
I N T H I S C H A P T E R

Referring to Ranges

3A range can be a cell, row, column, or a grouping of
any of these. The RANGE object is probably the most
frequently used object in Excel VBA—after all,
you’re manipulating data on a sheet. Although a
range can refer to any grouping of cells on a sheet,
it can refer to only one sheet at a time; if you want
to refer to ranges on multiple sheets, you have to
refer to each sheet separately.

This chapter shows you different ways of referring
to ranges, such as specifying a row or column.
You’ll also learn how to manipulate cells based on
the active cell and how to create a new range from
overlapping ranges.

The Range Object
The following is the Excel object hierarchy:

The Range Object . 61

Using the Upper-Left and Lower-Right Corners

of a Selection to Specify a Range 62

Named Ranges . 62

Shortcut for Referencing Ranges 62

Referencing Ranges in Other Sheets 63

Referencing a Range Relative to Another

Range . 63

Using the Cells Property to Select

a Range . 64

Using the Offset Property to Refer

to a Range . 65

Using the Resize Property to Change

the Size of a Range . 67

Using the Columns and Rows Properties

to Specify a Range . 68

Using the Union Method to Join Multiple

Ranges . 68

Using the Intersect Method to Create

a New Range from Overlapping Ranges 69

Using the ISEMPTY Function to Check

Whether a Cell Is Empty 69

Using the CurrentRegion Property to

Quickly Select a Data Range 70

Using the Areas Collection to Return a

Noncontiguous Range 73

Referencing Tables . 73

Application Workbook Worksheet Range

The Range object is a property of the Worksheet
object. This means it requires that either a sheet be
active or it must reference a worksheet. Both of the
following lines mean the same thing if
Worksheets(1) is the active sheet:

Range(“A1”)

Worksheets(1).Range(“A1”)

There are several ways to refer to a Range object.
Range(“A1”) is the most identifiable because that is
how the macro recorder does it. But each of the fol-
lowing is equivalent:

Range(“D5”)

[D5]

Range(“B3”).Range(“C3”)

Cells(5,4)

Range(“A1”).Offset(4,3)

Range(“MyRange”) ‘assuming that D5 has a Name

‘of MyRange

Which format you use depends on your needs.
Keep reading—it will all make sense soon!

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 61

Using the Upper-Left and Lower-Right Corners of a Selection to
Specify a Range

The Range property has two acceptable syntaxes. To specify a rectangular range in the first
syntax, you specify the complete range reference just as you would in a formula in Excel:

Range(“A1:B5”).Select

In the alternative syntax, you specify the upper-left corner and lower-right corner of the
desired rectangular range. In this syntax, the equivalent statement might be this:

Range(“A1”, “B5”).Select

For either corner, you can substitute a named range, the Cells property, or the ActiveCell
property. This line of code selects the rectangular range from A1 to the active cell:

Range(“A1”, ActiveCell).Select

The following statement selects from the active cell to five rows below the active cell and
two columns to the right:

Range(ActiveCell, ActiveCell.Offset(5, 2)).Select

Named Ranges
You’ve probably already used named ranges on your sheets and in formulas. You can also
use them in VBA.

To refer to the range “MyRange” in Sheet1, do this:

Worksheets(“Sheet1”).Range(“MyRange”)

Notice that the name of the range is in quotes—unlike the use of named ranges in formulas
on the sheet itself. If you forget to put the name in quotes, Excel thinks you are referring to
a variable in the program, unless you are using the shortcut syntax discussed in the previous
section, in which case, quotes are not used.

Shortcut for Referencing Ranges
A shortcut is available when referencing ranges. It uses square brackets, as shown in Table 3.1.

Table 3.1 Shortcuts for Referring to Ranges

Standard Method Shortcut

Range(“D5”) [D5]

Range(“A1:D5”) [A1:D5]

Range (“A1:D5,” “G6:I17”) [A1:D5, G6:I17]

Range(“MyRange”) [MyRange]

3

Chapter 3 Referring to Ranges62

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 62

63Referencing a Range Relative to Another Range

Referencing Ranges in Other Sheets
Switching between sheets by activating the needed sheet can drastically slow down your
code. To avoid this slowdown, you can refer to a sheet that is not active by referencing the
Worksheet object first:

Worksheets(“Sheet1”).Range(“A1”)

This line of code references Sheet1 of the active workbook even if Sheet2 is the active
sheet.

