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Introduction

The first words of the title of this book, Adaptive Code, provide a good description 
of the outcome of applying the principles in the book: the ability of code to adapt 

to any new requirement or unforeseen scenario while avoiding significant rework. The 
aim of this book is to aggregate into one volume many of the current best practices in 
the world of C# programming with the Microsoft .NET Framework. Although some of 
the content is covered in other books, those books either focus heavily on theory or are 
not specific to .NET development.

Programming can be a slow process. If your code is adaptive, you will be able to 
make changes to it more quickly, more easily, and with fewer errors than you would 
if you were working with a codebase that impedes changes. Requirements, as every 
developer knows, are subject to change. How change is managed is a key differen-
tiating factor between successful software projects and those that atrophy due to scope 
creep. Developers can react in many ways to requirement changes, with two opposing 
viewpoints highlighting the continuum that lies between.

First, developers can choose a rigid viewpoint. In this approach, from the develop-
ment process down to class design, the project is as inflexible as if it were implemented 
50 years ago by using punch cards. Waterfall methodologies are conspicuous culprits 
in ensuring that software cannot change freely. Their determination that the phases of 
analysis, design, implementation, and testing be distinct and one-way make it difficult—
or at least expensive—for customers to change requirements after implementation has 
begun. The code, then, does not need to be built for change: the process all but forbids 
alterations.

The second approach, Agile methodology, is not just an alternative to such rigid 
methodologies, but a reaction to them. The aim of Agile processes is to embrace change 
as a necessary part of the contract between client and developer. If customers want to 
change something in the product that they are paying for, the temporal and financial 
cost should be correlated to the size of the change, not the phase of the process that is 
currently in progress. Unlike physical engineering, software engineering works with a 
malleable tool: source code. The bricks and mortar that form a house are literally fused 
together as construction progresses. The expense involved in changing the design of 
a house is necessarily linked to the completion of the building phase. If the project 
has not been started—if it is still just in blueprints—change is relatively cheap. If the 
windows are in, the electricity wired up, and the plumbing fitted, moving the upstairs 
bathroom down next to the kitchen could be prohibitively expensive. With code, mov-
ing features around and reworking the navigation of a user interface should not be as 
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significant. Unfortunately, this is not always the case. The temporal cost alone often 
prohibits such changes. This, I find, is largely a result of a lack of adaptability in code.

This book demonstrates the second approach and explains, with real-world exam-
ples, the practicalities of implementing adaptive code.

Who should read this book

This book is intended to bridge a gap between theory and practice. The reader for 
whom this book is written is an experienced programmer who seeks more practical 
examples of design patterns, SOLID principles, unit testing and refactoring, and more. 

Capable intermediate programmers who want to plug the gaps in their knowledge 
or have doubts and questions about how some of the industry’s best practices fit 
together will benefit most from this book, especially because the day-to-day reality 
of programming rarely matches simple examples or theory. Much of SOLID is now 
understood, but the intricacies of the open/closed principle (covered in Chapter 6) 
and Liskov substitution (covered in Chapter 7) are not fully comprehended. Even 
experienced programmers sometimes do not fully realize the benefits provided by 
dependency injection (covered in Chapter 9). Similarly, the flexibility—adaptability—
that interfaces (covered in Chapter 3) lend to code is often overlooked.

This book can also help the more junior developer learn, from the ground up, which 
aspects of common patterns and practices are benevolent and which are, in the long 
term, malevolent. The code samples that I see from prospective employees have a lot 
in common. The general theme is that the candidate is almost there with respect to 
many skills but just needs a slight push in the right direction to become a significantly 
better programmer. Specifically, the Entourage anti-pattern (covered in Chapter 2) and 
the Service Locator anti-pattern (covered in Chapter 9) are very prevalent in sample 
code. Practical alternatives, and their rationales, are provided in this book.

Assumptions
Ideally, you should have some practical experience of programming in a language that 
is syntactically similar to C#, such as Java or C++. You should also have a strong founda-
tion in core procedural programming concepts such as conditional branching, loops, 
and expressions. You should also have some experience of object-oriented program-
ming using classes, and at least a passing familiarity with interfaces. 
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This book might not be for you if…

This book might not be for you if you are just starting out on a journey to learn how to 
program. This book covers advanced topics that assume a thorough understanding of 
fundamental programming concepts.

Organization of this book

This book is made up of three parts, each of which builds on the last. That said, the 
book can also be read out of order. Each chapter covers a self-contained subject in 
detail, with cross references included where appropriate. 

Part I: An Agile foundation
This part lays the foundation for building software in an adaptive way. It covers the 
high-level Agile process known as Scrum, which requires code to be adaptive to change. 
The chapters in this part focus on details around interfaces, design patterns, refactoring, 
and unit testing.

 ■ Chapter 1: Introduction to Scrum This chapter sets the scene for the book 
by introducing Scrum, which is an Agile project management methodology. The 
chapter gives an in-depth overview of the artifacts, roles, metrics, and phases 
of a Scrum project. Finally, it shows how developers should organize themselves 
and their code when operating in an Agile environment. 

 ■ Chapter 2: Dependencies and layering This chapter explores dependencies 
and architectural layering. Code can only be adaptive if the solution’s structure 
allows it to be. The different types of dependencies are described: first-party, 
third-party, and framework. The chapter describes how to manage and organize 
dependencies, from anti-patterns (which should be avoided) to patterns (which 
should be embraced). It also introduces advanced topics such as aspect-oriented 
programming and asymmetric layering, providing further depth.

 ■ Chapter 3: Interfaces and design patterns Interfaces are, by now, ubiquitous 
in modern .NET development. However, they are often misapplied, misunder-
stood, and misappropriated. This chapter shows some of the more common and 
practically useful design patterns, exploring how versatile an interface can be. 
Leading the reader beyond the simple extraction of an interface, the chapter 
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shows how interfaces can be elaborated in many different ways to solve a 
problem. Mixins, duck-typing, and interface fluency further underscore the 
versatility of this key weapon in the programmer’s arsenal.

 ■ Chapter 4: Unit testing and refactoring Two practices that are becoming 
prerequisite skills are unit testing and refactoring. The two are closely related 
and work in unison to produce adaptive code. Without the safety net of unit 
tests, refactoring is prone to error; without refactoring, code becomes unwieldy, 
rigid, and hard to comprehend. This chapter takes an example of unit testing 
from humble beginnings and expands it to use more advanced—but practical 
—patterns and practices such as fluent assertions, test-driven development, 
and mocking. For refactoring, the chapter provides examples of real-world 
refactors that improve the readability and maintainability of the source code.

Part II: Writing SOLID code
This part builds on the foundation laid in Part I. Each chapter is devoted to examining 
one principle of SOLID. The emphasis in these chapters is on practical examples for 
implementing the principles, rather than solely on the theory of why. By placing each 
example in a real-world context, the chapters in this part of the book clearly demon-
strate the utility of SOLID. 

 ■ Chapter 5: The single responsibility principle This chapter shows how to 
implement the single responsibility principle in practice by using the Decorator 
and Adapter patterns. The outcome of applying the principle is an increase in 
the number of classes and a decrease in the size of those classes. The chapter 
shows that, in contrast with monolithic classes that provide extensive features, 
these smaller classes are more directed and focused on solving only a small part 
of a larger problem. It is in their aggregation that these classes then become 
more than the sum of their parts.

 ■ Chapter 6: The open/closed principle The open/closed principle (OCP) is 
simply stated, but it can have a significant impact on code. It is responsible for 
ensuring that code that follows SOLID principles is only appended to and never 
edited. This chapter also discusses the concept of predicted variation in relation 
to OCP and explores how it can help developers identify extension points for 
further adaptability.

 ■ Chapter 7: The Liskov substitution principle This chapter shows the posi-
tive effects that result from applying the Liskov substitution principle on code, 
particularly the fact that the guidelines help enforce the open/closed principle 
and prevent the unintended consequences of change. Contracts—through 
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preconditions, postconditions, and data invariants—are covered by using the 
Code Contracts tooling. The chapter also describes subtyping guidelines such 
as covariance, contravariance, and invariance, along with the negative impact 
of breaking these rules.

 ■ Chapter 8: Interface segregation Not only should classes be smaller than 
they commonly are, this chapter shows that interfaces are, similarly, often too 
big. Interface segregation is a simple practice that is often overlooked; this 
chapter shows the benefits of limiting interfaces to the smallest size possible, 
along with the benefits of working with smaller interfaces. It also explores the 
different reasons that might motivate the segregation of interfaces, such as 
 client need and architectural need.

 ■ Chapter 9: Dependency injection This chapter contains the cohesive glue 
that holds together the rest of the features in the book. Without dependency 
injection (DI), there is a lot that would not be possible—it is really that impor-
tant. This chapter contains an introduction to DI and a comparison of the differ-
ent methods of implementing it. The chapter includes discussions on managing 
object lifetimes, working with Inversion of Control containers, avoiding common 
anti-patterns relating to service location, and identifying composition roots and 
resolution roots.

Part III: Adaptive sample
This part uses a sample application as a way of tying together the rest of the book. 
Although there is a lot of code in these chapters, there is ample accompanying explana-
tion. Because this book is about working in an Agile environment, the chapters map to 
Scrum sprints, and all work is the result of backlog items and client change requests. 

 ■ Chapter 10: Adaptive sample: Introduction This first chapter describes 
the application that is to be developed: an online chat application developed 
in ASP.NET MVC 5. A brief design is provided as a guideline for the planned 
architecture, in addition to an explanation of the features on the backlog.

 ■ Chapter 11: Adaptive sample: Sprint 1 Using a test-driven development 
(TDD) approach, the first features of the application are developed, including 
viewing and creating chat rooms and messages. 

 ■ Chapter 12: Adaptive sample: Sprint 2 The client, inevitably, makes some 
changes to the requirements of the application, and the team accommodates 
those changes through adaptive code. 
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Appendices
Some reference material is available in the appendices, specifically for working with Git 
source control and to explain how the code for this book is organized on GitHub.

 ■ Appendix A: Adaptive tools This is a very brief introduction to Git source 
control that should, at the very least, allow you to download the code from 
GitHub and compile it in Microsoft Visual Studio 2013. It is not intended as a 
thorough guide to Git—there are some excellent sources already out there, 
such as the official Git tutorial:

http://git-scm .com/docs/gittutorial

A quick web search will find other sources.

This appendix also looks at other developer tools, such as continuous integration 
and the development environment.

 ■ Appendix B (available online only): GitHub code samples By putting the 
code for this book on GitHub, I am able to make changes in a centralized loca-
tion. The repository is read-only, but Appendices A and B together show you 
how to find the code for a listing, download it, compile it, run it, and make local 
changes. If you think you have found a defect or want to suggest a change, you 
can issue a pull request to the main AdaptiveCode repository and I will gladly take 
a look. You can find Appendix B via this book’s page at microsoftpressstore .com.

Conventions and features in this book

Throughout this book, there are a number of repeated conventions. These are mainly 
standard to Microsoft Press publications, but it won’t hurt to explain them up front.

Code listings
Code listings are included where appropriate, and a call-out is made to them where 
relevant, as shown in Listing I-1.

http://git-scm.com/docs/gittutorial
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LISTING I-1 This is a code listing. There are plenty of these in the book.

public void MyService : IService 
{ 
 
}

Whenever your attention should be drawn to a certain part of the code—for 
instance, when changes have been made to a previous example—the code will be 
highlighted in bold.

Readeraids and sidebars
Readeraids are used for small asides, such as notes or warnings, whereas sidebars are 
reserved for larger digressions. Here are some examples:

Note This is a readeraid. It contains small information nuggets that  relate to 
the main content but have some kind of added importance.

This is a sidebar
Although this one is necessarily short, sidebars are usually reserved for longer 
discussions on topics that are somewhat tangential to the main topic.

