
I N T H I S C H A P T E R

Using Built-In Functions

4What Are Functions?
Built-in functions are commands provided by
Access and VBA that return a value. The value
returned is dependent on the purpose of the func-
tion and the arguments, if any, passed to it. VBA is
rich in functions that perform a variety of tasks and
calculations for you. There are functions to convert
data types, perform calculations on dates, perform
simple to complex mathematics, make financial cal-
culations, manage text strings, format values, and
retrieve data from tables, among others.

Functions return a value, and most accept argu-
ments to act on. A lot of your code will use func-
tions to make calculations and manipulate data. You
should familiarize yourself with the functions that
VBA makes available to you, but don’t expect to
memorize their syntax. Between Intellisense and the
VBA Help screens you can’t go far off course, espe-
cially because Intellisense prompts you for each
argument. If you need help understanding an argu-
ment, press F1 or look up the function in VBA
Help.

Although this book was not meant to be a reference
for VBA functions, this chapter explains many of
the most used ones to give you an idea of VBA’s
power.

A point to remember when coding your functions:
Be consistent in using data types. If you provide
arguments of the wrong data type or assign a func-
tion to a different data type, you will cause an error.

What Are Functions? . 37

Converting Data Types . 38

Working with Date Functions 42

Using Mathematical Functions 48

Using Financial Functions . 50

Manipulating Text Strings . 52

Formatting Values .55

Domain Aggregate Functions 59

Using the Is Functions . 61

Interaction . 61

Case Study: Add Work Days . 64

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 37

Converting Data Types
At times you might find the need to import or link to data from external sources, or you
might have to use data differently than the planned purpose. In such cases, the need may
arise for you to convert from one data type to another. VBA includes several functions for
this purpose. When you use a conversion function, the function returns the converted value
but doesn’t change the stored value.

➔ For more on data types see,”VBA DataTypes” p. 28.

This chapter goes over some of the more commonly used conversion functions. You can
find a full list by opening the Developers Reference using the VBE Help menu and search-
ing on type conversion functions.

■ CBool—Converts a value to a Boolean data type.

■ CDate—Converts a value to a Date data type.

■ CInt—Converts a value to an Integer data type.

■ CStr—Converts a value to a String data type.

■ CVar—Converts a value to a Variant data type.

4

Chapter 4 Using Built-In Functions38

I don’t know of any developer who knows every available function off the top of his or her head, so
don’t expect or think you need to.The more you code, the more you will remember, so feel free to
use the references Microsoft provides. Use the Help option from the VBE menu to open the
Developer Reference. In the search box type functions list, and one of the options is
Functions (Alphabetical List).This gets you to a listing of all functions. Most of the function names
are meaningful, so it shouldn’t be difficult to find a function for the task you have.

T
I P

In this chapter we frequently use the term expression. In my use an expression can be as simple as
a value or text string or as complex as a formula using multiple operators and functions. Just
remember that an expression expresses a value.

N
O

T
E

The most current conversion functions are prefixed with the letter C. It’s better to use these func-
tions in your conversions; however, you will also find included in VBA an older set of functions such
as Str or Val for backward compatibility.The more current functions take your system’s settings
into account, whereas the older ones don’t.

T
I P

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 38

39Converting Data Types

These functions have a simple syntax in common:

functionname(argument)

where functionname is the name of the function and argument is a value, variable, constant,
or expression. The value of the argument is converted to a different data type depending on
the function used, so it can be used elsewhere in your application. The value(s) used in the
argument remain unchanged. It should be noted that not every data type can be converted
to any other data type. The following sections explain the limitations.

Converting to a Boolean Data Type
A Boolean value is either True or False. The False value is either the number or character
zero (0). Any other value is considered True. If the argument passed to the CBool function
evaluates to a zero, CBool returns a False. If it evaluates to any other value, CBool returns a
True. For example; all the following return a True because the arguments all evaluate to a
nonzero value:

CBool(“1”)

CBool(1+0)

CBool(5)

CBool(-50)

Conversely, the following expressions return a False because each argument evaluates to
zero:

CBool(0)

CBool(“0”)

CBool(15-15)

The argument passed to the CBool function must contain all numeric characters or opera-
tors. If you use alphabetic characters you get a type mismatch error. One place where using
CBool becomes useful is in conditional statements. For example, you might need to deter-
mine whether two values match. In our Inventory application you might need to determine
whether you are out of stock on an item. You could use the following expression, which
would return a False if the incomings matched the outgoings:

CBool(Sum(Incoming)-Sum(Outgoing))

4

The Val() function has a use in addition to being a simple conversion function. It will return all
numeric characters until it reaches a nonnumeric one.CStr() will return an error if you attempt
to convert a string that contains nonnumeric data. For example,Val(“123abc”) will return the
number 123 and Cint(“123abc”) will return a datatype mismatch error.

T
I P

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 39

Converting to a Date Data Type
The CDate function converts any valid date/time value to a Date/Time data type. A valid
date/time value can be either a number or a string that is formatted as a date or time. CDate
determines valid date/time formats according to the regional settings you have chosen in
Windows. You can use the following points to understand how dates are converted by
CDate:

■ If the argument is a numerical value, CDate converts the integer portion of the number
according to the number of days since December 30, 1899. If the argument contains a
decimal value, it’s converted to a time by multiplying the decimal by 24 (for example,
.25 would be 6:00 a.m.).

■ If the argument is a string value, CDate converts the string if it represents a valid date.
For example; “1/16/51”, “March 16, 1952”, and “6 Jun 84” would all be converted to
a date. However, “19740304” would result in a type mismatch error.

■ Access recognizes dates from January 1, 100, to December 31, 9999. Dates outside that
range result in an error.

