
The Microsoft
Dynamics AX Team

Microsoft

Dynamics®
AX 2009

Inside
Foreword by Hans J. Skovgaard
Product Unit Manager, Microsoft Corporation

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009927101

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveX, BizTalk, Excel, InfoPath, IntelliSense, Internet Explorer, Microsoft
Dynamics, MSDN, Outlook, PivotTable, SharePoint, SQL Server, Visio, Visual Basic, Visual C#, Visual SourceSafe, Visual
Studio, Windows, Windows Server and Windows Vista are either registered trademarks or trademarks of the Microsoft group
of companies. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Maria Gargiulo
Project Editor: Valerie Woolley
Editorial Production: Macmillan Publishing Solutions
Technical Reviewer: Arijit Basu; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-77861

 iii

Contents at a Glance

Part I A Tour of the Development Environment

 1 Architectural Overview . 3

 2 The MorphX Development Environment 21

 3 The MorphX Tools . 37

 4 The X++ Programming Language . 109

Part II Core Development Concepts

 5 Customizing Dynamics AX . 157

 6 Extending Dynamics AX . 199

 7 Enterprise Portal . 241

 8 Role Centers. 293

 9 Workflow in Dynamics AX. 317

 10 .NET Business Connector . 349

 11 Reporting in Dynamics AX 2009 . 377

 12 Performance . 397

 13 Configuration and Security . 441

Part III Under the Hood

 14 The Database Layer . 469

 15 Reflection . 543

 16 The Batch Framework. 559

 17 The Application Integration Framework 581

 18 Code Upgrade . 623

Part IV Appendices

 A Application Files . 647

 B SQL Server 2005, SQL Server 2008, and Oracle
Database 10g Comparison. 649

 C Source Code Changes Required for Upgrade 651

 v
www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

Table of Contents

Foreword .xix

Acknowledgments .xxi

Introduction .xxiii

Who Is This Book For? .xxiii

The History of Microsoft Dynamics AX .xxiv

Organization of This Book . xxv

Reading Guide . xxv

Differences from Inside Microsoft Dynamics AX 4.0 xxv

Product Documentation .xxvi

Product Web Site .xxvi

Naming .xxvi

Code. .xxvi

Glossary . xxvii

Special Legend . xxvii

System Requirements . xxvii

Release Software .xxviii

Technology Updates .xxviii

Code Samples .xxviii

Bonus Content .xxviii

Find Additional Content Online. xxix

Support for This Book . xxix

Questions and Comments . xxix

Part I A Tour of the Development Environment

 1 Architectural Overview . 3

Introduction . 3

Design Philosophy and Benefits . 4

Application Development and Runtime Configurations . 5

Rich Client Application . 6

vi Table of Contents

Web Client Application . 6

Integration Client Application . 6

Architecture of Dynamics AX . 6

Development Environments. 7

Logic Elements and Data Elements. 8

Application Frameworks . 9

Runtime Environments . 9

Communications . 9

Model Layering . 9

Licensing, Configuration, and Security. 10

Database Layer . 10

Application Model Layering System . 10

Working with the Layers . 13

Model Element IDs . 14

Application Frameworks . 15

RunBase Framework . 15

Batch Framework . 15

Dialog Framework . 15

Operation Progress Framework. 16

Number Sequence Framework . 16

SysLastValue Framework. 16

Application Integration Framework . 16

Wizard Framework. 16

Infolog Framework. 17

Enterprise Portal and Web Parts . 17

Reporting Framework . 19

Operations Environment. 20

 2 The MorphX Development Environment 21

Introduction . 21

Developing with MorphX . 22

Planning Phase . 23

Design Phase. 23

Implementation Phase . 24

Stabilization Phase . 25

Release Phase . 25

Application Model Elements . 25

Operational and Programming Model Elements . 26

Value Type, Database, and Data Association Model Elements 29

 Table of Contents vii

Class Model Elements . 32

Presentation Model Elements . 32

 3 The MorphX Tools . 37

Introduction . 37

Application Object Tree . 39

Navigating the AOT. 40

Creating New Elements in the AOT . 42

Modifying Elements in the AOT . 42

Refreshing Elements in the AOT . 43

Element Actions in the AOT . 44

Element Layers in the AOT . 44

Project Designer . 45

Creating a New Project . 46

Automatically Generated Projects . 46

Project Types. 48

Property Sheet . 49

X++ Code Editor . 50

Shortcut Keys . 51

Editor Scripts. 52

Label Editor . 53

Creating a New Label . 54

Referencing Labels from X++ . 55

Visual Form Designer and Visual Report Designer. 56

Visual Form Designer . 57

Visual Report Designer . 58

Code Compiler . 59

Dynamics AX SDK. 61

Best Practices Tool . 62

Understanding Rules . 62

Suppressing Errors and Warnings . 63

Adding Custom Rules . 64

Debugger. 65

Using the Debugger . 66

Debugger Interface . 67

Visio Reverse Engineering Tool . 69

UML Data Model . 70

UML Object Model . 72

Entity Relationship Data Model. 74

viii Table of Contents

Table Browser Tool . 75

Find Tool . 76

Compare Tool . 78

Starting the Compare Tool . 78

Using the Compare Tool . 81

Compare APIs . 82

Cross-Reference Tool . 83

Version Control . 86

Element Life Cycle . 88

Check-Out . 89

Undo Check-Out . 89

Check-In. 90

Quality Checks . 90

Updating Source Code Casing. 91

Creating New Elements. 91

Renaming Elements . 91

Deleting Elements . 92

Labels . 92

Get Latest . 92

Synchronization . 92

Synchronization Log . 93

Show History. 94

Revision Comparison. 95

Pending Elements . 95

Build . 96

Integration with Other Version Control Systems . 96

Unit Test Tool . 96

Test Cases . 97

Test Suites . 101

Test Projects . 103

The Test Toolbar. 104

Code Coverage. 104

Test Listeners. 105

Object Model . 106

 4 The X++ Programming Language . 109

Introduction . 109

Jobs. 110

The Type System. 110

 Table of Contents ix

Value Types . 111

Reference Types . 111

Type Hierarchies. 112

Syntax . 115

Variable Declarations. 115

Expressions . 117

Statements . 118

Macros . 137

Comments . 140

XML Documentation . 140

Classes and Interfaces . 141

Fields . 143

Methods . 143

Code Access Security . 145

Design and Implementation Patterns. 147

Class-Level Patterns . 148

Table-Level Patterns . 151

Part II Core Development Concepts

 5 Customizing Dynamics AX . 157

Introduction . 157

Table and Class Customization. 158

Creating New Dimension Types . 158

Adding New Dimensions to a Table . 162

Enabling New Dimensions in Forms . 164

Customizing Other Tables . 166

Adding Dimensions to Queries . 166

Adding Lookup, Validation, and Defaulting X++ Code. 167

Form Customization . 170

Learning Form Fundamentals . 171

Displaying an Image . 179

Displaying an Image on a Form. 181

Report Customization . 187

Creating Promotional Materials . 187

Adding Promotional Materials to an Invoice Report 189

Number Sequence Customization . 196

x Table of Contents

 6 Extending Dynamics AX . 199

Introduction . 199

Wizard Framework Extension. 199

Creating a New Wizard. 202

Creating Labels. 206

Adding Content to the Wizard . 207

Adding the Wizard to the Navigation Pane and the Area Page 214

Creating a Default Data Wizard . 215

RunBase Framework Extension . 215

Inheritance in the RunBase Framework . 216

Property Method Pattern . 216

Pack-Unpack Pattern. 218

Bike-Tuning Service Offers Example. 222

Adding Property Methods . 233

Adding Constructors . 234

Adding a Query . 236

Client/Server Considerations . 239

 7 Enterprise Portal . 241

Introduction . 242

Inside Enterprise Portal . 243

Page Processing . 245

New Features in Dynamics AX 2009 Enterprise Portal 247

Enterprise Portal Development Tools . 248

MorphX . 248

Visual Studio . 249

Windows SharePoint Services . 250

Developing Data Sets . 250

Developing Web User Interface Components. 252

AxDataSource . 253

AxGridView . 254

ContextMenu . 256

AxFilterControl . 256

AxForm. 257

AxMultiSection . 258

AxSection . 258

AxGroup. 258

AxLookup . 260

AxToolbar. 262

 Table of Contents xi

AxPopup . 264

BoundField Controls. 266

Web Parts . 266

Programming Enterprise Portal Controls . 269

AJAX. 269

Session . 270

Context . 271

Data . 272

Metadata . 273

Labels . 276

Formatting . 276

Error Handling . 278

ViewState . 279

Page Life Cycle . 280

Proxy Classes. 280

Securing Web Elements . 282

Developing the Navigation . 284

Web Files . 285

Import and Deploy Page/List Tools. 289

Record Context and Encryption. 289

Security . 290

 8 Role Centers. 293

Introduction . 293

Inside Role Centers. 295

Architecture . 295

Developing Role Centers . 296

Customizing an Out-of-the-Box Role Center . 296

Creating a New Role Center. 297

Role Center Web Parts . 298

User Profiles . 312

Kerberos Authentication . 313

Security . 314

 9 Workflow in Dynamics AX. 317

Introduction . 317

Dynamics AX 2009 Workflow Infrastructure . 318

Windows Workflow Foundation . 321

Automating Business Processes . 322

xii Table of Contents

Workflow from a Developer’s Perspective . 323

Key Workflow Concepts . 323

Workflow Architecture . 327

Logical Approval and Task Workflows . 332

Workflow Life Cycle . 334

Designing Workflows . 335

 10 .NET Business Connector . 349

Introduction . 349

Integration Technologies . 350

Inside .NET Business Connector . 351

Logical Component Stack. 351

Run Time . 352

Web Interoperability . 353

Security . 355

Usage Scenarios for .NET Business Connector . 356

Client . 357

Web . 358

Server . 359

Working with .NET Business Connector . 360

Data Types and Mappings . 360

Managed Classes . 361

Processing Requests and Responses. 361

Exception Handling . 363

HelloWorld Example . 363

Accessing Data . 365

Querying Data Across Companies . 366

Invoking Business Logic . 370

Enhanced CLR Interoperability with the Dynamics AX Interpreter
and X++ . 371

Passing Managed Objects to Dynamics AX . 371

Registering Managed Callbacks . 373

Migrating Applications . 375

 11 Reporting in Dynamics AX 2009 . 377

Introduction . 377

Reporting Overview. 378

What Is a Report?. 378

 Table of Contents xiii

Reporting and Users . 378

Providing Reports in Dynamics AX 2009. 379

Inside the Dynamics AX 2009 Reporting Framework . 382

Data Flow Overview. 382

Reporting Services Production Reporting Technical Scenario 384

Reporting Services Ad Hoc Reporting Technical Scenario 385

Building Dynamics AX Reporting Services Reports Using
Visual Studio . 386

Dynamics AX Reporting Development Tools . 386

Integration with Dynamics AX. 386

Report Development Life Cycle . 387

Reporting Tools Model Elements . 387

Ad Hoc Reporting . 391

Deployment: Perspectives and SMDL Models . 391

Performance and Platform Considerations . 392

Security . 392

Creating Ad Hoc Reports . 392

Troubleshooting . 395

 12 Performance . 397

Introduction . 397

Client/Server Performance . 398

Reducing Round-Trips Between the Client and the Server. 398

Writing Tier-Aware Code . 402

Transaction Performance .404

Set-Based Data Manipulation Operators .404

Restartable Jobs and Optimistic Concurrency . 415

Caching . 417

Limiting Field Lists . 427

Field Justification . 431

Other Performance Considerations . 431

Dynamics AX Monitoring Tools . 432

Dynamics AX Trace Parser . 432

Setting Tracing Options . 432

Tracing Options and Other Tracing Activities . 433

Monitoring Client/Server Calls . 436

Monitoring Database Activity . 437

Code Profiler Tool . 439

xiv Table of Contents

 13 Configuration and Security . 441

Introduction . 441

IntelliMorph. 442

Best Practices . 443

Working with IntelliMorph . 445

Licensing and Configuration . 447

Configuration Hierarchy . 449

Configuration Keys. 450

Using Configuration Keys . 451

Security Framework . 453

Organizing Security . 454

Applying Security. 456

Security Coding . 462

Part III Under the Hood

 14 The Database Layer . 469

Introduction . 469

Transaction Semantics . 471

Transaction Statements. 471

Isolation Levels . 473

Concurrency Models . 474

Record Identifiers . 489

Allocation . 490

Programming Model. 492

Administration . 493

Upgrade. 494

Company Accounts . 494

Identification. 496

Changing the Company Account . 497

External Accessibility . 499

Unicode Support . 500

Databases . 500

Application Runtime . 501

MorphX Development Environment . 502

Files . 503

DLLs and COM Components . 503

 Table of Contents xv

Database Access . 504

Database Synchronization . 505

Table, Column, and Index Naming . 507

Left and Right Justification. 507

Placeholders and Literals . 509

Dynamics AX Type System vs. Database Type System. 512

Database Log and Alerts . 512

Database-Triggering Methods . 514

insert, update, and delete Methods. 514

Selecting Rows . 516

Validating Rows . 516

Changing the Default Behavior . 516

Set-Based DML Statements . 519

Temporary Tables . 520

Using Temporary Tables . 521

Design-Time Setting . 525

Configuration-Time Setting . 526

Application Runtime Setting . 527

Composite Queries . 528

Paging Framework for Queries . 529

Position-Based Paging . 529

Value-Based Paging. 530

Query Framework Enhancement. 531

Complex Queries . 531

Union Queries. 533

Query as a Central Data Modeling Tool. 537

Specifying Query Ranges Using the SysQueryRangeUtil Class. 541

 15 Reflection . 543

Introduction . 543

Reflection System Functions. .544

Intrinsic Functions .544

TypeOf System Function . 546

ClassIdGet System Function . 546

Reflection APIs . 548

Table Data API . 548

Dictionary API. 551

Treenodes API. 555

xvi Table of Contents

 16 The Batch Framework. 559

Introduction . 559

Batch Processing in Dynamics AX . 560

Dynamics AX Batch Concepts . 560

Batch Framework Capabilities . 561

Performance . 562

Common Uses of Batch Processing. 562

Batch-Enabling a Class . 563

Creating a Batch Job . 565

From the Dialog Box of a Class . 565

From the Batch Job Form . 566

Using the Batch API . 570

Managing the Batch Server Execution Process . 573

Set Up Server Configuration . 573

Create a Batch Group . 574

Manage Batch Jobs . 575

Debug a Batch Task . 577

 17 The Application Integration Framework 581

Introduction . 581

Overview of the Application Integration Framework. 582

Overview Scenarios . 582

Overview of Dynamics AX Services . 583

Components of Dynamics AX Services. 584

Overview of Document Services . 584

Overview of Custom Services . 589

Working with Custom Services . 589

Creating a Service Implementation Class . 590

Creating a Service Contract . 590

Implementing Data Objects. 591

Discovering Custom Services . 594

Working with Document Services . 595

Creating Dynamics AX Queries . 595

Generating Document Services. 596

Customizing Document Services. 597

Publishing Dynamics AX Services . 604

Configuring Dynamics AX Services. 604

Consuming Dynamics AX Services . 606

 Table of Contents xvii

Sending One-Way Requests from Dynamics AX . 613

Implementing a Trigger for Transmission . 613

Configuring Transmission Mechanisms . 616

Consuming Web Services from Dynamics AX. 616

Dynamics AX Service References . 617

Consuming an External Web Service . 617

Guidelines for Consuming External Web Services 620

Performance Considerations . 622

 18 Code Upgrade . 623

Introduction . 623

Terminology . 624

Why Code Upgrade Is Necessary . 624

Role of Customization. 625

Role of Layers . 626

Overlayering and Conflicts . 627

Starting a Code Upgrade . 629

Conflict Types . 629

Conflict Detection Tool . 630

Upgrade Projects . 631

Conflicts in Layered Upgrade Projects . 632

Conflicts in Framework Conflict Projects . 634

Upgrade Project Tools. 639

Code Upgrade Tools .640

Element Usage Log Report . 641

Upgrade Estimate Report . 641

Compare Tool . 642

Property Sheet . 642

X++ Code Editor. 642

Finishing a Code Upgrade . 642

Smart Customizations . 643

Using IntelliMorph Technology . 643

Creating New Elements or Using Class Substitution 643

Modifying Stable Application Elements. .644

xviii Table of Contents

Part IV Appendices

 A Application Files . 647

 B SQL Server 2005, SQL Server 2008, and Oracle
Database 10g Comparison. 649

 C Source Code Changes Required for Upgrade 651

Code Changes. 651

Metadata Changes. 652

Table Modifications . 653

Multiple Time Zones . 654

Language Enhancements . 654

API Enhancements . 654

Metadata Enhancements . 654

System Field Changes . 655

DateTime Control and Form Changes . 655

Glossary . 657

Index . 663

About the Authors . 682

Principal Authors . 682

Contributing Authors. 665

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

 xix

Foreword

In the course of our engagement with numerous partners and customers, we have learned
how much developers enjoy working with Microsoft Dynamics AX. We love building
ever-more-powerful versions of Dynamics AX that help our customers increase their
 competitiveness; our partners love our product’s powerful set of development tools, which
allow them to build affordable and flexible enterprise resource planning (ERP) systems
whose quality and adaptability are second to none. Some of the examples in this book,
such as creating and exposing custom data sets to external applications through a Web
service, can be performed in 10 minutes or less. The very same examples would take at
least a week to complete in other ERP systems.

This is the second edition of this book. We received very positive feedback on the first
 edition, Inside Microsoft Dynamics AX 4.0, from people who used the book for a variety of
purposes: from ramping up new teams and using the information in it to build presentations,
to giving copies to customers, prospects, and colleagues. Our aspiration for this new edition
is to incorporate the feedback we received on the original book and to cover the technologies
added to Dynamics AX 2009, such as ASP.NET for Enterprise Portal, new Workflow function-
ality, Role Centers with advanced business intelligence, and the new Batch framework.

We believe that this book, which aims to provide developers with solid information on
 advanced concepts, can make your entry into the powerful toolset for building business
 applications a much smoother and more digestible learning experience. We hope that this
book is received as an insightful resource for many people working with Dynamics AX 2009.

I want to thank the coauthors for using their evenings and weekends to contribute to this book.

I wish you success with your implementation and customization of Microsoft Dynamics AX 2009.

Hans J. Skovgaard
Product Unit Manager
Microsoft Corporation

 xxi

Acknowledgments

We want to thank all the people who assisted us in making this book become a reality. The
list of people is long—if we inadvertently missed anyone, we apologize. A special thanks
goes to the following people on the Microsoft Dynamics AX product team:

 Heidi Boeh, who pitched this book to Microsoft Press and then worked to pull together
great content from 24 contributors (from 10 countries of origin), across three develop-
ment centers.

 Hal Howard and Hans Jørgen Skovgaard, who sponsored the project.

 Michael Fruergaard Pontoppidan, one of the principle authors of this book. Michael’s
dedication and broad and deep product knowledge brought excellence to this book
that it would not have otherwise achieved.

 The people on the product team who provided reviews, comments, and editorial assis-
tance, and otherwise moved small mountains to make this book happen:

Wade Baird Gene Milener

Arijit Basu Becky Newell

Sue Brandt Adrian Orth

Ben Buresh Marko Perisic

Hua Chu Jen Pfau

Christian Heide Damm Gustavo Plancarte

Hitesh Dani Pepijn Richter

Julie Deutz David Robinson

Krishnan Duraisamy Finnur Saemundsson

Ahmad El Husseini Karen Scipi

Arthur Greef Dianne Siebold

Jan Jakobsen Stella Sorensen

Peter Jerkewitz Gandhi Swaminathan

Andrew Jewsbury Piotr Szymanski

Brian King Tracy Taylor

Steve Kubis Bill Thompson

Arif Kureshy Shyla Thompson

Stuart Macrae Van Vanslette

Donna Marshall Peter Villadsen

Scott McDonald

xxii Acknowledgments

 The early reviewers from the Dynamics AX Partner Advisory Board, who provided us
with the crucial partner perspective.

We also want to thank the people at Microsoft Press who helped support us throughout the
book writing and publishing process:

 Ben Ryan, who championed the book project at Microsoft Press.

 Maria Gargiulo, who provided valuable feedback during the developmental editing
cycle.

 Valerie Woolley, who was our outstanding, efficient, and always calming project editor.
Val, we can’t thank you enough.

 Arijit Basu, the technical reviewer, who asked the countless questions that made this
book better than it would have been otherwise. Arijit, you rock.

 Sally Stickney, who provided the final editing passes on this book. Her questions were
insightful and precise, and her feedback was excellent. She went above and beyond the
call of duty to bring excellence to this project.

The Microsoft Dynamics AX author team

 xxiii

Introduction

We understand if you’re a bit skeptical when we tell you that you are about to fall for a piece
of software. We want you to know up front that our intention is to show you all the wonderful
and amazing benefits that Microsoft Dynamics AX 2009 has to offer your business.

Here are some reactions from our partners and customers who have been involved in the
early adoption.

The release of Microsoft Dynamics AX 2009 shows a tremendous development
effort on Microsoft’s side not only for those already familiar with the product but
for newcomers too. This is the best release yet.

Jesper R. Hansen, Partner, thy:innovation

The completeness of the . . . release of Microsoft Dynamics AX 2009 will help
existing and new customers reduce the cost of additional customization and
therefore reduce the total implementation cost.

Sven Sieverink, Business Consultant, Dynamics Software

The out-of-the-box Role Centers in Microsoft Dynamics AX 2009 add value from
day one for all employees in our organization. Our users see enormous value with
the visuals, the ability to easily design cues, and the year-to-year comparison.

John Elmer, Vice President of Information Systems, Rodgers and Hammerstein

The Business Intelligence possibilities and integrated workflow offer my team
powerful tools to do the job themselves.

Greg Brock, Director Information Systems, Techmer PM

Who Is This Book For?

This book delves into the technology and tools in Dynamics AX 2009. New and experienced
developers are the intended target audience, and consultants will also benefit from reading
this book. The intention is not to give guidance on application functionality but rather to
 offer as much technical information between the two covers as possible. It is also beyond the
scope of this book to include details about installation, upgrade, deployment, and sizing of
production environments. Refer to the extensive installation and implementation documen-
tation supplied with the product for more information on these topics.

xxiv Introduction

To get full value from this book, you should have knowledge of common object-oriented
concepts from languages such as C++, C#, and Java. Knowledge of Structured Query
Language (SQL) is also an advantage. SQL statements are used to perform relational data-
base tasks such as data updates and data retrieval.

Note If you don’t have the Dynamics AX license that provides developer rights, you won’t be
able to perform most of the actions in this book. A virtual PC version of Dynamics AX 2009,
with developer rights, is available for partners to download at https://mbs.microsoft.com/
partnersource/deployment/methodology/vpc/vpcimageax2009.htm.

The History of Microsoft Dynamics AX

Historically, Dynamics AX envelops more than 25 years of experience in business application
innovation and developer productivity. Microsoft acquired Dynamics AX in 2002; the success
of the product has spurred an increasing commitment of research and development resources,
which allow Dynamics AX to continuously grow and strengthen its offering.

The development team that created Dynamics AX 2009 consists of three large teams, two
of which are based in the United States (Fargo, North Dakota, and Redmond, Washington)
and one based in Denmark (Copenhagen). The Fargo team focuses on finance and human
resources (HR), the Redmond team concentrates on Microsoft Project and CRM, and
Copenhagen team delivers Supply Chain Management (SCM). In addition, a framework
team, distributed over the three sites, develops infrastructure components. Finally, a world-
wide distributed team localizes the Dynamics AX features to meet national regulations or
local differences in business practices, allowing the product to ship in 24 main languages in
38 countries.

To clarify a few aspects of the origins of Dynamics AX, the authors contacted people who
participated in the early stages of the Dynamics AX development cycle. The first question we
asked was, How was the idea of using X++ as the programming language for Dynamics AX
conceived?

We had been working with an upgraded version of XAL for a while called OO
XAL back in 1996/1997. At some point in time, we stopped and reviewed our
approach and looked at other new languages like Java. After working one long
night, I decided that our approach had to change to align with the latest trends in
programming languages, and we started with X++.

Erik Damgaard, cofounder of Damgaard Data

Of course, there were several perspectives among the developers on this breakthrough
event.

 Introduction xxv

One morning when we came to work, nothing was working. Later in the morning,
we realized that we had changed programming languages! But we did not have
any tools, so for months we were programming in Notepad without compiler or
editor support.

Anonymous developer (but among the authors of this book!)

Many hypotheses exist regarding the origin of the original product name, Axapta. Axapta
was a constructed name, and the only requirement was that the letter X be included, to
mark the association with the predecessor XAL. The X association carries over in the name
Dynamics AX.

Organization of This Book

Part I , “A Tour of the Development Environment,” is mainly for people new to Dynamics
AX. It describes the application architecture from the perspective of development,
 deployment, and administration. The chapters in Part I also provide a tour of the internal
Dynamics AX development environment to help new developers familiarize themselves
with designers, tools, the X++ programming language, and the object-oriented applica-
tion framework that they will use to implement their customizations, extensions, and
integrations.

Parts II (“Core Development Concepts”) and III (“Under the Hood”) are largely devoted to
illustrating how developers use the Dynamics AX application framework. Through code
samples written for a fictitious bicycle sales and distribution company, Part II describes how
to customize and extend Dynamics AX. The examples show how the fictitious company cus-
tomizes, extends, and integrates the application to support its online make-to-order sales,
distribution, and service operations.

Reading Guide

If you are an experienced Dynamics AX developer, you might want to skip the tour of the
 development environment after reading Chapter 1, “Architectural Overview,” and move
straight to Part II or Part III, which consist of chapters that can be read in random order. Or
use the book as a reference for subjects that you are especially interested in.

Differences from Inside Microsoft Dynamics AX 4.0

This book is an update to the book Inside Microsoft Dynamics AX 4.0. Along with changes
made to existing chapters, we added several new chapters, on workflow, Role Centers, the
Batch framework, reporting, and code upgrade. We have significantly expanded the perfor-
mance chapter, and the Enterprise Portal chapter now describes the new ASP.NET tooling.

xxvi Introduction

We greatly extended the chapter “XML Document Integration” in the first edition, renaming
it as “The Application Integration Framework” (Chapter 17).

We removed the chapters on advanced MorphX forms and system classes because
these were least referenced by readers. You can find extensive documentation on MorphX
forms and system classes in the Dynamics AX 2009 software development kit (SDK), which
is on MSDN. And the previous version of this book is still a good source of information
 because some of the technologies haven’t changed much. We also removed the chapter on
upgrade and data migration and replaced that content with a significantly enhanced series
of chapters on the version upgrade process, found in the bonus eBook, which can be found
on this book’s companion Web site: http://www.microsoft.com/learning/en/us/books/13345.
Finally, the chapter on unit testing has been merged into the chapter on the MorphX tools
(Chapter 3).

Product Documentation

In addition to this book, you can read thousands of topic pages of product documentation
on application and system issues in the online Help. Extensive documentation on installation
and implementation is available in the Microsoft Dynamics AX 2009 SDK and the Microsoft
Dynamics AX Implementation Guide, both supplied with the product. You can also find the
product documentation on MSDN. And if you have an installation of Dynamics AX 2009, you
have access to the following topic areas on the Help menu: Administrator Help, Developer
Help, and User Help.

Product Web Site

The user portal for Dynamics AX encompasses product and purchase information as well as
guidelines for using the product and links to online newsgroups and user communities.

For more information, visit the site http://www.microsoft.com/dynamics/ax.

Naming

With the latest version of the application, the name of the product changed to Microsoft
Dynamics AX 2009. The previous product versions were named Microsoft Axapta and
Microsoft Dynamics AX 4.0. For easier reading, this book refers to the 2009 version of the
product as Dynamics AX 2009 or just Dynamics AX and refers specifically to earlier versions
where appropriate.

Code

All relevant code examples are available for download. For details on the companion Web
site, see the “Code Samples” section later in this introduction. You might need to modify

 Introduction xxvii

some of the code samples to execute them. The necessary changes are described either
in the .xpo fi les themselves or in the readme fi le associated with the code samples on the
 companion Web site.

Glossary

Like all software, Dynamics AX involves the use of many abbreviations, acronyms, and tech-
nical expressions. Much of this information is available in a glossary that you will fi nd at the
back of the book. For a larger list of terms and abbreviations, refer to the glossary provided
with the product documentation.

Special Legend

To distinguish between SQL and X++ statements, this book uses the common practice for
SQL keywords, which is to display them in all capital letters. The following code shows an
example of this in connection with nested transactions, where a transaction is started in X++
and later sent to a SQL server.

boolean b = true; ; ttsbegin; // Transaction is not initiated here

update_recordset custTable setting creditMax = 0; // set implicit transactions on

if (b == true) ttscommit; // COMMIT TRANSACTION else

 ttsabort; // ROLLBACK TRANSACTION

System Requirements

You need the following hardware and software to build and run all the code samples for
this book:

 Microsoft Dynamics AX 2009: .NET Business Connector, Microsoft Dynamics AX 2009
Rich Client, Application Object Server (AOS; up and running)

 Windows Vista Business Edition, Ultimate Edition, or Enterprise Edition, Service Pack 1
or Windows XP Professional Edition, Service Pack 2/3 (for Microsoft Dynamics AX 2009
Rich Client)

 Windows Server 2003 with Service Pack 2 or Windows Server 2008 (AOS Server)

 Microsoft SQL Server 2008 or Microsoft SQL Server 2005, Service Pack 2, Service Pack 3,
or Oracle Database 10g R2

 Windows SharePoint Services 3.0 with Service Pack 1 or Microsoft Offi ce SharePoint
Server 2007, Enterprise Edition Service Pack 1 (to run Enterprise Portal or Role Centers)

 Microsoft SQL Server 2008 Reporting Services or Microsoft SQL Server 2005 Reporting
Services with SQL Server Service Pack 2/3 (to run SQL Reporting Services)

boolean b = true; ; ttsbegin; // Transaction is not initiated here

update_recordset custTable setting creditMax = 0; // set implicit transactions on

if (b == true) ttscommit; // COMMIT TRANSACTION else

 ttsabort; // ROLLBACK TRANSACTION

xxviii Introduction

 Microsoft Visual Studio 2008

 Microsoft .NET Framework 3.5

 Intel Pentium/Celeron family or compatible Pentium III Xeon or higher processor mini-
mum; 1.1 gigahertz (GHz) or higher recommended

 1 gigabyte (GB) RAM or more recommended

 Video: at least 1024 × 768 high color 16-bit

 DVD-ROM drive

 Microsoft mouse or compatible pointing device

Because the requirements typically evolve with service packs that support new versions
of underlying technologies, we recommend that you check for the latest updated system
 requirements at http://www.microsoft.com/dynamics/ax/using/2009systemrequirements.mspx.

Release Software

This book was reviewed and tested against the RTM version of Dynamics AX 2009. Any
changes or corrections to this book will be added to a Microsoft Knowledge Base article. For
details, see the “Support for This Book” section in this introduction.

Technology Updates

As technologies related to this book are updated, links to additional information will be added
to the Microsoft Press Technology Updates Web site. Visit this site periodically for updates on
Microsoft Visual Studio 2005 and other technologies: http://www.microsoft.com/mspress/updates.

Code Samples

All code samples discussed in this book can be downloaded from the book’s companion content
page at the following address: http://www.microsoft.com/learning/en/us/books/13345.aspx.

Bonus Content

On the companion Web site you’ll find an eBook that contains several bonus chapters.
Chapter 1, “Introduction to Upgrade,” Chapter 2, “Code Upgrade” (also Chapter 18 of this
book), Chapter 3, “Data Upgrade,” and Chapter 4 “Upgrade Additional Topics.”

The upgrade information you find in this eBook gives you a solid overview of the Dynamics
AX 2009 upgrade process, tells you about the tools that are available to walk you through
the upgrade process, and gives you some tips and best practice guidelines; it does not give

 Introduction xxix

you detailed procedures—simply because version upgrade is such a large topic. A wealth of
procedural and other information on the upgrade process is available with the Dynamics AX
product; we have included a list of those resources at the end of this introduction. You can
download the eBook from http://www.microsoft.com/learning/en/us/books/13345.aspx.

Find Additional Content Online

As new or updated material becomes available that complements your book, it will be
posted online on the Microsoft Press Online Developer Tools Web site. The type of material
you might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web is available at www.microsoft.com/learning/books/
online/developer, and is updated periodically.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the companion content.
As corrections or changes are collected, they will be added to a Microsoft Knowledge Base
article. To view the list of known corrections for this book, visit the following article:

http://support.microsoft.com/kb

Microsoft Press provides support for books and companion content at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites mentioned earlier, please send them to
Microsoft Press via e-mail:

mspinput@microsoft.com

You may also send your questions via postal mail to

Microsoft Press
Attn: Inside Microsoft Dynamics AX 2009 Project Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through these addresses.

 37

Chapter 3

The MorphX Tools

In this chapter:

Introduction . 37

Application Object Tree . 39

Project Designer . 45

Property Sheet. 49

X++ Code Editor . 50

Label Editor . 53

Visual Form Designer and Visual Report Designer . 56

Code Compiler . 59

Dynamics AX SDK . 61

Best Practices Tool . 62

Debugger . 65

Visio Reverse Engineering Tool. 69

Table Browser Tool . 75

Find Tool . 76

Compare Tool. 78

Cross-Reference Tool . 83

Version Control . 86

Unit Test Tool . 96

The objectives of this chapter are to:

 Provide an overview of the tools used when developing a Microsoft Dynamics AX 2009
enterprise resource planning (ERP) application with MorphX.

 Share tips and tricks on how to use the MorphX tools efficiently.

 Demonstrate how to personalize and extend the MorphX tools.

Introduction

Dynamics AX includes a set of tools, the MorphX development tools, that allow developers
to build and modify Dynamics AX business applications. Each feature of a business applica-
tion uses the application model elements described in Chapter 2, “The MorphX Development
Environment.” The MorphX tools enable developers to create, view, modify, and delete the

38 Part I A Tour of the Development Environment

application model elements, which contain metadata, structure (ordering and hierarchies
of elements), properties (key and value pairs), and X++ code. For example, a table element
 includes the name of the table, the properties set for the table, the fi elds, the indices, the
 relations, the methods, and so on.

 This chapter describes the most commonly used tools and offers some tips and tricks for
working with them. You can fi nd additional information and an overview of other MorphX
tools in the MorphX Development Tools section of the Microsoft Dynamics AX software
development kit (SDK) 2009 on MSDN.

 Tip To enable the development mode of Dynamics AX 2009, press Ctrl+Shift+D. Ctrl+Shift+D is
a toggle key that also returns you to content mode.

 Table 3-1 lists the MorphX tools that are discussed in this chapter.

 TABLE 3-1 MorphX Tools

 Tool Use This Tool To:

 Application Object Tree (AOT) Start development activities. The AOT is the main entry point for
all development activities. It is the repository for all elements that
together comprise the business application. You can use the AOT
to invoke the other tools and to browse and create elements.

 Project Designer Group related elements into projects.

 Property sheet Inspect and modify properties of elements. The property sheet
shows key and value pairs.

 X++ Code Editor Inspect and write X++ source code.

 Label Editor Create and inspect localizable strings.

 Visual Form Designer and the
Visual Report Designer

Design forms and reports in a What You See Is What You Get
(WYSIWYG) fashion.

 Compiler Compile X++ code into an executable format.

 Best Practices tool Automatically detect defects in both your code and your
 elements.

 Debugger Find bugs in your X++ code.

 Reverse Engineering tool Generate Microsoft Offi ce Visio Unifi ed Modeling Language
(UML) and Entity Relationship Diagrams (ERDs) from elements.

 Table Browser tool View the contents of a table directly from the table element.

 Find tool Search for code or metadata patterns in the AOT.

 Compare tool See a line-by-line comparison of two versions of the same element.

 Cross-reference tool Determine where an element is used.

 Version Control tool Track all changes to elements and see a full revision log.

 Unit Test tool Build automated tests that can exercise your code and detect
regressions.

Tool Use This Tool To:

 Chapter 3 The MorphX Tools 39

You can access these development tools from the following places:

 The Development Tools submenu on the Tools menu. From the Microsoft Dynamics AX
drop-down menu, point to Tools, and then point to Development Tools.

 The context menu on elements in the AOT.

Note The Microsoft Dynamics AX SDK contains valuable developer documentation and is up-
dated frequently. Find it in the Microsoft Dynamics AX Developer Center on msdn.microsoft.com.

You can personalize the behavior of many MorphX tools by clicking Options on the Tools
menu. Figure 3-1 shows the Options dialog box.