Images
Sometimes, an explanation—no matter how florid—is not enough. In these cases, an 
image is provided. All diagrams were created in Microsoft Visio 2013 with no theming, 
to create a high contrast and to focus solely on exposition. Screenshots were taken with 
a high-contrast theme applied.
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System requirements

You will need the following hardware and software to use the code samples in this 
book:

 ■ Either Windows XP Service Pack 3 (except Starter Edition), Windows Vista 
Service Pack 2 (except Starter Edition), Windows 7, Windows Server 2003  
Service Pack 2, Windows Server 2003 R2, Windows Server 2008 Service Pack 2, 
or Windows Server 2008 R2

 ■ Visual Studio 2013, any edition (multiple downloads might be required if you 
are using Express Edition products)

 ■ Microsoft SQL Server 2008 Express Edition or higher (2008 or R2 release), with 
SQL Server Management Studio 2008 Express or higher (included with Visual 
Studio; Express Editions require a separate download)

 ■ A computer that has a 1.6-gigahertz (GHz) or faster processor (2 GHz 
 recommended)

 ■ 1 gigabyte (GB) (32 bits) or 2 GB (64 bits) of RAM (add 512 megabytes [MB] 
if running in a virtual machine or using SQL Server Express Editions, more for 
advanced SQL Server editions)

 ■ 3.5 GB of available hard disk space

 ■ A 5,400-RPM hard disk drive

 ■ A DirectX 9–capable video card running at 1024 x 768 or a higher-resolution 
display

 ■ A DVD-ROM drive (if installing Visual Studio from DVD)

 ■ An Internet connection for downloading software or code samples

Depending on your Windows configuration, you might require Local Administrator 
rights to install or configure Visual Studio 2013 and SQL Server 2008 products.
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Downloads: Code samples

As far as possible, I ensured that the code listings were part of a larger example that 
could be run either as a stand-alone application or a unit test. I wrote many of the 
simpler unit tests by using MSTest, so that no external test runner was needed, but I 
wrote the more complex unit tests by using NUnit. I used Visual Studio 2013 Ultimate 
to write all of the code. Although I wrote some of it by using the preview version, it has 
all been compiled and tested on the full version. As far as possible, I didn’t use features 
that were unavailable to the Express Editions of Visual Studio 2013, but for some topics, 
this was not possible. Readers wanting to run this code will need to install a paid-for 
version.

The code itself is available from GitHub, at the following address:

http://aka .ms/AdaptiveCode_CodeSamples 

Appendix A contains explanations for using Git, and Appendix B (online only) details 
how the code in the AdaptiveCode repository is organized.

If you want to make a comment where I am likely to see it, my WordPress blog is here:

http://garymcleanhall .wordpress .com
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Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. You can access updates to this book—in the form of a list of submitted errata and 
their related corrections—at: 

http://aka .ms/Adaptive/errata 

If you discover an error that is not already listed, please submit it to us at the 
same page.

If you need additional support, email Microsoft Press Book Support at  
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered 
through the previous addresses. For help with Microsoft software or hardware, go to 
http://support .microsoft .com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks 
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF, 
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka .ms/mspressfree 

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset. Please tell us what you think of this book at: 

http://aka .ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers 
go directly to the editors at Microsoft Press. (No personal information will be requested.) 
Thanks in advance for your input!

http://aka.ms/Adaptive/errata
http://support.microsoft.com
http://aka.ms/mspressfree
http://aka.ms/tellpress
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Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter .com/MicrosoftPress.

http://twitter.com/MicrosoftPress
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C H A P T E R  7

The Liskov substitution principle

After completing this chapter, you will be able to

 ■ Understand the importance of the Liskov substitution principle.

 ■ Avoid breaking the rules of the Liskov substitution principle.

 ■ Further solidify your single responsibility principle and open/closed principle habits.

 ■ Create derived classes that honor the contracts of their base classes.

 ■ Use code contracts to implement preconditions, postconditions, and data invariants.

 ■ Write correct exception-throwing code.

 ■ Understand covariance, contravariance, and invariance and where each applies.

Introduction to the Liskov substitution principle

The Liskov substitution principle (LSP) is a collection of guidelines for creating inheritance hierarchies 
in which a client can reliably use any class or subclass without compromising the expected behavior.

If the rules of the LSP are not followed, an extension to a class hierarchy—that is, a new subclass—
might necessitate changes to any client of the base class or interface. If the LSP is followed, clients can 
remain unaware of changes to the class hierarchy. As long as there are no changes to the interface, 
there should be no reason to change any existing code. The LSP, therefore, helps to enforce both the 
open/closed principle and the single responsibility principle.

Formal definition
The definition of the LSP by prominent computer scientist Barbara Liskov is a bit dry, so it requires 
further explanation. Here is the official definition:

If S is a subtype of T, then objects of type T may be replaced with objects of type S, 
without breaking the program .

—Barbara Liskov
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There are three code ingredients relating to the LSP: 

 ■ Base type The type (T) that clients have reference to. Clients call various methods, any of 
which can be overridden—or partially specialized—by the subtype.

 ■ Subtype Any one of a possible family of classes (S) that inherit from the base type (T). 
Clients should not know which specific subtype they are calling, nor should they need to. 
The client should behave the same regardless of the subtype instance that it is given.

 ■ Context The way in which the client interacts with the subtype. If the client doesn’t interact 
with a subtype, the LSP can neither be honored nor contravened.

LSP rules
There are several “rules” that must be followed for LSP compliance. These rules can be split into two 
categories: contract rules (relating to the expectations of classes) and variance rules (relating to the 
types that can be substituted in code). 

Contract rules
These rules relate to the contract of the supertype and the restrictions placed on the contracts that 
can be added to the subtype. 

 ■ Preconditions cannot be strengthened in a subtype.

 ■ Postconditions cannot be weakened in a subtype.

 ■ Invariants—conditions that must remain true—of the supertype must be preserved in a 
 subtype.

To understand the contract rules, you should first understand the concept of contracts and then 
explore what you can do to ensure that you follow these rules when creating subtypes. The “Contracts” 
section later in this chapter covers both in depth.

Variance rules
These rules relate to the variance of arguments and return types. 

 ■ There must be contravariance of the method arguments in the subtype.

 ■ There must be covariance of the return types in the subtype.

 ■ No new exceptions can be thrown by the subtype unless they are part of the existing excep-
tion hierarchy.

The concept of type variance in the languages of the Common Language Runtime (CLR) of the 
Microsoft .NET Framework is limited to generic types and delegates. However, variance in these 
scenarios is well worth exploring and will equip you with the requisite knowledge to write code that 
is LSP compliant for variance. This will be explored in depth in the “Covariance and contravariance” 
section later in this chapter.
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Contracts

It is often said that developers should program to interfaces, and a related idiom is to program to a 
contract. However, beyond the apparent method signatures, interfaces convey a very loose notion 
of a contract. A method signature reveals little about the actual requirements and guarantees of the 
method’s implementation, as Figure 7-1 shows. In a strongly typed language like C#, there is at least 
a notion of passing the correct type for an argument, but this is largely where the interface ends and 
the concept of the contract must begin.

FIGURE 7-1 Method signatures reveal little about the expectations of the implementation.

All methods have at least an optional return type, a name, and an optional list of formal parameters. 
Each parameter consists of a type specifier and a name. When calling the method shown in Figure 7-1, 
you know—from only looking at the signature—that you need to pass in three parameters, one of 
type float, one of type Size<float>, and another of type RegionInfo. You also know that you 
can save the return value, of type decimal, in a variable or otherwise operate on this value after the 
call has been made. 

Note It is not advisable to use the decimal type to represent currency values, as is done 
in Figure 7-1. Instead, a Money1 value type should be used. Although effort has been taken 
to ensure that the examples in this book are, as much as possible, relevant to a real-world 
context and are not just contrivances, some concessions have been made in the interest of 
brevity.

As a method writer, you can control the names given to parameters and methods. Take extra care to 
ensure that the method name truly represents the method’s purpose and that the parameter names 
are as descriptive as possible. The CalculateShippingCost function’s name uses a verb-noun form. 
Here the verb—the action performed by the method—is Calculate, and the noun—the object of 
the verb—is ShippingCost. This noun is, in a sense, the name of the return value. Descriptive names 
have also been chosen for the parameters: packageDimensionsInInches and packageWeightIn
Kilograms are self-explanatory parameter names, especially in the context of the method. They form 
a starting point for documenting the method. 

1  http://moneytype.codeplex.com/

http://moneytype.codeplex.com/
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Tip For further information on good variable and method naming and other best practices, 
Steve McConnell’s Code Complete2 is essential reading.

What is missing, though, is the contract of the method. For example, the packageWeightIn
Kilograms parameter is of type float. What clients of this method might infer is that any float 
value is valid, including a negative value. Because the parameter represents a weight, a negative value 
should not be valid. The contract of this method should enforce a weight of greater than zero. For 
this, the method must implement a precondition.

Tip Although contracts as outlined in this chapter add run-time protection against many 
invalid calls to methods, the importance of good method and parameter naming is hard 
to exaggerate. If the formal parameters of the CalculateShippingCost method did not 
specify that they are in inches or kilograms, clients could, for example, call the method with 
values representing centimeters and pounds, respectively.

Preconditions
Preconditions are defined as all of the conditions necessary for a method to run reliably and without 
fault. Every method requires some preconditions to be true before it should be called. By default, in-
terfaces force no guarantees on any of the implementers of their methods. Listing 7-1 shows how you 
can implement a precondition by using a guard clause at the start of a method.

LISTING 7-1 Throwing an exception is an effective way of enforcing precondition contracts.

public decimal CalculateShippingCost( 
    float packageWeightInKilograms,  
    Size<float> packageDimensionsInInches,  
    RegionInfo destination) 
{ 
    if (packageWeightInKilograms <= 0f) throw new Exception(); 
 
    return decimal.MinusOne; 
}

The if statement at the very start of the method is one way to enforce a precondition, such as the 
requirement for a positive weight. If the condition packageWeightInKilograms <= 0f is met, an 
exception is thrown and the method stops executing immediately. This certainly prevents a method 

2  http://www.stevemcconnell.com/cc.htm

http://www.stevemcconnell.com/cc.htm
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from being executed unless all parameters have valid values. By using a more descriptive exception, 
you can provide more context to the caller, as shown in Listing 7-2.

LISTING 7-2 It is important to provide as much context as possible about why the precondition caused a failure.

public decimal CalculateShippingCost( 
    float packageWeightInKilograms,  
    Size<float> packageDimensionsInInches,  
    RegionInfo destination) 
{ 
    if (packageWeightInKilograms <= 0f)  
        throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package weight  
  must be positive and non-zero"); 
 
    return decimal.MinusOne; 
}

This is an improvement on the first exception that was thrown. In addition to using an exception 
specifically for the purpose of out-of-range arguments, the client is also informed which parameter is 
errant and a description of the problem is provided. 

By chaining more guard clauses like this together, you can add more conditions that must be ful-
filled in order to call the method without generating an exception. The changes shown in Listing 7-3 
include exceptions that are thrown when the package dimensions are out of range, too.

LISTING 7-3 As many preconditions as necessary can be added to prevent the method from being called with 
invalid parameters.

public decimal CalculateShippingCost( 
    float packageWeightInKilograms,  
    Size<float> packageDimensionsInInches,  
    RegionInfo destination) 
{ 
    if (packageWeightInKilograms <= 0f)  
        throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package weight  
  must be positive and nonzero"); 
 
    if (packageDimensionsInInches.X <= 0f || packageDimensionsInInches.Y <= 0f) 
        throw new ArgumentOutOfRangeException("packageDimensionsInInches", "Package  
  dimensions must be positive and non-zero"); 
 
    return decimal.MinusOne; 
}
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With these preconditions in place, clients must ensure that the parameters that they provide are 
within valid ranges before calling. One corollary from this is that all of the state that is checked in a 
precondition must be publically accessible by clients. If the client is unable to verify that the method 
they are about to call will throw an error due to an invalid precondition, the client won’t be able to 
ensure that the call will succeed. Therefore, private state should not be the target of a precondition; 
only method parameters and the class’s public properties should have preconditions.

Postconditions
Postconditions check whether an object is being left in a valid state as a method is exited. Whenever 
state is mutated in a method, it is possible for the state to be invalid due to logic errors. 

Postconditions are implemented in the same manner as preconditions, through guard clauses. How-
ever, rather than placing the clauses at the start of the method, postcondition guard clauses must be 
placed at the end of the method after all edits to state have been made, as Listing 7-4 shows.

