

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2004 by Steven C. McConnell

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
McConnell, Steve

Code Complete / Steve McConnell.--2nd ed.
p. cm.

Includes index.
ISBN 0-7356-1967-0
1. Computer Software--Development--Handbooks, manuals, etc. I. Title.

QA76.76.D47M39 2004
005.1--dc22 2004049981

Printed and bound in the United States of America.

15 16 17 18 19 20 21 22 23 24 QGT 6 5 4 3 2 1

Distributed in Canada by H.B. Fenn and Company Ltd. A CIP catalogue record for this book is available from
the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, Microsoft Press, PowerPoint, Visual Basic, Windows, and Windows NT are either registered trade-
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editors: Linda Engelman and Robin Van Steenburgh
Project Editor: Devon Musgrave
Indexer: Bill Myers
Principal Desktop Publisher: Carl Diltz

Body Part No. X10-53130

A03L619670.fm Page iv Thursday, April 7, 2011 5:54 PM

To my wife, Ashlie, who doesn't have much to do with computer programming

but who has everything to do with enriching the rest of my life

in more ways than I could possibly describe

Further Praise for

Code Complete
“An excellent guide to programming style and software construction.”
—Martin Fowler, Refactoring

“Steve McConnell’s Code Complete . . . provides a fast track to wisdom for programmers. . . .
His books are fun to read, and you never forget that he is speaking from hard-won personal
experience.” —Jon Bentley, Programming Pearls, 2d ed.

“This is simply the best book on software construction that I've ever read. Every developer
should own a copy and read it cover to cover every year. After reading it annually for nine
years, I'm still learning things from this book!”
—John Robbins, Debugging Applications for Microsoft .NET and Microsoft Windows

“Today’s software must be robust and resilient, and secure code starts with disciplined software
construction. After ten years, there is still no better authority than Code Complete.”
—Michael Howard, Security Engineering, Microsoft Corporation; Coauthor, Writing Secure Code

“A comprehensive examination of the tactical issues that go into crafting a well-engineered
program. McConnell’s work covers such diverse topics as architecture, coding standards,
testing, integration, and the nature of software craftsmanship.”
—Grady Booch, Object Solutions

“The ultimate encyclopedia for the software developer is Code Complete by Steve McConnell.
Subtitled ‘A Practical Handbook of Software Construction,’ this 850-page book is exactly
that. Its stated goal is to narrow the gap between the knowledge of ‘industry gurus and pro-
fessors’ (Yourdon and Pressman, for example) and common commercial practice, and ‘to
help you write better programs in less time with fewer headaches.’ . . . Every developer should
own a copy of McConnell's book. Its style and content are thoroughly practical.”
—Chris Loosley, High-Performance Client/Server

“Steve McConnell’s seminal book Code Complete is one of the most accessible works discuss-
ing in detail software development methods. . . .”
—Erik Bethke, Game Development and Production

“A mine of useful information and advice on the broader issues in designing and producing
good software.”
—John Dempster, The Laboratory Computer: A Practical Guide for Physiologists and Neuroscien-
tists

“If you are serious about improving your programming skills, you should get Code Complete
by Steve McConnell.”
—Jean J. Labrosse, Embedded Systems Building Blocks: Complete and Ready-To-Use Modules in C

“Steve McConnell has written one of the best books on software development independent
of computer environment . . . Code Complete.”
—Kenneth Rosen, Unix: The Complete Reference

“Every half an age or so, you come across a book that short-circuits the school of experience
and saves you years of purgatory. . . . I cannot adequately express how good this book really
is. Code Complete is a pretty lame title for a work of brilliance.”
—Jeff Duntemann, PC Techniques

“Microsoft Press has published what I consider to be the definitive book on software con-
struction. This is a book that belongs on every software developer’s shelf.”
—Warren Keuffel, Software Development

“Every programmer should read this outstanding book.” —T. L. (Frank) Pappas, Computer

“If you aspire to be a professional programmer, this may be the wisest $35 investment you’ll
ever make. Don’t stop to read the rest of this review: just run out and buy it. McConnell’s stat-
ed purpose is to narrow the gap between the knowledge of industry gurus and common com-
mercial practice. . . . The amazing thing is that he succeeds.”
—Richard Mateosian, IEEE Micro

“Code Complete should be required reading for anyone . . . in software development.”
—Tommy Usher, C Users Journal

“I’m encouraged to stick my neck out a bit further than usual and recommend, without res-
ervation, Steve McConnell’s Code Complete. . . . My copy has replaced my API reference man-
uals as the book that’s closest to my keyboard while I work.”
—Jim Kyle, Windows Tech Journal

“This well-written but massive tome is arguably the best single volume ever written on the
practical aspects of software implementation.”
—Tommy Usher, Embedded Systems Programming

“This is the best book on software engineering that I have yet read.”
—Edward Kenworth, .EXE Magazine

“This book deserves to become a classic, and should be compulsory reading for all develop-
ers, and those responsible for managing them.” —Peter Wright, Program Now

Code Complete, Second Edition
0-7356-1967-0

Steve McConnell

vii

Contents at a Glance

Part I Laying the Foundation
1 Welcome to Software Construction .3
2 Metaphors for a Richer Understanding of Software Development9

 3 Measure Twice, Cut Once: Upstream Prerequisites. 23
 4 Key Construction Decisions . 61

Part II Creating High-Quality Code
 5 Design in Construction . 73
 6 Working Classes . 125
 7 High-Quality Routines. 161
 8 Defensive Programming . 187
 9 The Pseudocode Programming Process . 215

Part III Variables
 10 General Issues in Using Variables. 237
11 The Power of Variable Names . 259

 12 Fundamental Data Types . 291
 13 Unusual Data Types . 319

Part IV Statements
14 Organizing Straight-Line Code. 347

 15 Using Conditionals. 355
 16 Controlling Loops . 367
 17 Unusual Control Structures. 391
 18 Table-Driven Methods. 411
19 General Control Issues. 431

viii Table of Contents

Part V Code Improvements
 20 The Software-Quality Landscape. 463
 21 Collaborative Construction. 479
 22 Developer Testing . 499
 23 Debugging . 535
 24 Refactoring . 563
 25 Code-Tuning Strategies. 587
 26 Code-Tuning Techniques . 609

Part VI System Considerations
 27 How Program Size Affects Construction . 649
 28 Managing Construction . 661
 29 Integration . 689
 30 Programming Tools . 709

