2 (single edge contact
cartridge 2), 85
 SEP (single edge processor), 84
 SPGA (staggered pin grid
array), 83
packaging processors
 packet writing, 633-635
 packets (ATAPI), 466-467
Page Mode memory. See
FPO
DRAM (Fast Page Mode DRAM)
paging, 383
pairing, 109
PAL (Phase Alternate Line), 698
PanelLink, 688
paragraphs (ROM), 319
Parallel ATA. See
PATA
Parallel Port Mode setting
(Peripheral Configuration
menu), 351
Parallel Port setting (Peripheral
Configuration menu), 351
parallel ports, 765-766
 25-pin parallel port
 connectors, 796
 bidirectional (8-bit) parallel
 ports, 798
 configuring, 799
 ECP (Enhanced Capabilities
 Port), 799
 EPP (Enhanced Parallel Port),
 798-799
 IEEE 1284 standard, 796-798
 overview, 791, 795
 standard parallel ports, 798
 Super I/O chips, 258
parallel track path (PTP), 617
parameter translation. See
translation
PARD (Periodic and Random
Deviation), 968
parity
 block data with, 486
dialup modems, 852
parity bits, 415
parity inner (PI) bytes, 613
parity outer (PO) bytes, 613
striping with, 486
Parkinson's Law (Parkinson), 514
Parkinson, Cyril Northcote, 514
patents, 21
PC Card, 561
PC Design Guides, 26-27
PC motherboards, 172-173
PC Power and Cooling, 987
PC133 memory, 387
PC99 Design Guide website, 742
PCA (power calibration
area), 591
PCDEVS.TXT file, 368
PCG (Platform Compatibility
Guide), 948-949
PCI (Peripheral Connect
Interface) buses, 269, 287-289
adapter cards, 288
board configurations, 288-289
bus types, 287-288
interrupts, 298
PCI Express, 269, 290-292, 683
specifications, 286
PCI Express 1.1 Compliance
Mode setting (PCI Express
Configuration menu), 346
PCI Express Burn-in Mode setting
(Chipset Configuration
menu), 350
PCI Express Configuration menu
(BIOS Setup), 346-347
PCI Express x16 Graphics Power
connectors, 961-963
PCI IDE Bus Master setting (Drive
Configuration menu), 353
PCI IRQ Steering, 296
PCI Latency Timer setting
(Chipset Configuration
menu), 350
PCI/VGA Palette Snoop
setting (Video Configuration
menu), 357
PCle (PCI Express), 269,
290-292, 683
PCle x16 Link Retrain setting
(PCI Express Configuration
menu), 347
PCKeyboard.com, 810
PCM (pulse code
modulation), 855
PCMCIA (Personal Computer
Memory Card International
Association). See PC Card, 561
PCs (personal computers)
definition of, 19-20
history of
 Apple I, 14
 Apple II, 14
 IBM Model 5100, 14
 IBM Model 5150, 14
IBM PCs, 14-15
MITS Altair kit, 13-14
Moore's Law, 16
recent developments, 16-17

peak inrush current (power supply), 967
peer-to-peer networks, 868-870
PEG Allow > x1 setting (Chipset Configuration menu), 350
PEG Negotiated Width setting (PCI Express Configuration menu), 347

Pentium II processors, 114-117
 cache, 121
 chipset reference tables, 209-212
 DIB (Dual Independent Bus), 120
 die sizes, 119
 dynamic execution, 73-74
iCOMP 2.0 Index ratings, 52, 120
 Level 1 cache, 121
 Level 2 cache, 121
 MMX technology, 120
 power usage, 120
 SEC (single edge contact) packaging, 84, 117-119
 SEP (single edge processor) packaging, 84
 socket specifications, 86-88
 specifications, 120
 speeds, 119-120
 transistors, 119

Pentium III processors, 114-115, 121
 architectural features, 122
 chipset reference tables, 209-212
 ID markings, 122
 Level 2 cache, 122
 overclocking, 122
 SEC (single edge contact) packaging, 84
 SECC2 (single edge contact cartridge 2) packaging, 85, 122
 SEP (single edge processor) packaging, 84
 socket specifications, 86-88
 SSE (Streaming SIMD Extensions), 72-73

Pentium 4 processors, 124-126
 chips
 ATI chipsets, 233, 236
 Intel 915, 220-221
 Intel 925X, 221
 Intel 945 Express, 221
 Intel 955X, 222
 Intel 96x series, 222-223
 Intel 975X, 222
 Pentium 4 chipset reference tables, 214-220
 SiS chipset reference tables, 229-232
 ULI chipset reference tables, 232-234
 VIA chipset reference tables, 236-238
 VIA Modular Architecture Platforms (V-MAP), 238
 Pentium 4 Extreme Edition, 127
 power supply issues, 127-128

Pentium-compatible processors

Pentium MMX processors, 52, 71-72, 112-113

Pentium Pro processors, 114-115
 cache, 115
 chipset reference tables, 209-212
 DIB (Dual Independent Bus), 115
 Dual Cavity PGA packaging, 115
 dynamic execution, 73-74
 iCOMP 2.0 Index ratings, 52
 Intel 10x/11x, 116
 Intel 12x, 114
 integrated L2 cache, 117
 MCM (multichip module), 115
 socket specifications, 86-88
 specifications, 115
 speeds, 116

Pentium processors

address bus width, 109
addressable memory, 109
BTB (branch target buffer), 109
chipset reference table, 207-208
fixed-point divide bug, 113-114
first-generation, 110
iCOMP 2.0 Index ratings, 52
instruction processing, 109
math coprocessor, 109
MMX (multimedia extensions), 71-72
second-generation, 110-112
socket specifications, 86-88
specifications, 108-109
SPGA (staggered pin grid array) packaging, 83
SSE (Streaming SIMD Extensions), 72-73
superscalar architecture, 108
twin data pipelines, 108
u-pipes/v-pipes, 109

Pentium-MMX processors, 52, 71-72, 112-113

performance

CD drives
 access times, 658
 buffers/cache, 658
 CAV (constant angular velocity) technology, 653
 CLV (constant linear velocity) technology, 653
 data transfer rates, 652-653
 table of CD-ROM drive speeds and transfer rates, 654-655
DVD drives, 656-658
hard drives
 access times, 551
 average seek times, 551
 cache programs, 552
 interleave, 552
 latency, 551
 reliability, 553-555
 transfer rates, 548-550
IEEE 1394, 785-788
memory speed
clock speeds, 382
cycle times, 382
DDR SDRAM (double data rate SDRAM), 388-389
DDR2 SDRAM, 390
DDR3 SDRAM, 392-393
GHz (gigahertz), 381
interleaving, 384
MHz (megahertz), 381-382
module speeds, 413
nanoseconds, 381
processor bus speeds, 383
RDRAM (Rambus DRAM), 395
SDRAM (synchronous DRAM), 387
overclocking, 148-149
bus speeds and multipliers, 155
CPU voltage settings, 156-157
modern PC clocks, 151-152
pitfalls, 155-156
quartz crystals, 149-150
tips and guidelines, 153-154
software, 704
USB, 785-788
Periodic and Random Deviation (PARD), 968
Peripheral Configuration menu (BIOS Setup), 350-352
Peripheral Connect Interface buses. See PCI buses
peripherals. See input devices perpendicular magnetic recording (PMR), 509-511
persistence, 721
personal computers. See PCs perspective correction, 701
PFA (Predictive Failure Analysis), 554
PFC (power factor correction), 968-969
PGA (pin grid array), 83-84
PGA-370 sockets, 89-91
Phase Alternate Line (PAL), 698
phase-change material, 162
phase-shift keying (PSK), 855
Phenom (K10) processors, 146-147
Phelps CD-ROM design and development, 586-587
Phoenix BIOS
Phoenix Award BIOS, 326
SecureCore BIOS, 326-327
POST error codes, 1037-1038
Phoenix BIOS 4 and later, 1041-1042
Phoenix BIOS 486 and earlier, 1039-1041
POST onscreen messages, 372, 1038-1039
reverse engineering of IBM software, 21-22
phone line surge protectors, 989-990
Photo CDs, 635
photolithography, 79
photoresist coating (CDs), 587
physical configuration,
documentation of, 1011
physical formatting. See low-level formatting
physical SSDs, 562-564
PI (parity inner) bytes, 613
Pico-ITX motherboards, 194
Picture CDs, 636
piezoelectricity, 149
pin grid array (PGA), 83-84
PIO (Programmed I/O) transfer modes, 454
PIO Mode setting (Drive Configuration menu), 354
pipelines. See data pipelines
pitch, 748
pits
CDs, 587-589
DVD, 609
pixels, 711-714
bad pixels, 736-737
dead pixels, 736
stuck pixels, 736
plated thin-film media, 531
Platform Compatibility Guide (PCG), 948-949
platters, 518, 530
Plextor Zero Link technology, 624
pliers, 1058
Plug & Play O/S setting (Boot Configuration menu), 348
Plug and Play. See PnP
PMA (power memory area), 591
PMOS transistors, 12
PMR (perpendicular magnetic recording), 509-511
PnP (Plug and Play)
BIOS component, 309-310
hardware component, 309
hot-plugging, 772
operating system component, 310
PnP BIOS
ACPI (Advanced Configuration and Power Interface), 368-369
device IDs, 367
PO (parity outer) bytes, 613
point of presence (PoP), 849
point-to-point topology, 899
pointing devices
choosing, 1005
mouse
ball-driven mouse, 822-823
buttons, 822
cleaning, 828
components, 821-822
Ergonomic Mouse, 833-834
history of, 821
hybrid mouse, 826
manufacturers, 821
optical mouse, 823-824
PS/2 mouse interfaces, 825-826
scroll wheels, 828
serial interfaces, 825
troubleshooting, 827-828
USB (Universal Serial Bus), 827
touch pads, 832
trackballs, 821, 833
TrackPoint, 829-831
wireless
Bluetooth, 835
IR (infrared), 834
power management, 835-836
proprietary radio
 frequency, 834
troubleshooting, 836
polarizing filters (LCDs), 718-719
pollutants, 1077
PoP (point of presence), 849
ports
 addresses, 301
 bus-based device port addresses, 302-304
 chipset-based device port addresses, 302
 motherboard-based device port addresses, 302
 on ATX motherboards, 186
hot-plugging, 788-791
hub ports, 895-896
IEEE 1394. See IEEE 1394
legacy ports, 1003
motherboard mouse port (PS/2), 825-826
overview, 765, 1003-1004
parallel ports, 765-766
 25-pin parallel port connectors, 796
 bidirectional (8-bit) parallel ports, 798
 configuring, 799
ECP (Enhanced Capabilities) parallel ports, 799
EPP (Enhanced Parallel Port), 798-799
IEEE 1284 standard, 796-798
overview, 791, 795
standard parallel ports, 798
Super I/O chips, 258
serial ports, 765-766
 9-pin serial port connectors, 794
 9-pin-to-25-pin serial port connectors, 794
25-pin serial port connectors, 794
configuration, 795
locations, 791-795
overview, 791
Super I/O chips, 258
UART (Universal Asynchronous Receiver/Transmitter) chips, 795
switch ports, 895-896
USB. See USB (Universal Serial Bus)
positive DC voltages
 voltage rails, 914-915
 voltage regulators, 915
positive-pressure-ventilation design, 922
POST (power on self test), 317, 426
 audio error codes, 1035
 AMI BIOS, 1036-1037
 Award BIOS/Phoenix FirstBIOS, 1037-1038
 IBM BIOS, 1042
 Phoenix BIOS, 1039-1042
 checkpoint codes, 1035
 fatal errors, 1034
 onscreen messages, 1036
 Award BIOS/Phoenix FirstBIOS, 1038-1039
 IBM BIOS, 1042-1045
 IBM/Lenovo BIOS POST/Diagnostics, 1045-1046
 overview, 1033-1034
 troubleshooting, 1080-1082
POST INDEX GAP sector data, 523-524
 Poulsen, Valdemar, 510
power calibration area (PCA), 591
power connectors
 4-pin +12V power connectors, 949-950
 8-pin +12V power connectors, 951-952
 AT, 937-939
 ATX/ATX12V 1.x, 939
 6-pin auxiliary power connectors, 944-945
 20-pin main power connectors, 940-942
 maximum power-handling capabilities, 943-944
 Molex Mini-Fit Jr. power connectors, 942-943
 ATX12V 2.x 24-pin, 945-947
 backward/forward compatibility, 952-955
Dell proprietary ATX design, 955-957
floppy power connectors, 574-575, 958-960
multiple power connectors, 939-940
overview, 937
PCG (Platform Compatibility Guide), 948-949
PCI Express x16 Graphics Power connectors, 961-963
peripheral power connectors, 958
power switch connectors
 color coding, 936
 front panel motherboard-controlled switches, 934-935
 front panel power supply AC switches, 935-937
 integral power supply AC switches, 935
 SATA (Serial ATA), 460, 960-961
 VRM (voltage regulator module), 947-948
power cycling, 972-975, 1074-1075
power factor correction (PFC), 968-969
Power Good signal, 916-917
power LED indications, 262
power-line noise, 1075-1076
power management
 ACPI (Advanced Configuration and Power Interface), 976-979
 APM (Advanced Power Management), 976
 BIOS Power menu, 361-363
 CRT emission, 722-723
 DPMS (Display Power Management Signaling), 718
 Energy 2000 standard, 718
 Energy Star standard, 718, 975
 legacy power management, 979
 power glitches, 414
 SMM (System Management Mode), 69-70
 wireless input devices, 835-836
power memory area (PMA), 591
Power menu (BIOS Setup), 361-363
Power_OK signal, 916-917
power on self test. See POST
power-protection systems
backup power
standby power supply, 990-991
UPS (uninterruptible power supply), 991-992
line conditioners, 990
overview, 987-989
phone line surge protectors, 989-990
surge protectors, 989