FIGURE 3-1 Options dialog box, in which development options are specified

Application Object Tree

The AOT is the main entry point to MorphX and is the repository explorer for all metadata.
You can open the AOT by clicking the AOT icon on the toolbar or by pressing Ctrl+D. The
AOT icon looks like this:

40 Part I A Tour of the Development Environment

Navigating the AOT

As the name implies, the AOT is a tree view. The root of the AOT contains the element
 categories, such as Classes, Tables, and Forms. Some elements are grouped into subcatego-
ries to provide a better structure. For example, Tables, Maps, Views, and Extended Data Types
reside under Data Dictionary, and all Web-related elements are found under Web. Figure 3-2
shows the AOT.

You can navigate the AOT by using the arrow keys on the keyboard. Pressing the Right arrow
key expands a node if it has any children.

Elements are ordered alphabetically. Because thousands of elements exist, understanding the
naming conventions and adhering to them is important to effectively using the AOT.

FIGURE 3-2 Application Object Tree

All element names in the AOT follow this structure:

<Business area name> + <Business area description> + <Action performed or type of
content>

 Chapter 3 The MorphX Tools 41

 In this naming convention, similar elements are placed next to each other. The business area
name is also often referred to as the prefi x. Prefi xes are commonly used to indicate the team
responsible for an element.

 Table 3-2 contains a list of the most common prefi xes and their descriptions.

 TABLE 3-2 Common Prefi xes

 Prefi x Description

 Ax Dynamics AX typed data source

 Axd Dynamics AX business document

 BOM Bill of material

 COS Cost accounting

 Cust Customer

 HRM Human resources management

 Invent Inventory management

 JMG Shop fl oor control

 KM Knowledge management

 Ledger General ledger

 PBA Product builder

 Prod Production

 Proj Project

 Purch Purchase

 Req Requirements

 Sales Sales

 SMA Service management

 SMM Sales and marketing management

 Sys Application frameworks and development tools

 Tax Tax engine

 Vend Vendor

 Web Web framework

 WMS Warehouse management

 Tip When creating new elements, make sure to follow the recommended naming conventions.
Any future development and maintenance will be much easier.

 The Project Designer, described in detail later in this chapter, provides an alternative view of
the information organized by the AOT.

Prefi x Description

42 Part I A Tour of the Development Environment

Creating New Elements in the AOT

You can create new elements in the AOT by right-clicking the element category node and
selecting New <Element Name>, as shown in Figure 3-3.

FIGURE 3-3 Creating a new element in the AOT

Objects are given automatically generated names when they are created. However, you should
replace the default names with new names in accordance with the naming conventions.

Modifying Elements in the AOT

Each node in the AOT has a set of properties and either subnodes or X++ code. You can use
the property sheet (shown in Figure 3-9) to inspect or modify properties, and you can use
the X++ code editor (shown in Figure 3-11) to inspect or modify X++ code.

The order of the subnodes can play a role in the semantics of the element. For example, the
tabs on a form display in the order in which they are listed in the AOT. You can change the
order of nodes by selecting a node and pressing the Alt key while pressing the Up or Down
arrow key.

A red vertical line next to an element name marks it as modified and unsaved, or dirty, as
shown in Figure 3-4.

 Chapter 3 The MorphX Tools 43

FIGURE 3-4 A dirty element in the AOT, indicated by a vertical line next to CustTable (sys)

A dirty element is saved in the following situations:

 The element is executed.

 The developer explicitly invokes the Save or Save All action.

 Autosave takes place. You specify the frequency of autosave in the Options dialog box
accessible from the Tools menu.

Refreshing Elements in the AOT

If several developers modify elements simultaneously in the same installation of Dynamics
AX, each developer’s local elements could become out of sync with the latest version. To
ensure that the local versions of remotely changed elements are updated, an autorefresh
thread runs in the background. This autorefresh functionality eventually updates all changes,
but you might want to explicitly force a refresh. You do this by right-clicking the element
you want to restore and then selecting Restore. This action refreshes both the on-disk and
the in-memory versions of the element. The following is a less elegant way of ensuring that the
latest elements are used:

 1. Close the Dynamics AX client to clear in-memory elements.

 2. Close the Dynamics Server service on the Application Object Server (AOS) to clear
in-memory elements.

 3. Delete the application object cache files (*.auc) from the Local Application Data folder
(located in Documents and Settings\<User>\Local Settings\Application Data) to remove
the on-disk elements.

Note Before Dynamics AX 4.0, the application object cache was stored in .aoc files. To support
Unicode, the file extension was changed to .auc in Dynamics AX 4.0.

44 Part I A Tour of the Development Environment

Element Actions in the AOT

Each node in the AOT contains a set of available actions. You can access these actions from
the context menu, which you can open by right-clicking the node in question.

Here are two facts to remember about actions:

 The actions available depend on the type of node you select.

 You can select multiple nodes and perform actions simultaneously on all the nodes
selected.

A frequently used action is Open New Window, which is available for all nodes. It opens a
new AOT window with the current nodes as the root. We used this action to create the screen
capture of the CustTable element shown in Figure 3-4. Once you open a new AOT window,
you can drag elements into the nodes, saving time and effort when you’re developing an
application.

You can extend the list of available actions on the context menu. You can create custom
actions for any element in the AOT by using the features provided by MorphX. In fact, all
actions listed on the Add-Ins submenu are implemented in MorphX by using X++ and the
MorphX tools.

You can enlist a class as a new add-in by following this procedure:

 1. Create a new menu item and give it a meaningful name, a label, and Help text.

 2. Set the menu item’s Object Type property to Class.

 3. Set the menu item’s Object property to the name of the class to be invoked by the
add-in.

 4. Drag the menu item to the SysContextMenu menu.

 5. If you want the action available only for certain nodes, you need to modify the
 verifyItem method on the SysContextMenu class.

Element Layers in the AOT

When you modify an element from a lower layer, a copy of the element is placed in the
 current layer. All elements in the current layer appear in bold type (as shown in Figure 3-5),
which makes it easy to recognize changes. For a description of the layer technology, see the
section “Application Model Layering System” in Chapter 1, “Architectural Overview.”

 Chapter 3 The MorphX Tools 45

FIGURE 3-5 An element in the AOT that exists in several layers

You can use the Application Object Layer setting in the Options dialog box to personalize
the layer information shown in the AOT. Figure 3-5 shows a class with the option set to All
Layers. As you can see, each method is suffixed with information about the layers in which it
is defined, such as sys, var, and usr. If an element exists in several layers, you can right-click
it and select Layers to access its versions from lower layers. We highly recommend the All
Layers setting during code upgrade because it provides a visual representation of the layer
dimension directly in the AOT.

Note If you modify an element that exists in a higher layer than your current layer, all modifica-
tions are redirected to the upper layer where the element is defined.

Project Designer

For a fully customizable overview of the elements, you can use projects. In a project,
 elements can be grouped and structured according to the developer’s preference. The
Project Designer is a powerful alternative to the AOT because you can collect all the
 elements needed for a feature in one project.

46 Part I A Tour of the Development Environment

Creating a New Project

You open the Project Designer by clicking the Project button on the toolbar. Figure 3-6
shows the Project Designer and its Private and Shared projects.

FIGURE 3-6 Project Designer, showing available private and shared projects

Except for its structure, the Project Designer behaves exactly like the AOT. Every element in a
project is also present in the AOT.

When you create a new project, you must decide whether it should be private or shared
among all developers. You can’t set access requirements on shared projects. You can make a
shared project private (and a private project shared) by dragging it from the shared category
into the private category.

Note Central features of Dynamics AX 2009 are captured in shared projects to provide an
 overview of all the elements in a feature. No private projects are included with the application.

You can specify a startup project in the Options dialog box. If specified, the chosen project
automatically opens when Dynamics AX is started.

Automatically Generated Projects

Projects can be automatically generated in several ways—from using group masks to
 customizing special project types—to make working with them easier. We discuss the various
ways to automatically generate projects in the sections that follow.

Group Masks

Groups are folders in a project. When you create a group, you can have its contents be
 automatically generated by setting the ProjectGroupType property (All is an option) and a

 Chapter 3 The MorphX Tools 47

regular expression as the GroupMask property. The contents of the group are created auto-
matically and kept up to date as elements are created, deleted, and renamed. Using group
masks ensures that your project is always current, even when elements are created directly in
the AOT.

Figure 3-7 shows the ProjectGroupType property set to Tables and the GroupMask property
set to <xRef on a project group. All table names starting with xRef (the prefix for the Cross-
reference tool) will be included in the project group.

FIGURE 3-7 Property sheet specifying settings for ProjectGroupType and GroupMask

Figure 3-8 shows the resulting project when the settings from Figure 3-7 are used.

FIGURE 3-8 Project created by using group masks

Filters

You can also generate a project based on a filter. Because all elements in the AOT persist
in a database format, you can use a query to filter elements and have the results presented
in a project. You create a project filter by clicking the Filter button on the project’s toolbar.
Depending on the complexity of the query, a project can be generated instantly or might
take several minutes.

Filters allow you to create projects containing the following kinds of elements:

 Elements created or modified within the last month

 Elements created or modified by a named user

 Elements from a particular layer

48 Part I A Tour of the Development Environment

Development Tools

Several development tools, such as the Wizard wizard, produce projects containing elements
the wizard creates. The result of running the Wizard wizard is a new project that includes a
form, a class, and a menu item—all the elements comprising the newly created wizard.

You can also use several other wizards, such as the Report Wizard and the Class Wizard, to
create projects. You can access these wizards from the Microsoft Dynamics AX drop-down
menu by clicking Tools\Development Tools\Wizards.

Layer Comparison

You can compare all the elements in one layer with the elements in another layer, called
the reference layer. If an element exists in both layers, and the definitions of the element
are different or the element doesn’t exist in the reference layer, the element will be added
to the resulting project. You can compare layers by clicking Tools\Development Tools\Code
Upgrade from the Microsoft Dynamics AX drop-down menu.

Upgrade Projects

When you upgrade from one version of Dynamics AX to another or install a new service
pack, you need to deal with any new elements that are introduced and existing elements that
have been modified. These changes might conflict with customizations you’ve implemented
in a higher layer.

The Create Upgrade Project feature makes a three-way comparison to establish whether an
element has any upgrade conflicts. It compares the original version with both the customized
version and the updated version. If a conflict is detected, the element is added to the project.

The resulting project provides a list of elements to update based on upgrade conflicts be-
tween versions. You can use the Compare tool, described later in this chapter, to see the con-
flicts in each element. Together, these features provide a cost-effective toolbox to use when
upgrading. For more information about upgrading code, see Chapter 18, “Code Upgrade.”

You can create upgrade projects by clicking Tools\Development Tools\Code Upgrade\Detect
Code Upgrade conflicts from the Microsoft Dynamics AX drop-down menu.

Project Types

When you create a new project, you can specify a project type. So far in this chapter, we’ve
limited our discussion to standard projects. Two specialized project types are also provided in
Dynamics AX:

 Test project Project used to group a set of classes for unit testing

 Help Book project Project used for the table of contents in the online Help system

 Chapter 3 The MorphX Tools 49

You can create a custom specialized project by creating a new class that extends the
ProjectNode class. Specialized projects allow you to control the structure, icons, and actions
available to the project.

Property Sheet

Properties are an important part of the metadata system. Each property is a key and value
pair. The property sheet allows you to inspect and modify properties of elements.

Open the property sheet by pressing Alt+Enter or by clicking the Properties button. The
 property sheet automatically updates itself to show properties for any element selected in
the AOT. You don’t have to manually open the property sheet for each element; you can
simply leave it open and browse the elements. Figure 3-9 shows the property sheet for a
TaxSpec class. The two columns are the key and value pairs for each property.

Tip Pressing Esc in the property sheet sets the focus back to your origin.

FIGURE 3-9 Property sheet for an element in the AOT

Figure 3-10 shows the Categories tab for the class shown in Figure 3-9. Here, related properties
are categorized. For elements with many properties, this view can make it easier to find the
right property.

50 Part I A Tour of the Development Environment

FIGURE 3-10 Categories tab on the property sheet for an element in the AOT

Read-only properties appear in gray. Just like files in the file system, elements contain infor-
mation about who created them and when they were modified. The Microsoft build process
ensures that all elements that ship from Microsoft have the same time and user stamp.

The default sort order places related properties near each other. Categories were
 introduced in an earlier version of Dynamics AX to make finding properties easier, but you
can also sort properties alphabetically by setting a parameter in the Options dialog box.
(Thanks to Erik Damgaard, founder of Damgaard Data, the default sorting order is retained
in the current version for developers familiar with the original layout of properties.)

You can dock the property sheet on either side of the screen by right-clicking the title bar.
Docking ensures that the property sheet is never hidden behind another tool.

X++ Code Editor

You write all X++ code with the X++ code editor. You open the editor by selecting a node in
the AOT and pressing Enter. The editor contains two panes. The left pane shows the methods
available, and the right pane shows the X++ code for the selected method, as shown in
Figure 3-11.

 Chapter 3 The MorphX Tools 51

FIGURE 3-11 X++ code editor

 The X++ code editor is a basic text editor that supports color coding and IntelliSense.

Shortcut Keys

 Navigation and editing in the X++ code editor use standard shortcuts, as described in Table 3-3.

 TABLE 3-3 X++ Code Editor Shortcut Keys

 Action Shortcut Description

Show Help window F1 Opens context-sensitive Help for the type
or method currently selected in the editor.

Go to next error
message

F4 Opens the editor and positions the cursor
at the next compilation error, based on the
contents of the compiler output window.

Execute current
element

F5 Starts the current form, report, or class.

Compile F7 Compiles the current method.

Toggle a breakpoint F9 Sets or removes a breakpoint.

List enumerations F11 Provides a drop-down list of all
 enumerations available in the system.

List reserved words Shift+F2 Provides a drop-down list of all reserved
words in X++.

List built-in functions Shift+F4 Provides a drop-down list of all built-in
functions available in X++.

Run an editor script Alt+R Lists all available editor scripts and lets you
select one to execute (such as Send to mail
recipient).

Open the Label Editor Ctrl+Alt+Spacebar Opens the Label Editor and searches for
the selected text.

Action Shortcut Description

52 Part I A Tour of the Development Environment

 Action Shortcut Description

Show parameter
information or IntelliSense
list members

Ctrl+Spacebar Shows parameter information as a
ScreenTip or shows members in a drop-
down list.

Go to implementation
(drill down in code)

Ctrl+Shift+Spacebar Goes to the implementation of the
 selected method. Highly useful for fast
navigation.

Go to the next method Ctrl+Tab Sets focus on the next method in the
 editor.

Go to the previous
method

Ctrl+Shift+Tab Sets focus on the previous method in the
editor.

Enable block selection Alt+O Enables block selection, instead of the
 default line selection.

Editor Scripts

 The X++ code editor contains a set of editor scripts that you can invoke by clicking the Script
button on the X++ Code Editor toolbar or by pressing Alt+R. Editor scripts provide function-
ality such as the following:

 Send to mail recipient.

 Send to fi le.

 Comment or uncomment code.

 Check out element, if version control is enabled.

 Generate code for standard code patterns.

 Open the AOT for the element that owns the method.

 Note Code generation allows you to create, in a matter of minutes, a new class with the right
constructor method and the right encapsulation of member variables by using parm methods.
Parm methods (parm is short for “parameter”) are used as simple property getters/setters on
 classes. Naturally, code generation is carried out in accordance with X++ best practices.

 The list of editor scripts is extendable. You can create your own scripts by adding new
methods to the EditorScripts class.

Action Shortcut Description

 Chapter 3 The MorphX Tools 53

Label Editor

The term label in Dynamics AX simply refers to a localizable text resource. Text resources are
used throughout the product as messages to the user, form control labels, column headers, Help
text in the status bar, captions on forms, and text on Web forms, to name just a few places.
Labels are localizable, meaning that they can be translated into most languages. Because
the space requirement for displaying text resources typically depends on the language, you
might fear that the actual user interface must be manually localized as well. However, with
IntelliMorph technology, the user interface is dynamically rendered and honors any space
requirements imposed by localization.

The technology behind the label system is simple. All text resources are kept in a Unicode-
based label file that must have a three-letter identifier. The label file is located in the
 application folder (Program Files\Microsoft Dynamics AX\50\Application\Appl\Standard)
and follows this naming convention:

Ax<Label file identifier><Locale>.ALD

The following are two examples, the first showing U.S. English and the second a Danish label
file:

Axsysen-us.ALD

Axtstda.ALD

Each text resource in the label file has a 32-bit integer label ID, label text, and an optional
label description. The structure of the label file is very simple:

@<Label file identifier><Label ID> <Label text>

[Label description]

Figure 3-12 shows an example of a label file.

FIGURE 3-12 Label file opened in Microsoft Notepad showing a few labels from the en-us label file

This simple structure allows for localization outside Dynamics AX using third-party tools.

After the localized label files are in place, the user can choose a language in the Options dialog
box. When the language is changed, the user must close and restart the Dynamics AX client.

54 Part I A Tour of the Development Environment

You can create new label files by using the Label File Wizard, which you access from the
Microsoft Dynamics AX drop-down menu by clicking Tools\Development Tools\Wizards\
Label File Wizard. The wizard guides you through the steps for adding a new label file or a
new language to an existing label file. After you run the wizard, the label file is ready to use.

Note You can use any combination of three letters when naming a label file, and you can use
any label file from any layer. A common misunderstanding is that the label file identifier must
be the same as the layer in which it is used. This misunderstanding is caused by the Microsoft
label file identifiers. Dynamics AX ships with a SYS layer and a label file named SYS; service packs
 contain a SYP layer and a label file named SYP. This naming standard was chosen because it is
simple, easy to remember, and easy to understand. Dynamics AX doesn’t impose any limitations
on the label file name.

The following are tips for working with label files:

 When naming a label file, choose a three-letter ID that has a high chance of being
unique, such as your company’s initials. Don’t choose the name of the layer, such as
VAR or USR. Eventually, you’ll likely merge two separately developed features into the
same installation, a task that will be more difficult if the label files collide.

 Feel free to reference labels in the Microsoft-provided label files, but avoid making
changes to labels in these label files, because they are updated with each new version
of Dynamics AX.

Creating a New Label

You use the Label Editor to create new labels. You can start it using any of the following
procedures:

 Clicking Tools\Development Tools\Label\Label Editor from the Microsoft Dynamics AX
drop-down menu

 Clicking the Lookup Label/Text button on the X++ code editor toolbar

 Clicking the Lookup button on text properties in the property sheet

The Label Editor (shown in Figure 3-13) allows you to find existing labels. Reusing a label is
often preferable to creating a new one. You can create a new label by pressing Ctrl+N or by
clicking the New button.

 Chapter 3 The MorphX Tools 55

FIGURE 3-13 Label Editor

 In addition to allowing you to fi nd and create new labels, the Label Editor can also show
where a label is used. It also logs any changes to each label.

 The following are tips to consider when creating and reusing labels:

 When reusing a label, make sure that the label meaning is what you intend it to be in
all languages. Some words are homonyms, meaning words that have many meanings,
and they naturally translate into many different words in other languages. For example,
the English word can is both a verb and a noun. The description column describes the
intended meaning of the label.

 When creating new labels, make sure to use complete sentences or other stand-alone
words or phrases in each label. Don’t construct complete sentences by concatenating
labels with one or few words, because the order of words in a sentence differs from
one language to another.

Referencing Labels from X++

 In the MorphX design environment, labels are referenced in the format @<LabelFileIdentifi er>
<LabelID>. If you don’t want a label reference to automatically convert to the label text, you
can use the literalStr function. When a placeholder is needed to display the value of a variable,
you can use the strFmt function and a string containing %n, where n> = 1. Placeholders can
also be used within labels. The following code shows a few examples.

// prints: Time transactions

print "@SYS1";

// prints: @SYS1

print literalStr("@SYS1");

// prints: Microsoft Dynamics is a Microsoft brand

print strFmt("%1 is a %2 brand", "Microsoft Dynamics", "Microsoft");

// prints: Time transactions

print "@SYS1";

// prints: @SYS1

print literalStr("@SYS1");

// prints: Microsoft Dynamics is a Microsoft brand

print strFmt("%1 is a %2 brand", "Microsoft Dynamics", "Microsoft");

56 Part I A Tour of the Development Environment

The following are some best practices to consider when referencing labels from X++:

 You should always create user interface text by using a label. When referencing labels
from X++ code, use double quotation marks.

 You should never create system text such as file names by using a label. When referenc-
ing system text from X++ code, use single quotation marks. You can place system text
in macros to make it reusable.

Using single and double quotation marks to differentiate between system text and user
 interface text allows the Best Practices tool to find and report any hard-coded user interface
text. The Best Practices tool is described in depth later in this chapter.

Visual Form Designer and Visual Report Designer

MorphX has two visual designers, one for forms and one for reports, that allow you to drag
controls onto the design surface in WYSIWYG fashion. IntelliMorph determines the actual
 position of the controls, so you can’t place them precisely.

You can override these layout restrictions by changing property values, such as Top, Left,
Height, and Width, from Auto to a fixed value, allowing the visual designers to lay out the
controls. However, doing so interferes with the automated layout attempted by IntelliMorph,
which means that there is no guarantee that your forms and reports will display well when
translated, configured, secured, and personalized.

It is a best practice to let IntelliMorph control all the layout. (More detailed information
about IntelliMorph is in Chapter 13, “Configuration and Security.”) Most forms and reports
that ship with Dynamics AX are designed by using the AOT. When the visual designer is
opened, a tree structure of the design is displayed, making it fairly simple to add new controls
to the design. You can either drag fields or field groups from the data source to the design or
right-click the design and choose New Control.

Note IntelliMorph and MorphX treat form and report designs as hierarchical structures. A
 control can be next to another control or inside a group control. This arrangement makes a lot of
sense for business applications. If you require controls to be on top of one another, you must use
absolute pixel positions. The order of the controls in the AOT mandates the z-order—that is, the
order in which controls are virtually stacked in the display.

You can use a Report Wizard, accessed from the Microsoft Dynamics AX drop-down menu
at Tools\Development Tools\Wizards, to help you create reports. The wizard guides you
through the process step by step, allowing you to specify data sources, sorting, grouping,
layout, and other settings before producing a report in the AOT. You can read more about
developing reports in Chapter 11, “Reporting in Dynamics AX.”

 Chapter 3 The MorphX Tools 57

Visual Form Designer

The designers can be helpful tools for learning how the IntelliMorph layout scheme works.
If you have the Visual Form Designer open when you start designing a form, you immediately
see what the form will look like, even when it is modified in the AOT. In fact, after creating a
few forms, you’ll probably feel so confident of the power of IntelliMorph and the effective-
ness of designing forms in the AOT that you’ll only rarely use the Visual Form Designer.

You open the Visual Form Designer by right-clicking a form’s design in the AOT and selecting
Edit. The designer is shown in design mode in Figure 3-14. Next to the form is a toolbar with
all the available controls, which can be dragged onto the form’s surface. You can also see the
property sheet showing the selected control’s properties.

FIGURE 3-14 Visual Form Designer

One interesting form that overrides IntelliMorph is the form tutorial_Form_freeform. Figure 3-15
shows how a scanned bitmap of a payment form is used as a background image for the form,
and the controls positioned where data entry is needed.

58 Part I A Tour of the Development Environment

FIGURE 3-15 Nonstandard form that uses a bitmap background

Visual Report Designer

The majority of MorphX reports fall into two categories—internal and external. Requirements
for reports used internally in a company are often more relaxed than requirements for
 external reports. External reports are often part of the company’s face to the outside world.
An invoice report is a classic example of an external report.

Leveraging the features of IntelliMorph, internal reports typically follow an autodesign that
allows the consumer of the report to add and remove columns from the report and control
its orientation, font, and font size.

External reports typically use a generated design, which effectively overrides IntelliMorph. So
for external reports, the Visual Report Designer is clearly preferable. Often, external reports
are printed on preprinted paper containing, for example, the company’s letterhead, so the
ability to easily control the exact position of each control is essential.

You create a generated design from an autodesign by right-clicking a design node of a
 report in the AOT and selecting Generate Design. You can open the Visual Report Designer
by right-clicking a generated design and selecting Edit. As shown in Figure 3-16, each control
can be moved freely, and new controls can be added.

Notice the zoom setting in the lower-right corner of Figure 3-16. This setting allows you
to get a close-up view of the report and, with a steady hand, position each control exactly
where you want it.

 Chapter 3 The MorphX Tools 59

The rendering subsystem of the report engine can print only generated designs because it
requires all controls to have fixed positions. If a report has only an autodesign, the report
 engine generates a design in memory before printing.

FIGURE 3-16 Visual Report Designer

Code Compiler

Whenever you make a change to X++ code, you must recompile, just as you would in any
other development language. You start the recompile by pressing F7 in the X++ code editor.
Your code also recompiles whenever you close the editor or save a dirty element.

The compiler also produces a list of the following information:

 Compiler errors These prevent code from compiling and should be fixed as soon as
possible.

 Compiler warnings These typically indicate that something is wrong in the imple-
mentation. See Table 3-4, later in this section, for a list of compiler warnings. Compiler
warnings can and should be addressed. Check-in attempts with compiler warnings are
rejected.

 Tasks (also known as to-dos) The compiler picks up single-line comments that start
with TODO. These comments can be useful during development for adding reminders,
but you should use them only in cases in which implementation can’t be completed.

60 Part I A Tour of the Development Environment

For example, you might use a to-do comment when you’re waiting for a check-in from
another developer. You should avoid using to-do comments just to postpone work.
For a developer, there is nothing worse than debugging an issue at a customer site and
finding a to-do comment indicating that the issue was already known but overlooked.

Note Unlike other languages, X++ requires that you compile only code you’ve modified. This
is because the intermediate language the compiler produces is persisted along with the X++
code and metadata. Of course, your changes can require other methods consuming your code
to be changed and recompiled if, for example, you rename a method or modify its parameters.
If the consumers are not recompiled, a run-time error is thrown when they are invoked. This
means that you can execute your business application even when compile errors exist, as long as
you don’t use the code that can’t compile. You should always compile the entire AOT when you
 consider your changes complete, and you should fix any compilation errors found.

 Best practice deviations The Best Practices tool carries out more complex validations.
See the section “Best Practices Tool” later in this chapter for more information.

The Compiler Output dialog box provides access to everything reported during compilation,
as shown in Figure 3-17. Each category of findings has a dedicated tab: Status, Errors And
Warnings, Best Practices, and Tasks. Each tab contains the same information for each issue
that the compiler detects—a description of the issue and its location. For example, the Status
tab shows a count of the detected issues.

FIGURE 3-17 Compiler Output dialog box

You can export compile results. This capability is useful if you want to share the list of issues
with team members. The exported file is an HTML file that can be viewed in Microsoft
Internet Explorer or re-imported into the Compiler Output dialog box in another Dynamics
AX session.

In the Compiler Output dialog box, click Setup and then click Compiler to define the types
of issues that the compiler should report. Compiler warnings are grouped into four levels, as
shown in Table 3-4.

 Chapter 3 The MorphX Tools 61

 TABLE 3-4 Compiler Warnings

Warning Message Level

Break statement found outside legal context 1

The new method of a derived class does not call super() 1

The new method of a derived class may not call super() 1

Function never returns a value 1

Not all paths return a value 1

Assignment/comparison loses precision 1

Unreachable code 2

Empty compound statement 3

Class names should start with an uppercase letter 4

Member names should start with a lowercase letter 4

Dynamics AX SDK

 Constructing quality software has become a daunting task in the 21st century. Many new com-
petencies are expected of the developer, and mastering them fully and at all times is nearly
impossible. Today you must write code conforming to many technical requirements, including
security, localization, internationalization, customization, performance, accessibility, reliability,
scalability, compatibility, supportability, interoperability, and so on. The list seems to grow with
each software revision, and keeping up with all of these competencies is increasingly diffi cult.

 Microsoft Dynamics AX 2009 includes a software development kit (SDK) that explains how to
satisfy these requirements when you use MorphX. You can access the SDK from the applica-
tion Help menu under Developer Help. We highly recommend that you read the Developer
Help section—it’s not just for novices but also for experienced developers, who will fi nd that
the content has been extensively revised for Dynamics AX 2009. The SDK is frequently re-
freshed with new content, so you might want to check it often on MSDN.

 Among other critical information, the Developer Help section of the SDK includes an impor-
tant discussion on conforming to best practices in Dynamics AX. The motivation for conform-
ing to best practices should be obvious to anyone. Constructing code that follows proven
standards and patterns can’t guarantee a project’s success, but it certainly minimizes the risk
of failure. To ensure your project’s success, you should learn, conform to, and advocate best
practices within your group.

 The following are a few benefi ts of following best practices:

 You avoid less-than-obvious pitfalls. Following best practices helps you avoid many
 obstacles, even those that surface only in border scenarios that would otherwise be
 diffi cult and time consuming to detect and test. Using best practices allows you to
 leverage the combined experiences of Dynamics AX expert developers.

Warning Message Level

62 Part I A Tour of the Development Environment

 The learning curve is flattened. When you perform similar tasks in a standard way, you
are more comfortable in an unknown area of the application. Consequently, adding
new resources to a project is more cost efficient, and downstream consumers of the
code are able to make changes more readily.

 You are making a long-term investment. Code that conforms to standards is less likely
to require rework during an upgrade process, whether you’re upgrading to Dynamics
AX 2009, installing service packs, or upgrading to future releases.

 You are more likely to ship on time. Most of the problems you face when implementing
a solution in Dynamics AX have been solved at least once before. Choosing a proven
solution results in faster implementation and less regression. You can find solutions to
known problems in both the Developer Help section of the SDK and the code base.

Best Practices Tool

A powerful supplement to the best practices discussion in the SDK is the Best Practices
tool. This tool is the MorphX version of a static code analysis tool, similar to FxCop for the
Microsoft .NET Framework and PREfix and PREfast for C and C++. The Best Practices tool
is embedded in the compiler, and the results are located on the Best Practices tab of the
Compiler Output dialog box.

The purpose of static code analysis is to automatically detect defects in the code. The longer
a defect exists, the more costly it becomes to fix—a bug found in the design phase is much
cheaper to correct than a bug in shipped code running at several customer sites. The Best
Practices tool allows any developer to run an analysis of his or her code and application
model to ensure that it conforms to a set of predefined rules. Developers can run analysis
during development, and they should always do so before implementations are tested.

The Best Practices tool displays deviations from the best practice rules, as shown in Figure 3-17.
Double-clicking a line on the Best Practices tab opens the X++ code editor on the violating
line of code.

Understanding Rules

The Best Practices tool includes about 350 rules, a small subset of the best practices
 mentioned in the SDK. You can define the best practice rules that you want to run in the Best
Practice Parameters dialog box: from the Microsoft Dynamics AX drop-down menu, click
Tools\Options and then the Best Practices button.

Note You must set the compiler error level to 4 if you want best practice rule violations to
be reported. To turn off the Best Practices tool, click Tools\Options\Compiler, and then set the
 diagnostic level to less than 4.

 Chapter 3 The MorphX Tools 63

 The best practice rules are divided into categories. By default, all categories are turned on, as
shown in Figure 3-18.

FIGURE 3-18 Best Practice Parameters dialog box

 The best practice rules are divided into three levels of severity:

 Errors The majority of the rules focus on errors. Any check-in attempt with a best
practice error is rejected. You must take all errors seriously and fi x them as soon as
possible.

 Warnings Follow a 95/5 rule for warnings. This means that you should treat 95 percent
of all warnings as errors; the remaining 5 percent constitute exceptions to the rule. You
should provide valid explanations in the design document for all warnings you choose
to ignore.

 Information In some situations, your implementation might have a side effect that
isn’t obvious to you or the user (e.g., if you’re assigning a value to a variable but you
never use the variable again). These are typically reported as information messages.

Suppressing Errors and Warnings

 The Best Practices tool allows you to suppress errors and warnings. A suppressed best
 practice deviation is reported as information. This gives you a way to identify the deviation as
reviewed and accepted. To identify a suppressed error or warning, place a line containing the
following text just before the deviation.

//BP Deviation Documented//BP Deviation Documented

64 Part I A Tour of the Development Environment

 Only a small subset of the best practice rules can be suppressed. Use the following guidelines
for selecting which rules to suppress:

 Where exceptions exist that are impossible to detect automatically, you should examine
each error to ensure the correct implementation. Dangerous APIs are often responsible
for such exceptions. A dangerous API is an API that can compromise a system’s security
when used incorrectly. If a dangerous API is used, a suppressible error is reported. You
are allowed to use some so-called dangerous APIs when you take certain precautions,
such as using code access security. You can suppress the error after you apply the
 appropriate mitigations.

 About 5 percent of all warnings are false positives and can be suppressed. Note that
only warnings caused by actual code can be suppressed, not warnings caused by
metadata.

After you set up the best practices, the compiler automatically runs the best practices check
whenever an element is compiled. The results are displayed on the Best Practices tab in the
Compiler Output dialog box.

Adding Custom Rules

The X++ Best Practices tool allows you to create your own set of rules. The classes used to
check for rules are named SysBPCheck<ElementKind>. You call the init, check, and dispose
methods once for each node in the AOT for the element being compiled.

 One of the most interesting classes is SysBPCheckMemberFunction, which is called for
each piece of X++ code whether it is a class method, form method, macro, or other
method. For example, if developers don’t want to include their names in the source
code, you can implement a best practice check by creating the following method on the
SysBPCheckMemberFunction class.

protected void checkUseOfNames()

{

 #Define.MyErrorCode(50000)

 container devNames = ["Arthur", "Lars", "Michael"];

 int i;

 int j;

 int pos;

 str line;

 int lineLen;

 for (i=scanner.lines(); i; i--)

 {

 line = scanner.sourceLine(i);

 lineLen = strlen(line);

 for (j=conlen(devNames); j; j--)

 {

protected void checkUseOfNames()

{

 #Define.MyErrorCode(50000)

 container devNames = ["Arthur", "Lars", "Michael"];

 int i;

 int j;

 int pos;

 str line;

 int lineLen;

 for (i=scanner.lines(); i; i--)

 {

 line = scanner.sourceLine(i);

 lineLen = strlen(line);

 for (j=conlen(devNames); j; j--)

 {

 Chapter 3 The MorphX Tools 65

 pos = strscan(line, conpeek(devNames, j), 1, lineLen);

 if (pos)

 {

 sysBPCheck.addError(#MyErrorCode, i, pos,

 "Don't use your name!");

 }

 }

 }

}

 To enlist the rule, make sure to call the preceding method from the check method. Compiling
this sample code results in the best practice errors shown in Table 3-5.

 TABLE 3-5 Best Practice Errors in checkUseOfNames

Message Line Column

Method contains text constant: ‘Arthur’ 4 27

Don’t use your name! 4 28

Method contains text constant: ‘Lars’ 4 37

Don’t use your name! 4 38

Method contains text constant: ‘Michael’ 4 45

Don’t use your name! 4 46

Method contains text constant: ‘Don’t use your name!’ 20 59

 In a real-world implementation, names of developers would probably be read from a fi le.
Make sure to cache the names to prevent the compiler from going to the disk to read the
names for each method being compiled.

Debugger

 Like most development environments, MorphX features a debugger. The debugger is a
stand-alone application, not part of the Dynamics AX shell like the rest of the tools men-
tioned in this chapter. As a stand-alone application, the debugger allows you to debug X++
in any of the Dynamics AX components in the following list:

 Microsoft Dynamics AX client

 Application Object Server (AOS)

 Enterprise Portal

 Business Connector

 pos = strscan(line, conpeek(devNames, j), 1, lineLen);

 if (pos)

 {

 sysBPCheck.addError(#MyErrorCode, i, pos,

 "Don't use your name!");

 }

 }

 }

}

Message Line Column

66 Part I A Tour of the Development Environment

Using the Debugger

For the debugger to start, a breakpoint must be hit during execution of X++ code. You set
breakpoints by using the X++ code editor in the Microsoft Dynamics AX client. The debugger
starts automatically when any component hits a breakpoint.

You must enable debugging for each component as follows:

 In the Microsoft Dynamics AX client, click the Microsoft Dynamics AX drop-down
menu, point to Tools and then Options. On the Development tab, select When
Breakpoint in the Debug Mode list.

 For the AOS, open the Microsoft Dynamics AX Server Configuration utility under Start\
Administrative Tools. Create a new configuration (if necessary), and select the check
box labeled Enable Breakpoints To Debug X++ Code Running On This Server.

 For Batch jobs, open the Microsoft Dynamics AX Server Configuration utility under
Start\Administrative Tools. Create a new configuration (if necessary), and select the
check box labeled Enable Global Breakpoints To Debug X++ Code Running In Batch
Jobs.