Part VII Software Craftsmanship
31 Layout and Style. 729

 32 Self-Documenting Code . 777
 33 Personal Character . 819
34 Themes in Software Craftsmanship. 837

 35 Where to Find More Information . 855

ix

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

 Table of Contents

Preface . xix

Acknowledgments. .xxvii

List of Checklists . xxix

List of Tables. xxxi

List of Figures. xxxiii

Part I Laying the Foundation

1 Welcome to Software Construction .3

1.1 What Is Software Construction?. 3

1.2 Why Is Software Construction Important? . 6

1.3 How to Read This Book . 8

2 Metaphors for a Richer Understanding of Software Development9

2.1 The Importance of Metaphors . 9

2.2 How to Use Software Metaphors. 11

2.3 Common Software Metaphors. 13

 3 Measure Twice, Cut Once: Upstream Prerequisites. 23

3.1 Importance of Prerequisites . 24

3.2 Determine the Kind of Software You’re Working On. 31

3.3 Problem-Definition Prerequisite . 36

3.4 Requirements Prerequisite . 38

3.5 Architecture Prerequisite . 43

3.6 Amount of Time to Spend on Upstream Prerequisites . 55

 4 Key Construction Decisions . 61

4.1 Choice of Programming Language . 61

4.2 Programming Conventions . 66

4.3 Your Location on the Technology Wave . 66

4.4 Selection of Major Construction Practices . 69

x Table of Contents

Part II Creating High-Quality Code

 5 Design in Construction . 73

5.1 Design Challenges . 74

5.2 Key Design Concepts . 77

5.3 Design Building Blocks: Heuristics . 87

5.4 Design Practices. 110

5.5 Comments on Popular Methodologies . 118

 6 Working Classes . 125

6.1 Class Foundations: Abstract Data Types (ADTs) . 126

6.2 Good Class Interfaces . 133

6.3 Design and Implementation Issues. 143

6.4 Reasons to Create a Class. 152

6.5 Language-Specific Issues . 156

6.6 Beyond Classes: Packages . 156

 7 High-Quality Routines. 161

7.1 Valid Reasons to Create a Routine . 164

7.2 Design at the Routine Level . 168

7.3 Good Routine Names . 171

7.4 How Long Can a Routine Be? . 173

7.5 How to Use Routine Parameters . 174

7.6 Special Considerations in the Use of Functions . 181

7.7 Macro Routines and Inline Routines. 182

 8 Defensive Programming . 187

8.1 Protecting Your Program from Invalid Inputs. 188

8.2 Assertions . 189

8.3 Error-Handling Techniques . 194

8.4 Exceptions. 198

8.5 Barricade Your Program to Contain the Damage Caused by Errors 203

8.6 Debugging Aids. 205

8.7 Determining How Much Defensive Programming to Leave in
Production Code . 209

8.8 Being Defensive About Defensive Programming. 210

Table of Contents xi

 9 The Pseudocode Programming Process . 215

9.1 Summary of Steps in Building Classes and Routines . 216

9.2 Pseudocode for Pros . 218

9.3 Constructing Routines by Using the PPP . 220

9.4 Alternatives to the PPP . 232

Part III Variables

 10 General Issues in Using Variables. 237

10.1 Data Literacy . 238

10.2 Making Variable Declarations Easy . 239

10.3 Guidelines for Initializing Variables. 240

10.4 Scope . 244

10.5 Persistence . 251

10.6 Binding Time. 252

10.7 Relationship Between Data Types and Control Structures 254

10.8 Using Each Variable for Exactly One Purpose . 255

11 The Power of Variable Names . 259

11.1 Considerations in Choosing Good Names . 259

11.2 Naming Specific Types of Data . 264

11.3 The Power of Naming Conventions . 270

11.4 Informal Naming Conventions . 272

11.5 Standardized Prefixes . 279

11.6 Creating Short Names That Are Readable . 282

11.7 Kinds of Names to Avoid . 285

 12 Fundamental Data Types . 291

12.1 Numbers in General. 292

12.2 Integers . 293

12.3 Floating-Point Numbers . 295

12.4 Characters and Strings . 297

12.5 Boolean Variables . 301

12.6 Enumerated Types . 303

12.7 Named Constants . 307

12.8 Arrays . 310

12.9 Creating Your Own Types (Type Aliasing) . 311

xii Table of Contents

 13 Unusual Data Types . 319

13.1 Structures . 319

13.2 Pointers . 323

13.3 Global Data . 335

Part IV Statements

14 Organizing Straight-Line Code . 347

14.1 Statements That Must Be in a Specific Order . 347

14.2 Statements Whose Order Doesn’t Matter . 351

 15 Using Conditionals. 355

15.1 if Statements . 355

15.2 case Statements . 361

 16 Controlling Loops . 367

16.1 Selecting the Kind of Loop . 367

16.2 Controlling the Loop . 373

16.3 Creating Loops Easily—From the Inside Out . 385

16.4 Correspondence Between Loops and Arrays . 387

 17 Unusual Control Structures . 391

17.1 Multiple Returns from a Routine . 391

17.2 Recursion . 393

17.3 goto . 398

17.4 Perspective on Unusual Control Structures. 408

 18 Table-Driven Methods. 411

18.1 General Considerations in Using Table-Driven Methods 411

18.2 Direct Access Tables . 413

18.3 Indexed Access Tables . 425

18.4 Stair-Step Access Tables . 426

18.5 Other Examples of Table Lookups . 429

19 General Control Issues. 431

19.1 Boolean Expressions . 431

19.2 Compound Statements (Blocks) . 443

Table of Contents xiii

19.3 Null Statements . 444

19.4 Taming Dangerously Deep Nesting . 445

19.5 A Programming Foundation: Structured Programming 454

19.6 Control Structures and Complexity. 456

Part V Code Improvements

 20 The Software-Quality Landscape . 463

20.1 Characteristics of Software Quality . 463

20.2 Techniques for Improving Software Quality . 466

20.3 Relative Effectiveness of Quality Techniques. 469

20.4 When to Do Quality Assurance . 473

20.5 The General Principle of Software Quality . 474

 21 Collaborative Construction. 479

21.1 Overview of Collaborative Development Practices . 480

21.2 Pair Programming . 483

21.3 Formal Inspections. 485

21.4 Other Kinds of Collaborative Development Practices . 492

 22 Developer Testing . 499

22.1 Role of Developer Testing in Software Quality . 500

22.2 Recommended Approach to Developer Testing . 503

22.3 Bag of Testing Tricks . 505

22.4 Typical Errors . 517

22.5 Test-Support Tools. 523

22.6 Improving Your Testing . 528

22.7 Keeping Test Records . 529

 23 Debugging . 535

23.1 Overview of Debugging Issues . 535

23.2 Finding a Defect . 540

23.3 Fixing a Defect . 550

23.4 Psychological Considerations in Debugging . 554

23.5 Debugging Tools—Obvious and Not-So-Obvious. 556

xiv Table of Contents

 24 Refactoring . 563

24.1 Kinds of Software Evolution. 564

24.2 Introduction to Refactoring. 565

24.3 Specific Refactorings. 571

24.4 Refactoring Safely . 579

24.5 Refactoring Strategies . 582

 25 Code-Tuning Strategies. 587

25.1 Performance Overview . 588

25.2 Introduction to Code Tuning . 591

25.3 Kinds of Fat and Molasses . 597

25.4 Measurement . 603

25.5 Iteration . 605

25.6 Summary of the Approach to Code Tuning . 606

 26 Code-Tuning Techniques . 609

26.1 Logic . 610

26.2 Loops. 616

26.3 Data Transformations . 624

26.4 Expressions . 630

26.5 Routines . 639

26.6 Recoding in a Low-Level Language . 640

26.7 The More Things Change, the More They Stay the Same 643

Part VI System Considerations

 27 How Program Size Affects Construction . 649

27.1 Communication and Size . 650

27.2 Range of Project Sizes . 651

27.3 Effect of Project Size on Errors . 651

27.4 Effect of Project Size on Productivity . 653

27.5 Effect of Project Size on Development Activities . 654

Table of Contents xv

 28 Managing Construction . 661

28.1 Encouraging Good Coding. 662

28.2 Configuration Management. 664

28.3 Estimating a Construction Schedule . 671

28.4 Measurement . 677

28.5 Treating Programmers as People . 680

28.6 Managing Your Manager . 686

 29 Integration . 689

29.1 Importance of the Integration Approach. 689

29.2 Integration Frequency—Phased or Incremental? . 691

29.3 Incremental Integration Strategies . 694

29.4 Daily Build and Smoke Test . 702

 30 Programming Tools . 709

30.1 Design Tools . 710

30.2 Source-Code Tools. 710

30.3 Executable-Code Tools . 716

30.4 Tool-Oriented Environments . 720

30.5 Building Your Own Programming Tools . 721

30.6 Tool Fantasyland . 722

Part VII Software Craftsmanship

31 Layout and Style . 729

31.1 Layout Fundamentals . 730

31.2 Layout Techniques . 736

31.3 Layout Styles . 738

31.4 Laying Out Control Structures . 745

31.5 Laying Out Individual Statements . 753

31.6 Laying Out Comments . 763

31.7 Laying Out Routines . 766

31.8 Laying Out Classes . 768

xvi Table of Contents

 32 Self-Documenting Code . 777

32.1 External Documentation . 777

32.2 Programming Style as Documentation . 778

32.3 To Comment or Not to Comment . 781

32.4 Keys to Effective Comments . 785

32.5 Commenting Techniques . 792

32.6 IEEE Standards . 813

 33 Personal Character . 819

33.1 Isn’t Personal Character Off the Topic? . 820

33.2 Intelligence and Humility . 821

33.3 Curiosity . 822

33.4 Intellectual Honesty . 826

33.5 Communication and Cooperation . 828

33.6 Creativity and Discipline. 829

33.7 Laziness . 830

33.8 Characteristics That Don’t Matter As Much As You Might Think 830

33.9 Habits . 833

34 Themes in Software Craftsmanship. 837

34.1 Conquer Complexity . 837

34.2 Pick Your Process. 839

34.3 Write Programs for People First, Computers Second . 841

34.4 Program into Your Language, Not in It . 843

34.5 Focus Your Attention with the Help of Conventions. 844

34.6 Program in Terms of the Problem Domain. 845

34.7 Watch for Falling Rocks . 848

34.8 Iterate, Repeatedly, Again and Again . 850

34.9 Thou Shalt Rend Software and Religion Asunder . 851

Table of Contents xvii

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

 35 Where to Find More Information . 855

35.1 Information About Software Construction . 856

35.2 Topics Beyond Construction . 857

35.3 Periodicals . 859

35.4 A Software Developer’s Reading Plan. 860

35.5 Joining a Professional Organization . 862

Bibliography. 863

Index . 885

xix

Preface

The gap between the best software engineering practice and the average practice
is very wide—perhaps wider than in any other engineering discipline. A tool that
disseminates good practice would be important.
—Fred Brooks

My primary concern in writing this book has been to narrow the gap between the
knowledge of industry gurus and professors on the one hand and common commer-
cial practice on the other. Many powerful programming techniques hide in journals
and academic papers for years before trickling down to the programming public.

Although leading-edge software-development practice has advanced rapidly in recent
years, common practice hasn’t. Many programs are still buggy, late, and over budget,
and many fail to satisfy the needs of their users. Researchers in both the software
industry and academic settings have discovered effective practices that eliminate most
of the programming problems that have been prevalent since the 1970s. Because
these practices aren’t often reported outside the pages of highly specialized technical
journals, however, most programming organizations aren’t yet using them today.
Studies have found that it typically takes 5 to 15 years or more for a research develop-
ment to make its way into commercial practice (Raghavan and Chand 1989, Rogers
1995, Parnas 1999). This handbook shortcuts the process, making key discoveries
available to the average programmer now.

Who Should Read This Book?
The research and programming experience collected in this handbook will help you
to create higher-quality software and to do your work more quickly and with fewer
problems. This book will give you insight into why you’ve had problems in the past
and will show you how to avoid problems in the future. The programming practices
described here will help you keep big projects under control and help you maintain
and modify software successfully as the demands of your projects change.

Experienced Programmers

This handbook serves experienced programmers who want a comprehensive, easy-to-
use guide to software development. Because this book focuses on construction, the
most familiar part of the software life cycle, it makes powerful software development
techniques understandable to self-taught programmers as well as to programmers
with formal training.

xx Preface

Technical Leads

Many technical leads have used Code Complete to educate less-experienced program-
mers on their teams. You can also use it to fill your own knowledge gaps. If you’re an
experienced programmer, you might not agree with all my conclusions (and I would be
surprised if you did), but if you read this book and think about each issue, only rarely
will someone bring up a construction issue that you haven’t previously considered.

Self-Taught Programmers

If you haven’t had much formal training, you’re in good company. About 50,000 new
developers enter the profession each year (BLS 2004, Hecker 2004), but only about
35,000 software-related degrees are awarded each year (NCES 2002). From these fig-
ures it’s a short hop to the conclusion that many programmers don’t receive a formal
education in software development. Self-taught programmers are found in the emerg-
ing group of professionals—engineers, accountants, scientists, teachers, and small-
business owners—who program as part of their jobs but who do not necessarily view
themselves as programmers. Regardless of the extent of your programming educa-
tion, this handbook can give you insight into effective programming practices.

Students

The counterpoint to the programmer with experience but little formal training is the
fresh college graduate. The recent graduate is often rich in theoretical knowledge but
poor in the practical know-how that goes into building production programs. The
practical lore of good coding is often passed down slowly in the ritualistic tribal
dances of software architects, project leads, analysts, and more-experienced program-
mers. Even more often, it’s the product of the individual programmer’s trials and
errors. This book is an alternative to the slow workings of the traditional intellectual
potlatch. It pulls together the helpful tips and effective development strategies previ-
ously available mainly by hunting and gathering from other people’s experience. It’s a
hand up for the student making the transition from an academic environment to a
professional one.

Where Else Can You Find This Information?
This book synthesizes construction techniques from a variety of sources. In addition
to being widely scattered, much of the accumulated wisdom about construction has
resided outside written sources for years (Hildebrand 1989, McConnell 1997a).
There is nothing mysterious about the effective, high-powered programming tech-
niques used by expert programmers. In the day-to-day rush of grinding out the latest
project, however, few experts take the time to share what they have learned. Conse-

Preface xxi

quently, programmers may have difficulty finding a good source of programming
information.

The techniques described in this book fill the void after introductory and advanced
programming texts. After you have read Introduction to Java, Advanced Java, and
Advanced Advanced Java, what book do you read to learn more about programming?
You could read books about the details of Intel or Motorola hardware, Microsoft Win-
dows or Linux operating-system functions, or another programming language—you
can’t use a language or program in an environment without a good reference to such
details. But this is one of the few books that discusses programming per se. Some of
the most beneficial programming aids are practices that you can use regardless of the
environment or language you’re working in. Other books generally neglect such prac-
tices, which is why this book concentrates on them.

The information in this book is distilled from many sources, as shown below. The
only other way to obtain the information you’ll find in this handbook would be to
plow through a mountain of books and a few hundred technical journals and then
add a significant amount of real-world experience. If you’ve already done all that, you
can still benefit from this book’s collecting the information in one place for easy refer-
ence.

Key Benefits of This Handbook
Whatever your background, this handbook can help you write better programs in less
time and with fewer headaches.

Complete software-construction reference This handbook discusses general aspects
of construction such as software quality and ways to think about programming. It gets
into nitty-gritty construction details such as steps in building classes, ins and outs of
using data and control structures, debugging, refactoring, and code-tuning tech-
niques and strategies. You don’t need to read it cover to cover to learn about these top-
ics. The book is designed to make it easy to find the specific information that interests
you.

Professional
experience

Other software
books

Programming
language books

Magazine
articlesTechnology

references

Construction

xxii Preface

Ready-to-use checklists This book includes dozens of checklists you can use to
assess your software architecture, design approach, class and routine quality, variable
names, control structures, layout, test cases, and much more.

State-of-the-art information This handbook describes some of the most up-to-date
techniques available, many of which have not yet made it into common use. Because
this book draws from both practice and research, the techniques it describes will
remain useful for years.

Larger perspective on software development This book will give you a chance to rise
above the fray of day-to-day fire fighting and figure out what works and what doesn’t.
Few practicing programmers have the time to read through the hundreds of books
and journal articles that have been distilled into this handbook. The research and real-
world experience gathered into this handbook will inform and stimulate your think-
ing about your projects, enabling you to take strategic action so that you don’t have to
fight the same battles again and again.

Absence of hype Some software books contain 1 gram of insight swathed in 10
grams of hype. This book presents balanced discussions of each technique’s strengths
and weaknesses. You know the demands of your particular project better than anyone
else. This book provides the objective information you need to make good decisions
about your specific circumstances.

Concepts applicable to most common languages This book describes techniques
you can use to get the most out of whatever language you’re using, whether it’s C++,
C#, Java, Microsoft Visual Basic, or other similar languages.

Numerous code examples The book contains almost 500 examples of good and bad
code. I’ve included so many examples because, personally, I learn best from exam-
ples. I think other programmers learn best that way too.

The examples are in multiple languages because mastering more than one language is
often a watershed in the career of a professional programmer. Once a programmer
realizes that programming principles transcend the syntax of any specific language,
the doors swing open to knowledge that truly makes a difference in quality and pro-
ductivity.

To make the multiple-language burden as light as possible, I’ve avoided esoteric lan-
guage features except where they’re specifically discussed. You don’t need to under-
stand every nuance of the code fragments to understand the points they’re making. If
you focus on the point being illustrated, you’ll find that you can read the code regard-
less of the language. I’ve tried to make your job even easier by annotating the signifi-
cant parts of the examples.

Access to other sources of information This book collects much of the available
information on software construction, but it’s hardly the last word. Throughout the

Preface xxiii

chapters, “Additional Resources” sections describe other books and articles you can
read as you pursue the topics you find most interesting.

cc2e.com/1234 Book website Updated checklists, books, magazine articles, Web links, and other
content are provided on a companion website at cc2e.com. To access information
related to Code Complete, 2d ed., enter cc2e.com/ followed by a four-digit code, an
example of which is shown here in the left margin. These website references appear
throughout the book.

Why This Handbook Was Written
The need for development handbooks that capture knowledge about effective devel-
opment practices is well recognized in the software-engineering community. A report
of the Computer Science and Technology Board stated that the biggest gains in soft-
ware-development quality and productivity will come from codifying, unifying, and
distributing existing knowledge about effective software-development practices
(CSTB 1990, McConnell 1997a). The board concluded that the strategy for spreading
that knowledge should be built on the concept of software-engineering handbooks.

The Topic of Construction Has Been Neglected

At one time, software development and coding were thought to be one and the same.
But as distinct activities in the software-development life cycle have been identified,
some of the best minds in the field have spent their time analyzing and debating meth-
ods of project management, requirements, design, and testing. The rush to study
these newly identified areas has left code construction as the ignorant cousin of soft-
ware development.

Discussions about construction have also been hobbled by the suggestion that treat-
ing construction as a distinct software development activity implies that construction
must also be treated as a distinct phase. In reality, software activities and phases don’t
have to be set up in any particular relationship to each other, and it’s useful to discuss
the activity of construction regardless of whether other software activities are per-
formed in phases, in iterations, or in some other way.

Construction Is Important

Another reason construction has been neglected by researchers and writers is the mis-
taken idea that, compared to other software-development activities, construction is a
relatively mechanical process that presents little opportunity for improvement. Noth-
ing could be further from the truth.

xxiv Preface

Code construction typically makes up about 65 percent of the effort on small projects
and 50 percent on medium projects. Construction accounts for about 75 percent of
the errors on small projects and 50 to 75 percent on medium and large projects. Any
activity that accounts for 50 to 75 percent of the errors presents a clear opportunity
for improvement. (Chapter 27 contains more details on these statistics.)

Some commentators have pointed out that although construction errors account for a
high percentage of total errors, construction errors tend to be less expensive to fix
than those caused by requirements and architecture, the suggestion being that they
are therefore less important. The claim that construction errors cost less to fix is true
but misleading because the cost of not fixing them can be incredibly high. Researchers
have found that small-scale coding errors account for some of the most expensive soft-
ware errors of all time, with costs running into hundreds of millions of dollars (Wein-
berg 1983, SEN 1990). An inexpensive cost to fix obviously does not imply that fixing
them should be a low priority.

The irony of the shift in focus away from construction is that construction is the only
activity that’s guaranteed to be done. Requirements can be assumed rather than devel-
oped; architecture can be shortchanged rather than designed; and testing can be
abbreviated or skipped rather than fully planned and executed. But if there’s going to
be a program, there has to be construction, and that makes construction a uniquely
fruitful area in which to improve development practices.

No Comparable Book Is Available

In light of construction’s obvious importance, I was sure when I conceived this book
that someone else would already have written a book on effective construction prac-
tices. The need for a book about how to program effectively seemed obvious. But I
found that only a few books had been written about construction and then only on
parts of the topic. Some had been written 15 years or more earlier and employed rel-
atively esoteric languages such as ALGOL, PL/I, Ratfor, and Smalltalk. Some were
written by professors who were not working on production code. The professors
wrote about techniques that worked for student projects, but they often had little idea
of how the techniques would play out in full-scale development environments. Still
other books trumpeted the authors’ newest favorite methodologies but ignored the
huge repository of mature practices that have proven their effectiveness over time.

When art critics get together
they talk about Form and
Structure and Meaning.
When artists get together
they talk about where you
can buy cheap turpentine.
—Pablo Picasso

In short, I couldn’t find any book that had even attempted to capture the body of prac-
tical techniques available from professional experience, industry research, and aca-
demic work. The discussion needed to be brought up to date for current
programming languages, object-oriented programming, and leading-edge develop-
ment practices. It seemed clear that a book about programming needed to be written
by someone who was knowledgeable about the theoretical state of the art but who
was also building enough production code to appreciate the state of the practice. I

Preface xxv

conceived this book as a full discussion of code construction—from one programmer
to another.

Author Note
I welcome your inquiries about the topics discussed in this book, your error reports,
or other related subjects. Please contact me at stevemcc@construx.com, or visit my
website at www.stevemcconnell.com.

Bellevue, Washington
Memorial Day, 2004

Microsoft Learning Technical Support
Every effort has been made to ensure the accuracy of this book. Microsoft Press
provides corrections for books through the World Wide Web at the following
address:

http://www.microsoft.com/learning/support/

To connect directly to the Microsoft Knowledge Base and enter a query regard-
ing a question or issue that you may have, go to:

http://www.microsoft.com/learning/support/search.asp

If you have comments, questions, or ideas regarding this book, please send
them to Microsoft Press using either of the following methods:

Postal Mail:

Microsoft Press
Attn: Code Complete 2E Editor
One Microsoft Way
Redmond, WA 98052-6399

E-mail:

mspinput@microsoft.com

xxvii

Acknowledgments

A book is never really written by one person (at least none of my books are). A second edition
is even more a collective undertaking.