■ I recommend that you use four-digit years for clarity. However, Access will work with
two-digit years. If you enter a year less than 30, Access assumes you want a date in the
twenty-first century. If you use a year of 30 or higher, it is assumed to be a twentieth
century date.

■ Remember that the / is also the division operator and the – is used for subtraction. So,
if you enter dates such as 12/3/04 you will get unexpected results. Entering
CDATE(12/3/04) returns December 31, 1899, because 12 divided by 3 divided by 4 = 1.
So you need to put such dates within quotes.

Converting to an Integer Data Type
The CInt function takes a numeric or string value and converts it to an Integer data type.
The argument is required and needs to represent a value within the range of –32,678 to
32,767. If the argument contains a decimal, Access rounds to the next whole number. A
value of .5 or higher is rounded up; anything lower is rounded down. Some examples of
CInt functions follow:

CInt(10.5) = 11

CInt(25.333) = 25

CInt(10/3) = 3

CInt(“1,000”) = 1000

4

Chapter 4 Using Built-In Functions40

That last example illustrates one of the advantages of CInt over the older Val function.CInt
uses the system’s regional settings and, therefore, recognizes the thousands separator, whereas
Val would convert “1,000” to 1.

T
I P

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 40

41Converting Data Types

The argument must evaluate to a numeric value; otherwise, it returns an error. If the argu-
ment evaluates to a value outside the range of the Integer data type, you get an overflow
error.

Converting to a String Data Type
The CStr function converts just about every numeric value into a String data type. The
required argument can be any variable, constant, expression, or literal value that evaluates
to a string.

4

If you use a variable as the argument, make sure it’s been initialized to a value. If you use CStr on
an uninitialized variable, it returns a numeric value of 0.

C A U T I O N

Converting to a Variant Data Type
As I mentioned in the discussion of VBA data types in Chapter 3, “Using Variables,
Constants, and Data Types,” the Variant data type is the most flexible because it can
accept almost any value. With CVar, you can convert just about any numeric or text string
to the Variant data type. With numeric values there is a constraint to the same range for
the Double data type.

CVar should be used only when there is a doubt of the data type you are converting or when the
data type isn’t important.

C A U T I O N

Converting Null Values
If you try to use a Null value in many expressions, you will probably encounter an error.
For example, the following expression results in a runtime error if either of the values con-
tains a Null:

varTotal = ValueA * ValueB

To avoid such errors you can utilize the Nz function to convert the value to a non-Null.
The Nz function uses the following syntax:

Nz(value, [valueifnull])

The Nz function works similarly to an Immediate If (IIF) function. The following expres-
sions are functionally equivalent:

varTotal = IIF(IsNull(ValueA),0,ValueA) * IIF(IsNull(ValueB),0,ValueB)

varTotal = Nz(ValueA,0) * Nz(ValueB,0)

The valueifnull is an optional argument; it defaults to 0 or a zero-length string based on
the value’s data type.

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 41

Working with Date Functions
VBA has many functions that help you deal with dates. As long as you understand how
Access stores Date/Time values, you should have no problem in working with date func-
tions and values.

➔ For a description of the Date/Time datatype see “VBA DataTypes,” p. 28.

In this section we go over most of the functions you use when dealing with dates.

Returning the Current Date
To return the current date (as stored on your system) use the following function, which
gives you a number counting the days from 12/30/1899:

Date()

How this value is displayed depends on your regional settings. You can use the Date$()
function to return a 10-character string representing the date. This string uses the format
mm-dd-yyyy. The Date() function returns only the system date; if you need to include the
time use the Now() function. As noted earlier, a date/time value is a number where the inte-
ger portion represents the date and the decimal portion represents the time. So the Now()
function will return an integer and decimal that represents the current date and time. The
Now() function defaults to displaying its value according to the regional settings on your
PC. On my PC it displays 7/25/2007 5:06:34 PM.

Performing Date Arithmetic
Because dates are stored as numbers, you can do date arithmetic simply by adding or sub-
tracting date values. However, VBA gives you a better way, the DateAdd function. Using this
function, you can add 14 days, 14 weeks, 14 months, or 14 years to any date. Or you can
find a time 60 hours earlier than the specified date and time.

The following is the syntax for DateAdd, where interval is a string that indicates the type
of time period that you want to calculate:

DateAdd(interval, value, date)

Table 4.1 shows the various strings that can be entered as intervals. The number argument is
a value or expression that specifies the number of intervals you want to calculate. The num-
ber used is an integer. If a decimal value is included, it’s rounded to the nearest whole num-
ber, before performing the calculation. The date argument is a Date/Time value that is the
base value to use in the calculation.

4

Chapter 4 Using Built-In Functions42

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 42

43Working with Date Functions

Table 4.1 Interval Settings

String Setting Description

yyyy Years

q Quarters

m Months

y Day of year

d Days

w Weekdays

ww Weeks

h Hours

n Minutes

s Seconds

The y, d, and w intervals work interchangeably in the DateAdd function but have more
meaning in other Date/Time functions. If the interval evaluates to a negative number, it
returns an earlier date/time; a positive number returns a future date/time.

Determining the Difference Between Two Dates
The DateDiff function is used to determine the number of intervals between two date/time
values. The following is the syntax for the DateDiff function, where interval is a string
that indicates the type of time period used to calculate the difference between the first and
second dates represented by date1 and date2 (refer to Table 4.1):

DateDiff(interval, date1, date2[,firstdayofweek[, firstweekofyear]])

Also included in the DateDiff function are two optional arguments: firstdayofweek and
firstdayofyear. These are numerical constants that can be used to adjust the first day of a
week or year when using the DateDiff function. Tables 4.2 and 4.3 show a list of the values
for each constant. The default values are Sunday and January 1, respectively.