 For Enterprise Portal and Business Connector, open the Microsoft Dynamics AX
Configuration utility under Start\Administrative Tools. Select one of two check boxes
on the Developer tab: Enable User Breakpoints For Debugging Code Running In The
Business Connector or Enable Global Breakpoints For Debugging Code Running In
The Business Connector Or Client. The latter is useful for debugging incoming Web
requests.

Caution We recommend that you do not enable any of the debugging capabilities in a live
environment. If you do, execution will stop when it hits a breakpoint, and users will experience a
hanging client.

The debugger allows you to set and remove breakpoints by pressing F9. You can set a
 breakpoint on any line you want. If you set a breakpoint on a line without an X++ statement,
however, the breakpoint will be triggered on the next X++ statement in the method. A
breakpoint on the last brace will never be hit.

You can enable or disable a breakpoint by pressing Ctrl+F9. For a list of all breakpoints, press
Shift+F9.

Breakpoints are persistent in the SysBreakpoints database table. Each developer has his or
her own set of breakpoints. This means that your breakpoints are not cleared when you close
Dynamics AX and that other Dynamics AX components can access them and break where
you want them to.

 Chapter 3 The MorphX Tools 67

Debugger Interface

The main window in the debugger initially shows the point in the code where a breakpoint
was hit. You can control execution one step at a time while variables and other aspects are
inspected. Figure 3-19 shows the debugger opened to a breakpoint with all the windows
enabled.

FIGURE 3-19 Debugger with all windows enabled

In the following subsections, we briefly describe the debugger’s various windows and some
of its other features.

Main Window

The main debugger window shows the current X++ code. Each variable has a ScreenTip that
reveals its value. You can drag the next-statement pointer in the left margin. This pointer
is particularly useful if the execution path isn’t what you expected or if you want to repeat
a step.

Variables Window

In this window, local, global, and member variables are shown. Local variables are variables
in scope at the current execution point. Global variables are the global classes that are always
instantiated: Appl, Infolog, ClassFactory, and VersionControl. Member variables make sense
only on classes, and they show the class member variables.

68 Part I A Tour of the Development Environment

The Variables window shows the name, value, and type of each variable. If a variable is
changed during execution stepping, it is marked in red. Each variable is shown associated
with a client or server icon. You can modify the value of a variable by double-clicking the
value.

Tip As a developer, you might want to provide more information in the value field than what is
provided by default. For a class, the defaults are New and Null. You can change the defaults by
overriding the toString method. If your class doesn’t explicitly extend object (the base class of all
classes), you must add a new method named toString, returning str and taking no parameters, to
implement this functionality.

Call Stack Window

The Call Stack window shows the code path followed to arrive at a particular execution point.
Clicking a line in the Call Stack window opens the code in the Code window and updates the
local Variables window. A client or server icon indicates the tier on which the code is executed.

Watch Window

In the Watch window, you can inspect variables without the scope limitations of the Variables
window. You can drag a variable here from the Code window or the Variables window.

The Watch window shows the name, value, and type of the variables. Five different Watch
windows are available. You can use these to group the variables you’re watching in the way
that you prefer.

Breakpoints Window

The Breakpoints window lists all your breakpoints. You can delete, enable, and disable the
breakpoints via this window.

Output Window

The Output window shows the traces that are enabled and the output sent to the Infolog
application framework, which we introduced in Chapter 1. The Output window includes the
following pages:

 Debug You can instrument your X++ code to trace to this page by using the
 printDebug static method on the Debug class.

 Infolog This page contains messages in the queue for the Infolog.

 Database, Client/Server, and ActiveX Trace Any traces enabled on the
Development tab in the Options dialog box appear on these pages.

 Chapter 3 The MorphX Tools 69

Status Bar

 The status bar at the bottom of the debugger offers the following important context
information:

 Current user The ID of the user who is logged on to the system. This information is
especially useful when you are debugging incoming Web requests.

 Current session The ID of the session on the AOS.

 Current company accounts The ID of the current company accounts.

 Transaction level The current transaction level. When reaching zero, the transaction
is committed.

Debugger Shortcut Keys

 Table 3-6 lists the most important shortcut keys available in the debugger.

 TABLE 3-6 Debugger Shortcut Keys

Action Shortcut Description

Run F5 Continue execution

Stop debugging Shift+F5 Break execution

Step over F10 Step over next statement

Run to cursor Ctrl+F10 Continue execution but break at the
cursor’s position

Step into F11 Step into next statement

Step out Shift+F11 Step out of method

Toggle breakpoint Shift+F9 Insert or remove breakpoint

Variables window Ctrl+Alt+V Open or close Variables window

Call Stack window Ctrl+Alt+C Open or close Call Stack window

Watch window Ctrl+Alt+W Open or close Watch window

Breakpoints window Ctrl+Alt+B Open or close Breakpoints window

Output window Ctrl+Alt+O Open or close Output window

Visio Reverse Engineering Tool

 Dynamics AX allows you to generate Visio models from existing metadata. Considering the
amount of metadata available in Dynamics AX 2009 (more than 30,000 elements and more
than 7 million lines of text when exported), it’s practically impossible to get a clear view of
how the elements relate to each other just by using the AOT. The Visio Reverse Engineering
tool is a great aid when you need to visualize metadata.

Action Shortcut Description

70 Part I A Tour of the Development Environment

Note You must have Office Visio 2003 or later installed to use the Visio Reverse Engineering tool.

The Reverse Engineering tool can generate a Unified Modeling Language (UML) data model,
a UML object model, or an entity relationship data model, including all elements from a
private or shared project. To open the tool, right-click a project or a perspective, point to
Add-Ins, and then click Reverse Engineer. You can also open the tool by selecting Reverse
Engineer from the Development Tools menu. In the dialog box shown in Figure 3-20, you
must specify a file name and model type.

FIGURE 3-20 Visio Reverse Engineering dialog box

When you click OK, the tool uses the metadata for all elements in the project to generate
a Visio document that opens automatically in Visio. You can drag elements from the Visio
Model Explorer onto the drawing surface, which is initially blank. Any relationship between
two elements is automatically shown.

UML Data Model

When generating a UML data model, the Reverse Engineering tool looks for tables in
the project. The UML model contains a class for each table and view in the project
and its attributes and associations. Figure 3-21 shows a class diagram with the CustTable
(Customers), InventTable (Inventory Items), SalesTable (Sales Order Header), and SalesLine
(Sales Order Line) tables. To simplify the diagram, some attributes have been removed.

 Chapter 3 The MorphX Tools 71

+
{A

cc
ou

nt
Id

x}
--

Ac
co

un
tN

um
 :

Cu
st

Ac
co

un
t

+
N

am
e

: C
us

tN
am

e
+

Ad
dr

es
s

: A
dd

re
ss

in
g

+
Cu

st
G

ro
up

 :
Cu

st
G

ro
up

Id
+

In
vo

ic
eA

cc
ou

nt
 :

Cu
st

In
vo

ic
eA

cc
ou

nt

C
u

st
T

a
b

le

*

1

*

1

+
{It

em
Id

x}
--

G
ro

up
Ite

m
Id

x-
-T

yp
eI

dx
--

D
im

G
ro

up
Ite

m
Id

x-
-I

te
m

Id
 :

Ite
m

Id
+

Ite
m

N
am

e
: I

te
m

N
am

e
+

Ty
pe

Id
x-

-I
te

m
Ty

pe
 :

Ite
m

Ty
pe

+
N

et
W

ei
gh

t :
 It

em
N

et
W

ei
gh

tIn
v
e
n

tT
a
b

le

-I
te

m
N

am
e{

Ite
m

N
am

e:
Ite

m
N

am
e}

*

1

-I
te

m
Id

{It
em

Id
:It

em
Id

} *

1

+
{S

al
es

Id
x}

--
{C

us
tId

x}
--

Sa
le

sId
 :

Sa
le

sId
Ba

se
+

{C
us

tId
x}

--
Cu

st
Ac

co
un

t :
 C

us
tA

cc
ou

nt
+

In
vo

ic
eA

cc
St

at
us

Id
x-

-I
nv

oi
ce

Ac
co

un
t :

 C
us

tIn
vo

ic
eA

cc
ou

nt
+

D
el

iv
er

yA
dd

re
ss

 :
Ad

dr
es

sin
g

+
In

ve
nt

Lo
ca

tio
nI

d
: S

al
es

In
ve

nt
Lo

ca
tio

nI
d

+
Q

uo
ta

tio
nI

d
: Q

uo
ta

tio
nI

d
+

Sa
le

sN
am

e
: S

al
es

N
am

e
+

St
at

us
Cu

st
Ac

cI
dx

--
In

vo
ic

eA
cc

St
at

us
Id

x-
-S

al
es

St
at

us
 :

Sa
le

sS
ta

tu
s

+
Sa

le
sT

yp
e

: S
al

es
Ty

pe

W
or

ks
he

et
H

ea
de

r:
:S

a
le

sT
a
b

le

*

1

*1

+
Sa

le
sL

in
eI

dx
--

Sa
le

sS
ta

tu
sId

x-
-S

al
es

Id
 :

Sa
le

sId
Ba

se
+

Sa
le

sL
in

eI
dx

--
Li

ne
N

um
 :

Li
ne

N
um

+
Cu

rr
en

cy
Co

de
 :

Cu
st

Cu
rr

en
cy

Co
de

+
{It

em
Id

x}
--

St
at

us
Ite

m
Id

x-
-I

te
m

Id
 :

Ite
m

Id
Sm

al
l

+
{T

ra
ns

Id
Id

x}
--

In
ve

nt
Tr

an
sId

 :
In

ve
nt

Tr
an

sId
+

Li
ne

Am
ou

nt
 :

Sa
le

sL
in

eA
m

ou
nt

+
Sa

le
sP

ric
e

: S
al

es
Pr

ic
e

+
Sa

le
sQ

ty
 :

Sa
le

sO
rd

er
ed

Q
ty

+
Sa

le
sU

ni
t :

 S
al

es
U

ni
t

W
or

ks
he

et
Li

ne
::S

a
le

sL
in

e

-S
al

es
Ta

bl
eR

ef
{In

ve
nt

Re
fT

yp
e:

1+
In

ve
nt

Re
fId

:S
al

es
Id

}*
1

-S
al

es
Id

Ba
se

{S
al

es
Id

:S
al

es
Id

}

*
1

-S
al

es
Ta

bl
e{

Sa
le

sId
:S

al
es

Id
}

*
1

-I
te

m
Id

{It
em

Id
:It

em
Id

}
*1

-C
us

tA
cc

ou
nt

{A
cc

ou
nt

N
um

:A
cc

ou
nt

N
um

}

-C
us

tIn
vo

ic
eA

cc
ou

nt
{In

vo
ic

eA
cc

ou
nt

:A
cc

ou
nt

N
um

}

-C
us

tIn
vo

ic
eA

cc
ou

nt
{In

vo
ic

eA
cc

ou
nt

:A
cc

ou
nt

N
um

}

-C
us

tA
cc

ou
nt

{C
us

tA
cc

ou
nt

:A
cc

ou
nt

N
um

}

F
IG

U
R

E
 3

-2
1

U

M
L

d
at

a
m

o
d

el
 d

ia
g

ra
m

72 Part I A Tour of the Development Environment

The UML model also contains referenced tables and all extended data types, base enumera-
tions, and X++ data types. You can include these items in your diagrams without having to
run the Reverse Engineering tool again.

Fields in Dynamics AX are generated as UML attributes. All attributes are marked as public
because of the nature of fields in Dynamics AX. Each attribute also shows the type. The
primary key field is underlined. If a field is a part of one or more indexes, the names of the
indexes are prefixed to the field name; if the index is unique, the index name is noted in
brackets.

Relationships in Dynamics AX are generated as UML associations. The aggregation property
of the association is set based on two conditions in metadata:

 If the relationship is validating (the validate property is set to Yes), the aggregation
property is set to shared. This is also known as UML aggregation, visualized by a white
diamond.

 If a cascading delete action exists between the two tables, a composite association is
added to the model. A cascading delete action ties the life span of two or more tables
and is visualized by a black diamond.

The end name on associations is the name of the Dynamics AX relationship, and the names
and types of all fields in the relationship appear in brackets.

UML Object Model

When generating an object model, the Reverse Engineering tool looks for Dynamics AX
classes, tables, and interfaces in the project. The UML model contains a class for each
Dynamics AX table and class in the project and an interface for each Dynamics AX interface.
The UML model also contains attributes and operations, including return types, parameters,
and the types of the parameters. Figure 3-22 shows an object model of the most important
RunBase and Batch classes and interfaces in Dynamics AX. To simplify the view, some attri-
butes and operations have been removed, and operation parameters are suppressed.

The UML model also contains referenced tables, classes and tables, and all extended data
types, base enumerations, and X++ data types. You can include these elements in your
 diagrams without having to run the Reverse Engineering tool again.

Fields and member variables in Dynamics AX are generated as UML attributes. All fields
are generated as public attributes, whereas member variables are generated as protected
 attributes. Each attribute also shows the type. Methods are generated as UML operations,
including return type, parameters, and the types of the parameters.

 Chapter 3 The MorphX Tools 73

The Reverse Engineering tool also picks up any generalizations (classes extending other classes),
realizations (classes implementing interfaces), and associations (classes using each other).
The associations are limited to references in member variables.

+run()
#dialog()
+getFromDialog()
+init()
+initParmDefault()
+new()
+pack()
+progressInit()
+prompt()
+run()
+unpack()
+validate()
+description()

#dialogCanceled : boolean
#progress : RunbaseProgress

RunBase

+batchInfo()
+canGoBatch()
+caption()
+parmCurrentBatch()
+runsImpersonated()
+batchInfo()
+canGoBatch()
+canReuseBatch()
+getFromDialog()
+initBatch()
+prompt()
+runsImpersonated()

#batchInfo : BatchInfo
#inBatch : boolean
#currentBatch : Batch

RunBaseBatch

#priority : Priority
#startDate : StartDate
#startTime : TimeOfDay
#periodic : BatchPeriodic
#recurrenceData : SysRecurrenceData

BatchInf

+batchInfo()
+canGoBatch()
+caption()
+parmCurrentBatch()
+runsImpersonated()

«interface» Batchable

+dialog()
+finishJob()
+run()
#runJob()
+sendMail()

#groupId : BatchGroupId
#privateBatch : NoYes

BatchRun

1

«interface» SysRunable

+run() : void

FIGURE 3-22 UML object model diagram

Note To get the names of operation parameters, you must reverse engineer in debug mode.
The names are read from metadata only and placed into the stack when in debug mode. You
can enable debug mode on the Development tab in the Options dialog box by selecting When
Breakpoint in the Debug Mode list.

74 Part I A Tour of the Development Environment

Entity Relationship Data Model

When generating an entity relationship data model, the Reverse Engineering tool looks for
tables and views in the project. The entity relationship model contains an entity type for each
AOT table in the project and attributes for each table’s fields. Figure 3-23 shows an Entity
Relationship Diagram (ERD) with the CustTable (Customers), InventTable (Inventory Items),
SalesTable (Sales Order Header), and SalesLine (Sales Order Line) tables. To simplify the
 diagram, some attributes have been removed.

SalesTable

SalesId (IE5,IE1,AK1)

CustAccount (IE2,AK1)
DeliveryAddress (O)
InventLocationId (O)
InvoiceAccount (IE3)
QuotationId (O)
SalesName
SalesStatus (O) (IE3,IE2)
SalesType (O) (IE5)

SalesLine

InventTransId

CurrencyCode
ItemId (FK,IE2,AK2)
LineAmount (O)
LineNum (O) (AK1)
SalesId (O) (FK,FK,AK1)
SalesPrice (O)
SalesQty (O)
SalesUnit (O)

CustTable

AccountNum

Address (O)
CustGroup
InvoiceAccount (O)
Name

InventTable

ItemId (IE4,IE3,IE1)

ItemName
ItemType (O) (IE3)
NetWeight (O)

FIGURE 3-23 ERD using IDEF1X notation

Fields in Dynamics AX are generated as entity relationship columns. Columns can be foreign
key (FK), alternate key (AK), inversion entry (IE), and optional (O). A foreign key column is
used to identify a record in another table, an alternate key uniquely identifies a record in the
current table, an inversion entry identifies zero or more records in the current table (these
are typical of the fields in nonunique indexes), and optional columns don’t require a value.

Relationships in Dynamics AX are generated as entity relationships. The EntityRelationshipRole
property of the relationship in Dynamics AX is used as the foreign key role name of the
relation in the entity relationship data model.

Note The Reverse Engineering tool produces an ERX file. To work with the generated file in
Visio, you must start Visio, create a new Database Model Diagram and select Database, and point
to Import and then Import Erwin ERX file. Afterward you can drag relevant tables from the Tables
And Views pane (available from the Database menu) to the diagram canvas.

 Chapter 3 The MorphX Tools 75

Table Browser Tool

This small, helpful tool can be used in numerous scenarios. The Table Browser tool lets you
see the records in a table without requiring you to build any user interface. This tool is useful
when you’re debugging, validating data models, and modifying or cleaning up data, to name
just a few uses.

You can access the Table Browser tool from the Add-Ins submenu in the AOT on:

 Tables

 Tables listed as data sources in forms, reports, Web forms, and Web reports

 System tables listed in the AOT under System Documentation\Tables

Note The Table Browser tool is implemented in X++. You can find it in the AOT under the name
SysTableBrowser. It is a good example of how to bind the data source to a table at run time.

Figure 3-24 shows the Table Browser tool started from the CustTable table. In addition
to the querying, sorting, and filtering capabilities provided by the grid control, the Table
Browser tool allows you to type an SQL SELECT statement directly into the form using X++
SELECT statement syntax and see a visual display of the result set. This tool is a great way
to try out complex SELECT statements. It fully supports grouping, sorting, aggregation, and
field lists.

FIGURE 3-24 Table Browser tool, showing CustTable from demo data

The Table Browser tool also allows you to choose to see only the fields from the auto-report
field group. These fields are printed in a report when the user clicks Print in a form with
this table as a data source. Typically, these fields hold the most interesting information. This
 option can make it easier to find the values you’re looking for in tables with many fields.

76 Part I A Tour of the Development Environment

Note The Table Browser tool is just a normal form that uses IntelliMorph. It can’t display fields
for which the visible property is set to No or fields that the current user doesn’t have access to.

Find Tool

Search is everything! The size of Dynamics AX applications calls for a powerful and effective
search tool.

Tip You can use the Find tool to search for an example of how to use an API. Real examples can
complement the examples found in the documentation.

You can start the Find tool, shown in Figure 3-25, from any node in the AOT by pressing
Ctrl+F or by clicking Find on the context menu. The Find tool supports multiple selections in
the AOT.

FIGURE 3-25 Find tool

The Name & Location tab defines what you’re searching for and where to look:

 In Search, the menu options are Methods and All Nodes. When you choose All Nodes,
the Properties tab appears.

 The Named text box limits the search to nodes with the name you specify.

 The Containing Text box specifies the text to look for in the method expressed as a
regular expression.

 When you select the Show Source Code check box, results include a snippet of source
code containing the match, making it easier to browse the results.

 By default, the Find tool searches the node (and its subnodes) selected in the AOT. If
you change focus in the AOT while the Find tool is open, the Look In value is updated.
This is quite useful if you want to search several nodes using the same criterion. You can
disable this behavior by clearing the Use Selection check box.

 Chapter 3 The MorphX Tools 77

 In the Date tab, you specify additional ranges for your search, such as Modifi ed Date and
Modifi ed By.

 On the Advanced tab, you can specify more-advanced settings for your search, such as the
layer to search, the size range of elements, the type of element, and the tier on which the
element is set to run.

 The Filter tab, shown in Figure 3-26, allows you to write a more complex query by using X++
and type libraries. The code written in the Source text box is the body of a method with the
following profi le.

boolean FilterMethod(str _treeNodeName,

 str _treeNodeSource,

 XRefPath _path,

 ClassRunMode _runMode)

 The example in Figure 3-26 uses the class SysScannerClass to fi nd any occurrence of the
TTSAbort X++ keyword. The scanner is primarily used to pass tokens into the parser during
compilation. Here, however, it detects the use of a particular keyword. This tool is more
 accurate (though slower) than using a regular expression, because X++ comments don’t
 produce tokens.

FIGURE 3-26 Filtering in the Find tool

 The Properties tab appears when All Nodes is selected in the Search menu. You can
 specify a search range for any property. Leaving the range blank for a property is a
 powerful setting when you want to inspect properties: it matches all nodes, and the
property value is added as a column in the results, as shown in Figure 3-27. The search
begins when you click Find Now. The results appear at the bottom of the dialog box as
they are found.

boolean FilterMethod(str _treeNodeName,

 str _treeNodeSource,

 XRefPath _path,

 ClassRunMode _runMode)

78 Part I A Tour of the Development Environment

FIGURE 3-27 Search results in the Find tool

Double-clicking any line in the result set opens the X++ code editor with focus on the
matched code example. When you right-click the lines in the result set, a context menu
 containing the Add-Ins menu opens.

Compare Tool

Several versions of the same element typically exist. These versions might emanate from
various layers or revisions in version control, or they could be modified versions that exist in
memory. Dynamics AX has a built-in Compare tool that highlights any differences between
two versions of an element.

The comparison shows changes to elements, which can be modified in three ways:

 A metadata property can be changed.

 X++ code can be changed.

 The order of subnodes can be changed, such as the order of tabs on a form.

Starting the Compare Tool

You open the Compare tool by right-clicking an element and then clicking Compare on the
Add-Ins submenu. A dialog box allows you to select the versions of the element you want to
compare, as shown in Figure 3-28.

 Chapter 3 The MorphX Tools 79

FIGURE 3-28 Comparison dialog box

The versions to choose from come from many sources. The following is a list of all possible
types of versions:

 Standard layered version types These include sys, syp, gls, glp, hfx, sl1, sl2, sl3, bus,
bup, var, vap, cus, cup, usr, usp.

 Old layered version types (old sys, old syp, and so on) If .aod files are present
in the Old Application folder (located in Program Files\Microsoft Dynamics AX\50\
Application\Appl\Standard\Old), elements from the files are available here. This allows
you to compare an older version of an element with its latest version. See Chapter 1
for more information on layers. In Chapter 1, Figure 1-3 illustrates the components in
the application model layering system.

 Version control revisions (Version 1, Version 2, and so on) You can retrieve
any revision of an element from the version control system individually and use it for
 comparison. The version control system is explained later in this chapter.

 Best practice washed version (Washed) A few simple best practice issues can be
resolved automatically by a best practice “wash.” Selecting the washed version shows
you how your implementation differs from best practices. To get the full benefit of this,
select the Case Sensitive check box on the Advanced tab.

 Export/import file (XPO) Before you import elements, you can compare them with
existing elements (which they overwrite during import). You can use the Compare tool
during the import process (Command\Import) by selecting the Show Details check box
in the Import dialog box and right-clicking any elements that appear in bold. Objects in
bold already exist in the application; objects not in bold do not.

 Upgraded version (Upgraded) MorphX can automatically create a proposal for how
a class should be upgraded. The requirement for upgrading a class arises during a ver-
sion upgrade. The Create Upgrade Project step in the Upgrade Checklist automatically
detects customized classes that conflict with new versions of the class. A class is con-
flicting when you’ve changed the original version of the class, and the publisher of the
class has also changed the original version. MorphX constructs the proposal by merg-
ing your changes and the publisher’s changes to the class. MorphX requires access to
all three versions of the class—the original version in the Old Application folder, a ver-
sion with your changes in the current layer in the Old Application folder, and a version
with the publisher’s changes in the same layer as the original. The installation program

80 Part I A Tour of the Development Environment

ensures that the right versions are available in the right places during an upgrade. The
conflict resolution is shown in Figure 3-29.

Their changes
(e.g., sys)

Original
(e.g., old sys)

Your changes
(e.g., old usr)

Proposal
(e.g., usr)

Compare

FIGURE 3-29 How the upgraded version proposal is created

Note You can also compare two different elements. To do this, select two elements in the AOT,
right-click, point to Add-Ins, and then click Compare.

Figure 3-30 shows the Advanced tab, on which you can specify comparison options.

FIGURE 3-30 Comparison options on the Advanced tab

The comparison options shown in Figure 3-30 are described in the following list:

 Show Differences Only All equal nodes are suppressed from the view, making it
easier to find the changed nodes. This option is selected by default.

 Suppress Whitespace White space, such as spaces and tabs, is suppressed into
a single space when comparing. The Compare tool can ignore the amount of white
space, just as the compiler does. This option is selected by default.

 Case Sensitive Because X++ is not case-sensitive, the Compare tool is also not
case-sensitive by default. In certain scenarios, case sensitivity is required and must be

 Chapter 3 The MorphX Tools 81

 enabled, such as when you’re using the best practice wash feature mentioned earlier in
this section. The Case Sensitive option is not selected by default.

 Show Line Numbers The Compare tool can add line numbers to all displayed X++
code. This option is not selected by default but can be useful during an upgrade of
large chunks of code.

Using the Compare Tool

After you choose elements and set parameters, you can start the comparison by clicking
Compare. Results are displayed in a three-pane dialog box, as shown in Figure 3-31. The top
pane is the element selection, the left pane is a tree structure resembling the AOT, and the
right pane shows details of the tree selection.

FIGURE 3-31 Comparison results

The icons in the tree structure indicate how each node has changed. A red or blue check
mark indicates that the node exists only in a red or blue element. Red corresponds to the sys
layer, and blue corresponds to the old sys layer. A gray check mark indicates that the nodes
are identical but one or more subnodes are different. A not-equal-to symbol () on a red and
blue background indicates that the nodes are different in the two versions.

Note Each node in the tree view has a context menu that provides access to the Add-Ins
 submenu and the Open New Window option. The Open New Window option provides an AOT
view on any element, including old layer elements.

82 Part I A Tour of the Development Environment

Details of the differences are shown in the right pane. Color coding is also used in this pane
to highlight differences. If an element is editable, small action icons appear. These icons allow
you to make changes to source, metadata, and nodes, which can save you time when per-
forming an upgrade. A right or left arrow removes or adds the difference, and a bent arrow
moves the difference to another position. These arrows always come in pairs, so you can see
where the difference is moved to and from. An element is editable if it is from the current
layer and checked out if a version control system is used.

Compare APIs

Although Dynamics AX uses the comparison functionality for development purposes only,
the general comparison functionality can be used more widely. The available APIs allow you
to compare and present differences in the tree structure or text representation of any type of
entity.

The Tutorial_CompareContextProvider class shows how simple it is to compare business data
by using these APIs and presents it by using the Compare tool. The tutorial consists of two
parts:

 Tutorial_Comparable This class implements the SysComparable interface. Basically, it
creates a text representation of a customer.

 Tutorial_CompareContextProvider This class implements the SysCompareContext-
Provider interface. It provides the context for comparison. For example, it lists a tutorial_
Comparable class for each customer, sets the default comparison options, and handles
context menus.

Figure 3-32 shows a comparison of two customers, the result of running the tutorial.

FIGURE 3-32 Result of comparing two customers using the Compare API

 Chapter 3 The MorphX Tools 83

 You can also use the line-by-line comparison functionality directly in X++. The static run
method on the SysCompareText class, shown in the following code, takes two strings as pa-
rameters and returns a container that highlights differences in the two strings. You can also
use a set of optional parameters to control the comparison.

 public static container run(str _t1,

 str _t2,

 boolean _caseSensitive = false,

 boolean _suppressWhiteSpace = true,

 boolean _lineNumbers = false,

 boolean _singleLine = false,

 boolean _alternateLines = false)

 Refer to the Microsoft Dynamics AX 2009 SDK for documentation of the classes.

Cross-Reference Tool

 The concept of cross-references in Dynamics AX is simple. If an element uses another ele-
ment, the reference is recorded. Cross-references allow you to determine which elements a
particular element uses as well as which elements other elements are using. Dynamics AX
provides the Cross-reference tool to access and manage cross-reference information.

 You must update the Cross-reference tool regularly to ensure accuracy. The update typi-
cally takes several hours. The footprint in your database is about 1 gigabyte for the standard
application.

 You can update the Cross-reference tool by going to the Microsoft Dynamics AX drop-down
menu and then pointing to Tools\Development Tools\Cross-reference\Periodic\Update.
Updating the Cross-reference tool also compiles the entire AOT because the compiler emits
cross- reference information.

 Tip Keeping the Cross-reference tool up to date is important if you want to rely on its informa-
tion. If you work in a shared development environment, you share cross-reference information
with your team members. Updating the Cross-reference tool nightly is a good approach for a
shared environment. If you work in a local development environment, you can keep the Cross-
reference tool up to date by enabling cross-referencing when compiling. This option does slow
down the compilation, however. Another option is to manually update cross-references for the
elements in a project. You can do so by right-clicking the project, pointing to Add-Ins, pointing
to Cross-reference, and then clicking Update.

 In addition to the main cross-reference information, two smaller cross-reference subsystems
exist:

public static container run(str _t1,

 str _t2,

 boolean _caseSensitive = false,

 boolean _suppressWhiteSpace = true,

 boolean _lineNumbers = false,

 boolean _singleLine = false,

 boolean _alternateLines = false)

84 Part I A Tour of the Development Environment

 Data model This cross-reference subsystem stores information about relationships
between tables. It is primarily used by the query form and the Reverse Engineering
tool.

 Type hierarchy This cross-reference subsystem stores information about class and
data type inheritance. It is used only in the Application Hierarchy Tree. The Application
Hierarchy Tree is available from the Microsoft Dynamics AX drop-down menu, at Tools\
Development Tools\Application Hierarchy Tree.

Further discussion of these tools is beyond the scope of this book. Refer to the Microsoft
Dynamics AX 2009 SDK for more information on these subsystems and the tools that rely
on them.

The cross-reference information the Cross-reference tool collects is quite complete. The
 following list shows the kinds of elements it cross-references. (Cross-reference information for
elements followed by an asterisk is new in Dynamics AX 2009.) You can find the following list
of cross-referenced elements and their values by opening the AOT, expanding the System
Documentation node, and clicking Enums and then xRefKind.

BasicType MenuItemDisplay

Class MenuItemOutput

ClassInstanceMethod Predefined (system functions)

ClassStaticMethod Query*

ClrType Report*

ClrTypeMethod SecurityKey

ConfigurationKey Table

Dataset* TableField

Enum TableIndex

Enumerator TableInstanceMethod

ExtendedType TableStaticMethod

Form* WebActionItem

Job* WebDisplayContentItem

Label WebForm*

LicenseCode WebManagedContentItem*

Map WebMenu*

MapField WebModule*

MapInstanceMethod WebOutputContentItem

MapStaticMethod WebReport*

Menu* WebUrlItem

MenuItemAction

 Chapter 3 The MorphX Tools 85

 When the Cross-reference tool is updated, it scans all metadata and X++ code for references
to elements of the kinds listed here.

 Tip It’s a good idea to use intrinsic functions when referring to elements in X++ code. An
 intrinsic function can evaluate to either an element name or an ID. The intrinsic functions are
named <ElementKind>Str or <ElementKind>Num, respectively. Using intrinsic functions provides
two benefi ts: you have compile-time verifi cation that the element you reference actually exists,
and the reference is picked up by the Cross-reference tool. Also, there is no run-time overhead.
An example follows.

// Prints ID of MyClass, such as 50001

print classNum(myClass);

// Prints "MyClass"

print classStr(myClass);

// No compile check or cross-reference

print "MyClass";

 See Chapter 15, “Refl ection,” for more information about intrinsic functions.

 The primary function of the Cross-reference tool is to determine where a particular element
is being used. Here are a couple of scenarios:

 You want to fi nd usage examples. If the product documentation doesn’t help, you can
use the Cross-reference tool to fi nd real implementation examples.

 You need to perform an impact analysis. If you’re changing an element, you need to
know which other elements are affected by your change.

 To access usage information, right-click any element in the AOT, point to Add-Ins, point to
Cross-reference, and then click Used By. If the option isn’t available, either the element isn’t
used or that cross-reference hasn’t been updated.

 Figure 3-33 shows where the prompt method is used on the RunBaseBatch class.

// Prints ID of MyClass, such as 50001

print classNum(myClass);

// Prints "MyClass"

print classStr(myClass);

// No compile check or cross-reference

print "MyClass";

86 Part I A Tour of the Development Environment

FIGURE 3-33 Cross-reference tool, showing where RunBaseBatch.prompt is used

When you view cross-references for a class method, the Application Hierarchy Tree is visible,
allowing you to see whether the same method is used on a parent or subclass. For types that
don’t support inheritance, such as tables, table methods, and table fields, the Application
Hierarchy Tree is hidden.

Version Control

The Version Control tool is a feature in MorphX that makes it possible to use a version con-
trol system, such as Microsoft Visual SourceSafe or Microsoft Visual Studio Team Foundation
Server, to keep track of changes to elements in the AOT. The tool is accessible from several
places: from the Microsoft Dynamics AX drop-down menu at Tools\Development Tools\
Version Control, from toolbars in the AOT and X++ code editor, and from the context menu
on elements in the AOT.

Using a version control system offers several benefits:

 Revision history of all elements All changes are captured along with a description
of the change, making it possible to consult change history and retrieve old versions of
an element.

 Code quality enforcement The implementation of version control in Dynamics AX
enables a fully configurable quality bar for all check-ins. With the quality bar, all changes
are verified according to coding practices. If the change doesn’t meet the criteria, it
is rejected. Microsoft uses the quality bar for all check-ins, which has helped raise the
quality of X++ code to an unprecedented level. Microsoft developers cannot check in
code with compiler errors, compile warnings, or best practice errors. In the final stages
of development, tasks in code (to-dos) are also prohibited.

 Chapter 3 The MorphX Tools 87

 Isolated development Each developer can have a local installation and make all
modifi cations locally. When modifi cations are ready, they can be checked in and made
available to consumers of the build. So a developer can rewrite fundamental areas of
the system without causing any instability issues for others. Developers are also unaf-
fected by any downtime of a centralized development server.

 Even though using a version control system when developing is optional, we strongly recom-
mend you consider one for any development project. Dynamics AX 2009 supports three ver-
sion control systems: Visual SourceSafe 6.0 and Team Foundation Server, which are designed
for large development projects, and MorphX VCS. MorphX VCS is designed for smaller devel-
opment projects that previously couldn’t justify the additional overhead that using a version
control system server adds to the entire process. Table 3-7 shows a side-by-side comparison
of the version control system options.

 TABLE 3-7 Overview of Version Control Systems

 Classic

MorphX

(No Version

Control) MorphX VCS

Visual

SourceSafe

Team

Foundation

Server

 Application Object
Servers required

1 1 1 per developer 1 per developer

 Database servers
 required

1 1 1 per developer 1 per developer

 Team server required No Optional Yes Yes

 Build process required No No Yes Yes

 Master fi le AOD AOD XPOs XPOs

 Isolated development No No Yes Yes

 Multiple check-out N/A No Confi gurable Confi gurable

 Change description No Yes Yes Yes

 Change history No Yes Yes Yes

 Change list support
(atomic check-in of a
set of fi les)

N/A No No Yes

 Code quality
 enforcement

No Confi gurable Confi gurable Confi gurable

 The elements persisted in the version control server are fi le representations of the elements
in the AOT. The fi le format used is the standard Dynamics AX export format (.xpo). Each .xpo
fi le contains only one element.

 There are no additional infrastructure requirements when you use MorphX VCS, which makes
it a perfect fi t for partners running many parallel projects. In such setups, each developer
often works simultaneously on several projects, toggling between projects and returning to

Classic

MorphX

(No Version

Control) MorphX VCS

Visual

SourceSafe

Team

Foundation

Server

88 Part I A Tour of the Development Environment

past projects. In these situations, the benefits of having change history are enormous. With
just a few clicks, you can enable MorphX VCS to persist the changes in the business database.
Although MorphX VCS provides many of the same capabilities as a version control server, it
does have some limitations. For example, MorphX VCS does not provide any tools for main-
tenance, such as backup, archiving, or labeling.

In contrast, Visual SourceSafe and Team Foundation Server are designed for large projects in
which many developers work together on the same project for an extended period of time
(e.g., an independent software vendor building a vertical solution).

Figure 3-34 shows a typical deployment using Visual SourceSafe or Team Foundation Server,
in which each developer locally hosts the AOS and the database. Each developer also needs
a copy of all .xpo files. When a developer communicates with the version control server, the
.xpo files are transmitted. A unique ID is required when the developer creates a new ele-
ment or label. A Team Server, available as a Microsoft .NET Web service, is required to ensure
uniqueness of IDs across all the local developers’ environments. The Team Server is a compo-
nent available with Dynamics AX.