I’d like to thank the people who contributed review comments on significant portions of the
book: Hákon Ágústsson, Scott Ambler, Will Barns, William D. Bartholomew, Lars Bergstrom,
Ian Brockbank, Bruce Butler, Jay Cincotta, Alan Cooper, Bob Corrick, Al Corwin, Jerry Deville,
Jon Eaves, Edward Estrada, Steve Gouldstone, Owain Griffiths, Matthew Harris, Michael
Howard, Andy Hunt, Kevin Hutchison, Rob Jasper, Stephen Jenkins, Ralph Johnson and his
Software Architecture Group at the University of Illinois, Marek Konopka, Jeff Langr, Andy
Lester, Mitica Manu, Steve Mattingly, Gareth McCaughan, Robert McGovern, Scott Meyers,
Gareth Morgan, Matt Peloquin, Bryan Pflug, Jeffrey Richter, Steve Rinn, Doug Rosenberg,
Brian St. Pierre, Diomidis Spinellis, Matt Stephens, Dave Thomas, Andy Thomas-Cramer, John
Vlissides, Pavel Vozenilek, Denny Williford, Jack Woolley, and Dee Zsombor.

Hundreds of readers sent comments about the first edition, and many more sent individual
comments about the second edition. Thanks to everyone who took time to share their reac-
tions to the book in its various forms.

Special thanks to the Construx Software reviewers who formally inspected the entire manu-
script: Jason Hills, Bradey Honsinger, Abdul Nizar, Tom Reed, and Pamela Perrott. I was truly
amazed at how thorough their review was, especially considering how many eyes had scruti-
nized the book before they began working on it. Thanks also to Bradey, Jason, and Pamela for
their contributions to the cc2e.com website.

Working with Devon Musgrave, project editor for this book, has been a special treat. I’ve
worked with numerous excellent editors on other projects, and Devon stands out as espe-
cially conscientious and easy to work with. Thanks, Devon! Thanks to Linda Engleman who
championed the second edition; this book wouldn’t have happened without her. Thanks also
to the rest of the Microsoft Press staff, including Robin Van Steenburgh, Elden Nelson, Carl
Diltz, Joel Panchot, Patricia Masserman, Bill Myers, Sandi Resnick, Barbara Norfleet, James
Kramer, and Prescott Klassen.

I’d like to remember the Microsoft Press staff that published the first edition: Alice Smith,
Arlene Myers, Barbara Runyan, Carol Luke, Connie Little, Dean Holmes, Eric Stroo, Erin
O'Connor, Jeannie McGivern, Jeff Carey, Jennifer Harris, Jennifer Vick, Judith Bloch,
Katherine Erickson, Kim Eggleston, Lisa Sandburg, Lisa Theobald, Margarite Hargrave, Mike
Halvorson, Pat Forgette, Peggy Herman, Ruth Pettis, Sally Brunsman, Shawn Peck, Steve Mur-
ray, Wallis Bolz, and Zaafar Hasnain.

xxviii Acknowledgments

Thanks to the reviewers who contributed so significantly to the first edition: Al Corwin, Bill
Kiestler, Brian Daugherty, Dave Moore, Greg Hitchcock, Hank Meuret, Jack Woolley, Joey
Wyrick, Margot Page, Mike Klein, Mike Zevenbergen, Pat Forman, Peter Pathe, Robert L.
Glass, Tammy Forman, Tony Pisculli, and Wayne Beardsley. Special thanks to Tony Garland
for his exhaustive review: with 12 years’ hindsight, I appreciate more than ever how excep-
tional Tony’s several thousand review comments really were.

xxix

Checklists

Requirements 42

Architecture 54

Upstream Prerequisites 59

Major Construction Practices 69

Design in Construction 122

Class Quality 157

High-Quality Routines 185

Defensive Programming 211

The Pseudocode Programming Process 233

General Considerations In Using Data 257

Naming Variables 288

Fundamental Data 316

Considerations in Using Unusual Data Types 343

Organizing Straight-Line Code 353

Using Conditionals 365

Loops 388

Unusual Control Structures 410

Table-Driven Methods 429

Control-Structure Issues 459

A Quality-Assurance Plan 476

Effective Pair Programming 484

Effective Inspections 491

Test Cases 532

Debugging Reminders 559

Reasons to Refactor 570

Summary of Refactorings 577

Refactoring Safely 584

Code-Tuning Strategies 607

Code-Tuning Techniques 642

xxx Checklists

Configuration Management 669

Integration 707

Programming Tools 724

Layout 773

Self-Documenting Code 780

Good Commenting Technique 816

xxxi

Tables

Table 3-1 Average Cost of Fixing Defects Based on When They’re Introduced and
Detected 29

Table 3-2 Typical Good Practices for Three Common Kinds of Software Projects 31

Table 3-3 Effect of Skipping Prerequisites on Sequential and Iterative Projects 33

Table 3-4 Effect of Focusing on Prerequisites on Sequential and Iterative Projects 34

Table 4-1 Ratio of High-Level-Language Statements to Equivalent C Code 62

Table 5-1 Popular Design Patterns 104

Table 5-2 Design Formality and Level of Detail Needed 116

Table 6-1 Variations on Inherited Routines 145

Table 8-1 Popular-Language Support for Exceptions 198

Table 11-1 Examples of Good and Bad Variable Names 261

Table 11-2 Variable Names That Are Too Long, Too Short, or Just Right 262

Table 11-3 Sample Naming Conventions for C++ and Java 277

Table 11-4 Sample Naming Conventions for C 278

Table 11-5 Sample Naming Conventions for Visual Basic 278

Table 11-6 Sample of UDTs for a Word Processor 280

Table 11-7 Semantic Prefixes 280

Table 12-1 Ranges for Different Types of Integers 294

Table 13-1 Accessing Global Data Directly and Through Access Routines 341

Table 13-2 Parallel and Nonparallel Uses of Complex Data 342

Table 16-1 The Kinds of Loops 368

Table 19-1 Transformations of Logical Expressions Under DeMorgan’s Theorems 436

Table 19-2 Techniques for Counting the Decision Points in a Routine 458

Table 20-1 Team Ranking on Each Objective 469

Table 20-2 Defect-Detection Rates 470

Table 20-3 Extreme Programming’s Estimated Defect-Detection Rate 472

Table 21-1 Comparison of Collaborative Construction Techniques 495

Table 23-1 Examples of Psychological Distance Between Variable Names 556

Table 25-1 Relative Execution Time of Programming Languages 600

Table 25-2 Costs of Common Operations 601

xxxii Tables

Table 27-1 Project Size and Typical Error Density 652

Table 27-2 Project Size and Productivity 653

Table 28-1 Factors That Influence Software-Project Effort 674

Table 28-2 Useful Software-Development Measurements 678

Table 28-3 One View of How Programmers Spend Their Time 681

xxxiii

Figures

Figure 1-1 Construction activities are shown inside the gray circle. Construction
focuses on coding and debugging but also includes detailed design, unit
testing, integration testing, and other activities. 4

Figure 1-2 This book focuses on coding and debugging, detailed design, construction
planning, unit testing, integration, integration testing, and other activities in
roughly these proportions. 5

Figure 2-1 The letter-writing metaphor suggests that the software process relies on
expensive trial and error rather than careful planning and design. 14

Figure 2-2 It’s hard to extend the farming metaphor to software development
appropriately. 15

Figure 2-3 The penalty for a mistake on a simple structure is only a little time and
maybe some embarrassment. 17

Figure 2-4 More complicated structures require more careful planning. 18

Figure 3-1 The cost to fix a defect rises dramatically as the time from when it’s intro-
duced to when it’s detected increases. This remains true whether the
project is highly sequential (doing 100 percent of requirements and design
up front) or highly iterative (doing 5 percent of requirements and design
up front). 30

Figure 3-2 Activities will overlap to some degree on most projects, even those that are
highly sequential. 35

Figure 3-3 On other projects, activities will overlap for the duration of the project. One
key to successful construction is understanding the degree to which prereq-
uisites have been completed and adjusting your approach accordingly. 35

Figure 3-4 The problem definition lays the foundation for the rest of the programming
process. 37

Figure 3-5 Be sure you know what you’re aiming at before you shoot. 38

Figure 3-6 Without good requirements, you can have the right general problem but
miss the mark on specific aspects of the problem. 39

Figure 3-7 Without good software architecture, you may have the right problem but the
wrong solution. It may be impossible to have successful construction. 44

Figure 5-1 The Tacoma Narrows bridge—an example of a wicked problem. 75

xxxiv Figures

Figure 5-2 The levels of design in a program. The system (1) is first organized into sub-
systems (2). The subsystems are further divided into classes (3), and the
classes are divided into routines and data (4). The inside of each routine is
also designed (5). 82

Figure 5-3 An example of a system with six subsystems. 83

Figure 5-4 An example of what happens with no restrictions on intersubsystem
communications. 83

Figure 5-5 With a few communication rules, you can simplify subsystem interactions
significantly. 84

Figure 5-6 This billing system is composed of four major objects. The objects have been
simplified for this example. 88

Figure 5-7 Abstraction allows you to take a simpler view of a complex concept. 90

Figure 5-8 Encapsulation says that, not only are you allowed to take a simpler view of a
complex concept, you are not allowed to look at any of the details of the
complex concept. What you see is what you get—it’s all you get! 91

Figure 5-9 A good class interface is like the tip of an iceberg, leaving most of the class
unexposed. 93

Figure 5-10 G. Polya developed an approach to problem solving in mathematics that’s
also useful in solving problems in software design (Polya 1957). 109

Figure 8-1 Part of the Interstate-90 floating bridge in Seattle sank during a storm
because the flotation tanks were left uncovered, they filled with water, and
the bridge became too heavy to float. During construction, protecting your-
self against the small stuff matters more than you might think. 189

Figure 8-2 Defining some parts of the software that work with dirty data and some that
work with clean data can be an effective way to relieve the majority of the
code of the responsibility for checking for bad data. 204

Figure 9-1 Details of class construction vary, but the activities generally occur in the
order shown here. 216

Figure 9-2 These are the major activities that go into constructing a routine. They’re
usually performed in the order shown. 217

Figure 9-3 You’ll perform all of these steps as you design a routine but not necessarily
in any particular order. 225

Figure 10-1 “Long live time” means that a variable is live over the course of many state-
ments. “Short live time” means it’s live for only a few statements. “Span”
refers to how close together the references to a variable are. 246

Figure 10-2 Sequential data is data that’s handled in a defined order. 254

Figure 10-3 Selective data allows you to use one piece or the other, but not both. 255

Figures xxxv

Figure 10-4 Iterative data is repeated. 255

Figure 13-1 The amount of memory used by each data type is shown by double
lines. 324

Figure 13-2 An example of a picture that helps us think through the steps involved in
relinking pointers. 329

Figure 14-1 If the code is well organized into groups, boxes drawn around related sec-
tions don’t overlap. They might be nested. 352

Figure 14-2 If the code is organized poorly, boxes drawn around related sections
overlap. 353

Figure 17-1 Recursion can be a valuable tool in the battle against complexity—when used
to attack suitable problems. 394

Figure 18-1 As the name suggests, a direct-access table allows you to access the table ele-
ment you’re interested in directly. 413

Figure 18-2 Messages are stored in no particular order, and each one is identified with a
message ID. 417

Figure 18-3 Aside from the Message ID, each kind of message has its own format. 418

Figure 18-4 Rather than being accessed directly, an indexed access table is accessed via
an intermediate index. 425

Figure 18-5 The stair-step approach categorizes each entry by determining the level at
which it hits a “staircase.” The “step” it hits determines its category. 426

Figure 19-1 Examples of using number-line ordering for boolean tests. 440

Figure 20-1 Focusing on one external characteristic of software quality can affect other
characteristics positively, adversely, or not at all. 466

Figure 20-2 Neither the fastest nor the slowest development approach produces the soft-
ware with the most defects. 475

Figure 22-1 As the size of the project increases, developer testing consumes a smaller
percentage of the total development time. The effects of program size are
described in more detail in Chapter 27, “How Program Size Affects
Construction.” 502

Figure 22-2 As the size of the project increases, the proportion of errors committed dur-
ing construction decreases. Nevertheless, construction errors account for
45–75% of all errors on even the largest projects. 521

Figure 23-1 Try to reproduce an error several different ways to determine its exact
cause. 545

Figure 24-1 Small changes tend to be more error-prone than larger changes (Weinberg
1983). 581

xxxvi Figures

Figure 24-2 Your code doesn’t have to be messy just because the real world is messy.
Conceive your system as a combination of ideal code, interfaces from the
ideal code to the messy real world, and the messy real world. 583

Figure 24-3 One strategy for improving production code is to refactor poorly written leg-
acy code as you touch it, so as to move it to the other side of the “interface to
the messy real world.” 584

Figure 27-1 The number of communication paths increases proportionate to the square
of the number of people on the team. 650

Figure 27-2 As project size increases, errors usually come more from requirements and
design. Sometimes they still come primarily from construction (Boehm
1981, Grady 1987, Jones 1998). 652

Figure 27-3 Construction activities dominate small projects. Larger projects require
more architecture, integration work, and system testing to succeed. Require-
ments work is not shown on this diagram because requirements effort is not
as directly a function of program size as other activities are (Albrecht 1979;
Glass 1982; Boehm, Gray, and Seewaldt 1984; Boddie 1987; Card 1987;
McGarry, Waligora, and McDermott 1989; Brooks 1995; Jones 1998; Jones
2000; Boehm et al. 2000). 654

Figure 27-4 The amount of software construction work is a near-linear function of
project size. Other kinds of work increase nonlinearly as project size
increases. 655

Figure 28-1 This chapter covers the software-management topics related to
construction. 661

Figure 28-2 Estimates created early in a project are inherently inaccurate. As the project
progresses, estimates can become more accurate. Reestimate periodically
throughout a project, and use what you learn during each activity to improve
your estimate for the next activity. 673

Figure 29-1 The football stadium add-on at the University of Washington collapsed
because it wasn’t strong enough to support itself during construction. It
likely would have been strong enough when completed, but it was con-
structed in the wrong order—an integration error. 690

Figure 29-2 Phased integration is also called “big bang” integration for a good
reason! 691

Figure 29-3 Incremental integration helps a project build momentum, like a snowball
going down a hill. 692

Figures xxxvii

Figure 29-4 In phased integration, you integrate so many components at once that it’s
hard to know where the error is. It might be in any of the components or in
any of their connections. In incremental integration, the error is usually
either in the new component or in the connection between the new compo-
nent and the system. 693

Figure 29-5 In top-down integration, you add classes at the top first, at the bottom
last. 695

Figure 29-6 As an alternative to proceeding strictly top to bottom, you can integrate from
the top down in vertical slices. 696

Figure 29-7 In bottom-up integration, you integrate classes at the bottom first, at the top
last. 697

Figure 29-8 As an alternative to proceeding purely bottom to top, you can integrate from
the bottom up in sections. This blurs the line between bottom-up integration
and feature-oriented integration, which is described later in this
chapter. 698

Figure 29-9 In sandwich integration, you integrate top-level and widely used bottom-
level classes first and you save middle-level classes for last. 698

Figure 29-10 In risk-oriented integration, you integrate classes that you expect to be most
troublesome first; you implement easier classes later. 699

Figure 29-11 In feature-oriented integration, you integrate classes in groups that make up
identifiable features—usually, but not always, multiple classes at a
time. 700

Figure 29-12 In T-shaped integration, you build and integrate a deep slice of the system to
verify architectural assumptions and then you build and integrate the
breadth of the system to provide a framework for developing the remaining
functionality. 701

Figure 34-1 Programs can be divided into levels of abstraction. A good design will allow
you to spend much of your time focusing on only the upper layers and ignor-
ing the lower layers. 846

73

Chapter 5

Design in Construction
cc2e.com/0578 Contents

■ 5.1 Design Challenges: page 74

■ 5.2 Key Design Concepts: page 77

■ 5.3 Design Building Blocks: Heuristics: page 87

■ 5.4 Design Practices: page 110

■ 5.5 Comments on Popular Methodologies: page 118

Related Topics

■ Software architecture: Section 3.5

■ Working classes: Chapter 6

■ Characteristics of high-quality routines: Chapter 7

■ Defensive programming: Chapter 8

■ Refactoring: Chapter 24

■ How program size affects construction: Chapter 27

Some people might argue that design isn’t really a construction activity, but on small
projects, many activities are thought of as construction, often including design. On
some larger projects, a formal architecture might address only the system-level issues
and much design work might intentionally be left for construction. On other large
projects, the design might be intended to be detailed enough for coding to be fairly
mechanical, but design is rarely that complete—the programmer usually designs part
of the program, officially or otherwise.