power supply
-12V power sources, 915-916
-5V power sources, 915-916
+3.3V power sources, 914
+5V power sources, 914
+12V power sources, 914
backup power
standby power supply, 990-991
UPS (uninterruptible power supply), 991-992
batteries
replacing, 996
RTC/NVRAM, 993-996
buying tips, 986-987
connecting, 1019-1021
constant voltage, 914
definition of, 29
efficiency, 968
ESD (electrostatic discharge)
protection, 1010-1011, 1060
floppy power connectors, 958-960

form factors
ATX/ATX12V, 920-922
CFX12V, 928-931
EPS/EPS12V, 926-928
Flex ATX, 933
LFX12V, 931
obsolete form factors, 920
overview, 917-918
proprietary standards, 919
PS3, 924
SFX/SFX12V, 922-926
table of, 919
TFX12V, 928
hold-up time, 967
implication of, 913
input range, 967
line regulation, 968
linear design, 963
loads, 963-964
apparent power, 968
inductive, 968
load regulation, 968
maximum load current, 967
minimum load current, 967
nonlinear, 969
reactive power, 968
resistive, 968
working power, 968
motherboard power connectors
4-pin +12V power connectors, 949-950
8-pin +12V power connectors, 951-952
AT, 937-939
ATX/ATX12V 1.x, 939-945
ATX12V 2.x 24-pin, 945-947
backward/forward compatibility, 952-955
Dell proprietary ATX design, 955-957
multiple power connectors, 939-940
overview, 937
PCG (Platform Compatibility Guide), 948-949
power switch connectors, 934-936
VRM (voltage regulator module), 947-948
MTBF (Mean Time Between Failures), 967
negative DC voltages, 915-916
outlet testers, 1064-1065
output ratings, 964-966
overloading, 980-981
overvoltage protection, 967
PARD (Periodic and Random Deviation), 968
PCI Express x16 Graphics Power connectors, 961-963
peak inrush current, 967
Pentium II processor power usage, 120
Pentium 4 issues, 127-128
peripheral power
connectors, 958
PFC (power factor correction), 968-969
positive DC voltages
voltage rails, 914-915
voltage regulators, 915
power cycling, 972-975
power management
ACPI (Advanced Configuration and Power Interface), 976-979
APM (Advanced Power Management), 976
BIOS Power menu, 361-363
CRT emission, 722-723
DPMS (Display Power Management Signaling), 718
Energy 2000 standard, 718
Energy Star standard, 718, 975
legacy power management, 979
power glitches, 414
SMM (System Management Mode), 69-70
wireless input devices, 835-836

power-protection systems
backup power, 990
line conditioners, 990
overview, 987-989
phone line surge protectors, 989-990
surge protectors, 989

power-use calculations
electrical costs, 973
S3 (Suspend To RAM) state, 974
S4 (Hibernate) state, 975
thermal shock, 972-973
Power_Good signal, 916-917
preventative maintenance
power cycling, 1074-1075
power-line noise, 1075-1076
static electricity, 1075
processors