LISTING 7-4 The guard clause at the end of the method is a postcondition that ensures that the return value is in 
range.

public virtual decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
{ 
    if (packageWeightInKilograms <= 0f)  
        throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package weight  
  must be positive and nonzero"); 
 
    if (packageDimensionsInInches.X <= 0f || packageDimensionsInInches.Y <= 0f) 
        throw new ArgumentOutOfRangeException("packageDimensionsInInches", "Package  
  dimensions must be positive and nonzero"); 
 
    // shipping cost calculation 
 
    var shippingCost = decimal.One; 
 
    if(shippingCost <= decimal.Zero) 
        throw new ArgumentOutOfRangeException("return", "The return value is out of  
  range"); 
             
    return shippingCost; 
}

By testing state against a predetermined valid range—and throwing an exception if the value 
falls outside of that range—you can enforce a postcondition on the method. The postcondition here 
relates not to the state of the object but to the return value. Much like method argument values are 
tested against preconditions for validity, so are method return values tested against postconditions 
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for validity. If, at any point during the method, the return value is set to zero or a negative value, 
the postcondition will detect this and halt execution at the end of the method. This way, clients of this 
method will never inadvertently receive an invalid value and they can continue to assume that it will 
always be valid. Note that the interface of the method does not communicate that the return value 
will always be non-zero and positive—that is a feature of the interface’s contract with clients.

Data invariants
A third type of contract is the data invariant. A data invariant is a predicate that remains true for the 
lifetime of an object; it is true after construction and must remain true until the object is out of scope. 
Data invariants relate to the expected internal state of the object. An example of a data invariant for 
the ShippingStrategy call is that the flat rate provided is positive and non-zero. If, as shown in 
Listing 7-5, the flat rate is set on construction, a simple guard clause in the constructor will prevent an 
invalid value from being set.

LISTING 7-5 Adding a precondition to a constructor can help protect a data invariant.

public class ShippingStrategy 
{ 
    public ShippingStrategy(decimal flatRate) 
    { 
        if (flatRate <= decimal.Zero) 
            throw new ArgumentOutOfRangeException("flatRate", "Flat rate must be positive  
  and nonzero"); 
 
        this.flatRate = flatRate; 
    } 
     
    protected decimal flatRate; 
}

Because the flatRate value is a protected member variable, the only opportunity that clients have 
for setting the value is through the constructor. If flatRate is set to a valid value at this point, it is 
guaranteed to be valid for the rest of the lifetime of the object because clients have no way of chang-
ing this value. 

However, if the flatRate variable is instead a publically settable property, the guard clause would 
have to be moved to the setter block in order to protect the data invariant. Listing 7-6 shows the flat 
rate refactored as a public property, with an accompanying guard clause.
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LISTING 7-6 When a data invariant is a public property, the guard clause moves to the setter.

public class ShippingStrategy 
{ 
    public ShippingStrategy(decimal flatRate) 
    { 
        FlatRate = flatRate; 
    } 
 
    public decimal FlatRate 
    { 
        get 
        { 
            return flatRate; 
        } 
        set 
        { 
            if (value <= decimal.Zero) 
                throw new ArgumentOutOfRangeException("value", "Flat rate must be positive  
  and nonzero"); 
 
            flatRate = value; 
        } 
    } 
}

Now clients might be able to change the value of the FlatRate property but, because of the if 
statement and exception, the invariant cannot be broken. 

Encapsulation vs. contracts
The contracts implemented in this example make sense, but they are caused by a poor choice 
of types for each value. The precondition contract for ensuring that the package weight argu-
ment is non-zero and positive is intrinsically linked with the type of the variable: weight should 
never be zero or negative. This makes weight a candidate for encapsulation into its own type. If, 
as is likely, another class or method requires a weight, you would need to carry this precondi-
tion across to the new code. This is inefficient, hard to maintain, and error-prone. It makes more 
sense to create a new type and define the precondition with it so that all uses of the Weight 
type must have a non-zero and positive value. It is, in fact, an invariant of the type rather than a 
precondition of the CalculateShippingCost method.

Similarly, the flat rate is modeled poorly by the decimal type. Instead, this should be pro-
moted to its own value type, and the invariant requiring it to also be non-zero and positive should 
be applied to this type.
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Liskov contract rules
All of this method contract discussion is merely preamble to some of the tenets of the Liskov substitu-
tion principle. The LSP sets rules by which types must inherit contracts. A reminder of the definition of 
the LSP is shown here:

If S is a subtype of T, then objects of type T may be replaced with objects of type S, without 
breaking the program .

Where contracts are concerned, this leads to the guidelines that were stated earlier:

 ■ Preconditions cannot be strengthened in a subtype.

 ■ Postconditions cannot be weakened in a subtype.

 ■ Invariants of the supertype must be preserved in a subtype.

If you follow all of these rules when creating subclasses of existing classes, substitutability will be 
retained when you are dealing with contracts.

Whenever a subclass is created, it brings with it all of the methods, properties, and fields that make 
up the parent class. This also includes the contracts inside the methods and property setters. Precon-
ditions, postconditions, and data invariants are all expected to be maintained in the same way that 
they were in the parent class. Subclasses are, where applicable, allowed to override method imple-
mentations, which includes the possibility for changing the contracts. Liskov substitution stipulates 
that some changes are not allowed, because they could break existing clients that must be able to 
use the new subclass as if it were an instance of the superclass.

Preconditions cannot be strengthened 
Whenever a subclass overrides an existing method that contains preconditions, it must never strengthen 
the existing preconditions. Doing so would potentially break any client code that already assumes 
that the subclass defines the strongest possible precondition contracts for any method.

Listing 7-7 shows the addition of a new WorldWideShippingStrategy. Due to the large number 
of similarities in how the classes behave, this new class is implemented as a subclass of the Shipping
Strategy class. The CalculateShippingCost method is overridden to provide a new value that 
takes into account the destination of the package being sent via the RegionInfo parameter. Although 
the ShippingStrategy class did not make any guarantees that the destination of the package would 
be provided, WorldWideShippingStrategy now requires this parameter to be provided, otherwise 
it cannot correctly calculate how much it would cost to send the package to that location. 
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LISTING 7-7 This subclass adds a new guard clause, thus strengthening the preconditions.

public class WorldWideShippingStrategy : ShippingStrategy 
{ 
    public override decimal CalculateShippingCost( 
        float packageWeightInKilograms,  
        Size<float> packageDimensionsInInches,  
        RegionInfo destination) 
    { 
        if (packageWeightInKilograms <= 0f) 
            throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package  
  weight must be positive and nonzero"); 
 
        if (packageDimensionsInInches.X <= 0f || packageDimensionsInInches.Y <= 0f) 
            throw new ArgumentOutOfRangeException("packageDimensionsInInches", "Package  
  dimensions must be positive and nonzero"); 
 
        if (destination == null) 
            throw new ArgumentNullException("destination", "Destination must be  
  provided"); 
 
        return decimal.One; 
    } 
}

The temptation is to strengthen the preconditions so that you can guarantee that the destination 
parameter is provided. This creates a conflict that calling code is unable to solve. If a class calls the 
CalculateShippingCost method of the ShippingStrategy class, it is free to pass in a null value 
for the destination parameter without experiencing a side effect. But if it is calling the Calculate
ShippingCost method of the WorldWideShippingStrategy class, it must not pass in a null value 
for the destination parameter. Doing so would violate a precondition and cause an exception to be 
thrown. As earlier chapters have demonstrated, client code must never make assumptions about what 
type it is acting on. Doing so only leads to strong coupling between classes and an inability to adapt 
to changes in requirements. 

To demonstrate the problem, examine the unit test shown in Listing 7-8. 

LISTING 7-8 When the precondition is strengthened, clients cannot reliably use a WorldWideShippingStrategy 
where a ShippingStrategy is required.

[Test] 
public void ShippingRegionMustBeProvided() 
{ 
    strategy.Invoking(s => s.CalculateShippingCost(1f, ValidDimensions, null)) 
        .ShouldThrow<ArgumentNullException>("Destination must be provided") 
        .And.ParamName.Should().Be("destination"); 
}
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If the strategy used by this test is of type WorldWideShippingStrategy, the test will pass; no 
destination is provided but one is required, thus an exception meeting the specification is thrown. If 
a ShippingStrategy is used instead, this test will fail because no precondition exists to prevent the 
null value for the destination and no exception will be thrown.

Listing 7-9 shows a refactored set of unit tests that do not attempt to test the same preconditions 
on both strategy types. A test asserting that the shipping region must be provided is only valid for the 
WorldWideShippingStrategy. However, regardless of shipping strategy, the precondition that the 
shipping weight must be positive is always valid, so this is included in a base class of tests that will be 
run for each shipping strategy class.

LISTING 7-9 These refactored unit tests separately target the two shipping strategy classes.

[TestFixture] 
public class WorldWideShippingStrategyTests : ShippingStrategyTestsBase 
{ 
    [Test] 
    public void ShippingRegionMustBeProvided() 
    { 
        strategy.Invoking(s => s.CalculateShippingCost(1f, ValidSize, null)) 
            .ShouldThrow<ArgumentNullException>("Destination must be provided") 
            .And.ParamName.Should().Be("destination"); 
    } 
 
    protected override ShippingStrategy CreateShippingStrategy() 
    { 
        return new WorldWideShippingStrategy(decimal.One); 
    } 
} 
// . . . 
public abstract class ShippingStrategyTestsBase 
{         
    [Test] 
    public void ShippingWeightMustBePositive() 
    { 
        strategy.Invoking(s => s.CalculateShippingCost(1f, ValidSize, null)) 
            .ShouldThrow<ArgumentOutOfRangeException>("Package weight must be positive and  
  nonzero") 
            .And.ParamName.Should().Be("packageWeightInKilograms"); 
    } 
}

Postconditions cannot be weakened
When applying postconditions to subclasses, the opposite rule applies. Instead of not being able to 
strengthen postconditions, you cannot weaken them. As for all of the Liskov substitution rules relat-
ing to contracts, the reason that you cannot weaken postconditions is because existing clients might 
break when presented with the new subclass. Theoretically, if you comply with the LSP, any subclass 
you create should be usable by all existing clients without causing them to fail in unexpected ways.
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One such example of causing an unexpected failure in an existing client is explored in Listing 7-10. 
The unit test and implementation relate to the WorldWideShippingStrategy, the Shipping
Strategy subclass for international packages. 

LISTING 7-10 The new implementation requires a weakening of the postcondition.

[Test] 
public void ShippingDomesticallyIsFree() 
{ 
   strategy.CalculateShippingCost(1f, ValidDimensions, RegionInfo.CurrentRegion) 
        .Should().Be(decimal.Zero); 
} 
// . . . 
public override decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
{ 
    if (destination == null) 
        throw new ArgumentNullException("destination", "Destination must be provided"); 
 
    if (packageWeightInKilograms <= 0f) 
        throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package weight  
  must be positive and nonzero"); 
 
    if (packageDimensionsInInches.X <= 0f || packageDimensionsInInches.Y <= 0f) 
        throw new ArgumentOutOfRangeException("packageDimensionsInInches", "Package  
  dimensions must be positive and nonzero"); 
 
    var shippingCost = decimal.One; 
 
    if(destination == RegionInfo.CurrentRegion) 
    { 
        shippingCost = decimal.Zero; 
    } 
 
    return shippingCost; 
}

The unit test asserts that, when the current region is used for the destination—that is, the shipping 
is domestic—the WorldWideShippingStrategy does not charge for shipping at all. This is reflected 
in the accompanying implementation. This assertion is, again, in conflict with an existing unit test for 
the base class that asserts the original postcondition: that the result is always positive and non-zero, 
as shown in Listing 7-11.
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LISTING 7-11 This unit test shows the original unit test, which fails when the strategy is a WorldWideShipping
Strategy.

[Test] 
public void ShippingCostMustBePositiveAndNonZero() 
{ 
    strategy.CalculateShippingCost(1f, ValidDimensions, RegionInfo.CurrentRegion) 
        .Should().BeGreaterThan(0m); 
}

A client could easily be broken by this change in behavior due to its assumption of the value of 
the shipping cost. For example, the client assumes that the shipping cost is always positive and non-
zero, as indicated by the postcondition contract of the ShippingStrategy. This client then uses the 
shipping cost as the denominator in a subsequent calculation. When a switch is made to use the new 
WorldWideShippingStrategy, the client unexpectedly starts throwing DivideByZeroException 
errors for all domestic orders. 

Had the LSP been honored and the postcondition never weakened, this defect would never have 
been introduced.

Invariants must be maintained
Whenever a new subclass is created, it must continue to honor all of the data invariants that were 
part of the base class. This is an easy problem to introduce because subclasses have a lot of freedom 
to introduce new ways of changing previously private data.