Cross-Reference For details
on the different levels of for-
mality required on large and
small projects, see Chapter
27, “How Program Size
Affects Construction.”

On small, informal projects, a lot of design is done while the programmer sits at the
keyboard. “Design” might be just writing a class interface in pseudocode before writ-
ing the details. It might be drawing diagrams of a few class relationships before coding
them. It might be asking another programmer which design pattern seems like a bet-
ter choice. Regardless of how it’s done, small projects benefit from careful design just
as larger projects do, and recognizing design as an explicit activity maximizes the ben-
efit you will receive from it.

Design is a huge topic, so only a few aspects of it are considered in this chapter. A large
part of good class or routine design is determined by the system architecture, so be

74 Chapter 5: Design in Construction

sure that the architecture prerequisite discussed in Section 3.5 has been satisfied.
Even more design work is done at the level of individual classes and routines,
described in Chapter 6, “Working Classes,” and Chapter 7, “High-Quality Routines.”

If you’re already familiar with software design topics, you might want to just hit the
highlights in the sections about design challenges in Section 5.1 and key heuristics in
Section 5.3.

5.1 Design Challenges
Cross-Reference The differ-
ence between heuristic and
deterministic processes is
described in Chapter 2,
“Metaphors for a Richer
Understanding of Software
Development.”

The phrase “software design” means the conception, invention, or contrivance of a
scheme for turning a specification for computer software into operational software.
Design is the activity that links requirements to coding and debugging. A good top-
level design provides a structure that can safely contain multiple lower-level designs.
Good design is useful on small projects and indispensable on large projects.

Design is also marked by numerous challenges, which are outlined in this section.

Design Is a Wicked Problem
The picture of the software
designer deriving his design
in a rational, error-free way
from a statement of require-
ments is quite unrealistic. No
system has ever been devel-
oped in that way, and proba-
bly none ever will. Even the
small program develop-
ments shown in textbooks
and papers are unreal. They
have been revised and pol-
ished until the author has
shown us what he wishes he
had done, not what actually
did happen.
—David Parnas and
Paul Clements

Horst Rittel and Melvin Webber defined a “wicked” problem as one that could be
clearly defined only by solving it, or by solving part of it (1973). This paradox implies,
essentially, that you have to “solve” the problem once in order to clearly define it and
then solve it again to create a solution that works. This process has been motherhood
and apple pie in software development for decades (Peters and Tripp 1976).

In my part of the world, a dramatic example of such a wicked problem was the design
of the original Tacoma Narrows bridge. At the time the bridge was built, the main con-
sideration in designing a bridge was that it be strong enough to support its planned
load. In the case of the Tacoma Narrows bridge, wind created an unexpected, side-to-
side harmonic ripple. One blustery day in 1940, the ripple grew uncontrollably until
the bridge collapsed, as shown in Figure 5-1.

This is a good example of a wicked problem because, until the bridge collapsed, its
engineers didn’t know that aerodynamics needed to be considered to such an extent.
Only by building the bridge (solving the problem) could they learn about the addi-
tional consideration in the problem that allowed them to build another bridge that
still stands.

5.1 Design Challenges 75

Figure 5-1 The Tacoma Narrows bridge—an example of a wicked problem.

One of the main differences between programs you develop in school and those you
develop as a professional is that the design problems solved by school programs are
rarely, if ever, wicked. Programming assignments in school are devised to move you in a
beeline from beginning to end. You’d probably want to tar and feather a teacher who gave
you a programming assignment, then changed the assignment as soon as you finished
the design, and then changed it again just as you were about to turn in the completed pro-
gram. But that very process is an everyday reality in professional programming.

Design Is a Sloppy Process (Even If it Produces a Tidy Result)

The finished software design should look well organized and clean, but the process
used to develop the design isn’t nearly as tidy as the end result.

Further Reading For a fuller
exploration of this viewpoint,
see “A Rational Design Pro-
cess: How and Why to Fake
It” (Parnas and Clements
1986).

Design is sloppy because you take many false steps and go down many blind alleys—
you make a lot of mistakes. Indeed, making mistakes is the point of design—it’s
cheaper to make mistakes and correct designs than it would be to make the same mis-
takes, recognize them after coding, and have to correct full-blown code. Design is
sloppy because a good solution is often only subtly different from a poor one.

M
or

n
in

g
N

ew
s

T
ri

b
u

n
e

76 Chapter 5: Design in Construction

Cross-Reference For a better
answer to this question, see
“How Much Design is
Enough?” in Section 5.4 later
in this chapter.

Design is also sloppy because it’s hard to know when your design is “good enough.”
How much detail is enough? How much design should be done with a formal design
notation, and how much should be left to be done at the keyboard? When are you
done? Since design is open-ended, the most common answer to that question is
“When you’re out of time.”

Design Is About Tradeoffs and Priorities

In an ideal world, every system could run instantly, consume zero storage space, use
zero network bandwidth, never contain any errors, and cost nothing to build. In the real
world, a key part of the designer’s job is to weigh competing design characteristics and
strike a balance among those characteristics. If a fast response rate is more important
than minimizing development time, a designer will choose one design. If minimizing
development time is more important, a good designer will craft a different design.

Design Involves Restrictions

The point of design is partly to create possibilities and partly to restrict possibilities. If
people had infinite time, resources, and space to build physical structures, you would
see incredible sprawling buildings with one room for each shoe and hundreds of rooms.
This is how software can turn out without deliberately imposed restrictions. The con-
straints of limited resources for constructing buildings force simplifications of the solu-
tion that ultimately improve the solution. The goal in software design is the same.

Design Is Nondeterministic

If you send three people away to design the same program, they can easily return with
three vastly different designs, each of which could be perfectly acceptable. There
might be more than one way to skin a cat, but there are usually dozens of ways to
design a computer program.

Design Is a Heuristic Process

Because design is nondeterministic, design techniques tend to be heuristics—“rules of
thumb” or “things to try that sometimes work”—rather than repeatable processes that
are guaranteed to produce predictable results. Design involves trial and error. A
design tool or technique that worked well on one job or on one aspect of a job might
not work as well on the next project. No tool is right for everything.

Design Is Emergent
cc2e.com/0539 A tidy way of summarizing these attributes of design is to say that design is

“emergent.” Designs don’t spring fully formed directly from someone’s brain. They
evolve and improve through design reviews, informal discussions, experience writing
the code itself, and experience revising the code.

KEY POINT

5.2 Key Design Concepts 77

Further Reading Software
isn’t the only kind of struc-
ture that changes over time.
Physical structures evolve,
too—see How Buildings
Learn (Brand 1995).

Virtually all systems undergo some degree of design changes during their initial devel-
opment, and then they typically change to a greater extent as they’re extended into
later versions. The degree to which change is beneficial or acceptable depends on the
nature of the software being built.

5.2 Key Design Concepts
Good design depends on understanding a handful of key concepts. This section dis-
cusses the role of complexity, desirable characteristics of designs, and levels of design.

Software’s Primary Technical Imperative: Managing Complexity
Cross-Reference For discus-
sion of the way complexity
affects programming issues
other than design, see
Section 34.1, “Conquer
Complexity.”

To understand the importance of managing complexity, it’s useful to refer to Fred
Brooks’s landmark paper, “No Silver Bullets: Essence and Accidents of Software Engi-
neering” (1987).

Accidental and Essential Difficulties

Brooks argues that software development is made difficult because of two different
classes of problems—the essential and the accidental. In referring to these two terms,
Brooks draws on a philosophical tradition going back to Aristotle. In philosophy, the
essential properties are the properties that a thing must have in order to be that thing.
A car must have an engine, wheels, and doors to be a car. If it doesn’t have any of those
essential properties, it isn’t really a car.

Accidental properties are the properties a thing just happens to have, properties that
don’t really bear on whether the thing is what it is. A car could have a V8, a turbo-
charged 4-cylinder, or some other kind of engine and be a car regardless of that detail.
A car could have two doors or four; it could have skinny wheels or mag wheels. All
those details are accidental properties. You could also think of accidental properties
as incidental, discretionary, optional, and happenstance.

Cross-Reference Accidental
difficulties are more promi-
nent in early-wave develop-
ment than in late-wave
development. For details,
see Section 4.3, “Your Loca-
tion on the Technology
Wave.”

Brooks observes that the major accidental difficulties in software were addressed long
ago. For example, accidental difficulties related to clumsy language syntaxes were
largely eliminated in the evolution from assembly language to third-generation lan-
guages and have declined in significance incrementally since then. Accidental difficul-
ties related to noninteractive computers were resolved when time-share operating
systems replaced batch-mode systems. Integrated programming environments fur-
ther eliminated inefficiencies in programming work arising from tools that worked
poorly together.

78 Chapter 5: Design in Construction

Brooks argues that progress on software’s remaining essential difficulties is bound to
be slower. The reason is that, at its essence, software development consists of working
out all the details of a highly intricate, interlocking set of concepts. The essential
difficulties arise from the necessity of interfacing with the complex, disorderly real
world; accurately and completely identifying the dependencies and exception cases;
designing solutions that can’t be just approximately correct but that must be exactly
correct; and so on. Even if we could invent a programming language that used the
same terminology as the real-world problem we’re trying to solve, programming
would still be difficult because of the challenge in determining precisely how the real
world works. As software addresses ever-larger real-world problems, the interactions
among the real-world entities become increasingly intricate, and that in turn increases
the essential difficulty of the software solutions.

The root of all these essential difficulties is complexity—both accidental and essential.

Importance of Managing Complexity

There are two ways of con-
structing a software design:
one way is to make it so sim-
ple that there are obviously
no deficiencies, and the
other is to make it so compli-
cated that there are no obvi-
ous deficiencies.
—C. A. R. Hoare

When software-project surveys report causes of project failure, they rarely identify
technical reasons as the primary causes of project failure. Projects fail most often
because of poor requirements, poor planning, or poor management. But when
projects do fail for reasons that are primarily technical, the reason is often uncon-
trolled complexity. The software is allowed to grow so complex that no one really
knows what it does. When a project reaches the point at which no one completely
understands the impact that code changes in one area will have on other areas,
progress grinds to a halt.

Managing complexity is the most important technical topic in software development.
In my view, it’s so important that Software’s Primary Technical Imperative has to be
managing complexity.

Complexity is not a new feature of software development. Computing pioneer Edsger
Dijkstra pointed out that computing is the only profession in which a single mind is
obliged to span the distance from a bit to a few hundred megabytes, a ratio of 1 to 109,
or nine orders of magnitude (Dijkstra 1989). This gigantic ratio is staggering. Dijkstra
put it this way: “Compared to that number of semantic levels, the average mathemati-
cal theory is almost flat. By evoking the need for deep conceptual hierarchies, the
automatic computer confronts us with a radically new intellectual challenge that has
no precedent in our history.” Of course software has become even more complex
since 1989, and Dijkstra’s ratio of 1 to 109 could easily be more like 1 to 1015 today.

KEY POINT

5.2 Key Design Concepts 79

One symptom that you have
bogged down in complexity
overload is when you find
yourself doggedly applying a
method that is clearly irrele-
vant, at least to any outside
observer. It is like the
mechanically inept person
whose car breaks down—so
he puts water in the battery
and empties the ashtrays.
—P. J. Plauger

Dijkstra pointed out that no one’s skull is really big enough to contain a modern com-
puter program (Dijkstra 1972), which means that we as software developers
shouldn’t try to cram whole programs into our skulls at once; we should try to orga-
nize our programs in such a way that we can safely focus on one part of it at a time.
The goal is to minimize the amount of a program you have to think about at any one
time. You might think of this as mental juggling—the more mental balls the program
requires you to keep in the air at once, the more likely you’ll drop one of the balls,
leading to a design or coding error.

At the software-architecture level, the complexity of a problem is reduced by dividing
the system into subsystems. Humans have an easier time comprehending several sim-
ple pieces of information than one complicated piece. The goal of all software-design
techniques is to break a complicated problem into simple pieces. The more indepen-
dent the subsystems are, the more you make it safe to focus on one bit of complexity
at a time. Carefully defined objects separate concerns so that you can focus on one
thing at a time. Packages provide the same benefit at a higher level of aggregation.

Keeping routines short helps reduce your mental workload. Writing programs in
terms of the problem domain, rather than in terms of low-level implementation
details, and working at the highest level of abstraction reduce the load on your brain.

The bottom line is that programmers who compensate for inherent human limita-
tions write code that’s easier for themselves and others to understand and that has
fewer errors.