Index

1137

prefetching, 73
prefixes for decimal/binary multiples, 467-468, 578
presence detect pin configurations (SIMMs),
404-406
Press ESC to skip memory test (error message), 1038
Press TAB to show POST screen (error message), 1039
preventative maintenance. See care and maintenance
primary master hard disk fail (error message), 1039
primary slave hard disk fail (error message), 1039
primary video adapter setting (video configuration menu), 357
prime95, 1048
primitives, 701
PRML (Partial-Response, Maximum-Likelihood), 505
probes (logic), 1064
processor ducts, 165-168
Processor Stepping setting (BIOS maintenance menu), 344
Processor Zone Response setting (fan control configuration menu), 359
processors. See also buses; chipsets; motherboards
3DNow! technology, 73
16-bit to 64-bit architecture evolution, 36-37
286, 102-103
386, 103-104
386DX, 104
386SL, 105
386SX, 104-105
486
486DX, 106
486SL, 107
AMD 486 (5x86), 108
DX2/OverDrive, 107
main features, 105-106
sockets, 86-88
4004 (Intel), 32
6502 (MOS Technologies), 33
8008 (Intel), 33
8085 (Intel), 33
8086 (Intel), 34, 101
8088 (Intel), 34, 101-102
AMD Athlon 64, 140-143
AMD Athlon 64 FX, 140-143
benchmarks, 49
boxed processors, 1000-1001
bugs, 100
cache. See cache
Celeron, 114-115, 123-124
codenames, 100-101
definition of, 28, 31
DIB (Dual Independent Bus) architecture, 74-75
dynamic execution, 73-74
Enhanced 3DNow! technology, 73
heat sinks
active heatsinks, 157-159
boutique heatsinks, 161
heat sink clips, 157
installation, 162
passive heatsinks, 160
purchasing, 160
ratings and calculations, 161-162
history of, 31-36
HT (Hyper-Threading) Technology, 75-76
installation, 1012-1013
integrated audio chipsets
AC'97 integrated audio, 750-752
Intel Azalia HD Audio, 753
Intel-compatible, 114
Itanium, 36
keyboards, 811
manufacturing
.09 micron manufacturing, 80
.13 micron manufacturing, 79
bonding, 81
coppermine, 79
dies, 79
doping, 79
metallization layers, 79
photolithography, 79
process/wafer size
transitions, 80-81
processor remarking, 82
silicon, 77
silicon on insulator (SOI), 79
steppers, 79
test process, 82
yields, 81
math coprocessors, 99
MMX (multimedia extensions), 71-72
modes
IA-32 mode, 45-46
IA-32 virtual real mode, 46-47
IA-32e 64-bit extension mode, 47-49
real mode, 45
multicore processors, 76-77
AMD 64 FX, 144-146
AMD Athlon 64 X2, 144-146
AMD Athlon K10 (Phenom), 146-147
Intel Core 2, 130-132
Intel Extreme Edition, 128-129
Intel Nehalem (Core i), 133-134
Intel Pentium D, 128-129
OEM processors, 1001
overclocking, 148-149
bus speeds and multipliers, 155
CPU voltage settings, 156-157
modern PC clocks, 151-152
pitfalls, 155-156
quartz crystals, 149-150
tips and guidelines, 153-154
packaging
BBUL (bumpless build-up layer), 84
Dual Cavity PGA
packaging, 115
FC-PGA (flip-chip pin grid array), 83
PGA (pin grid array), 83-84
SEC (single edge contact), 84, 117-119
SECC2 (single edge contact cartridge 2), 85
SEP (single edge processor), 84
SPGA (staggered pin grid array), 83
Pentium
address bus width, 109
addressable memory, 109
BTB (branch target buffer), 109
chipset reference table, 207-208
FDIV (floating-point divide) bug, 113-114
first-generation, 110
iCOMP 2.0 index ratings, 52
instruction processing, 109
math coprocessor, 109
MMX (multimedia extensions), 71-72
second-generation, 110-112
socket specifications, 86-88
specifications, 108-109
SPGA (staggered pin grid array) packaging, 83
SSE (Streaming SIMD Extensions), 72-73
Pentium II, 114-117
cache, 121
chipset reference tables, 209-212
DIB (Dual Independent Bus), 120
die sizes, 119
dynamic execution, 73-74
iCOMP 2.0 index ratings, 52, 120
Level 1 cache, 121
Level 2 cache, 121
MMX technology, 120
power usage, 120
SEC (single edge contact) packaging, 84, 117-119
SEP (single edge processor) packaging, 84
socket specifications, 86-88
specifications, 120
speeds, 119-120
transistors, 119
Pentium III, 114-115, 121
architectural features, 122
chipset reference tables, 209-212
ID markings, 122
Level 2 cache, 122
overclocking, 122
SEC (single edge contact) packaging, 84
SECC2 (single edge contact cartridge 2) packaging, 85, 122
SEP (single edge processor) packaging, 84
socket specifications, 86-88
SSE (Streaming SIMD Extensions), 72-73
Pentium 4, 124-126
chipsets, 214-223, 229-238
Pentium 4 Extreme Edition, 127
power supply issues, 127-128
Pentium-compatible
AMD Athlon, 137-138
AMD Athlon MP, 139-140
AMD Athlon XP, 138-139
AMD Duron, 138
AMD-K6, 73, 136
NexGen Nx586, 135-136
Sempron, 143-144
Pentium D, 128-129, 229-232
Pentium Pro, 114-115
cache, 115
chipset reference tables, 209-212
DIB (Dual Independent Bus), 115
Dual Cavity PGA packaging, 115
dynamic execution, 73-74
iCOMP 2.0 index ratings, 52
integrated L2 cache, 117
MCM (multichip module), 115
sockets, 86-88
specifications, 115
speeds, 116
SPGA (staggered pin grid array) packaging, 83
transistors, 115
VID (voltage identification) pins, 117
Pentium-MMX, 52, 71-72, 112-113
processor ducts, 165-168
reprogrammable microcode, 100
slots, 195-198
SMM (System Management Mode), 69-70
sockets, 195-198
LIF (low insertion force), 88
Socket 370 (PGA-370), 89-91
Socket 423, 91
Socket 478, 91
Socket 754, 95
Socket 939, 95
Socket 940, 96
Socket A (Socket 462), 94-95
Socket AM2, 96-98
Socket AM2+, 96, 98
Socket AM3, 97-98
Socket F (1207FX), 98
Socket LGA1156, 92-93
Socket LGA1366, 93-94
Socket LGA775, 91-92
specifications, 86-88
ZIF (zero insertion force), 83, 88
specifications, 37-39
address bus, 43-44
AMD processors, 40-42
external data bus, 42-43
Intel, 39
Intel processors, 38-40
internal data bus, 44
modes, 45-49
speed ratings, 49-63
SSE (Streaming SIMD Extensions), 72-73
superscalar execution, 70-71
testing, 100
troubleshooting, 168-170, 1085-1086
upgrading, 148
video processor, 676
voltages, 98, 117
Zilog Z-80, 33
Professional 3DNow! technology, 73
program area (CDs), 591
programmable ROM (PROM), 320-322
Programmed I/O (PIO) modes, 454
Programmer's Guide to the AMIBIOS: Includes Descriptions of PCI, APM, and Socket Services BIOS Functions, 326
projectors, 724-725
PROM (programmable ROM), 320-322
proprietary-design motherboards, 194
proprietary power supply standards, 919
proprietary radio frequency input devices, 834
ProtectDisc, 652
protective coating (CDs), 588
protocols, 902-903. See also specific protocols
definition of, 853
g7 error-correction protocols, 855-856
g full-duplex protocols, 855
g half-duplex protocols, 855
g overview, 870-871
PS/2 Y adapter, 1059
PS3 form factor, 924
PS_ON signal, 916, 934
PSB (processor side bus). See buses
g pseudo-open drain, 679
PSK (phase-shift keying), 855
PTP (parallel track path), 617
pulse code modulation (PCM), 855
g pure mechanical keyswitches, 805-806
PWR_OK signal, 916-917
PXE Boot to LAN setting (Boot menu), 364
Q
QAM (quadrature amplitude modulation), 855
QuantiSpeed (Athlon XP), 138
Quantum hardcards, 436
quartz crystals, 149-150
Quick Format option, 578
Quick Power On Self Test feature (BIOS Setup), 366
QuickConnect standard, 859
QuickStop response (TrackPoint), 831
QuickTime Pro, 728
quiet boots, 329
R
RAB (Raid Advisory Board), 485
Radeon IGP chipsets, 247-249
radio frequency input devices, 834
radio frequency interference (RFI), 414, 1076
RAID (redundant array of independent disks), 327, 485-488
Raid Advisory Board (RAB), 485
rails (voltage), 914-915
RAM (random access memory)
banks, 402, 412-413
BEDO RAM (burst extended data out RAM), 385
buffer underruns, 661-662
buying tips, 421-422
cache, 1002
bus snooping, 69
cache controllers, 69
definition of, 63-64, 380
direct-mapped cache, 68
directory entry associative cache, 68
fully associative mapped cache, 68
hard disk drive cache programs, 552
hit ratio, 380
Level 1, 64-66, 380
Index

RAM (random access memory)

Level 2, 66, 380
Level 3, 66, 381
nonblocking cache, 69
overview, 379
Pentium-MMX
improvements, 71
performance and design, 67-68
set associative cache, 68
speed, 69
TLB (translation lookaside buffer), 69
write-back cache, 427
write-through cache, 69

CMOS RAM
addresses, 337-339
backing up, 330-331
configuring with BIOS Setup.
See Setup program (BIOS)
definition of, 316-317
diagnostic status byte codes, 339-340
motherboard CMOS RAM
addresses, 259
compared to ROM (read-only memory), 377
compared to storage, 376
conventional memory barrier, 432
DDR SDRAM (double data rate SDRAM), 388-389, 1003
DDR2 SDRAM, 390-393
DDR3 SDRAM, 392-393
definition of, 29, 375
determining module
size/features, 409-412
DIMMs (dual inline memory modules), 397, 1002
buffered, 406
buying tips, 421-422
capacities, 401-402
DDR DIMM, 399, 407
DDR2 DIMM, 400, 407
DDR3 DIMM, 400, 408
SDR DIMMs, 406-407
SDRAM DIMM, 399
SPD (serial presence detect), 406
unbuffered, 407
DIP (dual inline package)
chips, 397

DMA (direct memory access)
channels, 300
8-bit ISA, 300
16-bit ISA, 300-301
CD/DVD drives, 658
double-sided memory
modules, 397
DRAM (dynamic RAM), 377-380
dual-channel memory, 413
ECC (error correcting code), 418-419
EDO RAM (extended data out RAM), 384-385
flash memory, 557-559
capacities, 565-566
CompactFlash, 559-560
comparison of, 564-566
MMC (MultiMediaCard), 560
NAND (Not AND), 558
NOR (Not OR), 558
PC Card, 561
physical size, 559
reading, 566-568
SD (SecureDigital), 560
SmartMedia, 560
Sony Memory Stick, 560
Sony Memory Stick Pro, 561
SSD (solid-state drive), 561-564
USB flash drives, 564
xD-Picture Card, 561
FPO DRAM (Fast Page Mode DRAM), 383-384
hard fails, 414
HMA (high memory area), 47
installation, 423-424,
1014-1015
layout, 376
logical mapping, 376
logical memory layout, 432-434
maximum installable memory, 396
MMU (memory management unit), 103
narrow-channel systems, 394
parity checking, 415-418
RDRAM (Rambus DRAM), 393-396
registered modules, 402-404
RIMMs (Rambus inline memory modules), 394, 398
buying tips, 422
capacities, 402
installation, 409
keying options, 408
RTC/NV-RAM batteries
modern CMOS batteries, 993-995
obsolete/unique CMOS batteries, 995
troubleshooting, 996
SDRAM (synchronous DRAM), 385-387
SIMMs (single inline memory modules), 397
buying tips, 422
capacities, 401
fretting, 406
installation, 424
presence detect pin configurations, 404-406
typical 30-pin SIMM, 398
typical 72-pin SIMM, 399
single-sided memory modules, 397
soft errors, 414-415
speed
clock speeds, 382
cycle times, 382
GHz (gigahertz), 381
interleaving, 384
MHz (megahertz), 381-382
module speeds, 413
nanoseconds, 381
processor bus speeds, 383
SRAM (static RAM)
cache hit ratio, 380
compared to DRAM, 379-380
Level 1 cache, 380
Level 2 cache, 380
Level 3 cache, 381
overview, 379
System Management
Memory, 107
troubleshooting, 425-426,
1088-1090
error messages, 427
memory defect isolation procedures, 429-431
Index

removable-media drives

Read Multiple command (ATA), 464
read-only memory. See ROM BIOS
read process, 493, 567
read/write heads, 491, 532-534
ferrite, 494
for floppy drives, 571-573
GMR (giant magneto-resistive), 497-498
MIG (Metal-In-Gap), 494-495
MR (magneto-resistive), 495-496
overview, 493-494
PMR (perpendicular magnetic recording), 509-511
TF (thin film), 495
real mode, 45
real-time clock/nonvolatile memory. See RTC/NVRAM
rear out sound card connectors, 743
receptacle testers, 1064-1065
recordable DVD standards, 620
recording
CDs, 601, 661-662
buffer underruns, 661-662
recording software, 660
floppy drives, 573-574
multisession recording (CDs), 632-633
DAO (Disc-at-Once) recording, 633
packet writing, 633-635
Track-at-Once, 633
recording media, 530
AFC (antiferromagnetically coupled), 532
oxide, 531
thin-film, 531
sound sampling, 749
standard recording, 525
ZBR (zoned-bit recording), 525-527
Recording Review, 748
recovery
of flash BIOS, 334-337
System Restore, 1068
Red Book (CD-DA) format, 631
Reduced Instruction Set Computer (RISC) chips, 71, 108, 802
redundant array of independent disks (RAID), 327, 485-488
refresh rates, 715-716, 721-722
region codes used by Blu-ray disc, 651
region-free DVD players, 651
regional playback control (RPC), 650-651
registered memory modules, 402-404
regulators (voltage), 915
reinstalling components, 1078
reliability
of ATA (AT Attachment), 436
of hard drives
MTRF (mean time between failures), 553
PFA (Predictive Failure Analysis), 554
S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology), 553-555
remarking processors, 82
remote power switch connectors. See power switch connectors
removable-media drives
flash memory, 557
floppy drives
1.2MB 5 1/4-inch, 571
1.44MB 3 1/2-inch, 570-571
2.88MB 3 1/2-inch, 571
720KB 3 1/2-inch, 571
capacity, 577
controller cables, 575-577
collectors, 574
cylinders, 573
Disk Change signal, 578-579
disk formats, 577
floppy disk care and handling, 581-582
floppy disk media specifications, 579-581
formatted parameters, 569-570
formatting, 578
head actuator mechanisms, 573
history of, 569
interfaces, 571
removable-media drives

