Introduction

CompTIA® A+ Exam Prep is designed for those with the goal of certification as an A+ certified technician.

The 2006 version of CompTIA’s A+ Certification exams represents the most extensive changes to the certification since its inception. The traditional two-test model featured one exam for Hardware (Core) and a separate exam for Operating System Technologies. That’s been changed to a two-test requirement featuring one required exam followed by three options for Advanced exams to complete the certification.

The introductory level exam is called the A+ Essentials exam (220-601). The three options for the Advanced exam are designed to address the three main professional tracks commonly associated with A+ certification—Depot Technician (220-604), Remote Support Technician (220-603), and the all-around IT Technician (220-602).

NOTE

For a complete listing of the latest exam objectives, go to http://certification.comptia.org/a/.

Many of the objectives given for each exam overlap with objectives in the other exams. The main difference between the Essentials exam that everyone must take and any of the Advanced exams is supposed to be the level of knowledge required. CompTIA gives a recommendation of 500 hours of experience for the Essentials exam taker and 1,000 hours for any of the Advanced exams.

These exams measure essential competencies for a microcomputer hardware service technician with six months of on-the-job experience. You must demonstrate knowledge that would enable you to properly install, configure, upgrade, troubleshoot, and repair microcomputer hardware. This includes basic knowledge of desktop and portable systems, basic networking concepts, and printers. You also must demonstrate knowledge of safety and common preventive-maintenance procedures.

Another major change for the 2006 A+ exam is the inclusion of a soft skills domain. This is not exactly a new idea for the A+ exam. Various past versions have required a customer service element as part of the certification. However, the computer repair industry has made it clear that in most computer repair-related job roles, customer service and satisfaction skills are equally as important as technical skills.
For the 2006 version of the A+ exams, CompTIA has continued to use a fixed length, linear format test. They have also continued their practice of injecting new test items into the exam and administering them as nonscored questions. The psychometric evaluation of the questions is derived from these tests. When the new questions have been validated through this method, they will be injected into the live 2006 exams as scored questions.

After validation, the questions will be returned to the question pools as scored items, thus creating a dynamic test pool that is continually being renewed. To cope with this, Educational Technologies Group (ETG) has established our Dynamic Test Tracking system that is available to everyone who purchases this product.

ETG’s Dynamic Test Tracking system is an online service that includes dynamic, interactive updates for each chapter and lab procedure in our course. These changes also include Test Tips and Curriculum Notes for any changes encountered in the A+ exams over the life of this exam version. In this way, your courseware will never be out of date or incomplete.

How This Book Helps You

This book is your one-stop answer for the A+ exams. Everything you need to know to pass the exams is in here. You do not have to take a class in addition to buying this book to pass the exam. Depending on your personal study habits or learning style, however, you might benefit from buying this book and taking a class. It can also help advanced users and administrators who are not studying for the exam but are looking for a single-volume technical reference.

Our book provides a self-guided tour of all the areas covered by all four of the A+ exams and identifies the specific skills you need to achieve your A+ certification. You also will find the features that make Que’s training guides so successful: clear organization, helpful hints, tips, real-world examples, and step-by-step exercises. Specifically, this book is set up to help you in the following ways:

Organization

This book is organized according to individual exam objectives. It covers every objective that you need to know for all four A+ exams. As much as possible, the objectives are covered in the same order as they are listed by the certifying organization, CompTIA, to make it as easy as possible for you to learn the information. We also have attempted to make the information accessible in the following ways:

- The book includes a full list of exam topics and objectives.
- Each chapter begins with a list of the objectives to be covered.
Each chapter also begins with an outline that provides an overview of the material and the page numbers indicating where you can find particular topics.

Information on where the objectives are covered is also conveniently condensed on the tear card at the front of this book.

Instructional Features

This book is designed to provide you with multiple ways to learn and reinforce the exam material. Following are some of the helpful methods:

- **Objective explanations**—As mentioned previously, each chapter begins with a list of the objectives covered in the chapter. In addition, immediately following each objective is an explanation in a context that defines it more meaningfully.

- **Test tips**—Exam tips appear in the margin to provide specific exam-related advice. Such tips might address what material is covered (or not covered) on the exam, how it is covered, mnemonic devices, and particular quirks of that exam.

- **Summaries**—Each chapter ends with a summary.

- **Terms you’ll need to understand**—A list of key terms appears at the end of each chapter. The key terms are also italicized the first time they appear in the text of the chapter.

- **Notes**—These paragraphs appear in the margin and contain various kinds of useful information such as tips on technology or administrative practices, historical background on terms and technologies, or side commentary on industry issues.

- **Warnings**—When you are using sophisticated technology improperly, the potential for mistakes or even catastrophes to occur is ever present. Warnings appear in the margin to alert you to such potential problems.

- **Challenges**—These instructional elements require you to analyze a situation and come up with a solution to a technical problem. They are included here in anticipation of the application questions that appear in the A+ exams. Answers appear in the “Challenge Solutions” section.

Extensive Practice Test Options

This book provides numerous opportunities for you to assess your knowledge and to practice for the exam. The practice options include the following:

- **Review questions**—These questions appear in the “Exam Prep Questions” section. They reflect the kinds of multiple-choice questions that appear on the A+ exams. Use them
to practice for the exam and to help you determine what you know and what you need to review or study further. Answers and explanations for them are provided.

- **Practice exam**—A practice exam is included in the “Final Review” section for each exam (as discussed later).

- **MeasureUp**—The MeasureUp software included on the CD that accompanies this book provides even more practice questions. You also can purchase more questions at www.measureup.com.

Final Review

This part of the book provides the following three valuable tools that can help you prepare for the exam:

- **Practice Exam**—A full practice test for each of the exams is included. Questions are written in the styles used on the actual exams. Use it to assess your readiness for the real thing.

- This book includes the Glossary and Appendix A, “What’s on the CD-ROM.”

These and all the other book features mentioned previously will enable you to thoroughly prepare for the exam.

Registering for the Exam

To register for the A+ exam, contact Marcraft at 800-441-6006. Special discounts are available for Que customers.

For more information about the exam or the certification process, contact Educational Technologies Group (ETG) or the CompTIA organization:

CompTIA Headquarters
Attn: A+ Certification
1815 S. Meyers Road, Suite 300
Oakbrook Terrace, IL 60181-5228
Phone: 630.678.8300
Fax: 630.268.1384
info@comptia.org
Hardware and Software You Will Need

As a self-paced study guide, this book was designed with the expectation that you will use your computer as you follow along through the exercises. You also should use the MeasureUp software on the accompanying CD. Your computer should meet the following criteria:

- 32-bit operating system (Windows 9x/2000/XP or NT 4.0)
- 10MB hard-drive space
- 16MB RAM
- IE 4.01 or later
- 640×480 video resolution with 256 colors or more
- CD-ROM drive

Advice on Taking the Exam

You should keep the following advice in mind as you study:

- **Read all the material.** Make sure that your exam preparation is thorough. Do not just drop into the book and read around. Read through all the material. This book includes additional information not reflected in the objectives in an effort to give you the best possible preparation for the examination—and for on-the-job experiences to come.

- **Complete the steps.** They will provide you with another way of understanding the material as well as more information on how well you comprehend it.

- **Use the questions to assess your knowledge.** Do not just read the chapter content; use the questions to find out what you know and what you do not. Study some more, review, and then assess your knowledge again.
Review the exam objectives. Develop your own questions and examples for each topic listed. If you can develop and answer several questions for each topic, you should not find it difficult to pass the exam.

Remember, the primary objective is not to pass the exam—it is to understand the material. After you understand the material, passing the exam should be simple. Knowledge is a pyramid; to build upward, you need a solid foundation. This book and the CompTIA A+ certification program are designed to ensure that you have that solid foundation.

NOTE

Although this book is designed to prepare you to take and pass the A+ Essentials, Depot Technician, Remote Support Technician, and IT Technician exams, there are no guarantees. Read this book, work through the questions and exercises, and when you feel confident, take the practice exam and additional exams using the MeasureUp test engine. This should tell you whether you are ready for the real thing.

When taking the actual certification exam, make sure that you answer all the questions before your time limit expires. Do not spend too much time on any one question. If you are unsure, answer it as best as you can; then mark it for review after you have finished the rest of the questions.

Good luck!
Terms you’ll need to understand:

- Hyperthreading
- Throttling
- Overclocking
- L1 cache
- L2 cache
- L3 cache
- Voltage Regulator Module
- Single-Edge Contact cartridge
- Pentium processors
- Duron processors
- Opteron processors
- Athlon processors
- Dual-core processors

Exam objectives you’ll learn in this chapter:

Essentials 1.1—Identify the fundamental principles of using personal computers.

- Identify the names, purposes, and characteristics of processor/CPUs.
- CPU chips (for example, AMD, Intel)
- CPU technologies
 - Hyperthreading
 - Dual core
 - Throttling
 - Micro code (MMX)
 - Overclocking
 - Cache
 - VRM
 - Speed (real vs. actual)
 - 32 versus 64 bit
- Identify the names, purposes, and characteristics of cooling systems—for example, heat sinks, CPU and case fans, liquid cooling systems, and thermal compound.
Outline

Introduction
123

Intel Microprocessors
123
- The Pentium Processor
 123
- Intel Cache Structures
 123
- Advanced Pentium Architectures
 125
- Pentium MMX Processors
 125
- Pentium Pro Processors
 126
- Pentium II Processors
 127
- Pentium III Processors
 129
- Xeon Processors
 130
- Pentium 4 Processors
 130
- Itanium Processors
 131
- Intel Dual-Core Processors
 132
- Advanced Intel Microprocessor Technologies
 134
- Hyperthreading Software Support
 135

AMD Processors
135
- Athlon 64 Processors
 137
- Duron Processors
 138
- Athlon Dual-Core Processors
 138
- Opteron Processors
 141

Microprocessor Clock Speeds
144

Processor Power Supply Levels
145

Configuring Microprocessors and Buses
146

Fans, Heat Sinks, and Cooling Systems
148
- BTX Thermal Module
 150
- Advanced Cooling Systems
 150

Exam Prep Questions
155

Answers and Explanations
158

Challenge Solution
160
Introduction

This chapter covers the microprocessor areas of the CompTIA A+ Certification—Essentials examination under Objective 1.1. It also covers the cooling systems area of the objective. Computer technicians are often asked to upgrade existing systems with new devices, such as a new microprocessor. Therefore, every technician should be aware of the characteristics of possible CPU upgrades and be able to determine whether a particular upgrade is physically possible and worthwhile.

To be a successful technician, you must be aware of the capabilities of the different microprocessors that are available for use in a system. Technicians must know what impact placing a particular microprocessor in an existing system may have on its operation. They must also be able to identify the type of processor being used and the system settings necessary to maximize its operation.

Intel Microprocessors

There were originally several competitors in the PC-compatible microprocessor market. However, over time the market has narrowed to two major players competing for market domination—Intel and American Micro Devices (AMD). Intel has set the standard for processor performance throughout most of the personal computer era. However, AMD has shown itself a worthy opponent, frequently taking the market lead with speed increases and new innovations.

For the most part, the previous generations of microprocessors have disappeared from the marketplace, leaving the Pentium and its clones as the only processor types that need to be discussed in detail. The following sections first look at the advancements Intel has produced and then focus on the AMD processors that compete with them.

The Pentium Processor

When IBM was designing the first PC, it chose the Intel 8088 microprocessor and its supporting chipset as the standard CPU for its design. This was a natural decision because one of IBM’s major competitors (Apple) was using Motorola microprocessors for its designs. The choice to use the Intel microprocessor still impacts the design of PC-compatible systems. In fact, the microprocessors used in the vast majority of all PC-compatible microcomputers include the Intel 8088/86, 80286, 80386, 80486, and Pentium (80586 and 80686) devices.

This original Pentium architecture has appeared in three generations. The first generation, code named the P5, came in a 273-pin PGA package and operated at 60 or 66MHz speeds. It used a single +5V (DC) operating voltage, which caused it to consume a large amount of power and generate a large amount of heat. It generated so much heat during normal operation that an additional CPU cooling fan was required.
The second generation of Pentiums, referred to as P54Cs, came in a 296-pin Staggered Pin Grid Array (SPGA) package and operated at 75, 90, 100, 120, 133, 150, and 166MHz in different versions. For these devices, Intel reduced the power-supply voltage level to +3.3V (DC) to consume less power and provide faster operating speeds. Reducing the power-supply level in effect moved the processor’s high- and low-logic levels closer together, which means that less time is required to switch back and forth between them. The SPGA packaging made the second generation of Pentium devices incompatible with the first-generation system boards.

The second-generation devices also employed internal clock multipliers to increase performance. In this scenario, the clock signal introduced to the microprocessor is the same one that drives the system’s buses; however, the internal clock multiplier causes the microprocessor to operate internally at some multiple of the external clock speed (for example, a Pentium operating from a 50MHz external clock and using a 2× internal multiplier is actually running internally at 100MHz).

The third generation of Pentium designs, designated as P55C, employed a 296-pin SPGA arrangement. This package adhered to the 321-pin Socket-7 specification designed by Intel. The P55C was produced in versions that operate at 166, 180, 200, and 233MHz. This generation of Pentium devices operated at voltages below the +3.3V level established in the second generation of devices. The P55C was known as the Pentium MMX (Multimedia Extension) processor. Figure 3.1 shows the pin arrangements for PGA and SPGA devices. Notice the uniformity of the PGA rows and columns versus the staggered rows and columns of the SPGA device.

Intel Cache Structures

One method of increasing the memory-access speed of a computer is called **caching**. This memory management method assumes that most memory accesses are made within a limited block of addresses. Therefore, if the contents of these addresses are relocated into a special section of high-speed SRAM, the microprocessor could access these locations without requiring any wait states.
The original Intel Pentium had a built-in first-level cache that could be used for both instructions and data. The internal cache was divided into four 2KB blocks containing 128 sets of 16-byte lines each. Control of this cache is handled directly by the microprocessor. The microprocessor’s internal first-level cache is also known as an \textit{L1 cache}. Many of the older Pentium system boards extended the caching capability of the microprocessor by adding an external, second-level 256KB/512KB memory cache. The second-level cache became known as an \textit{L2 cache}.

With the Pentium Pro, Intel moved the 256KB or 512KB L2 cache from the system board to the processor package. This design technique continued through the Pentium II and III slot processors so that the 256KB/512KB L2 cache resided in the microprocessor cartridge.

In later CPUs, such as the Celeron, Intel moved the L2 cache (128KB/256KB and 256KB/512KB, respectively) onto the actual microprocessor die. Moving the L2 cache onto the die made the microprocessor directly responsible for managing the L2 cache and enabled it to run at full speed with the microprocessor. In all these systems, no cache existed on the system board.

When Intel designed the Itanium processor, it built in capabilities for managing an additional external level of cache in the microprocessor cartridge. This additional cache level was dubbed \textit{L3 cache}. Later versions of the Itanium microprocessors can support up to 12MB of cache in the cartridge.

The Xeon processor has continued this design concept and improved it by moving a 1MB or 2MB L3 cache onto the microprocessor die. Again, the external cache is able to run at full speed with the microprocessor. The computer industry has taken a more liberal definition of L3 cache; it sometimes refers to L3 cache as cache memory mounted on system boards with processors that possess onboard L1 and L2 cache.

Advanced Pentium Architectures

Intel has continued to improve its Pentium line of microprocessors by introducing additional specifications, including the Pentium MMX, Pentium Pro, Pentium II, Pentium III, and Pentium 4 processors. At the same time, Intel’s competitors have developed clone designs that equal or surpass the capabilities of the Intel versions.

Pentium MMX Processors

The Pentium MMX processor extended the multimedia and communications processing capabilities of the original Pentium device by the addition of 57 multimedia-specific instructions to the instruction set. Intel also increased the onboard L1 cache size to 32KB. The cache was divided into two separate 16KB caches: the instruction cache and the data cache. The typical L2 cache used with the MMX is 256KB or 512KB and employs a 66MHz system bus.
The Pentium MMX processor was produced in 166, 200, and 233MHz versions and used a 321-pin SPGA Socket-7 format. It required two separate operating voltages. One source was used to drive the Pentium processor core; the other was used to power the processor’s I/O pins.

Pentium Pro Processors

Intel departed from simply increasing the speed of its Pentium processor line by introducing the Pentium Pro processor. Although compatible with all the software previously written for the Intel processor line, the Pentium Pro was optimized to run 32-bit software. However, the Pentium Pro did not remain pin-compatible with the previous Pentium processors. Instead, Intel adopted a 2.46 inch×2.66 inch, 387-pin PGA configuration to house the Pentium Pro processor core, and an onboard 256KB (or 512KB) L2 cache with a 60 or 66MHz system bus.

The L2 cache complements the 16KB L1 cache in the Pentium core. Figure 3.2 illustrates this arrangement. Notice that although the L2 cache and the CPU are on the same PGA device, they are not integrated into the same IC. The unit is covered with a gold-plated copper/tungsten heat spreader.

![Figure 3.2 The Pentium Pro microprocessor.](image)

The L2 onboard cache stores the most frequently used data not found in the processor’s internal L1 cache as close to the processor core as it can be without being integrated directly into the IC. A high-bandwidth cache bus (referred to as the backside bus) connects the processor and L2 cache unit.

The Pentium Pro was designed to be used in single-microprocessor applications as well as in multiprocessor environments such as high-speed, high-volume file servers and workstations. Several dual-processor system boards have been designed for twin Pentium Pro processors. These boards, like the one shown in Figure 3.3, are created with two Pentium Pro sockets so that they can operate with either a single processor or with dual processors.
Pentium II Processors

Intel radically changed the form factor of the Pentium processors by housing the Pentium II processor in a new Single-Edge Contact Cartridge (SECC), as shown in Figure 3.4. This cartridge uses a special retention mechanism premounted to the system board to hold the device in place.
The proprietary 242-contact socket design is referred to as the Slot 1 specification and was designed to enable the microprocessor to operate at bus speeds in excess of 300MHz.

The cartridge also requires a special Fan Heat Sink (FHS) module. Like the SEC cartridge, the FHS module requires special support mechanisms to hold it in place. The fan draws power from a special power connector on the system board or from one of the system’s auxiliary power connectors.

Inside the cartridge is a substrate material on which the processor and related components are mounted. The components consist of the Pentium II processor core, a tag RAM, and an L2 burst SRAM. Tag RAM is used to track the attributes (read, modified, original location in RAM, and so on) of data stored in the cache memory.

The Pentium II includes all the multimedia enhancements from the MMX processor, as well as retaining the power of the Pentium Pro’s dynamic execution, and features up to 512KB of L2 cache and employs a 66 or 100MHz system bus. The L1 cache is increased to 32KB, and the L2 cache operates with a half-speed bus. Figure 3.5 shows the content of the Pentium II cartridge.

A second cartridge type, called the Single-Edged Processor Package (SEPP), was developed for use with the Slot 1 design. In this design, the boxed processor is not completely covered by the plastic housing as it is in the SEC design. Instead, the SEPP circuit board is accessible from the backside.
Intel followed the Pentium II processor with an improved low-cost design it called the Pentium Celeron. The first version of this line of processors was built around a Pentium II core without a built-in cache. Later, Celeron versions featured a 66MHz bus speed and only 128KB of L2 cache. Initially, these versions were packaged in the SEC cartridge.

Pentium III Processors

Intel quickly followed the Celeron release with a new Slot 1-compatible design it called the Pentium III. The original Pentium III processor (code named Katmai) was designed around the Pentium II core but increased the L2 cache size to 512KB. It also increased the speed of the processor to 600MHz, including a 100MHz front-side bus (FSB) speed.