Developer

AOS

Database

.xpo files

.xpo files

Version
control server

Team Server

Request
element/
label ID

FIGURE 3-34 Typical deployment using version control

Element Life Cycle

Figure 3-35 shows the element life cycle in a version control system. When the element is in a
state marked with green, it can be edited; otherwise it is read-only.

You can create a new element in two ways:

 Create a completely new element.

 Chapter 3 The MorphX Tools 89

 Customize an existing element, resulting in an overlayered version of the element.
Because elements are stored per layer in the version control system, customizing an
element effectively creates a new element.

After you create an element, you must add it to the version control system. First give it a
proper name in accordance with naming conventions, and then click Add To Version Control
on the context menu. After you create the element, you must check it in.

Checked in

Opened
for edit

Opened
for add

Add

Add
Check out

Check in
Undo check-out

Check in

Deleted Delete

Rename

Rename

New
object

Overlayer
object

FIGURE 3-35 Element life cycle

An element that is checked in can be renamed. Renaming an element deletes the element
with the old name and adds an element with the new name.

Check-Out

To modify an element, you must check it out. Checking out an element locks it so that others
can’t modify it while you’re working.

By clicking Tools\Development Tools\Version Control\Pending Objects from the Microsoft
Dynamics AX drop-down menu, you can see which elements you currently have checked out.
The elements you’ve checked out (or that you’ve created and not yet checked in), appear in
blue, rather than black, in the AOT.

Undo Check-Out

If you decide that you don’t want to modify an element that you checked out, you can undo
the check-out. This releases your lock on the element and imports the server version of the
element to undo your changes.

90 Part I A Tour of the Development Environment

Check-In

When you have finalized your modifications, you must check in the elements for them to be
part of the next build. When you click Check-In on the context menu, the dialog box shown
in Figure 3-36 appears, displaying all the elements that you currently have checked out. The
Check In dialog box shows all open elements by default; you can remove any elements not
required in the check-in from the list by pressing Alt+F9.

FIGURE 3-36 Check In dialog box

We recommend the following procedure for checking in your work:

 1. Perform synchronization to update all elements in your environment to the latest
version.

 2. Verify that everything is still working as intended. Compilation is not enough!

 3. Check in the elements.

Quality Checks

Before the version control system accepts a check-in, it might subject the elements to quality
checks. You define what is accepted in a check-in when you set up the version control
 system. The following checks are supported:

 Compiler errors

 Compiler warnings

 Compiler tasks

 Best practice errors

 Chapter 3 The MorphX Tools 91

When a check is enabled, it is carried out when you do a check-in. If the check fails, the
check-in stops. You must address the issue and restart the check-in.

Updating Source Code Casing

You can set the Source Code Titlecase Update tool, available on the Add-Ins submenu, to
automatically execute before elements are checked in to ensure uniform casing in variable
and parameter declarations and references. You can specify this parameter when setting up
the version control system by selecting the Run Title Case Update check box.

Creating New Elements

When using version control, you create new elements just as you normally would in the
MorphX environment without a version control system. These elements are not part of your
check-in until you click Add To Version Control on the context menu.

You can also create all element types except those listed in System Settings (from the
Microsoft Dynamics AX drop-down menu: Tools\Development Tools\Version Control\Setup\
System Settings). By default, jobs and private projects are not accepted.

New elements should follow Dynamics AX naming conventions. The best practice naming
conventions are enforced by default, so you can’t check in elements with names such as
aaaElement, Del_Element, element1, or element2. (The only Del elements allowed are those
required for version upgrade purposes.) You can change naming requirements in System
Settings.

Renaming Elements

An element must be in the checked-in state to be renamed. Because all references in .xpo
files are strictly name based (not ID based), all references to renamed elements must be
 updated. For example, when you rename a table field, you must also update any form or
 report that uses that field. Most references in metadata in the AOT are ID based, thus not
 affected when an element is renamed; in most cases, it is enough to simply check out the
form or report and include it in the check-in to update the .xpo file. You can leverage the
cross-reference functionality to identify references. References in X++ code are name based.
You can use the compiler to find affected references.

An element’s revision history is kept intact when elements are renamed. No tracking infor-
mation in the version control system is lost because of a rename.

92 Part I A Tour of the Development Environment

Deleting Elements

You delete an element as you normally would in Dynamics AX. The delete operation must be
checked in before the deletion is visible to other users of the version control system. You can
see pending deletions in the Pending Objects dialog box.

Labels

Working with labels is very similar to working with elements. To change, delete, or add a
label, you must check out the label file containing the label. You can check out the label file
from the Label Editor dialog box.

The main difference between checking out elements and checking out label files is that si-
multaneous check-outs are allowed for label files. This means that others can change labels
while you have a label file checked out.

When you check in a label file, your changes are automatically merged into the latest version
of the file. If you modify or delete a label that another person has also modified or deleted,
your changes are lost. Lost changes are shown in the Infolog.

The ID server guarantees that label IDs are unique; adding labels won’t generate conflicts.

Get Latest

If someone else has checked in a new version of an element, the Get Latest option on the
context menu allows you to get the version of the element that was most recently checked
in. This option isn’t available when you have the element checked out yourself.

Get Latest is not applicable to MorphX VCS.

Synchronization

Synchronization allows you to get the latest version of all elements. This step is re-
quired before you can check in any elements. You can initiate synchronization from
the Microsoft Dynamics AX drop-down menu: Tools\Development Tools\Version
Control\Periodic\Synchronize.

Synchronization is divided into three operations that happen automatically in the following
sequence:

 1. Copy the latest files from the version control server to the local disk.

 2. Import the files into the AOT.

 3. Compile the imported files.

 Chapter 3 The MorphX Tools 93

You should use synchronization to make sure your system is up to date. Synchronization
won’t affect any new elements that you have created or any elements that you have checked
out.

Figure 3-37 shows the Synchronization dialog box.

FIGURE 3-37 Synchronization dialog box

Selecting the Force check box gets the latest version of all files, whether or not they have
changed, and then imports every file.

When using Visual SourceSafe, you can also synchronize to a label defined in Visual
SourceSafe. This way you can easily synchronize to a specific build or version number.

Synchronization is not applicable to MorphX VCS.

Synchronization Log

How you keep track of versions on the client depends on the version control system being
used. Visual SourceSafe requires that Dynamics AX keep track of itself. When you synchronize
the latest version, it is copied to the local repository folder from the version control system.
Each file must be imported into Dynamics AX to be reflected in the AOT. To minimize the risk
of partial synchronization, a log entry is created for each file. When all files are copied locally,
the log is processed, and the files are automatically imported into Dynamics AX.

When synchronization fails, the import operation is usually the cause of any problems.
Synchronization failure leaves your system in a partially synchronized state. To complete the
synchronization, you must restart Dynamics AX and restart the import. You use the synchro-
nization log to restart the import, and you access it from the Microsoft Dynamics AX drop-
down menu at Tools\Development Tools\Version Control\Inquiries\Synchronization Log.

94 Part I A Tour of the Development Environment

The Synchronization Log dialog box, shown in Figure 3-38, displays each batch of files, and
you can restart the import by clicking Process. If the Processed check box is not selected, the
import has failed and should be restarted.

FIGURE 3-38 Synchronization Log dialog box

The Synchronization Log is not available in MorphX VCS.

Show History

One of the biggest advantages of version control is the ability to track changes to elements.
Selecting History on an element’s context menu displays a list of all changes to an element,
as shown in Figure 3-39.

FIGURE 3-39 Revision history of an element

This dialog box shows the version number, the action performed, the time the action was
performed, and who performed the action. You can also see the change number and the
change description.

A set of buttons in the revision history dialog box allows further investigation of each version.
Clicking Contents opens a form that shows other elements included in the same change.
Clicking Compare opens the Compare dialog box, which allows you to do a line-by-line
comparison of two versions of the element. The Open New Window button opens an AOT
window that shows the selected version of the element, which is useful for investigating
properties because it allows you to use the standard MorphX toolbox. Clicking View File
opens the .xpo file for the selected version in Notepad.

 Chapter 3 The MorphX Tools 95

Revision Comparison

Comparison is the key to harvesting the benefits of a version control system. You can start
a comparison from several places, including the Compare option on the Add-Ins submenu.
Figure 3-40 shows the Comparison dialog box where two revisions of the form CustTable are
selected.

FIGURE 3-40 Comparing element revisions from version control

The Compare dialog box contains a list of all checked-in versions, in addition to the layer
 element versions, when a version control system is used.

Pending Elements

When you’re working on a project, it’s easy to lose track of which elements you’ve opened
for editing. The Pending Objects dialog box, shown in Figure 3-41, lists the elements that are
currently checked out in the version control system. Notice the column containing the action
performed on the element. Deleted elements are available only in this dialog box; they are
no longer shown in the AOT.

FIGURE 3-41 Pending elements

You can access the Pending Objects dialog box from the Microsoft Dynamics AX drop-down
menu: Tools\Development Tools\Version Control\Pending Objects.

96 Part I A Tour of the Development Environment

Build

Because the version control system contains .xpo files, and not an .aod file, a build process is
required to generate an .aod file from the .xpo files. The following procedure is a high-level
overview of the build process.

 1. Use the CombineXPOs command-line utility to create one .xpo file by combining all
.xpo files. The purpose of this step is to make the .xpo file consumable by Dynamics
AX. Dynamics AX requires all referenced elements to be present in the .xpo file or to
already exist in the AOT to maintain the references during import.

 2. Import the new .xpo file by using the command-line parameter -
AOTIMPORTFILE=<FileName.xpo> to Ax32.exe. This step imports the .xpo file and
 compiles everything. After it is complete, the new .aod file is ready.

You must follow these steps for each layer you build. The steps are described in more detail
in the Microsoft Dynamics AX 2009 SDK.

The build process doesn’t apply to MorphX VCS.

Integration with Other Version Control Systems

The implementation of the version control system in Dynamics AX is fully pluggable. This
means that any version control system can be integrated with Dynamics AX.

Integrating with another version control system requires a new class implementing the
SysVersionControlFileBasedBackEnd interface. It is the implementation’s responsibility to
provide the communication with the version control system server being used.

Unit Test Tool

A unit test is a piece of code that exercises another piece of code and ascertains that it be-
haves correctly. The developer who implements the unit to be tested typically writes the unit
test. Thought leaders in this area recommend writing unit tests as early as possible, even
before writing a single line of the unit’s code. This principle is called test-driven development.
(You can read more about test-driven development on MSDN and more about unit testing in
the Unit Test Framework section of the Microsoft Dynamics AX 2009 SDK.)

Writing unit tests early forces you to consider how your code will be consumed; this in turn
makes your APIs easier to use and understand, and it results in constructs that are more
likely to be robust and long lasting. With this technique, you must have at least one unit test
for each requirement; a failing unit test indicates an unfulfilled requirement. Development
 efforts should be targeted at making the failing unit test succeed—no more, no less.

 Chapter 3 The MorphX Tools 97

 To reap the full benefi ts of unit testing, you should execute test cases regularly, preferably
each time code is changed. The Unit Test framework in Dynamics AX supports you regard-
less of your approach to writing unit tests. For example, the unit test capabilities are fully
embedded in MorphX, and you can easily toggle between writing test cases and writing
business logic.

 If you’re managing an implementation project for Dynamics AX, you should advocate testing
and support your team members in any way required. At fi rst glance, unit testing might seem
like more work, but the investment is well worth the effort. If you’re a team member on a
project that doesn’t do unit testing, you should convince your manager of its benefi ts. Plenty
of recent literature describes the benefi ts in great detail.

 When implementing unit tests, you write a test class, also referred to as a test case. Each test
case has several test methods that exercise the object being tested in a particular way. As you
build your library of test cases, you’ll fi nd that you need to organize them into groups. You
can group test cases into test suites. The simplest way to do this is to use test projects, which
are simply special kinds of AOT projects.

Test Cases

 To implement a unit test case, you must create a new class that extends the SysTestCase class,
which is part of the Unit Test framework. You should give the class the same name as the
class it is testing, suffi xed with Test. This is illustrated in the following example, where a unit
test for the Stack class is declared.

class StackTest extends SysTestCase

{

}

 If you were to run the unit test at this point, you would fi nd that zero tests were run and zero
tests failed.

 This default naming convention tells the Unit Test framework which test class to collect code
coverage data for. If the default test class name doesn’t suit your needs, you can override the
testsElementName method. You can also override the testsElementType method to set the
kind of element for which the framework collects code coverage data.

 To create a useful test, you must add one or more test methods to the class. All test method
names must start with test. The test methods must return void and take no parameters. In
the following code, a test method is added to the StackTest class.

class StackTest extends SysTestCase

{

}

98 Part I A Tour of the Development Environment

void testPushPop()

{

 //Create an instance of the class to test.

 Stack stack = new Stack();

 ;

 //Push 123 to the top of the stack.

 stack.push([123]);

 //Pop the value from the stack and assert that it is 123.

 this.assertEquals([123], stack.pop());

}

 Within each test method, you should exercise the object you test and confi rm that it behaves
correctly. Running the unit test at this point tells you that one test was run and zero tests
failed.

Your testing needs should be met by the assertion methods available on SysTestCase (which
extends SysTestAssert), as shown in Table 3-8.

 TABLE 3-8 Assertion Methods on the SysTestCase Class

 Method Parameters Action

 assertEquals (anyType, anyType) Asserts that two values are equal.
When the argument is of type ob-
ject, the equal method is called to
compare them.

 assertFalse (boolean) Asserts that the value is false.

 assertNotEqual (anyType, anyType) Asserts that two values are different.

 assertNotNull (object) Asserts that the value is not null.

 assertNotSame (object, object) Asserts that the objects referenced
are not the same.

 assertNull (object) Asserts that the value is null.

 assertRealEquals (real, real [, real delta]) Asserts that real values differ no
more than the delta.

 assertSame (object, object) Asserts that the objects referenced
are the same.

 assertTrue (boolean) Asserts that the value is true.

 If an assertion fails, the test method fails. You can confi gure the framework to stop at fi rst
failure or continue with the next test method in the Unit Test Parameters dialog box: from
the Microsoft Dynamics AX drop-down menu, point to Tools\ Development Tools\Unit Test\
Parameters. The following code adds a new failing test method.

void testPushPop()

{

 //Create an instance of the class to test.

 Stack stack = new Stack();

 ;

 //Push 123 to the top of the stack.

 stack.push([123]);

 //Pop the value from the stack and assert that it is 123.

 this.assertEquals([123], stack.pop());

}

Method Parameters Action

 Chapter 3 The MorphX Tools 99

//Test the qty method, which returns the quantity of values on the stack.

void testQty()

{

 //Create an instance of the class to test.

 Stack stack = new Stack();

 ;

 //Push 123 to the top of the stack.

 stack.push([123]);

 //Pop the value from the stack and assert that it is 0.

 this.assertEquals(0, stack.qty());

}

 Running the unit test at this point shows that two tests were executed and one failed. The
failing test appears in the Infolog. Clicking Edit opens the X++ code editor on the assert call
that failed.

 You might have noticed code redundancy in the test methods shown so far. In many cases,
initialization code is required before the test method can run. Instead of duplicating this
code in all test methods, you can refactor it into the setUp method. If teardown logic is re-
quired, you can place it in the tearDown method. When the framework runs a test method,
it instantiates a new test case class, which is followed by calls to setUp and test methods, and
fi nally a call to the tearDown method. This prevents in-memory data from one test method
from affecting another test method. Test suites, which are covered in the next section, pro-
vide ways to isolate data persisted in the database between test cases and methods. The fol-
lowing code uses the setUp method to refactor the sample code.

class StackTest extends SysTestCase

{

 Stack stack;

 public void setUp()

 {;

 super();

 //Create an instance of the class to test.

 stack = new Stack();

 }

 void testPushPop()

 {;

 stack.push([123]);

 this.assertEquals([123], stack.pop());

 }

 ...

}

 The Unit Test framework also supports testing of exceptions. If a method is expected
to throw an exception, you can instruct the framework to expect an exception to be

//Test the qty method, which returns the quantity of values on the stack.

void testQty()

{

 //Create an instance of the class to test.

 Stack stack = new Stack();

 ;

 //Push 123 to the top of the stack.

 stack.push([123]);

 //Pop the value from the stack and assert that it is 0.

 this.assertEquals(0, stack.qty());

}

class StackTest extends SysTestCase

{

 Stack stack;

 public void setUp()

 {;

 super();

 //Create an instance of the class to test.

 stack = new Stack();

 }

 void testPushPop()

 {;

 stack.push([123]);

 this.assertEquals([123], stack.pop());

 }

...

}

100 Part I A Tour of the Development Environment

thrown. If you expect an exception and none is thrown, the framework reports the
test case as failed. You inform the framework that an exception is expected by calling
parmExceptionExpected ([boolean, str]). You can specify an exception text that must exactly
match the text thrown with the exception, or the test case will fail. You shouldn’t write more
asserts after the method call expected to throw an exception because execution should
never get that far. The following code adds a test method that expects an exception message
to be thrown.

void testFailingPop()

{;

 //Assert that an exception is expected.

 this.parmExceptionExpected(true, "Stack is empty!");

 //Call the method expected to throw an exception.

 stack.pop();

}

The sample test case now has three test methods. By following these steps, you can run the
test case from MorphX:

 1. Right-click the method, point to Add-Ins, and then click Run Tests.

 2. Type the name in the Test toolbar, and then click Run.

 3. Start the Dynamics AX client with the following command line:

StartupCmd=RunTestProject_<Name of test case class>

If you wanted to run the test case programmatically, you could use a test runner class. To do
this, you would typically place the following logic in your test class’s main method, which is
invoked when you press F5 in the X++ code editor.

static void main(args _args)

{

 SysTestRunner runner = new SysTestRunner(classStr(StackTest));

 SysTestListenerXML listener =

 new SysTestListenerXML(@"c:\tmp\StackTest.xml");

 ;

 runner.getResult().addListener(listener);

 runner.run();

}

 Notice that you also register a listener. If you didn’t register a listener, you wouldn’t know the
result of the test. Listeners are described in the section “Test Listeners” later in this chapter.

void testFailingPop()

{;

 //Assert that an exception is expected.

 this.parmExceptionExpected(true, "Stack is empty!");

 //Call the method expected to throw an exception.

 stack.pop();

}

static void main(args _args)

{

 SysTestRunner runner = new SysTestRunner(classStr(StackTest));

 SysTestListenerXML listener =

 new SysTestListenerXML(@"c:\tmp\StackTest.xml");

 ;

 runner.getResult().addListener(listener);

 runner.run();

}

 Chapter 3 The MorphX Tools 101

Test Suites

 Test suites serve two purposes:

 Collection of test cases and test suites A test suite can contain any number of test
cases and other test suites. This arrangement means that you can group test cases in a
hierarchy.

 Test case isolation Each test case could have different needs for isolation, depending
on what data it changes. In fact, each method within the test case could have a need
for isolation.

 Dynamics AX includes the following fi ve test suites that provide different levels of isolation:

 SysTestSuite This test suite is the default. It provides no isolation. You can override
the setUp and tearDown methods, if necessary. Note that these methods are not the
same as the setUp and tearDown methods on the test case.

 SysTestSuiteCompanyIsolateClass This test suite constructs an empty company
 account for the entire test class and runs each test method in the company account.
After all test methods have been executed, the company account is deleted.

 SysTestSuiteCompanyIsolateMethod This test suite constructs an empty company
account for each test method and runs the test method in the company account.
After the test methods have been executed, the company account is deleted. This test
suite provides the highest isolation level. It does, however, have a noticeable effect on
performance.

 SysTestSuiteTTS This test suite wraps each test method in a transaction. After the test
method has been completed, the transaction is aborted. This provides a fast alternative
to the company isolation suites, but it has a couple of limitations:

 Exceptions can’t be handled. Exceptions thrown inside a transaction abort the
transaction automatically and can’t be caught inside the transaction.

 Test cases that require data to be committed can’t use this test suite.

 SysTestSuiteCompIsolateClassWithTts This test suite provides a combination of
SysTestSuiteCompanyIsolateClass and SysTestSuiteTTS.

 For each test case, you can override the createSuite method to select the appropriate suite
for your test case. The following code shows how to use the company isolation test suite in
the StackTest class.

public SysTestSuite createSuite()

{;

 return new SysTestSuiteCompanyIsolateClass(this);

}

public SysTestSuite createSuite()

{;

 return new SysTestSuiteCompanyIsolateClass(this);

}

102 Part I A Tour of the Development Environment

 We recommend that you use test projects to group your test cases into suites. You can, how-
ever, create your own class extending from SysTestSuite and programmatically add test cases
and other test suites to it. You can run each test suite in one of the following ways:

 Type the name in the Test toolbar, and then click Run.

 Start the Dynamics AX client with the following command line:

StartupCmd=RunTestProject_<Name of test suite class>

 Implement a static main method similar to the one shown in the test case example.

The following code shows the entire StackTest test case. Notice the refactoring and the
changes in testQty to make the test case succeed.

class StackTest extends SysTestCase

{

 Stack stack;

 public SysTestSuite createSuite()

 {;

 return new SysTestSuiteCompanyIsolateClass(this);

 }

 public void setUp()

 {;

 super();

 stack = new Stack();

 }

 void testPushPop()

 {;

 stack.push([123]);

 this.assertEquals([123], stack.pop());

 }

 void testQty()

 {;

 stack.push([100]);

 this.assertEquals(1, stack.qty());

 stack.push([200]);

 this.assertEquals(2, stack.qty());

 stack.clear();

 this.assertEquals(0, stack.qty());

 }

 void testFailingPop()

 {;

 //Assert that an exception is expected.

 this.parmExceptionExpected(true, "Stack is empty!");

 //Call the method expected to throw an exception.

 stack.pop();

 }

 static void main(args _args)

 {

 //This method illustrates how to run a test case programmatically.

class StackTest extends SysTestCase

{

 Stack stack;

 public SysTestSuite createSuite()

 {;

 return new SysTestSuiteCompanyIsolateClass(this);

 }

 public void setUp()

 {;

 super();

 stack = new Stack();

 }

 void testPushPop()

 {;

 stack.push([123]);

 this.assertEquals([123], stack.pop());

 }

 void testQty()

 {;

 stack.push([100]);

 this.assertEquals(1, stack.qty());

 stack.push([200]);

 this.assertEquals(2, stack.qty());

 stack.clear();

 this.assertEquals(0, stack.qty());

 }

 void testFailingPop()

 {;

 //Assert that an exception is expected.

 this.parmExceptionExpected(true, "Stack is empty!");

 //Call the method expected to throw an exception.

 stack.pop();

 }

 static void main(args _args)

 {

 //This method illustrates how to run a test case programmatically.

 Chapter 3 The MorphX Tools 103

 SysTestRunner runner = new SysTestRunner(classStr(StackTest));

 SysTestListenerXML listener =

 new SysTestListenerXML(@"c:\tmp\StackTest.xml");

 ;

 runner.getResult().addListener(listener);

 runner.run();

 }

}

Test Projects

 The easiest way to group test cases is to use a test project. You can create a test project with
the Project Designer in MorphX. The test project can contain groups of test case classes and
references to other test projects. You create a new test project by selecting the project type
Test Project when creating either a shared or private project. A test project can also contain
references to other test projects, which allows the project to scale across many development
teams. You create a reference by right-clicking the project root node and selecting New
Reference To Test Project.

 Figure 3-42 shows a test project that includes a group of common tests containing the test
case example and references to two other test projects.

FIGURE 3-42 Test project containing references and a test case

 Each test project has its own settings that are persisted with the project defi nition. This allows
you to specify test project settings that follow the project, even through import and export,
redeployment, and so on.

 You can run a test project in several ways:

 Right-click it, and then click Run.

 Type the name in the Test toolbar, and then click Run.

 Start the Dynamics AX client with the following command line:

StartupCmd=RunTestProject_<Name of test project>

 SysTestRunner runner = new SysTestRunner(classStr(StackTest));

 SysTestListenerXML listener =

 new SysTestListenerXML(@"c:\tmp\StackTest.xml");

 ;

 runner.getResult().addListener(listener);

 runner.run();

 }

}

104 Part I A Tour of the Development Environment

 Use the version control functionality during check-in. Check-in stops if the test fails. You
specify the project to run during check-in: from the Microsoft Dynamics AX drop-down
menu, point to Tools\Development Tools\Version Control\Setup\System Settings.

The Test Toolbar

When you’re working with unit testing, you should open the Test toolbar. You access the Test
toolbar, shown in Figure 3-43, from the Microsoft Dynamics AX drop-down menu: Tools\
Development Tools\Unit Test\Show Toolbar.

FIGURE 3-43 Test toolbar

You can type the name of the test case, test suite, or test project you want to run, click Run
to execute it, and then, to get information about the result, click Details to open the Test Jobs
window. The Test Jobs window shows you the following information collected during the test
execution:

 The status of each test case

 Environmental information

 Timing (when the test started and stopped, the duration of the test, and so on)

 Code coverage, when enabled

 Information sent to the Infolog during the test case execution

Note The database listener collects the information displayed in the Test Jobs window. This
 listener is automatically registered when you run a test via the toolbar.

Code Coverage

The Unit Test framework can collect code coverage information during execution, including
a percentage value that indicates how thoroughly you have tested the unit. It also allows you
to focus your implementation of the test cases on the parts not covered by other test cases.
In addition, the Test Jobs window offers a line-by-line view of the code lines visited. You can
enable code coverage in the Unit Test Parameters dialog box: from the Microsoft Dynamics
AX drop-down menu, point to Tools\Development Tools\Unit Test\Parameters. However,
because much more data is collected, enabling code coverage when executing unit tests dra-
matically affects performance during execution. Figure 3-44 shows an example of the code
coverage recorded by the testFailingPop method from the preceding test case example.

 Chapter 3 The MorphX Tools 105

FIGURE 3-44 Visualization of code coverage

 The lines highlighted in gray (lines 1 through 5 and 15 through 16) are the lines visited
during execution. The lines not shaded (lines 6 through 14) haven’t been visited.

Test Listeners

 The value of running a test case is dramatically increased if good reporting options exist.
When running a test case or a suite of tests, you can enable one or more listeners. Each lis-
tener produces its unique output. Dynamics AX includes many listeners, allowing output to
text fi les, XML fi les, the database, the Infolog, the Message window, the Print window, and
the Progress bar. You can enable test listeners in the Unit Test Parameters dialog box.

 Here is the XML generated by the XML listener when you run the StackTest unit test.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<!-- Created by SysTestListenerXML -->

<test-results date="08-07-2008" time="10:51:34" success="false">

 <test-suite name="stacktest" time="52" success="true" coverage="61.54">

 <results>

 <test-case name="stacktest.testFailingPop" time="31" success="true"

coverage="23.08" />

 <test-case name="stacktest.

testPushPop" time="0" success="true" coverage="50.00" />

 <test-case name="stacktest.testQty" time="21" success="true" coverage="30.77" />

 </results>

 </test-suite>

</test-results>

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<!-- Created by SysTestListenerXML -->

<test-results date="08-07-2008" time="10:51:34" success="false">

 <test-suite name="stacktest" time="52" success="true" coverage="61.54">

 <results>

 <test-case name="stacktest.testFailingPop" time="31" success="true"

coverage="23.08" />

 <test-case name="stacktest.

testPushPop" time="0" success="true" coverage="50.00" />

 <test-case name="stacktest.testQty" time="21" success="true" coverage="30.77" />

 </results>

 </test-suite>

</test-results>

106 Part I A Tour of the Development Environment

Note Listeners that generate a file write the file to the application log directory. The only way
to change the file name and location is to manually register a listener, which we demonstrated in
the StackTest code on pages 102 to 103.

If you must create a new listener to output to a type of media not supported by default, you
can do so by following these steps:

 1. Create your own listener class implementing the SysTestListener interface. Alternatively,
you can inherit from one of the existing test listeners. The methods on your class are
invoked when events such as the start and end of test suites and test cases occur and
when test cases fail. A SysTestListenerData object is passed to each method. The object
contains information about the test case or suite, coverage data, and much more. By
extracting the information, you can generate output to suit your needs.

 2. Modify the base enumeration SysTestListeners. You must add an entry that has the
same name as your listener class and a label of your choice. This causes the listener to
appear in the test parameters form.

Object Model

So far in this chapter we’ve described the classes in the Unit Test framework and explained
how they interact. Figure 3-45 shows this information as a UML object model.

The SysTestCase class implements quite a few interfaces. In fact, the Unit Test framework
can use any class that implements the SysTestable interface as a test case. You can implement
the other interfaces if you want more control. It’s far easier, however, to create test case
classes that extend the SysTestCase base class. (For simplicity, Figure 3-45 doesn’t show the
SysTestSuite derived classes or the SysTestListener derived classes.)

 Chapter 3 The MorphX Tools 107

F
IG

U
R

E
 3

-4
5

 U
M

L
d

ia
g

ra
m

 o
f

th
e

U
ni

t
Te

st
 f

ra
m

ew
o

rk

S
y
sT

e
st

S
u

it
e

-m
et

ho
dN

am
e

S
y
sT

e
st

1

*

1
1

S
y
sT

e
st

R
u

n
n

e
r

S
y
sT

e
st

R
u

n
n

e
rP

ro
je

c
t

1

-G
et

Te
st

1

1-G
et

Re
su

lt 1

1*
-G

et
Li

st
en

er
s

«u
se

s»
«u

se
s»

«u
se

s»

«u
se

s»

S
y
sT

e
st

R
e
su

lt
S
y
sT

e
st

C
a
se

S
y
sT

e
st

A
ss

e
rt

+
ru

n(
)

+
ge

tN
am

e(
)

+
nu

m
be

rO
fT

es
ts

()

«i
nt

er
fa

ce
»

S
y
sT

e
st

E
x

e
c
u

ta
b

le

+
ex

ce
pt

io
nE

xp
ec

te
d(

)
+

ex
ce

pt
io

nM
es

sa
ge

()

«i
nt

er
fa

ce
»

S
y
sT

e
st

a
b

le
E
x

c
e
p

ti
o

n
E
x

p
e
c
te

d

+
te

st
M

et
ho

ds
()

+
te

st
sE

le
m

en
tN

am
e(

)
+

te
st

sE
le

m
en

tT
yp

e(
)

«i
nt

er
fa

ce
»

S
y
sT

e
st

a
b

le

+
ge

tL
ist

en
er

In
fo

rm
at

io
n(

)

«i
nt

er
fa

ce
»

S
y
sT

e
st

L
is

te
n

e
rI

n
fo

rm
a
ti

o
n

P
ro

v
id

e
r

«u
se

s»

M
y
 t

e
st

 c
a
se

s

+
st

ar
tT

es
t(

)
+

en
dT

es
t(

)
+

st
ar

tS
ui

te
()

+
en

dS
ui

te
()

+
op

en
()

+
cl

os
e(

)
+

ad
dF

ai
lu

re
()

+
ad

dI
nf

or
m

at
io

n(
)

«i
nt

er
fa

ce
»

S
y
sT

e
st

L
is

te
n

e
r

«i
nt

er
fa

ce
»

S
y
sT

e
st

S
u

it
e
A

c
to

r
«u

se
s»

«i
nt

er
fa

ce
»

S
y
sT

e
st

S
u

it
e
P

ro
v
id

e
r

+
se

tU
pT

es
tC

as
e(

)
+

te
ar

D
ow

nT
es

tC
as

e(
)

+
us

eS
in

gl
eI

ns
ta

nc
e(

)

+
cr

ea
te

Su
ite

()
+

se
tu

p(
)

+
te

ar
D

ow
n(

)

 157

Chapter 5

Customizing Dynamics AX

In this chapter:

Introduction . 157

Table and Class Customization . 158

Form Customization . 170

Report Customization. 187

Number Sequence Customization . 196

The objectives of this chapter are to:

 Describe how to customize Microsoft Dynamics AX 2009 inventory tables and classes to
implement new inventory dimensions.

 Explain how to customize forms in Dynamics AX.

 Describe how to customize reports in Dynamics AX.

 Explain how to customize the number sequence classes in Dynamics AX to implement a
new number sequence.

Introduction

Dynamics AX allows you to customize an application by changing or adding metadata or
modifying the application’s source code. The unique layering feature ensures that you can
always return to the point at which you began to make modifications or restore the original
metadata and X++ code.

The next section of this chapter describes how to customize Dynamics AX to include a set of
new inventory dimensions by customizing a set of tables and classes. The new dimensions
automatically appear in forms and reports without requiring you to change the original code
or metadata of any of these elements.

The chapter also describes form and report customizations. The sales order form is
 modified to include a product image, and the sales invoice report is modified to include
promotional text.

158 Part II Core Development Concepts

The last section of the chapter explains how to customize the number sequence classes to
enable the use of a new number sequence, which is useful for creating invoice numbers,
voucher numbers, and so on.

Table and Class Customization

By default, Dynamics AX 2009 comes with nine default inventory dimensions. (The user can
define additional inventory dimensions.) Dimensions describe the characteristics of items or
item lots. Item dimensions might include characteristics such as configuration, model, and
size. Item lots might have storage dimensions, such as site, warehouse, location, or pallet, or
they might be identified by a serial number and batch number. The site dimension is new in
Dynamics AX 2009.

The following customization scenario describes how to customize tables and classes used
by the inventory dimension feature to implement two new item dimensions that describe a
specific bicycle configuration: frame size and wheel size. This description isn’t an exhaustive
list of elements that you must change; instead, it offers guidelines for finding the elements
necessary to customize the full implementation of a new inventory dimension.

Creating New Dimension Types

When implementing new inventory dimensions, your first task is to create extended data
types for each of the dimensions. Doing so provides the following benefits:

 To apply the inventory dimensions to multiple tables, you define the type just once and
then apply it to each table.

 The Label property, the HelpText property, and a few constraints can be defined on the
data type, ensuring consistent behavior and appearance of fields of the same type.

 If the type is declared as a parameter or a return type for a method, you can declare
variables of the type in X++ code to optimize IntelliSense responsiveness and to
 improve the readability of the code.

This scenario defines a table in which a field of the specific type is part of the primary key.
You can define the relationship to this table on the extended data type and subsequently
instruct the application runtime to provide lookups and Go To The Main Table Form support.

In this example, you enter the Data Dictionary in the Application Object Tree (AOT) and
 create a BikeFrameSize extended data type and a BikeWheelSize extended data type.
Table 5-1 lists the property settings that deviate from the default settings.

 Chapter 5 Customizing Dynamics AX 159

 TABLE 5-1 BikeFrameSize and BikeWheelSize Property Settings

Property BikeFrameSize BikeWheelSize

Type Real Real

Label Frame size Wheel size

HelpText Frame size in inches Wheel size in inches

AllowNegative No No

ShowZero No No

NoOfDecimals 0 0

 Figure 5-1 shows the property sheet for the BikeFrameSize extended data type, accessible by
clicking Properties on the context menu for the type.

FIGURE 5-1 Property sheet for the BikeFrameSize extended data type

Property BikeFrameSize BikeWheelSize

160 Part II Core Development Concepts

 Best Practices Creating labels for text in the Label and HelpText properties is, of course, a best
practice, but the text in this example is written as a literal (as opposed to referencing a label) to
improve readability.

 Next, create two tables, named BikeFrameSizeTable and BikeWheelSizeTable, in which the
frame and wheel sizes for each item can be stored. In addition to the specifi c inventory
 dimension types, the tables also contain an ItemId fi eld and a Name fi eld. The ItemId and
 dimension in each table constitute the table’s primary index.

Table 5-2 lists the BikeFrameSizeTable property settings that deviate from the de-
fault settings. (The property settings for BikeWheelSizeTable are identical except for the
BikeWheelSize fi eld and its extended property type.)

 TABLE 5-2 Field Property Settings

 Property ItemId BikeFrameSize Name

 Type String Real String

 ExtendedDataType ItemId BikeFrameSize Name

 Mandatory Yes Yes No (default)

 AllowEdit No No Yes (default)

 Create a unique index on both tables. For BikeFrameSizeTable, name the index FrameIdx and
make it contain the ItemId fi eld and the BikeFrameSize fi eld. For BikeWheelSizeTable, name
the index WheelIdx and make it contain the ItemId fi eld and the BikeWheelSize fi eld. Declare
the indexes as the PrimaryIndex on the respective tables. In the AOT, the fi elds and the
 indexes appear as shown in Figure 5-2.

FIGURE 5-2 BikeFrameSizeTable defi nition

In addition to the fi elds and index shown in Figure 5-2, you should also set properties in the
tables for caching, form references, and so on, and the table should contain fi eld groups

Property ItemId BikeFrameSize Name

 Chapter 5 Customizing Dynamics AX 161

and methods for checking the validity of the fields. However, it is beyond the scope of
this chapter to describe these enhancements. The Microsoft Dynamics AX 2009 software
 development kit (SDK) contains guidelines and best practices for creating tables.