- power and data connectors, 574-575
- read/write heads, 571-573
- sectors, 577
- tracks, 577
- tunnel erasure, 573-574
- magnetic disk media, 557
- magnetic tape media, 558
- magneto-optical drives, 584
- overview, 557
- tape drives, 582-583

removing video adapters, 1027

rendering images
- dual-GPU scene rendering
 - ATI CrossFire/CrossFire X, 707-708
 - NVIDIA SLI, 706-707
- overview, 701, 704

repair. See troubleshooting

Repeat Delay parameter (Windows keyboards), 812

Repeat Rate parameter (Windows keyboards), 812

repeaters, wireless, 899

replacing components
- batteries, 996
- bootstrap approach, 1079-1080
- compared to reinstalling components, 1078
- known-good spare technique, 1078-1079
- power supply, 986-987
- video adapters, 1027

Report No FDD for feature (BIOS Setup), 367

reprogrammable microcode, 100

Reset Intel AMT to default factory settings (BIOS Maintenance menu), 344

resistive power, 968

resolution of monitors, 709-710

resource conflicts
- PnP (Plug and Play), 309-310
- sound cards, 756
- system-configuration templates, 306, 308

resource sharing, 912

resources. See system resources

restore points, 1068

Resuming from disk, Press TAB to show POST screen (error message), 1039

reverse-engineering software, 21-22

RF (radio frequency) input devices, 834

RFI (radio-frequency interference), 414, 1076

RG-58 cable (Thinnet), 882

RIMMs (Rambus inline memory modules), 394, 398
- buying tips, 422
- capacities, 402
- installation, 409
- keying options, 408

ring topology, 891-892

ripping CDs, 647-648

ripple (power supply), 968

RISC (Reduced Instruction Set Computer), 71, 108, 802

RJ-45 connectors, 881

RLI (Run Length Limited), 492, 502-504

Roberts, Ed, 13

Rock Ridge file system, 646

Rock Ridge Interchange Protocol (RRIP), 646

ROM BIOS
- ATA drive capacity limitations, 468-470
- backing up, 330
- BIOS dates, 329-330
- BIOS ID strings, 326
- boot ROM, 328
- bootstrap loader, 318
- capacity limitations, 546-548
- choosing, 1002
- CMOS RAM addresses, 337-339
- backing up, 330-331
- configuring with BIOS Setup. See Setup program (BIOS)
- definition of, 316-317
- diagnostic status byte codes, 339-340
- compared to RAM (random access memory), 377
- definition of, 313
- EEPROM (electronically erasable programmable ROM), 323-324
- EPROM (erasable programmable ROM), 322-323

error messages
- AMI BIOS messages, 371-372
- Award BIOS messages, 372
- Compaq BIOS messages, 372
- IBM BIOS messages, 370-371
- MBR boot error messages, 372-374
- overview, 369-370
- Phoenix BIOS messages, 372

firmware, 314

flash ROM, upgrading, 323-324, 331-332
- emergency flash ROM recovery, 334-337
- Windows executable upgrades, 332
 - with automated bootable media images, 332-333
 - with user-created bootable media, 333-334
- write protection, 331

hardware/software, 318-319, 327-328

IPL (initial program load)
- ROM, 328

manufacturers
- AMI (American Megatrends, Inc.), 325-326
- MR (Microid Research), 327
- OEMs (original equipment manufacturers), 325
- Phoenix, 326-327
- Mask ROM, 320
- motherboards, 318
- non-PC ROM upgrades, 324
- overview, 313-317, 377
- paragraphs, 319
- PnP (Plug and Play), 309-310
- ACPI (Advanced Configuration and Power Interface), 368-369
- device IDs, 367
- POST (power on self test), 317
- preboot environment, 340-342
- PROM (programmable ROM), 320-322
- RBB (Rapid BIOS Boot), 328
RTC/NVRAM (real-time clock/nonvolatile memory) chips, 316
Setup program, 317
accessing, 342
additional setup features, 365-367
Boot Configuration menu, 348
Boot menu, 363-365
Chipset Configuration menu, 348-350
Drive Configuration menu, 352-355
Event Log Configuration menu, 356
Exit menu, 365
Fan Control Configuration menu, 359
Floppy Configuration menu, 355-356
hardware monitoring display, 359
main menu, 344-345
Maintenance menu, 343-344
Memory Configuration menu, 347-348
overview, 342-343
PCI Configuration menu, 346
PCI Express Configuration menu, 346-347
Peripheral Configuration menu, 350-352
Power menu, 361-363
running, 1029-1030
Security menu, 360-361
USB Configuration menu, 358-359
Video Configuration menu, 357
shadowing, 320
upgrading
advantages of, 328
BIOS versions, 329
CMOS RAM addresses, 337-339
CMOS RAM backups, 330-331
CMOS RAM diagnostic status byte codes, 339-340
flash ROM, 331-337
keyboard controller chips, 331
obtaining updates, 328
year-2000 compliance, 340
versions, 329
video BIOS, 675-676
ROM Shadowing feature (BIOS Setup), 367
root hubs, 767
rotary voice-coil actuators, 536
routers, 861-862, 899
RPC (regional playback control), 650-651
RRIP (Rock Ridge Interchange Protocol), 646
RTC/NVRAM batteries
modern CMOS batteries, 993-995
obsolete/unique CMOS batteries, 995
troubleshooting, 996
rubber dome keyswitches, 807
Run Length Limited (RLL), 492, 502-504
Rutledge, Joseph, 829

S
S-100 bus, 14
S-video connectors, 728
S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology), 441, 553-555
S.M.A.R.T. setting (Drive Configuration menu), 354
S3 (Suspend To RAM) state, 974
S4 (Hibernate) state, 975
SA-CD (Super Audio CD), 637-638
Safe Removal settings (drives), 789-790
SafeAudio, 649
safeAudio, 649
safety. See security
SAL (Soft Adjacent Layer) structure, 496
sampling, 593-594, 749
SanDisk Corporation
CompactFlash, 559-560
Sandra, 412
SASI (Shugart Associates System Interface), 569
SATA (Serial ATA)
8B/10B encoding, 458
AHCI (Advanced Host Controller Interface), 461-462
backward compatibility, 456
BIOS setup, 460-461
CD/DVD drive interfaces, 659
data connector pinouts, 460
definition of, 435
differential NRZ (Non Return to Zero), 458
host adapters, 459
overview, 456
power connector pinouts, 460
power connectors, 960-961
Serial ATA International Organization, 438, 457
signal and power connectors, 459
transfer modes, 457-458, 462-463
satellite broadband
HughesNet, 846-847
overview, 846
performance issues, 848
StarBand, 848
WildBlue, 847
satellite speakers, 761
Save Custom Defaults command (BIOS Exit menu), 365
scalable link interface (SLI), 961-963
scan codes (keyboards), 813-814
scan conversion, 701
scan rates, 715-716, 721-722
Scan User Flash Area setting (Boot menu), 364
scan-line interfacing (SLI), 706
Scarlet Book standard (SA-CD), 637-638
SCAT (Single Chip AT) chipsets, 199
scratchy sound, troubleshooting, 758-759
screen flicker, 722
screwdrivers, 1057-1058, 1066
scroll wheels (mouse), 828
SCSI (Small Computer Systems Interface), 328
Index