Table 4.2 First Day of Week Constants

Constant Description Integer Value

vbSunday Sunday (the default) 1

vbMonday Monday 2

vbTuesday Tuesday 3

vbWednesday Wednesday 4

vbThursday Thursday 5

vbFriday Friday 6

vbSaturday Saturday 7

4

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 43

Table 4.3 First Week of Year Constants

Constant Description Integer Value

vbFirstJan1 Use the week in which January 1 occurs (the default). 1

vbFirstFourDays Use the first week that has at least four days in the new year. 2

vbFirstFullWeek Use the first full week of the new year. 3

The results from this function might not always be as expected:

■ If date2 falls before date1, the function yields a negative value.

■ The DateDiff function calculates a year has passed when a new year falls between the
two dates, even if there are fewer than 365 days. So when using 12/31 and 1/1 as date1
and date2, respectively, the function returns a 1.

Figure 4.1 shows how these guidelines affect the function in the Immediate window.

4

Chapter 4 Using Built-In Functions44

Figure 4.1
The DateDiff function
in action.

Extracting Parts of Dates
The DatePart function is used to extract a portion of a date from a date value. A
Date/Time data type contains several components that correspond to the intervals listed in
Table 4.1. For example, the following expressions return the values 4, 1, and 2007, respec-
tively:

DatePart(“m”,#4/1/2007#)

DatePart(“d”,#4/1/2007#)

DatePart(“yyyy”,#4/1/2007#)

The DatePart function uses the following syntax, where interval is a String value that
defines the part of the date you want to extract and date is a valid Date/Time value (refer
to Table 4.1 for a list of interval values):

DatePart(interval, date[,firstdayofweek[, firstweekofyear]])

Notice that the dates in Figure 4.1 are enclosed by octothorpes (#—commonly known as a pound
sign). This character is used to delimit date values, similarly to the way quotation marks are used
with text strings. Access may recognize a date value and automatically insert the octothorpes, but
it’s a good practice to insert them yourself.

N
O

T
E

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 44

45Working with Date Functions

Also included in the DatePart function are two optional arguments: firstdayofweek and
firstdayofyear. These are numerical constants that can be used to adjust the first day of a
week or year when using the DatePart function. Tables 4.2 and 4.3 show a list of the values
for each constant. The default values are Sunday and January 1, respectively.

4

Because you can extract any portion of a Date/Time value, it makes the most sense to store a date
or time once as a valid Date/Time value. For example, even if you need to show only the month and
year for a date, it would make sense to store a full date even if it’s just the first or last day of the
month.

T
I P

Creating Dates from the Individual Parts
With DatePart you extract part of a date; conversely, with the DateSerial function you
combine the parts of a date to return a date value. The DateSerial function uses the fol-
lowing syntax, where Year, Month, and Day can be any expression that evaluates to an inte-
ger value that represents the respective date part:

DateSerial(Year, Month, Day)

There are some rules for each of the arguments:

■ Year is required and must be equal to an integer from 100 to 9999.

■ Month is required, and integers from 1 to 12 (positive or negative) are considered.

■ Day is required, and integers from 0 to 31 (positive or negative) are considered.

The DateSerial function can take integer values outside those ranges and calculate the dif-
ference to return a date value. This makes it very powerful if you use expressions for the
arguments. For example, the following expression returns June 5, 2008 because the 18th
month from the start of 2007 is June:

DateSerial(2007,18,5)

Similarly, the following returns May 15, 2007, by using the 30 days in April and adding the
difference of 15 days to the next month:

DateSerial(2007,4,45)

Although this shouldn’t be used as a substitute for DateAdd or DateDiff, it can make it easy
to create dates from calculated values.

The expression DateSerial(2007,5,0)) returns 4/30/07. Using 0 for the Day value can then
be used to get the last day of a month. If you use DateSerial(Year,Month+1,0) you get
the last day of the Year and Month used as arguments passed to the function.

T
I P

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 45

Creating Dates from String Values
The DateValue function can be used to return a date value from a string value; it uses the
following syntax, where stringexpression must conform to the formats used by the sys-
tem’s Regional settings:

DateValue(stringexpression)

The following three expressions return the date June 1, 2007:

DateValue(“6/1/2007”)

DateValue(“June 1, 2007”)

DateValue(“1 Jun 07”)

4

Chapter 4 Using Built-In Functions46

The functions TimeSerial and TimeValue perform similarly to the DateSerial and
DateValue functions with time values.T

I P

Extracting a Specific Date or Time Portion
Table 4.4 lists several functions that return a specific portion of a date or time value. The
syntax for these functions is simple:

Functionname(date/time)

Table 4.4 Date Component Functions

Function Result

Day(date) Returns the day of the month as an integer between 1 and 31

Hour(time) Returns the hour as an integer between 0 and 23

Minute(time) Returns the minute as an integer between 0 and 59

Second(time) Returns the second as an integer between 0 and 59

Month(date) Returns the month as an integer between 1 and 12

Year(date) Returns the year as an integer between 100 and 9999

A Conversion and Date Example
Sometimes you might need to round a time value to the nearest quarter hour or hour. This
example uses some of the conversion and date/time functions previously discussed to
accomplish that task.