Listing 7-12 returns to the previous data invariant example from earlier in the chapter. However, 
in this instance, the ShippingStrategy accepts the flat rate value as a constructor parameter and 
maintains this value as a read-only data invariant. The new WorldWideShippingStrategy is intro-
duced, and the means to change the flat rate value is made public through a property. 

LISTING 7-12 The subclass breaks the data invariant of the superclass, violating the LSP.

[Test] 
public void ShippingFlatRateCanBeChanged() 
{ 
    strategy.FlatRate = decimal.MinusOne; 
 
    strategy.FlatRate.Should().Be(decimal.MinusOne); 
} 
// . . . 
public class WorldWideShippingStrategy : ShippingStrategy 
{ 
    public WorldWideShippingStrategy(decimal flatRate) 
        : base(flatRate) 
    { 
             
    } 
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    public decimal FlatRate 
    { 
        get 
        { 
            return flatRate; 
        } 
        set 
        { 
            flatRate = value; 
        } 
    } 
}

Although the subclass reuses the base class’s constructor and guard clause, it does not maintain 
the data invariant and therefore breaks the Liskov substitution principle. The unit test proves that 
clients are able to set the value to a negative number, which should be disallowed by the class if it is 
to correctly protect its data invariants.

Listing 7-13 shows that when the base class is reworked to disallow direct write access to the flat 
rate field, the invariant is properly honored by the subclass. This is a very common pattern whereby 
fields are private but have protected or public properties that contain guard clauses to protect the 
invariants.

LISTING 7-13 The base class allows the subclass write access to the field only through the guarded property 
setter.

public class WorldWideShippingStrategy : ShippingStrategy 
{ 
    public WorldWideShippingStrategy(decimal flatRate) 
        : base(flatRate) 
    { 
             
    } 
 
    public new decimal FlatRate 
    { 
        get 
        { 
            return base.FlatRate; 
        } 
        set 
        { 
            base.FlatRate = value; 
        } 
    } 
} 
// . . . 
public class ShippingStrategy 
{ 



 CHAPTER 7 The Liskov substitution principle 231

    public ShippingStrategy(decimal flatRate) 
    { 
        if (flatRate <= decimal.Zero) 
            throw new ArgumentOutOfRangeException("flatRate", "Flat rate must be positive  
  and nonzero"); 
 
        this.flatRate = flatRate; 
    } 
 
    protected decimal FlatRate 
    { 
        get 
        { 
            return flatRate; 
        } 
        set 
        { 
            if (value <= decimal.Zero) 
                throw new ArgumentOutOfRangeException("value", "Flat rate must be positive  
  and nonzero"); 
 
            flatRate = value; 
        } 
    } 
}

Tightening the visibility of the field and instead providing access only through the property setter 
protects the invariant with a guard clause. Doing this at subclass level is also preferable because it 
means that all future subclasses are absolved of this responsibility and simply cannot directly write 
to the field at all. 

A new unit test can be created that asserts this new behavior, as shown in Listing 7-14.

LISTING 7-14 With the invariant maintained, this unit test passes. 

[Test] 
public void ShippingFlatRateCannotBeSetToNegativeNumber() 
{ 
    strategy.Invoking(s => s.FlatRate = decimal.MinusOne) 
        .ShouldThrow<ArgumentOutOfRangeException>("Flat rate must be positive and non 
  zero") 
        .And.ParamName.Should().Be("value"); 
}

If a client tries to set the FlatRate property to a negative value, or even to zero, the guard clause 
prevents the assignment and an ArgumentOutOfRangeException is thrown. 
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Code contracts
Throughout the previous section, the guard clauses that formed the basis of the contracts were all 
written in long form, using if statements and exceptions. It is worth exploring an alternative to these 
manual guard clauses: code contracts.

Previously a separate library, code contracts were integrated into the .NET Framework 4.0 main 
libraries. In addition to being easier to read, write, and comprehend than manual guard clauses, code 
contracts bring with them the possibility of using static verification and automatic generation of 
reference documentation.

With static contract verification, code contracts are able to check for contract violations without 
executing the application. This helps expose implicit contracts such as null dereferences and problems 
with array bounds, in addition to the explicitly coded contracts shown throughout this section.

Generating reference documentation relating to the contract of a method or class is important 
 because client code has no other way of knowing the exp   ectations. When more detail is included in 
the XML comments that form the documentation to methods and classes, clients can view the expec-
tations via IntelliSense. This makes working with classes that use contracts a bit easier.

Preconditions
Preconditions can be written succinctly by using code contracts. You will need to include the System.
Diagnostics.Contracts namespace, which is part of the mscorlib.dll and so should not need 
an additional assembly reference. The static Contract class provides the majority of the functionality 
that is required to implement contracts. 

Note If you make the decision to use code contracts, the static Contract class will permeate 
throughout almost all of your code base. This is less of a problem than it is with most static 
references because code contracts are ubiquitous infrastructure that, it is assumed, will not 
be removed or replaced. Thus, it is a significant undertaking to undo the decision to use 
code contracts, and it is best to use them from the outset of a project, or not at all.

Listing 7-15 shows the declarative nature of a code contract precondition.
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LISTING 7-15 The System.Diagnostics.Contracts namespace can provide guard clauses to methods.

using System.Diagnostics.Contracts; 
 
public class ShippingStrategy 
{ 
    public decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
    { 
        Contract.Requires(packageWeightInKilograms > 0f); 
        Contract.Requires(packageDimensionsInInches.X > 0f && packageDimensionsInInches.Y  
  > 0f); 
 
        return decimal.MinusOne; 
    } 
}

The Contract.Requires method accepts a Boolean predicate value. This represents the state 
that the method requires in order to proceed. Note that this is the exact opposite of the predi-
cate used in an if statement in manual guard clauses. In that case, the clauses were checking for 
state that was invalid before throwing an exception. With code contracts, the predicate is closer to 
an assertion: that the Boolean value must return true, otherwise the contract fails. This example 
requires that the packageWeightInKilograms parameter is non-zero and positive and that the 
packageDimensions InInches parameter is non-zero and positive for both its X and Y properties.

This version of the Contract.Requires method throws an exception when the contract predicate 
is not met, but the type of exception is a ContractException, which does not match the expected 
exception in the existing unit tests. Therefore, they fail.

Expected System.ArgumentOutOfRangeException because Package dimension must be positive and non 
  zero, but found System.Diagnostics.Contracts.__ContractsRuntime+ContractException with message  
  "Precondition failed: packageDimensionsInInches.X > 0f && packageDimensionsInInches.Y > 0f"

Furthermore, if you run this example while passing in an invalid value for one of the parameters, 
you will get the message shown in Figure 7-2. This informs you that you have not properly configured 
code contracts for use.

FIGURE 7-2 Code contracts must be configured before use.
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The property pages of each project include a Code Contracts tab on which you can configure code 
contracts. A minimal working setup is shown in Figure 7-3.

FIGURE 7-3 The property pages for code contracts contain a lot of settings.

When they are configured correctly, the contract preconditions can be rewritten to use an alterna-
tive version of the Contract.Requires method. Listing 7-16 shows this version.

LISTING 7-16 This version of the Requires method accepts the type of the exception to be thrown.

public class ShippingStrategy 
{ 
    public decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
    { 
        Contract.Requires<ArgumentOutOfRangeException>(packageWeightInKilograms > 0f,  
  "Package weight must be positive and nonzero"); 
        Contract.Requires<ArgumentOutOfRangeException>(packageDimensionsInInches.X > 0f &&  
  packageDimensionsInInches.Y > 0f, "Package dimensions must be positive and nonzero"); 
 
        return decimal.MinusOne; 
    } 
}

This generic version of the Requires method accepts the type of exception that you would like 
the contract to throw when the predicate fails. This, along with the exception message included in a 
subsequent method parameter, will cause the existing unit tests to pass.



 CHAPTER 7 The Liskov substitution principle 235

Postconditions
Code contracts can similarly provide a shortcut to defining postconditions. The Contract static class 
contains an Ensures method that is the postcondition complement to the precondition’s Requires 
method. This method also accepts a Boolean predicate that must be true in order to progress through 
to the return statement. It is worth noting that the return statement must be the only line that follows 
a call to Contract.Ensures. This makes intuitive sense because, otherwise, it would be possible to 
further modify state in a way that might break the postcondition.

Listing 7-17 reiterates the ShippingCostMustBePositive unit test and includes a rewritten 
CalculateShippingCost implementation that uses the Contract.Ensures method as a 
postcondition.

LISTING 7-17 The Ensures method creates a postcondition that should be true on exiting the method.

[Test] 
public void ShippingCostMustBePositive() 
{ 
    strategy.CalculateShippingCost(1, ValidSize, null) 
        .Should().BeGreaterThan(decimal.MinusOne); 
} 
// . . . 
public class ShippingStrategy 
{ 
    public decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
    { 
        Contract.Requires<ArgumentOutOfRangeException>(packageWeightInKilograms > 0f,  
  "Package weight must be positive and nonzero"); 
        Contract.Requires<ArgumentOutOfRangeException>(packageDimensionsInInches.X > 0f &&  
  packageDimensionsInInches.Y > 0f, "Package dimensions must be positive and nonzero"); 
 
        Contract.Ensures(Contract.Result<decimal>() > 0m); 
 
        return decimal.MinusOne; 
    } 
}

The predicate in this example is a bit different from the ones in prior examples and demonstrates a 
common use of the postcondition: testing that a return value is valid. Checking that the shipping cost 
is positive (and, in fact, non-negative) requires knowledge of the return value. The return value is often, 
but not always, a local variable that is declared and defined within the method. You could trivially 
assert that the value you are returning is greater than zero, but this is not really foolproof. To access 
the value that is actually returned from the method, you can use the Contract.Result method to 
retrieve it. This generic method accepts the return type of the method and returns whichever result is 
eventually returned by the method. This is how you can ensure that no subsequent lines can replace a 
valid value with an invalid value without the postcondition failing and an exception being thrown.
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Data invariants
It is common for each method in a class to contain its own preconditions and postconditions, but data 
invariants relate to the class as a whole. Code contracts allow you to create a private method on the 
class that contains declarative definitions of the class’s invariants. 

Each invariant is defined by another method of the Contract static class, as Listing 7-18 shows.

LISTING 7-18 Data invariants can be protected by a method dedicated to the purpose.

public class ShippingStrategy 
{ 
    public ShippingStrategy(decimal flatRate) 
    { 
        this.flatRate = flatRate; 
    } 
 
    [ContractInvariantMethod] 
    private void ClassInvariant() 
    { 
        Contract.Invariant(this.flatRate > 0m, "Flat rate must be positive and nonzero"); 
    } 
 
    protected decimal flatRate; 
}

The Contract.Invariant method follows the same pattern as the Requires and Ensures 
methods in that it accepts a Boolean predicate that must be true in order to satisfy the contract. 
In this example, there is also a second string parameter provided that describes the fault if this con-
tract fails to be met and the invariant is unprotected. The client is allowed to make as many calls to 
the Invariant method as necessary, so it is best to break the invariants down to their most granular, 
rather than logically AND them all together with the && operator. This gives you the maximum benefit 
of knowing exactly which data invariant has been broken.

If this were a normal private method, you would be obliged to call the method at the start and 
end of every method, to ensure that the invariants were correctly protected. Luckily, you can have 
code contracts do this on your behalf by marking the method with the ContractInvariantMethod
Attribute. Remember that attributes do not require the Attribute suffix, so this has been shortened 
in the example to ContractInvariantMethod. This flags the method as one that code contracts must 
call when entering and leaving a method, to confirm that the class’s data invariants are not being 
violated. The prerequisites for marking a method as a ContractInvariantMethod are that it must 
return void and accept no arguments. However, it can be public or private, and you can choose any 
name to describe the method. Classes can have more than one ContractInvariantMethod, so logi-
cally grouping them is also possible. The body of the method must only make calls to the Contract.
Invariant method.
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Interface contracts
The final feature of code contracts to be covered here is that of interface contracts. So far, you have 
embedded all of your calls to Contract.Requires, Contract.Ensures, and Contract.Invariant 
in the class implementation itself. As has been mentioned, the static nature of the Contract class 
makes this code ubiquitous and difficult to remove or change in favor of an alternative library in the 
future. This is somewhat contrary to the adaptive codebase that is the ideal, but some infrastructural 
concessions are justifiable for pragmatic reasons. 