If you need to reference a range in another workbook, include the Workbook object, the
Worksheet object, and then the Range object:

Workbooks(“InvoiceData.xls”).Worksheets(“Sheet1”).Range(“A1”)

Be careful if you use the Range property as an argument within another Range property. You
must identify the range fully each time. Suppose, for example, that Sheet1 is your active
sheet and you need to total data from Sheet2:

WorksheetFunction.Sum(Worksheets(“Sheet2”).Range(Range(“A1”), Range(“A7”)))

This line does not work. Why? Because Range(Range(“A1”), Range(“A7”)) refers to an
extra range at the beginning of the code line. Excel does not assume that you want to carry
the Worksheet object reference over to the other Range objects. So, what do you do? Well,
you could write this:

WorksheetFunction.Sum(Worksheets(“Sheet2”).Range(Worksheets(“Sheet2”). _

Range(“A1”), Worksheets(“Sheet2”).Range(“A7”)))

But this is not only a long line of code, it is difficult to read! Thankfully, there is a simpler
way, With...End With:

With Worksheets(“Sheet2”)

WorksheetFunction.Sum(.Range(.Range(“A1”), .Range(“A7”)))

End With

Notice now that there is a .Range in your code, but without the preceding object reference.
That’s because With Worksheets(“Sheet2”) implies that the object of the range is the work-
sheet.

Referencing a Range Relative to Another Range
Typically, the RANGE object is a property of a worksheet. It is also possible to have RANGE be
the property of another range. In this case, the Range property is relative to the original
range! This makes for code that is very unintuitive. Consider this example:

Range(“B5”).Range(“C3”).Select

This actually selects cell D7. Think about cell C3. It is located two rows below and two
columns to the right of cell A1. The preceding line of code starts at cell B5. If we assume
that B5 is in the A1 position, VBA finds the cell that would be in the C3 position relative to

3

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 63

B5. In other words, VBA finds the cell that is two rows below and two columns to the right
of B5, and this is D7.

Again, I consider this coding style to be very unintuitive. This line of code mentions two
addresses, and the actual cell being selected is neither of these addresses! It seems mislead-
ing when you are trying to read this code.

You might consider using this syntax to refer to a cell relative to the active cell. For exam-
ple, this line activates the cell three rows down and four columns to the right of the
currently active cell:

Selection.Range(“E4”).Select

This syntax is mentioned only because the macro recorder uses it. Remember that back in
Chapter 1, “Unleash the Power of Excel with VBA!” when we were recording a macro with
Relative References on, the following line was recorded:

ActiveCell.Offset(0, 4).Range(“A2”).Select

It found the cell four columns to the right of the active cell, and from there selected the cell
that would correspond to A2. This is not the easiest way to write code, but that’s the macro
recorder.

Although a worksheet is usually the object of the Range property, on occasion, such as
during recording, a range may be the property of a range.

Using the Cells Property to Select a Range
The Cells property refers to all the cells of the specified range object, which can be a work-
sheet or a range of cells. For example, this line selects all the cells of the active sheet:

Cells.Select

Using the Cells property with the Range object might seem redundant:

Range(“A1:D5”).Cells

The line refers to the original Range object. However, the Cells property has a property,
Item, which makes the Cells property very useful. The Item property enables you to refer
to a specific cell relative to the Range object.

The syntax for using the Item property with the Cells property is as follows:

Cells.Item(Row,Column)

You must use a numeric value for Row, but you may use the numeric value or string value for
Column. Both the following lines refer to cell C5:

Cells.Item(5,”C”)

Cells.Item(5,3)

Because the Item property is the default property of the RANGE object, you can shorten these
lines:

3

Chapter 3 Referring to Ranges64

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 64

65Using the Offset Property to Refer to a Range

Cells(5,”C”)

Cells(5,3)

The ability to use numeric values for parameters proves especially useful if you need to loop
through rows or columns. The macro recorder usually uses something like Range(“A1”).
Select for a single cell and Range(“A1:C5”).Select for a range of cells. If you are learning
to code simply from the recorder, you might be tempted to write code like this:

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 1 to FinalRow

Range(“A” & i & “:E” & i).Font.Bold = True

Next i

This little piece of code, which loops through rows and bolds the cells in Columns A
through E, is awkward to read and write. But, how else can you do it?