Later versions of the Pentium III and Celeron processors were developed for the Intel Socket 370 specification. This design returned to a 370-pin, ZIF socket/SPGA package arrangement, as shown in Figure 3.6.

![FIGURE 3.6 Socket 370.](image)

The first pin grid array versions of the Pentium III and Celeron processors conformed to a standard called the Plastic Pin Grid Array (PPGA) 370 specification. Intel repackaged its processors into a PGA package to fit this specification. The PPGA design was introduced to produce inexpensive, moderate-performance Pentium systems. The design topped out at 533MHz with a 66MHz bus speed.

Intel upgraded the Socket 370 specification by introducing a variation called the Flip Chip Pin Grid Array (FC-PGA) 370 design. Intel made small modifications to the wiring of the socket to accommodate the Pentium III processor design. In addition, it employed a new 0.18 micron IC manufacturing technology to produce faster processor speeds (up to 1.12GHz) and front-side bus speeds (100MHz and 133MHz). However, the new design provided only 256KB of L2 cache. Further developments of the Pentium III employed 0.13 micron IC technology to achieve 1.4GHz operating speeds with increased cache sizes (256KB or 512KB).
Xeon Processors

Intel has produced three special versions of the Pentium III that they have collectively named the Pentium Xeon, as shown in Figure 3.7. These processors are designed to work with an edge connector-based Slot 2 specification that Intel has produced to extend its Slot 1/boxed-processor scheme to a 330-contact design. Each version features a different level of L2 cache (512KB, 1MB, 2MB).

The Xeon designs were produced to fill different high-end server needs. The Xeon processor functions at speeds up to 866MHz and is built on the 0.18-micron process technology. The processor allows for highly scalable server solutions that support up to 32 processors.

Pentium 4 Processors

Intel then released the Pentium 4 (Williamette 423) microprocessor. The Pentium 4 was a new processor design based on 0.18-micron IC construction technology. It employed a modified Socket 370 PGA design that uses 423 pins and boasts operating speeds up to 2GHz.

The system's FSB was increased from 64 to 128 bits and operates at up to 400MHz. The bus is actually clocked at 100MHz, but data is transferred four times in a single clock cycle (referred to as a quad-pumped bus). Therefore, the transfer rate of the bus is considered to be 400MT/s. With a width of 128 bits, this provides the FSB with a theoretical bandwidth of 6400MBps.
In addition to the new front-side bus size, the Pentium 4 features WPNI (Williamette Processor New Instructions) in its instruction set. The L1 cache size has been reduced from 16KB in the Pentium III to 8KB for the Pentium 4. The L2 cache is 256KB and can handle transfers on every clock cycle.

The operating voltage level for the Pentium 4 core is 1.7Vdc. To dissipate the 55 watts of power (heat) that the microprocessor generates at 1.5GHz, the case incorporates a metal cap that acts as a built-in heat sink.

Newer .13-micron versions operate at speeds up to 3.06GHz. This newer Pentium 4 design employs an improved 478-pin version of the chip that increased the L2 cache size to 512KB. This type of Pentium 4 processor has been produced in versions that run at 2.0, 2.2, 2.4, 2.8, and 3.06GHz. The 2.4GHz version increased the speed of the quad pumped bus to 533MHz (133×4). Some variations of the 2.4 to 3.06 processors were produced with support for 800MHz FSB operations.

The evolution of the Pentium 4 processor topped out with the delivery of a 3.2 and 3.4GHz version in 2004. The 3.06MHz version of the Pentium 4 brought hyperthreading technology (HTT) to the Intel line of processors. Hyperthreading is an architecture that enables multiple program threads to be run in different sections of the processor simultaneously. Basically, the structure fools the operating system into thinking that two processors are available.

The most advanced versions of the Pentium 4 processor are the Pentium 4 Extreme Editions (P4EE). In its ongoing battle with AMD for microprocessor supremacy, Intel added 2MB of Level 3 (L3) cache to the Xeon core and called them P4EE. Later versions of these processors have been clocked at 3.73GHz and are equipped with 1066MHz front-side buses. They are available in either Socket 603 or LGA 775 versions.

L3 cache is cache memory placed between the L2 cache and main memory. This level of cache typically provides a higher hit rate than L2 cache (because of being larger in size) but requires a longer access time to retrieve data. These memory caches can be implemented on the system board, or as in the case of the PE4EE processors, on the microprocessor die.

Itanium Processors

The Intel Itanium processor, as shown in Figure 3.8, provides a new architecture specifically for servers. It maximizes server performance through special processing techniques Intel refers to as Explicitly Parallel Instruction Computing (EPIC).

The Itanium processor design features a three-level, onboard cache system. The L1 cache size is 32KB operating fully pipelined, the L2 cache size ranges up to 256KB, and the new L3 cache is available in sizes ranging from 2 or 4MB to 12MB. The cartridge’s connector specification provides separate voltage levels for the processor and cache devices to improve signal integrity.
Itanium processors are designed to be available 100 percent of the time. Therefore, they tend to be very expensive—often more expensive than the complete network operating system that they are running. However, the cost of the processor is nothing compared to the cost of most online businesses going down for just one hour.

Intel Dual-Core Processors

Dual-core processors provide two execution cores in one physical processor package. The two cores are actually produced on the same piece of silicon (on the same die). This enables the system to divide processing tasks between the two cores. Fitting two processors into a single package theoretically doubles the computing power of the device without having to clock it twice as fast. Figure 3.9 shows a dual-core processor arrangement.

Intel has launched the Pentium D and Pentium Extreme Edition (EE) lines of dual-core processors. The Extreme Edition versions employ Intel’s hyperthreading technology that enables a single processor core to simulate the operation of two different logical processors that can be used to work on different program segments simultaneously. Including the hyper-threading technology in a dual-core processor package enables it to process four threads simultaneously (it functions like four single-core processors). Table 3.1 lists the key characteristics of the Intel dual-core processors.
As Table 3.1 shows, most of the dual-core Intel designs employ an 800MHz FSB to communicate with the rest of the system. So far, the exceptions to this are the Pentium EE 955 and EE 965 processors that use a 1066MHz FSB.

NOTE

Some documentation will specify the front-side bus speed in terms of Mega Transfers per Second (MT/s). This is a realistic measurement of the bus’s channel speed instead of its clock speed. For instance, if the bus transfers data on both the rising and falling edges of its clock signal (referred to as *double pumping*), a 400MHz clock would effectively yield a 800MT/s throughput rate.

The two cores communicate with each other through a special bus interface block or through the FSB. Most of the dual-core Intel designs employ an 800MHz or 1066MHz FSB to communicate with the rest of the system. The two cores can also access each other’s L2 caches through this interface. However, each core can only use half of the FSB bandwidth frequency when working under heavy load. Some models include 1MB of L2 cache for each core, whereas other models have enlarged the L2 cache to 2MB for each core.

All the current and planned dual-core processors from Intel are designed to use a new type of socket called the Land Grid Array (LGA) 775. Unlike previous socket types, the LGA775, also

<table>
<thead>
<tr>
<th>PROCESSOR</th>
<th>CLOCK FREQUENCY</th>
<th>L2-CACHE</th>
<th>FRONT SIDE BUS SPEED</th>
<th>CLOCK MULTIPLE</th>
<th>CORE VOLTAGE</th>
<th>POWER DISSIPATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium D 805</td>
<td>2.667GHz</td>
<td>2 × 1MB</td>
<td>533MT/s</td>
<td>20×</td>
<td>1.25/1.4V</td>
<td>95W</td>
</tr>
<tr>
<td>Pentium D 820</td>
<td>2.800GHz</td>
<td>2 × 1MB</td>
<td>800MT/s</td>
<td>14×</td>
<td>1.2/1.4V</td>
<td>95W</td>
</tr>
<tr>
<td>Pentium D 830</td>
<td>3GHz</td>
<td>2 × 1MB</td>
<td>800MT/s</td>
<td>15×</td>
<td>1.2/1.4V</td>
<td>130W</td>
</tr>
<tr>
<td>Pentium D 840</td>
<td>3.2GHz</td>
<td>2 × 1MB</td>
<td>800MT/s</td>
<td>16×</td>
<td>1.2/1.4V</td>
<td>130W</td>
</tr>
<tr>
<td>Pentium D 920</td>
<td>2.8GHz</td>
<td>2 × 2MB</td>
<td>800MT/s</td>
<td>14×</td>
<td>1.2/1.337V</td>
<td>130W</td>
</tr>
<tr>
<td>Pentium D 930</td>
<td>3GHz</td>
<td>2 × 2MB</td>
<td>800MT/s</td>
<td>15×</td>
<td>1.2/1.337V</td>
<td>130W</td>
</tr>
<tr>
<td>Pentium D 940</td>
<td>3.2GHz</td>
<td>2 × 2MB</td>
<td>800MT/s</td>
<td>16×</td>
<td>1.2/1.337V</td>
<td>130W</td>
</tr>
<tr>
<td>Pentium D 950</td>
<td>3.4GHz</td>
<td>2 × 2MB</td>
<td>800MT/s</td>
<td>17×</td>
<td>1.2/1.337V</td>
<td>130W</td>
</tr>
<tr>
<td>Pentium D 960</td>
<td>3.6GHz</td>
<td>2 × 2MB</td>
<td>800MT/s</td>
<td>18×</td>
<td>1.2/1.337V</td>
<td>130W</td>
</tr>
<tr>
<td>Pentium Extreme Edition 840</td>
<td>3.2GHz</td>
<td>2 × 1MB</td>
<td>800MT/s</td>
<td>16×</td>
<td>1.2/1.4V</td>
<td>130W</td>
</tr>
<tr>
<td>Pentium Extreme Edition 955</td>
<td>3.466GHz</td>
<td>2 × 2MB</td>
<td>1066MT/s</td>
<td>13×</td>
<td>1.2/1.337V</td>
<td>130W</td>
</tr>
<tr>
<td>Pentium Extreme Edition 965</td>
<td>3.733GHz</td>
<td>2 × 2MB</td>
<td>1066MT/s</td>
<td>14×</td>
<td>1.2/1.337V</td>
<td>130W</td>
</tr>
</tbody>
</table>
referred to as Socket-T, places contact pins on the system board and contact pads on the bottom of the microprocessor.

A hinged metal rim folds down over the microprocessor package and holds its contact pads securely against the signal pins on the system board. A locking arm is used to clamp the processor package in place. The heat sink and fan unit are connected directly and securely to the system board on four points. Figure 3.10 shows the LGA775 socket arrangement.

Advanced Intel Microprocessor Technologies

All Intel dual-core processor types incorporate advanced technologies into their feature sets. Some of these processors support the Intel Execute Disable Bit virus protection (XD bit), EM64T 64-bit extension, and enhanced SpeedStep technologies. Other designs also include Virtualization Technology (VT), which enables a single machine to run multiple operating systems at once.

XD-bit technology is used to separate areas of memory into regions for distinct uses. For example, a section of memory can be set aside exclusively for storing processor instructions (code), and another section can be marked only for storage of data.

In the case of Intel processors, any section of memory marked with the XD attribute means it’s only for storing data. Therefore, processor instructions cannot be stored there. This is a popular technique for preventing malicious software from taking over computers by inserting their code into another program’s data storage area and then running that code from within this section. This is known as a buffer overflow attack.

EM64T is a 64-bit microprocessor architecture and corresponding instruction set that is an extension of the x86 instruction set used with all Intel processors. Intel has included this

Enhanced Intel SpeedStep Technology (EIST) enables the operating system software to dynamically control the clock speed of a processor. Running the processor at higher clock speeds provides better performance. However, running the processor at a lower speed provides for reduced power consumption and heat dissipation. This throttling technique is used to conserve battery power in notebooks, extend processor life, and reduce noise from cooling devices.

Each processor type has a range of core operating speeds at which it can work. For example, a Pentium M processor designated as a 1.5GHz processor can actually operate safely at any speed between 600MHz and 1.5GHz. The Intel dual-core designs leave some margin for processor overclocking to satisfy the PC performance enthusiast. Overclocking is the practice of manually configuring the microprocessor clock to run at a higher speed than the IC manufacturer suggests, in order to squeeze additional performance out of the system.

The SpeedStep technology enables the user or the operating system to change the speed setting in 200MHz increments. Windows operating systems prior to Windows XP require a special driver and a dashboard application to provide speed control for the processor. However, Windows XP has speed step support built in to its Control Panel’s Power Management Console.

Hyperthreading Software Support

The presence of two microprocessors does not automatically double system performance. The controlling operating system software must distribute tasks to all available processor resources. This requires the OS to handle multiple program execution threads that can run independently. The problem is that software has not traditionally been written with multiple threading capabilities. Most existing software applications are single threaded—they are written so only one task is worked on at a time. In these cases, the dual-core processor performs just like its single-core version.

On the other hand, modern operating systems can deliver multitasking operation—operations where the system works on more than one application at a time. The operating system switches from one task to another in a predetermined order. This is done so quickly that the system appears to be working on multiple tasks at the same time. Operating systems can use processors with hyperthreading technology to provide smooth and responsive operations during intensive multitasking operations.

AMD Processors

Advanced Micro Devices (AMD) offers several clone microprocessors: the 5×86 (X5), 5×86 (K5), K6, K6PLUS-3D, and K7 microprocessors. The X5 offers operational and pin compatibility with the 80486DX4. Its performance is equal to that of the Pentium and MMX processors.
The K5 processor is compatible with the Pentium, and the K6 is compatible with the MMX. Both the K5 and K6 models are Socket 7 compatible, enabling them to be used in conventional Pentium and Pentium MMX system board designs (with some small modifications). The K6 employs an extended 64KB L1 cache that doubles the internal cache size of the Pentium II.

The K6PLUS-3D is operationally and performance compatible with the Pentium Pro, and the K7 is operationally and performance compatible with the Pentium II. However, neither of these units has a pin-out compatibility with another processor.

AMD continued to produce clone versions of Pentium processors. In some cases, the functions and performance of the AMD devices went beyond those of the Intel design they are cloning. Two notable AMD Pentium clone processors are the Athlon and the Duron.

The Athlon is a Pentium III clone processor. It is available in a Slot 1 cartridge clone, called the Slot A specification. Figure 3.11 shows the front and back sides of the cartridge version of the Athlon processor along with a Slot A connector.

The Athlon is also available in a proprietary SPGA Socket A design that mimics the Intel Socket 370 specification. The Socket A specification employs a 462-pin ZIF socket and is supported only by two available chipsets.

The first Athlon version was the K7 version that ran between 500MHz and 700MHz, provided a 128KB L1 cache and a 512KB L2 cache, and employed a 100MHz system bus. Subsequent Athlon versions have included the K75, Thunderbird, Thoroughbred, and Barton versions. These versions are constructed using the improved 0.18-micron manufacturing technology.
The K75 processors operated at speeds between 750MHz and 1GHz, provided a 128KB L1 cache and a 512KB L2 cache, and employed a 100MHz system bus. The Thunderbird version ran between 750MHz and 1.2GHz, provided a 128KB L1 cache and a 256KB L2 cache, and employed a 133MHz system bus. The Thoroughbred version featured 256KB of L2 cache along with the standard 64+64KB L1 cache and operated at speeds up to 2.8GHz.

An even later evolution of the Athlon processor was given the title of Athlon XP. These versions were based on the Thoroughbred and the newer Barton core versions. The Barton versions feature a 512KB L2 cache, a slower clock speed, and a maximum processor speed of 3.0GHz.

Athlon 64 Processors

AMD made several technology changes to the Athlon processor when it unveiled its Athlon 64 line of processors. These processors are built on a new core that includes the AMD64 64-bit architecture. This architecture is an extension of the x86 Instruction Set that was originally created by Intel for its 80x86 line of processors. In addition, the Athlon 64 architecture implemented additional internal registers to support independent floating-point math operations.

A new No-Execute (NE) bit technology was also introduced with the Athlon 64. NE technology marks different areas of memory as being for use with data or as being reserved for instructions. Any attempt to execute code from a memory page that has been tagged as a no-execute page will result in a *memory access violation error*. This feature makes it more difficult for certain types of malware to take control of the system and execute its payload.

The Athlon 64 processor introduced another considerable change to Pentium class PC architecture by moving the memory controller from the supporting system board chipset into the microprocessor package. This effectively removes the front-side bus from the system architecture and improves memory access operations by avoiding external bus access overhead.

Instead of continuing the traditional FSB structure, AMD adopted a special bidirectional, serial/parallel I/O bus and controller technology from the HyperTransport Technology Consortium for its Athlon 64 processors. The *HyperTransport (HT) technology* handles the I/O functions previously performed across the FSB at speeds much higher than existing FSB clocking. AMD also employs this bus to interconnect multiple processor cores to provide efficient cooperation between the cores.

The Athlon 64 FX is a special designation given to some Athlon 64 versions. These processors are typically clocked faster than the traditional Athlon versions to make them more interesting to gamers and other enthusiasts.

There are two common socket sizes used with Athlon 64 processors: a 754-pin socket for a value/budget version of the Athlon 64 that provides only a 64-bit, single-channel memory interface, and a 939-pin version that is the standard for all other Athlon 64 versions.
Duron Processors

The Duron processor is a Celeron clone processor that conforms to the AMD Socket A specification. The Duron features processor speeds between 600MHz and 800MHz. It includes a 128KB L1 cache and a 64KB L2 cache and employs a 100MHz system bus. Like the newer Celerons, the Duron is constructed using 0.18-micron IC manufacturing technology.

Athlon Dual-Core Processors

AMD took the lead in the processor development races by pushing dual-core processors to the forefront. Unlike the Intel dual-core processors discussed earlier in the chapter, AMD designed its dual-core devices to fit in the same 939-pin socket interface it was already using for its single-core Athlon 64 processor. In addition, the existing Athlon 64 chipset had been designed with this possibility in mind. These features make upgrading to dual-core processors relatively easy and attractive. All that is required is to physically exchange the microprocessor packages and perform a logical upgrade by flashing the system’s ROM BIOS with programming to support the new processor.

Figure 3.12 provides a block diagram of the AMD Athlon 64 X2 Dual-Core processor design. Unlike the Intel processors, the dual processor cores in the 64 X2 can communicate with each other through the System Request Interface. This interface enables communications to take place at the core clock speed of the processors.

The AMD multicore technology also changed the front-side bus arrangement found in existing Pentium/PCI systems. This portion of the system has been redesigned in a Direct Connect Architecture that directly connects the processors, the memory controller, and the HyperTransport (I/O) controller to the CPU through the Crossbar Switch portion of the System Request Interface inside the processor. This gives the processors direct on-chip access to the 128-bit ECC memory controller (in contrast to having to access an external bus to get to the North Bridge).

The complete line of AMD64 devices (single and dual core) offers AMD’s advanced HyperTransport bus interface technology for high-speed I/O communication. This interface consists of an integrated HyperTransport controller and a 16-bit, 1GHz bus that interconnects the cores of the multicore AMD processor through its Direct Connect Architecture and provides 8GBps transfer rates. The HyperTransport interface also connects the processor package to the system board’s chipset. This connection scheme is shown in Figure 3.13.

The AMD 64 X2 has been built on two different microprocessor core types. Both versions include dual AMD64 microprocessor cores. These cores are rated to operate at core voltages between 1.35V and 1.4V. Likewise, they both contain dual 64+64 (Data/Instructions) L1 cache memory units. They also run identical microprocessor instruction sets and extensions. Finally, they both work with Socket-939 structure and provide 1GHz HyperTransport high-speed I/O interfaces.
FIGURE 3.12 The AMD dual-core processor's design.