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 46

47Working with Date Functions

1. Create a blank form and put two text boxes on it. Label the boxes txtTime and
txtResult.

2. Add an option group to the form with the options Hour and Quarter Hour. Name the
group optType.

3. Add a button to the form (turn off the wizard first). Name the button cmdRound.

4. Set the Record Selectors and Navigation buttons to No. Set Scroll Bars to neither.

5. In the On Click event of the button use the following code:
Private Sub cmdRound_Click()
Dim intHrs As Integer, intMin As Integer
Dim dteTime As Date
‘ convert entered time to Time value

dteTime = CDate(Me.txtTime)
‘extract parts of time

intHrs = DatePart(“h”, dteTime)
intMin = DatePart(“n”, dteTime)

If Me.optType = 1 Then ‘test for nearest type
‘Round to nearest hour
If intMin >= 30 Then

dteTime = DateAdd(“h”, 1, dteTime)
dteTime = DateAdd(“n”, -intMin, dteTime)

Else
dteTime = DateAdd(“n”, -intMin, dteTime)

End If
Else

‘Round to quarter hour
Select Case intMin

Case Is < 8
intMin = 0

Case 8 To 23
intMin = 15

Case 24 To 38
intMin = 30

Case 39 To 53
intMin = 45

Case Else
intHrs = intHrs + 1
intMin = 0

End Select
dteTime = TimeSerial(intHrs, intMin, 0)

End If

‘Populate Result control
Me.txtResult = dteTime

End Sub

6. Save form as frmRound (see Figure 4.2).

4

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 47

Using Mathematical Functions
VBA provides a rich, broad set of functions to perform mathematical and financial calcula-
tions. There are too many to cover in this section, so we provide an overview of the most
commonly used functions.

The Abs Function
The Abs function returns the absolute value of a number, removing the sign. The following
is the syntax for the Abs function, where number is any expression that evaluates to a numer-
ical value:

Abs(number)

For example; this expression returns a 7:

Abs(-7)

The Int Function
The Int function removes any decimal value from a number, returning the integer portion.
The function uses the following syntax, where number is any expression that evaluates to a
numerical value:

Int(number)

For example; this expression returns 15 because it truncates the value, removing the deci-
mal portion:

Int(15.9)

However, if the numerical value is negative, Int returns the nearest negative integer, so the
following returns –16:

Int(-15.9)

Although seemingly the same, Int and Cint can’t be used interchangeably. The Int func-
tion doesn’t convert the data type of the argument. Using CInt is often the better option,
but it doesn’t always return the same result. So be careful in determining which one to use.

4

Chapter 4 Using Built-In Functions48

Figure 4.2
The completed
frmRound showing an
example of input and
result.

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 48

49Using Mathematical Functions

The Rnd Function
The Rnd function is used to generate a random number. It can be used with an optional
argument represented as any valid numerical expression. The following is the syntax for the
function:

Rnd(seed)

seed can be used to control the generated number as indicated in the following:

■ If seed is a negative value, Rnd generates the same number.

■ If seed is a positive number (other than 0) Rnd generates the next number in an inter-
nally determined sequence of numbers.

■ If seed equals 0, Rnd generates the most recently generated number.

■ If seed is omitted, Rnd generates the next number in an internally determined sequence
of numbers.

The Rnd function generates a number in the range of 0 to 1, so if you need a whole number,
you will have to multiply the generated value by a power of 10 and use the Int function to
get your whole number.

4Use the Randomize statement to reset the internal sequence so that Rnd generates apparently
unique values that are repeated.T

I P

A Mathematical Functions Example
To illustrate mathematical functions, let’s create a function to generate a number between 1
and 99.

1. Create a blank form and put two text boxes on it. Label the boxes txtSeed and
txtPicks.

2. Add a button to the form (turn off the wizard first). Name the button cmdGenerate.

3. Set Record Selectors and Navigation buttons to No. Set Scroll Bars to neither.

4. In the On Click event of the button use the following code:
Private Sub cmdGenerate_Click()
‘Generate number between 1 and 99

Me.txtPicks = Int(Rnd(Me.txtSeed) * 100)
End Sub

5. Save form as frmGenerate (see Figure 4.3).

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 49

Using Financial Functions
Financial functions are used to perform many standard financial calculations such as inter-
est rates, annuity or loan payments, and depreciation. Following are some financial func-
tions you might find useful.

The Ddb Function
The Dbd function calculates the depreciation of an asset for a specified time using the pre-
defined double-declining balance method. The following is the syntax for this function,
where cost is an expression representing the asset’s opening cost and salvage is an expres-
sion that specifies the value of the asset at the end of life, an expression representing the
term of the asset’s lifespan.

Ddb(cost, salvage, life, period[, factor])

The period argument represents the time span for which the depreciation is being calcu-
lated. All these arguments use Double data types. There is an optional factor argument that
specifies the rate of decline of the asset. If omitted, the double-declining method is used.

The FV Function
The FV function is used to calculate the future value of an annuity. The FV function returns
a double data type and uses the syntax

FV(rate, nper,pmt[,pv [, type]])

where rate is an expression resulting in a Double data type that represents the interest rate
per period, nper is an expression resulting in an Integer data type that represents the num-
ber of payment periods in the annuity, and pmt is an expression resulting in a Double value
that specifies the payment being made for each period. There are two optional arguments,
pv and type, which are Variant data types that specify the present value of the annuity and
whether payments are made at the start or end of each period.

4

Chapter 4 Using Built-In Functions50

Figure 4.3
The completed
frmGenerate show-
ing an example of a gen-
erated number.

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 50

51Using Financial Functions

The Pmt Function
The Pmt function is used to calculate the payment for an annuity or loan. This function uses
the syntax

Pmt(rate, nper, pv[, fv[, type]])

where rate is an expression resulting in a Double data type that represents the interest rate
per period, nper is an integer expression that defines the number of payments to be made,
and pv identifies the present value and is also a Double data type. There are two optional
arguments, fv and type, which are Variant data types that represent the future value of the
payments and whether payments are made at the start or end of each period.