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 1 to FinalRow

Cells(i,”A”).Resize(,5).Font.Bold = True

Next i

Instead of trying to type out the range address, the new code uses the Cells and Resize
properties to find the required cell, based on the active cell.

Using the Cells Property in the Range Property
You can use Cells properties as parameters in the Range property. The following refers to
the range A1:E5:

Range(Cells(1,1),Cells(5,5))

This proves especially useful when you need to specify your variables with a parameter, as
in the previous looping example.

Using the Offset Property to Refer to a Range
You’ve already seen a reference to Offset; the macro recorder used it when we were record-
ing a relative reference. It enables you to manipulate a cell based off the location of the
active cell. In this way, you don’t have to know the address of a cell.

The syntax for the Offset property is this:

Range.Offset(RowOffset, ColumnOffset)

To affect cell F5 from cell A1, write this:

Range(“A1”).Offset(RowOffset:=4, ColumnOffset:=5)

Or, shorter yet, write this:

Range(“A1”).Offset(4,5)

The count starts at A1 but does not include A1.

3

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 65

But what if you need to go over only a row or a column, but not both? You don’t have to
enter both the row and column parameter. If you need to refer to a cell one column over,
use one of these:

Range(“A1”).Offset(ColumnOffset:=1)

Range(“A1”).Offset(,1)

Both lines mean the same. The choice is yours. Referring to a cell one row up is similar:

Range(“B2”).Offset(RowOffset:=-1)

Range(“B2”).Offset(-1)

Once again, the choice is yours. It is a matter of readability of the code.

Let’s suppose you have a list of produce with totals next to them, and you want to find any
total equal to zero and place LOW in the cell next to it. You could do it this way:

Set Rng = Range(“B1:B16”).Find(What:=”0”, LookAt:=xlWhole, LookIn:=xlValues)

Rng.Offset(, 1).Value = “LOW”

Sub MyOffset()

With Range(“B1:B16”)

Set Rng = .Find(What:=”0”, LookAt:=xlWhole, LookIn:=xlValues)

If Not Rng Is Nothing Then

firstAddress = Rng.Address

Do

Rng.Offset(, 1).Value = “LOW”

Set Rng = .FindNext(Rng)

Loop While Not Rng Is Nothing And Rng.Address <> firstAddress

End If

End With

End Sub

The LOW totals are quickly noted by the program, as shown in Figure 3.1.

Offsetting isn’t only for single cells—it can be used with ranges. You can shift the focus of a
range over in the same way you can shift the active cell. The following line refers to B2:D4
(see Figure 3.2):

Range(“A1:C3”).Offset(1,1)

3

Chapter 3 Referring to Ranges66

Figure 3.1
Find the produce
with the 0 total.

Figure 3.2
Offsetting a range—
Range(“A1:C3”).

Offset(1,1).

Select.

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 66

67Using the Resize Property to Change the Size of a Range

Using the Resize Property to Change the Size of a Range
The Resize property enables you to change the size of a range based on the location of the
active cell. You can create a new range as you need it.

The syntax for the Resize property is this:

Range.Resize(RowSize, ColumnSize)

To create a range B3:D13, use this:

Range(“B3”).Resize(RowSize:=11, ColumnSize:=3)

Or, simpler, use this:

Range(“B3”).Resize(11, 3)

But what if you need to resize by only a row or a column, not both? You don’t have to enter
both the row and column parameters. If you need to expand by two columns, use one of
these:

Range(“B3”).Resize(ColumnSize:=2)

or

Range(“B3”).ReSize(,2)

Both lines mean the same. The choice is yours. Resizing just the rows is similar:

Range(“B3”).Resize(RowSize:=2)

or

Range(“B3”).Resize(2)

Once again, the choice is yours. It is a matter of readability of the code.

From the list of produce, find the zero total and color the cells of the total and correspond-
ing produce (see Figure 3.3):

Set Rng = Range(“B1:B16”).Find(What:=”0”, LookAt:=xlWhole, LookIn:=xlValues)

Rng.Offset(, -1).Resize(, 2).Interior.ColorIndex = 15

Notice that the Offset property was used first to move the active cell over; when you are
resizing, the upper-left corner cell must remain the same.

Resizing isn’t only for single cells—it can be used to resize an existing range. For example,
if you have a named range but need it and the two columns next to it, use this:

Range(“Produce”).Resize(,2)

Remember, the number you resize by is the total number of rows/columns you want to
include.