FIGURE 3.13 HyperTransport links.
The 4400+ processor runs on a 2.2GHz clock and the 4800+ uses a 2.4GHz clock. Both versions provide a 1MB full speed L2 cache for each core. They also dissipate 89 or 110 watts of power. On the other hand, the 3800+ is designed for a 2.0GHz clock, the 4200+ uses a 2.2GHz clock, and the 4600+ version employs a 2.4GHz clock. In these versions, the L2 cache is limited to 512KB for each core and the power dissipation is limited to 110W max.

The Athlon 64 X2 is supported by a number of chipsets from many manufacturers. These include:

- **NVIDIA**—Nforce4 Series chipsets
- **ATI**—Radeon Xpress 200 Series chipsets
- **VIA**—K8 Series chipsets
- **SiS**—75x Series chipsets or greater

In at least one case (NVIDIA nFORCE Professional), the chipset designed to support the AMD dual-core processor is a single chip, as shown in Figure 3.14. The AMD processors provide direct connection to the system's DDR memory through its Direct Connect Architecture, and the nFORCE chipset handles the PCIe graphics, Ethernet networking, and SATA disk-drive interfaces.
Like the dual-core Intel processors, the Athlon 64 X2 supports a 64-bit extension to the x86 Instruction set, enhanced virus protection with supported operating systems, and speed throttling features. In the AMD environment, these features are known as AMD64, NX (no execute bit), and CoolnQuiet. The functions associated with these features are roughly the same as those of the Intel EM64T, XD bit, and SpeedStep features described earlier in this chapter.

Opteron Processors

AMD has also produced a line of dual-core, high-end *Opteron processors* for network server and workstation units. These units are built on AMD’s K8 core and are intended to compete with Intel’s Xeon line of processors. The original 1XX Opteron versions were built for a 939-pin socket. However, newer 2XX and 8XX 940-pin versions have been introduced for the newer Socket M2 (AM2) specification. As mentioned in Chapter 2, “PC System Boards,” several Athlon64, Athlon 64 FX, Athlon64 X2, and Sempron processor versions have been developed to use the Socket M2 specification. Table 3.2 lists the prominent features of the dual-core Opteron processors from AMD.

TABLE 3.2 AMD Dual-Core Opteron Processors

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CLOCK FREQUENCY</th>
<th>L2-CACHE</th>
<th>MEMORY</th>
<th>MULTIPLIER</th>
<th>VOLTAGE</th>
<th>TDP</th>
<th>SOCKET</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>1.8GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200</td>
<td>9×</td>
<td>1.35/1.3V</td>
<td>110W</td>
<td>Socket 939</td>
</tr>
<tr>
<td>170</td>
<td>2.0GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200</td>
<td>10×</td>
<td>1.35/1.3V</td>
<td>110W</td>
<td>Socket 939</td>
</tr>
<tr>
<td>175</td>
<td>2.2GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200</td>
<td>11×</td>
<td>1.35/1.3V</td>
<td>110W</td>
<td>Socket 939</td>
</tr>
<tr>
<td>180</td>
<td>2.4GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200</td>
<td>12×</td>
<td>1.35/1.3V</td>
<td>110W</td>
<td>Socket 939</td>
</tr>
<tr>
<td>185</td>
<td>2.6GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200</td>
<td>13×</td>
<td>1.35/1.3V</td>
<td>110W</td>
<td>Socket 939</td>
</tr>
<tr>
<td>265/865</td>
<td>1.8GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200R</td>
<td>9×</td>
<td>1.35/1.3V</td>
<td>95W</td>
<td>Socket 940</td>
</tr>
<tr>
<td>270/870</td>
<td>2.0GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200R</td>
<td>10×</td>
<td>1.35/1.3V</td>
<td>95W</td>
<td>Socket 940</td>
</tr>
<tr>
<td>275/875</td>
<td>2.2GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200R</td>
<td>11×</td>
<td>1.35/1.3V</td>
<td>95W</td>
<td>Socket 940</td>
</tr>
<tr>
<td>280/880</td>
<td>2.4GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200R</td>
<td>12×</td>
<td>1.35/1.3V</td>
<td>95W</td>
<td>Socket 940</td>
</tr>
<tr>
<td>285/885</td>
<td>2.6GHz</td>
<td>2 × 1MB</td>
<td>up to PC-3200R</td>
<td>13×</td>
<td>1.35/1.3V</td>
<td>95W</td>
<td>Socket 940</td>
</tr>
</tbody>
</table>

Table 3.3 summarizes the characteristics of common Intel and AMD microprocessors. Both companies add new or upgraded processors to their product lines on a regular basis. Therefore, this list is not intended to be a complete list of all existing processors, just the main ones in existence up to the time when the text was created.
<table>
<thead>
<tr>
<th>MICROPROCESSOR</th>
<th>DIAMETER SIZE (mm)</th>
<th>VRM (VOLTS)</th>
<th>SPEED (MHz)</th>
<th>CACHE ON DIE (KB)</th>
<th>CACHE ON CARTRIDGE</th>
<th>CACHE ON BOARD (KB)</th>
<th>SOCKETS OR SLOT TYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium</td>
<td>23.1 × 23.1</td>
<td>2.5-3.6</td>
<td>75-166</td>
<td>L1–8+8</td>
<td>-</td>
<td>L2–256/512</td>
<td>Socket 7</td>
</tr>
<tr>
<td>Pentium MMX</td>
<td>25.4 × 25.4</td>
<td>2.0-3.5</td>
<td>166-233</td>
<td>L1–16+16</td>
<td>-</td>
<td>L2–256/512</td>
<td>Socket 7</td>
</tr>
<tr>
<td>AMD - K6-2:K6-3</td>
<td>33.5 × 33.5</td>
<td>2.2-3.3</td>
<td>300-550</td>
<td>L1–32+32</td>
<td>-</td>
<td>L2–256/512</td>
<td>Super Socket 7</td>
</tr>
<tr>
<td>Pentium Pro</td>
<td>24.2 × 19.6</td>
<td>3.1-3.3</td>
<td>150, 166,</td>
<td>L1–8+8</td>
<td>L2–256/512/1000</td>
<td>-</td>
<td>Socket 7</td>
</tr>
<tr>
<td>Pentium II/III</td>
<td>25.4 × 25.4</td>
<td>1.5-2.6</td>
<td>233.1000</td>
<td>L1–16+16</td>
<td>L2–256/512/1000</td>
<td>-</td>
<td>Slot 1</td>
</tr>
<tr>
<td>Celeron (.25 micron)</td>
<td>27.4 × 27.4</td>
<td>1.5-2.6</td>
<td>500/550</td>
<td>L1–16+16</td>
<td>L2–512 KB/1 MB/2 M</td>
<td>-</td>
<td>Slot 2</td>
</tr>
<tr>
<td>Xeon II/III (330)</td>
<td>9.3 × 11.3</td>
<td>1.1-2.5</td>
<td>667-1000</td>
<td>L1–16+16</td>
<td>-</td>
<td>-</td>
<td>Socket 370 PPGA</td>
</tr>
<tr>
<td>(.25 micron)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celeron (Coppermine)</td>
<td>31 × 31</td>
<td>1.1-2.5</td>
<td>800-1500</td>
<td>L1–16+16</td>
<td>L2–128/256</td>
<td>-</td>
<td>FC-PGA2</td>
</tr>
<tr>
<td>(.18 micron)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celeron (Tualatin)</td>
<td>31 × 31</td>
<td>1.75</td>
<td>1300-2000</td>
<td>L1–12+8</td>
<td>L2–512</td>
<td>-</td>
<td>Socket 423 FC-PGA</td>
</tr>
<tr>
<td>(.13 micron)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium 4 (.18 micron)</td>
<td>31 × 31</td>
<td>1.75-1.50</td>
<td>1400-2000</td>
<td>L1–12+8</td>
<td>L2–256</td>
<td>-</td>
<td>FC-PGA2</td>
</tr>
<tr>
<td>(.13 micron)</td>
<td></td>
<td></td>
<td>1800-3400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium 4 (.18 micron)</td>
<td>31 × 31</td>
<td>1.4-1.8–1.7</td>
<td>1400-2000</td>
<td>L1–12+8</td>
<td>L2–256</td>
<td>-</td>
<td>Socket 603 FC-BGA</td>
</tr>
<tr>
<td>(.13 micron)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium Xeon (.18 micron)</td>
<td>31 × 31</td>
<td>1.4-1.8–1.7</td>
<td>1800-3400</td>
<td>L1–12+8</td>
<td>L2–512</td>
<td>-</td>
<td>Socket 603 FC-BGA2</td>
</tr>
<tr>
<td>Pentium Xeon (.13 micron)</td>
<td>35 × 35</td>
<td>1.4-1.8–1.7</td>
<td>1800-3400</td>
<td>L1–12+8</td>
<td>L2–512</td>
<td>-</td>
<td>Socket 603 FC-BGA2</td>
</tr>
<tr>
<td>MICRO-</td>
<td>DIAMETER</td>
<td>VRM</td>
<td>SPEED</td>
<td>CACHE ON</td>
<td>CACHE ON</td>
<td>CACHE ON</td>
<td>SOCKETS</td>
</tr>
<tr>
<td>PROCESSOR</td>
<td>SIZE (mm)</td>
<td>(VOLTS)</td>
<td>(MHz)</td>
<td>DIE (KB)</td>
<td>CARTRIDGE</td>
<td>BOARD (KB)</td>
<td>OR SLOT</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Itanium (.18 micron) (266MHz)</td>
<td>71.6 × 127.7</td>
<td>1.7</td>
<td>733/800</td>
<td>1–16+16</td>
<td>L2–512</td>
<td>L3–2MB</td>
<td>4MB</td>
</tr>
<tr>
<td>Celeron D</td>
<td>125.0 × 90nm × 81mm</td>
<td>1.25-1.4</td>
<td>2133.333</td>
<td>L1–12+16KB/ L2–256KiB</td>
<td>-</td>
<td>-</td>
<td>Socket 478/ LGA775</td>
</tr>
<tr>
<td>Pentium 4 Extreme Edition</td>
<td>169.0 × 130nm × 237mm</td>
<td>1.2/1.25-1.337/1.4</td>
<td>3200-3733</td>
<td>L1–12+8/ L2–2x1024KiB or 2x2048KiB</td>
<td>L3.2MB</td>
<td>-</td>
<td>FC- LGA775</td>
</tr>
<tr>
<td>Pentium D</td>
<td>230.0/376.0 × 90/65nm × 206/280mm</td>
<td>1.2/1.25-1.337/1.4</td>
<td>2667-3600</td>
<td>L1–24+32KB/L2–2x1024KiB or 2x2048KiB</td>
<td>-</td>
<td>-</td>
<td>FC- LGA775</td>
</tr>
<tr>
<td>Athlon/Duron</td>
<td>9.1 × 13.1</td>
<td>1.75</td>
<td>800-1400</td>
<td>L1–64+64</td>
<td>L2–256KB</td>
<td>-</td>
<td>Slot A /242 CPGA</td>
</tr>
<tr>
<td>Athlon/Duron</td>
<td>11.1 × 11.6</td>
<td>1.75</td>
<td>733.1800</td>
<td>L1–64+64</td>
<td>L2–256KB</td>
<td>-</td>
<td>Socket A /462 ORGA</td>
</tr>
<tr>
<td>Athlon XP-M</td>
<td>68.5 × 130nm × 144mm</td>
<td>1.5-1.75</td>
<td>1333.2333</td>
<td>L1–64+64</td>
<td>L2–128KiB/ 256KiB/ 512KiB</td>
<td>-</td>
<td>Socket A/462</td>
</tr>
<tr>
<td>Athlon 64</td>
<td>105.9/68.5/90/130/90nm × 193/144/84mm</td>
<td>1.25-1.40, 1.35, 1.4, 1.5</td>
<td>2133.333</td>
<td>L1–64+64</td>
<td>L2–1024KiB/ 512KiB</td>
<td>-</td>
<td>Socket 754/939</td>
</tr>
<tr>
<td>Athlon 64 FX</td>
<td>233.0 × 90nm × 199mm</td>
<td>1.50-1.55, 1.50, 1.35/1.4</td>
<td>1.3.1.35V, 2200-2800</td>
<td>L1–64+64</td>
<td>L2–1024KiB</td>
<td>-</td>
<td>Socket 754/939/ 940/AM2</td>
</tr>
<tr>
<td>Opteron</td>
<td>114.0/105.9 × 90/130nm × 115/193mm</td>
<td>1.50-1.55/1.35-1.4</td>
<td>1400-2400/1600-3000</td>
<td>L1–64+64</td>
<td>L2–1024KiB</td>
<td>-</td>
<td>Socket 939/940</td>
</tr>
</tbody>
</table>
Microprocessor Clock Speeds

In the Pentium processor, two speed settings are established for the microprocessor—one speed for its internal core operations and a second speed for its external bus transfers. These two operational speeds are tied together through an internal clock multiplier system. The Socket 7 specification enabled system boards to be configured for different types of microprocessors using different operating speeds. In older systems, the operating speed of the microprocessor was configured through external settings.

Prior to Pentium II, all Pentium processors used 50, 60, or 66MHz external clock frequencies to generate their internal operating frequencies. The value of the internal multiplier was controlled by external hardware DIP-switch or jumper settings on the system board.

Pentium II processors moved to a 100MHz external clock and front-side bus. The Pentium III and all slot processors up to 1GHz continued to use the 100MHz clock and FSB. However, beginning with the Pentium III, the external clock speed was increased to 133MHz. At the same time, the Celeron processors retained the 66MHz clock and bus speeds up to 800MHz.

The Pentium 4 processors use external clocks of 100MHz and 133MHz. From these clock inputs, the Pentium 4’s internal clock multipliers generate a core frequency of up to 3.06GHz and front-side bus frequencies of 400MHz, 533MHz, and 800MHz. They have also used four different special memory buses with different memory types. In Pentium 4 systems, it is possible to set clock speeds for the memory and front-side buses independently. The different memory bus configurations are designed to work with different types of advanced RAM and run at speeds of 400, 533, and 800MHz.

Newer processors, such as Intel’s 3.46GHz Pentium 4 Extreme Edition, Pentium D dual core, and the Core 2 Duo, possess a 1066MHz FSB capability that works with 266MHz quad-pumped (that is, multiplied by 4) DDR2 RAM.

As mentioned previously in the chapter, double pumping a bus (also referred to as a dual-pumped, double-transition, or double data rate bus) involves transferring data on both the rising and falling edges of the clock signal’s square wave. Similarly, quad pumping a bus (also referred to as a quad data rate or a double data rate 2 bus) transfers data four times during a clock cycle. This technique actually requires two versions of the clock signal that are 90 degrees out of phase. These techniques are used to transfer data between the microprocessor and RAM on the FSB using a lower, more stable clock frequency.

NOTE
The PC industry has added a new measurement to contend with. This is the kiB (kibibyte or kilo binary byte) as presented in Table 3.3. The kiB is related to the kilobyte (KB) but is intended to remove the inaccuracy that exists between the 1000 units generally attributed to the term kilo and the 1024 units it represents in digital systems. Therefore, when you see a PC quantity specified in kiB, it represents 1024 bytes.
You may encounter some confusion because much of the industry uses the MHz terminology given in the previous paragraph to describe the FSB, when the proper terminology should be that the 266MHz actual bus clock frequency provides 1066MT/s across the bus (instead of 1066MHz).

In the example pointed out previously, the processor's advertised core speed is listed as 3.46GHz (3466MHz). That processor's documentation will show that an internal x13 multiplier is required to achieve this core operating speed. This means that the clock signal the non-core portions of the processor are using (which is also the system clock and the FSB clock) is running at 266MHz (3466/13). The quad-pumped bus-signaling technique used by these processors provides a transfer rate of 1066MT/s.

This discussion becomes even more complex when dealing with memory structures. In these discussions, you may also see the FSB bandwidth specified in terms of MBps. This value is arrived at by multiplying the bus's transfer rate by its width in bytes. Double- and quad-pumped memory operations are covered in detail in Chapter 4, “Random Access Memory (RAM).”

Processor Power Supply Levels

Beginning with the Pentium MMX, Intel adopted dual voltage-supply levels for the overall IC and for its core. This was done for two reasons:

- To make the processor's switching time faster so that it can be clocked faster.
- To reduce the processor's power consumption/dissipation (in the form of heat).

Common Intel external/internal voltage supplies are +5/+5 for older units and +3.3/+3.3, +3.3/+2.8, +3.3/+1.8, and +3.3/1.45 for newer units.

The transistors that make up the microprocessor (and every other digital device) have maximum turn on and turn off rates. When the system clock nears this point, no further performance increase can occur without a change that allows the transistor to be clocked faster. The answer was to move the core's high and low logic voltage levels (that represent 1 and 0) closer to each other (0 and 1.8 vs. 0 and 5) so that it requires less time to switch back and forth between them. At the maximum change rate of the transistors, it doesn't take as long to get from 0 to 1.8V as it does to get from 0 to 5.0V. Therefore, you can turn the devices on and off more often with a smaller voltage separation.

The second reason for using the lower voltage level in the processor core is also electrical—transistors dissipate power in the form of heat. In electronic devices, power dissipation is directly proportional to both voltage and current. Therefore, if the current or the voltage associated with an electronic component like a transistor is lowered, so is the level of power that...
will be generated. Although the power associated with a single microprocessor is very small, when you multiply that value by millions of transistors, you get a very large number.

Clone processors may use compatible voltages (especially if they are pin compatible) or may use completely different voltage levels. Common voltages for clone microprocessors include +5, +3.3, +2.5, and +2.2. The additional voltage levels are typically generated through special regulator circuits on the system board that you might have to set manually. In each case, the system board user’s guide should be consulted anytime the microprocessor is replaced or upgraded.

From the second-generation Pentiums forward, system boards have employed Voltage Regulator Modules (VRMs) to supply special voltage levels associated with different types of microprocessors that might be installed. The VRM module may be designed as a plug-in module so that it can be replaced easily in case of component failure. This is a somewhat common occurrence with voltage regulator devices. It also enables the system board to be upgraded when a new Pentium device is developed that requires a different voltage level or a different voltage pairing.

Configuring Microprocessors and Buses

Most system boards feature autodetection functions as part of the PnP process that automatically detect different field replaceable unit (FRU) components on the board (processors, fans, RAM modules, and adapter cards) and synchronize the different bus speed configurations. For example, the autodetect feature examines the installed microprocessor and the installed RAM modules to configure the front-side bus for optimum microprocessor-memory operations.

Similarly, the chipset may detect an advanced video adapter card in one of the expansion slots and adjust the expansion bus speed to maximize the performance of the video display. Likewise, the system autodetects the installed hard drives and CD/DVD-ROM drives and adjusts the IDE bus speed to provide the best drive-system performance based on what it finds.

Finally, the system evaluates the information it has acquired about its components and buses and configures the North and South Bridges to provide synchronization between their other buses and the PCI bus that connects them. The PCI bus speed (and by default its AGP video slot derivative) does not change to accommodate different installed components. Its speed is established as a derivative of the microprocessor clock speed (not to be confused with the advertised operational speed rating of the microprocessor).

Some BIOS versions actually provide a user-definable clock divider setting for the operation of the PCI bus. In these systems, you can set the PCI clock divider at one-half (for example) and the PCI bus will run at half the speed of the system’s FSB clock frequency. This option is generally provided to keep the PCI bus running within specification when the processor is being overclocked. The setting options should be used to keep the PCI bus speed near the specified maximum speed for the standard PCI bus and its adapter cards, which is 37.5MHz.
The BIOS version must support the parameters of the microprocessor so that the PnP process can correctly configure the device and the chipset.