The Rate Function
The Rate function is used to calculate the periodic interest rate for an annuity or loan. The
syntax for this function is

Rate(nper, pmt, pv[, fv[, type[, guess]]])

Where nper is an expression resulting in a Double data type that represents the number of
period, pmt is an expression resulting in a Double data type that represents the payment per
period, and pv is an expression resulting in a Double data type that defines the present value.
There are also three optional arguments: fv, type, and guess, which identify the future
value, determine whether payments are made at the start or end of each period, and allow
you to give an estimate of the rate, respectively.

A Financial Functions Example
In keeping with the Inventory application theme of the sample file, this example looks at a
scenario where you want to expand to cover a new product line. Because this new product
line is from a new vendor, the vendor requires you to make a significant purchase the first
time around. You don’t have the $10,000 to make the initial purchase, so you need to figure
out different loan scenarios to see whether you can afford a loan.

1. Open the basUDFs module or one of your own.

2. Enter the following procedure:
Public function LoanPmt(dblRate As Double, intNper As Integer, _
dblPv As Double) As Currency

LoanPmt = Abs(Pmt(dblRate/12, intNper, dblPv))
End Function

3. In the Immediate window enter the following statement and press Enter:
? LoanPmt(.05,36,10000)

Figure 4.4 shows the code and the result. This loan would cost you $300 per month for 36
months. You can now try out different scenarios with combinations of rate and term to see
what your payments might be.

4

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 51

Manipulating Text Strings
You use string functions to manipulate groups of text data. The following are some exam-
ples of where you might use string functions:

■ Checking to see whether a string contained another string

■ Parsing out a portion of a string

■ Replacing parts of a string with another value

The following string functions help you do all these tasks and more.

The Asc Function
Every individual character can be represented by a number value. These values are listed in
the American Standard Code for Information Interchange (ASCII). To return the ASCII
value of a character use the following syntax, where string is an expression that results in a
Text data type. It returns an integer value between 0 and 255.

ASC(string)

4

Chapter 4 Using Built-In Functions52

Figure 4.4
The LoanPmt function
and its results.

The Asc function reads only the first character of the string if there are multiple characters.

C A U T I O N

With any text string you must use apostrophes or quotation marks to define and delineate
the text string; otherwise, Asc returns an error. However, if the string is a numeric, the
delimiters can be eliminated. For example, the following two functions both return the
value 51:

Asc(“3”)

Asc(3)

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 52

53Manipulating Text Strings

The Chr Function
The Chr function is the reverse of the Asc function. Whereas Asc returns the numerical
value from character, Chr returns the character from a number. The following is the syntax
for this function. where charactercode is an integer value between 0 and 255:

Chr(charactercode)

As you saw previously, the character 3 is represented by the number 51. So the following
functions returns a 3:

Chr(51)

4

The numbers 0–255 represent the values of characters according to the ASCII table. An example of
that table can be found at http://www.asciitable.com.N

O
T

E

The Case Functions
There is actually no case function. There are two functions, LCase and UCase, that can be
used to change the case of a text string. They use the following syntax, where string is an
expression that returns a string value. Both functions return the string in either lowercase
or uppercase, respectively.

LCase(string)

UCase(string)

Many of the string functions return a value as a variant of the String subtype. An alternative set
of string functions add a $ to the function name (for example,Chr$).These alternative functions
return a literal string value.This provides a better performance because VBA doesn’t have to evalu-
ate the data type during processing.

T
I P

You can use the UCase function to convert entered data so that the data entry person doesn’t
have to concern himself with entering the proper case.T

I P

The Len Function
The Len function is used to determine the number of characters in a text string. This func-
tion uses the following syntax, where string is an expression that results in a Text data
type. The function returns a long integer except where the string is Null, in which case it
returns a Null value.

Len(string)

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 53

The Left, Right, and Mid Functions
Among the most used functions, these three return a portion of a string depending on the
function and the arguments provided. All three result in a Variant Long subtype but sup-
port a $ version, which forces a String data type.

The Left and Right functions use a similar syntax:

Left(string, length)

Right(string, length)

Here, string is an expression that results in a Text data type to be parsed and length is an
expression that results in an Integer data type that specifies the number of characters from
either the left or right end of the string to return.

The Mid function can parse a text string from any part of the string. It uses the following
syntax, where string is a required argument that represents an expression resulting in a
Text data type and start is a required argument that specifies where to start parsing the
string:

Mid(string, start[, length])

An optional argument, length, specifies how many characters from the start point to
parse. If length is omitted or is greater than the number of characters to the end of the
string, all characters from start are returned. Figure 4.5 shows the three functions parsing
various parts of the same string.

4

Chapter 4 Using Built-In Functions54

Figure 4.5
The Left,Right, and
Mid functions parsing
the same text.

The Replace Function
The Replace function is used to replace one or more characters within a string with a dif-
ferent character or characters. This function takes the following syntax, where string is an
expression representing the text string to be searched, stringtoreplace is an expression
representing the string to be searched for, and replacementstring represents the string you
want in place of stringtoreplace

Replace(string, stringtoreplace, replacementstring[, start[, count[, compare]]])

In addition, there are three optional arguments: start, which specifies where to start
searching within the string; count, which specifies the number of replacements to process;
and compare, which is a constant indicating the method used to compare stringtoreplace
with string. Table 4.5 lists the constants that can be used.

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 54

55Formatting Values

Table 4.5 Comparison Constants

Constant Value Description

vbUseCompareOption –1 Performs a comparison using the setting of the Option
Compare statement.