After you define the tables, you should update the extended data types to reflect their
 relationship to the individual tables, as shown in Figure 5-3.

FIGURE 5-3 Extended data type relations of BikeFrameSize

This relationship instructs the Dynamics AX runtime to provide lookup and Go To The Main
Table Form functionality when fields of these types appear on forms. The application runtime
uses the related table as the data source for the lookup form and also to find the main
table form from the FormRef property on the table. You must therefore create forms for the
BikeFrameSizeTable and BikeWheelSizeTable tables and menu items to open the forms. These
menu items are added to the FormRef properties on the corresponding tables. You could
 design the forms to mirror the form shown in Figure 5-4. See the Microsoft Dynamics AX
2009 SDK for general information on designing forms.

FIGURE 5-4 Frame Sizes form

162 Part II Core Development Concepts

Adding New Dimensions to a Table

To store transactions with the new inventory dimensions, the dimensions must be
 added to the InventDim table. You do this by creating two new fields, BikeFrameSize and
BikeWheelSize, of the corresponding type on the InventDim table. You should also add these
fields to the unique DimIdx index because any combination of inventory dimensions can exist
only once in the InventDim table.

The display of inventory dimensions in almost any form in the Dynamics AX application
is based on field groups and where the content of the field group in the form is built at
run time. The forms runtime in Dynamics AX builds the group from the list of fields in the
 associated field group defined on the InventDim table. Therefore, by adding the new fields
to the InventoryDimensions field group on the InventDim table, you make the two new fields
available in almost any form that displays inventory dimensions. Position the fields in the field
group based on where you want them to appear relative to the other dimensions, as shown
in Figure 5-5.

Figure 5-5 shows usr flags on the AutoReport and ItemDimensions field groups, indicating
that the custom fields have been added to these groups as well. The AutoReport group is
modified so that it prints the new dimensions if you create an auto report by clicking Print on
a form; the ItemDimensions group is modified because the new dimensions are considered to
be item dimensions.

FIGURE 5-5 InventDim table with customized InventoryDimensions field group

 Chapter 5 Customizing Dynamics AX 163

 Although the inventory dimensions are now available in any form because of the
 interpretation of the fi eld groups by the Dynamics AX forms runtime, the fi elds still aren’t
visible or editable because they aren’t enabled in any inventory dimension group. Moreover,
the two new inventory dimensions automatically appear in the Dimension Groups form
 because the inventory dimension feature also interprets the InventoryDimensions fi eld group
on the InventDim table to fi nd all the currently available inventory dimensions. To make the
form work with the new dimensions, you merely state whether the new dimensions are item
 dimensions. You do this by adding the new dimensions to the isFieldItemDim method on the
InventDim table, as shown in the following X++ code. The added lines are shown in bold.

static public boolean isFieldIdItemDim(fieldId dimFieldId)

{

 ;

 #InventDimDevelop

 switch (dimFieldId)

 {

 case (fieldnum(InventDim,ConfigId)) :

 case (fieldnum(InventDim,InventSizeId)) :

 case (fieldnum(InventDim,InventColorId)) :

 case (fieldnum(InventDim,BikeFrameSize)) : // Frame size added

 case (fieldnum(InventDim,BikeWheelSize)) : // Wheel size added

 return true;

 case (fieldnum(InventDim,InventSiteId)) :

 case (fieldnum(InventDim,InventLocationId)) :

 case (fieldnum(InventDim,InventBatchId)) :

 case (fieldnum(InventDim,wMSLocationId)) :

 case (fieldnum(InventDim,wMSPalletId)) :

 case (fieldnum(InventDim,InventSerialId)) :

 return false;

 }

 throw error("@SYS70108");

}

 The new dimensions will be available for setup in the Dimension Groups form, which is
reached through the navigation pane under Inventory Management\Setup\Dimensions\
Dimension Groups. The dimensions are located in the Item Dimensions grid, as shown in
Figure 5-6.

static public boolean isFieldIdItemDim(fieldId dimFieldId)

{

 ;

 #InventDimDevelop

 switch (dimFieldId)

 {

 case (fieldnum(InventDim,ConfigId)) :

 case (fieldnum(InventDim,InventSizeId)) :

 case (fieldnum(InventDim,InventColorId)) :

 case (fieldnum(InventDim,BikeFrameSize)) : // Frame size added

 case (fieldnum(InventDim,BikeWheelSize)) : // Wheel size added

 return true;

 case (fieldnum(InventDim,InventSiteId)) :

 case (fieldnum(InventDim,InventLocationId)) :

 case (fieldnum(InventDim,InventBatchId)) :

 case (fieldnum(InventDim,wMSLocationId)) :

 case (fieldnum(InventDim,wMSPalletId)) :

 case (fieldnum(InventDim,InventSerialId)) :

 return false;

 }

 throw error("@SYS70108");

}

164 Part II Core Development Concepts

FIGURE 5-6 Dimension Groups form with new item dimensions

Important You need to restart the Application Object Server (AOS) after adding fields to the
InventoryDimensions field group because the list of fields in the group is cached in memory on
both the client and the server tiers.

Enabling New Dimensions in Forms

You can enable new dimensions by setting up dimension groups, but you won’t see them yet
in the forms. The inventory dimension feature uses a temporary table named InventDimParm
to carry certain information, such as whether a dimension has the following attributes:

 Is enabled

 Is an item dimension

 Is a primary stocking dimension

 Is visible

 Serves as a filter-by term

 Serves as a group-by term

 Serves as an order-by term

The dimension groups are enabled and controlled by reflecting each inventory dimension
as a boolean flag field on the InventDimParm table and then matching the corresponding

 Chapter 5 Customizing Dynamics AX 165

fi elds in the X++ code. For example, when a dimension group is queried to determine which
dimensions are active, an InventDimParm record is returned where the corresponding fl ag
fi eld is set to true for the active dimensions. The remaining fl ags are set to false. You must
therefore add a frame-size fl ag and a wheel-size fl ag to the InventDimParm table, as shown
in Table 5-3.

 TABLE 5-3 BikeFrameSizeFlag and BikeWheelSizeFlag Property Settings

Property BikeFrameSizeFlag BikeWheelSizeFlag

Type enum enum

Label Frame size Wheel size

HelpText View by frame size View by wheel size

ExtendedDataType NoYesId NoYesId

Enum NoYes NoYes

 You should also add the new fi elds to the FixedView and View fi eld groups defi ned on the
InventDimParm table, because they are used in forms from which it is possible to specify
whether a dimension should be visible.

 When you add fi elds to the table and fi eld groups, you must map the new fi elds on the
InventDim table to the corresponding fi elds on the InventDimParm table in the X++ code.
To do this, you modify the dim2DimParm method on the InventDim table, as shown in the
 following X++ code. The added mappings of BikeFrameSize and BikeWheelSize appear in bold.

static public fieldId dim2dimParm(fieldId dimField)

{

 ;

 #InventDimDevelop

 switch (dimField)

 {

 case (fieldnum(InventDim,ConfigId)) :

 return fieldnum(InventDimParm,ConfigIdFlag);

 case (fieldnum(InventDim,InventSizeId)) :

 return fieldnum(InventDimParm,InventSizeIdFlag);

 case (fieldnum(InventDim,InventColorId)) :

 return fieldnum(InventDimParm,InventColorIdFlag);

 case (fieldnum(InventDim,InventSiteId)) :

 return fieldnum(InventDimParm,InventSiteIdFlag);

 case (fieldnum(InventDim,InventLocationId)) :

 return fieldnum(InventDimParm,InventLocationIdFlag);

 case (fieldnum(InventDim,InventBatchId)) :

 return fieldnum(InventDimParm,InventBatchIdFlag);

 case (fieldnum(InventDim,wMSLocationId)) :

 return fieldnum(InventDimParm,WMSLocationIdFlag);

 case (fieldnum(InventDim,wMSPalletId)) :

 return fieldnum(InventDimParm,WMSPalletIdFlag);

 case (fieldnum(InventDim,InventSerialId)) :

Property BikeFrameSizeFlag BikeWheelSizeFlag

static public fieldId dim2dimParm(fieldId dimField)

{

 ;

 #InventDimDevelop

 switch (dimField)

 {

 case (fieldnum(InventDim,ConfigId)) :

 return fieldnum(InventDimParm,ConfigIdFlag);

 case (fieldnum(InventDim,InventSizeId)) :

 return fieldnum(InventDimParm,InventSizeIdFlag);

 case (fieldnum(InventDim,InventColorId)) :

 return fieldnum(InventDimParm,InventColorIdFlag);

 case (fieldnum(InventDim,InventSiteId)) :

 return fieldnum(InventDimParm,InventSiteIdFlag);

 case (fieldnum(InventDim,InventLocationId)) :

 return fieldnum(InventDimParm,InventLocationIdFlag);

 case (fieldnum(InventDim,InventBatchId)) :

 return fieldnum(InventDimParm,InventBatchIdFlag);

 case (fieldnum(InventDim,wMSLocationId)) :

 return fieldnum(InventDimParm,WMSLocationIdFlag);

 case (fieldnum(InventDim,wMSPalletId)) :

 return fieldnum(InventDimParm,WMSPalletIdFlag);

 case (fieldnum(InventDim,InventSerialId)) :

166 Part II Core Development Concepts

 return fieldnum(InventDimParm,InventSerialIdFlag);

 case (fieldnum(InventDim,BikeFrameSize)) : // Add mapping

 return fieldnum(InventDimParm,BikeFrameSizeFlag);

 case (fieldnum(InventDim,BikeWheelSize)) : // Add mapping

 return fieldnum(InventDimParm,BikeWheelSizeFlag);

 }

 throw error(strfmt("@SYS54431",funcname()));

}

You must make the same modifi cation to the dimParm2Dim method on the same table to
map InventDimParm fi elds to InventDim fi elds.

Customizing Other Tables

 The customizations made so far allow the new dimensions to be enabled on dimension
groups and presented in forms. However, you should also consider customizing the following
tables by adding inventory dimensions to them:

 BOMTmpUsedItem2ProducedItem

 InventCostTmpTransBreakdown

 InventDimCombination

 InventSumDateTrans

 InventSumDeltaDim

 PBADefault

 PBATreeInventDim

 PriceDiscTmpPrintout

 InterCompanyInventDim

 Whether and how you should customize these tables depends on the functionality you’re
implementing. Be sure to examine how the inventory dimensions are implemented and used
for each of the tables before you begin customizing.

Adding Dimensions to Queries

Because of the generic implementation of the inventory dimension concept using the
InventDim and InventDim Parm tables, a substantial number of queries written in X++ use
just a few patterns to select, join, and fi lter the inventory dimensions. So that you don’t have
to repeatedly copy and paste the same X++ code, these patterns exist as macros that you

 return fieldnum(InventDimParm,InventSerialIdFlag);

 case (fieldnum(InventDim,BikeFrameSize)) : // Add mapping

 return fieldnum(InventDimParm,BikeFrameSizeFlag);

 case (fieldnum(InventDim,BikeWheelSize)) : // Add mapping

 return fieldnum(InventDimParm,BikeWheelSizeFlag);

 }

 throw error(strfmt("@SYS54431",funcname()));

}

 Chapter 5 Customizing Dynamics AX 167

can apply in your code. To modify these queries, you simply customize the macros and then
 recompile the entire application to update the X++ code with the new dimensions.

 You should customize the following macros:

 InventDimExistsJoin

 InventDimGroupAllFields

 InventDimJoin

 InventDimSelect

 The bold text in the following X++ code shows the changes that you must make to the
InventDimExistsJoin macro to enable the two new dimensions for all exists joins written as
statements involving the InventDim table.

/* %1 InventDimId */

/* %2 InventDim */

/* %3 InventDimCriteria */

/* %4 InventDimParm */

/* %5 Index hint */

exists join tableId from %2

 where

 (%2.InventDimId == %1) &&

 (%2.ConfigId == %3.ConfigId || ! %4.ConfigIdFlag) &&

 (%2.InventSizeId == %3.InventSizeId || ! %4.InventSizeIdFlag) &&

 (%2.InventColorId == %3.InventColorId || ! %4.InventColorIdFlag) &&

 (%2.BikeFrameSize == %3.BikeFrameSize || ! %4.BikeFrameSizeFlag) &&

 (%2.BikeWheelSize == %3.BikeWheelSize || ! %4.BikeWheelSizeFlag) &&

 (%2.InventSiteId == %3.InventSiteId || ! %4.InventSiteIdFlag) &&

 (%2.InventLocationId == %3.InventLocationId || ! %4.InventLocationIdFlag) &&

 (%2.InventBatchId == %3.InventBatchId || ! %4.InventBatchIdFlag) &&

 (%2.WMSLocationId == %3.WMSLocationId || ! %4.WMSLocationIdFlag) &&

 (%2.WMSPalletId == %3.WMSPalletId || ! %4.WMSPalletIdFlag) &&

 (%2.InventSerialId == %3.InventSerialId || ! %4.InventSerialIdFlag)

#InventDimDevelop

 The three remaining macros are just as easy to modify. Just remember to recompile the
 entire application after you make your changes.

Adding Lookup, Validation, and Defaulting X++ Code

 In addition to macro customizations and the customizations to the previously mentioned
methods on the InventDim table, you must implement and customize lookup, validation, and
defaulting methods. These include methods such as the InventDim::fi ndDim lookup method,

/* %1 InventDimId */

/* %2 InventDim */

/* %3 InventDimCriteria */

/* %4 InventDimParm */

/* %5 Index hint */

exists join tableId from %2

 where

 (%2.InventDimId == %1) &&

 (%2.ConfigId == %3.ConfigId || ! %4.ConfigIdFlag) &&

 (%2.InventSizeId == %3.InventSizeId || ! %4.InventSizeIdFlag) &&

 (%2.InventColorId == %3.InventColorId || ! %4.InventColorIdFlag) &&

 (%2.BikeFrameSize == %3.BikeFrameSize || ! %4.BikeFrameSizeFlag) &&

 (%2.BikeWheelSize == %3.BikeWheelSize || ! %4.BikeWheelSizeFlag) &&

 (%2.InventSiteId == %3.InventSiteId || ! %4.InventSiteIdFlag) &&

 (%2.InventLocationId == %3.InventLocationId || ! %4.InventLocationIdFlag) &&

 (%2.InventBatchId == %3.InventBatchId || ! %4.InventBatchIdFlag) &&

 (%2.WMSLocationId == %3.WMSLocationId || ! %4.WMSLocationIdFlag) &&

 (%2.WMSPalletId == %3.WMSPalletId || ! %4.WMSPalletIdFlag) &&

 (%2.InventSerialId == %3.InventSerialId || ! %4.InventSerialIdFlag)

#InventDimDevelop

168 Part II Core Development Concepts

the InventDim.validateWriteItemDim validation method, and the InventDim.initFromInvent-
DimCombination defaulting method. The necessary changes in the InventDim::fi ndDim
 lookup method for the new inventory dimensions are shown in bold in the following X++ code.

server static public InventDim findDim(InventDim _inventDim,

 boolean _forupdate = false)

{

 InventDim inventDim;

 ;

 if (_forupdate)

 inventDim.selectForUpdate(_forupdate);

 select firstonly inventDim

 where inventDim.ConfigId == _inventDim.ConfigId

 && inventDim.InventSizeId == _inventDim.InventSizeId

 && inventDim.InventColorId == _inventDim.InventColorId

 && inventDim.BikeFrameSize == _inventDim.BikeFrameSize

 && inventDim.BikeWheelSize == _inventDim.BikeWheelSize

 && inventDim.InventSiteId == _inventDim.InventSiteId

 && inventDim.InventLocationId == _inventDim.InventLocationId

 && inventDim.InventBatchId == _inventDim.InventBatchId

 && inventDim.wmsLocationId == _inventDim.wmsLocationId

 && inventDim.wmsPalletId == _inventDim.wmsPalletId

 && inventDim.InventSerialId == _inventDim.InventSerialId;

 #inventDimDevelop

 return inventDim;

}

Notice the use of the inventDimDevelop macro in the preceding method. This macro contains
only the following comment:

/* used to locate code with direct dimension references */

Performing a global search for use of the inventDimDevelop macro should be suffi cient to
fi nd all the X++ code that you must consider when implementing a new dimension. This
search returns all the methods that require further investigation. Figure 5-7 shows results
of a search for the use of the macro on all tables.

server static public InventDim findDim(InventDim _inventDim,

 boolean _forupdate = false)

{

 InventDim inventDim;

 ;

 if (_forupdate)

 inventDim.selectForUpdate(_forupdate);

 select firstonly inventDim

 where inventDim.ConfigId == _inventDim.ConfigId

 && inventDim.InventSizeId == _inventDim.InventSizeId

 && inventDim.InventColorId == _inventDim.InventColorId

 && inventDim.BikeFrameSize == _inventDim.BikeFrameSize

 && inventDim.BikeWheelSize == _inventDim.BikeWheelSize

 && inventDim.InventSiteId == _inventDim.InventSiteId

 && inventDim.InventLocationId == _inventDim.InventLocationId

 && inventDim.InventBatchId == _inventDim.InventBatchId

 && inventDim.wmsLocationId == _inventDim.wmsLocationId

 && inventDim.wmsPalletId == _inventDim.wmsPalletId

 && inventDim.InventSerialId == _inventDim.InventSerialId;

 #inventDimDevelop

 return inventDim;

}

/* used to locate code with direct dimension references */

 Chapter 5 Customizing Dynamics AX 169

FIGURE 5-7 Search results for the inventDimDevelop macro

Best Practices Inserting the inventDimDevelop macro in X++ code when it makes a direct ref-
erence to an inventory dimension is considered a best practice. Doing so makes implementing
new dimensions easier.

Most of the methods you find when searching for the macro are lookup, validation, and
 defaulting methods, but you also see methods that aren’t in these categories. Such methods
include those that modify the Query object, such as the InventDim::queryAddHintFromCaller
method, and methods that describe dimensions, such as InventDimParm.isFlagSelective. You
should also review these methods when investigating the X++ code.

Tip Although the inventory dimension feature is implemented with the inventDimDevelop
 macro to direct developers to the methods they need to change, you might encounter methods
with no macro included or tables, forms, or reports for which the inventory dimensions are
not used generically. We therefore advise you to use the cross-reference system on an existing
 dimension that has the same behavior as the new dimension to determine its use and review it
appropriately. You should also investigate whether the new dimension is or should be available in
the same element.

170 Part II Core Development Concepts

Form Customization

 Like most of the elements in the AOT, forms can be customized to include additional infor-
mation and actions, such as fi elds and buttons, and to fulfi ll user requirements. The design
and behavior of a form are provided by a combination of the form and the tables that are
bound to the form.

 Best Practices Even though you can implement all necessary customizations by modifying
just the form, we don’t recommend this approach. As a best practice, you should implement
 application customizations at the lowest level possible, preferably through changes to a table or
a class rather than through changing specifi c forms.

 The best way to implement forms is to keep most of the business logic and design decisions
in tables and classes, focusing only on the positioning of fi elds and menu items when design-
ing the form. This approach has several advantages:

 X++ code in forms is executed on the client tier only; X++ code in table methods can
be executed on the server tier to optimize performance.

 Customizations made to a form are restricted to that form; customizations made to a
table or a class apply to all forms that use that table or class as a source of data. This
results in a consistent user experience wherever the table is used.

 When a form is customized, the entire form is copied to the current layer; customiza-
tions to tables and classes are more granular. When fi elds, fi eld groups, and methods
are customized, a copy of the specifi c element is in the current layer only. This makes
upgrading to service packs and new versions easier.

 X++ customizations to the validate, default, and database trigger methods on forms,
such as create, validateWrite, and write, affect only the records that are modifi ed
through the user interface. If records are modifi ed somewhere other than that form,
then that customized form’s X++ code doesn’t execute.

 The following actions be customized only on the form, not by customizing a table:

 Enable and disable fi elds and other user interface elements (Enabled = Yes/No)

 Show and hide fi elds and other user interface elements (Visible = Yes/No)

 However, you should consider having a table or a class method determine the business
logic on the form. An example of this is shown in the following lines of X++ code from the
InventTable form, in which a method on the table determines whether a fi eld can be edited.

void setItemDimEnabled()

{

 boolean configActive = inventTable.configActive();

void setItemDimEnabled()

{

 boolean configActive = inventTable.configActive();

 Chapter 5 Customizing Dynamics AX 171

 ...

 inventTable_ds.object(

 fieldnum(InventTable,StandardConfigId)).allowEdit(configActive);

 inventTable_ds.object(

 fieldnum(InventTable, StandardConfigId)).skip(!configActive);

 ...

}

 By moving these decision-making methods to a table or class, you make them available to
other forms.

Learning Form Fundamentals

 The rich client user interface in Dynamics AX is made up of forms that are declared in
 metadata and often contain associated code. Ideally, you should customize these forms as
changes to metadata and make any changes at the lowest level (i.e., table level rather than
form level) possible to ensure the greatest amount of metadata and code reuse.

 The most visible change from Dynamics AX 4.0 to Dynamics AX 2009 is the change from
a predominantly multiple-document interface (MDI) to a predominantly single-document
 interface (SDI). Forms with a WindowType property value of Standard (the default) are now
SDI forms, and the WindowType values of ListPage and ContentPage have been added to fi ll
the Workspace content area to provide a navigation experience similar to that in Microsoft
Offi ce Outlook. The different WindowType values share the same object model, metadata,
and method overrides, so form customization skills are applicable across all forms.

Customizing with Metadata

 Metadata customization is preferred over code customization because metadata changes
(also called deltas) are easier to merge than code changes.

 When customizing forms, you should be aware of the important properties, the metadata
associations, and the metadata inheritance that is being used to fully defi ne the form and its
contents.

 Metadata associations You edit the metadata in Dynamics AX by using the AOT. The base
defi nitions for forms contained within the AOT\Forms node is composed of a hierarchy of
metadata that is located in other nodes in the AOT. To fully understand a form, you should
investigate the metadata associations it makes. For example, a form uses tables that are
 declared in the AOT\Data Dictionary\Tables node, security keys that are declared in the AOT\
Data Dictionary\Security Keys node, menu items that are declared in the AOT\Menu Items
node, queries that are declared in the AOT\Queries node, and classes that are declared in the
AOT\Classes node.

...

 inventTable_ds.object(

 fieldnum(InventTable,StandardConfigId)).allowEdit(configActive);

 inventTable_ds.object(

 fieldnum(InventTable, StandardConfigId)).skip(!configActive);

 ...

}

172 Part II Core Development Concepts

Metadata inheritance You need to be aware of the inheritance within the metadata used
by forms. For example, tables use Base Enums, Extended Data Types, and Confi guration
Key. A simple example of inheritance is that the Image properties on a MenuItemButton
are inherited from the associated MenuItem if they aren’t explicitly specifi ed on that
MenuItemButton. Table 5-4 shows important examples of pieces of metadata that are
 inherited from associated metadata.

 Inheritance also occurs within forms. Controls that are contained within other controls
 receive certain metadata property behaviors from their parents unless different property
 values are specifi ed, including HTMLHelpFile, HTMLHelpTopic, Security Key, Confi guration
Key, Enabled, and the various Font properties.

 TABLE 5-4 Examples of Metadata Inheritance

 Type of Metadata Sources

 Labels and HelpText MenuItem�MenuItemButton Control

Base Enum�Extended Data Type�Table Field�Form DataSource
Field�Form Control

(The Base Enum Help property is the equivalent of the HelpText
property found in the other types.)

 Relations Extended Data Type�Table

 Security keys Table Field�Table�Form Control

MenuItem�MenuItemButton Control

Form�Form Control

 Confi guration keys Base Enum�Extended Data Type�Table Field�Form DataSource
Field�Form Control

 Image properties (e.g.,
NormalImage)

MenuItem�MenuItemButton Control

 Menu defi nitions Dynamics AX 2009 has a number of new navigation capabilities in
the form of area pages and the address bar to complement the existing navigation pane
(sometimes referred to as the “WunderBar”). In terms of metadata, the area pages and
address bar are mostly just additional methods of exposing the existing menu metadata
defi ned in the AOT\Menus and AOT\Menu Items nodes. The modules are defi ned in AOT\
Menus\MainMenu, and you can follow the menu structure from that starting point. For
 example, the Accounts Receivable module is represented by the AOT\Menus\MainMenu\Cust
MenuReference and is defi ned as AOT\Menus\Cust.

The menu metadata for list pages and content pages has some small changes. A
 primary list page is implemented as a submenu with IsDisplayedInContentArea=Yes,
MenuItemType=Display, and MenuItemName populated. A secondary list page, a list page
that adds ranges to a primary list page, is implemented as a menu item under the sub-
menu of its primary list page. The list pages and content pages are navigation places, so all
their menu item and submenu references are set to IsDisplayedInContentArea=Yes so that

Type of Metadata Sources

 Chapter 5 Customizing Dynamics AX 173

they appear in the Places group in the area pages and the Places section in the navigation
pane. The other menu items in the root of each module’s menu defi nition are displayed in
the Common Forms group in the area pages and in the root of the Forms section in the
 navigation pane.

Important metadata properties Many properties are available to developers, but some are
more important than others. Table 5-5 describes the most important form design properties,
and Table 5-6 describes the most important form data source properties.

 TABLE 5-5 Important Form Design Metadata Properties

 Property Explanation

 Caption The caption text shown in the title bar of a standard form or in the
Filter Pane of a list page.

 TitleDataSource The data source information displayed in a standard form’s caption
text and used to provide fi lter information in the caption text of a
list page.

 WindowType Standard - (Default) A standard SDI form that opens as a separate
window with a separate entry in the Windows taskbar.

ContentPage - A form that fi lls the Workspace content area.

ListPage - A special style of ContentPageused to display records in
a simple way that provides quick access to fi ltering capabilities and
actions. It requires at least an Action Pane and a Grid.

Workspace - A form that opens as an MDI window within the work-
space. Workspace forms should be developer-specifi c forms.

Popup - A form that opens as a subform to its parent. Popup forms
don’t have a separate entry in the Windows taskbar and can’t be
layered with other windows.

 AllowFormCompanyChange Specifi es whether the form allows company changes when used as
a child form with a cross-company dynalink.

No - (Default) Form closes if parent form changes its company
scope.

Yes - Form dynamically changes company scope as needed.

 HTMLHelpFile Specifi es the path to the Help topic fi le.

 HTMLHelpTopic Specifi es the topic to use from the referenced Help fi le.

 TABLE 5-6 Important Form DataSource Metadata Properties

 Property Explanation

 Name Named reference for the data source. A best practice is to use the
same name as the table name.

 Table Specifi es the table used as the data source.

 CrossCompanyAutoQuery No - (Default) Data source gets data from the current company.

 Yes - Data source gets data from all companies (e.g., retrieves
 customers from all companies).

Property Explanation

Property Explanation

174 Part II Core Development Concepts

Property Explanation

JoinSource Specifi es the data source to link or join to as part of the query. For
example, in the SalesTable form, SalesLine is linked to SalesTable.
Data sources joined together are represented in a single query
whereas links are represented as a separate query.

LinkType Specifi es the link or join type used between this data source and
the data source specifi ed in the JoinSource property. Joins are
required when two data sources are displayed in the same grid.
Joined data sources are represented in a single query whereas a
linked data source is represented in a separate query.

Links

Delayed - (Default) A pause is inserted before linked child data
 sources are updated, enabling faster navigation in the parent data
source because the records from the child data sources are not
 updated immediately. For example, the user could be scrolling past
several orders without immediately seeing each order line.

Active - The child data source is updated immediately when a new
record in the parent data source is selected. Continuous updates
 consume lots of resources.

Passive - Linked child data sources are not updated automati-
cally. The link is established by the kernel, but the application
developer must trigger the query to occur when desired by calling
“ExecuteQuery” on the linked data source.

Joins

InnerJoin - Selects records from the main table that have match-
ing records in the joined table, and vice versa. There is one record
for each match. Records without related records in the other data
source are eliminated from the result.

OuterJoin - Selects records from the main table whether or not they
have matching records in the joined table. An outer join doesn’t
require each record in the two joined tables to have a matching
record.

ExistJoin - Selects a record from the main table for each matching
record in the joined table.

NotExistJoin - Selects records from the main table that don’t have a
match in the joined table.

 InsertIfEmpty Yes - (Default) A record is automatically created for the user if none
is present.

No - The user needs to manually create the fi rst record. This setting is
often used when a special record creation process or interface is used.

Image metadata Dynamics AX 2009 makes greater use of images and icons throughout the
application to provide the user with additional visual cues. Icons are used extensively in list
pages to help users identify specifi c actions. The metadata properties used to associate images

Property Explanation

 Chapter 5 Customizing Dynamics AX 175

and icons with buttons, menus (menu items), and other controls depends on their location.
Table 5-7 describes the metadata properties used for the three common image locations.

 TABLE 5-7 Image Metadata

 Image Location Explanation

 Embedded Embedded image resources are associated with buttons, menus,
and other controls using the NormalResource and DisabledResource
properties. These resources are compiled into the kernel and there-
fore you can’t add to the embedded resources list. The full list of
embedded resources can be seen in the Embedded Resources form
(Tools\Development Tools\Embedded Resources).

 File File image resources are associated with buttons, menus, and other
controls using the NormalImage and DisabledImage properties. File
image resources should be on the local computer wherever possible
for performance reasons, but can be on a fi le share if needed.

 AOT AOT image resources cannot be utilized simply through metadata.
AOT resources can be utilized only by adding code that copies the
AOT resource into a temp folder and sets the NormalImage proper-
ty at run time. The following code should be added into a depend-
able form method override (such as the Init method after the super
call) for execution at run time:

SomeButton.normalImage(SysResource::getImagePath("<AOT

Resource Name>"));

Customizing with Code

 You should customize forms with code only as a last resort. Customizing with metadata is
much more upgrade friendly since metadata change confl icts are straight forward to resolve
whereas code change confl icts need deeper investigation that sometimes involves creating a
new merged method that attempts to replicate the behavior from the two original methods.

 When you start to customize Dynamics AX, the following ideas may provide good starting
points for investigation:

 Leverage examples in the base Dynamics AX 2009 codebase by using the Find
 command on the Forms node in the AOT (Ctrl+F).

 Refer to the system documentation entries (AOT\System Documentation) for
 information about system classes, tables, functions, enumerations, and other system
elements that have been implemented in the AX kernel.

 When investigating the form method call hierarchy for a suitable location to place
 customization code, add a debug breakpoint in the Form Init method and step through
the execution of method overrides. Note that control events (e.g., clicked) do not
 trigger debugging breakpoints. An explicit breakpoint (i.e., “breakpoint;”) keyword is
needed in the X++ code.

Image Location Explanation

176 Part II Core Development Concepts

 To enable simpler code maintenance, the following rules should be followed:

 Utilize the table and fi eld functions of FieldNum (e.g., fi eldnum(SalesTable, SalesId)) and
TableNum (e.g., tablenum(SalesTable)) when working with form data sources.

 Avoid hard coding strings by using sys labels (e.g., throw error(“@SYS88659”);)
and functions like FieldStr (e.g., fi eldstr(SalesTable, SalesId)) and TableStr (e.g.,
tablestr(SalesTable)).

 Use as few method overrides as possible. Each additional method override has a
chance of causing merge issues during future upgrades, patch applications, or code
integrations.

When X++ code is executed in the scope of a form, there are some form-specifi c global
 variables created in X++ to help developers access important objects related to the form.
These global variables are described in Table 5-8.

TABLE 5-8 Form-Specifi c Global X++ Variables

Variable Use and Example

Element Variable that provides easy access to the FormRun object in
scope. Commonly used to call methods or change the design.

element.args().record().TableId == tablenum(SalesTable)

name = element.design().addControl(FormControlType::String,

"X");

DataSourceName (e.g.,
SalesTable)

Variable that provides easy access to the current/active record/
cursor in each data source. Commonly used to call methods or
get/set properties on the current record.

if (SalesTable.type().canHaveCreditCard())

DataSourceName_DS (e.g.,
SalesTable_DS)

Variable that provides easy access to each data source. Commonly
used to call methods or get/set properties on the data source.

SalesTable_DS.research();

 DataSourceName_Q (e.g.,
SalesTable_Q)

Variable that provides easy access to each data source’s Query
object. Commonly used to access the data source query to add
ranges prior to query execution/run. Equivalent to SalesTable_
DS.query.

rangeSalesLineProjId = salesLine1_q.dataSourceTable-

(tablenum(SalesLine)).addRange(fieldnum(SalesLine, ProjId));

rangeSalesLineProjId.value(ProjTable.ProjId);

Variable Use and Example

 Chapter 5 Customizing Dynamics AX 177

 Variable Use and Example

 DataSourceName_QR (e.g.,
SalesTable_QR)

Variable that provides easy access to each data source QueryRun
object that contains a copy of the query that was most recently
executed. The query inside the QueryRun object is copied during
the FormDataSource ExecuteQuery method. Commonly used to
access the query that was executed so that query ranges can be
inspected. Equivalent to SalesTable_DS.queryRun.

SalesTableQueryBuildDataSource =

SalesTable_QR.query() .dataSourceTable(tablenum(SalesTable));

 ControlName (e.g., SalesTable_
SalesId)

Variable created for each control set as AutoDeclaration=Yes.
Commonly used to access controls not bound to a data source
fi eld, such as the fi elds used to implement custom fi lters.

backorderDate.dateValue(systemdateget());

 Form method overrides allow developers to infl uence the form life cycle and how the form
responds to some user-initiated events. The most important form method overrides are
 described in Table 5-9. The two most overridden form methods are Init and Run.

 TABLE 5-9 Form Method Override Explanations

 Method Explanation

 Init Called when the form is initialized. Prior to the call to super, much
of the form (FormRun) is not initialized, including the controls and
the query. Commonly overridden to access the form at the earliest
stage possible.

 Run Called when the form is initialized. Prior to the call to super, the
form is initialized but isn’t visible to the user. Commonly overridden
to make changes to form controls, layout, and cursor focus.

 Close Called when the form is being closed. Commonly overridden to
release resources and save user settings and selections.

 CloseOk Called when the form is being closed via the Ok command/task,
such as when the user clicks a CommandButton with a Command
property of Ok. Commonly overridden on dialog forms to perform
the action the user has initiated.

 CloseCancel Called when the form is being closed via the Cancel command/task,
such as when the user clicks a CommandButton with a Command
property of Cancel. Commonly overridden on dialog forms to clean
up after the user indicates that an action should be cancelled.

 CanClose Called when the form is being closed. Commonly overridden
to ensure that data is in a good state before the form is closed.
Returning false aborts the close action and keeps the form open.

 Form data source and form data source fi eld method overrides allow developers to infl uence
how the form reads and writes its data and allows developers to respond to user-initiated
data-related events. The most important form data source method overrides are described in

Variable Use and Example

Method Explanation

178 Part II Core Development Concepts

Table 5-10. The fi ve most overridden form data source methods are Init, Active, ExecuteQuery,
Write, and LinkActive.

TABLE 5-10 Form Data Source Method Override Explanations

 Method Explanation

 Active Called when the active/current record changes, such as when the user clicks a
different record. Commonly overridden to enable and disable buttons based on
whether or not they are applicable to the current record.

 Create Called when a record is being created, such as when the user presses Ctrl+N.
Commonly overridden to change the user interface in response to a record creation.

 Delete Called when a record is being deleted, such as when the user presses Alt+F9.
Commonly overridden to change the user interface in response to a record
 creation.

 ExecuteQuery Called when the data source’s query is executed, such as when the form is run
(from the super of the form’s Run method) or when the user refreshes the form by
pressing F5. Commonly overridden to implement the behavior of a custom fi lter
added to the form.

 Init Called when the data source is initialized during the super of the form’s Init method.
Commonly overridden to add or remove query ranges or change dynalinks.

 InitValue Called when a record is being created. Record values set in this method count
as original values rather than changes. Commonly overridden to set the default
 values of a new record.

 LeaveRecord Called when the user is moving focus from one data source join hierarchy to
 another, which can happen when the user moves between controls. Commonly
overridden to coordinate between data sources, but developers are encouraged to
use the ValidateWrite and Write methods where possible. ValidateWrite and Write
are called immediately after LeaveRecord.

 LinkActive Called when the active method in a dynalinked parent form is called. Commonly
overridden to change the user interface to correspond to a different parent record
(element.args().record()).

 MarkChanged Called when the marked set of records changes, such as when the user multi-
 selects a set of records. Commonly overridden to enable/disable buttons that work
on a multi-selected (marked) set of records.

 ValidateDelete Called when the user attempts to delete a record. Commonly overridden to
 provide form-specifi c deletion event validation. Return false to abort the delete.
Use the ValidateDelete table method to provide record deletion validation across
all forms.