A more immediate concern is the drop in readability that occurs when code contracts are liberally 
applied to classes. In fact, this is not really a fault of code contracts but a result of diligently applying 
contracts in general. Preconditions, postconditions, and data invariants are naturally implemented in 
code, but this code tends to increase the noise-to-signal ratio.

An interface contract, such as that shown in Listing 7-19 for the ongoing ShippingStrategy 
example, can alleviate this problem in addition to providing another helpful feature.

LISTING 7-19 A dedicated class can define preconditions, postconditions, and invariants for every implementation 
of an interface.

[ContractClass(typeof(ShippingStrategyContract))] 
interface IShippingStrategy 
{ 
    decimal CalculateShippingCost( 
        float packageWeightInKilograms,  
        Size<float> packageDimensionsInInches,  
        RegionInfo destination); 
} 
//. . . 
[ContractClassFor(typeof(IShippingStrategy))] 
public abstract class ShippingStrategyContract : IShippingStrategy 
{ 
    public decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
    { 
        Contract.Requires<ArgumentOutOfRangeException>(packageWeightInKilograms > 0f,  
  "Package weight must be positive and nonzero"); 
        Contract.Requires<ArgumentOutOfRangeException>(packageDimensionsInInches.X > 0f && 
  packageDimensionsInInches.Y > 0f, "Package dimensions must be positive and nonzero"); 
 
        Contract.Ensures(Contract.Result<decimal>() > 0m); 
 
        return decimal.One; 
    } 
 
    [ContractInvariantMethod] 
    private void ClassInvariant() 
    { 
        Contract.Invariant(flatRate > 0m, "Flat rate must be positive and nonzero"); 
    } 
}



238 PART II Writing SOLID code

For interface contracts, you of course need an interface to work with. In this example, the 
 CalculateShippingCost method has been extracted into its own IShippingStrategy interface.  
It is this interface, rather than a single implementation, that is going to have the contracts applied. 
This is an important departure from the previous examples because it means that all implementations 
of this interface will acquire the applied contracts. This is how you can enhance a simple interface that 
provides few instructions for implementation and use, to give it more powerful requirements and 
assurances.

When writing an interface contract, you also need a class that is going to implement the methods 
of the interface but only fill them with uses of the Contract.Requires and Contract.Ensures 
methods. The abstract ShippingStrategyContract provides this functionality and looks like the 
prior examples, but what the prior examples lacked was the real functionality of the method. Even in 
production code, this is the limit of the code contained in a contract class. There is also a Contract
InvariantMethod to house any calls to Contract.Invariant, just as if this class were the real 
implementation.

To link the interface to the contract class implementation, you unfortunately need a two-way 
reference via an attribute. This is somewhat unfortunate because it adds noise to the interface, which 
it would be nice to avoid. Nevertheless, by marking the interface with the ContractClass attribute 
and the contract class with the ContractClassFor attribute, you can write your pre conditions, 
post conditions, and data invariant protection code once and have it apply to all subsequent 
implementations of the interface. Both the ContractClass and ContractClassFor attributes 
accept a Type argument. The ContractClass is applied to the interface and has the contract class 
type passed in, whereas the ContractClassFor is applied to the contract class and has the 
interface type passed in.

This concludes the introduction to code contracts and the foray into the Liskov substitution prin-
ciple’s rules relating to contracts. One final important point needs to be emphasized. Whether they 
are implemented manually or by using code contracts, if a precondition, postcondition, or invariant 
fails, clients should not catch the exception. Catching an exception is an action that indicates that the 
client can recover from this situation, which is seldom likely or perhaps even possible when a contract 
is broken. The ideal is that all contract violations will happen during functional testing and that the 
offending code will be fixed before shipping. This is why it is so important to unit test contracts. If a 
contract violation is not fixed before shipping and an end user is unfortunate enough to trigger an 
exception, it is most likely the best course of action to force the application to close. It is advisable to 
allow the application to fail because it is now in a potentially invalid state. For a web application, this 
will mean that the global error page is displayed. For a desktop application, the user can be shown a 
friendly message and be given a chance to report the problem. In any and all cases, a log should be 
made of the exception, with full stack trace and as much context as possible.

The next section covers the rest of the LSP’s rules—those that apply to covariance and contra-
variance.
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Covariance and contravariance

The remaining rules of the Liskov substitution principle all relate to covariance and contravariance. 
Generally, variance is a term applied to the expected behavior of subtypes in a class hierarchy con-
taining complex types. 

Definitions
As previously demonstrated, it is important to cover the basics of this topic before diving in to the 
specifics of the LSP’s requirements for variance.

Covariance
Figure 7-4 shows a very small class hierarchy of just two types: the generically named Supertype 
and Subtype, which are conveniently named after their respective roles in the inheritance structure. 
Supertype defines some fields and methods that are inherited by Subtype. Subtype enhances the 
Supertype by defining its own fields and methods.

FIGURE 7-4 Supertype and Subtype have a parent/child relationship in this class hierarchy.

Polymorphism is the ability of a subtype to be treated as if it were an instance of the supertype. 
Thanks to this feature of object-oriented programming, which C# supports, any method that accepts 
an instance of Supertype will also be able to accept an instance of Subtype without any casting 
required by either the client or service code, and also without any type sniffing by the service. To the 
service, it has been handed an instance of Supertype, and this is the only fact it is concerned with. It 
doesn’t care what specific subtype has been handed to it.

Variance enters the discussion when you introduce another type that might use Supertype and/or 
Subtype through a generic parameter.
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Figure 7-5 is a visual explanation of the concept of covariance. First, you define a new interface 
called ICovariant. This interface is a generic of type T and contains a single method that returns this 
type, T. Because the out keyword is used before the generic type argument T, this interface is well 
named because it exhibits covariant behavior.

The second half of the class diagram details a new inheritance hierarchy that has been created 
thanks to the covariance of the ICovariant interface. By plugging in the values for the Supertype 
and Subtype classes that were defined previously, ICovariant<Supertype> becomes a supertype 
for the ICovariant<Subtype> interface. 

FIGURE 7-5 Due to covariance of the generic parameter, the base-class/subclass relationship is preserved.

Polymorphism applies here, just as it did previously, and this is where it gets interesting. Thanks to 
covariance, whenever a method requires an instance of ICovariant<Supertype>, you are perfectly 
at liberty to provide it with an instance of ICovariant<Subtype>, instead. This will work seamlessly 
thanks to the simultaneous interoperating of both covariance and polymorphism.

So far, this is of limited general use. To firm up this explanation, I’ll move away from class diagrams 
and instructive type names to a more real-world scenario. Listing 7-20 shows a class hierarchy between 
a general Entity base class and a specific User subclass. All Entity types inherit a GUID unique 
identifier and a string name, and each User has an EmailAddress and a DateOfBirth.

LISTING 7-20 In this small domain, a User is a specialization of the Entity type.

public class Entity 
{ 
    public Guid ID { get; private set; } 
 
    public string Name { get; private set; } 
} 
// . . . 
public class User : Entity 
{ 
    public string EmailAddress { get; private set; } 
 
    public DateTime DateOfBirth { get; private set; } 
}
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This is directly analogous to the Supertype/Subtype example, but with a more directed purpose. 
This small domain is going to have the Repository pattern applied to it. The Repository pattern pro-
vides you with an interface for retrieving objects as if they were in memory but that could realistically 
be loaded from a very different storage medium. Listing 7-21 shows an EntityRepository class and 
its UserRepository subclass.

LISTING 7-21 Without involving generics, all inheritance in C# is invariant.

public class EntityRepository 
{ 
    public virtual Entity GetByID(Guid id) 
    { 
        return new Entity(); 
    } 
} 
// . . . 
public class UserRepository : EntityRepository 
{ 
    public override User GetByID(Guid id) 
    { 
        return new User(); 
    } 
}

This example is not the same as that previously described because of one key difference: in the 
absence of generic types, C# is not covariant for method return types. In fact, a compilation error is 
generated due to an attempt to change the return type of the GetByID method in the subclass to 
match the User class.

error CS0508: 'SubtypeCovariance.UserRepository.GetByID(System.Guid)': return type must be  
  'SubtypeCovariance.Entity' to match overridden member  
  'SubtypeCovariance.EntityRepository.GetByID(System.Guid)'

Perhaps experience tells you that this will not work, but the reason is a lack of covariance in this 
scenario. If C# supported covariance for general classes, you would be able to enforce the change of 
return type in the UserRepository. Because it does not, you have only two options. You can amend 
the UserRepository.GetByID method’s return type to be Entity and use polymorphism to allow 
you to return a User in its place. This is dissatisfying because clients of the UserRepository would 
have to downcast the return type from an Entity type to a User type, or they would have to sniff for 
the User type and execute specific code if the expected type was returned.

Instead, you should redefine EntityRepository as a generic class that requires the Entity type 
it intends to operate on via a generic type argument. This generic parameter can be marked out, thus 
covariant, and the UserRepository subclass can specialize its parent base class for the User type. 
Listing 7-22 exemplifies this.
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LISTING 7-22 Make base classes generic to take advantage of covariance and allow subclasses to override the 
return type.

public interface IEntityRepository<TEntity> 
    where TEntity : Entity 
{ 
    TEntity GetByID(Guid id); 
} 
// . . . 
public class UserRepository : IEntityRepository<User> 
{ 
    public User GetByID(Guid id) 
    { 
        return new User(); 
    } 
}

Rather than maintaining EntityRepository as a concrete class that can be instantiated, this 
code has converted it into an interface that removes the default implementation of GetByID. This is 
not entirely necessary, but the benefits of clients depending on interfaces rather than implementa-
tions have been demonstrated consistently, so it is a sensible reinforcement of that policy.

Note also that there is a where clause applied to the generic type parameter of the Entity
Repository class. This clause prevents subclasses from supplying a type that is not part of the Entity 
class hierarchy, which would have made this new version more permissive than the original imple-
mentation. 

This version prevents the need for UserRepository clients to mess around with downcasting 
because they are guaranteed to receive a User object, rather than an Entity object, and yet the 
inheritance of EntityRepository and UserRepository is preserved.

Contravariance
Contravariance is a similar concept to covariance. Whereas covariance relates to the treatment of 
types that are used as return values, contravariance relates to the treatment of types that are used 
as method parameters.

Using the same Supertype and Subtype class hierarchy as previously discussed, Figure 7-6 ex-
plores the relationship between types that are marked as contravariant via generic type parameters.
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FIGURE 7-6 Due to contravariance of the generic parameter, the base-class/subclass relationship is inverted.

The IContravariant interface defines a method that accepts a single parameter of the type dic-
tated by the generic parameter. Here, the generic parameter is marked with the in keyword, meaning 
that it is contravariant.

The subsequent class hierarchy can be inferred, indicating that the inheritance hierarchy has been 
inverted: IContravariant<Subtype> becomes the superclass, and IContravariant<Supertype> 
becomes the subclass. This seems strange and counterintuitive, but it will soon become apparent why 
contravariance exhibits this behavior—and why it is useful.

In Listing 7-23, the .NET Framework IEqualityComparer interface is provided for reference 
and an application-specific implementation is created. The EntityEqualityComparer accepts the 
previous Entity class as a parameter to the Equals method. The details of the comparison are not 
relevant, but a simple identity comparison is used.

LISTING 7-23 The IEqualityComparer interface allows the definition of function objects like 
EntityEqualityComparer.

public interface IEqualityComparer<in TEntity> 
    where TEntity : Entity 
{ 
    bool Equals(TEntity left, TEntity right); 
} 
// . . . 
public class EntityEqualityComparer : IEqualityComparer<Entity> 
{ 
    public bool Equals(Entity left, Entity right) 
    { 
        return left.ID == right.ID; 
    } 
}
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The unit test in Listing 7-24 explores the affect that contravariance has on the EntityEquality
Comparer.

LISTING 7-24 Contravariance inverts class hierarchies, allowing a more general comparer to be used wherever a 
more specific comparer is requested.