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

vbDatabaseCompare 2 Microsoft Access only. Performs a comparison based on
information in your database.

The Split Function
The Split function takes a delimited string and populates an array with the parts. The fol-
lowing is the syntax for the Split function, where string is a delimited string of values:

Split(string[, delimiter[, count[, compare]]])

This is the only required argument. The first optional argument is delimiter, which speci-
fies the delimiting character separating the values. If you omit delimiter a space is assumed
to be the delimiter. The second optional argument is count, which limits the number of
values parsed. For example, there might be five values separated by commas in the string,
but a count argument of 3 parses only the first three values. The final optional argument is
compare. See Table 4.5 for the comparison constants.

The Trim Functions
Three functions can be used to trim leading or trailing spaces from a string. All three use
the same syntax, where string is an expression that results in a Text data type:

Trim(string)

LTrim(string)

RTrim(string)

The Trim function removes both leading and trailing spaces, LTrim removes the leading
spaces, and Rtrim removes the trailing spaces. All three functions return a Variant String
subtype and support the $ format to force a Text data type.

Formatting Values
Often data is stored is differently from the way it’s displayed on forms and in reports. The
Format function is your tool to change how data is displayed. Access provides many prede-
fined formats for you to use and allows you to customize your own formats. For example, a
phone number might be stored as 10 digits but you can display it like (111) 222-3333 by
applying a format. Another example are Date/Time values. As previously noted, they are
stored as a Double number. However, the Format function can display the number in a vari-
ety of date or time formats.

4

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 55

The Format function uses the following syntax, where expression can be either a String or
Numeric data type that results in the value you want to format:

Format(expression[, format[,firstdayofweek[, firstweekofyear]])

There are three optional arguments, the first of which determines how the data is format-
ted. The other two optional arguments, firstdayofweek and firstdayofyear, are numerical
constants that can be used to adjust the first day of a week or year when using the DatePart
function. Tables 4.2 and 4.3 show a list of the values for each constant. The default values
are Sunday and January 1, respectively.

Tables 4.6 and 4.7 show some of the predefined formats you can use.

Table 4.6 Numeric Named Formats

Format Example Result

General Number Format(12345.6789,”General Number”) 12345.6789

Currency Format(12345.6789, “Currency”) $12,345.68

Fixed Format(0.1, “Fixed”) 0.10

Standard Format(12345.6789, “Standard”) 12,345.68

Percent Format(6789, “Percent”) 67.89%

Scientific Format(12345.6789, “Scientific”) 1.23E+03

Yes/No Format(0, “Yes/No”) No
Format(3, “Yes/No”) Yes

True/False Format(0, “Yes/No”) False
Format(3, “Yes/No”) True

On/Off Format(0, “Yes/No”) Off
Format(3, “Yes/No”) On

The result for Currency is based on the United States regional settings; if you use a differ-
ent regional setting, the Currency format uses those settings. For the Boolean types a zero
results in a No, False, or Off result. Any other value gives the opposite result.

4

Chapter 4 Using Built-In Functions56

Keep in mind that the Format function returns a Variant String subtype, which will proba-
bly be different from the original value’s data type, and that the original data remains unchanged.
This means that you should use Format only for display purposes; you don’t want to use it in cal-
culations.

C A U T I O N

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 56

57Formatting Values

Table 4.7 Date/Time Named Formats

Format Example Result

General Date Format(“04/01/07”, “General Date”) 4/1/2007

Long Date Format(“04/01/07”, “Long Date”) Sunday April 1, 2007

Medium Date Format(“04/01/07”, “Medium Date”) 01-Apr-07

Short Date Format(“04/01/07”, “Short Date”) 4/1/2007

Long Time Format(‘13:13:13’, “Long Time”) 1:13:13 PM

Medium Time Format(‘13:13:13’, “Medium Time”) 1:13 PM

Short Time Format(‘13:13:13’, “Short Time”) 13:13

Applying User-Defined Formats
Although the predefined formats listed in Tables 4.6 and 4.7 cover many situations, at times
you’ll need to create your own formats. You can use a number of special characters and
placeholders to define your own formats. Tables 4.8, 4.9, and 4.10 list these formats.

Table 4.8 Numeric User-Defined Formats

Format Explanation Example Result

0 Display actual digit or 0 for Format(12.3456, 012.34560
each 0 used. Rounds if more “000.00000”)

digits than shown. Format(12.3456, 012.35
“000.00”)

Display actual digit or nothing. Format(12.3456, 12.3456
Rounds if more digits than shown. “###.#####”)

Format(12.3456, 12.35
“###.##”)

% Multiples by 100 and adds Format(.3456, 35%
percent sign “##%”)

E- E+ e- e+ Display scientific notation. Format(1.234567, 123E-2
“###E-###)

- + $ () Display a literal character. Format(123.45, $123.45
“$####.##”)

\ Display following character as Format(.3456, .35%
a literal. “##.##\%”