How to Attack Complexity

Overly costly, ineffective designs arise from three sources:

■ A complex solution to a simple problem

■ A simple, incorrect solution to a complex problem

■ An inappropriate, complex solution to a complex problem

As Dijkstra pointed out, modern software is inherently complex, and no matter how
hard you try, you’ll eventually bump into some level of complexity that’s inherent in the
real-world problem itself. This suggests a two-prong approach to managing complexity:

■ Minimize the amount of essential complexity that anyone’s brain has to deal
with at any one time.

■ Keep accidental complexity from needlessly proliferating.

Once you understand that all other technical goals in software are secondary to man-
aging complexity, many design considerations become straightforward.

KEY POINT

80 Chapter 5: Design in Construction

Desirable Characteristics of a Design
When I am working on a
problem I never think about
beauty. I think only how to
solve the problem. But when
I have finished, if the solu-
tion is not beautiful, I know it
is wrong.
—R. Buckminster Fuller

A high-quality design has several general characteristics. If you could achieve all these
goals, your design would be very good indeed. Some goals contradict other goals, but
that’s the challenge of design—creating a good set of tradeoffs from competing
objectives. Some characteristics of design quality are also characteristics of a good
program: reliability, performance, and so on. Others are internal characteristics of
the design.

Cross-Reference These
characteristics are related to
general software-quality
attributes. For details on
general attributes, see Sec-
tion 20.1, “Characteristics of
Software Quality.”

Here’s a list of internal design characteristics:

Minimal complexity The primary goal of design should be to minimize complexity
for all the reasons just described. Avoid making “clever” designs. Clever designs are
usually hard to understand. Instead make “simple” and “easy-to-understand” designs.
If your design doesn’t let you safely ignore most other parts of the program when
you’re immersed in one specific part, the design isn’t doing its job.

Ease of maintenance Ease of maintenance means designing for the maintenance
programmer. Continually imagine the questions a maintenance programmer would
ask about the code you’re writing. Think of the maintenance programmer as your
audience, and then design the system to be self-explanatory.

Loose coupling Loose coupling means designing so that you hold connections
among different parts of a program to a minimum. Use the principles of good abstrac-
tions in class interfaces, encapsulation, and information hiding to design classes with
as few interconnections as possible. Minimal connectedness minimizes work during
integration, testing, and maintenance.

Extensibility Extensibility means that you can enhance a system without causing
violence to the underlying structure. You can change a piece of a system without
affecting other pieces. The most likely changes cause the system the least trauma.

Reusability Reusability means designing the system so that you can reuse pieces of
it in other systems.

High fan-in High fan-in refers to having a high number of classes that use a given
class. High fan-in implies that a system has been designed to make good use of utility
classes at the lower levels in the system.

5.2 Key Design Concepts 81

Low-to-medium fan-out Low-to-medium fan-out means having a given class use a
low-to-medium number of other classes. High fan-out (more than about seven) indi-
cates that a class uses a large number of other classes and may therefore be overly
complex. Researchers have found that the principle of low fan-out is beneficial
whether you’re considering the number of routines called from within a routine or the
number of classes used within a class (Card and Glass 1990; Basili, Briand, and Melo
1996).

Portability Portability means designing the system so that you can easily move it to
another environment.

Leanness Leanness means designing the system so that it has no extra parts (Wirth
1995, McConnell 1997). Voltaire said that a book is finished not when nothing more
can be added but when nothing more can be taken away. In software, this is especially
true because extra code has to be developed, reviewed, tested, and considered when
the other code is modified. Future versions of the software must remain backward-
compatible with the extra code. The fatal question is “It’s easy, so what will we hurt by
putting it in?”

Stratification Stratification means trying to keep the levels of decomposition strati-
fied so that you can view the system at any single level and get a consistent view.
Design the system so that you can view it at one level without dipping into other levels.

Cross-Reference For more
on working with old systems,
see Section 24.5, “Refactor-
ing Strategies.”

For example, if you’re writing a modern system that has to use a lot of older, poorly
designed code, write a layer of the new system that’s responsible for interfacing with
the old code. Design the layer so that it hides the poor quality of the old code, present-
ing a consistent set of services to the newer layers. Then have the rest of the system
use those classes rather than the old code. The beneficial effects of stratified design in
such a case are (1) it compartmentalizes the messiness of the bad code and (2) if
you’re ever allowed to jettison the old code or refactor it, you won’t need to modify any
new code except the interface layer.

Cross-Reference An espe-
cially valuable kind of stan-
dardization is the use of
design patterns, which are
discussed in “Look for Com-
mon Design Patterns” in
Section 5.3.

Standard techniques The more a system relies on exotic pieces, the more intimidat-
ing it will be for someone trying to understand it the first time. Try to give the whole
system a familiar feeling by using standardized, common approaches.

C05619670.fm Page 81 Tuesday, April 12, 2011 2:30 PM

82 Chapter 5: Design in Construction

Levels of Design
Design is needed at several different levels of detail in a software system. Some design tech-
niques apply at all levels, and some apply at only one or two. Figure 5-2 illustrates the levels.

Figure 5-2 The levels of design in a program. The system (1) is first organized into sub-
systems (2). The subsystems are further divided into classes (3), and the classes are divided
into routines and data (4). The inside of each routine is also designed (5).

Level 1: Software System

In other words—and this is
the rock-solid principle on
which the whole of the Cor-
poration’s Galaxywide suc-
cess is founded—their
fundamental design flaws
are completely hidden by
their superficial design flaws.
—Douglas Adams

The first level is the entire system. Some programmers jump right from the system
level into designing classes, but it’s usually beneficial to think through higher level
combinations of classes, such as subsystems or packages.

Level 2: Division into Subsystems or Packages

The main product of design at this level is the identification of all major subsystems. The
subsystems can be big: database, user interface, business rules, command interpreter,

Division into subsystems/packages2

Division into classes within packages3

Software system1

Division into data and routines within classes4

Internal routine design5

5.2 Key Design Concepts 83

report engine, and so on. The major design activity at this level is deciding how to parti-
tion the program into major subsystems and defining how each subsystem is allowed to
use each other subsystem. Division at this level is typically needed on any project that
takes longer than a few weeks. Within each subsystem, different methods of design
might be used—choosing the approach that best fits each part of the system. In Figure 5-
2, design at this level is marked with a 2.

Of particular importance at this level are the rules about how the various subsystems
can communicate. If all subsystems can communicate with all other subsystems, you
lose the benefit of separating them at all. Make each subsystem meaningful by restrict-
ing communications.

Suppose for example that you define a system with six subsystems, as shown in Fig-
ure 5-3. When there are no rules, the second law of thermodynamics will come into
play and the entropy of the system will increase. One way in which entropy increases
is that, without any restrictions on communications among subsystems, communica-
tion will occur in an unrestricted way, as in Figure 5-4.

Figure 5-3 An example of a system with six subsystems.

Figure 5-4 An example of what happens with no restrictions on intersubsystem
communications.

User Interface

Data Storage
Application

Level Classes

Enterprise-Level
Tools

Business
Rules

Graphics

User Interface

Data Storage
Application

Level Classes

Enterprise-Level
Tools

Business
Rules

Graphics

84 Chapter 5: Design in Construction

As you can see, every subsystem ends up communicating directly with every other
subsystem, which raises some important questions:

■ How many different parts of the system does a developer need to understand at
least a little bit to change something in the graphics subsystem?

■ What happens when you try to use the business rules in another system?

■ What happens when you want to put a new user interface on the system, per-
haps a command-line UI for test purposes?

■ What happens when you want to put data storage on a remote machine?

You might think of the lines between subsystems as being hoses with water running
through them. If you want to reach in and pull out a subsystem, that subsystem is
going to have some hoses attached to it. The more hoses you have to disconnect and
reconnect, the more wet you’re going to get. You want to architect your system so that
if you pull out a subsystem to use elsewhere, you won’t have many hoses to reconnect
and those hoses will reconnect easily.

With forethought, all of these issues can be addressed with little extra work. Allow
communication between subsystems only on a “need to know” basis—and it had bet-
ter be a good reason. If in doubt, it’s easier to restrict communication early and relax it
later than it is to relax it early and then try to tighten it up after you’ve coded several
hundred intersubsystem calls. Figure 5-5 shows how a few communication guidelines
could change the system depicted in Figure 5-4.

Figure 5-5 With a few communication rules, you can simplify subsystem interactions sig-
nificantly.

To keep the connections easy to understand and maintain, err on the side of simple
intersubsystem relations. The simplest relationship is to have one subsystem call rou-
tines in another. A more involved relationship is to have one subsystem contain
classes from another. The most involved relationship is to have classes in one sub-
system inherit from classes in another.

User Interface

Data Storage
Application

Level Classes

Enterprise-Level
Tools

Business
Rules

Graphics

5.2 Key Design Concepts 85

A good general rule is that a system-level diagram like Figure 5-5 should be an acyclic
graph. In other words, a program shouldn’t contain any circular relationships in
which Class A uses Class B, Class B uses Class C, and Class C uses Class A.

On large programs and families of programs, design at the subsystem level makes a
difference. If you believe that your program is small enough to skip subsystem-level
design, at least make the decision to skip that level of design a conscious one.

Common Subsystems Some kinds of subsystems appear again and again in differ-
ent systems. Here are some of the usual suspects.

Cross-Reference For more
on simplifying business logic
by expressing it in tables, see
Chapter 18, "Table-Driven
Methods."

Business rules Business rules are the laws, regulations, policies, and procedures
that you encode into a computer system. If you’re writing a payroll system, you
might encode rules from the IRS about the number of allowable withholdings and
the estimated tax rate. Additional rules for a payroll system might come from a
union contract specifying overtime rates, vacation and holiday pay, and so on. If
you’re writing a program to quote automobile insurance rates, rules might come
from government regulations on required liability coverages, actuarial rate tables, or
underwriting restrictions

User interface Create a subsystem to isolate user-interface components so that the
user interface can evolve without damaging the rest of the program. In most cases, a
user-interface subsystem uses several subordinate subsystems or classes for the GUI
interface, command line interface, menu operations, window management, help sys-
tem, and so forth.

Database access You can hide the implementation details of accessing a database so
that most of the program doesn’t need to worry about the messy details of manipulat-
ing low-level structures and can deal with the data in terms of how it’s used at the
business-problem level. Subsystems that hide implementation details provide a valu-
able level of abstraction that reduces a program’s complexity. They centralize data-
base operations in one place and reduce the chance of errors in working with the data.
They make it easy to change the database design structure without changing most of
the program.

System dependencies Package operating-system dependencies into a subsystem for
the same reason you package hardware dependencies. If you’re developing a pro-
gram for Microsoft Windows, for example, why limit yourself to the Windows envi-
ronment? Isolate the Windows calls in a Windows-interface subsystem. If you later
want to move your program to Mac OS or Linux, all you’ll have to change is the
interface subsystem. An interface subsystem can be too extensive for you to imple-
ment on your own, but such subsystems are readily available in any of several com-
mercial code libraries.

86 Chapter 5: Design in Construction

Level 3: Division into Classes

Further Reading For a good
discussion of database
design, see Agile Database
Techniques (Ambler 2003).

Design at this level includes identifying all classes in the system. For example, a data-
base-interface subsystem might be further partitioned into data access classes and
persistence framework classes as well as database metadata. Figure 5-2, Level 3,
shows how one of Level 2’s subsystems might be divided into classes, and it implies
that the other three subsystems shown at Level 2 are also decomposed into classes.

Details of the ways in which each class interacts with the rest of the system are also
specified as the classes are specified. In particular, the class’s interface is defined.
Overall, the major design activity at this level is making sure that all the subsystems
have been decomposed to a level of detail fine enough that you can implement their
parts as individual classes.

Cross-Reference For details
on characteristics of high-
quality classes, see Chapter
6, “Working Classes.”

The division of subsystems into classes is typically needed on any project that takes
longer than a few days. If the project is large, the division is clearly distinct from the
program partitioning of Level 2. If the project is very small, you might move directly
from the whole-system view of Level 1 to the classes view of Level 3.

Classes vs. Objects A key concept in object-oriented design is the differentiation
between objects and classes. An object is any specific entity that exists in your pro-
gram at run time. A class is the static thing you look at in the program listing. An
object is the dynamic thing with specific values and attributes you see when you run
the program. For example, you could declare a class Person that had attributes of
name, age, gender, and so on. At run time you would have the objects nancy, hank,
diane, tony, and so on—that is, specific instances of the class. If you’re familiar with
database terms, it’s the same as the distinction between “schema” and “instance.” You
could think of the class as the cookie cutter and the object as the cookie. This book
uses the terms informally and generally refers to classes and objects more or less inter-
changeably.

Level 4: Division into Routines

Design at this level includes dividing each class into routines. The class interface
defined at Level 3 will define some of the routines. Design at Level 4 will detail the
class’s private routines. When you examine the details of the routines inside a class,
you can see that many routines are simple boxes but a few are composed of hierarchi-
cally organized routines, which require still more design.

The act of fully defining the class’s routines often results in a better understanding of
the class’s interface, and that causes corresponding changes to the interface—that is,
changes back at Level 3.

This level of decomposition and design is often left up to the individual programmer,
and it’s needed on any project that takes more than a few hours. It doesn’t need to be
done formally, but it at least needs to be done mentally.

5.3 Design Building Blocks: Heuristics 87

Level 5: Internal Routine Design

Cross-Reference For details
on creating high-quality rou-
tines, see Chapter 7, “High-
Quality Routines,” and Chap-
ter 8, “Defensive Program-
ming.”

Design at the routine level consists of laying out the detailed functionality of the indi-
vidual routines. Internal routine design is typically left to the individual programmer
working on an individual routine. The design consists of activities such as writing
pseudocode, looking up algorithms in reference books, deciding how to organize the
paragraphs of code in a routine, and writing programming-language code. This level
of design is always done, though sometimes it’s done unconsciously and poorly
rather than consciously and well. In Figure 5-2, design at this level is marked with a 5.

5.3 Design Building Blocks: Heuristics
Software developers tend to like our answers cut and dried: “Do A, B, and C, and X, Y,
Z will follow every time.” We take pride in learning arcane sets of steps that produce
desired effects, and we become annoyed when instructions don’t work as advertised.
This desire for deterministic behavior is highly appropriate to detailed computer pro-
gramming, where that kind of strict attention to detail makes or breaks a program. But
software design is a much different story.

Because design is nondeterministic, skillful application of an effective set of heuristics
is the core activity in good software design. The following subsections describe a num-
ber of heuristics—ways to think about a design that sometime produce good design
insights. You might think of heuristics as the guides for the trials in “trial and error.”
You undoubtedly have run across some of these before. Consequently, the following
subsections describe each of the heuristics in terms of Software’s Primary Technical
Imperative: managing complexity.

Find Real-World Objects
Ask not first what the system
does; ask WHAT it does it to!
—Bertrand Meyer

The first and most popular approach to identifying design alternatives is the “by the
book” object-oriented approach, which focuses on identifying real-world and syn-
thetic objects.