Secam (Sequential Couleur Avec Memoire), 698
SecC2 (Single Edge Contact Cartridge 2) package, 85, 122
Second SATA Master setting (Drive Configuration menu), 354
second-generation (286) processors, 102-103
second-generation Pentium processors, 110-112
second-party memory modules, 421
secondary cache. See Level 2 cache
Secondary IDE Master setting (Drive Configuration menu), 354
Secondary IDE Slave setting (Drive Configuration menu), 354
Secondary master hard disk fail (error message), 1039
Secondary Sata Controller setting (Peripheral Configuration menu), 351
Secondary slave hard disk fail (error message), 1039
Secondary Video Adapter setting (Video Configuration menu), 357
sector addressing
CHS (cylinder head sector) 2.1GB barrier, 477
4.2GB barrier, 477-478
8.4GB barrier, 481-482
528MB barrier, 472-474
BIOS commands versus ATA commands, 472
CHS bit-shift translation, 474-476
CHS/LBA conversions, 471 compared to LBA (logical block address), 470-471
LBA (logical block address) 137GB barrier and beyond, 482-484
BIOS commands versus ATA commands, 472
CHS/LBA conversions, 471 compared to CHS (cylinder head sector), 470-471
LBA-assist translation, 478-481
prefixes for decimal/binary multiples, 467-468
SECTOR NUMBER sector data, 523
sectors, 518, 521, 593.
See also tracks addressing. See sector addressing data bytes, 522
definition of, 577
DVDs, 613-614
fields
ADDRESS MARK, 523
CRC, 523-524
CYLINDER NUMBER, 523
DATA, 523-524
DATA SYNC VFO LOCK, 523
HEAD NUMBER, 523
ID VFO LOCK, 523
INTER-RECORD GAP, 523-524
POST INDEX GAP, 523-524
PRE-INDEX GAP, 523-524
SECTOR NUMBER, 523
SYNC BYTE, 523
WRITE TURN-OFF GAP, 523
WRITE TURN-ON GAP, 523-524
gaps in, 522
headers/trailers, 522
No-ID recording, 522
No-ID sector formatting, 522
numbering, 521
translation, 551
typical track/sector format, 523
usable space, 522-523
SecureCore BIOS, 326-327
SecureDigital (SD), 560
security
ATA (AT Attachment) HPAs (host protected areas), 465-466
Security Mode, 464-465
BIOS Setup settings, 360-361
CD copy protection, 596, 649
DRM (digital rights management), 649-650
DSL (digital subscriber line), 843
DVD copy protection CSS (content scramble system), 651-652
ProtectDisc, 652
region codes used by Blu-ray disc, 651
RPC (regional playback control), 650-651
floppy disks, 580
networks, 912
of Internet connections overview, 860
routers, 861-862
dervice interruptions, 860-861
shared connections, 861
passwords, 360
power-protection systems
backup power, 990
line conditioners, 990
overview, 987-989
phone line surge protectors, 989-990
surge protectors, 989
viruses, CIH, 331
war driving, 899
WEP (wireless equivalent privacy), 900
Wi-Fi (Wireless Fidelity), 899-901
WPA (Wi-Fi Protected Access), 901
Security menu (BIOS Setup), 360-361
Security Option setting (Security menu), 361
seek times, 515, 551
self-cleaning lenses (CD/DVD drives), 660
Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.), 441, 553-555
Selker, Ted, 829
semiproprietary LPX motherboards, 175
Sempron processors, 143-144
Sequential Couleur Avec Memoire (SECAM), 698
Serial ATA International Organization, 438, 457
Serial ATA. See SATA serial mouse, 825
Serial Port setting (Peripheral Configuration menu), 352
serial ports, 765-766
9-pin serial port connectors, 794
9-pin-to-25-pin serial port connectors, 794
25-pin serial port connectors, 794
configuration, 795
locations, 791-795
overview, 791
Super I/O chips, 258
UART (Universal Asynchronous Receiver/Transmitter) chips, 795
serial presence detect (SPD), 406
Series A/B connectors (USB), 772
SERs (soft error rates), 414
servo-controlled systems, 536
servo mechanisms, 537-540
dedicated servo, 540
disk sweep, 538
embedded servo, 539-540
gray code, 537
servowriters, 537
thermal recalibration, 538
wedge servo, 539
servowriters, 537
set associative cache, 68
SET MAX ADDRESS command (ATA), 466
Set Supervisor Password setting (Security menu), 361
Set User Password setting (Security menu), 361
setup passwords, 360
Setup program (BIOS), 317
accessing, 342
additional setup features, 365-367
Boo7 Configuration menu, 348
Boot menu, 363-365
Chipset Configuration menu, 348-350
Drive Configuration menu, 352-355
Event Log Configuration menu, 356
Exit menu, 365
Fan Control Configuration menu, 359
Floppy Configuration menu, 355-356
hardware monitoring display, 359
main menu, 344-345
Maintenance menu, 343-344
Memory Configuration menu, 347-348
overview, 342-343
PCI Configuration menu, 346
PCI Express Configuration menu, 346-347
Peripheral Configuration menu, 350-352
Power menu, 361-363
running, 1029-1030
Security menu, 360-361
USB Configuration menu, 358-359
Video Configuration menu, 357
seventh-generation processors
chips:
ATI chipsets, 233, 236
Intel 3x series, 223-226
Intel 4x series, 224-226
Intel 5x series, 226-229
Intel 915, 220-221
Intel 925X, 221
Intel 935 Express, 221
Intel 955X, 222
Intel 96x series, 222-223
Intel 975X, 222
Intel chipsets reference tables, 214-220
SiS chipsets reference tables, 229-232
ULi chipsets reference tables, 232-234
VIA chipsets reference tables, 236-238
VIA Modular Architecture Platforms (V-MAP), 238
Pentium 4, 124-128
Pentium 4 Extreme Edition, 127
SFX power supply, 922-926
SFX12V power supply, 922-926
SGI OpenGL, 705
SGRAM (Synchronous Graphics RAM), 678
shading, 701
flat shading, 699
Gouraud shading, 699
vertex and pixel shading, 703
shadow masks (CRT), 721
shadowed ROM (read-only memory), 320
Shannon’s Law, 857
Shannon, Claude, 857
sharing
Internet connections, 861-862, 912
interrupts, 296
resources, 912
shielded twisted pair (STP) cables, 883-884
Shockley, William, 11
Shugart Associates, 516-517
Shugart Associates System Interface (SASI), 569
Shugart, Alan, 516, 569
shutdown, troubleshooting, 1082
signal-to-noise ratio (SNR), 749
signals
Disk Change, 578-579
keyboard connector signals, 815
PATA (Parallel ATA) signals, 450-451
Power_Good, 916-917
PS_ON, 916, 934
signal boosters, 899
signal skew, 766
Silent Boot setting (Boot menu), 364
silicon, 77
Silicon Image PanelLink, 688
silicon on insulator (SOI), 79
silicon transistors, 13
SIMD (single instruction multiple data), 113
SIMMs (single inline memory modules), 397
buying tips, 422
capacities, 401
fretting, 406
installation, 424
presence detect pin configurations, 404-406
typical 30-pin SIMM, 398
typical 72-pin SIMM, 399
single-bit error-correction double-bit error detection (SEC-DED), 418
Single Chip AT (SCAT) chipsets, 199
single data rate DIMMs. See SDR DIMMs
Single-Density encoding, 502
single edge contact (SEC) packaging, 84, 117-119
single edge contact cartridge 2 (SECC2) packaging, 85, 122
single edge processor (SEP) packaging, 84
single-gap heads, 496
single inline memory modules. See SIMMs
single instruction multiple data (SIMD), 113
single-sided memory modules, 397
singleword DMA (direct memory access), 455
SiS (Silicon Integrated Systems) chipsets
Athlon/Duron chipset reference tables, 242-244
MuTIOL architecture, 244
Pentium 4/Pentium D chipset reference tables, 229-232
SiS755/755FX, 255
SiS756, 256
SiS760/760GX, 256-257
SiS761/761GX, 257
SiSoftware Sandra, 412
sixth-generation processors
Celeron, 114-115, 123-124
chipset reference tables, 209-212
Pentium II, 114-117
cache, 121
DIB (Dual Independent Bus), 120
die sizes, 119
iCOMP 2.0 Index rating, 120
MMX technology, 120
power usage, 120
SEC (Single Edge Contact) packaging, 117-119
specifications, 120
speeds, 119-120
transistors, 119
Pentium II, 73-74
Pentium III, 114-115, 121-122
chipset reference tables, 209-212
Pentium II, 114-117
cache, 121
DIB (Dual Independent Bus), 120
die sizes, 119
iCOMP 2.0 Index rating, 120
MMX technology, 120
power usage, 120
SEC (Single Edge Contact) packaging, 117-119
specifications, 120
speeds, 119-120
transistors, 119
Pentium II, 73-74
Pentium III, 114-115, 121-122
Pentium-compatable
AMD Athlon, 137-138
AMD Athlon MP, 139-140
AMD Athlon XP, 138-139
AMD Duron, 138
AMD-K6, 73, 136
Netgen NxS86, 135-136
Sempron, 143-144
Pentium Pro, 114-115
cache, 115
DIB (Dual Independent Bus), 115
Dual Cavity PGA packaging, 115
dynamic execution, 73-74
integrated L2 cache, 117
MCM (multichip module), 115
specifications, 115
speeds, 116
transistors, 115
VID (voltage identification) pins, 117
Sixth SATA Master setting (Drive Configuration menu), 354
size
of flash memory devices, 559
of hard disk drive platters, 530
of video monitors, 708
skins (keyboard), 820
slave drives (ATA), 451
sleep feature for speakers, 761
SLI (scalable link interface), 961-963
SLI (scan-line interfacing), 706
sliders (head), 498-500
slimline cases, 1000
slot-key, 90
slot load mechanism (CD/DVD drives), 660
slots (processor), 195-198
slotted masks (CRT), 721
SmartMedia, 560
SMBIOS (System Management), 356
SMI (System Management Interrupt), 105-107
SMM (System Management Mode), 69-70, 107
snooping (bus), 69
SNR (signal-to-noise ratio), 749
sockets
LIF (low insertion force), 88
Socket 370 (PGA-370), 89-91
Socket 423, 91
Socket 478, 91
Socket 754, 95
Socket 939, 95
Socket 940, 96
Socket A (Socket 462), 94-95
Socket AM2, 96-98
Socket AM2+, 96-98
Socket AM3, 97-98
Socket F (1207FX), 98
Socket LGA1156, 92-93
Socket LGA1366, 93-94
Socket LGA775, 91-92
specifications, 86-88
ZIF (zero insertion force), 83, 88
sockets (processor), 195-198
Soft Adjacent Layer (SAL)
structure, 496
soft error rates (SERs), 414
soft errors, 378, 414-415
Soft Power, 916, 922
software. See also
specific software
acceleration, 704
copyright protection, 21
industry control of, 20-23
optimization, 704