4

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 57

Table 4.9 Date User-Defined Formats

Format Explanation Example Result

d Display day of month without Format(“04/04/07”, “d”) 1
leading zero

dd Display day of month with Format(“04/04/07”, “dd”) 01
leading zero where needed

ddd Display abbreviated day of week Format(“04/01/07”, “ddd”) Sun

dddd Display full day of week Format(“04/01/07”, “dddd”) Sunday

ddddd Display short date Format(“04/01/07”, “ddddd”) 4/1/2007

dddddd Display long date Format(“04/01/07”, “dddddd”) Sunday,
April 1,
2007

m Display month without leading zero Format(“04/01/07”, “m”) 4

mm Display month with leading zero Format(“04/01/07”, “mm”) 04

mmm Display abbreviated month name Format(“04/01/07”, “mmm” Apr

mmmm Display full month name Format(“04/01/07”, “mmmm”) April

q Display quarter of year Format(“04/01/07”, “q”) 2

h Display hours without leading zero Format(“13:13:13”, “h”) 1

hh Display hours with leading zero Format(“13:13:13”,”hh”) 01

n Display minutes without leading Format(“13:07:13”, “n”) 7
zero

nn Display minutes with leading zero Format(“13:07:13”, “nn”) 07

s Display seconds without leading Format(“13:13:07”, “s”) 7
zero

ss Display seconds with leading zero Format(“13:13:07”, “ss”) 07

ttttt Display 12-hour clock Format(“13:13:13”, “ttttt”) 1:13:13
PM

AM/PM With other time formats displays Format(“13:13:13”, 1:13 PM
either upper- or lowercase AM/PM “hh:nn AM/PM”)

am/pm Format(“13:13:13”, 1:13 pm
“hh:nn am/pm”)

A/P With other time formats displays Format(“13:13:13”, 1:13 P
either upper- or lowercase A/P “hh:nn A/P”)

a/p Format(“13:13:13”, 1:13 p
“hh:nn a/p”)

ww Display the number of the Format(“04/01/07”, “ww”) 14
week (1–54)

4

Chapter 4 Using Built-In Functions58

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 58

59Domain Aggregate Functions

w Display the number of the day of Format(“04/01/07”, “w”) 1
the week

y Display the day of the year (1–366) Format(“04/01/07”, “y”) 91

yy Display 2-digit year (00–99) Format(“04/01/07”, “yy”) 07

yyyy Display 4-digit year (0100–9999) Format(“04/01/07”, “yyyy”) 2007

These formats can also be combined to display different date or time formats. The follow-
ing are some examples:

Format(“04/01/07”, “yyyymmdd”) = 20070401

4

Format Explanation Example Result

This format is useful when exporting data to other formats and still maintaining chronological
sort.T

I P

Format(“4/01/07”, “mmm dd”) = Apr 01

Format(“04/01/07”, “mmm yyyy”) = Apr 2007)

Table 4.10 String User-Defined Formats

Format Explanation Example Result

@ Display actual character or space Format(“VBA”, “@@@@@”) VBA

& Display actual character or nothing Format(“VBA”, “&&&&&”) VBA

< Display character as lowercase Format(“VBA”, “<<<<”) vba

> Display character in uppercase Format(“VBA”, “>>>>”) VBA

Domain Aggregate Functions
Domain Aggregate functions are specific to Microsoft Access because they are used to
retrieve data from tables. Because you can’t assign the results of a query directly to a vari-
able, you must use Domain Aggregate functions to retrieve that data. There are other ways
besides Domain Aggregate functions that will be covered later in this book. The advan-
tages of the Domain Aggregate functions are that they can accept a set of criteria to
retrieve just the data needed. All the Domain Aggregate functions use a similar syntax,
where expression is the name of the field in a table or query, domain is the name of the
table or query, and criteria is a comparison to define which record to extract the value
from:

Function(“[expression]”, “domain”, criteria)

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 59

Notice that the expression is usually surrounded by quotes and brackets and that the
domain is also surrounded by quotes. I’ll list some of the more commonly used Domain
Aggregate functions.

The DLookup Function
The DLookup function is used to retrieve a value from a single field in a table or query. The
following example returns the last name of the contact for Supplier G from tblSuppliers in
the Inventory application:

DLookup(“[LastName]”, “tblSuppliers”,”[Company] = ‘“ & “Supplier G” & “‘“)

The DLookup function retrieves that value from the first record matching the criteria.
Because Company is a Text data type, you must concatenate the single quotes around the
company name. If you are comparing a Numeric data type, no quotes are needed, and a
Date/Time data type requires octothorpes (#) to delimit the value to be searched for.

The DCount Function
The DCount function is used to count the number of records in a table or query that match
your criteria. An example of the DCount function follows:

DCount(“*”,”tblEmployees”,”[Jobtitle] = 3”)

This returns a result of 6 because there are six employees whose job title is Sales
Representative.

The DMax/DMin Functions
The DMax and DMin functions return the highest or lowest values in the domain according to
the criteria listed. An example of the DMin function follows:

DMin(“[CreatedDate]”,”tblTransactions”)

This returns 3/22/2006 4:02:28 PM, which is the earliest transaction in the Transactions
table.

4

Chapter 4 Using Built-In Functions60

The DMax function is often used to produce a sequential numbering system that can be depen-
dent on some other value. For example, say you wanted to number each transaction for each
employee and start the numbering each time a new employee is added. In such a case you could
use the following code snippet in the After Update event of the control where the employee is
selected on your form:
Me.txtIncrement =
Nz(DMax(“[Increment]”,”tblTransactions”,”[EmployeeID] = “ &_
Me.cboEmployee),0)+1

This sets the control named txtIncrement to the highest value of the field Increment plus 1
for the selected employee. If no record for the employee is found, the NZ function causes the
expression to return a 0, which is then incremented to 1.

T
I P

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 60

61Interaction

Using the Is Functions
VBA provides a series of functions to help you trap errors that might arise from data type
mismatches. These functions test a value to see whether it’s a specified type.

■ IsArray—Checks whether the value is an array

■ IsDate—Checks whether the value is a Date/Time data type

■ IsEmpty—Checks whether the value hasn’t been initialized with a value

■ IsError—Checks whether an expression results in an error

■ IsMissing—Checks whether an optional argument has been passed to a procedure

■ IsNull—Checks whether the value contains a Null

■ IsNumeric—Checks whether the value is a number

■ IsObject—Checks whether a variable contains a reference to an object
➔ We cover arrays in more detail in Chapter 7,“Working with Arrays.”