Key microprocessor and bus configuration settings typically included items such as the following:

- **Microprocessor Type**—This setting tells the system what type of processor is installed. If this setting is incorrect, the system will assume that the installed processor is the one specified by the setting and try to interact with it on that basis. Depending on which microprocessor is indicated, the system POST might identify the processor incorrectly and still run, but not properly. In other cases, the processor might lock up during the POST or not run at all. In either case, the processor could be damaged.

- **Core-to-Bus Speed Ratio**—Again, depending on the exact mismatch, the system might overclock the processor and run, but erratically. If the overclocking is less than 20%, the system might run without problems. However, the processor’s life expectancy will be decreased over time. If the deviation is greater than 20%, the system might not come up at all, and the processor might be damaged.

- **Bus Frequency Setting**—Configuring this setting incorrectly will cause the processor to run faster or slower. This is a common method employed by users to increase the operating speed of their older systems. If the variation is less than 20%, the system will probably work with a shortened processor life over time. Greater levels of overclocking the bus might cause the system to have random lockups.

- **Core Voltage Level**—This setting establishes the voltage level at which the microprocessor core will operate. The setting is linked to the processor’s speed and power dissipation. Normally, the microprocessor will not operate at all if the voltage level is more than 20% too low. Conversely, if you operate a processor at a voltage level that is higher than its specified value, this can cause physical damage to it.

The processor configuration settings must be correct for the type of microprocessor installed in the system. If the core voltage level is set too high, the microprocessor will probably overheat slowly, or burn out, depending on the amount of voltage applied. Conversely, if the voltage level is configured too low for the installed processor, the system will most likely refuse to start. Likewise, setting the speed selection incorrectly can cause the system to think that a different processor is installed in the system.

For example, if an 850MHz Pentium III processor is installed in a system whose BIOS-supported processor speeds only up to 600MHz, the BIOS will report a processor speed of only 600MHz during the POST portion of the startup. The system will be limited to running at 600MHz. For this reason and others, the capabilities of the system BIOS should always be examined when performing microprocessor upgrades.

However, as described earlier in this chapter, newer processors possess speed step capabilities that enable them to reduce their operating speeds in steps depending on their usage levels.
This is a power-saving feature and must be considered before assuming a newer system is incorrectly configured.

EXAM ALERT

Know why a processor would show an incorrect speed rating.

As mentioned earlier, different groups of PC enthusiasts, such as gamers, make a practice of overclocking the processor to squeeze additional performance out of the system.

Because the microprocessor is running faster than designed, both the front-side bus and the PCI bus run faster than their stated values by a factor directly proportional to the amount that the microprocessor is overclocked. The additional speed also generates additional heat from both the processor and its supporting devices. This requires the installation of additional fans and cooling systems to prevent damage from the additional heat generated.

Challenge #1

Your company’s board of directors approves your recommendation for upgrading existing systems as outlined in the previous chapter. When you upgrade the first system, you find that it is running at only 450MHz. What should you do to get the system up to the speed you recommended to the board?

Refer to the “Challenge Solution” section at the end of the chapter for the resolution to this challenge.

Fans, Heat Sinks, and Cooling Systems

All Pentium processors require the presence of a heat sink and a microprocessor fan for cooling purposes. As Figure 3.15 illustrates, these devices come in many forms, including simple passive heat sinks and fan-cooled, active heat sinks.

Passive heat sinks are finned metal slabs that can be clipped or glued with a heat-transmitting adhesive (referred to as *thermal compound or paste*) onto the top of the microprocessor. The fins increase the surface area of the heat sink, enabling it to dissipate heat more rapidly. *Active heat sinks* add a fan unit to move air across or through the heat sink. The fan moves the heat away from the heat sink and the microprocessor more rapidly.

The original ATX power-supply specification called for these systems to employ power supplies that use a reverse-flow fan that brings in cool air from the back of the unit and blows it directly onto the microprocessor. For this to work properly, the system board must adhere to the ATX form factor guidelines and place the microprocessor in the correct position on the system board. However, this portion of the ATX design specification has almost completely been ignored in favor of exhaust fan designs, which pull air through the system unit, across the system board and processor, and then push it out through the power supply unit.
Slot-based cartridge processors (Pentium II and III processors) also require special heat sink and fan support structures that work with the cartridge package. These units mount vertically on the system board beside the processor cartridge and provide support for the heat sink as well as the fan unit.

The support mechanism is designed so that it plugs into standard predrilled holes in the system board. For repair or upgrading purposes, the fan unit can be removed from the support mechanism and replaced.

In newer Pentium systems, the BIOS interrogates the processor during startup and configures it appropriately. This prevents the user from subjecting the processor to potentially destructive conditions, such as overclocking. In addition, these systems can monitor the health of the processor while it is in operation and take steps to compensate for problems such as overheating. This normally involves speeding up or slowing down the processor fan to maintain a given operating temperature.

The fan module must be one supported by the installed BIOS. If a fan unit is installed that does not have proper stepping in the BIOS routines, the system will not be able to correctly control the fan speed. Therefore, it may not be able to keep the processor cool enough for proper operation. Also, some fans are built better than others. For instance, fans that use ball bearings instead of slip ring bearings tend to run smoother and make less noise. However, they are usually more expensive than the slip ring versions.
BTX Thermal Module

The BTX form factor design is based on creating specific airflow zones within the case. The component responsible for generating the airflow is the BTX Thermal Module. The thermal module combines a heat sink and fan into a special duct that channels the air across the system board’s main components. The duct fits tightly against large air vents in the front center portion of the case. The fan draws air in from the front and pushes it directly over the microprocessor mounted under the assembly in a linear flow pattern. The air continues toward the back of the case, passing over the graphics card and major chipset components. A fan in the power-supply unit draws some of the air across the memory devices before exhausting it out through the rear of the unit. Figure 3.16 shows the flow of air through the BTX case.

Advanced Cooling Systems

As system designers continue to push microprocessors for more speed, they also increase the amount of power that they dissipate. The latest microprocessor design techniques have created processors that generate more than 80 watts of power that must be dissipated as heat. This is more heat than a 60-watt light bulb generates. It is beyond the capabilities of most processor fans and heat sinks to effectively dissipate this much heat.

Simple air-cooling systems cannot create a large enough temperature differential to cool the processor. Therefore, system designers have begun to equip very high-speed systems with refrigerated cooling systems. Originally, the designers adopted water-based cooling systems that cooled and circulated water to carry heat away from the processor. Figure 3.17 shows the components of a sample water-based cooling system typically used to cool processors that have been configured to run in overclocking conditions.

The water cooler system consists of the following:

- A water reservoir tank
- A water pump that circulates water throughout the cooling system
- A condenser coil radiator with fans that cool the water and exhaust heat into the outside atmosphere
- A CPU cooling block that connects directly to the microprocessor and extracts heat from it

The water pump operates from inside the reservoir tank and forces cooling water through the system. Most of the pumps for these systems are adaptations of home aquarium pumps and are designed for 120Vac operation; therefore, they must have an external power cord.

The CPU cooling block consists of a copper-finned heat sink that mounts to a bracket installed around the microprocessor. Pentium 4 system boards have standard hole patterns already supplied to permit such devices to be attached to them. The heat sink is enclosed in a water
jacket that circulates cooling water around the fins. This water jacket removes more heat from the processor faster than an air-cooled heat sink.

Heated water from the CPU cooler is pumped through the radiator. The radiator is composed of several coils of tubing to maximize the surface area that is used to dissipate heat. The additional fans push air across the coils and speed up the radiation process in the same manner as conventional CPU fans do for air-cooled heat sinks. The cooled water returns to the reservoir for recirculation.
More advanced liquid-based cooling systems have migrated to nonwater coolants like those used in residential refrigerators or automobile air conditioners. The components associated with a refrigerated cooling system used with a PC system include the following:

- An evaporator that mounts on top of the microprocessor.
- A condenser with cooling fan that mounts to the case so that air can be exhausted to the outside of the case.
- A compressor that places the cooling liquid under pressure so that it can perform refrigeration.
- A flow control/expansion device that acts as a restriction in the lines of the system that causes the refrigerant to lose pressure and partially vaporize.
- Insulated tubing that connects the four major components in a closed-loop cooling circuit.

As Figure 3.18 illustrates, the components of the PC cooling system do not fit inside a typical desktop or tower unit. Instead, they must be used in cases that have been modified for them, or in cases that have been designed specifically for them.

The four major components of the system are interconnected by a sealed piping system that holds a refrigerant liquid. The compressor is used to compress the refrigerant and pump it through the system. The high-pressure, high-temperature refrigerant first passes through the condenser unit where it exchanges heat with the surrounding air and cools somewhat.

Next, the refrigerant is forced through the flow control/expansion device, which restricts its flow and causes it to lose pressure as it passes through the device. The loss in pressure causes
some of the refrigerant to change into a gas. In the process, the gaseous portion of the refrigerant extracts heat from the remaining liquid and thereby cools it.

The refrigerant is then passed through the evaporator on the microprocessor in the form of a warm liquid. As air passes over the evaporator, heat is extracted from the processor body and is passed to the cooler refrigerant. The remainder of the liquid refrigerant becomes a cool gas as it gathers heat from the evaporator and is drawn back to the compressor where the process begins again.

As the air passes over the evaporator and cools, moisture can condense around the processor in the form of condensate. To protect the processor and printed circuit board around it, special insulating foam pads must be mounted around the microprocessor socket. In addition, special heating elements are typically mounted on the backside of the system board under the microprocessor socket position and on top of the processor (as shown in Figure 3.19).

The BIOS controls the refrigerant cooling system through its Health Management system. This includes monitoring the actual temperature of the microprocessor and manipulating the cooling system to maintain a designated temperature level. It also controls the temperature of the heating element under the printed circuit board.
This technology is not widely used in PCs. Although the military has been using this type of cooling system for more than five years, it is just beginning to be used with commercial PCs. Because the liquid refrigerants used in these systems are considered hazardous to the environment, you must be aware that only individuals licensed to handle refrigerants can legally work on these units.
Exam Prep Questions

1. To obtain higher performance levels from their systems, gamers typically configure their systems to drive the microprocessors at higher speeds than the manufacturers suggest. What is this practice called?
 - ○ A. Hyperthreading
 - ○ B. Processor throttling
 - ○ C. Overclocking
 - ○ D. Speed stepping

2. Which of the following is not a component of a Pentium II SEC cartridge?
 - ○ A. Processor core
 - ○ B. Tag RAM
 - ○ C. 262-contact socket interface
 - ○ D. L2 burst SRAM

3. AMD Athlon 64 processors provide HyperTransport technology. How does this make the AMD systems different from comparable Intel Core Duo systems?
 - ○ A. The AMD boards use this technology to automatically change the operating speeds of their processors to conserve power.
 - ○ B. The AMD boards with HyperTransport do not require a North Bridge in their chipsets.
 - ○ C. The HyperTransport feature allows the AMD boards to clock their processors at higher speeds than recommended for standard boards.
 - ○ D. The HyperTransport feature allows the AMD boards to run multithreaded applications.

4. Which types of system board sockets can accept a Pentium III microprocessor? (Select all that apply.)
 - ○ A. Slot 1
 - ○ B. Super Socket 7
 - ○ C. Socket 370
 - ○ D. Socket A
5. Which processors can be used in a Socket 370 system?
 ○ A. Pentium MMX, Celeron
 ○ B. Celeron, Pentium III
 ○ C. Pentium III, Pentium 4
 ○ D. Celeron, Duron

6. Which microprocessor can use a Slot 1 connection?
 ○ A. Athlon K7/550
 ○ B. Duron/600
 ○ C. Celeron/266
 ○ D. Pentium Pro

7. Which advanced microprocessor architecture enables multiple program segments to be run in different sections of the processor simultaneously to fool the operating system into thinking that two processors are available?
 ○ A. Hyperthreading
 ○ B. Hypertransport
 ○ C. Speed stepping
 ○ D. Dual-core processing

8. What is the appropriate socket for the Pentium II microprocessor?
 ○ A. Slot 1
 ○ B. Super Socket 7
 ○ C. Socket 370
 ○ D. Slot A

9. You are trying out your new Dual Core Pentium, Windows XP Professional-based notebook computer on a long flight when you notice in System Properties that the system is reporting the wrong processor speed. What should you do?
 ○ A. Return the notebook to the vendor for one with the correct processor.
 ○ B. Use Windows Updates to download and install SP2 to correct this common reporting error.
 ○ C. Nothing, the system has throttled back to save power.
 ○ D. Run the system's system board drivers disc to update the system board with the correct drivers for the processor.
10. What is the appropriate socket for the Pentium 4 microprocessor?
 - A. Socket A
 - B. Super Socket 7
 - C. Socket 370
 - D. Socket 423

11. What is the appropriate socket for the Duron microprocessor?
 - A. Socket A
 - B. Super Socket 7
 - C. Socket 370
 - D. Socket 423

12. What is the appropriate socket for a new dual-core Intel microprocessor?
 - A. SPGA 973 Socket
 - B. Socket A
 - C. LGA 775 Socket
 - D. FCPGA 921 Socket

13. The unofficial overclocking record for a Pentium 4 processor is 8.32GHz. The overclocking team that accomplished this record pushed the processor’s internal clock multiplier to 16. At what speed did the FSB run in this machine?
 - A. 133MHz
 - B. 520MHz
 - C. 1.04GHz
 - D. 4.16GHz

14. Which processor can be used in a Slot A system board?
 - A. Athlon K7/550
 - B. Duron/600
 - C. Celeron/266
 - D. Pentium II/233
15. What is the actual clock frequency of a dual core Pentium D 915 with a quad-pumped FSB running at 800MT/s?

- A. 100MHz
- B. 200 MHz
- C. 400 MHz
- D. 800 MHz

16. Which advanced processor technologies are useful in preventing malicious software programs from taking control of programs and running their own code? (Select all that apply.)

- A. XD-bit technology
- B. No-step technology
- C. MMX technology
- D. NE-bit technology

Answers and Explanations

1. C. Overclocking is the practice of manually configuring the microprocessor clock to run at a higher speed than the IC manufacturer suggests, to squeeze additional performance out of the system.

2. C. The Pentium II’s proprietary 242-contact socket design is referred to as the Slot 1 specification.

3. B. The AMD multicore technology also changed the front-side bus arrangement found in existing Pentium/PCI systems. This portion of the system has been redesigned in a Direct Connect Architecture that directly connects the processors, the memory controller, and the Hypertransport (I/O) controller to the CPU through the Crossbar Switch portion of the System Request Interface inside the processor. This gives the processors direct on-chip access to the 128-bit ECC memory controller (in contrast to having to access an external bus to get to the North Bridge).

4. A, C. Intel followed the Pentium II processor with a new Slot 1-compatible design it called the Pentium III. Later versions of the Pentium III and Celeron processors were developed for the Intel Socket 370 specification.

5. B. Later versions of the Pentium III and Celeron processors were developed for the Intel Socket 370 specification.

6. C. Initially, the Celeron was packaged in the Slot 1 (SECC) cartridge.

7. A. Intel’s hyperthreading architecture enables multiple program threads to be run in different sections of a single processor simultaneously. Basically, this structure fools the operating system into thinking that two processors are available for use.

8. A. The Pentium II used Slot 1. Refer to Table 3.3, “Microprocessor Characteristics.”
9. C. Both Intel and AMD’s newest processors have the capability to dynamically control their clock speeds. Running the processor at higher clock speeds provides better performance. However, running the processor at a lower speed provides for reduced power consumption and heat dissipation. This throttling technique is used to conserve battery power in notebooks, extend processor life, and reduce noise from cooling devices. When you monitor the System Properties of a portable computer, the processor speed that is reported may be lower than the actual processor speed. This behavior can occur because some portable computers reduce the processor speed to conserve power. If you monitor the computer while it is on battery power or in some other power-saving mode, the speed that is reported is lower than the computer’s normal operating speed.

10. D. The Pentium 4 uses Socket 423 or Socket 478. Refer to Table 3.3, “Microprocessor Characteristics.”

11. A. The Duron uses Socket A. Refer to Table 3.3, “Microprocessor Characteristics.”

12. C. All the current and planned dual-core processors from Intel are designed to use a new type of socket called the Land Grid Array (LGA) 775. Unlike previous socket types, the LGA775, also referred to as Socket-T, places contact pins on the system board and contact pads on the bottom of the microprocessor. A hinged metal rim folds down over the microprocessor package and holds its contact pads securely against the signal pins on the system board. A locking arm is used to clamp the processor package in place. The heat sink and fan unit are connected directly and securely to the system board on four points.

13. B. The internal \(\times 16 \) multiplier setting required to achieve a core operating speed of 8.32GHz means that the clock signal the noncore portions of the processor were using (which is also the system clock and the FSB clock) was running at 520MHz (8320/16). The quad-pumped bus signaling technique used by the Pentium 4 provided a maximum theoretical transfer rate of 2080MT/s.

14. A, B. The Athlon K7 version runs between 500MHz and 700MHz, provides a 128KB L1 cache and a 512KB L2 cache, employs a 100MHz system bus, and uses Slot A.

15. B. Quad pumping a bus (also referred to as a quad data rate or a double data rate 2 bus) transfers data four times during a clock cycle. This means that an FSB featuring an 800MT/s (also commonly referred to as an 800MHz bus) is actually using a bus clock frequency of 200MHz.