The steps in designing with objects are

Cross-Reference For more
details on designing using
classes, see Chapter 6,
“Working Classes.”

■ Identify the objects and their attributes (methods and data).

■ Determine what can be done to each object.

■ Determine what each object is allowed to do to other objects.

■ Determine the parts of each object that will be visible to other objects—which
parts will be public and which will be private.

■ Define each object’s public interface.

88 Chapter 5: Design in Construction

These steps aren’t necessarily performed in order, and they’re often repeated. Iteration
is important. Each of these steps is summarized below.

Identify the objects and their attributes Computer programs are usually based on
real-world entities. For example, you could base a time-billing system on real-world
employees, clients, timecards, and bills. Figure 5-6 shows an object-oriented view of
such a billing system.

Figure 5-6 This billing system is composed of four major objects. The objects have been
simplified for this example.

Identifying the objects’ attributes is no more complicated than identifying the objects
themselves. Each object has characteristics that are relevant to the computer program.
For example, in the time-billing system, an employee object has a name, a title, and a
billing rate. A client object has a name, a billing address, and an account balance. A bill
object has a billing amount, a client name, a billing date, and so on.

Objects in a graphical user interface system would include windows, dialog boxes,
buttons, fonts, and drawing tools. Further examination of the problem domain might
produce better choices for software objects than a one-to-one mapping to real-world
objects, but the real-world objects are a good place to start.

Determine what can be done to each object A variety of operations can be per-
formed on each object. In the billing system shown in Figure 5-6, an employee object
could have a change in title or billing rate, a client object could have its name or billing
address changed, and so on.

Determine what each object is allowed to do to other objects This step is just what it
sounds like. The two generic things objects can do to each other are containment and
inheritance. Which objects can contain which other objects? Which objects can inherit

Employee

name
title
billingRate

billingEmployee

billingRecords

clientToBill
clientToBill

bills

GetHoursForMonth()
...

Client

name
billingAddress
accountBalance
currentBillingAmount

EnterPayment()
...

Timecard

hours
date
projectCode

1 1 1

* *

* 0..1

*

...

Bill

billDate

BillForClient()
...

5.3 Design Building Blocks: Heuristics 89

from which other objects? In Figure 5-6, a timecard object can contain an employee
object and a client object, and a bill can contain one or more timecards. In addition, a
bill can indicate that a client has been billed, and a client can enter payments against
a bill. A more complicated system would include additional interactions.

Cross-Reference For details
on classes and information
hiding, see “Hide Secrets
(Information Hiding)” in
Section 5.3.

Determine the parts of each object that will be visible to other objects One of the key
design decisions is identifying the parts of an object that should be made public and those
that should be kept private. This decision has to be made for both data and methods.

Define each object’s interfaces Define the formal, syntactic, programming-language-
level interfaces to each object. The data and methods the object exposes to every other
object is called the object’s “public interface.” The parts of the object that it exposes to
derived objects via inheritance is called the object’s “protected interface.” Think about
both kinds of interfaces.

When you finish going through the steps to achieve a top-level object-oriented system
organization, you’ll iterate in two ways. You’ll iterate on the top-level system organiza-
tion to get a better organization of classes. You’ll also iterate on each of the classes
you’ve defined, driving the design of each class to a more detailed level.

Form Consistent Abstractions

Abstraction is the ability to engage with a concept while safely ignoring some of its
details—handling different details at different levels. Any time you work with an aggre-
gate, you’re working with an abstraction. If you refer to an object as a “house” rather
than a combination of glass, wood, and nails, you’re making an abstraction. If you
refer to a collection of houses as a “town,” you’re making another abstraction.

Base classes are abstractions that allow you to focus on common attributes of a set of
derived classes and ignore the details of the specific classes while you’re working on
the base class. A good class interface is an abstraction that allows you to focus on the
interface without needing to worry about the internal workings of the class. The inter-
face to a well-designed routine provides the same benefit at a lower level of detail, and
the interface to a well-designed package or subsystem provides that benefit at a higher
level of detail.

From a complexity point of view, the principal benefit of abstraction is that it allows
you to ignore irrelevant details. Most real-world objects are already abstractions of
some kind. As just mentioned, a house is an abstraction of windows, doors, siding,
wiring, plumbing, insulation, and a particular way of organizing them. A door is in
turn an abstraction of a particular arrangement of a rectangular piece of material with
hinges and a doorknob. And the doorknob is an abstraction of a particular formation
of brass, nickel, iron, or steel.

90 Chapter 5: Design in Construction

People use abstraction continuously. If you had to deal with individual wood fibers,
varnish molecules, and steel molecules every time you used your front door, you’d
hardly make it in or out of your house each day. As Figure 5-7 suggests, abstraction is
a big part of how we deal with complexity in the real world.

Figure 5-7 Abstraction allows you to take a simpler view of a complex concept.

Cross-Reference For more
details on abstraction in
class design, see “Good
Abstraction” in Section 6.2.

Software developers sometimes build systems at the wood-fiber, varnish-molecule,
and steel-molecule level. This makes the systems overly complex and intellectually
hard to manage. When programmers fail to provide larger programming abstractions,
the system itself sometimes fails to make it through the front door.

Good programmers create abstractions at the routine-interface level, class-interface
level, and package-interface level—in other words, the doorknob level, door level, and
house level—and that supports faster and safer programming.

Encapsulate Implementation Details

Encapsulation picks up where abstraction leaves off. Abstraction says, “You’re allowed
to look at an object at a high level of detail.” Encapsulation says, “Furthermore, you
aren’t allowed to look at an object at any other level of detail.”

Continuing with the housing-materials analogy: encapsulation is a way of saying that
you can look at the outside of the house but you can’t get close enough to make out
the door’s details. You are allowed to know that there’s a door, and you’re allowed to
know whether the door is open or closed, but you’re not allowed to know whether the
door is made of wood, fiberglass, steel, or some other material, and you’re certainly
not allowed to look at each individual wood fiber.

As Figure 5-8 suggests, encapsulation helps to manage complexity by forbidding you
to look at the complexity. The section titled “Good Encapsulation” in Section 6.2 pro-
vides more background on encapsulation as it applies to class design.

5.3 Design Building Blocks: Heuristics 91

Figure 5-8 Encapsulation says that, not only are you allowed to take a simpler view of a
complex concept, you are not allowed to look at any of the details of the complex concept.
What you see is what you get—it’s all you get!

Inherit—When Inheritance Simplifies the Design

In designing a software system, you’ll often find objects that are much like other
objects, except for a few differences. In an accounting system, for instance, you might
have both full-time and part-time employees. Most of the data associated with both
kinds of employees is the same, but some is different. In object-oriented program-
ming, you can define a general type of employee and then define full-time employees
as general employees, except for a few differences, and part-time employees also as
general employees, except for a few differences. When an operation on an employee
doesn’t depend on the type of employee, the operation is handled as if the employee
were just a general employee. When the operation depends on whether the employee
is full-time or part-time, the operation is handled differently.

Defining similarities and differences among such objects is called “inheritance”
because the specific part-time and full-time employees inherit characteristics from the
general-employee type.

The benefit of inheritance is that it works synergistically with the notion of abstrac-
tion. Abstraction deals with objects at different levels of detail. Recall the door that
was a collection of certain kinds of molecules at one level, a collection of wood fibers
at the next, and something that keeps burglars out of your house at the next level.
Wood has certain properties—for example, you can cut it with a saw or glue it with
wood glue—and two-by-fours or cedar shingles have the general properties of wood as
well as some specific properties of their own.

Inheritance simplifies programming because you write a general routine to handle
anything that depends on a door’s general properties and then write specific routines
to handle specific operations on specific kinds of doors. Some operations, such as

92 Chapter 5: Design in Construction

Open() or Close(), might apply regardless of whether the door is a solid door, interior
door, exterior door, screen door, French door, or sliding glass door. The ability of a
language to support operations like Open() or Close() without knowing until run time
what kind of door you’re dealing with is called “polymorphism.” Object-oriented lan-
guages such as C++, Java, and later versions of Microsoft Visual Basic support inherit-
ance and polymorphism.

Inheritance is one of object-oriented programming’s most powerful tools. It can pro-
vide great benefits when used well, and it can do great damage when used naively. For
details, see “Inheritance (“is a” Relationships)” in Section 6.3.

Hide Secrets (Information Hiding)

Information hiding is part of the foundation of both structured design and object-ori-
ented design. In structured design, the notion of “black boxes” comes from informa-
tion hiding. In object-oriented design, it gives rise to the concepts of encapsulation
and modularity and it is associated with the concept of abstraction. Information hid-
ing is one of the seminal ideas in software development, and so this subsection
explores it in depth.

Information hiding first came to public attention in a paper published by David Par-
nas in 1972 called “On the Criteria to Be Used in Decomposing Systems Into Mod-
ules.” Information hiding is characterized by the idea of “secrets,” design and
implementation decisions that a software developer hides in one place from the rest of
a program.

In the 20th Anniversary edition of The Mythical Man Month, Fred Brooks concluded
that his criticism of information hiding was one of the few ways in which the first edi-
tion of his book was wrong. “Parnas was right, and I was wrong about information
hiding,” he proclaimed (Brooks 1995). Barry Boehm reported that information hiding
was a powerful technique for eliminating rework, and he pointed out that it was par-
ticularly effective in incremental, high-change environments (Boehm 1987).

Information hiding is a particularly powerful heuristic for Software’s Primary Techni-
cal Imperative because, beginning with its name and throughout its details, it empha-
sizes hiding complexity.

Secrets and the Right to Privacy

In information hiding, each class (or package or routine) is characterized by the
design or construction decisions that it hides from all other classes. The secret might
be an area that’s likely to change, the format of a file, the way a data type is imple-
mented, or an area that needs to be walled off from the rest of the program so that
errors in that area cause as little damage as possible. The class’s job is to keep this
information hidden and to protect its own right to privacy. Minor changes to a system

5.3 Design Building Blocks: Heuristics 93

might affect several routines within a class, but they should not ripple beyond the
class interface.

Strive for class interfaces
that are complete and mini-
mal.
—Scott Meyers

One key task in designing a class is deciding which features should be known outside
the class and which should remain secret. A class might use 25 routines and expose
only 5 of them, using the other 20 internally. A class might use several data types and
expose no information about them. This aspect of class design is also known as “visi-
bility” since it has to do with which features of the class are “visible” or “exposed” out-
side the class.

The interface to a class should reveal as little as possible about its inner workings. As
shown in Figure 5-9, a class is a lot like an iceberg: seven-eighths is under water, and
you can see only the one-eighth that’s above the surface.

Figure 5-9 A good class interface is like the tip of an iceberg, leaving most of the class
unexposed.

Designing the class interface is an iterative process just like any other aspect of design.
If you don’t get the interface right the first time, try a few more times until it stabilizes.
If it doesn’t stabilize, you need to try a different approach.

An Example of Information Hiding

Suppose you have a program in which each object is supposed to have a unique ID
stored in a member variable called id. One design approach would be to use integers
for the IDs and to store the highest ID assigned so far in a global variable called
g_maxId. As each new object is allocated, perhaps in each object’s constructor, you
could simply use the id = ++g_maxId statement, which would guarantee a unique id,
and it would add the absolute minimum of code in each place an object is created.
What could go wrong with that?

94 Chapter 5: Design in Construction

A lot of things could go wrong. What if you want to reserve ranges of IDs for special
purposes? What if you want to use nonsequential IDs to improve security? What if you
want to be able to reuse the IDs of objects that have been destroyed? What if you want
to add an assertion that fires when you allocate more IDs than the maximum number
you’ve anticipated? If you allocated IDs by spreading id = ++g_maxId statements
throughout your program, you would have to change code associated with every one
of those statements. And, if your program is multithreaded, this approach won’t be
thread-safe.

The way that new IDs are created is a design decision that you should hide. If you use
the phrase ++g_maxId throughout your program, you expose the way a new ID is cre-
ated, which is simply by incrementing g_maxId. If instead you put the id = NewId()
statement throughout your program, you hide the information about how new IDs are
created. Inside the NewId() routine you might still have just one line of code, return
(++g_maxId) or its equivalent, but if you later decide to reserve certain ranges of IDs
for special purposes or to reuse old IDs, you could make those changes within the
NewId() routine itself—without touching dozens or hundreds of id = NewId() state-
ments. No matter how complicated the revisions inside NewId() might become, they
wouldn’t affect any other part of the program.

Now suppose you discover you need to change the type of the ID from an integer to a
string. If you’ve spread variable declarations like int id throughout your program, your
use of the NewId() routine won’t help. You’ll still have to go through your program
and make dozens or hundreds of changes.

An additional secret to hide is the ID’s type. By exposing the fact that IDs are inte-
gers, you encourage programmers to perform integer operations like >, <, = on them.
In C++, you could use a simple typedef to declare your IDs to be of IdType—a user-
defined type that resolves to int—rather than directly declaring them to be of type
int. Alternatively, in C++ and other languages you could create a simple IdType class.
Once again, hiding a design decision makes a huge difference in the amount of code
affected by a change.

Information hiding is useful at all levels of design, from the use of named constants
instead of literals, to creation of data types, to class design, routine design, and sub-
system design.

Two Categories of Secrets

Secrets in information hiding fall into two general camps:

■ Hiding complexity so that your brain doesn’t have to deal with it unless you’re
specifically concerned with it

■ Hiding sources of change so that when change occurs, the effects are localized

KEY POINT

5.3 Design Building Blocks: Heuristics 95

Sources of complexity include complicated data types, file structures, boolean tests,
involved algorithms, and so on. A comprehensive list of sources of change is described
later in this chapter.

Barriers to Information Hiding

Further Reading Parts of
this section are adapted
from “Designing Software
for Ease of Extension and
Contraction” (Parnas 1979).

In a few instances, information hiding is truly impossible, but most of the barriers to
information hiding are mental blocks built up from the habitual use of other techniques.

Excessive distribution of information One common barrier to information hiding is
an excessive distribution of information throughout a system. You might have hard-
coded the literal 100 throughout a system. Using 100 as a literal decentralizes refer-
ences to it. It’s better to hide the information in one place, in a constant
MAX_EMPLOYEES perhaps, whose value is changed in only one place.

Another example of excessive information distribution is interleaving interaction with
human users throughout a system. If the mode of interaction changes—say, from a
GUI interface to a command line interface—virtually all the code will have to be mod-
ified. It’s better to concentrate user interaction in a single class, package, or subsystem
you can change without affecting the whole system.

Cross-Reference For more
on accessing global data
through class interfaces, see
“Using Access Routines
Instead of Global Data” in
Section 13.3.