[Test] 
public void UserCanBeComparedWithEntityComparer() 
{ 
    SubtypeCovariance.IEqualityComparer<User> entityComparer = new  
  EntityEqualityComparer(); 
    var user1 = new User(); 
    var user2 = new User(); 
    entityComparer.Equals(user1, user2) 
        .Should().BeFalse(); 
}

Without contravariance—the innocent-looking in keyword applied to generic type parameters—
the following error would be shown at compile time.

error CS0266: Cannot implicitly convert type 'SubtypeCovariance.EntityEqualityComparer' to  
  'SubtypeCovariance.IEqualityComparer<SubtypeCovariance.User>'. An explicit conversion exists  
  (are you missing a cast?)

There would be no type conversion from EntityEqualityComparer to IEqualityComparer
<User>, which is intuitive because Entity is the supertype and User is the subtype. However, because 
the IEqualityComparer supports contravariance, the existing inheritance hierarchy is inverted 
and you are able to assign what was originally a less specific type to a more specific type via the 
IEqualityComparer interface.

Invariance
Beyond covariant or contravariant behavior, types are said to be invariant. This is not to be confused 
with the term data invariant used earlier in this chapter as it relates to code contracts. Instead, invari-
ant in this context is used to mean “not variant.” If a type is not variant at all, no arrangement of types 
will yield a class hierarchy. Listing 7-25 uses the IDictionary generic type to demonstrate this fact.
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LISTING 7-25 Some generic types are neither covariant or contravariant. This makes them invariant.

[TestFixture] 
public class DictionaryTests 
{ 
    [Test] 
    public void DictionaryIsInvariant() 
    { 
        // Attempt covariance... 
        IDictionary<Supertype, Supertype> supertypeDictionary = new Dictionary<Subtype,  
  Subtype>(); 
             
        // Attempt contravariance... 
        IDictionary<Subtype, Subtype> subtypeDictionary = new Dictionary<Supertype,  
  Supertype>(); 
    } 
}

The first line of the DictionaryIsInvariant test method attempts to assign a dictionary whose 
key and value parameters are of type Subtype to a dictionary whose key and value parameters are 
of type Supertype. This will not work because the IDictionary type is not covariant, which would 
preserve the class hierarchy of Subtype and Supertype.

The second line is also invalid, because it attempts the inverse: to assign a dictionary of Supertype 
to a dictionary of Subtype. This fails because the IDictionary type is not contravariant, which 
would invert the class hierarchy of Subtype and Supertype.

The fact that the IDictionary type is neither covariant nor contravariant leads to the conclusion 
that it must be invariant. Indeed, Listing 7-26 shows how the IDictionary type is declared, and you 
can tell that there is no reference to the out or in keywords that would specify covariance and 
contravariance, respectively.

LISTING 7-26 None of the generic parameters of the IDictionary interface are marked with in or out.

public interface IDictionary<TKey, TValue> : ICollection<KeyValuePair<TKey, TValue>>,  
  IEnumerable<KeyValuePair<TKey, TValue>>, IEnumerable

As previously proven for the general case—that is, without generic types—C# is invariant for both 
method parameter types and return types. Only when generics are involved is variance customizable 
on a per-type basis.
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Liskov type system rules
Now that you have a grounding in variance, this section can circle back and relate all of this to the 
 Liskov substitution principle. The LSP defines the following rules, two of which relate directly to variance:

 ■ There must be contravariance of the method arguments in the subtype.

 ■ There must be covariance of the return types in the subtype.

 ■ No new exceptions are allowed.

Without contravariance of method arguments and covariance of return types, you cannot write 
code that is LSP-compliant. 

The third rule stands alone as not relating to variance and bears its own discussion.

No new exceptions are allowed
This rule is more intuitive than the other LSP rules that relate to the type system of a language. First, 
you should consider: what is the purpose of exceptions?

Exceptions aim to separate the reporting of an error from the handling of an error. It is common 
for the reporter and the handler to be very different classes with different purposes and context. The 
exception object represents the error that occurred through its type and the data that it carries with 
it. Any code can construct and throw an exception, just as any code can catch and respond to an ex-
ception. However, it is recommended that an exception only be caught if something meaningful can 
be done at that point in the code. This could be as simple as rolling back a database transaction or as 
complex as showing users a fancy user interface for them to view the error details and to report the 
error to the developers.

It is also often inadvisable to catch an exception and silently do nothing, or catch the general 
 Exception base type. Both of these two scenarios together are even more discouraged. With the 
latter scenario, you end up attempting to catch and respond to everything, including exceptions that 
you realistically have no meaningful way of recovering from, like OutOfMemoryException, Stack
OverflowException, or ThreadAbortException. You could improve this situation by ensuring 
that you always inherit your exceptions from ApplicationException, because many unrecoverable 
exceptions inherit from SystemException. However, this is not a common practice and relies on 
third-party libraries to also follow this practice. 
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Listing 7-27 shows two exceptions that have a sibling relationship in the class hierarchy. It is im-
portant to note that this precludes the ability to create a catch block specifically targeting one of the 
exception types and to intercept both types of exception.

LISTING 7-27 Both of these exceptions are of type Exception, but neither inherits from the other.

public class EntityNotFoundException : Exception 
{ 
    public EntityNotFoundException() 
        : base() 
    { 
 
    } 
 
    public EntityNotFoundException(string message) 
        : base(message) 
    { 
 
    } 
} 
//. . . 
public class UserNotFoundException : Exception 
{ 
    public UserNotFoundException() 
        : base() 
    { 
 
    } 
 
    public UserNotFoundException(string message) 
        : base(message) 
    { 
 
    } 
}

Instead, in order to catch both an EntityNotFoundException and a UserNotFoundException 
with a single catch block, you would have to resort to catching the general Exception, which is not 
recommended. 
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This problem is exacerbated in the potential code taken from the EntityRepository and 
UserRepository classes, as shown in Listing 7-28.

LISTING 7-28 Two different implementations of an interface might throw different types of exception.

public Entity GetByID(Guid id) 
{    
    Contract.Requires<EntityNotFoundException>(id != Guid.Empty); 
 
    return new Entity(); 
} 
//. . . 
public User GetByID(Guid id) 
{ 
    Contract.Requires<UserNotFoundException>(id != Guid.Empty); 
 
    return new User(); 
}

Both of these classes use code contracts to assert a precondition: that the provided id parameter 
must not be equal to Guid.Empty. Each uses its own exception type if the contract is violated. Think 
for a second about the impact that this would have on a client using the repository. The client would 
need to catch both kinds of exception and could not use a single catch block to target both excep-
tions without resorting to catching the Exception type. Listing 7-29 shows a unit test that is a client 
to these two repositories. 

LISTING 7-29 This unit test will fail because a UserNotFoundException is not assignable to an 
EntityNotFoundException.

[TestFixture(typeof(EntityRepository), typeof(Entity))] 
[TestFixture(typeof(UserRepository), typeof(User))] 
public class ExceptionRuleTests<TRepository, TEntity> 
    where TRepository : IEntityRepository<TEntity>, new() 
{ 
    [Test] 
    public void GetByIDThrowsEntityNotFoundException() 
    { 
        var repo = new TRepository(); 
        Action getByID = () => repo.GetByID(Guid.Empty); 
 
        getByID.ShouldThrow<EntityNotFoundException>(); 
    } 
}
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This unit test fails because the UserRepository does not, as required, throw an EntityNotFound
Exception. If the UserNotFoundException was a subclass of the type EntityNotFoundException, 
this test would pass and a single catch block could guarantee catching both kinds of exception.

This becomes a problem of client maintenance. If the client is using an interface as a dependency 
and calling methods on that interface, it should not know anything about the classes behind that 
interface. This is a return to the argument concerning the Entourage anti-pattern versus the Stairway 
pattern. If new exceptions that are not part of an expected exception class hierarchy are introduced, 
clients must start referencing these exceptions directly. And—even worse—clients will have to be 
updated whenever a new exception type is introduced.

Instead, it is important that every interface have a unifying base class exception that conveys the 
necessary information about an error from the exception reporter to the exception handler.

Conclusion

On the surface, the Liskov substitution principle is one of the more complex facets of the SOLID prin-
ciples. It requires a foundational knowledge of both contracts and variance to build rules that guide 
you toward more adaptive code.

By default, interfaces do not convey rules for preconditions or postconditions to clients. Creating 
guard clauses that halt the application at run time serves to further narrow the allowed range of valid 
values for parameters. The LSP provides guidelines such that each subclass in a class hierarchy cannot 
strengthen preconditions or weaken postconditions. 

Similarly, the LSP suggests rules for variance in subtypes. There should be contravariance of method 
arguments in subtypes and covariance of return values in subtypes. Additionally, any new exception 
that is introduced, perhaps with the creation of a new interface implementation, should inherit from 
an existing base exception. To do otherwise would be to potentially cause an existing client to miss 
the catch—effectively to fumble the exception and allow it to cause an application crash.

If the LSP is violated with respect to these rules, it becomes harder for clients to treat all types in a 
class hierarchy the same. Ideally, clients would be able to hold a reference to a base type or interface 
and not alter its own behavior depending on the concrete subclass that it is actually using at run time. 
Such mixed concerns create dependencies between sections of the code that are better kept separate. 
Any violation of the LSP should be considered technical debt and, as demonstrated in prior chapters, 
this debt should be paid off sooner rather than later.
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rules, 218, 225–231

contravariance, 242–244, 246
control, inversion of. See Inversion of Control (IoC)
controllers, dependency injection and, 312–317
conventions, dependency injection and, 317–321
correlation vs. causation, metrics and, 40
cosmetic issues, 16
cost of changes, xv
covariance, 239–243, 246
CQRS (Command/Query Responsibility Segregation), 

90, 91, 275
cranes vs. skyhooks, 38, 39
create, read, update, and delete (CRUD) operations

interface segregation and, 251–260
two-layer architecture and, 85

cross-cutting concerns, 87, 88, 89, 255
CRUD (create, read, update, and delete) operations

interface segregation and, 251–260
two-layer architecture and, 85

cyclic dependencies, 53
cyclic digraphs, 53
cyclomatic complexity, unit testing and, 40, 41

D
daily Scrum meetings, 8, 31, 32, 33
data access layer, two-layer solutions and, 83–86
data invariants

code contracts and, 236
described, 223, 224
Liskov contract rules and, 229–231

debugging
assemblies, viewing loaded, 47
dependencies between assemblies, 67
Fusion log, 68–70

declarative vs. imperative registration, 295–297
declaring interfaces, 94–96
Decorator pattern

described, 184, 185
interfaces and, 251

decorators
asynchronous, 200–202
branching, 193, 194
caching, 257–261
composite, 185–188
CRUD interfaces and, 252–261
events, 203
lazy, 194, 195
logging, 195, 196
for multiple interfaces, 261–263
predicate, 189–193
profiling, 196–200
properties, 203

decoupling code by using Service Discovery, 73
default references, 49
defect cards, 16
defect fixes

open/closed principle and, 208, 209
writing tests for, 148, 149

defensive programming. See splitting interfaces
deferring construction to run time, 291
definition of done (DoD), 21, 22
delegates vs. interfaces, 193, 279
delegating

to abstractions, importance of, 169
to abstractions, refactoring for, 177–183
interface methods to methods of another  

object, 109
to interfaces, 212, 214
replacing inheritance with, 163–166
tasks to other methods, 173–176

delegation, pass-through, 256
demos, sprint, 33, 357, 358, 375, 376

continuous integration
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dependencies
chain of, 52, 58, 291
combining decorators and, 263
cyclic, 53–55
defined, 44
first party, 44–48
framework, 48, 49
interface inheritance and, 212, 214
layering and, 83
modeling, 51–55
NuGet and, 77–81
predicate decorators and, 190–192
purpose of, 43
refactoring for abstraction and, 178, 179
resolving, 67–76
sample application, 44–51
services and, 70–77
testability and, 59
third party, 50, 51
types of, 43

dependency digraphs, 51
dependency injection (DI). See also Inversion of 

Control (IoC)
ASP.NET MVC and, 312–317
classes that make use of, 61, 62
composition root and, 311
constructors and, 287–291
controllers and, 312–317
conventions and, 317–321
described, 281
method injection, 290
object lifetime, 298–304
Poor Man’s Dependency Injection, 287–290
property injection, 291
Service Locator anti-pattern, 306–310
task list application introduced, 281–289
Windows Forms and, 315, 316

deployment packages, continuous integration 
and, 384

dereferencing null, 103, 108
design patterns. See patterns
developer role, Scrum process and, 326, 327
diamond inheritance problem, 96
DI (dependency injection)