reverse-engineering, 21-22
software resources, 1007-1008
troubleshooting, 1081
SOI (silicon on insulator), 79
solid state floppy disk card
(SSFDC), 560
solid-state drive. See SSD
Sony
3.5-inch half-height drives, 517
CD-ROM design and
development, 586-587
DRM (digital rights
management), 649
Memory Stick, 560
Sony/Philips Digital Interface
(SPDIF) in/out sound card
connectors, 744
sound. See audio
Sound Blaster, 740
Sound Blaster Pro, 740
sound cards
AdLib, 739
choosing, 1006
connectors, 742-744
aux in, 744
CD SPDIF in/out, 744
line in sound card
connectors, 743
line out sound card
connectors, 743
MIDI in/out, 744
mono in sound card
connectors, 743
optical SPDIF in/out, 744
rear out sound card
connectors, 743
SPDIF in/out, 744
TAD (Telephone Answering
Device) in, 744
data compression, 746-747
definition of, 29
DirectX, 740
drivers, 747
DSPs (digital signal
processors), 747
frequency response, 749
history of, 739
installing
expansion slot selection,
753-754
speaker connections,
754-755
stereo system
connections, 755
integrated audio chipsets, 750
legacy audio support, 740-741
MIDI support features, 746
monophonic/stereophonic, 746
resource conflicts, 756
sampling, 749
SNR (signal-to-noise ratio), 749
Sound Blaster, 740
Sound Blaster Pro, 740
sound production features,
747-748
sound properties, 748
total harmonic distortion, 749
troubleshooting, 755
advanced features, 759
Chipset Setup options,
759-760
low volume, 757-758
no sound, 756-757
problems playing specific file
formats, 758
resource conflicts, 756
scratchy sound, 758-759
startup problems, 759
USB-based audio processors, 745
volume control, 745-746
South Bridge chipsets, 202-204.
See also specific chipsets
SPDIF (serial presence detect), 406
SPDIF (Sony/Philips Digital
Interface) in/out sound card
connectors, 744
speakers
AC adapters, 761
amplification, 760
connecting, 754-755
connectors, 267
DBB (dynamic bass boost), 761
frequency response, 760
interference, 762
magnetic shielding, 760
overview, 760
satellite speakers, 761
sleep feature, 761
surround sound, 762-763
total harmonic distortion, 760
troubleshooting, 758
volume control, 761
watts, 761
speculative execution, 73-74
speed
56Kbps modems, 858
broadband technology, 850
of cache, 69
of CD drives
access times, 658
buffers/cache, 658
CAV (constant angular
velocity) technology, 653
CLV (constant linear
velocity) technology, 653
data transfer rates, 652-653
DMA and Ultra-DMA, 658
table of CD-ROM drive
speeds and transfer rates, 654-655
of DVD drives, 656-658
of hard drives
access times, 551
average seek times, 551
cache programs, 552
interleave, 552
latency, 551
transfer rates, 548-550
of IEEE 1394, 785-788
memory speed
 clock speeds, 382
 cycle times, 382
 DDR SDRAM (double data rate SDRAM), 388-389
 DDR2 SDRAM, 390
 DDR3 SDRAM, 392-393
 GHz (gigahertz), 381
 interleaving, 384
 MHz (megahertz), 381-382
 module speeds, 413
 nanoseconds, 381
 processor bus speeds, 383
 RDRAM (Rambus DRAM), 395
 SDRAM (synchronous DRAM), 387
 of NICs (network interface cards), 880
overclocking, 148-149
 bus speeds and multipliers, 155
 CPU voltage settings, 156-157
 modern PC clocks, 151-152
 pitfalls, 155-156
 quartz crystals, 149-150
 tips and guidelines, 153-154
 of processor buses, 278
 of processors, 49-51
 Am5x86(TM)-P75 processor, 108
 iCOMP 2.0 index ratings, 52
 number of pipelines per CPU, 51
 Pentium II, 119-120
 Pentium III, 122
 Pentium Pro, 116
 wait states, 50
 SYSmark 2004 scores, 53-55
 SYSmark 2004 SE scores, 55-57
 SYSmark 2007 preview scores, 57-63
 speed locking, 344
 speed ratings, 603 of USB, 785-788
 video RAM, 679
 SpeedFan, 1048
 SPGA (staggered pin grid array), 83
spills on keyboards,
 cleaning, 820
 spin-coating process (CD-R), 600
 spin rates (hard drives), 519
 spin-valve heads, 497-498
 spindle motors, 543-544
 Spindle Synchronization (SPSYNC) signals, 451
 Spitfire. See Duron chipsets
 splash screens, 329
 SPPs (system platform processors), 245
 SPS (standby power supply), 990-991
 SPSYNC (Spindle Synchronization) signals, 451
 sputtered thin-film media, 531
 sputtering, 494, 531
 SRAM (static RAM). See also cache
 cache hit ratio, 380
 compared to DRAM, 379-380
 Level 1 cache, 380
 Level 2 cache, 380
 Level 3 cache, 381
 overview, 379
 SSD (solid-state drive)
 definition of, 561
 physical SSDs, 562-564
 virtual SSD (RAMdisk), 561-562
 with Windows 7, 563
 SSE (Streaming SIMD Extensions), 72-73
 SSFDC (solid state floppy disk card), 560
 SSIDs, 900
 Stabilant 22a, 806, 1070
 stackable hubs, 895
 stackable switches, 895
 staggered pin grid array
 (SPGA), 83
 standard parallel ports, 798
 standard recording, 525
 standby power supply, 990-991
 Standby state (APM), 976
 star topology, 892, 899
 StarBand, 848
 start bits, 791
 start-stop communications, 851
startup process,
 troubleshooting, 759
Static Column memory, 383-384
static contrast ratio, 717
static discharge, 415
static electricity, 1075
static RAM. See SRAM
static-filled sound,
 troubleshooting, 758-759
status LEDs (broadband devices), 863
stencil buffering, 702
stepper motors, 535
steppers, 79
stereo systems, connecting to sound cards, 755
stereophonic sound cards.
 See sound cards
stop bits, 852
STOP errors, 1082
storage, compared to memory, 376
stored-program technique, 10
STP (shielded twisted pair) cables, 883-884
Streaming SIMD Extensions (SSE), 72-73
streams, HyperStreaming, 244
striping disks, 486
stuck keys, switches,
 troubleshooting, 818
stuck pixels (LCDs), 736
subcode bytes (CDs), 594-595
subpixels, 719
substrate material, 491
Super Audio CD (SA-CD), 637-638
Super Density (SD) disks, 608
Super I/O chips, 202, 258-259
Super-IPS (in-place switching), 719
Super South Bridge chips, 259
Super VGA (SVGA), 686
Super Video CDs, 636
Superchips, 324
superparamagnetic limit, 532
superscalar architecture
 (Pentium), 108
superscalar execution, 70-71
SuperSpeed USB (USB 3.0), 774-776
supertiling, 707
Supervisor Password setting
(Security menu), 361
supervisor passwords, 360
surge protectors, 989
surprise removal, 788
surround sound, 762-763
suspend state (APM), 976
Suspend To RAM (S3) state, 974
SVGA (Super VGA), 686
swabs, 1071-1072
Swan Floppy Drive feature (BIOS Setup), 366
switches
address storing, 893
choosing, 909
compared to hubs, 893-895
dual-speed, 895
front panel AC switches, 935-937
front panel motherboard-controlled, 934-935
integral AC switches, 935
placement of, 896
ports, 895-896
stackable, 895
switching power supply
loads, 963-964
apparent power, 968
inductive, 968
load regulation, 968
maximum load current, 967
minimum load current, 967
reactive power, 968
resistive, 968
working power, 968
overview, 914, 963
Symmetrical DSL (SDSL), 843
SYNC BYTE sector data, 523
synchronous DRAM (SDRAM), 385-387
Synchronous Graphics RAM (SGRAM), 678
synthetic benchmarks, 49
SYMark ratings
2004 scores for various processors, 53-55
2004 SE scores for various processors, 55-57
2007 preview scores for various processors, 57-63
system assembly
cables, 1007, 1027
cases, 999-1000
cooling fans, 1007
cover assembly, 1027
documentation of physical configuration, 1011
ESD (electrostatic discharge) protection, 1010-1011
expansion cards, 1027
hard drives
choosing, 1004-1005
drive configuration, 1022-1023
drive installation, 1023-1026
hardware resources, 1007-1008
heatsinks, 1006, 1012-1013
input devices, 1005
memory modules, 1014-1015
miscellaneous hardware, 1007
motherboards
BIOS, 1002
BIOS (basic input/output system), 1002
cables, 1021-1022
chipsets, 1001-1002
Desktop Form Factors website, 1001
integrated adapters, 1004
memory, 1002
mounting in case, 1015-1019
overview, 1001
ports, 1003-1004
operating system installation, 1030-1031
overview, 997-999, 1008
power supply, connecting, 1019-1021
preparation, 1008-1009
processors, 1000-1001, 1012-1013
required tools, 1008-1009
software resources, 1007-1008
sound cards, 1006
troubleshooting, 1031-1032
video adapters, 1005-1006
installation, 1026-1027
removing, 1027
System BIOS for IBM
PC/XT/AT Computers and Compatibles, 327
System BIOS for IBM PCs, Compatibles, and EISA Computers: The Complete Guide to ROM-Based System Software, 327
system boot process. See boot process
system-configuration templates, 306-308
System Fan Control setting
(Fan Control Configuration menu), 359
system interface (video)
AGP (Accelerated Graphics Port), 682-683
overview, 681
PCIe (PCI Express), 683
System Management
(SMBIOS), 356
System Management Interrupt
(SMI), 105-107
System Management Memory, 107
System Management Mode
(SMM), 69-70, 107
system memory. See RAM
(random access memory)
system passwords, 360
system platform processors
(SPPs), 245
system resources, 294-295
conflicts, 304-305
PnP (Plug and Play), 309-310
preventing, 305
system-configuration templates, 306-308
DMA (direct memory access) channels
8-bit ISA, 300
16-bit ISA, 300-301
I/O port addresses, 301
bus-based device port addresses, 302-304
chipset-based device port addresses, 302
motherboard-based device port addresses, 302
IRQs (interrupt request channels)
 8-bit ISA bus interrupts, 296
 16-bit ISA/EISA/MCA bus interrupts, 297-298
Advanced Programmable Interrupt Controller (APIC), 299
conflicts, 299-300
edge-triggered interrupt sensing, 295
interrupt sharing, 296
maskable interrupts, 296
PCI interrupts, 298
PCI IRQ Steering, 296
resolving resource conflicts
PnP (Plug and Play), 309-310
sound cards, 756
system-configuration templates, 306-308
System Restore, 1068
system startup, 1029-1030