Yet another example would be a global data element—perhaps an array of employee
data with 1000 elements maximum that’s accessed throughout a program. If the pro-
gram uses the global data directly, information about the data item’s implementa-
tion—such as the fact that it’s an array and has a maximum of 1000 elements—will be
spread throughout the program. If the program uses the data only through access rou-
tines, only the access routines will know the implementation details.

Circular dependencies A more subtle barrier to information hiding is circular depen-
dencies, as when a routine in class A calls a routine in class B, and a routine in class B
calls a routine in class A.

Avoid such dependency loops. They make it hard to test a system because you can’t
test either class A or class B until at least part of the other is ready.

Class data mistaken for global data If you’re a conscientious programmer, one of
the barriers to effective information hiding might be thinking of class data as global
data and avoiding it because you want to avoid the problems associated with global
data. While the road to programming hell is paved with global variables, class data
presents far fewer risks.

Global data is generally subject to two problems: routines operate on global data without
knowing that other routines are operating on it, and routines are aware that other rou-
tines are operating on the global data but they don’t know exactly what they’re doing to
it. Class data isn’t subject to either of these problems. Direct access to the data is
restricted to a few routines organized into a single class. The routines are aware that other
routines operate on the data, and they know exactly which other routines they are.

96 Chapter 5: Design in Construction

Of course, this whole discussion assumes that your system makes use of well-
designed, small classes. If your program is designed to use huge classes that contain
dozens of routines each, the distinction between class data and global data will begin
to blur and class data will be subject to many of the same problems as global data.

Cross-Reference Code-level
performance optimizations
are discussed in Chapter 25,
“Code-Tuning Strategies”
and Chapter 26, “Code-Tun-
ing Techniques.”

Perceived performance penalties A final barrier to information hiding can be an
attempt to avoid performance penalties at both the architectural and the coding levels.
You don’t need to worry at either level. At the architectural level, the worry is unnec-
essary because architecting a system for information hiding doesn’t conflict with
architecting it for performance. If you keep both information hiding and performance
in mind, you can achieve both objectives.

The more common worry is at the coding level. The concern is that accessing data
items indirectly incurs run-time performance penalties for additional levels of object
instantiations, routine calls, and so on. This concern is premature. Until you can mea-
sure the system’s performance and pinpoint the bottlenecks, the best way to prepare
for code-level performance work is to create a highly modular design. When you
detect hot spots later, you can optimize individual classes and routines without affect-
ing the rest of the system.

Value of Information Hiding

Information hiding is one of the few theoretical techniques that has indisputably proven
its value in practice, which has been true for a long time (Boehm 1987a). Large pro-
grams that use information hiding were found years ago to be easier to modify—by a fac-
tor of 4—than programs that don’t (Korson and Vaishnavi 1986). Moreover, information
hiding is part of the foundation of both structured design and object-oriented design.

Information hiding has unique heuristic power, a unique ability to inspire effective
design solutions. Traditional object-oriented design provides the heuristic power of
modeling the world in objects, but object thinking wouldn’t help you avoid declaring
the ID as an int instead of an IdType. The object-oriented designer would ask, “Should
an ID be treated as an object?” Depending on the project’s coding standards, a “Yes”
answer might mean that the programmer has to write a constructor, destructor, copy
operator, and assignment operator; comment it all; and place it under configuration
control. Most programmers would decide, “No, it isn’t worth creating a whole class
just for an ID. I’ll just use ints.”

Note what just happened. A useful design alternative, that of simply hiding the ID’s
data type, was not even considered. If, instead, the designer had asked, “What about
the ID should be hidden?” he might well have decided to hide its type behind a simple
type declaration that substitutes IdType for int. The difference between object-oriented
design and information hiding in this example is more subtle than a clash of explicit
rules and regulations. Object-oriented design would approve of this design decision
as much as information hiding would. Rather, the difference is one of heuristics—

1
2
3

HARD DATA

5.3 Design Building Blocks: Heuristics 97

thinking about information hiding inspires and promotes design decisions that think-
ing about objects does not.

Information hiding can also be useful in designing a class’s public interface. The gap
between theory and practice in class design is wide, and among many class designers
the decision about what to put into a class’s public interface amounts to deciding
what interface would be the most convenient to use, which usually results in exposing
as much of the class as possible. From what I’ve seen, some programmers would
rather expose all of a class’s private data than write 10 extra lines of code to keep the
class’s secrets intact.

Asking “What does this class need to hide?” cuts to the heart of the interface-design
issue. If you can put a function or data into the class’s public interface without com-
promising its secrets, do. Otherwise, don’t.

Asking about what needs to be hidden supports good design decisions at all levels. It
promotes the use of named constants instead of literals at the construction level. It
helps in creating good routine and parameter names inside classes. It guides decisions
about class and subsystem decompositions and interconnections at the system level.

Get into the habit of asking “What should I hide?” You’ll be surprised at how many dif-
ficult design issues dissolve before your eyes.

Identify Areas Likely to Change
Further Reading The
approach described in this
section is adapted from
“Designing Software for Ease
of Extension and Contrac-
tion” (Parnas 1979).

A study of great designers found that one attribute they had in common was their abil-
ity to anticipate change (Glass 1995). Accommodating changes is one of the most
challenging aspects of good program design. The goal is to isolate unstable areas so
that the effect of a change will be limited to one routine, class, or package. Here are the
steps you should follow in preparing for such perturbations.

1. Identify items that seem likely to change. If the requirements have been done
well, they include a list of potential changes and the likelihood of each change.
In such a case, identifying the likely changes is easy. If the requirements don’t
cover potential changes, see the discussion that follows of areas that are likely to
change on any project.

2. Separate items that are likely to change. Compartmentalize each volatile com-
ponent identified in step 1 into its own class or into a class with other volatile
components that are likely to change at the same time.

3. Isolate items that seem likely to change. Design the interclass interfaces to be
insensitive to the potential changes. Design the interfaces so that changes are
limited to the inside of the class and the outside remains unaffected. Any other
class using the changed class should be unaware that the change has occurred.
The class’s interface should protect its secrets.

KEY POINT

98 Chapter 5: Design in Construction

Here are a few areas that are likely to change:

Cross-Reference One of the
most powerful techniques
for anticipating change is to
use table-driven methods.
For details, see Chapter 18,
“Table-Driven Methods.”

Business rules Business rules tend to be the source of frequent software changes.
Congress changes the tax structure, a union renegotiates its contract, or an insurance
company changes its rate tables. If you follow the principle of information hiding,
logic based on these rules won’t be strewn throughout your program. The logic will
stay hidden in a single dark corner of the system until it needs to be changed.

Hardware dependencies Examples of hardware dependencies include interfaces to
screens, printers, keyboards, mice, disk drives, sound facilities, and communications
devices. Isolate hardware dependencies in their own subsystem or class. Isolating
such dependencies helps when you move the program to a new hardware environ-
ment. It also helps initially when you’re developing a program for volatile hardware.
You can write software that simulates interaction with specific hardware, have the
hardware-interface subsystem use the simulator as long as the hardware is unstable or
unavailable, and then unplug the hardware-interface subsystem from the simulator
and plug the subsystem into the hardware when it’s ready to use.

Input and output At a slightly higher level of design than raw hardware interfaces,
input/output is a volatile area. If your application creates its own data files, the file for-
mat will probably change as your application becomes more sophisticated. User-level
input and output formats will also change—the positioning of fields on the page, the
number of fields on each page, the sequence of fields, and so on. In general, it’s a good
idea to examine all external interfaces for possible changes.

Nonstandard language features Most language implementations contain handy,
nonstandard extensions. Using the extensions is a double-edged sword because they
might not be available in a different environment, whether the different environment
is different hardware, a different vendor’s implementation of the language, or a new
version of the language from the same vendor.

If you use nonstandard extensions to your programming language, hide those exten-
sions in a class of their own so that you can replace them with your own code when
you move to a different environment. Likewise, if you use library routines that aren’t
available in all environments, hide the actual library routines behind an interface that
works just as well in another environment.

Difficult design and construction areas It’s a good idea to hide difficult design and
construction areas because they might be done poorly and you might need to do them
again. Compartmentalize them and minimize the impact their bad design or construc-
tion might have on the rest of the system.

Status variables Status variables indicate the state of a program and tend to be
changed more frequently than most other data. In a typical scenario, you might origi-
nally define an error-status variable as a boolean variable and decide later that it

5.3 Design Building Blocks: Heuristics 99

would be better implemented as an enumerated type with the values ErrorType_None,
ErrorType_Warning, and ErrorType_Fatal.

You can add at least two levels of flexibility and readability to your use of status vari-
ables:

■ Don’t use a boolean variable as a status variable. Use an enumerated type
instead. It’s common to add a new state to a status variable, and adding a new
type to an enumerated type requires a mere recompilation rather than a major
revision of every line of code that checks the variable.

■ Use access routines rather than checking the variable directly. By checking the
access routine rather than the variable, you allow for the possibility of more
sophisticated state detection. For example, if you wanted to check combinations
of an error-state variable and a current-function-state variable, it would be easy
to do if the test were hidden in a routine and hard to do if it were a complicated
test hard-coded throughout the program.

Data-size constraints When you declare an array of size 100, you’re exposing infor-
mation to the world that the world doesn’t need to see. Defend your right to privacy!
Information hiding isn’t always as complicated as a whole class. Sometimes it’s as sim-
ple as using a named constant such as MAX_EMPLOYEES to hide a 100.

Anticipating Different Degrees of Change

Cross-Reference This sec-
tion’s approach to anticipat-
ing change does not involve
designing ahead or coding
ahead. For a discussion of
those practices, see “A pro-
gram contains code that
seems like it might be needed
someday” in Section 24.2.

When thinking about potential changes to a system, design the system so that the
effect or scope of the change is proportional to the chance that the change will occur.
If a change is likely, make sure that the system can accommodate it easily. Only
extremely unlikely changes should be allowed to have drastic consequences for more
than one class in a system. Good designers also factor in the cost of anticipating
change. If a change is not terribly likely but easy to plan for, you should think harder
about anticipating it than if it isn’t very likely and is difficult to plan for.

Further Reading This dis-
cussion draws on the
approach described in “On
the design and development
of program families” (Parnas
1976).

A good technique for identifying areas likely to change is first to identify the minimal
subset of the program that might be of use to the user. The subset makes up the core
of the system and is unlikely to change. Next, define minimal increments to the sys-
tem. They can be so small that they seem trivial. As you consider functional changes,
be sure also to consider qualitative changes: making the program thread-safe, making
it localizable, and so on. These areas of potential improvement constitute potential
changes to the system; design these areas using the principles of information hiding.
By identifying the core first, you can see which components are really add-ons and
then extrapolate and hide improvements from there.

100 Chapter 5: Design in Construction

Keep Coupling Loose

Coupling describes how tightly a class or routine is related to other classes or rou-
tines. The goal is to create classes and routines with small, direct, visible, and flexible
relations to other classes and routines, which is known as “loose coupling.” The con-
cept of coupling applies equally to classes and routines, so for the rest of this discus-
sion I’ll use the word “module” to refer to both classes and routines.

Good coupling between modules is loose enough that one module can easily be used
by other modules. Model railroad cars are coupled by opposing hooks that latch
when pushed together. Connecting two cars is easy—you just push the cars together.
Imagine how much more difficult it would be if you had to screw things together, or
connect a set of wires, or if you could connect only certain kinds of cars to certain
other kinds of cars. The coupling of model railroad cars works because it’s as simple
as possible. In software, make the connections among modules as simple as possible.

Try to create modules that depend little on other modules. Make them detached, as
business associates are, rather than attached, as Siamese twins are. A routine like sin()
is loosely coupled because everything it needs to know is passed in to it with one
value representing an angle in degrees. A routine such as InitVars(var 1, var2, var3, ...,
varN) is more tightly coupled because, with all the variables it must pass, the calling
module practically knows what is happening inside InitVars(). Two classes that
depend on each other’s use of the same global data are even more tightly coupled.

Coupling Criteria

Here are several criteria to use in evaluating coupling between modules:

Size Size refers to the number of connections between modules. With coupling,
small is beautiful because it’s less work to connect other modules to a module that has
a smaller interface. A routine that takes one parameter is more loosely coupled to
modules that call it than a routine that takes six parameters. A class with four well-
defined public methods is more loosely coupled to modules that use it than a class
that exposes 37 public methods.

Visibility Visibility refers to the prominence of the connection between two mod-
ules. Programming is not like being in the CIA; you don’t get credit for being sneaky.
It’s more like advertising; you get lots of credit for making your connections as blatant
as possible. Passing data in a parameter list is making an obvious connection and is
therefore good. Modifying global data so that another module can use that data is a
sneaky connection and is therefore bad. Documenting the global-data connection
makes it more obvious and is slightly better.

Flexibility Flexibility refers to how easily you can change the connections between
modules. Ideally, you want something more like the USB connector on your computer
than like bare wire and a soldering gun. Flexibility is partly a product of the other

5.3 Design Building Blocks: Heuristics 101

coupling characteristics, but it’s a little different too. Suppose you have a routine that
looks up the amount of vacation an employee receives each year, given a hiring date and
a job classification. Name the routine LookupVacationBenefit(). Suppose in another
module you have an employee object that contains the hiring date and the job classifica-
tion, among other things, and that module passes the object to LookupVacationBenefit().

From the point of view of the other criteria, the two modules would look loosely cou-
pled. The employee connection between the two modules is visible, and there’s only
one connection. Now suppose that you need to use the LookupVacationBenefit() mod-
ule from a third module that doesn’t have an employee object but that does have a hir-
ing date and a job classification. Suddenly LookupVacationBenefit() looks less friendly,
unwilling to associate with the new module.

For the third module to use LookupVacationBenefit(), it has to know about the
Employee class. It could dummy up an employee object with only two fields, but that
would require internal knowledge of LookupVacationBenefit(), namely that those are
the only fields it uses. Such a solution would be a kludge, and an ugly one. The second
option would be to modify LookupVacationBenefit() so that it would take hiring date
and job classification instead of employee. In either case, the original module turns out
to be a lot less flexible than it seemed to be at first.

The happy ending to the story is that an unfriendly module can make friends if it’s
willing to be flexible—in this case, by changing to take hiring date and job classifica-
tion specifically instead of employee.

In short, the more easily other modules can call a module, the more loosely coupled
it is, and that’s good because it’s more flexible and maintainable. In creating a system
structure, break up the program along the lines of minimal interconnectedness. If a
program were a piece of wood, you would try to split it with the grain.

Kinds of Coupling

Here are the most common kinds of coupling you’ll encounter.

Simple-data-parameter coupling Two modules are simple-data-parameter coupled if
all the data passed between them are of primitive data types and all the data is passed
through parameter lists. This kind of coupling is normal and acceptable.