16. A, D. Intel’s XD-bit technology is used to separate areas of memory into regions for distinct uses. Likewise, AMD’s No-Execute (NE) bit technology was introduced with the Athlon 64 processor and also marks different areas of memory as being for use with data, or as being reserved for instructions. In both versions, a section of memory can be set aside exclusively for storing processor instructions (code), and another section can be marked only for storage of data. In the case of Intel processors, any section of memory marked with the XD/NE attribute means it’s only for storing data. Therefore, processor instructions cannot be stored there. This is a popular technique for preventing malicious software from taking over computers by inserting their code into another program’s data storage area and then running that code from within this section.
Challenge Solution

1. The old BIOS supported processor speeds up to only 450MHz. Now, processors are capable of running 1GHz. You must upgrade the system BIOS to support higher operating speeds for the processor. With many Slot 1 system boards, you will not have any problems upgrading to 1GHz, provided that you get the newest BIOS version; however, this is not true for every system board. You should have checked the chipset and BIOS information before purchasing the new microprocessors. There is a chance that you will be able to upgrade only to 600MHz.
Index

Numerics
3 1/2-inch floppy-disk drive specifications, 196
4:2:2, 248
6-pin Peripheral Component Interface Express, 25

A
A/V systems, multimedia connections, 245-247
 MIDI, 249
AC adapters, 26
AC voltage checks, performing, 345
access control, 1078
 backup tape access, 1079
 passwords, 1079-1080
access time, 307
Accessories menu (Windows XP), 550
account lockout policy (Windows), 1100
accountability, 1175-1176
ACLs (Access Control Lists), 606
ACPI (Advanced Configuration and Power Interface), 474
active heat sinks, 148
active listening, 1169-1170
active partition, 593
active termination, 298
active-matrix displays, 451
activity lights
 on connectivity devices, 1045-1046
 on modems, verifying, 1056
AD (Active Directory), 515-516
ad hoc mode (wireless networks), 918, 1052
adapter cards, 18-19, 41
 IEEE-1394 adapters, 44
 internal modem cards, 42
 NICs, 42
 removing, 1199
 SATA disk drive adapters, 43
 SCSI, 43
 addresses, configuring, 297
 installing, 295-296
 termination, 298-299
 sound cards, 42
 TV tuner cards, 42
 upgrading, 317
 USB adapters, 44
 video adapter cards, 41-42
Add/Remove Programs icon (Windows 2000 Control Panel), 538-539
adding
 clients to Window 2000/XP networks, 955
 power supplies, 378-379
address classes, 979-980
administrative rights, 516
Administrative Tools icon (Windows 2000 Control Panel)
 Services and Applications console, 541
 Storage console, 541
 System Tools console, 540
administrator account (Windows), 1089, 1094
ADSL (asymmetric DSL), 999
Advanced BIOS Features Setup screen (CMOS setup utility), 102-103
Advanced Chipset Features screen (CMOS setup utility), 103
advanced cooling systems, 150, 152, 154
advanced EIDE specifications, 207, 209
advanced Intel microprocessor technologies, 134-135
advanced Pentium architectures
 Itanium, 131
 Pentium 4, 130
 Pentium II, 127-129
 Pentium III, 129
 Pentium MMX, 125
 Pentium Pro, 126
 Pentium Xeon, 130
advanced video adapter cards, 269
adware, 1120
AFHSS (Adaptive Frequency Hopping Spread Spectrum), 919
AGP (Accelerated Graphics Port) slots, 40, 85-87
allocation units, 595
AMD processors, 135-137
 Athlon 64, 137
 Athlon dual-core, 138, 141
 characteristics, 141-143
 Duron, 138
 mobile processors, 443
 Opteron, 141
 socket specifications, 96-97
AMR (Audio Modem Riser) slots, 40, 87
analog modems
 configuring, 989-990
 installing, 988
answer files, performing unattended Windows installations, 627-628
answers
 depot practice exam, 1310-1319
 IT tech practice exam, 1280-1290
 practice exam, 1248-1257
 remote support practice exam, 1341-1352
antistatic devices, 1148-1152
antivirus software, 1116-1117
APIs, 585
APM (Advanced Power Management), 473
Apple OS X, 511
AppleTalk, 927, 960
applications
 performance, monitoring with System Monitor, 678-681
 starting from command prompt, 775
 troubleshooting, 773-777
APs (access points), 918
 configuring, 945-946
 installing, 943-945
 placing in network, 945
 security, configuring, 946
ARP (Address Resolution Protocol), 1012, 1040
ASICs (application-specific integrated circuits), 30
 Integrated Video Controller, 41
aspect ratio, 273
ASR (Automated System Recovery), 764-766
assigning
 computer names, 961
 drive letters, 965-966
asynchronous communication, 253
asynchronous SRAM, 164
ATA (Analog Telephone Adapter), 1009
ATA (AT Attachment) interfaces, 206
Athlon 64 processors, 137, 443
Athlon 64 X2 processor, 140
Athlon dual-core processors, 138, 141
ATSC (Advanced Television Systems Committee), 272
ATTRIB command, 568
ATX (Advanced Technology Extended) form factor, 22, 67-68
auditing, configuring on NTFS disk, 1102
authentication
 FTP, 1017
 troubleshooting, 769
 Windows-based
 digital certificates, 1097-1098
 Kerberos, 1096
automatic software updates, 685
auxiliary power connectors, 25
avoiding electrocution, 1136-1138
B
back case panels, 16-17
back panel connections, 51
backbone, 976
backlighting, 451
backup tape access, 1079
backup utilities, 698, 701
Backup utility, 701
 advanced settings, 702
 backups
 scheduling, 706-707
 media rotation, 707-709
 System State data backups, 705-706
data, restoring, 703-704
backups, performing ASR, 765
barcode scanners, 263
 installing, 313
basic disks, 606
batteries
 memory, 498
 troubleshooting on portable computers, 497-499
 upgrading on portable systems, 476
baud, 254
beep codes, 337-339
bindings, 954

How can we make this index more useful? Email us at indexes@quepublishing.com
biometric authentication devices, 1084-1085
biometric input devices, 262
BIOS (basic input/output system), 34
 beep codes, 337-339
 CMOS, 98
 configuration, verifying, 382
 setup utility, 98-111
 flashing, 37, 1217
 POST, 35
 POST cards, 347-348
 troubleshooting, 385
bitmapped fonts, 799
Bluetooth, 919
body language, 1170
boot disk (Windows XP), troubleshooting startup
 problems, 760
boot failure, troubleshooting, 342
boot process (Windows 2000/XP), 581-584
Boot Sector Virus Protection, 1117
boot-sector viruses, 1113
BOOT.INI file, modifying, 675-676
bootup procedure, 35
 observing, 335-336
 troubleshooting, 746-747
BRI (basic rate interface), 995
bridges, 903-905
broadband
 physical connections, troubleshooting, 1056-1059
 troubleshooting, 1056
browsers. See web browsers
BSB (Back Side Bus), 78
BTX (Balanced Technology Extended) form fac-
 tor, 22, 69
 standard variations, 70-72
BTX Thermal Module, 150
buffer overflow attacks, 134
buffer registers, 164
buffer underrun errors, 409
built-in WLAN adapters, 470-471
burns
 avoiding, 1139
 treating, 1140
burst-mode SRAM, 164
bus enumerating, 239
bus topology, 898
buses, configuring, 146-148
C
CA (Certificate Authority), 1019
cable modem, 1002-1004
cabling
 copper cabling, 907
 coaxial cabling, 911-913
 twisted-pair cabling, 907-911
data cabling testers, 1039
 fiber-optic, 913
 removing from system board, 1200
 for SCSI interfaces, 215-219
 troubleshooting, 1045
cache memory, 27, 32
caching, 124-125, 171-172
calibrating printers, 829-830
Cardbus, 462
cartridge fonts, 828
cartridge processor packages, 30
cases (computer), 11
 back panels, 16-17
 desktop cases, 12
 internal components, 17-19
 removing, 1198-1199
 system cooling, 14
 tower cases, 13
CAT5 cabling, 909, 948
CAT6 cabling, 909
CAV (constant angular velocity), 202
CD writers, 202-204
CD-R discs, 203
CD-ROM drives, 46, 199-201
 configuring, 304
 installing, 303, 1354-1355
 test modes, 1353
 troubleshooting, 406-410
CD-RW discs, 203
CD-RW drives, installing, 304
CDMA (code division multiple access), 918
CDs, pits, 200
Centrino, 440
Centronics standard, 251-252
certification mode (CD-ROM), 1353
CF (CompactFlash) cards, 221
Character Map utility, 533
character printers, 798
chassis ground, 1151
CHDIR command, 566
checkupgradeonly utility, 635
chipsets, 28-30
 ICs, 31
 Pentium, 73
 Dual-Core, 75-78
CHKDSK command, 695-696, 726
cleaning, 350-352
 dust, 352-353
 portable computers, 502
client/server networks, 513, 901-902
clients, adding to Windows 2000/XP networks, 955
clone processors, 29
clusters, 595-597
 data runs, 602
 NTFS, 603-604
CLV (constant linear velocity), 202
CMOS, 98
 backup batteries, troubleshooting, 387
 HDD configuration settings, 187
 setup utility, 38, 98-100
 Advanced BIOS Features Setup screen, 102-103
 Advanced Chipset Features screen, 103
 advanced parallel port operations, 107
 disk drive support options, 101-102
 infrared port operations, 108
 Integrated Peripherals Setup screen, 106
 PC Health Status menu, 109
 PnP setup functions, 104-105
 ports, enabling, 106-107
 Power Management Setup screen, 108-109
 Security Configuration screen, 109-111
 time and date options, 100-101
 verifying configuration, 382
CMOS RAM, 37
CMOS virus, 1114
CNR (Communications and Networking Riser) slots, 40, 87
coaxial cable, 911-913
cold boot, 37
color CRT monitors, 267
color management, 830
command-level operations (Windows 2000/XP command-line interface), 566
command-line interface (Windows 2000/XP), 562-563
 command-level operations, 566
 drive-level operations, 564-565
 file-level operations, 566-568
 files, executing, 563
 shortcuts, 569
 switches, 564
command-line utilities (Windows 2000/XP), 726-728
communication
accountability, 1175-1176
active listening, 1169-1170
body language, 1170
conflicts, handling, 1182
controlling the conversation, 1171
flexibility, 1177
follow up, 1173-1174
integrity, 1179-1181
paperwork, 1184
phrases to avoid, 1172
professionalism, 1177-1178
responsiveness, 1174
technology, 1182-1184
Component Video connections, 247
compound devices, 239
compressed files, 614
computer names, assigning, 961
computer worms, 1113
concentrators, 904
configuration problems, troubleshooting, 340
 error messages, 341-342
configuring
 analog modems, 989-990
 APs, 945-946
 auditing on NTFS disk, 1102
 buses, 146-148
 CD-ROM drives, 304
 dial-up networking on Windows 2000/XP, 990-993
 microprocessors, 146-148
 PATA drives, 291-293
 performance logging, 680
 printers
 operator control panel, 828
 serial, 825-826
 processor speed, 1203
Remote Desktop, 780
SCSI adapter cards
 addresses, 297
 termination, 298-299
TCP/IP in Windows 2000/XP LANs, 956-958
web browsers
 proxy settings, 1024-1025
 script support, 1024
 security options, 1022
Windows 2000/XP network properties, 953-954
conflicts, handling, 1182
connecting storage devices to system, 49-50
connections
 multimedia, 245-249
 null modem, 254
connectivity
 loopback tests, 1061
 troubleshooting, 1045-1046
connectivity devices, status lights, 1045-1046
connectors
 FireWire, 243-244
 PS/2, 237-238
 for SCSI interfaces, 215-219
continuity testers, 1039
control board problem, troubleshooting printers, 858-859
Control Panel, 536-537, 551-553
 Add/Remove Programs icon, 538-539
 Administrative Tools icon, 540-541
 Display icon, 543
 System icon, 543
controllers (printer), 801-802
controlling the conversation, 1171
convergence, 919
CONVERT command, 564
cooling systems, 14, 149
 advanced cooling systems, 150-154
 BTX Thermal Module, 150
 heat buildup, reducing, 353-355
 heat sinks, 148
 installing, 1204-1206
 troubleshooting, 386
 upgrading, 1217-1219

copper cabling
 coaxial cabling, 911-913
 twisted-pair cabling, 907-911
COPY command, 567

core routers, 905

core speed, 78
corrosion, preventing, 351
CPU (central processing unit), 26
 creating
 disk images, 629-631
 strong passwords, 1079-1080
crossover cables, 948

CRT video displays, 54-55, 265-267

current_Config key, 590

current_User key, 589
custom mode (CD-ROM), 1353
custom upgrades, 649
cylinder, 45

data cabling testers, 1039
data runs, 602
data storage devices
 CD-ROM drives, 46
 DVD drives, 47
 floppy drives, 47
 hard disk drives, 44-45
 tape drives, 47
data transfer rate, 307

DDR-SDRAM (Double Data Rate SDRAM), 165

DDR2-SDRAM (Double Data Rate 2 SDRAM), 165

DDR3-SDRAM (Double Data Rate 3 SDRAM), 166

Debugging Mode, 751

DEFRAG command, 697, 727
defragmentation, 670, 696-697
degaussing, 399, 1087

DEL command, 568
depot practice exam, 1292-1310
 answers, 1310-1319
desktop cases, 12
desktop interface (Windows 2000/XP)
 Control Panel, 551-553
 File menu, 527-528
 icons, 521
 My Computer, 523-524
 My Network Places, 525-526
 Recycle Bin, 524-525
 right-click menus, 522
 Start menu, 531
 Help system, 535
 moving items to, 536
 Search utility, 535
 System Tools, 533
taskbar, 521, 530-531
 Tools menu, 529-530
 View menu, 529
device drivers
 locating, 655
 Windows 2000/XP, installing, 654

How can we make this index more useful? Email us at indexes@quepublishing.com
Device Manager (Windows 2000/XP), 717-720
 driver management options, 720-721
DHCP (Dynamic Host Configuration Protocol), 978, 1013-1014
 configuring on Windows OS, 1047
diagnosing display problems, 399-400
diagnostic tools, 331-332
 POST cards, 347-348
 software packages, 345-347
dial-up, 987
 ICS, establishing, 994
 modems
 analog modems, configuring, 988-990
 configuration checks, performing, 1063
 troubleshooting, 1059, 1062-1064
 troubleshooting, 1059
dialing rules, establishing, 991
differential backups, 700
differential signaling, 217
digital cameras, installing, 314
digital certificates, 1097-1098
digital modems, installing, 1004-1006
digital televisions, resolution, 272-273
DIMMs (dual inline memory modules), 34, 172
 installing, 1206-1207
DIR command, 566
direct transfer thermal printers, 807
directory trees, 598-599
disassembling portable computers, 488
disk arrays, RAID 53, 193
Disk Cleanup utility, 670-671, 694
disk cloning, performing unattended Windows installations, 628
disk drive support options (CMOS setup utility), 101-102
disk drives, 17
 connections, 89
 PATA, 90-92
 SATA, 92-93
 SCSI, 93
 directory structure, 598-599
 FDDs
 interface, 210
 troubleshooting, 410-412
 HDDs
 installing, 288-291
 partitions, 592-593
 troubleshooting, 400-406
 upgrading, 306-309
 IDE/ATA interface, 206-209
 interfaces
 connections, 28
 SCSI, 211-219
 internal disk drive interfaces, 206
 optimizing, 669-671
 partitioning, 299-301
 PATA, configuring, 291-293
 for portable computers, upgrading, 447-448
 SATA, 209-210
 installing, 293-295
disk images, creating, 629-631
disk-drive controller, 186
disk-management tools, 693
 backup tools, 698, 701
 Backup utility, 701
 advanced settings, 702
 backup media rotation, 707-709
 backups, scheduling, 706-707
 data, restoring, 703-704
 System State data backups, 705-706
 CHKDSK, 695-696
 Disk Cleanup, 694
 Removable Storage utility, 709-710
DISKCOMP command, 565
DISKCOPY command, 565
diskless workstations, 902
DISKPART.EXE command, 727
Display icon (Windows 2000 Control Panel), 543
display systems, protecting, 355-357
disposal procedures, 1088-1089, 1153
distributed Splitter DSL, 998
distributions, 511
DMA, 234
DNS (domain name system), 515, 1012
domains, 983-984
name resolution, 984
docking stations, 475
troubleshooting on portable computers, 499-500
DOCSIS, 1003
documenting troubleshooting process, 335
Domain accounts (Windows), 1096
domains, 513, 960, 983-984
AD, 515
trusts, 516
DOS (disk operating system), 509-510
dot pitch, 272
dot-matrix characters, 799
dot-matrix printers, 802
c control board, 803
c control panel, 804
c friction-feed, 806
c paper feed, troubleshooting, 866-867
c paper, troubleshooting, 862
c preventive maintenance, 883
c printhead, 806
troubleshooting, 863-866
ribbon cartridges, troubleshooting, 861, 863
sensors, 804-805
dotted decimal notation, 978
double pumping, 144
Dr. Watson, 725-726
DRAM, 163-167
packaging, 173
DRAM sockets, 98
drive arrays
mirrored drive array, 190
RAID, 190
RAID 0, 191
RAID 0+1, 195
RAID 1, 191
RAID 1+0, 195
RAID 3, 192
RAID 4, 193
RAID 5, 194
RAID 6, 195
RAID 10, 195
striped drive array, 190
drive cage, 15
drive-level operations (Windows 2000/XP command-line interface), 564-565
driver management options (Device Manager), 720-721
Driver Rollback, troubleshooting startup problems, 752-753
driver signing, 656-657
drivers
for printers, 826-827
PCL, 827-828
PostScript, 827-828
locating, 655
Windows 2000/XP
device drivers, installing, 654
SATA drivers, installing, 655
drives, mapping, 965-966
DRM (digital rights management) software, 224
drop-on-demand printing, 810
DSL (digital subscriber line)
 modems, 997-999
 variations of, 999
 ASDL, 1000-1001
 SDSL, 1001-1002
DSLAM (Digital Subscriber Line Access Multiplexer), 1000
DSPs (Digital Signal Processors), 276
DSSD (double-sided, double-density) disks, 196
DSSS (direct sequence spread spectrum), 917
DSTN (Double-layer Super-Twist Nematic), 451
dual boot systems, 594
 Windows 2000/XP, 651-653
Dual Core Intel chipsets, 75, 78
dual-channel memory, 177
dual-core processors, 132-134
 Intel Core Duo processors, 441-443
dumpster divers, 1087
DUN (Dial-Up Networking), 987
 configuring on Windows 2000/XP, 990-993
Duron processors, 138
dust, cleaning, 352-353
DVD discs, pits, 200
DVD drives, 47, 204-205
 installing, 303
 troubleshooting, 406-410
DVD-R (DVD Recordable discs), 204
DVD-RAM discs, 204
DVD-RW (DVD Rewritable) discs, 204
DVI (Digital Video Interface), 248
DVRs (digital video recorders), 188
dye sublimation printers, 818-819
dynamic disks, 606
dynamic volumes, 609
hardware disposal procedures, 1153
power line hazards, preventing, 1141
with surge suppressors, 1142
with UPSs, 1142-1146
EPBRs (Extended Partition Boot Records), 300
EPIC (Explicitly Parallel Instruction Computing), 131
EPP (Enhanced Parallel Port), 253
EPS (Entry-Level Power Supply) specification, 24
ERASE command, 568
ERD (Emergency Repair Disk), troubleshooting startup problems, 757-759
error codes, 337-339
error detection, parity checking, 168-170
Error events, 712
ESCD (Extended System Configuration Data), 104
ESD, 1147-1148
computer equipment, preparing for storage, 1152-1153
grounds, 1151
MOS handling techniques, 1148-1152
ESDRAM (Enhanced SDRAM), 165
establishing
 integrity, 1179-1181
 Remote Assistance sessions, 784
 Remote Desktop sessions, 781-783
 Windows group accounts, 1095-1096
 Windows user accounts, 1094-1095
Ethernet, 921
 fiber-optic, specifications, 924-925
 specifications, 922
 twisted-pair, specifications, 923
 wireless standards, 925-926
Event Viewer, 710-713
 application problems, troubleshooting, 776-777
exams (practice), MeasureUp, 1354
 shortcuts, creating, 1355
expansion slot connectors, 27
expansion slots, 39, 79
 AGP, 40, 85-87
 AMR slots, 40
 CNR slots, 40
 ISA slots, 41
 PCI local bus, 79, 81
 PCI slots, 40
 PCI-X, 40, 82
 PCIe, 40, 82-84
express upgrades, 649
extended partition, 592
extended partitions, 300
external CD-ROM/DVD drives for portable computers, 458
external I/O systems, removing, 1197
external modems, 988
 front-panel lights, 1062
 Windows configuration, verifying, 1063-1064
external storage devices, 205
 for portable computers, 458-460
 installing, 305
EXTRACT command, 727
extranets, 514

How can we make this index more useful? Email us at indexes@quepublishing.com
FAT table virus, 1114
FAT32 file system, 599-600
FC command, 568
FDC (floppy-disk controller), 196
FDDs (floppy disk drives)
 installing, 304
 interface, 210
 for portable computers, 458
 troubleshooting, 410-412
FHSS (frequency hopping spread spectrum), 917
fiber-optic cable, 913
 Ethernet specifications, 924-925
file infectors, 1113
file management tools (Windows 2000/XP)
 Dr. Watson, 725-726
 system editors, 723-725
File menu (Windows 2000/XP), 527-528
file systems
 high-level formatting, 302-303
 NTFS
 advantages of, 604-605
 disk organization, 600-604
 managing, 606-609
 permissions, 615-616
file-level operations (Windows 2000/XP command-line interface), 566-568
files, 611
 compression, 614
 EFS, 613
 executing from command-line, 563
 Windows 2000/XP, 612
fingerprint scanners, 1084-1085
firewalls
 hardware firewalls, 1105
 software firewalls, 1105
 troubleshooting, 1066
 Windows EFS, 1110
 Windows XP ICF, 1108
 Windows XP SP2, 1108
FireWire, 243-244
 devices, installing, 318
firmware, 35
 upgrading, 1217
first-degree burns, treating, 1140
flash memory, 220
 CF cards, 221
 SD cards, 224
 USB flash drives, 221
flashing the BIOS, 37, 1217
flat memory model, 586
flatbed scanners, 841-843
flexibility, 1177
flip chip, 95
floppy disk drives, 47, 196-197
folders, setting shared folder properties, 961
follow up procedures, 1173-1174
fonts, 799
forests, 516
form factors, 20
 ATX, 22, 67-68
 BTX, 22, 69-72
 low-profile, 72
 NLX, 22
FORMAT command, 565
formatting partitions, 610-611
FPT (forced perfect termination), 298
FQDNs, 983
fragmentation, 670
friction-feed printers, 805-806
front panel connections, troubleshooting, 421
front-panel lights (external modems), 1062
help systems