 ValidateWrite Called when the record is being saved, such as when the user presses the Close or
Save buttons or clicks a fi eld from another data source. Commonly overridden to
provide form-specifi c write/save event validation. Return false to abort the write.
Use the ValidateWrite table method to provide record write/save validation across
all forms.

 Write Called when the record is being saved after validation has succeeded. Commonly
overridden to perform additional form-specifi c write/save event logic such as
updating the user interface. Use the Write table method to respond to the record
write/save event across all forms.

Method Explanation

 Chapter 5 Customizing Dynamics AX 179

 Three commonly used form data source fi eld method overrides are described in Table 5-11.
The most overridden form data source fi eld method is the Modifi ed method.

 TABLE 5-11 Form Data Source Field Method Override Explanations

 Method Explanation

 Modifi ed Called when the value of a fi eld changes. Commonly overridden to
make a corresponding change to the user interface or to change
other fi eld values.

 Lookup Called when the Lookup button of the fi eld is clicked. Commonly
overridden to build a custom lookup form. Use the EDT.FormHelp
property to provide lookup capabilities to all forms.

 Validate Called when the value of a fi eld changes. Commonly overridden
to perform form-specifi c validation needed prior to saving or to
 validate. Return false to abort the change. Use the ValidateField
table method to provide fi eld validation across all forms.

Displaying an Image

 The following example illustrates how to customize the sales order form to allow a user to
upload and display an image of a custom order. In this example, a customer must be able
to place an order for a bike through Enterprise Portal and upload a sketch of the bike at the
same time. An example of a customer-supplied bike image is shown in Figure 5-8.

FIGURE 5-8 Uploaded bike image

Method Explanation

180 Part II Core Development Concepts

This image must be stored in the database and attached to the sales order line. Sales order
lines are stored in the SalesLine table. You could add a new field to the SalesLine table of
the type container and store the image in this field, but this example uses the document
management functionality in Dynamics AX. The image is therefore stored in the DocuValue
table with a reference to a record in the DocuRef table from the image record in DocuValue
to the SalesLine record. The relationship and multiplicity among the three tables is shown in
Figure 5-9.

SalesLine DocuRef

DocuValue

0..1 *
*

0..1

FIGURE 5-9 Relationship among the SalesLine, DocuRef, and DocuValue tables

In this example, a document type named Image stores the attached file in the disk folder.
The Image document type is shown in Figure 5-10. The Document Type form is located in the
navigation pane, Basic\Setup\Document Management\Document Types.

FIGURE 5-10 Image document type

Any uploaded image is therefore stored in the document management system; a user
can view the image by either clicking the Document Handling icon on the status bar or
choosing Document Handling on the Command menu. The user sees the dialog box shown
in Figure 5-11, in which the image can be viewed, modified, or deleted, and additional notes
or documents can be attached.

 Chapter 5 Customizing Dynamics AX 181

FIGURE 5-11 Storage of the uploaded bike image in the document management system

Displaying an Image on a Form

You can display the image directly by placing it on a separate Image tab on the sales order
form. Figure 5-12 shows an order for a bike with a frame size of 21 inches and a wheel size
of 28 inches. The user can click the Image tab to view the uploaded bike image and confirm
that it matches the ordered item before confirming the sales order. The Sales Order form
(AOT\Forms\SalesTable) is located in the navigation pane, Accounts Receivable\Sales Order.

182 Part II Core Development Concepts

FIGURE 5-12 Uploaded bike image displayed on the Sales Order form Image tab

The following two example implementations describe how to use the document
 management tables as data sources in the form and how to create a separate method on
the SalesLine table. These examples demonstrate customization of the SalesTable sales order
form and the SalesLine table.

Displaying an Image by Using Joined Data Sources

One way to display the image is to apply the DocuRef and DocuValue tables as data sources
for the SalesTable form. The following example creates a DocuRef data source based on the
relationship among the SalesLine, DocuRef, and DocuValue tables shown in Figure 5-9. The
DocuRef data source relates to the DocuRef table and is joined to the SalesLine data source.
Additionally, a DocuValue data source is created to connect to the DocuRef data source.
Table 5-12 shows additional properties of the data sources.

 Chapter 5 Customizing Dynamics AX 183

TABLE 5-12 DocuRef and DocuValue Property Settings

 Property DocuRef DocuValue

Table DocuRef DocuValue

AllowEdit No No

AllowCreate No No

AllowDelete No No

JoinSource SalesLine DocuRef

LinkType Active Active

 The properties JoinSource and LinkType allow the DocuRef and DocuValue records to be
fetched when the user moves from one line to another. The remaining properties disable ed-
iting of the records.

 You can attach multiple fi les, documents, and notes to a SalesLine record by using the docu-
ment management feature, but the goal of this example is to display an image from a linked
document named Image. You can limit the retrieved records from the DocuRef table by add-
ing a range to the query used by the DocuRef data source. You do this by customizing the
Init method on the DocuRef data source, as shown here.

public void init()

{

 super();

 docuRef_ds.query().dataSourceTable(

 tableNum(DocuRef)).addRange(

 fieldNum(DocuRef,TypeId)).value(queryValue('Image'));

}

 This X++ code limits the query so that it retrieves only records from the DocuRef table in
which the TypeId fi eld is equal to the value ‘Image’.

 Note The use of a constant such as the word Image is not a best practice. The value must be
retrieved from a confi guration table so that the user can decide the naming. ‘Image’ is hard coded
in the preceding example only to improve the readability and limit the scope of the example.

 The image is displayed by using a window control, which is placed in a tab control, as shown
in Figure 5-13.

Property DocuRef DocuValue

public void init()

{

 super();

 docuRef_ds.query().dataSourceTable(

 tableNum(DocuRef)).addRange(

 fieldNum(DocuRef,TypeId)).value(queryValue('Image'));

}

184 Part II Core Development Concepts

FIGURE 5-13 Tab and window controls in the SalesTable form

 Although the image is stored in the File fi eld on the DocuValue table, to display the image
you can’t simply link the fi eld as a DataField value on the window control property sheet.
The image must be parsed to the control by using a method on the control in X++ that uses
the FormWindowControl object. The AutoDeclaration property on the FormWindowControl
object is therefore set to Yes so that the forms designer automatically declares an object
handle with the same name. This handle can be used in X++ and manipulated at run time
because the form application runtime automatically ensures that it is a handle to the
FormWindowControl object. The Width and Height properties are set to Column width and
Column height so that the image takes up all the space on the tab.

 The last step is to parse the retrieved image from the DocuValue table to the BikeImage
FormWindowControl object. You can do this when a DocuValue record buffer is present. This
record must contain an image that is stored in the database, and the X++ code should be
placed in the active method on the DocuValue data source and look like the following.

public int active()

{

 Image image;

 int ret;

 ret = super();

 if (docuValue.File)

 {

public int active()

{

 Image image;

 int ret;

 ret = super();

 if (docuValue.File)

 {

 Chapter 5 Customizing Dynamics AX 185

 image = new Image();

 image.setData(docuValue.File);

 bikeImage.image(image);

 }

 else

 {

 bikeImage.imageResource(0);

 }

 return ret;

}

 This code determines whether a value exists in the File fi eld and, if so, instantiates an image
object and parses the File fi eld value to the image object. This object is then parsed by using
the Image method to the FormWindowControl object that displays the image. If the File fi eld
doesn’t contain a value, the imageResource method on the FormWindowControl object is
called with a value of 0 to clear the control of any previous content. The active method is
executed only if a DocuValue record has been retrieved. However, if a user moves from an
order line with an image to an order line without an image, the image isn’t cleared because
the active method isn’t executed. If you add the following line to the active method on the
SalesLine data source, the image is cleared when a new order line becomes active and before
the DocuRef and DocuValue records are retrieved.

 docuBikeImage.imageResource(0);

 The customizations described in this section make it possible to display the image on the
Image tab. This solution has one downside, however. Whenever a user moves from one order
line to another or a line is created or saved, calls are made from the client to the server, and
lookups are made in the database for the DocuRef and DocuValue data sources. You can see
this by turning on the client/server or SQL trace option in the Options dialog box, which you
access from the Tools menu. The next section addresses this issue and offers a solution—
 decreasing the number of client/server calls and lookups in the database.

Displaying an Image When Activating the Image Tab

 The following example implements a solution similar to the previous example, but it results in
calls to the server and the database only when the image is actually displayed.

 The TabPage control must be added to the SalesTable form and contain a
FormWindowControl with property settings similar to those in the preceding example. The
DocuRef and DocuValue tables are not, however, added as data sources for the form. Instead,
this example retrieves the image—the only element shown on the Image tab—from the
 database only when the user chooses to display the content of the Image tab. You confi gure
this by adding the following X++ code to the pageActivated method on the TabPage control.

 image = new Image();

 image.setData(docuValue.File);

 bikeImage.image(image);

 }

 else

 {

 bikeImage.imageResource(0);

 }

 return ret;

}

 docuBikeImage.imageResource(0);

186 Part II Core Development Concepts

public void pageActivated()

{

 Image image;

 DocuValueFile docuValueFile;

 ;

 docuValueFile = salesLine.bikeImage();

 if (docuValueFile)

 {

 image = new Image();

 image.setData(docuValueFile);

 bikeImage.image(image);

 }

 else

 {

 bikeImage.imageResource(0);

 }

 super();

}

 This code is very similar to the code added to the DocuValue active method, but in this
case the value is retrieved from a bikeImage method on the SalesLine table. The bikeImage
 method is a new method created on the SalesLine table with the following content.

server public DocuValueFile bikeImage()

{

 DocuRef docuref;

 DocuValue docuValue;

 ;

 select firstonly tableid from docuRef

 where docuRef.RefCompanyId == this.DataAreaId &&

 docuRef.RefTableId == this.TableId &&

 docuRef.RefRecId == this.RecId &&

 docuRef.TypeId == 'Image'

 join file from docuValue

 where docuValue.RecId == docuRef.ValueRecId;

 return docuValue.File;

}

The select statement in the bikeImage method is a combination of the two lookups in the
 database produced by the runtime shown in the fi rst sample implementation, which used
data sources. However, the statements in this method are joined. The bikeImage method
could simply be implemented in the SalesTable form, but implementing it on the SalesLine
table allows it to be reused in other forms or reports and executed on the server tier, if
required.

public void pageActivated()

{

 Image image;

 DocuValueFile docuValueFile;

 ;

 docuValueFile = salesLine.bikeImage();

 if (docuValueFile)

 {

 image = new Image();

 image.setData(docuValueFile);

 bikeImage.image(image);

 }

 else

 {

 bikeImage.imageResource(0);

 }

 super();

}

server public DocuValueFile bikeImage()

{

 DocuRef docuref;

 DocuValue docuValue;

 ;

 select firstonly tableid from docuRef

 where docuRef.RefCompanyId == this.DataAreaId &&

 docuRef.RefTableId == this.TableId &&

 docuRef.RefRecId == this.RecId &&

 docuRef.TypeId == 'Image'

 join file from docuValue

 where docuValue.RecId == docuRef.ValueRecId;

 return docuValue.File;

}

 Chapter 5 Customizing Dynamics AX 187

The advantage of this implementation method is that both database lookups and calls from
the client to the server are reduced by half. And because calls are made only when the Image
tab is activated, they aren’t made when a user simply moves through the order lines without
viewing the content of the Image tab. The disadvantage, however, is that the user can’t
 personalize the form or move the display of the image to another tab because retrieval of
the image is dependent on activation of the Image tab.

Report Customization

Reports, like forms, can be customized to include and exclude information, and you can
modify their design and layout. As with forms, the design and layout of a report depend
on settings on the table and on the report itself. The best practice is, once again, to keep as
much of the business logic as possible with the table methods or metadata. The X++ code
in reports must deal with the functionality for the specific report. All other X++ code must
 generally be implemented on the table to be reused by other areas in the application. Here
are some of the advantages to such an approach:

 Customizations made to a report are isolated; customizations made to a table affect all
reports using that table, resulting in a consistent user experience wherever the table is
used.

 Customization of a report copies the entire report to the current layer; customizations
made to tables are more granular because customization of fields, field groups, and
methods results in a copy of the specific element to the current layer only. This makes
upgrading to service packs and new versions easier.

 Methods in reports always execute on the tier where the report is generated; methods
on tables can be targeted to execute on the server tier. Where a report is generated
is controlled by the RunOn property on the menu item that starts the report. The
 property can be set to Client, Server, or Called From.

Creating Promotional Materials

The example in this section demonstrates how to customize the sales order invoice report
named SalesInvoice (AOT\Reports\SalesInvoice). The invoice is customized to include
 promotions based on items listed on the invoice. The promotion appears below each item
on the invoice associated with a promotion. Figure 5-14 shows an example of an invoice that
displays a promotion for a water bottle.

188 Part II Core Development Concepts

FIGURE 5-14 Promotion on an invoice

Like the forms example, this example uses the document management feature in Dynamics
AX. You use document handling to store the text and image in the database. The
 information is attached to the item table as two different types of document information,
named PromoText and PromoImage, for storing the text and image. Figure 5-15 shows the
PromoText and PromoImage document types.

FIGURE 5-15 PromoText and PromoImage document types

 Chapter 5 Customizing Dynamics AX 189

Figure 5-16 shows the text and image attached to an item named PB-Bike.

FIGURE 5-16 Text and image attached to an item

The X++ code used to display the promotion on the invoice looks up the item in the
InventTable table and searches the document handling for documents of type PromoText and
PromoImage to print on the invoice. If neither type is attached to the item, no promotion
information prints.

Adding Promotional Materials to an Invoice Report

Before you customize the SalesInvoice report for this example, you must decide where in the
design of the report to place the printing of the promotion. The printed information should
be printed for each invoiced item, so you must place it under the CustInvoiceTrans section
group because the CustInvoiceTrans table contains the invoiced items. The CustInvoiceTrans
section group contains a reference body section that can print other pieces of reference
information, such as from inventory dimensions or the packing slip lines posted when the
invoiced item is shipped. The promotion resembles this kind of information in terms of when
and how it is printed.

This example, therefore, creates a new section group within the reference body section
 below the existing three groups. The new section group must reference a table type so
that it can be invoked when a record buffer of the same type is sent to the report by
using the element.send method. The DocuRef table stores the promotion text, and the
DocuValue table stores the promotion image with an association created in the DocuRef
table.

190 Part II Core Development Concepts

Although the storage of the text and image results in the creation of DocuRef records, the
choice of DocuRef as the reference table type for the new section group isn’t an optimal
solution. First, the information is stored as two records in the DocuRef table, but the text
and image should be printed side by side for this example. The element.send method should
be called only once, parsing in only a single record buffer. Also, two other section groups
already use DocuRef as the table type, so using this type might result in the other section
groups getting invoked as well when the promotion prints. You could prevent this by
 introducing a variable to control which section group to invoke, but then you would have
to customize even more of the report, making it harder to upgrade the report when a new
 version or service pack is installed.

Both of the DocuRef records are, however, related to the same InventTable record, so you can
use this table as the type for the section group, and an InventTable record buffer is sent to
the report to print the promotion text and image. Figure 5-17 shows the new section group,
named InventTable, and its positioning within the report.

FIGURE 5-17 InventTable section group in the SalesInvoice report

Implementing Promotional Methods

When the promotion text and image print, an InventTable record buffer is sent to the report.
For this reason, this example implements two methods to return the text and image by

 Chapter 5 Customizing Dynamics AX 191

 using an InventTable record buffer. The methods can be implemented directly in the report,
but because the methods are not report specifi c—and therefore can be reused in other
reports, or even forms—they are implemented as instance methods on InventTable. The
 following code shows the new methods. The PromotionImage method is implemented like
the BikeImage method in the forms example discussed earlier. However, the PromotionImage
method must look in only the DocuRef table to fi nd the text.

display server public DocuValueFile PromotionImage()

{

 DocuRef docuref;

 DocuValue docuValue;

 ;

 select firstonly tableid from docuRef

 where docuRef.RefCompanyId == this.DataAreaId &&

 docuRef.RefTableId == this.TableId &&

 docuRef.RefRecId == this.RecId &&

 docuRef.TypeId == 'PromoImage'

 join file from docuValue

 where docuValue.RecId == docuRef.ValueRecId;

 return docuValue.File;

}

display server public Notes PromotionText()

{

 DocuRef docuref;

 ;

 select firstonly notes from docuRef

 where docuRef.RefCompanyId == this.DataAreaId &&

 docuRef.RefTableId == this.TableId &&

 docuRef.RefRecId == this.RecId &&

 docuRef.TypeId == 'PromoText';

 return docuRef.Notes;

}

 Both methods are implemented as display methods to allow them to bind directly to report
controls and to print the information.

Binding Display Methods to Report Controls

 The next step is to bind the methods to report controls. A new body section named
BodyInventTable is created in the InventTable section group, and several of its properties are
altered, as shown in Table 5-13.

display server public DocuValueFile PromotionImage()

{

 DocuRef docuref;

 DocuValue docuValue;

 ;

 select firstonly tableid from docuRef

 where docuRef.RefCompanyId == this.DataAreaId &&

 docuRef.RefTableId == this.TableId &&

 docuRef.RefRecId == this.RecId &&

 docuRef.TypeId == 'PromoImage'

 join file from docuValue

 where docuValue.RecId == docuRef.ValueRecId;

 return docuValue.File;

}

display server public Notes PromotionText()

{

 DocuRef docuref;

 ;

 select firstonly notes from docuRef

 where docuRef.RefCompanyId == this.DataAreaId &&

 docuRef.RefTableId == this.TableId &&

 docuRef.RefRecId == this.RecId &&

 docuRef.TypeId == 'PromoText';

 return docuRef.Notes;

}

192 Part II Core Development Concepts

 TABLE 5-13 BodyInventTable Property Settings

 Property Settings

 NoOfHeadingLines 0

 LineAbove Solid

 LineBelow Solid

 LineLeft Solid

 LineRight Solid

 The NoOfHeadingLines property must be set to 0 because the text and image must not
include any headings when printed. The Line property settings create a border around the
promotion.

 In the body section, a string control, named PromotionText, and a bitmap control, named
PromotionImage, are added and bound to the two new InventTable methods. The properties
shown in Table 5-14 are changed on the two controls.

 TABLE 5-14 PromotionText and PromotionImage Property Settings

Property PromotionText PromotionImage

Left Auto (right)

Width 70.00 char 2.0 inch

Height 2.0 inch

DynamicHeight Yes

ShowLabel No No

Table InventTable InventTable

DataMethod PromotionText PromotionImage

 The ShowLabel properties are set to No because no headings should be printed. The
PromotionText control is set to a fi xed width of 70 characters with a dynamic height so that
the text won’t be truncated. The PromotionImage has a fi xed size of 2 inches by 2 inches and
is right-justifi ed on the page.

The last step is to look up an InventTable record buffer based on the invoiced item and
then send the buffer to the report. You do this with the following new method on the
BodyReference body section.

void printInventTable()

{

 InventTable inventTable = custInvoiceTrans.inventTable();

 if (inventTable.RecId)

 {

 element.send(inventTable);

 }

}

Property Settings

Property PromotionText PromotionImage

void printInventTable()

{

 InventTable inventTable = custInvoiceTrans.inventTable();

 if (inventTable.RecId)

 {

 element.send(inventTable);

 }

}

 Chapter 5 Customizing Dynamics AX 193

 The method uses the InventTable lookup method on the CustInvoiceTrans table, which returns
a record buffer for the invoiced item, which the method subsequently sends to the report.

 The preceding method should be called from the executionSection method on the same
body section. The following method is therefore customized by including the call to the
printInventTable method.

void executeSection()

{;

 this.printCustPackingSlipTrans();

 this.printDimHistory();

 this.printInventTable();

}

 The positioning of the body section, report control, and report methods is shown in
Figure 5-18.

FIGURE 5-18 Position of the new sections, control, and methods in the SalesInvoice report

 After the completion of all the customizations to the SalesInvoice report and the addition of
new methods to InventTable, the report prints the promotion below each invoiced item on
the report, as shown in Figure 5-14.

void executeSection()

{;

 this.printCustPackingSlipTrans();

 this.printDimHistory();

 this.printInventTable();

}

194 Part II Core Development Concepts

Preventing Printing of an Empty Body Section

 The solution thus far has one fl aw: it prints an empty BodyInventTable body section if there is
no document reference for the PromoText and PromoImage document types, which causes
an empty box to appear below each item on the invoice. You could easily fi x this by altering
the printInventTable method to include a check for text or images, as shown in the following
change to the printInventTable method.

void printInventTable()

{

 InventTable inventTable = custInvoiceTrans.inventTable();

 if (inventTable.RecId &&

 (inventTable.PromotionText() || inventTable.PromotionImage()))

 {

 element.send(inventTable);

 }

}

This code ensures that the InventTable record buffer is sent to the report only if the
PromotionText method or the PromotionImage method returns a value.

In terms of performance, this change isn’t optimal because methods could be executed twice
if a promotion were added to the InventTable record. This could result in as many as fi ve
round-trips to the database for each printed invoiced item: two from the printInventTable
method, two when printing the values, and one when the report runtime determines the
height of the PromotionText control.

A better solution is to cache the returned values from the PromotionText and
PromotionImage methods when they are called in the printInventTable method and then
use the cached values instead of retrieving them from the database when printing the
PromotionText and PromotionImage controls.

The cache variables must be added to the classDeclaration of the report, so the following
lines are inserted there.

 DocuValueFile promotionImage;

 Notes promotionText;

The printInventTable method is modifi ed to store the returned values from the PromotionText
and PromotionImage methods on the InventTable record buffer in the newly created
 variables, as shown in the following copy of the method.

void printInventTable()

{

 InventTable inventTable = custInvoiceTrans.inventTable();

 if (inventTable.RecId &&

 (inventTable.PromotionText() || inventTable.PromotionImage()))

 {

 element.send(inventTable);

 }

}

 DocuValueFile promotionImage;

 Notes promotionText;

 Chapter 5 Customizing Dynamics AX 195

void printInventTable()

{

 InventTable inventTable = custInvoiceTrans.inventTable();

 ;

 promotionImage = inventTable.PromotionImage();

 promotionText = inventTable.PromotionText();

 if (inventTable.RecId &&

 (promotionText || promotionImage))

 {

 element.send(inventTable);

 }

}

 In addition to these two new display methods, PromotionText and PromotionImage are
 created to return the values of the variables. The following code samples show these
 methods, implemented in the BodyInventTable body section.

display Notes PromotionText()

{

 return promotionText;

}

display DocuValueFile PromotionImage()

{

 return promotionImage;

}

 With these two methods named similarly to the InventTable methods, you must remove only
the value in the Table property on the PromotionImage and PromotionText report controls
to enable the report to retrieve the value from the local report methods instead of the
InventTable methods. You can even remove the display method modifi ers from the two
InventTable methods because they are no longer used as display methods.

 When you print the report again, no empty BodyInventTable body sections appear, and the
printing of this specifi c section is optimized. The report will never result in more than two
round-trips to the database for each invoiced item. The only disadvantages are that return
types of the methods on the InventTable and the equivalent methods on the report should
be kept synchronized, and these return types should again be kept synchronized with the
types of the cache variables. This synchronization wasn’t necessary earlier in the example,
before the values in the report were cached.

void printInventTable()

{

 InventTable inventTable = custInvoiceTrans.inventTable();

 ;

 promotionImage = inventTable.PromotionImage();

 promotionText = inventTable.PromotionText();

 if (inventTable.RecId &&

 (promotionText || promotionImage))

 {

 element.send(inventTable);

 }

}

display Notes PromotionText()

{

 return promotionText;

}

display DocuValueFile PromotionImage()

{

 return promotionImage;

}

196 Part II Core Development Concepts

Number Sequence Customization

 In Chapter 6, “Extending Dynamics AX,” the sample X++ code shows that a service order
feature must have a number sequence to generate a unique identifi cation number. To achieve
this, you must customize the number sequence class, setting up the relationship between
a module and a number sequence reference, and also associating the number sequence
 reference with the extended data type in which you want to store a number from the
sequence.

 When you want to create a new number sequence, you must fi rst create an extended data
type. The ID of the type is used as the identifi er for the number sequence reference, so it
must be unique. Figure 5-19 shows a string data type named BikeServiceOrderId.

FIGURE 5-19 BikeServiceOrderId extended data type

 The properties on the extended data type are set to create a type with a maximum length of
20 characters, as shown in Table 5-15.

 TABLE 5-15 BikeServiceOrderId Property Settings

 Property Settings

 Type String

 Label Service order

 HelpText Service order ID

 StringSize 20

 To implement a number sequence reference for service orders and assign it a specifi c service
order number sequence, you must make changes to a NumberSeqReference class. To imple-
ment the reference in the Accounts Receivable module, among other references used by the
sales order functionality, you add the following lines of X++ code to the loadModule method
on the NumberSeqReference_SalesOrder class.

 numRef.DataTypeId = typeId2ExtendedTypeId(

 typeid(BikeServiceOrderId));

 numRef.ReferenceHelp = "Unique key for the service order table, "+

 "used when identification of a service "+

 "order is allocated automatically.";

 numRef.WizardContinuous = false;

Property Settings

 numRef.DataTypeId = typeId2ExtendedTypeId(

 typeid(BikeServiceOrderId));

 numRef.ReferenceHelp = "Unique key for the service order table, "+

 "used when identification of a service "+

 "order is allocated automatically.";

 numRef.WizardContinuous = false;

 Chapter 5 Customizing Dynamics AX 197

 numRef.WizardManual = NoYes::No;

 numRef.WizardAllowChangeDown = NoYes::No;

 numRef.WizardAllowChangeUp = NoYes::No;

 numRef.SortField = 100;

 this.create(numRef);

 These are the only modifi cations necessary to set up a new number sequence reference. The
reference is available in the Accounts Receivable parameter form, and a number sequence
can be created automatically by using the Number Sequence Wizard. You start the Number
Sequence Wizard by clicking the Wizard button in the Number Sequences form located in
the navigation pane under Basic\Setup\Number Sequences\Number Sequences.

 The numRef table buffer in the preceding example is of a NumberSequenceReference table
type. This table contains several fi elds that can be set depending on the reference you want
to create. These fi elds are described in Table 5-16.

 TABLE 5-16 NumberSequenceReference Field Explanations

 Field Explanation

 DataTypeId The ID for the reference. Use the ID of the extended data type.

 Confi gurationKeyId The confi guration key that must be enabled for the reference to
display. The confi guration key should be set only if it is different
from the key associated with the extended data type.

 ReferenceLabel The number sequence reference label should be set only if it is
 different from the label on the extended data type.

 ReferenceHelp The number sequence reference user interface Help fi eld should
be set only if the Help text is different from text in the HelpText
property on the extended data type.

 DataTypeSameAsId Indicates that the reference can use the number from another
number sequence. To make this possible, set the ID for the
 reference to the listed number sequence. This setting is usually
applied to voucher references that use the ID of the journal as the
voucher number.

 GroupEnabled Indicates that the reference is enabled for use with number
 sequence groups. This setting should be specifi ed only if the
 reference can be set up for each number sequence group.

 SortField The position of the reference in the list. Use a suffi ciently high
number to avoid confl ict with other or future references within the
same module.

 WizardLowest The default value for the Smallest fi eld when creating the number
sequence with the Number Sequence Wizard.

 WizardHighest The default value for the Largest fi eld when creating the number
sequence with the Number Sequence Wizard.

 WizardManual The default value for the Manual fi eld when creating the number
sequence with the Number Sequence Wizard.

 numRef.WizardManual = NoYes::No;

 numRef.WizardAllowChangeDown = NoYes::No;

 numRef.WizardAllowChangeUp = NoYes::No;

 numRef.SortField = 100;

 this.create(numRef);

Field Explanation

198 Part II Core Development Concepts

Field Explanation

WizardContinuous The default value for the Continuous fi eld when creating the
 number sequence with the Number Sequence Wizard.

WizardAllowChangeDown The default value for the To A Lower Number fi eld when creating
the number sequence with the Number Sequence Wizard.

WizardAllowChangeUp The default value for the To A Higher Number fi eld when creating
the number sequence with the Number Sequence Wizard.

WizardFetchAheadQty The default value for the Quantity Of Numbers pre allocation fi eld
when creating the number sequence with the Number Sequence
Wizard. This fi eld also enables the pre allocation number sequence
feature, but it can’t be used in combination with a sequence
marked Continuous.

 Finally, the following method is implemented on the SalesParameters table. The method
 returns the new number sequence reference and should be used in the X++ code that
 requires numbers from the number sequence.

static client server NumberSequenceReference numRefBikeServiceOrderId()

{

 return NumberSeqReference::findReference(

 typeId2ExtendedTypeId(typeid(BikeServiceOrderId)));

}

Field Explanation

static client server NumberSequenceReference numRefBikeServiceOrderId()

{

 return NumberSeqReference::findReference(

 typeId2ExtendedTypeId(typeid(BikeServiceOrderId)));

}

 663

Index

Symbols and
Numbers
* (asterisk), 84, 122
“ (double quotation marks),

referencing labels, 56
; (semicolon), 117
‘ (single quotation marks),

referencing system text, 56

A
absolute updates, 483
abstract class declaration

header, 142
abstract method modifier, 144
access operators, 117
access permissions, 28, 456
accessing data, 365–366
accessor methods, 216
ACID (atomicity, consistency,

isolation, durability), 470
Active Directory, 10, 290, 315, 453
Active method, 178
Active property, 174
ActiveX Trace, 68
ad hoc reports

creating, 392–394
data flow, 384
defined, 379
deployment, 391
performance, 392
platforms, 379, 392
security, 392
technical scenario, 385
troubleshooting, 395

AddCompanyRange, 369
addDependency method, 572
addRuntimeTask, 571
addTask method, 571
Admin domain, 458
administrators, workflow

infrastructure and, 321–322
advanced personalization

form, 446
advanced sequencing, 569
aggregate functions, 125–126

AIF (Application Integration
Framework)

blog, 606
configuring endpoints, 610
description of, 16, 582
integration and, 6, 351
operations environment, 20
parameters, configuring, 605
registering custom

services, 594
Send API, 614

AifDocumentService class, 614
AifSendService class, 614
AifXmlSerializable, 591
AJAX, 269
.alc files, 648
.ald files, 648
alert implementation details, 513
alerts, 512–514, 566
allocating record identifiers,

490–491
AllowAdd property, 446
AllowCrossCompany property, 369
AllowDelete property, 254
AllowEdit property, 160, 254
AllowFormCompanyChange

property, 173
AllowGroupCollapse property, 254
AllowGrouping property, 254
AllowNegative property, 159
AllowSelection property, 254
AllowUserSetup property, 446
alternate key (AK), 74
anytype type, 112–113, 116
.aod files, 647
.aoi files, 647
AOS (Application Object

Server), 20
allocating record identifiers,

490–491
registry settings, 434
tracing options, 433
transactions IDs, 474

AOS process pool, 474
AOSAuthorization property,

462–464
AOSValdiateDelete method,

463, 516

AOSValidateInsert method,
463, 516

AOSValidateRead method,
463, 516

AOSValidateUpdate method,
463, 516

AOT (Application Object Tree)
about, 8, 23
AOT root node, 32
creating new elements in, 42
Data Dictionary node, 29
defining tables, 526–527
element actions in, 44
element layers in, 44–45, 627
element names, 40–41, 596
Global class, 141
job model elements, 110
modifying elements in, 42–43
navigating in, 40–41
operational and programming

elements, 26
prefixes, common, 41
query object, 533
refreshing elements in, 43
Web elements, 17
Web nodes, 18, 276
Web page development

using, 17
Windows SharePoint

Services, 248
AOT Query, 537
API enhancements, 654
appl.ttslevel, 473
application

development, 5–6
elements, 8, 10–13, 644
file extensions, 647
framework, 9, 15–17
model elements, 32
modeling, 7–8
object cache file, 648
runtime, 501–502, 527–528

Application Hierarchy Tree tool,
84, 86

Application Integration
Framework (AIF). See AIF
(Application Integration
Framework)

application logic
design considerations, 431
monitoring database

activity, 432
transactions performance,

404–431
application model elements,

25–28
application model layering

system, 10–15
Application Object Layer, 45
Application Object Server (AOS)

debugger tool, 65–66, 577
Microsoft Office clients

and, 20
reporting framework, 383
rich client application, 6
salability, 20
transaction IDs, 474
trusted code and, 131
workflow architecture, 327–332

Application Object Tree (AOT).
See AOT (Application Object
Tree)

application-aware programming
language, 109

applications
configuring, 16
migrating, 375
.NET Business Connector,

349–375
architecture

of Dynamics AX, 6–10
of Role Centers, 295–296
of workflow management,

327–334
area page, 203, 214–215
arithmetic operators, 118
as methods, 114, 547
ASCII character set, 502
AsciiIO class, 503
ASP.NET

interoperability and, 353
Web client application and, 6
Web client model elements, 36

ASP.NET Web services, 6, 17
assertEquals method, 98
assertFalse method, 98
assertion methods, 98
assertNotEqual method, 98
assertNotNull method, 98
assertNotSame method, 98
assertNull method, 98
assertRealEquals method, 98
assertSame method, 98

assertTrue method, 98
assignment operator, object

type and, 114
assignment statement, 119
Assignment/Comparison loses

precision, warning message, 61
asterisk (*), 84, 122
asynchronous adapters, 606
atomicity, 470
atomicity, consistency, isolation,

durability (ACID). See ACID
(atomicity, consistency,
isolation, durability)

.auc (application Unicode object
cache) files, 648

authentication, 18–19, 313–314,
453–454

authorization, 356
Auto reports design, 388–389
Autocommit transaction

mode, 474
AutoDeclaration property, 184,

208–209
automatically generated projects,

46–48
autorefresh functionality, 43
avg function, 125–126
AVL trees, caching

implementation and, 421
Ax prefix, 41
Ax<Table> classes, 585, 587–588
Axapta class, 352, 361
AxaptaBuffer class, 352, 361
AxaptaContainer class, 352, 361
Axapta.Logon method, 353
AxaptaObject class, 352, 361
AxaptaRecord class, 352, 361, 365
AxBC classes, 588
AxBoundField, 266
AxBoundField controls, 266
AxBoundFieldGroup, 266
Axd prefix, 41, 595
Axd<Document Name> classes,

586–587
Axd<document name> queries,

596, 601–603
AxDataSource control, 36, 253
AxdBaseCreate class, 587
AxdChartOfAccounts documents,

614
AxDebug.exe, 579
AxdPricelist documents, 614
AxdSend API, 614–616
AxFilter control, 256–257
AxForm control, 257–258

AxGridView control, 254–255
AxGroup control, 258–260
AxHyperLinkBoundField, 266
AxLookup control, 260–262
AxMultiSection control, 258
AxPopup control, 264–265
AxSalesLine class, 585, 587, 598
AxSalesTable class, 585, 587, 598
AxSection control, 258
AxToolbar control, 262–263

B
base enumeration element

(enum), 29
base enumeration types, variable

declarations and, 116
base types, 112–114
basicHttpBinding, 605
Batch API, 559, 570–573
Batch framework, 15

batch jobs, 465
batch-enabling class, 561,

563–565
capabilities, 561–562
common uses, 562–563
concepts, 560–561
debugging, 577–579
description of, 560
execution process groups,

561, 574–575
jobs, 560–561, 565–573,

575–577
performance, 562
server, 561
tasks, 561

Batch Job designer form, 559,
566–570

batch jobs, 465
Batch Processing dialog box,

565–566
BatchDependencyStatus::

Error, 572
BatchDependencyStatus::

Finished, 572
BatchDependencyStatus::

FinishedOrError, 572
BatchHeader, 570–573
batchHeader.save method, 572
benefits

of architecture, 4–5
of using Version Control tool,

86–87
Best Practice Parameters dialog

box, 62–63

664 application logic

best practices
accessor methods, 217
code upgrades, 631
customization writing, 216
deviations, 60
Dynamics AX, 61
element naming conventions,

115
errors, 65
exception handling, 129
field lists, 431
form customization, 170
forupdate keyword, 417
IntelliMorph, 56, 443–445
inventDimDevelop macro, 169
labels, 160
model element IDs, 14–15
Operation Progress framework,

16
optimistic concurrency, 486
optimisticlock keyword, 417
Pages.IsValid flag, 278
patch layers, 14
pessimistic concurrency, 485
referencing labels, 56
report customization, 187
rules, 62
select statements, 431
serialization, 485
temporary tables, 526
Trustworthy Computing, 466
variable declarations, 117
washed version, 79
X++ code, 64

Best Practices tool, 24, 62–65
adding custom rules, 64–65
benefits of using, 61–62
suppressing errors and

warnings, 63–64
suppressing rules, 64
understanding rules, 62–63
washed version control, 79

BIDS (Business Intelligence
Development Studio), 304

bike business examples
bike-tuning service offers,

222–240
creating dimension types, 158
creating new number sequence,

196
displaying an image, 197
e-mail offers, 222
menu items, 232–233

Binary helper class, 503
bind variables, 434

bindings, 604–605
bitwise operators, 118
BLOB (binary large object) field,

549
body sections, empty, 194–196
BodyInventTable body section,

191–192, 194
BodyReference body

section, 192
BOM prefix, 41
BOMTmpUsedItem2Produced-

Item table, 166
boolean type, 29, 116
BoundField controls, 266
BoundFields, 266
boxing, 134
Break exception, 130
break statement, 119
Break statement found outside

legal context, warning
message, 61

breakpoint statement, 120
breakpoints, 66
Breakpoints window, debugger

interface, 68–69
build process, 96
business area name, 41
Business Connector. See .NET

Business Connector
business data, element IDs,

14–15
Business Data Lookup snap-in,

357
Business Document, 324
business documents, updating,

608–610
Business Intelligence

Development Studio (BIDS),
304

business logic
AOS and, 327
invoking, 370–375
X++ and, 8

Business Overview Web Part, 268,
303–311

business processes, automating,
317–318, 322–327

business solution layer,
description of, 13

business transaction class, 223
business transaction records,

Number Sequence
framework and, 16

business transaction status logging,
Infolog framework, 16

business transactions, AIF
and, 16

business users, workflow
infrastructure and, 321–322

business views, 499

C
CacheAddMethod, 398–399
CacheLookup property, 401, 418
CacheObject method, 602
cacheObjectIdx method, 602
cacheRecordIdx method, 602
CacheRecordRecord, 602
caching, 400–402, 417–427, 602
call stack, 110
Call Stack window, debugger

interface, 68–69
callback method, 513
CallStaticClassMethod method,

370
camel casing, 115
CanGoBatchJournal property,

565, 567
canSubmitToWorkflow method,

338, 347
Caption property, 173
CAS (Code Access Security),

145–147, 356, 464
Case Sensitive comparison

option, 80
case sensitivity, 115

CLR types, 115
string comparisons, 502
X++ programming

language, 80
categories, workflow, 324, 336,

339–340
certified solutions layer,

description of, 13
changeCompany function,

498–499
changecompany statement,

122, 498
check method, 65
check-in, 90
checkUseOfNames, 65
.chm files, 648
chunking calls, 403
class declaration header, 142
class description, implementing,

224
class elements, 8
class methods, 86
class model elements, 32

 class model elements 665

Class names should start with an
uppercase letter, warning
message, 61

class substitution, 643–644
class types, 111
Class Wizard, 48
classes, 141–147

creating, 223–224
customizing, 158–169
derived, 142
Liskov Substitution Principle,

148, 547, 643
ClassIdGet system function, 544,

546–547
class-level patterns, 148–150
client

callbacks, 402–403
configurations, 357–358
debugger tool, 65–66
method modifier, 144, 514
Role Centers, 302
tracing options, 433

client/server
calls, monitoring, 436
considerations, 239–240
optimizing methods, 439
performance, 398–403
round-trips, reducing,

398–402
CLR arrays, 133
CLR interoperability, 132–136,

371–374, 618
CLR operators/methods, 136
CLR types

case sensitivity, 115
reference elements, 28

CLRError exception, 131
code, refactor, 25
code, reusable, 112
Code Access Security (CAS),

145–147, 356, 464
code changes required for

upgrade, 651
code compiler, MorphX, 24,

28, 59–61
code coverage, testing

for, 104–105
code generation, 52
code maintenance, 176
code path, 68
Code Profiler tool, 439–440
code quality enforcement, 86
code samples

access data, 365–366
batch jobs, 572
bike business, 222–240

cross-company queries,
368–369

HelloWorld, 363–364
invoking business logic,

370–371
PDA synchronization, 357–358
Web part, 272
Web service, 619

code upgrade, 624–631, 642
code upgrade tools, 640–642
CodeAccessPermission class,

145, 464
CodeAccessSecurity exception,

131
collations, 501
column-level security, 603
columns, naming conventions

and, 507
COM (Component Object

Model), 20
COM Business Connector,

352, 355
accessing data externally, 499
migrating, 375

COM components, 503
COM interoperability, 132, 136
CombineXPOs command line, 96
CommaIO class, 503
comma-separated field list, 122
CommaTextIO class, 503
comments, 59, 140
common language runtime

(CLR), 28
common type, 113
communication protocols, 9
communications, 20
company accounts, 494–499

changing, 497–499
external accessibility, 499
identification characters,

496–497
identification of, 496
organizational structures, 496
virtual accounts, 494

company identifiers, 490
Compare tool, 642

about, 25, 78
compare APIs, 82–83
options, 80–81
starting, 78–81
using, 81–82

comparison options, 80–81
Compile action, X++ editor

shortcut key, 51
compiler

errors, 59, 63–64

exporting compiled results, 60
information messages, 63
warnings, 59, 61, 63–64

Compiler Output dialog box, 60
Component Object Model (COM).