ASP.NET MVC and, 312–317
classes that make use of, 61, 62

composition root and, 311
constructors and, 287–291
controllers and, 312–317
conventions and, 317–321
described, 281
method injection, 290
object lifetime, 298–304
Poor Man’s Dependency Injection, 287–290
property injection, 291
Service Locator anti-pattern, 306–310
task list application introduced, 281–289
Windows Forms and, 315, 316

digital Scrum boards, 21
digraphs

cyclic vs. acyclic, 53
defined, 51

directed graphs, 51–55
discoverable services, 71–74
DiscoveryClient class, 73
DiscoveryEndpoint, 73
Dispose method, 293, 298–300, 304
distributed source control, 379–383
DLR (Dynamic Language Runtime), 115
domain model

Command/Query Responsibility Segregation 
(CQRS), 90, 91, 275

logic layer and, 87
DomainException, 146, 147
done

definition of, 21, 22
swimlane for, 18

duck-typing, 113–118
dynamic keyword, 115
Dynamic Language Runtime (DLR), 115
dynamic proxies, testing with, 140

E
edges, 51
effort, estimated vs. actual, 23, 35
encapsulating

branching tests, 280
null users, 107
variant behavior with Strategy pattern, 112

encapsulation vs. contracts, 224
Ensures method, 235

 Ensures method
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Entourage anti-pattern
dependency injection and, 284
described, 63–65
Illegitimate Injection and, 311
solving with Stairway pattern, 85

epics vs. features, 13
estimating

features, 29
stories, 30, 31, 35
story points, 330–335

events
decorating, 203
publishing and subscribing to, 261–263

exceptions
catching, 238, 246–249
enforcing preconditions with, 220, 221
purpose of, 246, 371
wrapping, 146, 149

expected behavior
asserting in unit tests, 128
Liskov substitution principle, 217
naming test methods and, 132
refactoring code and, 152
test-driven development and, 130
variance and, 239

ExpectedExceptionAttribute, 144, 145, 147
explicit interface implementation, 97–101
extension

methods, 118–120
open/closed principle and, 208
points, 209–214
points, adaptive code and, 322

external dependencies. See third-party software 
dependencies

external mocking frameworks, 140, 141
Extreme Programming (XP), user stories and, 13

F
factories

connection, 301, 302
injection, 299
isolating, 304

factory classes, replacing constructors with, 159
Factory Isolation pattern, 304, 305

factory methods, replacing with constructors, 
157–159

Factory pattern, 301, 302, 314, 345–347
failing unit tests

bug fixes and, 208
described, 130, 139
writing for bug fixes, 148

fakes, testing with, 137–140
fast-track items, 18
features

burnup charts, 25–27
estimating, 29
prioritizing, 29
Scrum board cards and, 12, 13

fire-and-forget methods, 202
first-party software dependencies, 43, 44–48
fluent interfaces, 123, 124
foreach loops, CLR duck-typing support and,  

116–118
framework dependencies, 48, 49, 66
Fusion log, 68–70

G
GAC (global assembly cache), 67, 68
generalizing specialists, 8
generic

controllers, 265
interfaces, 252, 265
type parameters, 242–245

Git, 379–383
GitHub, 381
Given, When, Then pattern, 126
global assembly cache (GAC), 67, 68
goals, defining for sprints, 337
Goldilocks Zone, extension points and, 214
graphs

modeling dependencies in, 51–55
object, 287–291, 312, 320

green icon, as indicator of successful unit test, 130
greenfield projects, 27
guard clauses

vs. code contracts, 232
data invariants and, 223, 230, 231
postconditions and, 222
preconditions and, 220, 221, 226

Entourage anti-pattern
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H
Happy Path, need for further tests after finding, 143
hierarchies

contravariance and, 242–244
covariance and, 239–242
inheritance, 217, 218

Hollywood Principle, 308
horizontal scaling

tiers and, 83
vs. vertical scaling, 373

horizontal swimlanes, 18
hosted services

dependencies and, 70–77
discovery of, 71–74

HTTP verbs, 75
Hype Cycle, 327

I
IAccountRepository interface, 137
IAction interface, 280
IComponent interface, 187, 194
IContravariant interface, 243
ICovariant interface, 240
IDisposable interface, 293, 299–302, 304
IFluentInterface, 123, 124
IFunction interfaces, 280
Illegitimate Injection, 310–312
imperative vs. declarative registration, 295–297
implementation inheritance

designing for, 212, 213
extension points and, 210, 211
vs. interface inheritance, 212

implementations
blackbox vs. whitebox reuse, 110
explicit, 97–101
implicit, 99, 100
inability to enhance, 58
vs. interfaces, 56, 124
leaf, 267
Register, Resolve, Release pattern and, 293–295
separating from interfaces, 63–65, 84

implicit implementation, 99, 100
Impromptu Interface, 116
in keyword, 243, 244, 245

inappropriate intimacy, code smells and, 57, 59
inheritance

Class Adapter pattern and, 109
contravariance and, 242–244
covariance and, 239–243
exceptions, 246–249
hierarchies, 217, 218
implementation, 210–213
interface, 212
multiple, 96
replacing with delegation, 163–166
segregation and, 272–274
as whitebox reuse, 110

initial backlog, 328–335
initialization method, 149, 150
injection

constructor, 308
of containers, 309
factories, 299
illegitimate, 310–312

injection, dependency
ASP.NET MVC and, 312–317
classes that make use of, 61, 62
composition root and, 311
constructors and, 287–291
controllers and, 312–317
conventions and, 317–321
described, 281
method injection, 290
object lifetime, 298–304
Poor Man’s Dependency Injection, 287–290
via property injection, 291
Service Locator anti-pattern and, 306
task list application introduced, 281–289
Windows Forms and, 315, 316

In-Progress swimlanes, 18
instantiating objects, code smells and, 57
IntelliSense, contracts and, 232
interface contracts, 237, 238
interface inheritance, extension points and, 212
interface keyword, 94
interface segregation

authorization, 274
caching decorator and, 257–261
client construction, 263–268
defined, 251

 interface segregation
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interface segregation (continued)
example, 251–257
splitting for architectural need, 275–279
splitting for client need, 268–275

Interface Soup anti-pattern, 267, 268
interfaces. See also user interface

assemblies and, 63, 84
classes and, 94, 284
code adaptability and, 284
coding to, 60
combining as mixins with Re-Motion Re-mix, 

120–122
Composite pattern and, 186
contracts and, 219
decorating multiple, 261–263
defined, 57
vs. delegates, 193, 251, 279
described, 93
explicit implementation, 97–101
external dependencies and, 66
fluent, 123, 124
generic, 252
IAccountRepository, 137
IAction, 280
IComponent, 187, 194
IContravariant, 243
ICovariant, 240
IDisposable, 293
IFunction, 280
vs. implementations, 56, 124
implementing in a single class, 266, 267
IPaymentStrategy, 206
IPredicate, 192, 280
IServiceLocator, 306, 308
ITargetInterface, 118, 122
ITask, 279
members and, 251
mocking, 140–142
organizing with Stairway pattern, 65, 284
overuse of, 113
providing to clients, 263–269
refactoring toward abstraction and, 177–180
Register, Resolve, Release pattern and, 293–295
repository, 136
splitting for architectural need, 275–279
splitting for client need, 268–275

syntax, 94–96
Invariant method, 236
invariants, 223, 224, 229–231, 236, 244, 245

guard clauses and, 223
Inversion of Control (IoC)

composition root and, 311
containers and, 291–295
described, 291, 292
vs. Poor Man’s Dependency Injection, 292

inverting class hierarchies with contravariance, 
242–244

IoC (Inversion of Control). See Inversion of Control 
(IoC)

IPaymentStrategy interface, 206
IPredicate interface, 192, 280
IronPython, as dynamically typed language, 115
IServiceLocator interface, 306, 308
IsNull property anti-pattern, 105–107
isolating factories, 304, 305
ITargetInterface, 118, 122
ITask interface, 279
iterations. See sprints

J
JIT ( just-in-time) model, 67

K
keywords, dynamic, 115
known endpoints, service references and, 70

L
lambda expressions

Factory Isolation pattern and, 305
mocking and, 141
object lifetime and, 299

lambda factories, declarative registration and, 297
layering

API layer, 84
described, 81
patterns, 82–87
vs. tiers, 83
wrapping exceptions and, 146

Interface Soup anti-pattern
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lazy decorators, 194, 195
Lazy<T>, 194
leaf implementations, 267
leaky abstractions, 85
libraries

code contracts, 232
Impromptu Interface, 116
Log4Net, 181, 182
Prism, 122
Re-motion Re-mix, 118, 120–122

lifetime of objects, 298–304
line of best fit, 24
Liskov substitution principle (LSP)

contravariance, 242–245
covariance, 239–243
described, 217, 218
exceptions, 246–249
invariance, 244, 245
rules, 218, 225–231

log files, 68–70
Log4Net, 181, 182
logging decorators, 195, 196
logic layer, 86, 87
loops, 54, 55
loose mocks, 141
loosely coupled classes, 209
LSP (Liskov substitution principle)

contravariance, 242–245
covariance, 239–243
described, 217, 218
exceptions, 246–249
invariance, 244, 245
rules, 218, 225–231

M
magic numbers, replacing with constants, 153, 154
maladaptive code, 37–41
mapping

composition root and, 311
conventions and, 318
dependency injection and, 321
interfaces to implementations, 296

markdown transforms, 367–370
marketable features, 12

Martin, Robert C., 208
meetings

for full sprint, 36
planning, for sprint, 337–339
retrospective, for sprint, 358–362

Mercurial vs. Git, 379
method injection, 290
methods. See also decorators

abstract, 211
asymmetric layering and, 89–91
asynchronous, 200
chaining, 123, 124
Contract.Ensures, 235
Contract.Invariant, 236, 238
Contract.Requires, 233, 234
Dispose, 293, 298–300, 304
Ensures, 235
extension, 118–120
factory, 157–159
fire-and-forget, 202
IDispose.Dispose(), 298–304
Liskov contract rules and, 225–231
naming, 219
postconditions and, 222, 223
preconditions and, 220–222
private, 236
Register, 293–295
RegisterTypes, 318
Release, 293–295
request-response, 202
Requires, 233, 234
Resolve, 293–295
signatures, 98–101, 219
static, 158
synchronous, 200
tracking execution time, 197
virtual, 210, 211, 284

metrics
correlation vs. causation, 40
maladaptive code and, 39
monitoring project progress with, 22–27
story points, 23

Meyer, Bertrand, 207
Microsoft AppFabric AutoStart, 74
Microsoft Moles, 59

 Microsoft Moles
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Microsoft .NET Framework
advantages of, 196
Impromptu Interface library, 116
software dependencies and, 43, 48, 49

Microsoft .NET Framework Reflection API, 116
minimum marketable feature (MMF)

defined, 12
vs. epics and themes, 13

minimum viable release (MVR), 12
mixins, 118–122
MMF (minimum marketable feature)

defined, 12
vs. epics and themes, 13

mocking frameworks, 39, 140, 141
mocks

Illegitimate Injection anti-pattern and, 311
setting up, 149
testing with, 140–143

modeling dependencies, 51–55
Model-View-Controller (MVC), dependency injection 

and, 312–317
Model-View-ViewModel (MVVM) pattern, 282
MongoDB, 276
monitoring progress with charts and metrics, 22–27
Moq, 140, 141
MSTest, 129, 149
multicast network messages, 71
multilayer solutions. See layering
multiple inheritance, 96, 118
multiple interface implementation, 95
MVC (Model-View-Controller), dependency injection 

and, 312–317
MVR (minimum viable release), 12
MVVM (Model-View-ViewModel) pattern, 282

N
.NET Framework. See Microsoft .NET Framework
network boundaries, tiers and, 83
NHibernate, 276
niko-niko calendar, 32
nodes, 51
noise-to-signal ratio, contracts and, 237
NuGet

dependencies and, 77–81
testing with Moq and, 140

Null Object pattern, 103–105, 108
NullReferenceException, 103, 108, 144, 145
NullUser class, 105, 107

O
Object Adapter pattern, 110, 111
object graphs

constructing, 287–291
conventions and, 320
resolution root and, 312

object lifetime
IDispose.Dispose() method and, 298–304
release method and, 293

Object property, 141
object-oriented programming (OOP), polymorphism 

and, 101
Object/Relational Mapper (ORM), 50
observer effect, 22
OCP (open/closed principle). See open/closed 

principle (OCP)
OOP (object-oriented programming), polymorphism 

and, 101
open for extension rule, 208
open/closed principle (OCP)

bug fixes and, 208, 209
client awareness and, 209
extension points, 209–214
Martin definition, 208
Meyer definition, 207