FRUs (field replaceable units), 348-349
heat sinks, installing, 1204, 1206
microprocessors, 1202-1203
printer components, upgrading, 831-832
FSB (Front Side Bus), 78
FTP (File Transfer Protocol), 1016-1017
fuel cells, 477
full backups, 699
full-duplex mode, 906, 943

G
game ports, 255
gateways, 977
GDDR3-SDRAM (Graphics Double Data Rate 3 SDRAM), 166
GDDR4-SDRAM (Graphics Double Data Rate 4 SDRAM), 166
GPA (pin grid array), 29
GPFs (general protection faults), 725
GPOs (Group Policy Objects), 1091-1093
Grandfather-Father-Son backup media rotation, 708
grayed-out menu options, 527
grayscale scanners, 841
grayware, 1118
green mode, 473
ground, 1151
group accounts (Windows), establishing, 1095-1096
group policies (Windows), 1091-1093
Guest account (Windows), 1094
GUIs (graphical user interfaces), 511

H
HAL (Hardware Abstraction Layer), 585
half-duplex mode, 906, 943
hand tools, safety considerations, 1136
handling conflicts, 1182
hard disk drives, 44-45
defragmenting, 670
disposing, 1088-1089
failure, troubleshooting, 342
protecting, 357-359
hardware
disposal procedures, 1153
FRUs, 348-349
security
biometric devices, 1084-1085
smart cards, 1081-1082
troubleshooting, 340
Windows XP MCE requirements, 641
hardware firewalls, 1105
HDDs (hard disk drives), 185
defragmentation, 696-697
disk-drive controller, 186
installing, 288-291
partitioning, 299-301
partitions, 592-593
PATA drives, configuring, 291-293
platters, 187
SATA drives, installing, 293-295
troubleshooting, 400-406
upgrading, 306-309
HDMI (High Definition Media Interface), 248
HDSL, 1002
HDSL2, 1002
HDTV (High Definition TV), 274
heat buildup, reducing, 353-355
heat sink devices, 14-15
active, 148
installing, 1204-1206
passive, 148
thermal compound, applying, 1217
help systems, technical support, 1356

How can we make this index more useful? Email us at indexes@quepublishing.com
help files (Windows 2000/XP), 728-730
 Internet help, 731-732
Help System (Windows 2000/XP), 535
HelpAssistant account, 1094
hidden files
 locating, 775
 viewing in Windows Explorer, 545
high-level formatting, 302-303, 594
high-voltage hazards
 avoiding, 1136-1138
 electrocution, treating, 1138-1139
hives, 591-592
horizontal retrace, 266
hot spots, 944
hot swapping, 48, 239
HT (HyperTransport) technology, 137
HTT (hyperthreading technology), 131
HTTP (Hypertext Transfer Protocol), 1016
HTTP proxy server, 986
HTTPS (Hypertext Transfer Protocol Secure), 1016
hubs, 904
HVD (High-Voltage Differential) signaling, 218
hyperthreading, 131, 135

I/O interfaces, 28, 88
 disk drive connections, 89
 PATA, 90-92
 SATA, 92-93
 SCSI, 93
failures, symptoms of, 381
game ports, 255
legacy ports, 250
parallel ports, 251-253
serial ports, 253-254
system resources, 234-236
 troubleshooting, 414-415
USB, 238
 cabling, 240-242
 connection architecture, 240
 data transfers, 242-243
I/O shields, 1196
I/O transfers, 233
I/O units, 233
IC cooler fans, 14-15
ICC (International Color Consortium) profiles,
 printer configuration, 829-830
ICM (Image Color Management) standards, 830
icons, 521
 My Computer, 523-524
 My Network Places, 525-526
 Recycle Bin, 524-525
ICs (integrated circuits), 31
ICS (Internet Connection Sharing)
 establishing, 994
 troubleshooting, 1065-1066
IDE (Integrated Drive Electronics), 205-206
 advanced EIDE specifications, 207-209
identity theft, 1124
IDSL, 1002
IEEE 802.3 standards, 925
IEEE 1394 standard
 adapters, 44
 devices, installing, 318
 FireWire, 243-244
impact printers, 798
incremental backups, 699
information disposal/destruction policies, 1086
Information events, 712
information gathering, 332-334
infrared ports, 244
 troubleshooting on portable computers, 495
infrastructures mode, 918
initial inspection, performing during troubleshooting process, 334-335
ink cartridges, replacing on inkjet printers, 870
inkjet printers, 808-812
 consumables, 868-870
 paper feed, troubleshooting, 871-872
 preventive maintenance, 883
 printhead, troubleshooting, 870-871
 troubleshooting, 867-868
input devices
 installing, 311
 protecting, 361-362
installing. See also upgrading
 analog modems, 988
 bar code scanners, 313
 CD-ROM drives, 303, 1354-1355
 CD-RW drives, 304
 digital cameras, 314
 digital modems, 1004-1006
 external storage devices, 305
 FDD, 304
 FireWire devices, 318
 HDD, 288-291
 input devices, 311
 internal storage devices, 287
 IrDA devices, 319-320
 LAN cards, 941-942
 memory modules, 1206-1207
 microprocessors, 1202
 cooling systems, 1204-1206
 multiple processors, 1214-1215
 slot processors, 1203
 monitors, 310-311
 Novell NetWare clients, 959-960
 PC Cards, 463
 peripherals, 316-317
 printers, 819
 legacy, 823
 networked, 821
 serial, 824-825
 USB, 820
 for Windows 2000/XP, 836-840
 wireless, 822
 Recovery Console, 754
 SATA drives, 293-295
 scanners, 312-313, 843-844
 SCSI adapter cards, 295-296
 sound cards, 314
 USB devices, 318
 Windows 2000 Professional, 635-637
 Windows 2000/XP, 625-627
 device drivers, 654
 hard disk preparation, 631
 SATA drivers, 655
 unattended installations, 627-628
 Windows XP Professional, 639-641
 wireless clients, 946-947
 wireless LANs
 AP, 943-945
 network connectivity devices, 947, 950-951
 wireless network adapter cards for portable computers, 468-470
Integrated Peripherals setup screen (CMOS setup utility), 106
Integrated Video Controller, 41
integrity, establishing, 1179-1181
Intel advanced microprocessor technologies, 134-135
 hyperthreading, 135
Intel microprocessors
 characteristics of, 141-143
 Core Duo processors, 132-134, 441-443
interfaces

- circuitry, 233
- for floppy drive, 210
- internal disk-drive interfaces, 206
- SCSI, 211
 - cables, 215-219
 - connectors, 215-219
 - Fast SCSI-2, 213
 - iSCSI, 215
 - LVD signaling, 214
 - Narrow SCSI, 212
 - Serial SCSI, 214
 - Ultra SCSI, 213
 - Wide SCSI-2, 213
 - Wide Ultra SCSI, 214

interlaced scanning, 267

internal disk-drive interfaces, 206

internal fonts, 828

internal modem cards, 42

internal modems, 988

internal storage devices, 205
 - installing, 287

Internet. See also Internet access

- backbone, 976
- browsers, troubleshooting, 1064-1066
- connection problems, troubleshooting, 1056-1059
- dial-up, troubleshooting, 1059, 1062-1064
- TCP/IP
 - email, 1018
 - SSL, 1018-1020
 - Telnet, 1020
- web browsers, 1020
 - proxy settings, configuring, 1024-1025
 - script support, configuring, 1024
 - security options, configuring, 1022
- Windows 2000/XP help files, 731-732
- WWW, 1015-1016

Internet access

- cable modem, 1002-1004
- dial-up, 987
 - analog modems, 988-990
 - configuring on Windows 2000/XP, 990-993
 - ICS, establishing, 994
- DSL
 - modems, 997-999
 - variations of, 999-1002
- ISDN, 995-996
- LANs, 985-987
- satellite, 1006-1007
- VoIP, 1008-1010
- wireless, 1008

Internet Connection Wizard (Windows 2000), establishing dial-up connection, 992-993

Internet Explorer, managing temporary files, 672-673. See also web browsers

Internet Gateways, 905

Internet services, well-known port numbers, 1107-1108

interrupt-driven I/O, 234

intranets, 513

inverter card, 490

IP (Internet Protocol), 1011

IP addressing, 978

- address classes, 979-980
- DNS name resolution, 984
- domains, 983-984
- private IP classes, 982
- static IP addressing, 1012
- subnetworks, 980-982

IPCONFIG command, 727, 1040

IPv6, 980

IrDA (Infrared Data Association), 234, 244

- devices, installing, 319-320
- links, 916
- wireless printers, installing, 822
ISA (Industry Standard Architecture) slots, 41
iSCSI, 215
ISDN, 995-996
ISPs, 1055
 DHCP, 978
 services provided by, 977
IT tech practice exam, 1260-1279
 answers, 1280-1290
Itanium processors, 131

J-K

joysticks, 54, 255, 260

Kerberos protocol, 1096-1097
Kernel mode, 585
keyboards, 53, 257-258
 troubleshooting, 388-390
 on portable computers, 492
 verifying, 388-389
 for portable computers, 453-454
 wireless, troubleshooting, 390-391
keys (Registry), 589

L

L1 cache, 125
L2 cache, 125
L3 cache, 125
LAN cards, 42, 939-940
 installing, 941-942
 optimizing, 942-943
LAN switches, 905
LANs, 897. See also WANs;WLANs
 bus topology, 898
 cabling, troubleshooting, 1045
 client/server networks, 902
 connectivity devices, troubleshooting, 1045-1046
 Ethernet, 921
 specifications, 922-925
 wireless standards, 925-926
 Internet access, 985-987
 logical topologies, 899-900
 mesh topology, 899
 NIC, troubleshooting, 1043-1044
 P2P networks, 901
 printing problems, troubleshooting, 1052-1055
 ring topology, 899
 service access problems, troubleshooting, 1043
 star topology, 899
 Windows, troubleshooting, 1046-1049
laser hazards, avoiding, 1139
laser printers, 812-813
 consumables, 873
 defective print, troubleshooting, 875-877
 electrophotographic cartridges, 816-818
 paper feed, troubleshooting, 877-879
 power supply, 814
 troubleshooting, 874-875
 preventive maintenance, 883-884
 registration, 814
 transfer corona wire, 815
 transfer process, 815
 troubleshooting, 872-873
Last Known Good Configuration, 751
latency, 1006
LBN (Low Noise Block) converters, 1007
LC (Lucent connector) connectors, 915
LCD displays, 54-55, 265, 449, 452
 protecting, 356-357
 replacing on portable computers, 491-492
 troubleshooting on portable computers, 489-490

How can we make this index more useful? Email us at indexes@quepublishing.com
LDAP (Lightweight Directory Access Protocol), 515
LDTV (Low Definition TV), 273
legacy devices, system resources, 237
legacy ports, 250
troubleshooting, 418
legacy printers, installing, 823
letterboxing, 273
LGA (Land Grid Array), 775
LI-ion (lithium-ion) batteries, 476
Linux, 511
liquid-based cooling systems, 152
Local Area Connection Properties dialog (Windows 2000/XP), 953-954
local digital loopback tests, 1061
local upgrades, performing, 648, 650
Local_Machine key, 590
locating
device drivers, 655
hidden files, 775
locking the computer (Windows 2000/XP), 1110-1111
logical drives, 301
logical topologies, 899-900
loopback tests, 1061
low-profile desktops, 12
low-profile form factors, 72
LPX (Low-Profile Extended) form factor, 72
LVD (Low-Voltage Differential) signaling, 214, 218

malware
adware, 1120
grayware, 1118
protecting against, 1115-1117
spam, 1121
spyware, 1118-1120
viruses, 1112-1114
removing, 1117-1118
symptoms of infection, 1115
managing temporary files, 671-673
manual TCP/IP configuration, 956-958
mapping network drives, 965-966
MBR (Master Boot Record), 35, 300
MCE (Windows XP Media Center Edition), 547
MCE Start menu, 553
My Music option, 558-559
My Pictures option, 561
My TV option, 555, 558
My Videos option, 561
MCSC (Microsoft Cluster Server), 518
MDC (Mobile Daughter Card), 87
MDI (Media Dependent Interface), 948
MDIX (Media Dependent Interface Crossover), 948
MeasureUp practice tests, 1354
shortcuts, creating, 1355
Media Center Edition, 188
MEM command, 727
memory, 32
cache memory, 27
for portable computers
MicroDIMMs, 444
SODIMMs, 443
upgrading, 445-447
RAM, 27
caching, 171-172
DIMMs, 34
DRAM, 163-167

Magnetic disk drives. See HDDs
Magnetic storage media
hard disk drives, 44-45
tape drives. See tape drives
Maintaining removable media, 360
dual-channel systems, 177
error checking, 168
packaging, 173
parity checking, 168-170
RIMMs, 173
speed ratings, 174-176
SRAM, 163-164
verifying, 383
ROM, 27, 34
troubleshooting, 682
upgrading, 1219-1221
word size, 33
memory management (Windows 2000/XP), 586
 virtual memory, 587-588
memory modules, installing, 1206-1207
Memory Stick Duo, 223
Memory Stick Micro, 223
Memory Stick Pro, 223
mesh topology, 899
mice, 53, 258-259
 right-click menus, 522
troubleshooting, 391-393
microcontroller, 801
MicroDIMMs, 444
microphone jacks, 277
microprocessors, 28
 AMD, 135
 Athlon 64, 137
 Athlon dual-core, 138-141
 Duron, 138
 Opteron, 141
bus system issues, 1213-1214
cartridge processor packages, 30
characteristics of, 141-143
clock speeds, 144-145
compatibility, verifying, 1214
configuring, 146-148
cooling systems, 148-149
 advanced cooling systems, 150-154
 BTX Thermal Module, 150
 installing, 1204-1206
 upgrading, 1217-1219
firmware, upgrading, 1217
installing, 1202
Intel, 134-135
Intel Dual-Core, 132-134
Itanium, 131
multiple processors, installing, 1214-1215
operating speed, determining, 1212
overclocking, 1214
OverDrive processors, 94, 96
Pentium, 29-30, 123-125
Pentium II, 127-129
Pentium III, 129
Pentium 4, 130
Pentium MMX, 125
Pentium Pro, 126
Pentium Xeon, 130
for portable computers, 437
 AMD mobile processors, 443
 Centrino, 440
 Intel Core Duo processor, 441-443
 Pentium IIIM, 438
 Pentium 4M, 438
 Pentium M Celerons, 440
 Pentium M processor, 439-440
power supply levels, 145-146
slot processors, installing, 1203
socket specifications, 94-97
speed, configuring, 1203
symmetric multiprocessing, 1215
system bus speeds, 78
upgrading, 1211-1213
verifying, 384-385
Microsoft Index Server function, 535
Microsoft Internet Explorer, 1022
Microsoft Product Support Services, 732
mid towers, 14
MIDI connections, 249
midlevel networks, 977
Mini PCI cards, 464-466
mini towers, 14
mirrored arrays, 191
mirrored drive array, 190
mirrored volumes, 606
MKDIR command, 566
MMC (MIDI Machine Control), 249
mobile Pentium MMX processor, 437
modes, 988
activity lights, verifying, 1056
configuration, verifying, 1063
dial-up, troubleshooting, 1059, 1062-1064
digital modems, installing, 1004-1006
DSL, 997-999
modem, 988
configuration, verifying, 1063
dial-up, troubleshooting, 1059, 1062-1064
digital modems, installing, 1004-1006
DSL, 997-999
moving items to Start menu (Windows 2000/XP), 536
MSCONFIG.EXE, 676, 722, 727
start up problems, troubleshooting, 751-752
MSDS (Material Safety Data Sheet), 1154
MT-RJ (Mechanical Transfer Registered Jack) connector, 915
MTF (Master File Table), 602-604
multicolor printers, 808
multimedia connections, 245-249
multimeters, 343-345
multimode, 218
multimode fiber-optic cable, 914
multipath propagation, 944
multiple processors, installing, 1214-1215
multislot video adapter cards systems, 270
My Computer interface, 523-524
My Music option (MCE Start menu), 558-559
My Network Places interface, 525-526
My Pictures option (MCE Start menu), 561
My TV option (MCE Start menu), 555, 558
My Videos option (MCE Start menu), 561
name resolution, 1012
Narrow SCSI, 212
NAT, 987
native resolution, 452
navigating Windows 2000/XP windows, 521
NE (No-Execute) bit technology, 137
NetBEUI, 926, 960
Netscape Navigator, 1021
NETSTAT, 1040
Name resolution, 1012
Narrow SCSI, 212
NAT, 987
Native resolution, 452
Navigating Windows 2000/XP windows, 521
NE (No-Execute) bit technology, 137
NetBEUI, 926, 960
Netscape Navigator, 1021
NETSTAT, 1040
NetWare, 959-960

network administration, Windows, 1090
 account lockout policy, 1100
 authentication options, 1096-1098
 group accounts, establishing, 1095-1096
 group policies, 1091-1093
 password policies, 1098, 1100
 system auditing, 1100, 1102-1103
 user accounts, establishing, 1094-1095
 user profiles, 1091
 Windows 2000/XP policies, 1091

network bridges, 905

network connectivity devices, 903, 906

network shares, 525, 961

network transmission media
 copper cabling
 coaxial cable, 911-913
 twisted-pair cabling, 907-911
 fiber-optic cable, 913
 wireless infrared links, 916
 wireless RF links, 917-919

network troubleshooting tools, 1038-1039
 OS-based, 1040-1042

network-based Windows installations, performing, 626

networked printers
 cables, troubleshooting, 859-860
 host-related problems, troubleshooting, 859
 installing, 821

networking protocols, 926-927

NICs, 42
 installing, 941-942
 optimizing, 942-943
 troubleshooting, 1043-1044
 wireless NICs, ad hoc mode, 1052

NiMH (nickel metal-hydride) batteries, 476

NLV (Network Load Balancing), 518

NLX (New Low-Profile Extended) form factor, 22, 73

nonimpact printers, 798

nonresident attributes, 602

North Bridge, 31

NOS (network operating systems), 510
 Novell NetWare, 512
 clients, installing, 959-960

notification area, 531

Novell NetWare, 512
 clients, installing, 959-960

NSLOOKUP.EXE, 1041

Ntbackup command, 702

NTFS (New Technology File System)
 advantages of, 604-605
 compressed files, 614
 disk organization, 600-601
 MTF, 602-604
 EFS, 613
 managing, 606-609
 permissions, 615-616

null modem connections, 254

NWLink, 926

observing bootup procedure, 335-336

ODI (Open Datalink Interface) file, 959

onboard disk drive connections file, 959
 PATA, 91-92
 SATA, 92-93
 SCSI, 93

Open System authentication, 946

operating speed of processors, determining, 1212

operating systems
 Apple OS X, 511
 DOS, 509-510
operating systems

GUI, 511
Linux, 511
NOS, 510
Novell NetWare, 959-960
Windows 2000/XP, navigating, 521. See also Windows 2000/XP
Windows 2000 Professional, 517
Windows 2000 Server, 517
Advanced Server edition, 518
Datacenter Server edition, 518
Standard Server edition, 517
Windows NT, 512
Windows Server 2003, 519
Windows Vista, 520
Windows XP, 518-519
operational problems, troubleshooting, 777-778
inoperable optional devices, 770-771
stop-errors, 771-773
operator control panel, configuring, 828
Opteron processors, 141
optical discs, 200
optical mice, 259
troubleshooting, 393
optical storage
CD-ROM drives, 199-201
DVD drives, 204-205
WORM devices, 202-204
optimizing
LAN cards, 942-943
Windows 2000/XP performance
disk drive system, 669-671
temporary files, 671-673
virtual memory, 668-669
Windows XP/2000 performance, system services, 673-674
opto-mechanical mice, 259
OS startup failure, troubleshooting, 342
OS-based network troubleshooting tools, 1040-1042
OSI model, 920
OTDRs (optical time domain reflectometers, 1039
OUs (Organizational Units), 516
overclocking, 135, 1214
OverDrive processors, 94-96