All these functions use the same syntax, where value is a value or expression being tested:

IsFunction(value)

The functions all return a Boolean data type, either True if the value meets the condition
being checked or False if it doesn’t.

Interaction
At times you need to provide information to the application’s user or get information from
them. This is interacting with the users. Two functions that can perform such an action are
the MsgBox and InputBox functions.

The MsgBox Function
You use the MsgBox function to present information to users with an opportunity to respond
to the information. You have control over how the message box appears and what response
the user can make. The MsgBox function uses the following syntax, where prompt is the only
required argument and represents a text string that constitutes the message presented by
the message box:

MsgBox(prompt[, buttons][, title][, helpfile, context])

The users can respond through a choice of one or more buttons. Table 4.11 lists various
button options you can use. You can supply a string value for title that displays in the title
bar of the message box. The other two optional arguments—helpfile and context—are
seldom used and go together. The helpfile argument is a string that points to a help file to
be used if the user clicks the message box’s Help button. The context argument is a
numeric value that specifies a number to be used within the help file. (Note: Creating help
files is outside the scope of this book.)

4

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 61

Table 4.11 MsgBox Button Constants

Constant Description Integer Value

vbOkOnly OK button 0

vbOKCancel OK and Cancel buttons 1

vbAbortRetryIgnore Abort, Retry, and Ignore buttons 2

vbYesNoCancel Yes, No, and Cancel buttons 3

vbYesNo Yes and No buttons 4

vbRetryCancel Retry and Cancel buttons 5

Table 4.12 lists constants for the icons that can be displayed in the message box. You can
display both icons and buttons using the following syntax:

buttonconstant + iconconstant

As an example, the following function displays the message box shown in Figure 4.6. There
are two buttons—OK and Cancel—and a question mark icon.

MsgBox(“Do you want to save this record?”, vbOKCancel + vbQuestion,”Warning”)

4

Chapter 4 Using Built-In Functions62

Figure 4.6
A message box asking
whether the user wants
to save a record.

Table 4.12 Icon Constants

Constant Description Integer Value

vbCritical Critical message 16

vbQuestion Warning message 32

vbExclamation Warning message 48

vbInformation Information message 64

When the user clicks one of the buttons, the function returns its value. Table 4.13 shows
the values returned for each button.

Besides the MsgBox function there is also a MsgBox action.The action displays the Msgbox
without returning a value as a response.

C A U T I O N

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 62

63Interaction

Table 4.13 Button Values

Button Returned Value Integer Value

OK vbOK 1

Cancel vbCancel 2

Abort vbAbort 3

Retry vbRetry 4

Ignore vbIgnore 5

Yes vbYes 6

No vbNo 7

The following code snippet is built around the message box function previously shown:

Private Function cmdSave_OnClick()
Dim strMsg As String
strMsg = “Do you want to save this record?”
If MsgBox(“strMsg, vbOKCancel + vbQuestion,”Warning”) = vbOK Then

DoCmd.RunCommand acCmdSaveRecord
Else

Me.Undo
End If

The InputBox Function
The Inputbox function displays a dialog box with a prompt that allows the user to enter a
value that can then be assigned to a variable (see Figure 4.7). The following is the syntax for
this function, where prompt is a String that displays a message for the user and is the only
required argument:

InputBox(prompt[, title][, default][, xpos][, ypos][, helpfile, context])

The message is used to let the user know what data should be input. The title is a String
that is displayed in the title bar of the window. The default is used to set a default value
when the box opens. The xpos and ypos arguments allow you to precisely position the box
in terms of the top and left of the screen. The helpfile and context arguments are the
same as for the MsgBox.

4

Figure 4.7
An input box asking the
user to enter a filename.

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 63

You usually use InputBox to retrieve a value from the user during processing of code. An
example follows:

Dim strFilename As String
strFilename = InputBox(“Enter file to be imported!”, “Import file”)
DoCmd.TransferText acExportDelim, , “Import”, strFilename

4

Chapter 4 Using Built-In Functions64

I rarely use the InputBox function, preferring to use a form to allow the user to supply input.
Using a form gives you much greater control over the input.With a form you can use interactive
controls such as combo boxes or option groups to ensure that the correct data is entered.We’ll deal
with this more in later chapters.

T
I P

Case Study: Add Work Days
Sometimes you might need to figure a delivery or follow-up date for a shipment.You want to calculate such dates based
on business days, not calendar days.The following function allows you to enter a start date and the number of business
days and returns the date equal to that number of business days:

1. Open the UDFs module or a new one.

2. Enter the following code into the module:
Public Function AddWorkdays(dteStart As Date, intnNumDays As Integer) As Date

Dim dteCurrDate As Date
Dim i As Integer

dteCurrDate = dteStart
AddWorkdays = dteStart
i = 1

Do While i < intNumDays
If Weekday(dteCurrDate, vbMonday) <= 5 AND _

IsNull(DLookup(“[Holiday]”,”tblHolidays”, “[HolDate] = #” & _
dteCurrDate & “#”)) Then
i = i + 1

End If

dteCurrDate = dteCurrDate + 1

Loop
AddWorkdays = dteCurrDate

Exit_AddWorkDays:
End Function

3. Test the code by entering the following into the Immediate window. Figure 4.8 shows the results.
? AddWorkDays(#5/16/07#,15)

C A S E S T U D Y

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 64

65Case Study: Add Work Days

Figure 4.8
The results from using the
AddWorkDays function.

4

06_0789737310_ch04.qxd 10/30/07 4:07 PM Page 65