3

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 67

3

Chapter 3 Referring to Ranges68

Figure 3.3
Resizing a range to
extend the selection.

Using the Columns and Rows Properties to Specify a Range
Columns and Rows refer to the columns and rows of a specified Range object, which can be a
worksheet or a range of cells. They return a Range object referencing the rows or columns
of the specified object.

You’ve seen the following line used, but what is it doing?

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

This line of code finds the last row in a sheet in which Column A has a value and places
the row number of that Range object into FinalRow. This can be very useful when you
need to loop through a sheet row by row—you’ll know exactly how many rows you need to
go through.

Some properties of columns and rows require contiguous rows and columns to work properly. For

example, if you were to use the following line of code, 9 would be the answer because only the first

range would be evaluated:

Range(“A1:B9, C10:D19”).Rows.Count

But if the ranges are grouped separately,

Range(“A1:B9”, “C10:D19”).Rows.Count

the answer would be 19.

C A U T I O N

Using the Union Method to Join Multiple Ranges
The Union method enables you to join two or more noncontiguous ranges. It creates a
temporary object of the multiple ranges, allowing you to affect them together:

Application.Union(argument1, argument2, etc.)

The following code joins two named ranges on the sheet, inserts the =RAND() formula, and
bolds them:

Set UnionRange = Union(Range(“Range1”), Range(“Range2”))

With UnionRange

.Formula = “=RAND()”

.Font.Bold = True

End With

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 68

69Using the ISEMPTY Function to Check Whether a Cell Is Empty

3

Using the Intersect Method to Create a New Range from
Overlapping Ranges

The Intersect method returns the cells that overlap between two or more ranges:

Application.Intersect(argument1, argument2, etc.)

The following code colors the overlapping cells of the two ranges.

Set IntersectRange = Intersect(Range(“Range1”), Range(“Range2”))

IntersectRange.Interior.ColorIndex = 6

Using the ISEMPTY Function to Check Whether a Cell Is Empty
The ISEMPTY function returns a Boolean value of whether a single cell is empty or not; True
if empty, False if not. The cell must truly be empty. Even if it has a space in it, which you
cannot see, Excel does not consider it empty:

IsEmpty(Cell)

Look at Figure 3.4. You have several groups of data separated by a blank row. You want to
make the separations a little more obvious.

Figure 3.4
Blank empty rows
separating data.

The following code goes down the data in Column A; where it finds an empty cell, it
colors in the first four cells for that row (see Figure 3.5):

LastRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 1 To LastRow

If IsEmpty(Cells(i, 1)) Then

Cells(i, 1).Resize(1, 4).Interior.ColorIndex = 1

End If

Next i

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 69

Using the CurrentRegion Property to Quickly Select
a Data Range

CurrentRegion returns a Range object representing a set of contiguous data. As long as the
data is surrounded by one empty row and one empty column, you can select the table with
CurrentRegion:

RangeObject.CurrentRegion

Look at Figure 3.6. The following line selects A1:D3 because this is the contiguous range
of cells around cell A1:

Range(“A1”).CurrentRegion.Select

This is useful if you have a table whose size is in constant flux.

3

Chapter 3 Referring to Ranges70

Figure 3.6
Use CurrentRegion
to quickly select a range
of contiguous data
around the active cell.

C A S E S T U D Y

Using the SpecialCells Method to Select Specific Cells
Even Excel power users may never have encountered the Go To Special dialog box. If you
press the F5 key in an Excel worksheet, you get the normal Go To dialog box (see Figure
3.7). In the lower-left corner of this dialog is a button labeled Special. Click that button to
get to the super-powerful Go To Special dialog (see Figure 3.8).

In the Excel interface, the Go To Special dialog enables you to select only cells with for-
mulas, or only blank cells, or only the visible cells. Selecting visible cells only is excellent
for grabbing the visible results of AutoFiltered data.

To simulate the Go To Special dialog in VBA, use the SpecialCells method. This enables
you to act on cells that meet a certain criteria:

RangeObject.SpecialCells(Type, Value)

Figure 3.5
Colored rows
separating data.

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 70

71Using the CurrentRegion Property to Quickly Select a Data Range

This method has two parameters: Type and Value. Type is one of the xlCellType constants:

3

Figure 3.7
Although the Go To dia-
log doesn’t seem very
useful, click the Special
button in the lower-left
corner.