P

P2P networks, 901
paper feed, troubleshooting
on inkjet printers, 871-872
on laser printers, 877-879
paperwork, processing, 1184
parallax errors, 261
parallel ports, 251
Centronics standard, 251-252
ECP, 252-253
EPP, 253
parity checking, 168-170
partial backups, 699
partition table, 594
partitions, 299-301, 592-593
formatting, 610-611
high-level formatting, 302-303
passive heat sinks, 148
passive termination, 298
password depth, 1080
password width, 1079
passwords, 1079-1080
Windows, 1098-1100
PATA (Parallel ATA), 49, 89
connections, 90-92
disk drives, configuring, 291-293
patch management, 632-634
PATHPING, 1041
PC boards, handling, 351
PC Cards, 460-461
 advanced I/O interfaces, 463
 Cardbus, 462
 installing, 463
 memory, adding, 462
 Mini PCI, 464, 466
 PCI Express Mini Card, 466
 support for on Windows OS, 464
 upgrading in portable systems, 477-478
PC Health Status menu (CMOS Setup utility), 109
PC systems
 form factors, 20-22
 functional components, 10
 internal components, 17-19
 portable PCs, 20
 power supplies, 22-23
 AC adapters, 26
 system board power connectors, 23-25
 voltage levels, 22
 system boards, 26
 BIOS, 34-35
 chipset, 28, 31
 chipsets, 30
 CPU, 26
 disk drive interface connections, 28
 expansion slot connectors, 27
 expansion slots, 39-40
 I/O ports, 28
 microprocessor, 28-30
 primary memory, 27, 32-34
 system configuration settings, 37-38
 unit case, 11
 back panels, 16-17
 desktop cases, 12
 internal components, 17-19
 system cooling, 14
 tower cases, 13
PC-based PVRs, 188
PCI (Peripheral Component Interconnect) slots, 40
 local bus, 79-81
PCI Express Mini Cards, 466
PCI-X (Peripheral Component Interconnect-Extended) slots, 40, 82
PCle (Peripheral Component Interconnect Express) slots, 40, 82-84
PCL (Printer Control Language) drivers, 827-828
PCMCIA, troubleshooting on portable computers, 496-497
PDLs (Page Description Languages), 827-828
peer-to-peer workgroups, 513
Pentium II processors, 127-129
Pentium III processors, 129
Pentium IIM processor, 438
Pentium 4 processors, 130
Pentium 4M processor, 438
Pentium chipsets, 73
 Dual Core, 75, 78
Pentium M Celeron processors, 440
Pentium M processor, 439-440
Pentium MMX processors, 125
Pentium Pro processors, 126
Pentium processors, 29-30, 123
 caching, 124-125
 mobile Pentium MMX processor, 437
Pentium Xeon processors, 130
performance
 disk drive system, optimizing, 669-671
 virtual memory, optimizing, 668-669
performance logging, enabling, 680

How can we make this index more useful? Email us at indexes@quepublishing.com
peripheral power connector, 24
peripherals, 50-53
adapter-card based, installing, 316-317
keyboards, 53, 257-258
pointing devices, 53-54
 barcode scanners, 263
 biometric input devices, 262
 joysticks, 260
 mice, 258-259
 touch-sensitive screens, 260
 video capture cards, 264-265
printers, 56
storage devices, for portable computers, 458-460
upgrading, 321
video displays, 54-55
permissions
NTFS, 615-616
Windows 2000/XP share permissions, 961-963
persistence, 266
personal accountability, 1176
personal safety, 1135
 burns, treating, 1140
 electrocution, avoiding, 1136-1138
 electrocution, treating, 1138-1139
 hand and power tool safety, 1136
 laser and burn hazards, avoiding, 1139
PGA packaging, 123
pharming, 1123
phishing, 1122
phrases to avoid during customer communication, 1172
physical layer, troubleshooting NICs, 1043-1044
physical security, access control, 1078-1079
pin-feed printers, 805
PING command, 728, 1040-1041
pipeline SRAM, 164
pits, 200
pixels, 267
 dot pitch, 272
 resolution, 270-273
platters, 187
PM (preventive maintenance) procedures
 annual activities, scheduling, 364-365
 cleaning dust, 352-353
 daily activities, scheduling, 363
 display systems, protecting, 355-356
 hard disk drives, protecting, 357-359
 heat buildup problems, 353-355
 input devices, protecting, 361-362
 LCD display systems, protecting, 356-357
 monthly activities, scheduling, 364
 removable media
 maintaining, 360
 protecting, 359-360
 scheduling, 363
 six-month activities, scheduling, 364
 weekly activities, scheduling, 364
PnP (plug-and-play), 38
PnP manager, 586
PnP setup configuration functions (CMOS setup utility), 104-105
pointing devices, 53-54
 barcode scanners, 263
 biometric input devices, 262
 joysticks, 260
 mice, 258-259
 troubleshooting, 391-393
 for portable computers, 456
 touch-sensitive screens, 260
 video capture cards, 264-265
polarizers, 449
polarizing screens, 1081
polling, 233

port replicators, 476
 troubleshooting on portable computers, 499-500

portable computers, 20
 batteries, upgrading, 476
 disassembling, 488
 disk drives, upgrading, 447-448
 display systems, LCD, 449, 452
 docking stations, 475
 troubleshooting, 499-500
 fuel cells, 477
 infrared ports, troubleshooting, 495
 keyboards, 453-454
 troubleshooting, 492
 LCD display
 replacing, 491-492
 troubleshooting, 489-490
 memory
 MicroDIMMs, 444
 SODIMMs, 443
 upgrading, 445-447
 microprocessors, 437-438
 AMD mobile processors, 443
 Centrino, 440
 Intel Core Duo processors, 441-443
 Pentium IIIM, 438
 Pentium 4M, 438
 Pentium M, 439-440
 Pentium M Celeron, 440
 PC cards, 460-461
 advanced I/O interfaces, 463
 Cardbus, 462
 installing, 463
 memory, adding, 462
 Mini PCI, 464-466
 PCI Express Mini Card, 466
 upgrading, 477-478
 PCMCIA, troubleshooting, 496-497
 peripheral storage devices, 458
 external CD-ROM/DVD drives, 458
 FDDs, 458
 removable storage, 459-460
 pointing sticks, 456
 port replicators, 476
 power consumption, 472-473
 power issues, troubleshooting, 497-499
 power management, 473-474
 power sources, 471-472
 preventive maintenance, 501-502
 storage devices, troubleshooting, 493-495
 system boards, 435-436
 thermal issues, troubleshooting, 502
 touch pads, 455-456, 493
 trackballs, 454
 troubleshooting, 487
 wireless networking, 467
 adapter cards, installing, 468-470
 built-in WLAN adapters, 470-471

ports, 50-53
 advanced parallel port operations, 107
 enabling on CMOS setup utility, 106-107
 game ports, 255
 infrared, 244
 infrared port operations, 108
 IrDA, 234
 legacy, 250
 parallel
 Centronics standard, 251-252
 ECP, 252-253
 EPP, 253
 RS-232, 235, 253
 cabling, 254
 system resources, 234-236
 troubleshooting, 414-415
 USB, troubleshooting, 415-417

How can we make this index more useful? Email us at indexes@quepublishing.com
POST, 35, 580
 beep codes, 338-339
POST cards, 347-348
PostScript drivers, 827-828
POTS splitter, 997
power consumption, portable computers, 472-473
power issues, troubleshooting on portable computers, 497-499
power line hazards, preventing, 1141
 surge suppressors, 1142
 UPSs, 1142-1146
power management, portable computers, 473-474
Power Management Setup Screen (CMOS Setup Utility), 108-109
power supplies, 17, 22
 AC adapters, 26
 adding/removing, 378-379
 dead systems, troubleshooting, 377-378
 for inkjet printers, 814
 installing, 1208-1209
 for laser printers, troubleshooting, 874-875
 for portable computers, 471-472
 replacing, 1207
 system board power connectors, 23-25
 upgrading, 1210
 voltage levels, 22
power tools, safety considerations, 1136
PPP (Point-to-Point Protocol), 1012
practice exams, 1230-1248
 answers, 1248-1257
 depot practice exam, 1292-1310
 answers, 1310-1319
 IT tech practice exam, 1260-1279
 answers, 1280-1290
 MeasureUp, 1354-1355
 remote support practice exam, 1322-1341
 answers, 1341-1352
preparing hard disk drive for Windows XP/2000 installation, 631
preventing spyware, 1119-1120
preventive maintenance
 cleaning, 350-352
 for portable computers, 501-502
 for printers, 882
 dot matrix, 883
 inkjet, 883
 laser, 883-884
PRI (primary rate interface), 995
primary partitions, 300, 592
print servers, 1053
printers, 56
 add-on components, 832
 cables, troubleshooting, 859-860
 calibrating, 829-830
 color management, 830
 control board, troubleshooting, 858-859
 controller, 801-802
 dot-matrix, 802
 control board, 803
 control panel, 804
 friction-feed, 806
 preventive maintenance, 883
 printhead, 806
 sensors, 804-805
 troubleshooting, 861-867
 drivers, 826-828
 dye sublimation printers, 818-819
 host-related problems, troubleshooting, 859
 inkjet, 808-812
 preventive maintenance, 883
 troubleshooting, 867-872
 installing, 819
 interface, 800
 laser printers, 812-813
 electrophotographic cartridges, 816-818
 power supply, 814
preventive maintenance, 883-884
registration, 814
transfer corona wire, 815
transfer process, 815
troubleshooting, 872-879
legacy printers, installing, 823
networked printers, installing, 821
Windows 2000/XP networks, 839-840
operator control panel, configuring, 828
preventive maintenance, 882
properties, displaying in Windows 2000/XP, 838-839
serial printers
 configuring, 825-826
 installing, 824-825
servicing, 856-857
sharing, 963-965
thermal printers, 807
direct transfer thermal printers, 807
thermal was transfer printers, 808
tractor-feed, 806
troubleshooting, 857
upgrading, 831-832
USB printers, installing, 820
wireless printers, installing, 822
printheads
 dot-matrix printers, 806
troubleshooting, 863-866
inkjet printers, troubleshooting, 870-871
printing problems, troubleshooting, 779-780, 1052-1055
private networks, 982
processors,
 performance issues, troubleshooting, 683
 socket specifications, 94-97
professionalism, 1177-1178
programmed I/O, 233
Programs menu (Windows XP), 549

protecting
display systems, 355-357
hard disk drives, 357-359
input devices, 361-362
removable media, 359-360
protocols, 953
proxy servers, 986, 1024
proxy settings for Web browsers, configuring, 1024-1025
PS/2 connectors, 237-238
public-key encryption, 1018
PVRs (personal video recorders), 188

Q-R

quad pumping, 144

RAID (redundant array of inexpensive disks), 190
RAID 0, 191
RAID 0+1, 195
RAID 1, 191
RAID 1+0, 195
RAID 3, 192
RAID 4, 193
RAID 5, 194
 volumes, 608
RAID 6, 195
RAID 10, 195
RAID 53, 193
RAM (random access memory), 27, 32
caching, 171-172
DIMMs, 34
DRAM, 163-164, 166-167
dual-channel systems, 177
error checking, 168
packaging, 173
parity checking, 168-170
RIMMs, 173
speed ratings, 174-176
SRAM, 163-164
troubleshooting, 682
upgrading, 1219-1221
verifying, 383
RDRAM (Rambus DRAM), 166

Recovery Console
commands, 755-756
installing, 754
Registry, restoring, 757
startup problems, troubleshooting, 753-757

Recycle Bin interface, 524-525

RegEdit, 724
RegEdt32, 724

registration, 814

Registry, 588-590, 723
editors, 724-725
hives, 591-592
restoring with Recovery Console, 757

Remote Assistant (Windows 2000/XP), 722, 783
sessions, establishing, 784
user console, 785-786

Remote Desktop (Windows 2000/XP), 722
configuring, 780
session, establishing, 781-783

remote support practice exam, 1322-1341
answers, 1341-1352

removable media
maintaining, 360
protecting, 359-360

removable storage systems, 48
connecting to system, 49-50
flash memory, 220
- CF (CompactFlash) cards, 221
- SD cards, 224
- USB flash drives, 221

for portable computers, 459-460
troubleshooting, 413-414

Removable Storage utility, 709-710

removable tape cartridges, 197

removing
- adapter cards, 1199
- cables from system board, 1200
- power supplies, 378-379
- system board, 1200
- system unit cover, 1198
- viruses, 1117-1118

REN command, 568

repair tools, 331-332

replacing
- LCD panel on portable computers, 491-492
- portable drives, 448
- power supplies, 1207
- system boards, 1196
 - adapter cards, removing, 1199
 - cables, removing, 1200
 - external I/O systems, removing, 1197
 - system unit cover, removing, 1198-1199

resident attributes, 602

resistance checks, performing, 345

resolution, 270-273

responsiveness, 1174

restore points, 761
creating, 762-764

restoring data, 703-704

restoring Registry with Recovery Console, 757

RG-6 coaxial cable, 912

RG-8 coaxial cable, 912

RG-58 coaxial cable, 913

RG-59 coaxial cable, 913

right-click menus, 522

rights, 516
RIMMs, 173
ring topology, 899
RIS (Remote Installation Services), performing unattended Windows installations, 628
riser cards, 12
RMDIR command, 566
ROM (read-only memory), 27, 32-34
root directory, 597
root hub, 240
routers, 904
core routers, 905
dge routers, 905
installing on wireless LANs, 949-951
Internet Gateways, 905
routing, 904
RS-232 ports, 235, 253-254
RTC (real-time clock), 38

S

S-Video, 248
Safe Mode, troubleshooting startup problems, 748-750
safety issues
environmental safety
ESD, 1147-1153
hardware disposal procedures, 1153
personal safety, 1135
burns, treating, 1140
electrocution, 1136-1139
hand and power tool safety, 1136
laser and burn hazards, avoiding, 1139
work safety, 1134
dags, 1141
SAS (Serial Attached SCSI) interfaces, 49, 89, 209-210, 214
connectors, 92-93, 217
disk drive adapters, 43
drivers, installing on Windows 2000/XP, 655
drives, installing, 293-295
satellite Internet access, 1006-1007
SC (subscriber connector), 915
scanners, 840
bar code scanners, installing, 313
flatbed, 841-843
host-related problems, troubleshooting, 881-882
image quality problems, troubleshooting, 880-881
installing, 312-313, 843-844
interface cables, troubleshooting, 882
troubleshooting, 879
scheduling
backups, 703, 706-707
PM procedures, 363
annual activities, 364
daily activities, 363
monthly activities, 364
six-month activities, 364
weekly activities, 364
screen memory, 268
script support for Web browsers, configuring, 1024
SCSI (Small Computer System Interface), 205, 211, 214-215
adapter cards, 43
addresses, configuring, 297
installing, 295-296
termination, 298-299
cables, 215, 217, 219
connectors, 93, 215-219
devices, upgrading, 309
Fast SCSI-2, 213
iSCSI, 215
Narrow SCSI, 212

How can we make this index more useful? Email us at indexes@quepublishing.com
Serial SCSI, 214
SVD signaling, 214
Ultra 320 SCSI, 213-214
Ultra SCSI, 213
upgrading, 308
Wide SCSI-2, 213
Wide Ultra SCSI, 214
SD (Secure Digital) cards, 223-224
SDR-SDRAM (Single Data Rate SDRAM), 165
SDRAM (Synchronous DRAM), 164-167
SDSL (synchronous DSL), 999-1002
SDTV (Standard Definition TV), 274
SE (single-ended) signaling, 217
Search utility (Windows 2000/XP), 535
second-degree burns, treating, 1140
sectors, 595
security
access control, 1078
backup tape access, 1079
passwords, 1079-1080
environmental security, 1086
firewalls, 1105
hardware firewalls, 1105
software firewalls, 1105
Windows EFS, 1110
Windows XP ICF, 1108
Windows XP SP2, 1108
hardware security
biometric devices, 1084-1085
smart cards, 1081-1082
identity theft, 1124
information disposal/destruction policies, 1086
malware
viruses, 1112-1114
symptoms of infection, 1115
software security, 1086-1089
Windows network security
administrator account, 1089
authentication, 1096-1098
Synchronization Manager, 1090
wireless security, 1103-1105
Security Configuration screen (CMOS Setup utility), 109-111
selective backups, 699
Sempron processors, 443
SEPP (Single-Edged Processor Package), 128
serial ports, RS-232, 253-254
serial printers
configuring, 825-826
installing, 824-825
Serial SCSI, 214
service access problems, troubleshooting, 1043
service packs, 632-634
Services and Applications console (Windows 2000/XP), 541
servicing printers, 856-857
session hijacking, 1123
setup, troubleshooting, 634-635
Windows 2000, 637-639
Windows XP, 642-643
SFC (System File Checker), troubleshooting
startup problems, 760-761
SFC command, 727
SGRAM (Synchronous Graphics RAM), 165
shadow mask, 267
shared folders, setting properties, 961
shared video memory, 447
sharing network resources, 961
printers, 963-965, 1053
SHDSL, 1001
shortcut key combinations (Windows 2000/XP), 521
shortcuts, 521
 MeasureUp practice tests, creating, 1355
 Windows 2000/XP command-line interface, 569
signal cables, 18
signal ground, 1151
signaling
 differential, 217
 multimode, 218
 SE, 217
simple volume, 606
simplex mode, 906
single-mode fiber-optic cable, 914
single-step startup procedure, 748
site surveys, performing on WLANs, 945
SLI (Scalable Link Interface) specification, 270
slimline form factor, 72
SLIP (Serial Line IP), 1012
slot processors, installing, 1203
slotkey processor, 95
smart cards, 1081-1082
 Windows smart card support, 1082
SMP (Symmetrical Multiprocessing), 518, 1215
SMTP (Simple Mail Transfer Protocol), 1016
snap-ins, 542
social engineering, 1121-1123
socket specifications, 94-97
Socket-7 specification, 94
sockets
 DRAM, 98
 LGA 775, 133
SODIMMs (Small Outline DIMMs), 443
soft fonts, 828
soft switches, 1010
software
 preventive maintenance, 684
 security, 1086-1089
 troubleshooting, 340
 updating, 685
software diagnostic packages, 345-347
software firewalls, 1105
 troubleshooting, 1066
solid inkjet printers, 810
sound cards, 42, 275-276
 connections, 277
 installing, 314
 troubleshooting, 419-421
sound modules, 249
South Bridge, 31
spam, 1121
spanned volume, 606
SPGA (Staggered Pin Grid Array) packaging, 124
spoofing, 1122
spooling process, starting/stopping, 833
spyware, 1118-1120
SSID (Service Set IDs), 946
SSL (Secure Sockets Layer), 1018-1020
ST (straight-tip) connectors, 915
standalone PVRs, 188
standoffs, 19
star topology, 899
Start menu (Windows), 531
 Help system, 535
 modifying, 676
 moving items to, 536
 optimizing, 676
 Search utility, 535
 System Tools, 533
Start menu (MCE), 553
 My Music option, 558-559
 My Pictures option, 561
 My TV option, 555, 558
 My Videos option, 561
startup