T

T&L (transform and lighting), 703
T-1 connections, 849
T-3 connections, 849
T-buffers, 703
tactile feedback mechanisms
 (pure mechanical switches), 805
TAD (Telephone Answering Device) in connectors, 744
tailgates, 442
Tanisys, 1066
TAO (Track-at-Once) recording, 633
tape drives, 558, 582-583
TCO2 emissions standard, 723
TCP/IP (Transmission Control Protocol/Internet Protocol), 903-904
Technical Committee T13, 438
Telephone Answering Device (TAD) in connectors, 744
telephony connectors, 268
temperature acclimation (hard drives), 543
temperature probes, 1066
temperature. See heating/cooling issues
templates, system-configuration templates, 306-308
terminal emulation, 852
testing
 burn-in testing, 1048
cables, 818
 manufacturing tests, 369
 monitors, 732-735
 NICs (network interface cards), 908
 power supply
 back probing, 983-985
digital infrared thermometers, 985
 DMJs (digital multimeters), 982-985
 variable voltage transformers, 985
 processors, 82, 100
test equipment
 DMJs (digital multimeters), 1059, 1062-1063
electric screwdrivers, 1066
electrical testing equipment, 1061
 logic probes, 1064
 loopback connector, 1061-1062
 memory testers, 1065-1066
 outlet testers, 1064-1065
video adapters, 732
tethering, 846
texture mapping, 699-701
textures, 701
TF (thin film) heads, 495
TFT (thin film transistor) arrays, 719
TFX12V power supply, 928
THD (total harmonic distortion), 760
theater surround sound, 762-763
thermal interface material (TIM), 1013
thermal recalibration (servo mechanisms), 538
thermal resistance, 161
thermal shock, 972-973
thermally advantaged chassis
 cooling fans, 163
 maximum heatsink inlet temperatures, 164
 processor ducts, 165-168
 specifications, 164-165
thermometers
digital infrared thermometers, 985
infrared thermometers, 1067
thick Ethernet coaxial cables, 882
thickness of floppy disks, 580
Thicknet, 882
thin Ethernet coaxial cables, 882
thin-film (TF) heads, 495
thin-film media, 531
thin-film transistor (TFT) arrays, 719
thin form factor (TFX12V) power supply, 928
ThinkPad UltraNav keyboards, 820
Thinnet, 882
Third SATA Master setting (Drive Configuration menu), 354
third-generation (386) processors, 103-104
 386DX, 104
 386SL, 105
 386SX, 104-105
third-party memory modules, 421
Thomas, Thampy, 135
threads, 77
thumb flash memory, 557
TIM (thermal interface material), 1013
Timelt utility, 786
timeline of computer history, 5-9
timing glitches, 415
TLB (translation lookaside buffer), 69
TMDS (Transition Minimized Differential Signaling), 688
Token-Ring, 870-871, 891
tools. See specific tools
topologies
 bus topology, 891
definition of, 890
 point-to-point topology, 899
relationship between network types and topologies, 890
ring topology, 891-892
star topology, 892, 899
toroids, 1076
Torx drivers, 1057
total harmonic distortion (THD), 749, 760
Total Memory setting (Memory Configuration menu), 348
touch pads, 832
tower cases, 1000
TPI (tracks per inch), 520
track following systems, 536
track pads, 832
Track-at-Once (TAO) recording, 633
trackballs, 821, 833
TrackPoint pointing device, 829-831
tracks, 522. See also sectors in CDs, 590-592
defined, 521
definition of, 577
densities, 520
in DVDs, 610-611
in hard drives, 518
tracks per inch (TPI), 520
typical track/sector format, 523
trailers (sectors), 522
transceivers (DSL), 842
transfer modes (SATA), 462-463
transfer rates
CD drives, 652-653
hard drives, 515, 548-550
PATA PIO (Programmed I/O) transfer rates, 454
SATA (Serial ATA) transfer rates, 457-458
transformers, variable voltage
transformers, 985
transient response (power supply), 967
transistors
Graphene-based transistors, 13
invention of, 11
MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), 11-12
Pentium II processors, 119
Pentium Pro processors, 115
silicon transistors, 13
transition cells, 492
Transition Minimized Differential Signaling (TMDS), 688
translation
CHS bit-shift translation, 474-476
LBA-assist translation, 478-481
translation lookaside buffer (TLB), 69
Transmission Control Protocol/Internet Protocol (TCP/IP), 903-904
track load mechanism (CD/DVD drives), 659
tREF, 378
trilinear filtering, 702
TRIM command, 563
triodes, 11
troubleshooting. See also diagnostic software; testing adapter cards, 1081, 1091
basic guidelines, 1077
boot process, 1080, 1087-1088
bootable CDs, 666
bootstrap approach, 1079-1080
broadband service interruptions, 860-861
broadband signal lights, 863
CD/DVD drives, 1089
disc read failures, 663-666
disc write failures, 664-665
firmware, 668-669
problems burning discs with Windows built-in recording, 666
slow drive speeds, 665
CMOS batteries, 996
DVD errors, 614-615, 1089
emergency flash BIOS recovery, 334-337
errors. See error messages
ESD (electrostatic discharge), 1010-1011
frozen/locked systems, 1086-1090
hard drives, 1087-1090
IRQs (interrupt request channels) conflicts, 299-300
keyboards, 817, 1083
cleaning, 819-820
connectors, 818
defective cables, 818
keyboard disassembly, 819
stuck keyswitches, 818
known-good spare technique, 1078-1079
maintenance tools, 1056
2 1/2" ATA drive cables and adapters, 1059
3 1/2" drive enclosure, 1059
cleaning materials, 1059
data transfer cables and adapters, 1059
DMMs (digital multimeters), 1059, 1062-1063
electric screwdrivers, 1058, 1066
electrical testing equipment, 1061
ESD (electrostatic discharge) protection kits, 1060
files, 1059
flashlights, 1058
hemostats, 1058
infrared thermometers, 1067
lithium coin cell batteries, 1060
logic probes, 1064
loopback connector, 1061-1062
markers/pens, 1059
memory testers, 1065-1066
needle-nose pliers, 1058
nut drivers, 1057
nylon cable-ties, 1059
outlet testers, 1064-1065
parts grabbers, 1057, 1067
PS/2 Y adapter, 1059
safety, 1060-1061
screwdrivers, 1057
spare parts, 1060
temperature probes, 1066
Torx drivers, 1057
tweezers, 1057
USB/FireWire cable adapter, 1060
vises/clamps, 1059
Windows 2000/XP bootable CD, 1059
Windows 98/98SE or Me Startup floppy, 1059
wire cutters, 1059
wire strippers, 1059
memory
ECC (error correcting code), 418-419
hard fails, 414
parity checking, 415-418
soft errors, 414-415
microphones, 763-764
Missing operating system error message, 1087-1088
modems, 1082-1083
monitors, 737, 1084-1085
bad pixels, 736-737
dead pixels, 736
monitor adjustments, 735-736
monitor repairs, 738
monitor testing, 734-735
stuck pixels, 736
motherboard installation, 1090-1091
mouse, 827-828
POST (power on self test). See POST
power supply, 979-980, 1081
diagnostic procedures, 980
with DMMs, 1059, 1062-1063
inadequate cooling, 981-982
overloaded power supply, 980-981
processors, 168-170
bugs, 100
reprogrammable microcode, 100
upgrades, 1085-1086
RAM (random access memory), 425-426, 1088-1090
with diagnostics, 426
error messages, 427
memory defect isolation procedures, 429-431
with module testers, 426
with POST (Power On Self Test), 426
step-by-step procedure, 427-429
reinstallation versus replacement, 1078
resource conflicts, 304-305
PnP (Plug and Play), 309-310
prevention, 305
system-configuration templates, 306-308
software, 1081
sound cards, 755, 1083-1084
advanced features, 759
Chipset Setup options, 759-760
low volume, 757-758
no sound, 756-757
one-sided sound, 757
problems playing specific file formats, 758
resource conflicts, 756
scratchy sound, 758-759
startup problems, 759
speakers, 758
STOP errors, 1082
system assembly, 1031-1032
USB (Universal Serial Bus), 1089
video adapters, 730-732
video cards, 1085
video drivers, 732-733
Windows shutdown, 1082
wireless input devices, 836
TRS-80 Model 1 computers, 33
Type II PC Card adapters, 567
Type setting (Drive Configuration menu), 354
Typematic Delay (Msec) feature (BIOS Setup), 366
typematic functions, 811-813
Typematic Rate feature (BIOS Setup), 366
Typematic Rate Setting feature (BIOS Setup), 366