See COM (Component Object
Model)

composite queries, 528–529
compound statement, 119
Concurrency Model Configuration

form, 486
concurrency models

choosing during development,
484–486

disconnected updates, 481–483
forms and, 488
optimistic vs. pessimistic,

474–481
relative updates, 483–484
repeatable reads, 488–489
setting globally, 486
statement-level concurrency,

485
concurrencyModel method, 485,

517–518
conditional operators, 118
configuration

about, 10
hierarchy, 41
systems, 447–453
utilities, 433–434
workflow, 326

configuration keys, 26–27,
449–453

creating, 232
license codes, 447
references, 451–452
union queries, 533
Web menu items/Web

elements, 34
ConfigurationKey property, 172,

526–527
configuration-time settings,

526–527
conflict detection algorithm, 630
Conflict Detection Tool, 630
connect trace option, 434
consistency, 470
construct method, 149, 225, 644
constructor encapsulation,

148–149
constructors, 144, 225, 234–236
Container composite type, 136
container type, 116
container type fields, 29,

500, 512

666 Class names should start with an uppercase letter, warning message

content
adding to wizards, 207–214
pages, 172

Content definition elements, 17
ContentPage WindowType

property, 171, 173
Context data structure, 271–272
context menus

actions, 44
element actions, 44
element check-in, 90
element creation, 91
Find tool, 76
Get Latest option, 92
register custom service, 594
resolving conflicts, 640
Selecting History, 94
SQL Trace dialog box, 437
Version Control, 89

ContextMenu object, 256
ContextMenuName property, 254
continue statement, 119
conversationId parameter, 614
COS prefix, 41
count function, 125–126
Create access permission, 456
Create All Secure Views form, 392
Create method, 178
Create New Document Service

Wizard, 588, 595–597
Create Upgrade Project

feature, 48
createdBy field, 506, 548, 550
createdDateTime field, 506,

548, 550
createdtransactionId fields, 506
createFile method, 503
CreateFileA method, 503
CreateFileW method, 503
CreateRecIdIndex property, 507
createSortIdx method, 448
createSuite method, 101
creating

application forms, 444
batch jobs, 565–573
best practices rules, 62
dimension types, 158–161
elements, 91
labels, 54–55
projects, 46
promotional materials,

187–190
crosscompany keyword, 123
cross-company queries, 366–369
CrossCompanyAutoQuery

property, 173

Cross-reference tool
about, 24–25, 83
elements cross-referenced,

84–85
intrinsic functions, 544
subsystems, 83–84
updating, 83
usage information, 85–86

cross-referenced elements, 84
cross-table validation, 598
Cues, 298–302
<#>CurrentList macro, 564
<#>CurrentVersion macro, 564
Cust prefix, 41
custom services, 589–595

development, 589
implementing, 589–590
operations, 597
use cases, 589

customBinding, 605
customer layer, description of, 12
customizations. See also

application model elements
about, 157–158
classes, 158–169
composite queries, 446–447
elements, 89
forms, 170–187, 443–444
guidelines for, 643–644
number sequences, 196–198
personalization levels, 446–447
reports, 187–196, 444–445
role of, 625–626
tables, 158–169

customizing
applications. See application

model layering system
Role Centers, 296–297

custTable records, 404

D
Damgaard Data, 50
Damgaard, Erik, 50
dangerous APIs, 64
data

access, 499
elements, 8
methods, 391
modeling tool, 537–540
objects, 584, 586, 591–594
retrieval, 272–273

data association model elements,
29, 31

Data Crawler, 18
Data Dictionary node, 29

data manipulation language
(DML), 463. See also DML
statements

data model cross-reference
subsystem, 84

data set elements, 36
data sets, 17, 36, 250–252, 522–525
data source types, reporting

tools, 390–391
data type inheritance, cross-

reference subsystem, 84
data type mappings, 360
DataArea table, 496
dataAreaId fields, 506
data-aware statements, 122–128
database element keys/

indexes, 30
database layer, 10
database log implementation

details, 513
database model elements, 29–31
database tables, defining, 4
database type system, 512
Databaselog table, 512–514
databases

accessing, 504–514
comparisons of, 649
monitoring activity, 437–438
synchronization, 505–507
transaction performance,

404–431
Unicode support, 500–501

database-triggering methods,
514–520, 525

DataGroup attribute, 444
DataMethod property, 192
date type, 29, 116, 500, 512
DateTime control changes, 655
DDEerror exception, 130
Deadlock exception, 130
Debug class, 68
debugger tool

about, 25
interface windows, 67–69
shortcut keys, 69
using, 66

debugging batch task
configuring the AOS, 577
configuring the client, 578
noninteractive mode, 577
run AxDebug.exe, 579

default data wizards, 204, 215
defaulting logic, customizing,

599–600
defaulting methods, 167–169
DEL_ prefix, 91, 634

 DEL_ prefix 667

Delayed property, 174
delete actions, 525
delete method, 178, 514–515
Delete statement, 519
delete_from operator, 411–413
delete_from statement, 128
deleting elements, 92
demand method, 145
demo mode, 23
derived class declaration

header, 142
deserialization, 149
deserialize method, 591–592
design

patterns, 148
phase, 23–24
philosophy, 4–5

designers
Batch Job designer form, 559
Project Designer tool, 45–50
reporting tools, 386
visual forms/reports, 56–59

design-time settings, 525–526
destination endpoint, 610
Detect Code Upgrade Conflicts

option, 25
developers, workflow

infrastructure and, 321–323
developing with MorphX

about, 22
demo mode, 23
design phase, 23–24
implementation phase, 24–25
planning phase, 23
product cycle model, 22
release phase, 25
stabilization phase, 25
testing, 24
tools, 23–25

development
applications, 5–6
custom services, 589
environments, 7–8
model-driven, 4
test-driven, 96
Web pages, 17

Development Project tool,
MorphX, 24

development tools
document services, 588
Enterprise Portal, 248–250
project creation, 48
reporting, 386

dialog boxes, 15, 158, 216
embedded query, 238
implementing, 226–228

Dialog framework, 15
dialog method, 226, 231
DictClass class, 551, 553–554
DictField class, 554
dictionary API, 544, 551–555
Dictionary classes, 551
dim2DimParm method, 165
dimensions, 158
dirty elements, 42–43
disableCache method, 421
disconnect trace option, 434
disconnected updates, 481–483
display

images, 181–187
method modifier, 144
methods, 191–193, 460–461

DisplayGroupFieldName
property, 254

DLLs, 503
DML statements, 471, 508, 514

changing default behavior,
516–519

set-based, 519–520
do while statement, 120
docking, property sheet, 50
Document Handling feature, 188
document hashes, 610
Document History, 606
document management feature,

183, 188
document services

about, 584–585
artifacts, 585–586
classes, 586–588
creating, 588, 595–597
customizing, 597–603
development tools, 588–589
implementing, 589–590
life cycle, 595
updating business documents,

608–610
use cases, 588

document/class, workflow, 324,
337, 340

DocuRef data source, 182–183
DocuValue data source, 182–183
doDelete method, 405, 515
doInsert method, 405, 515
domains, 457–458
doTreeNode method, 555–556
double quotation marks (”),

using, 56
doUpdate method, 405, 515
DuplicateKeyException exception,

131–132
durability, 470

DynamicHeight property, 192
Dynamics AX

administration, 493–494
application framework, 9, 15–17
application runtime, 501–502,

527–528
architecture, 6–10
class elements, 8
configuration system, 442–447
configuring services, 604–606
consuming services, 606–610
customizing, 157–198
data type mappings, 360
database layer, 10
demo mode, 23
disk space required for

conversion, 500
extending, 199–240
integration scenarios, 582–583
licensing, 10, 447–453
monitoring tools, 432–440
.NET Framework data type

mappings and, 360
one-way requests, 613–616
optimistic concurrency, 415–417
publishing services, 604
queries, 595–596
services, 583
source code changes for

upgrade, 651
statement comparisons, 649
SYS layer, 510
system fields, 506
type system, 110–115, 512
upgrades, 25, 623–642
workflow infrastructure, 318–321

Dynamics AX Configuration
Utility, 525, 577

batch debugging, 578
Business Connector, 66
Enterprise Portal, 66
SQL statements, trace, 525
tracing options, 433

Dynamics AX DB Upgrade
Preparation tool, 492, 494

Dynamics AX Debugger, 25
Dynamics AX Enterprise Portal, 9,

17–18, 20
Dynamics AX enterprise resource

planning (ERP), 28
Dynamics AX Implementation

Guide, 294
Dynamics AX kernel, 351–352, 432
Dynamics AX OLAP cube, 383
Dynamics AX OLAP database, 19
Dynamics AX OLTP database, 383

668 Delayed property

Dynamics AX Reporting Data
Extension, 384

Dynamics AX Reporting
Extensions, 19

Dynamics AX Reporting
Framework, 19

Dynamics AX Reporting Services.
See Reporting Services

Dynamics AX Reporting Tools, 34
Dynamics AX SDK, 61–62

application model elements, 25
best practice rules, 61–62,

148, 443
build process, 96
classes, 83
code access security/securing

APIs, 464
customizations, 161
display and edit methods, 461
MorphX tools, 38
patterns, 61, 148, 443
subsystems, 84
table creation, 160
type system, 110
unit testing, 96
X++ language, 110, 115, 148

Dynamics AX Server
Configuration Utility, 511

AOS, 66, 577
batch jobs, 66
literals and, 510
tracing options, 433

Dynamics AX Trace Parser, 432
Dynamics Infolog Web Part, 267
Dynamics Left Navigation, 267
Dynamics Page Title, 267
Dynamics QuickLaunch, 267, 302
Dynamics Report Server Report, 268
Dynamics Toolbar, 267
Dynamics Unified Worklist, 268
Dynamics User Control, 267

E
Edit access permission, 456
edit method modifier, 144
edit methods, 460–461
editor

scripts, 52
utilities, 605

EditorScripts class, 52
element definition IDs, 14–15
Element Usage Log Report, 641
elements

creating, 42, 91, 643–644
cross-referenced, 84–85

deleting, 92
dirty, 42–43
ensuring latest used, 43
getting latest version, 79
intrinsic functions, 85
life cycle, 88–89
modifying, 42–43
naming conventions, 40–41
refreshing, 43
renaming, 91
viewing, 31
workflow, 325–326

element.send method, 189
e-mail messages, 222
Empty compound statement,

warning message, 61
Enable block selection action,

X++ editor shortcut key, 52
enabling dimensions in forms,

164–166
encryption, Enterprise Portal,

289–290
Enterprise Portal

about, 242, 247–248
components of, 243
data sets, 250–252
debugger tool, 65–66
development tools, 248–250
page processing, 245–247
paging framework and, 529
portal controls, 269–282
search features, 286
security, 290–291
Web client model elements,

34–36
Web user interface

components, 252–268
Enterprise Portal Configuration

Wizard, 291
enterprise resource planning

(ERP), 3, 28
EntireTable cache, 401–402, 418,

423–424
entity keys, 30, 596, 608
entity relationship data model, 74
Entity Relationship Diagrams

(ERDs), 24, 74
EntityRelationshipRole property, 74
Enum property, 165
enumeration types, 111, 512
enums, 29
ERP (enterprise resource

planning), 3
Error exception, 130
error handling, 278–279
error method, 130–131

errors/warnings
best practices, 65
compiler, 59, 61
suppressing, 63–64

Erwin ERX file, 74
event handlers, 325, 337
Event Log, 606
Event Tracing for Windows (ETW)

framework, 432
events and delegates, 136
examples. See code samples
Excel, 6, 384
Exception data type, 130
exception handler, 17
exception handling, 129–132

.NET Business Connector, 363
optimistic concurrency,

486–487
Exception Log, 606
exception messages, 99, 101
Exception::Error, 516
Exchange Server, 20
Execute current element action,

X++ editor shortcut key, 51
ExecuteQuery method, 178
ExecuteStmt, 367–368
executionSection method, 193
Exist method, 151
ExistJoin property, 174
exists join operator, 430–431
exists operator, 127, 411
ExpansionColumnIndexesHidden

property, 255
ExpansionTooltip property, 255
explicit authorization, 461
export/import file (XPO), 79
exporting compiled results, 60
expression builder, 324
expressions, 117–118
extended data types

about, 114–115
base enumeration and, 29–30
inventory dimensions,

158–161
number sequences, 196
value type, 111
variable declarations, 116
wizards, 199, 208

ExtendedDataType property,
160, 165

extending Microsoft Dynamics AX
about, 199
RunBase framework extension,

215–240
wizard framework extension,

199–215

 extending Microsoft Dynamics AX 669

external data, accessing, 499
external name, 591
external reports, 58, 445
external Web services, 617–620
ExtTypes::WString, 503

F
field lists, limiting, 427–431
Field property settings, 160
fields

about, 143
aligning, 535
entity relationship columns

and, 74
left/right justification, 431
UML attributes and, 72

FieldUpdate property, 483
file names, 648
files, Unicode, 503
filters

about, 47
types of, 257
Viewing, 458–459
Web Parts, 311

final method modifier, 144
Find method, 151, 553
Find tool, 24–25, 76–78
firstfast keyword, 123
firstonly keyword, 123
flowchart, workflow activation

logic, 344
flush statement, 121
for statement, 120
forceliterals keyword, 123, 511
forcenestedloop keyword, 123
forceplaceholders keyword,

123, 511
forceselectorder keyword, 123
foreign key (FK), 74
form

changes, 655
data source method overrides,

177–179
elements, 34
method overrides, 177

Form Visual Designer, 25, 57
formatting for localization,

276–278
FormListControl, 460–461
FormRef property, 161
FormRun class, 112
forms

code customization, 175–179
creating, 443–444

customizing, 170–187
DataSource properties,

173–174
design properties, 173
designing, 443–444
fundamentals, 171–179
images displayed, 179–187
inventory dimensions enabled,

164–166
metadata customization,

171–175
optimistic concurrency and,

488
treenodes API, 557
UtilElements table, 548

form-specific global variables,
176–177

FormTreeControl, 460–461
FormWindowControl object, 184
forupdate flag, 536
forupdate keyword, 123, 517

record caching, 418
replaced with selectForUpdate

method, 517
selectForUpdate method, 518

Found caching mechanism,
401, 418

EntireTable cache, 402
RecordViewCache, 425

FoundAndEmpty caching
mechanism, 401

Full Control permission, 456
Function calls, 433
Function never returns a value,

warning message, 61
functional areas of architecture, 6
functions, reflection system and,

544–547

G
Generate AxBC classes, 596
Generated design reporting

feature, 445
generic record reference pattern,

152–153
generics, 136
Get Latest option, Version Control

tool, 92
get_Field, 366
getQueryName method, 341
getRootName method, 593
getSchema method, 593
Global class, 141
global settings, 486

global solutions layer,
description of, 13

global variables, 67, 176–177
Go to implementation (drill down

in code) action, X++ editor
shortcut key, 52

Go to next error message action,
X++ editor shortcut key, 51

Go To The Main Table
functionality, 158, 161

Go to the next method action,
X++ editor shortcut key, 52

Go to the previous method
action, X++ editor shortcut
key, 52

group masks, 46–47
GroupField property, 255
GroupFieldDisplayName property,

255
GroupMask property, 46
groups, 208
guid type, 29, 116, 512

H
hanging semicolon (;), variable

declarations and, 117
Height property, 184
HelloWorld Example, 363–364
Help Book projects, 48–49
Help files, 648
HelpText property, 158–159,

172, 196
bike-tuning service menu items,

233
number sequences, 197

hotfix layer, description of, 13
HRM prefix, 41
HTMLHelpFile property, 173
HTMLHelpTopic property, 173
HTTP context integration, 353
HTTP protocol, 9
human workflows, 319
hyperlinks, 34–35, 284

I
ID conflicts, 14–15
ID server, 92
identifierStr intrinsic function,

545
IDs (unique identifiers)

labels, 206
model elements, 14–15

if statement, 119

670 external data, accessing

IIS (Internet Information Services),
6, 327–332, 353

IISApplicationObject class, 354
IISContextObject class, 354
IISPostedFile class, 354
IISReadCookie class, 354
IISRequest class, 354
IISRequestDictionary class, 354
IISResponse class, 354
IISServer class, 354
IISSessionObject class, 354
IISStringList class, 355
IISVariantDictionary class, 355
IISViewState class, 355
IISWriteCookie class, 355
Image metadata, 175
Image properties, 172
Image tab activating, displaying

images, 185–187
images, displaying, 179–187, 197
impersonation, batch jobs and,

462
impersonation mechanism,

356, 359
implementation phase, 24–25
implementations of patterns, 148
implicit transaction, 471
implicit type conversions, 132
Import and Deploy Page/List

tools, 289
Import List tool, 289
Import Page tool, 289
import/export file (XPO), 79
independent software vendors

(ISVs), 19
Index caching, 401
Index operators, 136
indexed sequential access method

(ISAM), 502
indexes, 507
Infolog application framework,

17, 68
displaying output, 68
Exception::Error, 516
executing code error, 473

Infolog object, 68, 437
information messages, 63
inheritance

data type, 84
Liskov Substitution Principle,

148, 547, 643
metadata, 171–172
RunBase framework extension,

216
inheritFromTaskId task, 571

init method, 178, 251
InitValue method, 178
inner types, 136
InnerJoin property, 174
insert method statement, 128
insert methods

record buffer, 514–515
RecordInsertList/

RecordSortedList objects,
413–415

skip methods, 407–408, 413
INSERT statement, 483, 519
insert_recordset operation

downgrading, 407
skip methods, 408

insert_recordset operator,
405–408

insert_recordset statement, 128
insertDatabase method, 413
InsertIfEmpty property, 174
instance, defined, 471
instance, workflow, 326
int type, 29, 116, 500, 512
int64 type, 29, 116, 512
integrated development

environment (IDE), 4
Integrated Windows

authentication, 18–19,
313–314

integration, version control
systems, 96

integration client application, 6
integration code, 618–619
integration guidelines, 620
IntelliMorph, 32, 442–447

best practices, 443–445
structure, 442
technology, 643

IntelliSense
MorphX IDE and, 132
.NET artifacts, 618–619
optimize responsiveness, 158
reference elements, 28
Visual Studio and, 618
X++ editor and, 30, 51

interactive workflows, 319
InterCompany* classes, 499
InterCompanyInventDim table, 166
interface declaration header, 142
interface method, 143
interface types, 111
interfaces, 141–147
Internal exception, 130
Internal reports, 445
Internal reports, designing, 58

internationalization, IntelliMorph
and, 442–447

Internet Information Services (IIS).
See IIS (Internet Information
Services)

interoperability, 132–136
interpreter, .NET Business

Connector and, 352
intrinsic functions, 85, 543–545
Invent prefix, 41
InventCostTmpTransBreakdown

table, 166
InventDim table, 162–163
InventDimCombination table, 166
InventDimDevelop macro, 168
InventDimExistsJoin macro, 167
InventDim::findDim lookup

method, 167
InventDimGroupAllFields macro,

167
InventDim.initFromInventDim-

Combination defaulting
method, 167

InventDimJoin macro, 167
InventDimParm temporary table,

164–166
InventDimParm.isFlagSelective

method, 169
InventDim::

queryAddHintFromCaller
method, 169

InventDimSelect macro, 167
InventDim.validateWriteItemDim

validation method, 167
inventory description field, 208
inventory dimensions, 158

extended data types, 158–161
forms, 164–166
queries, 166–167
tables, 162–164

InventSumDateTrans table, 166
InventSumDeltaDim table, 166
InventTable lookup method, 193
inversion entry (IE), 74
invoice reports, promotion

materials and, 189–196
is methods, 114, 547
ISAM file, 520
isFieldItemDim method, 163
isFieldSet, 600
isInBatch method, 222
isMethodExecuted, 600
isolated development, 87
isolation, 470
isolation levels, 473–474

 isolation levels 671

isSwappingPrompt method, 222
isTmp record buffer method, 525
item dimensions, 158
item lots, 158

J
JMG prefix, 41
job elements, 26, 28, 110
join data sources, displaying

images, 182–185
joins

conditions, 126
operators, 127
placeholders/literals and, 511
query structures, 532, 537

JoinSource property, 174, 183

K
Kerberos authentication, 313–314
keywords, select statements

and, 493
.khd files, 648
KM prefix, 41
KPI (key performance indicators)

List Mode, 303, 311

L
Label Editor tool, 25, 53–56,

206–207, 222
Label File Wizard, 54, 206
label files, 207, 276
Label property, 158–159, 172, 196
labels

creating, 54–55, 222
referencing from X++ code,

55–56
Version Control tool, 92

language enhancements, 654
“last writer wins” scenarios,

474, 483
layered version types, 79
layering feature, 10–15
layers

comparison, 48
descriptions, 12
role of, 626
working with, 13–14

LeaveRecord method, 178
Ledger prefix, 41
LedgerBasic configuration

key, 589

left/right justification, string fields
and, 507–509

LEN function, 503
license codes, 26, 447–449
License Information form, 447
license keys, 27, 449
licensing, 10, 447–453
life cycle

elements, 88–89
page, 280
workflow, 334–347

LineAbove property, 192
LineBelow property, 192
line-by-line comparison

functionality, 83
LineLeft property, 192
LineRight property, 192
LinkActive method, 178
LinkType property, 174, 183, 539
Liskov Substitution Principle, 148,

547, 643
List built-in functions action, X++

editor shortcut key, 51
List enumerations action, X++

editor shortcut key, 51
list pages, 172, 529
List reserved words action, X++

editor shortcut key, 51
listener design pattern, 150
listeners, testing, 105–106
ListPage WindowType property,

171, 173
literals, 408, 509–511
literalStr intrinsic function, 545
loadModule method, 196
loadXml method, 136
local

function, 121
variables, 67

localization
formatting for, 276–278
text resources, creating. See

Label Editor tool
logic elements, 8
logical approval workflow

interactions, 332–334
logical component stack, .NET

Business Connector and,
351–352

logical operators, 118
Logoff method, 364
Logon method, 359, 364
LogonAs method, 356, 359
logs, 513, 606
lookup methods, 167–169, 179

LookupButton property, 208
LTRIM function, 508–509

M
macros, 137–139

directives, 137–138
elements, 26, 28
queries, 166–167

main menu, 215
main method, 225
Main window, debugger

interface, 67
makeObject method, 553
makeRecord method, 553
managed

callbacks, 373–374
classes, 351–352, 361
objects, 371–373

Managed Web applications, 354
Mandatory property, 160, 556
map elements, 31
maps, 113
MarkChanged method, 178
Math operators, 136
maxof function, 126
measures, 304
Member names should start

with a lowercase, warning
message, 61

member variables, 67, 72, 216
memory deallocation, 111
memory heap, 110
menu

definitions, 172
elements, 34
metadata, 172

menu item elements, 34
menu items

creating, 232–233
workflow, 325, 338, 342

message identifier, 610
metadata

associations, 171
changes required for

upgrade, 652
customizing with, 171–175
enhancements, 654
inheritance, 171–172
properties, 173–174
retrieval, 273–274
reverse engineering tool

and, 69
method invocations, 118
method modifiers, 144

672 isSwappingPrompt method

method parameters, 144
methods, 143–144

changing DML statements’
default behavior, 516–519

database-triggering, 514–520
in Dynamics AX, 72
optimizing client/server calls,

398
promotional, 190
skip, 407–408, 410–411, 413
validation, 516
X++ editor, 142

Microsoft ASP.NET. See ASP.NET
Microsoft BizTalk Server,

20, 351
Microsoft common language

runtime (CLR), 20
Microsoft Dynamics AX. See

Dynamics AX
Microsoft Dynamics AX 2009

Configuration Utility, 578
Microsoft Dynamics AX client,

65–66
Microsoft Dynamics AX forms

runtime, 162–163
Microsoft Dynamics AX runtime

environment, 5–6, 9, 28
Microsoft Dynamics AX SDK.

See Dynamics AX SDK
Microsoft Dynamics AX Server

Configuration Utility.
See Dynamics AX Server
Configuration Utility

Microsoft Dynamics Enterprise
Portal, 290

Microsoft Dynamics Public, 290
Microsoft Exchange Server, 20
Microsoft Internet Information

Services (IIS), 6, 327–332,
353

Microsoft Message Queuing
(MSMQ), 20

Microsoft .NET components, 20
Microsoft .NET Framework. See

.NET Framework
Microsoft .NET Web service, 88
Microsoft Office Excel, 6, 384
Microsoft Office Outlook, 6
Microsoft Office SharePoint Portal

Server, 17
Microsoft Office SharePoint

Server (MOSS). See Windows
SharePoint Services

Microsoft Office Visio, 543
Microsoft Office Visio 2003, 70

Microsoft Remote Server
Administration Tools for
Windows Vista, 353

Microsoft RPC technology, 20
Microsoft SQL Server Analysis

Services, 19
Microsoft SQL Server Reporting

Services. See Reporting
Services

Microsoft Visio Unified Modeling
Language (UML), 24

Microsoft Visual SourceSafe, 86
Microsoft Visual Studio. See

Visual Studio
Microsoft Visual Studio 2008, 34
Microsoft Visual Studio Team

Foundation Server, 86
Microsoft XML Core Services

(MSXML) 6.0, 136
migrating applications, 375
minof function, 126
model element IDs, 14–15
model layering, 9–10
model-driven development, 4
modeling scenario, 4–5
modified method, 179, 212
modifiedBy field, 506, 548, 550
modifiedDateTime field, 506,

548, 550
modifiedTransactionId fields, 506
monitoring tools, 432–440
MorphX

about, 37–39
application model elements,

25–36
Application Object Tree (AOT),

39–45
automatically generated

projects, 46–48
Best Practices tool, 62–65
code compiler, 59–61
Compare tool, 78–83
Cross-reference tool, 83–86
debugger tool, 65–69
developing with MorphX,

22–25
development environment, 6–7
Dynamics AX demo mode, 23
Enterprise Portal, 248–249
Find tool, 76–78
Label Editor tool, 53–56
Project Designer tool, 45–50
project types, 48–49
property sheet, 49–50
RecID fields, 489

Reporting Services and,
380–382

Table Browser tool, 75–76
Unicode support, 502–503
Unit Test tool, 96–106
Version Control tool, 86–96
Visio Reverse Engineering tool,

69–74
visual designer tools, 56–62
X++ Code Editor tool, 50–52

MorphX IDE, 132
MorphX SDK, 61–62
MorphX VCS, 87
MSMQ (Microsoft Message

Queuing), 20
Multidimensional Expressions

(MDX), 305
multiple time zones, 654
multiple-line comments, 140
MyDataObjectService, 590

N
Name field, 548
Name property, 173
Namespace declarations, 136
naming conventions

database elements, 507
elements, 40–41
files, 647–648
Label Editor tool, 53–54
label files, 53

navigation, 203, 290–291
navigation definition elements, 18
navigation pane, 214–215
NCLOB data type, 500
nested transactions, 472
.NET artifacts, 618–619
.NET assemblies, 28
.NET Business Connector, 349–375

about, 349–350
accessing data externally, 499
client, 11
CLR interoperability statement,

132
debugger tool, 65–66
integration technologies,

350–351
invoking business logic,

370–375
logical component stack,

351–352
MorphX debugger, 65
new features, 349–350
operations environment, 20

 .NET Business Connector 673

proxy account, 291
reports, 19
security, 355–356
usage scenarios, 356–359
Web interoperability, 353–355
Web Parts, 17–18
workflow runtime, 329–330

.NET CLR interoperability
statement, 28, 121

.NET Framework
integration client application

and, 6
managed classes and, 352
transition layer and, 352
Windows Workflow Foundation,

321
new method, 216
new operator, 144
Next method, 366
No access permission, 455
nodes, changing order, 42
nofetch keyword, 123
None caching mechanism, 401
noninteractive

mode, 577
workflows, 319–321

NoOfDecimals property, 159
NoOfHeadingLines property,

192
Not all paths return a value,

warning message, 61
Notepad, 605
NotExistJoin property, 174
notexists operator, 127
NotInTTS caching mechanism,

401
NTEXT data types, 500
NTLM authentication, 313–314
number of nested calls, 433
Number Sequence framework, 16
Number Sequence Wizard, 197
number sequences

creating, 196
customizing, 196–198

NumberSeq::
getNextNumForRefParmId
method, 403

NumberSeqReference class, 196
NumberSequenceReference field

explanations, 197–198
NumberSequenceReference table

type, 197
Numeric exception, 130
NVARCHAR data type, 500, 502
NVARCHAR2 data type, 500

O
object behavior, 118
object creation operators, 117
object state, 118
object type, 114, 116
object-oriented programming

language, 109
observer/listener design pattern,

150
OccEnabled property, 484–485
OCCRetryCount macro element,

487
Office Data Connection (.odc),

306–307
Office Excel (Microsoft), 6, 384
old layered version types, 79
one-way requests/messages,

613–616
Open Database Connectivity

(ODBC), 504
Open New Window action, 44
Open the Label Editor action, X++

editor shortcut key, 51
operands, 117
operation parameters, obtaining

names of, 73
Operation Progress framework, 16
operational elements, 26–28
operational model elements,

26–28
operations environment, 20
operators, 117
optimistic concurrency

control (OCC)
about, 474
example using, 476
exception handling, 486–487
implementing, 610
restarting jobs, 415–417

optimisticlock keyword, 124, 517
Oracle Call Interface (OCI), 504
Oracle Database 10g

statement comparisons, 649
Unicode, 500

Oracle database systems, 10, 500
orig method, 516
outer operator, 127
OuterJoin property, 174
OutOfMemoryException

exception, 363
Output window, debugger

interface, 68–69
overlayering, 626–629
Override Method group, 463

P
pack method, 149, 218–222, 251

example of, 564
implementing, 230–232

Packable interface, 149
pack-unpack pattern, 218–222
page life cycle, 280
page processing, 245–247
page request process, 245
Page Title Web part, 267, 287
pageActivated method, 185
paging framework, 529–531
parameter methods, 148
parent configuration keys, 450
parent security keys, 454–455
parentheses, 118
ParentId field, 548
parm methods, 52, 218, 342, 593

property methods, 234
parm prefix, 216
Pascal casing, 115
passing parameters by reference,

134
Passive property, 174
patch layers, 14
patterns, 147
pause statement, 110, 120
PBA prefix, 41
PBADefault table, 166
PBATreeInventDim table, 166
PDA synchronization, 357–358
pending elements, 95
performance

ad hoc reports and, 392
AIF and, 622
Batch framework and, 562
client/server, 398–403
considerations, 622
monitoring tools, 432–440
optimization, 492
transactions, 404–431

permissions
access, 28, 455–456
levels of, 455–456
security keys as gatekeepers,

452–453
table, 462–464
user group, 28, 458–459

persona-based Role Centers, 296
personalizing. See customizations
perspective elements, 32
pessimistic concurrency, 475
pessimisticlock keyword, 124,

485, 517

674 .NET CLR interoperability statement

placeholders, 509–511
planning phase, 23
polymorphic associations, 151–152
Popup WindowType property, 173
portal development

environments, 6–10
portal run-time environment, 9
portals, 17–18
position-based paging, 529–531
PostBackTrigger control, 269
postLoad method, 516
precision designs, reports, 388
predominantly multiple-

document interface
(MDI), 171

predominantly single-document
interface (SDI), 171

prefixes, 41
prepareForDelete method, 598
prepareForSave method, 598
prepareForUpdate method, 598
presentation model elements, 32
PriceDiscTmpPrintout table, 166
PrimaryIndex property, 419
primitive types, 111
print statement, 119
printDebug static method, 68
printing generated form designs,