startup, 579-581
 BOOT.INI file, modifying, 675-676
 modifying, 674
 POST, 580
 Start menu, modifying, 676
 troubleshooting, 745-750, 766-769
 ASR, 764-766
 authentication problems, 769
 ERD, 757-759
 MSCONFIG.EXE, 751-752
 network startup problems, 769
 Windows 2000/XP Recovery Console, 753-757
 Windows 2000/XP SFC, 760-761
 Windows XP boot disk, 760
 Windows XP Driver Rollback, 752-753
startup modes, 747-748
 Safe Mode, troubleshooting startup problems, 748-750

static charges, avoiding, 1150-1152
static IP addressing, 1012
status lights on connectivity devices, 1045-1046
stepping level, 1214
stop-errors, troubleshooting, 771-773
Storage console (Windows 2000/XP), 541
storage devices
 external, installing, 305
 internal, installing, 287
 for portable computers
 external CD-ROM/DVD drives, 458
 FDDs, 458
 removable storage, 459-460
 troubleshooting, 493-495
storing computer equipment, 1152-1153
STP cabling, 907
straight-through cables, 948
striped drive array, 190
striped volumes, 608

strong passwords, creating, 1079-1080
study mode (CD-ROM), 1353
subnetworks, 980-982
Super Socket 7, 94
SUPPORT_XXXXX account, 1094
surge suppressors, 1142
SVGA (Super VGA), 271
switches, 564, 904
symptoms
 of system board failures, 380-381
 of virus infection, 1115
Synchronization Manager (Windows), 1090
synchronous communication, 253
synchronous SRAM, 164
SYSEDIT command, 723
system auditing, Windows, 1100-1103
system boards, 17-18, 26
 adapter cards, 41
 IEEE-1394 adapters, 44
 internal modem cards, 42
 NICs, 42
 SATA disk drive adapters, 43
 SCSI adapters, 43
 sound cards, 42
 TV tuner cards, 42
 USB adapters, 44
 video adapter cards, 41-42
 BIOS, 34-35
 bus system, 1213-1214
 chipsets, 28-31
 compatibility issues, mounting hole alignment, 1196
 CPU, 26
 data storage devices
 CD-ROM drives, 46
 DVD drives, 47
 floppy drives, 47
hard disk drives, 44-45
tape drives, 47
disk drive interface connections, 28
expansion slot connectors, 27
expansion slots, 39-41
failures, symptoms of, 380
form factors
 ATX, 67-68
 BTX, 69-72
 low-profile, 72
I/O ports, 28
 failures, symptoms of, 381
I/O shields, 1196
memory, upgrading, 1219-1221
memory modules, installing, 1206-1207
microprocessors, 28
 cooling system, upgrading, 1217-1219
 firmware, upgrading, 1217
 multiple processors, installing, 1214-1215
 Pentium, 29-30
 symmetric multiprocessing, 1215
 upgrading, 1211-1213
peripherals, 50-53
 keyboards, 53
 pointing devices, 53-54
 printers, 56
 video displays, 54-55
for portable computers, 435-436
primary memory, 32
 cache memory, 27
 RAM, 27, 34
 ROM, 27, 34
removable storage, 48-50
removing, 1200
replacing, 1196-1200
system configuration settings, 37-38
upgrading, 1211
system bus speeds, 78
system configuration settings, 37-38
system editors, 723-725
system files, viewing in Windows Explorer, 545
System icon (Windows 2000 Control Panel), 543
System Information utility (Windows 2000/XP), 713-715
System log (Windows XP), 713
System Monitor, monitoring application performance, 678-681
system performance, monitoring with Task Manager, 677
System Properties window (Windows 2000), 542-543
system requirements, CD-ROM installations, 1354
system resources, 234-237
System Restore utility (Windows XP), 715-716
system services, optimizing, 673-674
System State data backups, 705-706
System Tools (Windows 2000/XP), 533, 540, 710
 Device Manager, 717-721
 Event Viewer, 710-713
 Remote Assistant, 722
 Remote Desktop, 722
 System Information utility, 713-715
 System Restore utility, 715-716
 Task Manager, 716-717
system unit, internal components, 17-19
tape drives, 47, 199
 removable tape cartridges, 197
 troubleshooting, 412-413
Task Manager (Windows 2000/XP), 716-717
 application problems, troubleshooting, 776
 system performance, monitoring, 677

How can we make this index more useful? Email us at indexes@quepublishing.com
task-switching environment, 521
TCP (Tape Carrier Package), 437
TCP/IP, 927, 1010
TCP (Transport Control Protocol), 1011
TDMA (time division multiple access), 918
TDRs (time domain reflectometers), 1039
time and date options (CMOS setup utility), 100-101
touch pads, 54
 touch-sensitive screens, 260
tower cases, 13
TRACERT command, 728, 1040-1041
track-seek time, 307
touch-sensitive screens, 260
trackballs, 258
for portable computers, 454
tractor-feed printers, 806
transfer corona wire, 815
transients, 1141
transport protocol, 940
treating
electrocution, 1138-1139
burns, 1140
trees, 516
Trojan horses, 1113
troubleshooting. See also troubleshooting process; troubleshooting tools
application problems, 773-777
BIOS, 385
bootup procedure, observing, 335-336
browsers, 1064-1066
CD-ROM drives, 406-410
CMOS, backup batteries, 387
configuration problems, 340-342
cooling systems, 386
dial-up, 1059, 1062-1064
DVD drives, 406-410
error codes, 337-339
FDDs, 410-412
front panel connections, 421
FRUs, 348-349
HDDs, 400-406
I/O ports, 414-417
inoperable optional devices, 770-771
keyboard, 388-390
LANs
cabling, 1045
connectivity devices, 1045-1046

TCP/IP, 927, 1010
configuring in Windows 2000/XP LANs, 956, 958
DHCP, 1013-1014
DNS, 1012
e-mail, 1018
FTP, 1017
SSL, 1018-1020
Telnet, 1020
verifying operation on Windows OS, 1049
WINS, 1013

TDMA (time division multiple access), 918
test modes (CD-ROM), 1353
testing UPS operation, 1145-1146
TFT (thin-film transistor) displays, 451
thermal compound, applying, 1217
thermal issues, troubleshooting on personal computers, 502
thermal printers, 807-808
third-degree burns, treating, 1140
throughput, 175
tidiness, 1185

Touch-sensitive screens, 260
Tower cases, 13
TRACERT command, 728, 1040-1041
Track-seek time, 307
Trackballs, 258
for portable computers, 454
Tractor-feed printers, 806
Transfer corona wire, 815
Transients, 1141
Transport protocol, 940
Treating
electrocution, 1138-1139
Burns, 1140
Trees, 516
Trojan horses, 1113
Troubleshooting. See also troubleshooting process; troubleshooting tools
Application problems, 773-777
BIOS, 385
Bootup procedure, observing, 335-336
Browsers, 1064-1066
CD-ROM drives, 406-410
CMOS, backup batteries, 387
Configuration problems, 340-342
Cooling systems, 386
Dial-up, 1059, 1062-1064
DVD drives, 406-410
Error codes, 337-339
FDDs, 410-412
Front panel connections, 421
FRUs, 348-349
HDDs, 400-406
I/O ports, 414-417
Inoperable optional devices, 770-771
Keyboard, 388-390
LANs
Cabling, 1045
Connectivity devices, 1045-1046

Task-switching environment, 521
Taskbar, 521, 530-531
TCP (Tape Carrier Package), 437
TCP (Transport Control Protocol), 1011

Technical support, 1356
Telephone communication, 1182-1184
Telnet, 1020
Temporary files, managing, 671-673
Test modes (CD-ROM), 1353
Testing UPS operation, 1145-1146

Touch pads, 54
for portable computers, 455-456
Troubleshooting, 493
NICs, 1043-1044
printing problems, 1052-1055
service access problems, 1043
Window-related problems, 1046-1049

legacy ports, 418
memory problems, 682
mice, 391-393
microprocessor, 384-385
operational problems, 777-778
portable computers, 487
docking stations, 499-500
infrared ports, 495
keyboard, 492
LCD display, 489-490
PCMCIA, 496-497
power issues, 497-499
storage devices, 493-495
thermal issues, 502
touch pad, 493

power supplies, dead systems, 377-378
printers, 779-780, 857
cables, 859-860
control board, 858-859
dot-matrix, 861-867
host-related problems, 859
inkjet, 867-872
laser printers, 872-879
processor issues, 683
removable storage systems, 413-414
scanners, 879
host-related problems, 881-882
image quality problems, 880-881
interface, 882
sound cards, 419-421
startup problems, 745-750, 766-769
ASR, 764-766
authentication problems, 769
ERD, 757-759

MSCONFIG.EXE, 751-752
network startup problems, 769
Windows 2000/XP Recovery Console, 753-757
Windows 2000/XP SFC, 760-761
Windows XP boot disk, 760
Windows XP Driver Rollback, 752-753
stop-errors, 771-773
system board, 379
tape drives, 412-413
upgrade problems, 650-651
video systems, 394-399
WANs, 1055
 Internet connection, 1056-1059
Windows 2000/XP setup, 634-643
wireless keyboard, 390-391
WLANs, 1050-1052

troubleshooting process, 330
documenting, 335
information gathering, 332-334
initial inspection, performing, 334-335

troubleshooting tools
diagnostic software packages, 345-347
for network, 1038-1039
 OS-based, 1040-1042
multimeters, 343-345
POST cards, 347-348

TrueType fonts, 799-800

trusts, 516

Turion processors, 443

TV tuner cards, 42

twisted-pair cabling, 907
 Ethernet specifications, 923
 UTP, 909-911

Type III PC Card specification, 462
Ultra 320 SCSI, 214
Ultra SCSI, 213
unattended Windows installations, performing, 627
 answer files, 627-628
disk cloning, 628
 RIS, 628
UNC paths, 964-966
Unicode character set, 534
updating software, 685
upgrades, troubleshooting, 650-651
upgrading
 adapters, 317
 batteries on portable systems, 476
 HDD, 306-309
 memory, 1219-1221
 microprocessors, 1217-1219
 PC cards in portable systems, 477-478
 peripherals, 321
 portable drives, 447-448
 portable memory, 445-447
 power supplies, 1210
 printers, 831-832
 system board, microprocessors, 1211-1213
 to Windows XP, 647-648
 Windows 9.x to Windows 2000 Professional, 644-646
uplink ports, 948
UPSs, 1142-1146
USB (Universal Serial Bus) devices, 26, 238-240
 adapters, 44
 cabling, 240-242
 connection architecture, 240
 data transfers, 242-243
 flash drives, 221
 installing, 318
ports, troubleshooting, 415-417
 printers, installing, 820
user accounts (Windows), establishing, 1094-1095
user console, Remote Assistance sessions, 785-786
User mode, 585
user profiles (Windows), 1091
user rights, 516
Users key, 590
USMT (User State Migration Tools), 649
utilities
 Disk Cleanup, 670-671
 Windows Wireless Network Connection utility, 945
UTP (unshielded twisted-pair) cabling, 907-911
 CAT cable ratings, 910
UXGA (Ultra XGA), 271
VA (volt-ampere) rating, 1143
VCM-SDRAM (Virtual Channel Memory SDRAM), 165
vector-based fonts, 799
verifying
 CMOS configuration, 382
 HDD configuration, 404-406
 inkjet printer configuration, 868
 keyboard, 388-389
 mice, 392-393
 microprocessors, 384-385, 1214
 modem configuration, 1063
 NIC operation, 1044
 RAM, 383
 sound card configuration, 419-421
 UPS operation, 1145-1146
 Windows modem configuration, 1063-1064
verifying vertical retrace, 266
VGA, 271
video adapters, 41-42, 267-269
video capture cards, 264-265
video controllers, 267, 269
video displays, 54-55
 CRT monitors, 265-267
 dot pitch, 272
 installing, 310-311
 LCD monitors, 265, 449, 452
 resolution, 270-271
video standards, 271
video systems
 display problems, diagnosing, 399-400
 troubleshooting, 394-399
View menu (Windows 2000/XP), 529
virtual memory, 587-588
 optimizing, 668-669
viruses, 1112-1114
 removing, 1117-1118
 symptoms of infection, 1115
VMM (Virtual Memory Manager), 668
VoIP (Voice over IP), 1008-1010
Voltage Reduction Technology, 437
volumes, 302, 593
VOMs (volt-ohm-milliammeters), 343
VPNs (virtual private networks), 1097
VRMs (Voltage Regulator Modules), 146

web browsers, 1020
 firewall issues, troubleshooting, 1066
 ICS, troubleshooting, 1065-1066
 Internet Explorer, managing temporary files, 672-673
 proxy settings, configuring, 1024-1025
 script support, configuring, 1024
 security options, configuring, 1022
 troubleshooting, 1064-1065
well-known port numbers, 1107-1108
well-known services, 1107
WEP (Wired Equivalent Privacy), 1103
WHQL (Windows Hardware Quality Labs), driver signing, 656-657
Wide Ultra SCSI, 214
windows, navigating, 521
Windows 2000 ERD, troubleshooting startup problems, 757-759
Windows 2000 Professional, 517
 installing, 635-637
Windows 2000 Server
 Advanced Server edition, 518
 Datacenter Server edition, 518
 Standard Server edition, 517
Windows 2000/XP
 application problems, troubleshooting, 773-777
 boot process, 581-584
 clients, adding, 955
 command-line interface, 562
 command-level operations, 566
 drive-level operations, 564-565
 file-level operations, 566-568
 files, executing, 563
 shortcuts, 569
 switches, 564
 command-line utilities, 726-728

WANs, troubleshooting, 1055
 Internet access, 1056-1059
warm bootup process, 37
warm hand off, 1175
Warning events, 712

How can we make this index more useful? Email us at indexes@quepublishing.com
Control Panel, 536
 Add/Remove Programs icon, 538-539
 Administrative Tools icon, 540-541
 Display icon, 543
 System icon, 543

desktop interface
 File menu, 527-528
 icons, 521
 My Computer, 523-524
 My Network Places, 525-526
 Recycle Bin, 524-525
 right-click menus, 522
 Start menu, 531-536
 taskbar, 521, 530-531
 Tools menu, 529-530
 View menu, 529

device drivers, installing, 654

dial-up networking, 990-993
disk drive system, optimizing, 669-671
disk images, creating, 629-631
disk-management tools, 693
 backup utilities, 698, 701
 Backup utility, 701-709
 CHKDSK, 695-696
 Disk Cleanup, 694
 Removable Storage utility, 709-710

Domain accounts, 1096
dual booting, 651-653
file management tools
 Dr. Watson, 725-726
 system editors, 723-725
files, 612
help files, 728-732
installing, 625-628
Local Area Connection Properties dialog, 953-954
locking the computer, 1110-1111
memory management, 586-588

navigating, 521

network administration, 1090
 account lockout policy, 1100
 authentication, 1096-1098
 group accounts, establishing, 1095-1096
 group policies, 1091-1093
 password policies, 1098-1100
 system auditing, 1100-1103
 user accounts, establishing, 1094-1095
 user profiles, 1091
 Windows 2000/XP policies, 1091

NTFS, managing, 606-609
operational problems, troubleshooting, 777-778
partitions, formatting, 610-611
patch management, 632-634
PC Card support, 464

performance
 application performance, monitoring, 678-681
 memory issues, correcting, 682
 optimizing, 673-674
 processor issues, correcting, 683
 software, preventive maintenance, 684
 software updates, performing, 685-686
 startup process, modifying, 674-676
 system performance, monitoring, 677

printers, 833-836
 installing, 836-837
 network-based, 839-840
 print queue window, 835
 properties, 838-839
 sharing, 963-965, 1053

Recovery Console, troubleshooting startup problems, 753-757
Registry, 588-592
SATA drivers, installing, 655
security, 1089-1090
setup, troubleshooting, 634-639
SFC, troubleshooting startup problems, 760-761
share permissions, 961-963
smart card support, 1082
startup problems, troubleshooting, 766-769
System Tools console
 Device Manager, 717-721
 Event Viewer, 710-713
 Remote Assistant, 722
 Remote Desktop, 722
 System Information utility, 713-715
 Task Manager, 716-717
TCP/IP, configuring, 956, 958
temporary files, managing, 671-673
video systems, troubleshooting, 396-399
virtual memory, optimizing, 668-669
Windows Explorer, 544
 files, creating, 547
 folders, creating, 547
 hidden files, viewing, 545
Windows 9.x, upgrading to Windows 2000
 Professional, 644-646
Windows 98, upgrading to Windows XP, 647-648
Windows Aero, 520
Windows Character Map, 800
Windows Defender, 1119
Windows EFS (Encrypting File System), 1110
Windows Explorer, 544-547
Windows Firewall service, 1108
Windows modem checks, performing, 1063-1064
Windows NT, 512
Windows print spooler, 833
Windows Registry, 723-725
Windows Scheduled Task Utility, 363
Windows Server 2003, 519
Windows Task Scheduler, 537
Windows Update service, 685

Windows Vista, 520

Windows XP, 518-519
 64-bit Edition, 519
 Accessories menu, 550
 ASR, 764-766
 boot disk, troubleshooting startup problems, 760
 Control Panel, 551-553
 desktop interface, 548-549
 Driver Rollback, troubleshooting startup problems, 752-753
 local upgrades, performing, 648, 650
 MCE, 547
 Start menu, 553-561
 printing problems, troubleshooting, 1055
 setup, troubleshooting, 642-643
 System Restore utility, 761-764
 System Tools console, System Restore utility, 715-716
 Windows Wireless Network Connection Status utility, 945

Windows XP ICF (Internet Connection Firewall), 1108

Windows XP MCE (Media Center Edition), 188
 hardware requirements, 641

Windows XP Professional, installing, 639-641

Windows XP SP2, 1108

Windows-related LAN problems
 TCP/IP, troubleshooting, 1049
 troubleshooting, 1046-1048

WINS (Windows Internet Name Service), 1012-1013

wireless Internet access, 1008

wireless keyboard, troubleshooting, 390-391

wireless LANs
 AP
 configuring, 945-946
 installing, 943-945
 Ethernet standards, 925-926
hot spots, 944
installing, 943
network connectivity devices, installing, 947, 950-951
wireless clients, installing, 946-947
wireless mice, troubleshooting, 393
wireless networks
ad hoc mode, 918
infrared links, 916
infrastructure mode, 918
for portable computers, 467
adapter cards, installing, 468-470
built-in WLAN adapters, 470-471
RF links, 917-919
troubleshooting, 1050-1052
wireless printers, installing, 822
wireless security, 1103-1105
WLANs
ad hoc mode, 1052
troubleshooting, 1050-1052
word size, 33
work environment
maintaining, 1185
safety considerations, 1134
personal safety, 1135-1140
workgroups, 960
WORM (write once, read many) devices, 202-204
WPA (WiFi Protected Access), 1104
WPA2, 1104
writable CD-ROM/DVD drives, troubleshooting, 409-410
WUXGA (Wide UXGA), 271
WWW (World Wide Web), 1015-1016

X-Y-Z

XCOPY command, 567
xDSL, 999
XGA (Extended Graphics Array) standard, 271
XXBaseYY IEEE nomenclature, 922
ZIF (zero insertion force) sockets, 29