Figure 3.8
The Go To Special dialog
has many incredibly
useful selection tools.

xlCellTypeAllFormatConditions

xlCellTypeAllValidation

xlCellTypeBlanks

xlCellTypeComments

xlCellTypeConstants

xlCellTypeFormulas

xlCellTypeLastCell

xlCellTypeSameFormatConditions

xlCellTypeSameValidation

xlCellTypeVisible

Value is optional and can be one of the following:

xlErrors

xlLogical

xlNumbers

xlTextValues

The following code returns all the ranges that have conditional formatting set up. It pro-
duces an error if there are no conditional formats. It puts a border around each contiguous
section it finds:

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 71

Chapter 3 Referring to Ranges72

Set rngCond = ActiveSheet.Cells.SpecialCells(xlCellTypeAllFormatConditions)

If Not rngCond Is Nothing Then

rngCond.BorderAround xlContinuous

End If

Have you ever had someone send you a worksheet without all the labels filled in? Some
people consider that the data shown in Figure 3.9 looks neat. They enter the Region field
only once for each region. This might look aesthetically pleasing, but it is impossible to
sort. Even Excel’s pivot table routinely returns data in this annoying format.

Figure 3.9
The blank cells in the
region column make
data tables such as this
very difficult to sort.

Using the SpecialCells method to select all the blanks in this range is one way to quickly
fill in all the blank region cells with the region found above them:

Sub FillIn()

On Error Resume Next ‘Need this because if there aren’t any blank cells,

‘the code will error

Range(“A1”).CurrentRegion.SpecialCells(xlCellTypeBlanks).FormulaR1C1 _

= “=R[-1]C”

Range(“A1”).CurrentRegion.Value = Range(“A1”).CurrentRegion.Value

End Sub

In this code, Range(“A1”).CurrentRegion refers to the contiguous range of data in the
report. The SpecialCells method returns just the blank cells in that range. Although you
can read more about R1C1 style formulas in Chapter 6, “R1C1-Style Formulas,” this par-
ticular formula fills in all the blank cells with a formula that points to the cell above the
blank cell. The second line of code is a fast way to simulate doing a Copy and then Paste
Special Values. Figure 3.10 shows the results.

3

Figure 3.10
After the macro runs, the
blank cells in the Region
column have been filled
in with data.

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 72

73Referencing Tables

Using the Areas Collection to Return a Noncontiguous Range
The Areas collection is a collection on noncontiguous ranges within a selection. It consists
of individual Range objects representing contiguous ranges of cells within the selection. If
the selection contains only one area, the Areas collection contains a single Range object
corresponding to that selection.

You might be tempted to loop through the sheet, copy a row, and paste it to another sec-
tion. But there’s an easier way (see Figure 3.11):

Range(“A:D”).SpecialCells(xlCellTypeConstants, 1).Copy Range(“I1”)

3

Figure 3.11
The Areas collection
makes it easy to
manipulate noncon-
tiguous ranges.

Referencing Tables
With Excel 2007, we’re introduced to a new way of interacting with ranges of data: tables.
These special ranges offer the convenience of referencing named ranges, but are not
created in the same manner. For more information on how to create a named table, see
Chapter 8, “Create and Manipulate Names in VBA.”

The table itself is referenced using the standard method of referring to a ranged name. To
refer to the data in table Table1 in Sheet1, do this:

Worksheets(1).Range(“Table1”)

This references just the data part of the table; it does not include the header or total row.
To include the header and total row, do this:

Worksheets(1).Range(“Table1[#All]”)

What I really like about this new feature is the ease of referencing specific columns of a
table. You don’t have to know how many columns in from a starting position or the
letter/number of the column, and you don’t have to use a FIND function. You can just use
the header name of the column. To reference the Qty column of the table, for example,
do this:

Worksheets(1).Range(“Table1[Qty]”)

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 73

Next Steps
Now that you’re getting an idea of how Excel works, it’s time to apply it to useful situa-
tions. The next chapter looks at user-defined functions, uses the skills you’ve learned so
far, and introduces other programming methods that you will learn more about throughout
this book.

3

Chapter 3 Referring to Ranges74

04_0789736829_ch03.qxd 7/12/07 1:17 PM Page 74