Order class, 264
ORM (Object/Relational Mapper), 50
out keyword, 240, 241, 245
over-specification, 142, 143

P
package weight, 224
packages. See also dependencies

Chocolatey, 80, 81
NuGet, 78–80

pair programming, 353, 370–373
parameters, naming, 219
pass-through delegation, vs. interface  

segregation, 256
patterns. See also anti-patterns; interfaces

Adapter, 109–111, 261

Microsoft .NET Framework
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Agile processes and, 1
Arrange, Act, Assert (AAA), 126–130
Class Adapter, 109, 110
Command/Query Responsibility Segregation 

(CQRS), 90
Composite, 185–189
Decorator, 184, 185, 251
described, 56
Factory, 301, 302, 314, 345–347
Factory isolation, 304, 305
history of, 102
layering, 82–84
Model-View-ViewModel (MVVM), 282
Null Object, 103–105, 108
Object Adapter, 110, 111
overuse vs. underuse, 102
Poor Man’s Dependency Injection, 287
Register, Resolve, Release, 293–295
Repository, 241
Responsible Owner, 302–304
Stairway, 65, 66, 284
Strategy, 111–113, 204–206
Template Method, 211

peak of inflated expectations, 327
peer reviews, 340–357, 380
performing unit tests. See unit tests
persistent storage, CRUD operations and, 251, 252
pigs and chickens, 9
Plain Old CLR Object (POCO), 285
planning poker, story point estimation and, 331–335
plateau of productivity, 327
PO (product owner) role, 7, 325, 326
POCO (Plain Old CLR Object), 285
poker, planning, story point estimation and, 331–335
polymorphism

covariance and, 239, 240
described, 101, 102
replacing conditional expressions with, 154–157

Poor Man’s Dependency Injection (Poor Man’s DI)
composition root and, 311
described, 287–290

post mortems. See sprint retrospectives
postconditions

code contracts and, 235
described, 222, 223
Liskov Substitution Principle and, 227–229

PostSharp, 88

preconditions
arranging for unit tests, 126, 127
code contracts and, 232–234
of constructors, 143
contracts and, 224
described, 220–222
enforcing with exceptions, 221
enforcing with preconditions, 220
Liskov Substitution Principle and, 225–227

predicate decorators, 189–193
predicted variation, 213
prioritizing features, 29
Prism (Windows Presentation Foundation/Model-

View-ViewModel library), 122
private methods, 236
product backlogs

described, 27
responsibility for setting priorities, 7, 27
Scrum process and, 4

product owner (PO) role, 7, 325, 326
production code

defined, 125
test-driven development and, 130

profiling decorators, 196–200
proof of concept, refactoring toward abstraction 

and, 177
properties

decorating, 203
signatures, 99

property injection, 291
property setters, 230, 231
protected variation, 213, 214
prototypes, refactoring toward abstraction and, 177
proxiable classes, 284
proxies

classes, 70
discovery, 71
services, 70, 71

prudent technical debt, 20
publishing events, 261–263
pull requests, 380

Q
Quality Assurance (QA), swimlanes for, 18
queries, separating from commands, 89–91

 queries, separating from commands
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R
Rapid Application Development (RAD), 196
readability, refactoring code for, 153, 154
reading data, segregating from writing data,  

269–274
reckless technical debt, 20
recursion, 55
red, green, refactor, 130–135
red icon, as indicator of failed unit test, 130
refactoring code. See also dependency injection (DI); 

interface segregation
for abstraction, 177–183
for clarity, 172–176
defined, 125
process described, 151
for readability, 153, 154
replacing conditional expressions with 

polymorphism, 154–157
replacing constructors with factory methods, 

157–159
replacing inheritance with delegation, 163–166
replacing magic numbers with constants,  

153, 154
samples, 347, 348, 350–353
technical debt and, 57
test-driven development and, 130–135

references
converting third-party to first-party, 181
defaults by project type, 49
NuGet and, 77–81
resolution process, 67
services, 70, 71
third-party, 50

Reflection Emit, 116
refused bequests, 162
Register method, 293–295
Register, Resolve, Release pattern, 293–295
registering interfaces to their implementations, 

293–295
RegisterTypes method, 318
registration

conventions and, 317–321
imperative vs. declarative, 295–297

release
defined, 11
minimum viable, 12

planning, 29
scrum process and, 4

Release method, 293–295
Re-motion Re-mix library, 118, 120–122
repaying technical debt, 20
repositories, 379–382
repository interfaces, 136
Repository pattern, 241
request-response methods, 202
Requires method, 233, 234
resolution root, 312
Resolve method

Inversion of Control and, 292
Register, Resolve, Release pattern and, 293–295

resolving dependencies, 67–76, 291
responsibilities. See single responsibility  

principle (SRP)
Responsible Owner pattern, 302–304
RESTful services, 74–77
retrospectives, for sprints, 34, 35, 358–363, 376–378
return types, variance rules for, 218
return values, postconditions and, 222, 223
reuse, blackbox vs. whitebox, 110
rigidity, 37, 38
roles and responsibilities, Scrum process and, 7–9, 

325–328
rules, Liskov substitution principle, 218, 225–231

S
scaling applications by using tiers, 83
Scrum

Agile method and, 4
calendar, 36
defined, 3
documentation and, 5, 9
monitoring project progress, 22–27
problems with, 37–41
process overview, 4
roles and responsibilities, 7–9, 325–328
software dependencies and, 43
user stories and, 13, 328–335
variants of, 6
vs. waterfall, 4–6

Scrum boards
avatars, 17
cards, 10–17

Rapid Application Development
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color schemes, 17
example of, 10
importance of, 10
location, 9
swimlanes, 18

Scrum master (SM) role, 8, 326
Seemann, Mark, 320, 321
segregation. See interface segregation
Service Discovery, 71–74
Service Locator anti-pattern, 306–310
service proxies, 70, 71
service references, 70, 71
ServiceDiscoveryBehavior, 73
ServiceException, 146, 147
services

dependencies and, 70–77
sample application showing dependencies, 44–51
software dependencies and, 44
unit testing examples for, 135–144

setup method, 149, 150
signature clash, explicit implementation and, 98
signatures, methods for, 98–101, 219
single responsibility principle (SRP)

abstraction, refactoring for, 177–183
clarity, refactoring for, 172–176
Decorator pattern and, 184
delegating tasks to other methods, 173
described, 169
problem example, 169–172

skyhooks vs. cranes, 38, 39
slicing user stories vertically, 15
SLOC (Source Lines of Code), 39
slope of enlightenment, 327
SM (Scrum master) role, 8, 326
software dependencies. See dependencies
software development, user stories and life cycle, 14
software testers, Scrum process and, 8.  

See also testing; unit tests
source control, 379–383
Source Lines of Code (SLOC), 39
SourceTree, 381
splitting interfaces. See also interface segregation

architectural need, 275–279
client need, 268–275

sprint demos, 33, 357, 358, 375, 376
Sprint Handover Day, 36

sprint retrospectives, 34, 35, 358–363, 376–378
sprint zero adaptive sample, 325–335
sprints

burndown charts, 24, 25
described, 28
goals, 337
meetings, 29–31
planning, 30, 31, 337–339, 365, 366
product owner responsibilities during, 7
Scrum master responsibilities during, 8
Scrum process and, 4
software dependencies, effect on, 43
velocity and, 23, 24

SSADM (Structured Systems Analysis and Design 
Methodology), 9

stable interfaces, 214
Stairway pattern, 65, 66, 85, 178, 284
static classes, 308
static contract verification, 232
static methods, 158
static typing, 115
Stopwatch class, 197–200
storage, persistent, 251, 252
stories. See user stories
story points

as progress metric, 23
claiming, 18
estimating, 330–335
triangulating, 35
user stories and, 14, 15
velocity and, 23

Strategy pattern, 111–113, 204–206
strict mocks, 141
Structured Systems Analysis and Design 

Methodology (SSADM), 9
subclasses

abstract methods and, 211
Liskov contract rules and, 225–231

subscribing to events, 261–263
substitution. See Liskov substitution principle (LSP)
subtypes

Liskov substitution principle and, 218
polymorphism and, 239

supertypes
contracts, 218
polymorphism and, 239

 supertypes



400

SUT (system under test), 126–130. See also testing; 
unit tests

swarming fast track items, 18
swimlanes, on Scrum board, 18
switch statements, 204–206
synchronous methods, 201
system requirements for code samples in this  

book, xxii
System.Diagnostics.Contracts namespace, 232
System.Diagnostics.Stopwatch class, 197
System.Diagnostics.Contracts namespace, 233
system under test (SUT), 126–130. See also testing; 

unit tests

T
task management application example, 281–287
tasks

assigning, 14
user stories and, 14

TCP vs. UDP, 74
TDD (test-driven development), 130–135
technical debt

decision to take on, 370, 373
defined, 16
good vs. bad, 19
quadrant, 19–20
refactoring code and, 57

Template Method pattern, 211
TEntity types, 252, 260
test analyst role, Scrum process and, 328
testability

dependencies and, 59
mixins and, 119
unit tests and, 126

test runners, 128, 129
test-driven development (TDD), 130–135
testing. See also unit tests

coverage, 40
with fakes, 137–140
maladaptive code and, 38, 39
with mocks, 140–143
Scrum process and, 8

TestInitialize attribute, 149
themes vs. features, 13
third-party libraries

Log4Net, 181, 182
Re-motion Re-mix, 118, 120–122

third-party software dependencies, 43, 50, 51, 66
three-layer architecture, 86, 87, 90
throwing exceptions, enforcing precondition 

contracts by, 220, 221
tiers vs. layers, 83
tightly coupled classes, 209
tools for adaptive programming, 379–385
transactional consistency, 91
Trey Research sample application, 325–328
trifle, compared to well-designed software, 15
trough of disillusionment, 327
try/catch block, 147, 148
try/finally block, 303
two-layer solutions, 83–86, 90
Typemock, 59
types

Composite pattern and, 187, 188
extending, 118–120
generating new at run time by using Impromptu 

Interface, 116
generating new on the fly with Re-Motion    

Re-mix, 120–122
mapping to interfaces, 292
variance, 218

type-sniffing, mixins and, 122
typing

duck, 113–118
dynamic vs. static, 115
weak, 321

U
UDP vs. TCP, 74
unauthorized interfaces, 274
undirected graphs, 51
unit tests

Arrange, Act, Assert (AAA) pattern, 126
arranging the preconditions, 126, 127
asserting expected behavior in, 128
continuous integration and, 384
coverage, 40
defined, 125
failing, 139
with fakes, 137–140

SUT (system under test)



 401

Illegitimate Injection and, 311
maladaptive code and, 38
with mocks, 140–143
parts, 126
performing the testable acts, 127
runners, 128, 129
running, 128–130
samples, 341–344

Unity containers, 292, 293, 296, 297, 308
untestability, maladaptive code and, 38
user interface

defects in, 16
layer, 83, 84

user stories
defined, 3
initial backlog of, creating, 328–335
sample, creating rooms for categorizing 

conversations, 340–348
sample, list of rooms, 349–353
sample, sending messages, 356, 357
sample, viewing messages, 353–355
Scrum board cards and, 13
slicing vertically, 15
tasks and, 14

using block, 299, 302, 303

V
variables

naming, 154
replacing magic numbers with, 153

variance
contravariance, 242–244
covariance, 239–242
defined, 239
invariance, 244, 245
rules, 218

velocity, measuring, 23, 24
vertical scaling

tiers and, 83
vs. horizontal scaling, 373

vertical slices, 15, 370
viewing assemblies that have been loaded into 

memory, 47
view models. See Model-View-ViewModel (MVVM) 

pattern
virtual methods, 210, 211, 284

W
waterfall method, xv, 4–6
Web Services Definition Language (WSDL) file, 70
weight, encapsulation and, 224
whitebox reuse, 110
wikis, Scrum and, 6
Windows Forms, dependency injection and, 315, 316
wrapping exceptions, 146, 149
writing data, segregating from reading data,  

269–274
WSDL (Web Services Definition Language) file, 70

X
XML, declarative registration and, 296, 297

 XML, declarative registration and
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