U
u-pipes, 109
U-verse (AT&T), 845
UART (universal asynchronous receiver transmitter), 258, 795
UDF (Universal Disk Format), 634, 645-646
UDMA (Ultra-DMA), 441-444
Udpixel, 737
UTH (Ultra High Aperture), 719
UL (Underwriters Laboratories)
power supply safety certifications, 969
surge protector standards, 989
ULi Electronics, Pentium 4
chipset reference tables, 232-234
Ultimate Boot CD, 464, 1048
Ultra High Aperture (UHA), 719
Ultra-DMA, 456, 658
UMA (unified memory architecture), 673
unbuffered DIMMs (dual inline memory modules), 407
unbuffered memory modules, 402
Underwriters Laboratories. See UL
unified memory architecture (UMA), 673
uninterruptible power supply
(UPS), 991-992
UNIVAC (Universal Automatic Computer), 10
universal asynchronous receiver
transmitter (UART), 258, 795
Universal Automatic Computer
(UNIVAC), 10
Universal Disk Format (UDF), 634, 645-646
universal power supplies, 966
Universal Serial Bus. See USB
Unlock Intel(R) QST setting
(Fan Control Configuration menu), 359
unmanaged hubs, 893
unshielded twisted-pair cables. See UTP cables
upgrading
processors, 148
benchmarks, 49
DX2/OverDrive
processors, 107
RAM (random access memory)
to higher-capacity modules, 422
upgrade options and strategies, 419-420
ROM BIOS
advantages of, 328
BIOS dates, 329-330
BIOS versions, 329
CMOS RAM addresses, 337-339
CMOS RAM backups, 330-331
CMOS RAM diagnostic
status byte codes, 339-340
flash ROM, 331-337
keyboard controller chips, 331
obtaining updates, 328
year-2000 compliance, 340
uplink ports (hubs), 896
UPS (uninterruptible power supply), 991-992
USB (Universal Serial Bus)
adapters, 780, 1060
BIOS Setup settings, 358-359
CD/DVD drives, 659
compared to IEEE 1394
(FireWire), 784-788
connectors, 770-772
functions, 767
hot-plugging, 788-791
hubs, 766-767
keyboards, 816-817
Legacy support, 811, 816
maximum cable lengths, 769
mouse interfaces, 827
overview, 766-767
Power usage, 768-769
speed of, 785-788
troubleshooting, 1089-1090
USB 1.1/2.0, 767-770
USB 2.0, 773-774
USB 3.0, 774-776
USB-based audio processors, 745
USB flash drives, 564
USB-IF (USB Implementer's Forum), 774
USB On-The-Go, 777
Windows USB support, 779-780
WUSB (Wireless USB), 777-779
USB 2.0 Legacy Support setting
(USB Configuration menu), 358
USB 2.0 setting (USB Configuration menu), 358
USB Boot setting (Boot menu), 364
USB Configuration menu (BIOS Setup), 358-359
USB EHCI Controller setting
(USB Configuration menu), 358
USB Function setting (USB Configuration menu), 358
USB Implementer's Forum
(USB-IF), 774
USB Legacy setting (USB Configuration menu), 358
USB Mass Storage Emulation
Type setting (Boot menu), 364
USB Ports setting (USB Configuration menu), 358
USB ZIP Emulation Type setting
(USB Configuration menu), 358
USB-IF (USB Implementer's Forum), 774
Use Automatic Mode setting (Drive Configuration menu), 354
Use Maximum Multiplier setting
(BIOS Maintenance menu), 344
User access Level setting
(Security menu), 361
user-created bootable media,
upgrading flash ROM from, 333-334
User Password setting (Security menu), 361
user passwords, 360
user-supported diagnostic software, 1048
utilities. See specific utilities
UTP (unshielded twisted pair)
cables, 883
building, 885-889
cable distance limitations,
889-890
Category 3 cable, 884
Category 5 cable, 884
Category 6 cable, 884
Category 7 cable, 885
crossover cables, 886-887
wiring standards, 886
V
V-Link architecture, 206
V-MAP (VIA Modular Architecture Platforms), 238
v-pipes, 109
V.42 modem standard, 855
V.42bis modem standard, 856
V.44 modem standard, 856
V.90 modem standard, 858
V.92 modem standard, 859-860
vacuum cleaners, 819, 1071
vacuum tubes, 11
variable voltage transformers, 985
VCD (Video CD), 636
vendor-unique commands
(ATA), 464
vertex blending, 703
vertex morphing, 703
vertex skinning, 703
vertical blanking interval, 715
vertical frequency, 714-716
vertical recording, 510
vertices, 701
very large scale integration (VLSI), 104
very low frequency (VLF) emissions, 722
VESA (Video Electronics Standards Association) buses, 285-286, 686
VGA (Video Graphics Array), 684-686
VIA Modular Architecture Platforms (V-MAP), 238
VIA Technologies chipsets
Athlon/Duron chipset reference tables, 239-242
K8T800/K8T800
Pro/K8M800, 252
K8T890/K8M890, 253
MuTIOL architecture, 206
Pentium 4 chipset reference tables, 236-238
V-Link architecture, 206
VIA Modular Architecture Platforms (V-MAP), 238
ITX motherboards, 192-194
Mini-ITX motherboards, 192-194
VID (voltage identification) pins, 117
video adapters. See also 3D graphics accelerators
chipsets
identifying, 677
video processor, 676
choosing, 1005-1006
components, 675
DAC (digital-to-analog converter), 681
definition of, 672
heterogeneous adapters, 727
homogeneous adapters, 726
installation, 1026-1027
integrated video/motherboard chipsets, 673-675
overview, 672
removing, 1027
testing, 732
troubleshooting, 730-732
types of, 672-673
UMA (unified memory architecture), 673
video BIOS, 675-676
video drivers, 732-733
video RAM, 677-678
DDR SDRAM, 678
GDDR2 SDRAM, 678
GDDR3 SDRAM, 678-679
GDDR4 SDRAM, 679
GDDR5 SDRAM, 679
RAM calculations, 679-680
SGRAM, 678
speed, 679
video memory bus width, 680
VRAM, 678
WRAM, 678
video BIOS, 357, 675-676
video capture devices, 727-730
video cards
definition of, 29
onboard BIOS, 327
troubleshooting, 1085
Video CD (VCD), 636
Video Configuration menu (BIOS Setup), 357
video display interface
digital display interfaces
DisplayPort, 693-697
DVI (Digital Video Interface), 687-690
HDMI (High Definition Multimedia Interface), 690-693
overview, 687
overview, 683-684
SVGA (Super VGA), 686
TV display interfaces, 698-699
VGA (Video Graphics Array), 684-686
XGA (Extended Graphics Array), 686-687
video drivers, 732-733
Video Electronics Standards Association (VESA) buses, 285-286, 686
Video Graphics Array (VGA), 684-686
video monitors. See monitors
video RAM (random access memory), 677-678
DDR SDRAM, 678
GDDR2 SDRAM, 678
GDDR3 SDRAM, 678-679
GDDR4 SDRAM, 679
GDDR5 SDRAM, 679
RAM calculations, 679-680
SGRAM, 678
speed, 679
video memory bus width, 680
VRAM, 678
WRAM, 678
Video Repost setting (Power menu), 362
video system interface
AGP (Accelerated Graphics Port), 682-683
overview, 681
PCIe (PCI Express), 683
View Event Log setting (Event Logging menu), 356
viewable image size (monitors), 708-709
virgin CDs, 600
virtual SSD (RAMdisk), 561-562
virtualization, legacy audio support, 740-741
Virus Warning feature (BIOS Setup), 366
viruses, CIH, 331
vises, 1059
visible surface determination, 701
Vista/Win7 Codec Packages, 642
VL-Bus, 285
VLF (very low frequency) emissions, 722
VLSI (very large scale integration), 104
voice-coil actuators, 535-537
volatile storage. See RAM (random access memory)
voltage identification (VID) pins, 117
voltage regulator module (VRM), 947-948
voltage settings (processors), 156-157
viruses, 331
visible surface determination, 701
Vista/Win7 Codec Packages, 642
VL-Bus, 285
VLF (very low frequency) emissions, 722
VLSI (very large scale integration), 104
voice-coil actuators, 535-537
volatile storage. See RAM (random access memory)
voltage identification (VID) pins, 117
voltage regulator module (VRM), 947-948
voltage settings (processors), 156-157
volume
 sound card volume control, 745-746
 speaker volume control, 761
 troubleshooting, 757-758
VRAM (Video RAM), 678
VRM (voltage regulator module), 947-948
VT Technology setting (Security menu), 361

wait states, 50, 380
Wake on LAN connectors, 268
Wake on LAN from S5 setting (Power menu), 362
Wake on PCI PME setting (Power menu), 363
Wake on PS/2 Mouse from S3 setting (Power menu), 363
Wake on Ring connectors, 268
WANs (wide area networks), 866
war driving, 899
Watchdog Timer setting (Chipset Configuration menu), 350
watts, 761
waveform audio, sampling, 749
wavetable adapters, 746
WD1003 commands, 463
wear leveling, 538
WECA (Wireless Ethernet Compatibility Alliance), 873
wedge servo mechanisms, 539
WEP (wired equivalent privacy), 900
Western Digital. See ATA (AT Attachment)
White Book standard (Video CD), 636
white-box systems, 25-26
Wi-Fi (Wireless Fidelity)
 802.11a standard, 871, 875-876
 802.11b standard, 871, 874-875
 802.11g standard, 876
 802.11n standard, 871, 876-877
 access points, 895-897
 choosing a wireless standard, 878
 DHCP support, 901-902
 NICs (network interface cards), 897
 overview, 873-874
 point-to-point topology, 899
 security, 899-901
 signal boosters, 899
 specialized antennas, 899
 star topology, 899
 users per access point, 901
 Wi-Fi Alliance, 873
 Wi-Fi Protected Access (WPA), 901
 wireless bridges, 899
 wireless repeaters, 899
 wireless routers, 899
 Wi-Fi Protected Access (WPA), 901
 wide area networks (WANs), 866
 wide-channel systems, 394
 width of data buses, 27-28, 37-39, 109
 WildBlue, 847
 WiMAX (Worldwide Interoperability for Microwave Access), 845
 WiMedia Alliance, 778
 WIN.COM file, 1054
 Winchester drives, 514. See also hard drives
 Window RAM (WRAM), 678
 Windows 7
 boot process, 1055-1056
 networking with, 911-912
 SSD (solid-state drive) and, 563
 Windows 9x/Me
 104-key keyboards, 803-804
 boot process
 IO.SYS file, 1054
 WIN.COM file, 1054
 capacity limitations, 548
 drive limitations, 484
 USB support, 779
 Windows 2000
 boot process, 1054-1055
 104-key keyboards, 803-804
 drive limitations, 484
 Windows executable upgrades (flash ROM), 332
 Windows Memory Diagnostic, 426
 Windows NT
 boot process, 1054-1055
 drive limitations, 484
 Windows Server 2003 Resource Kit Tools, 786
 Windows Vista
 boot process, 1055-1056
 drive limitations, 484
 networking with, 911-912
 USB support, 779
 Windows XP
 104-key keyboards, 803-804
 boot process, 1054-1055
 drive limitations, 484
 USB support, 779
 Video Decoder Checkup Utility, 641
 wire cutters, 1059
 wire strippers, 1059
 wired equivalent privacy (WEP), 900
 Wireless-A, 871, 875-876
 wireless bridges, 899
 wireless broadband, 845-846
 Wireless Ethernet Compatibility Alliance (WECA), 873
 Wireless Fidelity. See Wi-Fi
 Wireless-G, 876
 wireless input devices, 834
 Bluetooth, 835
 IR (infrared), 834
 power management, 835-836
 proprietary radio frequency, 834
 troubleshooting, 836
 Wireless Internet Service Provider (WISP), 845
 Wireless Internet Service Providers Association (WISPA), 845
 Wireless-N, 871, 876-877
 wireless networks
 Bluetooth, 878-879, 899
 overview, 873
topologies, 899
 Wi-Fi (Wireless Fidelity)
 802.11a standard, 871, 875-876
 802.11b standard, 871, 874-875
 802.11g standard, 876
 802.11n standard, 871, 876-877
 access points, 895-897
 choosing a wireless standard, 878
802.11g standard, 876
802.11n standard, 871, 876-877
access points, 895-897
choosing a wireless standard, 878
DHCP support, 901-902
NICs (network interface cards), 897
overview, 873-874
security, 899-901
signal boosters, 899
specialized antennas, 899
users per access point, 901
wireless bridges, 899
wireless repeaters, 899
wireless routers, 899
wireless repeaters, 899
wireless routers, 899
Wireless USB (WUSB), 777-779
WISP (Wireless Internet Service Provider), 845
WISPA (Wireless Internet Service Providers Association), 845
working power, 968
Worldwide Interoperability for Microwave Access (WiMAX), 845
WORM (write once, read many), 599
WPA (Wi-Fi Protected Access), 901
WRAM (Window RAM), 678
wrap plugs, 1061-1062
writable CDs. See CD-R discs; CD-RW discs
Write Multiple command (ATA), 464
write once, read many (WORM), 599
write process, 492-493
write protection
for floppy disks, 580
for flash ROM, 331
WRITE TURN-OFF GAP sector data, 523
WRITE TURN-ON GAP sector data, 523-524
write-back caching, 427, 788
write-behind caching, 788
write-through cache, 69
WTX motherboards, 180
WUSB (Wireless USB), 777-779
Z-80 processor (Zilog), 33
Z-buffering, 702
Z-CLV (zoned CLV) technology, 655
ZBR (zoned-bit recording), 525-527
zero insertion force (ZIF) sockets, 83, 88
Zero Link technology, 624
Ziegler, J. F., 414
ZIF (zero insertion force) sockets, 83, 88
x-ray machines, floppy disks and, 581-582
XD Technology setting (Security menu), 361
xD-Picture Card, 561
xDSL. See DSL (digital subscriber line)
XGA (Extended Graphics Array), 686-687
XT motherboards, 172-173
Y2K boards, 328
year-2000 compliance, 340
Yellow Book (CD-ROM) standard, 631
yields, 81
Z-80 processor (Zilog), 33
Z-buffering, 702
Z-CLV (zoned CLV) technology, 655
ZBR (zoned-bit recording), 525-527
zero insertion force (ZIF) sockets, 83, 88
Zero Link technology, 624
Ziegler, J. F., 414
ZIF (zero insertion force) sockets, 83, 88