59
printInventTable method, 193
private projects, 46
processing task, Operation

Progress framework, 16
processingMode parameter, 614
Prod prefix, 41
production reports, 384–385
Profile Lines view (Code Profiler

tool), 440
programming elements, 26, 28
programming languages. See X++

programming language
programming model, 492–493
programming model elements,

26, 28
progress bars, 16
Proj prefix, 41
Project Designer tool, 24, 45–50
projects, 46

automatically generated
projects, 46–48

creating, 46
types, 48–49
upgrade projects, 631–640

promotional materials, 187–190
promotional methods,

implementing, 190–191

PromotionImage control, 192
PromotionText control, 192
Properties macro, 556
property method pattern,

216–218, 233
property methods, implementing,

233–234
Property operators, 136
property sheets, 23, 642
protected attributes, 72
providers, workflow, 326, 338
proxy classes, 280–282
proxy generator command-line

options, 281
proxy impersonation mechanism,

356, 359
public attributes, 72
public fields, 136
Purch prefix, 41

Q
quality checks, Version Control

tool, 90–91
queries, 236–239

complex, 531–532
composite, 528–529
inventory dimensions,

166–167
paging framework, 529–531
union, 533–537

query
as central data modeling tool,

537–540
data across companies,

366–369
defined, 324
elements, 31
ranges, 541

query framework, 517–518,
531–541

Query object, 368–369
QueryBuildDataSource class, 485
QueryRun object, 236–239,

529–530
Queue Manager, 606
Quick Links, 268, 302
quotation marks, using, 56

R
READ COMMITTED isolation level,

473
Read Committed Snapshot

Isolation (RCSI), 473

READ UNCOMMITTED isolation
level, 473

readPast method, 518
real type, 29, 116, 500, 512
RecID fields, 506
RecID index, 420, 507, 514
record buffer, 471, 516, 521–523,

527–528
record caching, 418–423
Record context, 289–290
record identifiers (record IDs),

489–494
RecordInsertList class,

413–415, 492
record level security, 459–462,

603
record level security (RLS)

framework, 459
Record Level Security Wizard,

460
record-set constructs, 473
RecordSortedList class,

413–415, 492
RecordType field, 548
record types, 111, 116
RecordViewCache class,

424–427
RecVersion field, 476
recVersion system field, 506
reference elements, 26, 28
reference types, 111–112
referencing labels from X++,

55–56
reflection, 136, 543–558
reflection APIs, 544, 548–558
reflection system functions,

544–548
reflection tables, 550
refreshing elements, 43
registry settings, 434
reinstantiated object, 218
Relation property, 172
relational operators, 118
relationships in Dynamics AX,

72, 74
relative updates, 483–484
release phase, 25
remote procedure call (RPC),

6, 9
remote procedure call (RPC)–

related exceptions, 364
RemoveRecIdSuspension

method, 493
renaming elements using Version

Control tool, 91
repeatable reads, 488–489

 repeatable reads 675

repeatableread keyword,
124, 518

report
controls, 191–193, 445
designs, 388–391
elements, 34
libraries, 34, 36
projects, 388–390

Report Definition Language
(RDL), 386

Report Server Report Web part,
308–310, 395

Report Wizard, 48, 56
reporting framework, 19
reporting platforms, 380–381
Reporting Services

about, 19
ad hoc reports. See ad hoc

reports
components of, 382–385
framework, 19
MorphX and, 380–382
production reports, 384–385
role centers and, 308–310
Visual Studio and, 386–391

reporting tools model elements,
387–391

ReportRun class, 112
reports

ad hoc. See ad hoc reports
creating, 19, 444–445
customizing, 187–196
designing, 444–445
securing, 316, 392
treenodes API, 557
troubleshooting, 395
types of, 379–380
UtilElements table, 548

Req prefix, 41
request processing, 361–362
ReserveValues method, 493
ResetFilter method, 257
resource elements, 26, 28
response processing, 362
restarting jobs, 415–417
retry statement, 121
return statement, 120
reusable code, 112
reusing a label, 54–55
Reverse Engineering tool, 24,

69–70, 73, 543
reverse keyword, 123
revision comparison, 95
revision history of elements,

86, 94

rich client application
about, 6
operations environment

communications, 20
rich client forms and reporting

feature, 5
rich client model elements, 33–34
rich client reporting feature, 5
RLS (record level security)

framework, 459
Role Centers

about, 293–295
architecture, 295–296
authentication, 312
benefits of using, 294–295
customizing, 296–297
new center, creating, 297–298
security, 314–316
user profiles, 312
Web Parts, 298–311

role-based security, 10
ROLLBACK TRANSACTION, 471
round-trips, reducing,

398–402, 521
row fetch, 434
row fetch summary, 434
ROW_NUMBER function, 529
RowCount, 127
rows

selecting, 516
validating, 516

RPC (remote procedure call)–
related exceptions, 364

RPC round-trips, 433
Run action, debugger and, 69
Run an editor script action, X++

editor shortcut key, 51
run method, 178, 213, 228–229,

251
Run to cursor action, debugger

and, 69
runAs function, 465
RunBase class, 216, 399–400
RunBase framework, 15, 563
RunBase framework extension,

215–240
inheritance, 216
pack-unpack pattern, 218–222
property method pattern,

216–218
RunBaseBatch class, 216, 563
RunOn property, 240, 402
runsImpersonated method, 565
runtime configurations, 5–6
runtime environments, 5–6, 9, 28

runtime interactions, 327–332
.NET Business Connector, 353
identifying, 465

S
Sales prefix, 41
SalesParameters table, 198
sample code. See code samples
SaveDataPerCompany property,

490
scanned bitmap as background

for form, 57
ScannerClass class, 556
SDK (software development kit),

61–62
searching. See Find tool
secure handshake, 145
security

about, 10
customizing, 603
Enterprise Portal, 290–291
guidelines, 620–621
.NET Business Connector,

355–356
record level, 459–462
reporting services, 19
Role Centers, 314–316
role-based, 10
services access, 605
Web elements, 282–284

security coding, 462–466
security framework, 453–466
security groups, 164
Security key property, 172
security keys, 26–28, 232, 591

.NET Business Connector, 356
IntelliMorph, 443
services access, 605
SysCom security key, 356
SysComData security key, 356
SysComExecution security key,

356
SysComIIS security key, 356
SysOpenDomain, 457
Web elements, 282
Web menu items, 34, 284

select forupdate statement, 128
SELECT statement

REPEATABLEREAD hint, 489
Table Browser tool, 75
UPDLOCK hint, 475, 484

select statements, 186
data-aware features, 122–126
limiting field lists, 428

676 repeatableread keyword

SelectForUpdate method, 517
selectLocked method, 473, 519
selectWithRepeatableRead, 518
Semantic Model Definition

Language (SMDL), 383
semicolon (;), variable declarations

and, 117
Send API, 614
send framework, 615
sensitive data, record level

security, 459
Sequence exception, 130
sequencing, advanced, 569
serialization, 149, 485
serialize method, 591–592
Server Configuration Utility. See

Dynamics AX Configuration
Utility

server configurations, 359,
573–574

server method modifier,
144, 514

service contracts, 585,
590–591, 597

service implementation, 585
service implementation classes,

584, 590–591
service interface, 584
service packs, 626
service references, 617–620
Service-Oriented Architecture

(SOA), 584
Session object, 270
set<Fieldname> method, 600
set-based caching, 417
set-based data manipulation

operators, 404–415
set-based DML statements,

519–520
SetFieldValue method, 265
setPrefix function, 557
setTexts method, 209
setTmp method, 527
setTmpData method, 522
setUp method, 99
setupNavigation method, 210
shared projects, 46
SharePoint Portal Server

(Microsoft Office), 17
shift operators, 118
shortcut keys

debugger tool, 69
X++ code editor, 51–52

Show Differences Only
comparison option, 80

Show Help window action, X++
editor shortcut key, 51

show history feature, 94
Show Line Numbers comparison

option, 81
Show parameter information or

IntelliSense list members
action, X++ editor shortcut
key, 52

ShowContextMenu property, 255
ShowExpansion property, 255
ShowFilter property, 255
ShowLabel property, 192
showQueryValues method, 238
ShowZero property, 159
Simple Object Access Protocol

(SOAP), 9
single quotation marks (’), using, 56
single-line comments, 140
site definition, 17, 249, 285–286

configurations, 290
templates, 35

skip methods, 407–408,
410–411, 413

skipTTSCheck method, 518
SMA prefix, 41
SMDL model, 395
SMM prefix, 41
SOAP headers, 610, 621
software development kit (SDK),

61–62
Software-plus-Services (S+S), 616
solution layers, 14
source code casing, updating, 91
Source Code Titlecase Update

tool, 91
source endpoint user, 610
specialized projects, 48
SQL (Structured Query Language),

data-aware statements
and, 122

SQL SELECT statement. See
SELECT statement

SQL Server, 10, 500
SQL Server 2005

statement comparisons, 649
Unicode, 500

SQL Server 2008
statement comparisons, 649
Unicode, 500

SQL statements, 433, 437–438
SQL Trace, 433
stabilization phase, 25
StackTest class, 97, 101–102
standard layered version types, 79

Standard WindowType property,
171, 173

standard wizard, 203
state model, 336–338
state tracking, 600
statement-level concurrency,

485
statements

CLR interoperability, 132–136
COM interoperability, 136
data-aware, 122–128
examples, 118–122
exception handling, 129–132
interoperability, 132
transaction, 127–128

static code analysis tool, 62
static constructors, 225, 644
static method accessor, 133
static method modifier, 144
static new methods, 149
Status bar, debugger interface, 69
Step into action,

debugger and, 69
Step out action, debugger and, 69
Step over action, debugger

and, 69
Stop debugging action, debugger

and, 69
str type, 116
string (memo) type, 512
string comparisons, 502
string concatenation, 118
string fields, left/right justification

and, 507–509
string type, 29, 512
StringSize property, 196
strlen function, 503
strong typing, 132
Structured Query Language (SQL),

data-aware statements
and, 122

SubmitToWorkflow class, 337
subnodes, 42
sum function, 126
super call, 514, 516
Suppress Whitespace comparison

option, 80
suppressing errors and warnings,

63–64
surrogate-aware applications, 501
SuspendRecId method, 493
SvcConfigEditor, 605
switch statement, 120
synchronization

logs, 93–94

 synchronization 677

PDA, 357–358
Version Control tool, 92–93

syntactic sugar, 112
Sys prefix, 41
SysAnyType class, 112
SysBpCheck class, 555
SysBPCheckMemberFunction

class, 64
SysCom security key, 356
SysComData security key, 356
SysComExecution security key,

356
SysComIIS security key, 356
SysCompareText class, 83
SysDefaultDataWizard, 206
SysDict classes, 554
SysDictClass class, 114, 547,

553–554
SysDictField class, 554
SysDictMenu class, 556
SysFlushDatabaseLogSetup

main, 514
SysLastValue framework, 16, 218
SysLicenseCodeSort table, 448
SysOpenDomain security key, 457
SysPackable interface, 221
SysQueryRangeUtil class,

298–300
SysQueryRangeUtil Class, 541
SysTableBrowser, 75
system classes, 175
system field changes, 655
system function, 121
system layer, description of, 13
system text, referencing from X++

code, 56
system workflows, 319–321
SystemFilter method, 257
SystemSequence class, 493–494
SystemSequences database table,

490
SysTestable interface, 106
SysTestCase class, 98, 106
SysTestListener interface, 106
SysTestSuite, 101
SysTestSuiteCompany-

IsolateClass, 101
SysTestSuiteCompany-

IsolateMethod, 101
SysTestSuiteCompIsolate-

ClassWithTts, 101
SysTestSuiteTTS, 101
SysTreeNode class, 557
SysVersionControlFilebased-

BackEnd interface, 96
SysWizard, 206

T
Table Browser tool, 25, 75–76
table collection elements, 31–32
table collections, 495
table data API, 544, 548–550
table elements, 30, 33
table ID field, 490
table index clause, 124
table maps, 113
table modifications required for

upgrade, 653
table permissions, 462–464
Table property, 173
table relationships, cross-

reference subsystems
and, 84

TableGroup property, 460
TableId field, 430
table-level

patterns, 151–153
settings, 486

TableListControl, 460–461
tables

creating, 223
customizing, 158–169, 597
inventory dimensions, 158–166
naming conventions, 507
Table Browser tool, 75–76
temporary, 402, 460–461

task comments, 59
Tax prefix, 41
Team Foundation Server, 87–88
Team Server, 14–15
tearDown method, 99
templates, workflow, 325, 336
Temporary property, 461, 525,

527
temporary tables

about, 402, 470, 521–525
application runtime and, 502
application runtime setting,

527–528
configuration-time settings,

526–527
databases layer and, 520–528
RLS framework and, 460–461
settings, 525–528

test cases, 97–100
exceptions, 101
isolation, 101
projects, 48–49, 103–104
test suites, 101–102
UML object model, 106

test classes, 97
test listeners, 105–106

test methods, 97
test projects, 48–49, 103–104
test suites, 101–102
Test toolbar, 104
test-driven development, 96
testing, 96–106
testsElementName method, 97
testsElementType method, 97
textChange method, 211–212
TextIO class, 503
The new method of a derived

class does not call super(),
warning message, 61

The new method of a derived
class may not call super(),
warning message, 61

throw statement, 120, 129–130
tier-aware code, 402–403
time periods, 305
time type, 29, 512
timeofday type, 116
TitleDataSource property, 173
to-do comments, 59, 140
Toggle breakpoint action

debugger and, 69
X++ editor shortcut key, 51

tools
Code Profiler, 439–440
for code upgrade, 640–642
Conflict Detection, 630
for development, 48
Enterprise Portal, 248–250
for monitoring, 432–440
MorphX, 56–62
for reporting, 34, 386–391
Reverse Engineering, 73
Unit Test, 96–106

trace locations, 434
trace SQL statements, 525
tracing options, 68, 432–435
tracking code changes, 94
transaction ID framework, 489
transaction IDs, 474, 489
transaction level, 69, 472
transaction semantics, 471–489
transaction statements, 127–128,

471–473
Transaction Tracking System

(TTS), 403
transactions, performance,

404–431
Transact-SQL (T-SQL), 503
transition layer .NET Business

Connector and, 352
traverse view (Code Profiler tool),

439

678 syntactic sugar

TreeNode class, 557
TreeNodeIterator class, 555
TreenodeRelease method, 555
treenodes API, 544, 555–558
triggers, 613–616
troubleshooting

ad hoc reports, 395
reports, 395
services, 606
tracing, 434–435

trusted code, 131
Trustworthy Computing, 145, 466
try statement, 121
ttsAbort statement, 127–128, 434,

471–473, 523–525
ttsBegin statement, 127–128, 403,

434, 471–473, 523–525
ttsCommit statement, 127–128,

403, 434, 471–473, 523–525
ttsLevel statement, 403, 472
Tutorial_CompareContextProvider

class, 82
tutorial_Form_freeform, 57
type conversions supported,

135–136
type hierarchies, 112–115
type hierarchy cross-reference

subsystem, 84
Type property, 159–160, 165, 196
type system, 110–115
TypeOf system function, 543, 546
types, naming, 115
Types system enumeration, 546

U
UCS-2 encoding scheme, 500–502
UML (Unified Modeling

Language), 24, 38, 70, 543
UML associations, 72
UML attributes, 72
UML data model, 70–72
UML data model diagram, 70
UML object model, 72–73, 106
UML object model diagram, 73
UML operations, 72
uncommitted reads, 473
undo check-out, Version Control

tool, 89
Unicode files, 503
Unicode support, 500–503
Unified Modeling Language

(UML), 24, 38, 70, 543
Unified Worklist Web part, 307
UnionBranchID field, 535

unique identifiers (IDs), 15, 196
labels, 88
model elements, 14

Unit Creation Wizard, 215
unit test, definition of, 96
Unit Test tool

about, 96–97
code coverage, 104–105
object model, 106
test cases, 97–100
test listeners, 105–106
test projects, 103–104
test suites, 101–102
test toolbar, 104

unpack method, 149, 218–222, 251
example of, 564
implementing, 230–232
initParmDefault, 237

Unreachable code, warning
message, 61

Update Document Service form,
588, 595

update method, 514–515, 596
UPDATE statement, 483, 519
update_recordset operator, 405,

409–411
update_recordset statement, 128,

405
UpdateConflict exception, 131,

486–487
UpdateConflictNotRecovered

exception, 131, 487
updateNow method, 598
updates

absolute, 483
conflict exceptions, 486
disconnected, 481–483
relative, 483–484
restarting jobs, 416

updating
business documents, 608–610
source code casing, 91

UPDLOCK hint, 475
Upgrade checklist tool, 629
Upgrade Estimate report, 641
Upgrade Projects, 48
upgraded version control, 79
upgrades, source code changes

required for, 651
upgrading Dynamics AX, 494
usage scenarios, .NET Business

Connector, 356–359
use cases

custom services, 589
document services, 588

user dialog boxes, implementing,
226–228

user group permissions, 28,
458–459

user interface events, 540
user layer, description of, 12
user settings, SysLastValue

framework and, 16
user-defined class types, 111
UserFilter method, 257
users

profiles, 312
reporting needs, 378–379
workflow infrastructure and,

321–322
utcdatetime type, 29, 116, 512
UTF-16 encoding scheme,

500–502
UtilApplCodeDoc, 550
UtilApplHelp, 550
UtilCodeDoc, 550
UtilElements, 550
UtilElements table, 548–549, 557
UtilElementsOld, 550
UtilIdElements, 550
UtilIdElementsOld, 550
UtilLevel field, 549

V
validate method, 179, 227
validateDelete method, 178, 516
validateDocument method, 598
validateField method, 516, 598
validateWrite method, 178, 516, 598
validation logic, customizing, 598
validation methods, 167–169
value pairs, 49
value type conversions, 135
value type model elements,

29–30
value types, 111
value-added reseller layer,

description of, 13
value-based paging, 530–531
values, 117
variables, 117

declarations, 115–117
and Dynamics AX data type

mappings, 360
inspecting, 68
naming, 115, 117
record types, 111
reference types, 111–112
value types, 111

 variables 679

Variables window, debugger
interface, 67–69

Vend prefix, 41
version control systems

benefits of, 86–87
Dynamics AX integration, 96
revisions, 79
table data API and, 550
Wizard wizard, 206

Version Control tool
about, 24
build process, 96
checking elements in/out,

89–90
creating new elements

using, 91
deleting elements using, 92
element life cycle, 88–89
Get Latest option, 92
ID conflicts using, 14–15
labels, 92
overview of systems, 87
pending elements, 95
quality checks, 90–91
renaming elements using, 91
revision comparison, 95
show history feature, 94
synchronization, 92–93
synchronization log, 93–94
undo check-out, 89
updating source code

casing, 91
View access permission, 456
view elements, 31
Viewing filters, 458–459
ViewState feature, 279–280
virtual company accounts, 494
Visio Model Explorer, 70
Visio Reverse Engineering tool

about, 69–70
entity relationship data

model, 74
UML data model, 70–72
UML object model, 72–73

visual designer tools, 56–62
Visual Form Designer, 25, 57
Visual Report Designer, 25, 58–59
Visual SourceSafe 6.0, 87–88

synchronization, 93
synchronization log, 93–94

Visual Studio
as development environment,

6–7
Enterprise Portal, 249
IntelliSense and, 618

reporting framework, 19
Reporting Services and,

386–391
Web User Controls and, 17

W
warning message, compiler, 61
warnings. See errors/warnings
washed version control, 79
Watch window, debugger

interface, 68–69
WCF client, 607–608
WCF parameters, configuring,

604–605
weak typing, 132, 134
Web applications, .NET Business

Connector, 358
Web client applications, 6
Web client model elements,

34–36
Web content, 17
Web content elements, 36
Web control elements, 36
Web controls, 17, 36
Web elements, 17, 282–284, 290
Web file elements, 35
Web files, 285–288
Web Forms

elements, 36
Label Editor tool, 53
presentation elements, 32
Table Browser tool, 75

Web interoperability, 353–355
Web menu elements, 35
Web menu item elements, 35
Web menu items, 249, 284
Web menus, 249, 284
Web nodes, 18, 32, 276
Web page elements, 36
Web pages

authoring, 17
development using, 17
elements, 17
Web menu items, 284
Web menus, 249, 284
Web menu items, 249

Web Parts, 17–18, 266–268
Business Overview, 268,

303–311
Dynamics Infolog, 267
filters, 311
.NET Business Connector, 17–18
Report Server Report, 308–310
Role Centers, 298–311

Unified Worklist, 307
Windows SharePoint Services,

17–18
Web prefix, 41
Web Reports

elements, 36
presentation elements, 32
Table Browser tool, 75

Web services, 616–622
Web User Controls, 17
Web user interface components,

252–268
WebFormRun class, 112
Weblet class, 36
Weblet elements, 36
Weblets, 18
WebLink class, 266, 284
WebMenuItem property, 300
WHERE clauses, left/right

alignment and, 508
while select statement, 127
while statement, 120
Width property, 184, 209
WinApi class, 503
window statement, 120
Windows authentication, 453–454
Windows Communication

Foundation (WCF), 6
Windows integrated security, 19
Windows Server, 10
Windows SharePoint Services

AOT, 248
Enterprise Portal, 250
features, 286
Role Centers, 310–311
Web client application, 6
Web Parts, 17–18, 266–268

Windows Vista, 10
Windows Workflow Foundation,

20, 321–322
Windows XP, 10
WindowType property, 171, 173
Wizard application framework, 16
wizard framework extension,

199–215
Wizard Wizard, 16, 48, 558
wizards

about, 199
area page, 203, 214–215
Class, 48
content, adding, 207–214
Create New Document Service,

588, 595–597
creating, 202–206
default data, 204, 215

680 Variables window, debugger interface

Enterprise Portal Configuration
Wizard, 291

guidelines, 199–201
Label File, 54
labels, creating, 206–207
navigation, 209
navigation pane, 214–215
Number Sequence, 197
Record Level Security, 460
Report, 48
standard, 203
Unit Creation, 215
Wizard, 16, 48, 558

WMS prefix, 41
work items, 327
workflow

activating, 343
architecture, 327–334
artifacts, 336–338
business processes, automating,

322–327
common controls, 343–344
concepts, 323–327
designing, 335–347
elements, 34
infrastructure, 318–321
life cycle of, 334–347

Workspace WindowType
property, 173

Write method, 178, 515
“Writing Secure X++ Code” (white

paper), 145
WSDL file, 618

wsHttpBinding, 605
wString function, 503
WunderBar, 172

X
x prefixing reflection table

classes, 550
X++ Batch application

framework, 15
X++ Code Editor tool, 28, 642

code upgrade, 629
inspect and modify, 23
MorphX, 50–52
resolve code conflicts, 642
shortcut keys, 51–52

X++ compiler, 109, 117, 131
X++ editor

add new methods to AOT, 142
application types, 109
color coding, 51
IntelliSense and, 30
methods, 142
parm methods, 218
reference elements, 28
shortcut key, 51–52
table elements, 30

X++ programming language
about, 8, 109–110
Batch API, 559
case sensitive, 80
classes and interfaces, 141–144
code access security, 145–147

design and implementation
patterns, 147–153

expressions, 117–118
intrinsic functions, 85
jobs, 110
method calls, 433
reflection APIs, 544
statements, 118–122
syntax, 115–141
system functions, 543–544
system tables, 596
type system, 110–115

X++ statements, 471–473
xDataArea.isVirtualCompany,

401
XML document

multiple records, 615
serialization, 591
structure, 586

XML document type, 136
XML documentation
XML editor, 605
XML namespace, 591
XML schema definition (XSD),

593–594
XML tags supported for XML

documentation, 140–141
XPO (export/import file), 79
.xpo files, 96
xRecord class, 514
XSD (XML schema definition),

593–594
xUtil classes, 557

 xUtil classes 681

About the Authors

Principal Authors

Lars Dragheim Olsen is a software architect on the Dynamics AX
team at the Microsoft Development Center in Copenhagen,
Denmark. He joined Damgaard Data in 1998 as a software design
engineer, shortly after the first version of Dynamics AX was released.
His work has focused mainly on the Supply Chain Management
 modules within Dynamics AX and the integration of these modules
with other modules, such as Financials and Project. During the
 development of Dynamics AX 2009, he worked as a software
 architect, concentrating primarily on the multisite features within the
Supply Chain Management modules. Before working for Damgaard

Data, Navision, and Microsoft, he worked for seven years as a system consultant on another
ERP product. He lives in Denmark with his four children, Daniel, Christian, Isabella, and Maja,
and his girlfriend, Camilla.

Michael Fruergaard Pontoppidan joined Damgaard Data in 1996 as a
software design engineer on the MorphX team, delivering the devel-
oper experience for the first release of Dynamics AX after graduating
from DTU (Technical University of Denmark). In 1999, he became the
program manager and lead developer for the Application Integration
and Deployment team that delivered on the Load ’n Go vision. For
Dynamics AX 4.0, he worked as a software architect on version
 control, unit testing, and Microsoft’s Trustworthy Computing
 initiative, while advocating code quality improvements through
Engineering Excellence, tools, processes, and training. For Dynamics

AX 2009, Michael joined the Developer and Partner Tools team and continued driving
high-quality productivity features into the toolsets delivered with Dynamics AX. Michael
lives in Denmark with his wife, Katrine, and their two children, Laura and Malte. His blog is
at http://blogs.msdn.com/mfp.

682

 About the Authors 683

Hans Jørgen Skovgaard joined Microsoft in 2003 as product unit
manager for the Dynamics AX product line. As part of Microsoft’s
Navision acquisition process, Hans facilitated and managed the
 introduction of Engineering Excellence initiatives, aligned developer
competence, created new teams, and organized training for new
 developers. Hans joined Microsoft with more than 20 years of profes-
sional software development and management experience. Before
his engagement with Dynamics AX, Hans was vice president of engi-
neering at Mondosoft, a search engine company, for three years.
Before that, he was vice president of CRM development in the ERP

company Baan for 10 years, during which time he architected a product configuration tech-
nology and associated tools. Hans has an MSc in AI (artificial intelligence) and an MBA from
IMD, one of the world’s leading business schools. Hans lives in Denmark with his wife, Nomi,
and his three lovely daughters, Ristil, Simone, and Mikala. He holds a black belt in karate and
is an avid mountain biker.

Tomasz Kaminski joined Microsoft in 2007 as a software design
 engineer in test on the Developers and Partner Tools team at the
Microsoft Development Center in Copenhagen. Before Microsoft, he
worked in Poland as software design engineer on data acquisition
systems at WINUEL SA and embedded systems at Siemens Sp. z o.o.
For Dynamics AX 2009, Tomasz worked on Code Upgrade, the
MorphX IDE, and the Rapid Configuration tool. Professionally, he is
passionate about software design, architecture, and test-driven
 development. He holds an MSc in computer science from the
Wroclaw University of Technology in Poland. In his free time, he

 enjoys bird watching and biking. Tomasz lives in Denmark with his wife, Anna.

Deepak Kumar is a program manager at Microsoft working on
Dynamics AX Server and Data Upgrade features. He has more than
13 years of industry experience, spending the last eight of those
years at Microsoft. Deepak’s experience is primarily within the large
enterprise, working on ERP, database administration (SQL Server and
Oracle), development, performance tuning, and management. He has
a master’s degree in information management, a bachelor’s degree in
computer science, and Microsoft (MCP) and Oracle DBA (OCP)
 certifications. Deepak has been a technical columnist and technology

684 About the Authors

 reviewer for national newspapers in India and ran his own small business focusing on consul-
tancy, ERP implementation, and corporate training. Deepak lives in Seattle with his wife,
Nupur, and his two young children, Ayan and Arisha. In his spare time, he likes reading
 research articles, playing tennis, taking short hikes, and doing outdoor activities with
his family.

Mey Meenakshisundaram is a principal program manager lead in the
Dynamics AX product group who focuses on Enterprise Portal, Role
Centers, and search. He has 16 years of experience in software engi-
neering, consulting, and management, the last eight years of which
have been spent at Microsoft. Prior to his current role, he led the
 engineering team that developed and implemented the portal,
 content management, and Web services for the customer relationship
system used by the internal Microsoft Sales team. Before Microsoft,
he led software product development teams in Singapore and India
for the manufacturing, service, and banking sectors in the Asia Pacific.

Mey is a coauthor of the book Inside Microsoft Dynamics AX 4.0 and is a highly rated
 speaker at Microsoft conferences. His self-made mission is to get Enterprise Portal onto every
desktop of every Dynamics AX customer. He lives in Sammamish, Washington, with his wife,
Amutha, and his children, Meena and Shammu. Mey regularly blogs at http://blogs.msdn
.com/solutions.

Michael Merz is a program manager focusing on tools for integrating
Dynamics AX with other systems. Although his passions include
 applying innovative patterns and technologies to integrating hetero-
geneous systems in general, he is currently focused on Software-
plus-Services (S+S). Before joining Microsoft, Michael worked in
various engineering roles for companies including Amazon.com
and BEA Systems as well as for early-stage startup companies; he has
also worked as a researcher for the European Union and holds an
MSc in computer science from Ulm University, Germany. Michael
blogs at http://blogs.msdn.com/aif.

 About the Authors 685

Karl Tolgu is a senior program manager for Microsoft Dynamics AX.
He is responsible for the delivery of the workflow infrastructure in
Dynamics AX. Previously, Karl worked on Project Accounting modules
in Dynamics SL and Dynamics GP. He has worked in the software
 industry in both the United Kingdom and the United States since
graduating. He has held various software development management
positions at Oracle Corporation and Niku Corporation. Karl resides in
Seattle, Washington, with his wife, Karin, and three sons, Karl
Christian, Sten Alexander, and Thomas Sebastian.

Kirill Val joined Microsoft in 2005 and has worked as a software
 design engineer for various Dynamics AX teams, such as Finance,
Application Implementation, Server, and Upgrade. He has eight years
of experience developing ERP, Web, Financials, and Supply Chain
Management applications; before joining Microsoft, he worked for
 several Microsoft Dynamics partners as a software development lead
and program manager.

Kirill’s work on Dynamics AX 2009 included contributions to the
 architecture, design, and development of the data upgrade frame-

work; the batch server processing framework and the electronic signature feature; and
integration solutions for enterprise-level businesses. He has an MSc degree in applied
 mathematics and computer science, and he enjoys playing volleyball, hiking, and traveling
in his free time.

Contributing Authors

Srikanth Avadhanam is a development manager for the Dynamics AX
product line. He is responsible for overseeing the development of the
Dynamics AX application server platform. Before his engagement
with Dynamics AX, Srikanth spent a few years designing and
 implementing various subsystems of the Microsoft SQL Server
 relational engine; he holds several patents in areas related to SQL
query optimization.

Srikanth’s technical interests include engineering scalable and
 performant metadata-driven application servers and database

 technologies. Srikanth lives in Redmond, Washington, with his wife and two children.
Srikanth’s team blogs at http://blogs.msdn.com/daxis.

686 About the Authors

Chris Garty is a senior program manager on the Dynamics AX Client
team in Fargo, North Dakota. During the Dynamics AX 2009 cycle,
Chris was an integral part of the list-page creation effort and contin-
ues to work on user experience improvements to the Dynamics AX
client. Before his current role, he was a program manager on the
Microsoft Business Framework and Dynamics Tools projects focused
on business logic and Web services. He has 10 years of experience in
software development and consulting, with the last five years spent
at Microsoft.

Chris was born and raised in New Zealand, near Hobbiton, and he is lucky enough to visit
there almost yearly to see his family. He moved to Fargo to work for the best company in the
world and lives there, five winters and one big flood later, with his wife, Jolene. He spends
time away from Microsoft slowly working toward an MBA, traveling occasionally, playing
 soccer and tennis frequently, and relaxing with friends as much as possible. Chris occasionally
blogs at http://blogs.msdn.com/chrisgarty.

Raghavendran Gururajan is a program manager with the Dynamics
AX Server platform team, with direct responsibility for the Data
Access stack for the past two releases. Before this role, his experience
as a Microsoft consultant in the field included building business ap-
plications for the high-tech manufacturing, auto industry, telecom,
and financial sectors. He has a total of 17 years, experience in soft-
ware development. He is a frequent speaker at customer and
 partner-focused events such as Convergence. He lives in Redmond,
Washington, with his wife, Bhuvaneshwari, and son, Nanda.

Thejas Haridev Durgam joined Microsoft in 2005 as a software engi-
neer on the Business Intelligence and Reporting team. During this
time, he has worked on X++ reporting, SQL Server Reporting Services
ad hoc reporting and SQL Reporting Services report integration with
Enterprise Portal, and the Dynamics AX client. Before joining
Microsoft, he worked for a year as a software development intern at
Websense Inc. in San Diego, California.

Thejas has his master’s degree in computer science from the State
University of New York at Binghamton and has a bachelor’s degree

in computer science from R.V. College of Engineering, Bangalore, India. His hobbies include
cricket, tennis, Xbox, and the stock market. He currently resides in downtown Bellevue,
Washington.

 About the Authors 687

Josh Honeyman is a senior development lead in Microsoft Business
Solutions. He joined Microsoft as part of the acquisition of Great
Plains Software, Inc., in 2001, after which he continued to work on
Microsoft Dynamics GP. He is now responsible for the development
of the workflow and business process infrastructure for Dynamics AX.

Wayne Kuo is a software design engineer in test who joined
Microsoft in 2006 as a college graduate from the University of
Waterloo in Ontario, Canada. He has been with the Business
Intelligence and Reporting team in Dynamics AX for three years and
has been primarily responsible for building the testing framework for
the Microsoft Visual Studio report design experience in Dynamics AX
2009. He also worked on the SQL Server Reporting Services team to
help deliver the Report Customization Definition Extension project
that was part of the SQL Server 2008 release. During his school years,
he held software development internships at a variety of organiza-

tions, including Environment Canada, Toronto Star Media, and Embarcadero Technologies.
He now lives in Seattle and enjoys outdoor activities, motor racing, and music production at
his local church.

Vijay Kurup is a senior program manager on the Dynamics AX
 product team working on the Dynamics AX Application Object Server
(AOS) and in security areas. He is responsible for features such as
memory management, session management, licensing and configu-
ration, and security. For Dynamics AX 2009, he worked on designing
the new server-bound Batch framework and adding multiple time-
zone support and various other features to improve the performance
and reliability of the AOS. Vijay has worked in the software industry
both in India and the United States. He joined Microsoft in 2005 and
has been a program manager on the Dynamics AX server team in

Redmond since then. Vijay resides in Sammamish, Washington, with his wife, Anuradha, and
two-year-old son, Nikhil.

688 About the Authors

Tete Mensa-Annan is a senior program manager lead on the
Dynamics AX team. He is an 11-year Microsoft veteran focusing on
workflow and business process management.

Amar Nalla is a senior software design engineer who has been work-
ing on Dynamics AX since version 4.0. He works on the platform
team, primarily in the data access layer and other Dynamics AX
 server-related areas. He has been with Microsoft for the past eight
years; before working on Dynamics AX, he worked on SQLXML and
other XML technologies on the SQL Server team.

He blogs actively at http://blogs.msdn.com/daxis, where he covers a
variety of topics related to the Dynamics AX platform.

Saveen Reddy has worked for Microsoft for 13 years on projects
 including Exchange Server, PhotoDraw, Windows Server, and
Forefront Client Security. Currently he manages the Program
Management team that builds business intelligence platform compo-
nents and features into Dynamics AX. He regularly posts to his MSDN
blog (http://blogs.msdn.com/saveenr) on topics such as program
management, graphics and visualization, business intelligence, and
software development.

Sri Srinivasan works as PM Architect for Dynamics AX, with responsi-
bilities for driving performance initiatives, architecture changes, and
scalability for the solution. Sri has been working with Microsoft
Dynamics for four years and has been instrumental in the release of
the benchmarks for Dynamics AX 4.0 and Dynamics AX 2009. Sri
comes with an extensive ERP product development background,
working on performance for other ERP solutions, such as PeopleSoft,
JD Edwards, and Oracle before joining Microsoft. He blogs on the
Performance team blog at http://blogs.msdn.com/axperf.

 About the Authors 689

Satish Thomas is a software design engineer in the Dynamics AX
product group with a focus on everything upgrade-related in
Dynamics AX. He joined Microsoft in 2006 after graduating from
Illinois Institute of Technology in Chicago, Illinois. Satish grew up in
Africa (Nigeria, Botswana) before moving to the United States for
 college, and he currently lives in Sammamish, Washington.

This book substantially builds on content written for the Inside Microsoft Dynamics AX 4.0
book. That content was written by Arthur Greef, Michael Fruergaard Pontoppidan, Lars
Dragheim Olsen, Mey Meenaskshisundaram, Karl Tolgu, Hans Jørgen Skovgaard, Palle
Agermark, Per Baarsoe Jorgensen, and Thomas Due Kay.

	Cover
	Table of Contents
	Chapter 3
	Chapter 5
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