Simple-object coupling A module is simple-object coupled to an object if it instanti-
ates that object. This kind of coupling is fine.

Object-parameter coupling Two modules are object-parameter coupled to each
other if Object1 requires Object2 to pass it an Object3. This kind of coupling is tighter
than Object1 requiring Object2 to pass it only primitive data types because it requires
Object2 to know about Object3.

102 Chapter 5: Design in Construction

Semantic coupling The most insidious kind of coupling occurs when one module
makes use not of some syntactic element of another module but of some semantic
knowledge of another module’s inner workings. Here are some examples:

■ Module1 passes a control flag to Module2 that tells Module2 what to do. This
approach requires Module1 to make assumptions about the internal workings of
Module2, namely what Module2 is going to do with the control flag. If Module2
defines a specific data type for the control flag (enumerated type or object), this
usage is probably OK.

■ Module2 uses global data after the global data has been modified by Module1.
This approach requires Module2 to assume that Module1 has modified the data
in the ways Module2 needs it to be modified, and that Module1 has been called at
the right time.

■ Module1’s interface states that its Module1.Initialize() routine should be called
before its Module1.Routine() is called. Module2 knows that Module1.Routine()
calls Module1.Initialize() anyway, so it just instantiates Module1 and calls
Module1.Routine() without calling Module1.Initialize() first.

■ Module1 passes Object to Module2. Because Module1 knows that Module2 uses
only three of Object’s seven methods, it initializes Object only partially—with the
specific data those three methods need.

■ Module1 passes BaseObject to Module2. Because Module2 knows that Module1 is
really passing it DerivedObject, it casts BaseObject to DerivedObject and calls
methods that are specific to DerivedObject.

Semantic coupling is dangerous because changing code in the used module can break
code in the using module in ways that are completely undetectable by the compiler.
When code like this breaks, it breaks in subtle ways that seem unrelated to the change
made in the used module, which turns debugging into a Sisyphean task.

The point of loose coupling is that an effective module provides an additional level of
abstraction—once you write it, you can take it for granted. It reduces overall program
complexity and allows you to focus on one thing at a time. If using a module requires
you to focus on more than one thing at once—knowledge of its internal workings,
modification to global data, uncertain functionality—the abstractive power is lost and
the module’s ability to help manage complexity is reduced or eliminated.

Classes and routines are first and foremost intellectual tools for reducing complexity.
If they’re not making your job simpler, they’re not doing their jobs.

KEY POINT

5.3 Design Building Blocks: Heuristics 103

Look for Common Design Patterns
cc2e.com/0585 Design patterns provide the cores of ready-made solutions that can be used to solve

many of software’s most common problems. Some software problems require solutions
that are derived from first principles. But most problems are similar to past problems,
and those can be solved using similar solutions, or patterns. Common patterns include
Adapter, Bridge, Decorator, Facade, Factory Method, Observor, Singleton, Strategy, and
Template Method. The book Design Patterns by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (1995) is the definitive description of design patterns.

Patterns provide several benefits that fully custom design doesn’t:

Patterns reduce complexity by providing ready-made abstractions If you say, “This
code uses a Factory Method to create instances of derived classes,” other program-
mers on your project will understand that your code involves a fairly rich set of inter-
relationships and programming protocols, all of which are invoked when you refer to
the design pattern of Factory Method.

The Factory Method is a pattern that allows you to instantiate any class derived from
a specific base class without needing to keep track of the individual derived classes
anywhere but the Factory Method. For a good discussion of the Factory Method pat-
tern, see “Replace Constructor with Factory Method” in Refactoring (Fowler 1999).

You don’t have to spell out every line of code for other programmers to understand
the design approach found in your code.

Patterns reduce errors by institutionalizing details of common solutions Software
design problems contain nuances that emerge fully only after the problem has been
solved once or twice (or three times, or four times, or...). Because patterns represent
standardized ways of solving common problems, they embody the wisdom accumu-
lated from years of attempting to solve those problems, and they also embody the cor-
rections to the false attempts that people have made in solving those problems.

Using a design pattern is thus conceptually similar to using library code instead of
writing your own. Sure, everybody has written a custom Quicksort a few times, but
what are the odds that your custom version will be fully correct on the first try? Simi-
larly, numerous design problems are similar enough to past problems that you’re bet-
ter off using a prebuilt design solution than creating a novel solution.

Patterns provide heuristic value by suggesting design alternatives A designer who’s
familiar with common patterns can easily run through a list of patterns and ask
“Which of these patterns fits my design problem?” Cycling through a set of familiar
alternatives is immeasurably easier than creating a custom design solution out of
whole cloth. And the code arising from a familiar pattern will also be easier for readers
of the code to understand than fully custom code would be.

104 Chapter 5: Design in Construction

Patterns streamline communication by moving the design dialog to a higher level In
addition to their complexity-management benefit, design patterns can accelerate
design discussions by allowing designers to think and discuss at a larger level of gran-
ularity. If you say “I can’t decide whether I should use a Creator or a Factory Method
in this situation,” you’ve communicated a great deal with just a few words—as long as
you and your listener are both familiar with those patterns. Imagine how much longer
it would take you to dive into the details of the code for a Creator pattern and the code
for a Factory Method pattern and then compare and contrast the two approaches.

If you’re not already familiar with design patterns, Table 5-1 summarizes some of the
most common patterns to stimulate your interest.

If you haven’t seen design patterns before, your reaction to the descriptions in Table 5-
1 might be “Sure, I already know most of these ideas.” That reaction is a big part of
why design patterns are valuable. Patterns are familiar to most experienced program-
mers, and assigning recognizable names to them supports efficient and effective com-
munication about them.

Table 5-1 Popular Design Patterns

Pattern Description

Abstract Factory Supports creation of sets of related objects by specifying the kind
of set but not the kinds of each specific object.

Adapter Converts the interface of a class to a different interface.

Bridge Builds an interface and an implementation in such a way that
either can vary without the other varying.

Composite Consists of an object that contains additional objects of its own
type so that client code can interact with the top-level object and
not concern itself with all the detailed objects.

Decorator Attaches responsibilities to an object dynamically, without creating
specific subclasses for each possible configuration of responsibilities.

Facade Provides a consistent interface to code that wouldn’t otherwise
offer a consistent interface.

Factory Method Instantiates classes derived from a specific base class without
needing to keep track of the individual derived classes anywhere
but the Factory Method.

Iterator A server object that provides access to each element in a set
sequentially.

Observer Keeps multiple objects in synch with one another by making an
object responsible for notifying the set of related objects about
changes to any member of the set.

Singleton Provides global access to a class that has one and only one instance.

Strategy Defines a set of algorithms or behaviors that are dynamically
interchangeable with each other.

Template Method Defines the structure of an algorithm but leaves some of the
detailed implementation to subclasses.

5.3 Design Building Blocks: Heuristics 105

One potential trap with patterns is force-fitting code to use a pattern. In some cases, shift-
ing code slightly to conform to a well-recognized pattern will improve understandability
of the code. But if the code has to be shifted too far, forcing it to look like a standard pat-
tern can sometimes increase complexity.

Another potential trap with patterns is feature-itis: using a pattern because of a desire
to try out a pattern rather than because the pattern is an appropriate design solution.

Overall, design patterns are a powerful tool for managing complexity. You can read more
detailed descriptions in any of the good books that are listed at the end of this chapter.

Other Heuristics

The preceding sections describe the major software design heuristics. Following are a few
other heuristics that might not be useful quite as often but are still worth mentioning.

Aim for Strong Cohesion

Cohesion arose from structured design and is usually discussed in the same context
as coupling. Cohesion refers to how closely all the routines in a class or all the code in
a routine support a central purpose—how focused the class is. Classes that contain
strongly related functionality are described as having strong cohesion, and the heuris-
tic goal is to make cohesion as strong as possible. Cohesion is a useful tool for manag-
ing complexity because the more that code in a class supports a central purpose, the
more easily your brain can remember everything the code does.

Thinking about cohesion at the routine level has been a useful heuristic for decades
and is still useful today. At the class level, the heuristic of cohesion has largely been
subsumed by the broader heuristic of well-defined abstractions, which was discussed
earlier in this chapter and in Chapter 6. Abstractions are useful at the routine level,
too, but on a more even footing with cohesion at that level of detail.

Build Hierarchies

A hierarchy is a tiered information structure in which the most general or abstract rep-
resentation of concepts is contained at the top of the hierarchy, with increasingly
detailed, specialized representations at the hierarchy’s lower levels. In software,
hierarchies are found in class hierarchies, and, as Level 4 in Figure 5-2 illustrated, in
routine-calling hierarchies as well.

Hierarchies have been an important tool for managing complex sets of information for
at least 2000 years. Aristotle used a hierarchy to organize the animal kingdom.
Humans frequently use outlines to organize complex information (like this book).
Researchers have found that people generally find hierarchies to be a natural way to
organize complex information. When they draw a complex object such as a house,
they draw it hierarchically. First they draw the outline of the house, then the windows

106 Chapter 5: Design in Construction

and doors, and then more details. They don’t draw the house brick by brick, shingle
by shingle, or nail by nail (Simon 1996).

Hierarchies are a useful tool for achieving Software’s Primary Technical Imperative
because they allow you to focus on only the level of detail you’re currently concerned
with. The details don’t go away completely; they’re simply pushed to another level so
that you can think about them when you want to rather than thinking about all the
details all of the time.

Formalize Class Contracts

Cross-Reference For more
on contracts, see “Use asser-
tions to document and verify
preconditions and postcon-
ditions” in Section 8.2.

At a more detailed level, thinking of each class’s interface as a contract with the rest of
the program can yield good insights. Typically, the contract is something like “If you
promise to provide data x, y, and z and you promise they’ll have characteristics a, b,
and c, I promise to perform operations 1, 2, and 3 within constraints 8, 9, and 10.” The
promises the clients of the class make to the class are typically called “preconditions,”
and the promises the object makes to its clients are called the “postconditions.”

Contracts are useful for managing complexity because, at least in theory, the object can
safely ignore any noncontractual behavior. In practice, this issue is much more difficult.

Assign Responsibilities

Another heuristic is to think through how responsibilities should be assigned to
objects. Asking what each object should be responsible for is similar to asking what
information it should hide, but I think it can produce broader answers, which gives
the heuristic unique value.

Design for Test

A thought process that can yield interesting design insights is to ask what the system will
look like if you design it to facilitate testing. Do you need to separate the user interface
from the rest of the code so that you can exercise it independently? Do you need to orga-
nize each subsystem so that it minimizes dependencies on other subsystems? Designing
for test tends to result in more formalized class interfaces, which is generally beneficial.

Avoid Failure

Civil engineering professor Henry Petroski wrote an interesting book, Design Paradigms:
Case Histories of Error and Judgment in Engineering (Petroski 1994), that chronicles the
history of failures in bridge design. Petroski argues that many spectacular bridge failures
have occurred because of focusing on previous successes and not adequately consider-
ing possible failure modes. He concludes that failures like the Tacoma Narrows bridge
could have been avoided if the designers had carefully considered the ways the bridge
might fail and not just copied the attributes of other successful designs.

5.3 Design Building Blocks: Heuristics 107

The high-profile security lapses of various well-known systems the past few years
make it hard to disagree that we should find ways to apply Petroski’s design-failure
insights to software.

Choose Binding Time Consciously

Cross-Reference For more
on binding time, see Section
10.6, “Binding Time.”

Binding time refers to the time a specific value is bound to a variable. Code that binds
early tends to be simpler, but it also tends to be less flexible. Sometimes you can get a
good design insight from asking questions like these: What if I bound these values
earlier? What if I bound these values later? What if I initialized this table right here in
the code? What if I read the value of this variable from the user at run time?

Make Central Points of Control

P.J. Plauger says his major concern is “The Principle of One Right Place—there should
be One Right Place to look for any nontrivial piece of code, and One Right Place to
make a likely maintenance change” (Plauger 1993). Control can be centralized in
classes, routines, preprocessor macros, #include files—even a named constant is an
example of a central point of control.

The reduced-complexity benefit is that the fewer places you have to look for some-
thing, the easier and safer it will be to change.

Consider Using Brute Force

When in doubt, use brute
force.
—Butler Lampson

One powerful heuristic tool is brute force. Don’t underestimate it. A brute-force solu-
tion that works is better than an elegant solution that doesn’t work. It can take a long
time to get an elegant solution to work. In describing the history of searching algo-
rithms, for example, Donald Knuth pointed out that even though the first description
of a binary search algorithm was published in 1946, it took another 16 years for some-
one to publish an algorithm that correctly searched lists of all sizes (Knuth 1998). A
binary search is more elegant, but a brute-force, sequential search is often sufficient.

Draw a Diagram

Diagrams are another powerful heuristic tool. A picture is worth 1000 words—kind of.
You actually want to leave out most of the 1000 words because one point of using a
picture is that a picture can represent the problem at a higher level of abstraction.
Sometimes you want to deal with the problem in detail, but other times you want to be
able to work with more generality.

Keep Your Design Modular

Modularity’s goal is to make each routine or class like a “black box”: You know what
goes in, and you know what comes out, but you don’t know what happens inside. A

108 Chapter 5: Design in Construction

black box has such a simple interface and such well-defined functionality that for any
specific input you can accurately predict the corresponding output.

The concept of modularity is related to information hiding, encapsulation, and other
design heuristics. But sometimes thinking about how to assemble a system from a set
of black boxes provides insights that information hiding and encapsulation don’t, so
the concept is worth having in your back pocket.

Summary of Design Heuristics
More alarming, the same
programmer is quite capa-
ble of doing the same task
himself in two or three
ways, sometimes uncon-
sciously, but quite often
simply for a change, or to
provide elegant variation.
—A. R. Brown and W. A.
Sampson

Here’s a summary of major design heuristics:

■ Find Real-World Objects

■ Form Consistent Abstractions

■ Encapsulate Implementation Details

■ Inherit When Possible

■ Hide Secrets (Information Hiding)

■ Identify Areas Likely to Change

■ Keep Coupling Loose

■ Look for Common Design Patterns

The following heuristics are sometimes useful too:

■ Aim for Strong Cohesion

■ Build Hierarchies

■ Formalize Class Contracts

■ Assign Responsibilities

■ Design for Test

■ Avoid Failure

■ Choose Binding Time Consciously

■ Make Central Points of Control

■ Consider Using Brute Force

■ Draw a Diagram

■ Keep Your Design Modular

5.3 Design Building Blocks: Heuristics 109

Guidelines for Using Heuristics

Approaches to design in software can learn from approaches to design in other fields.
One of the original books on heuristics in problem solving was G. Polya’s How to Solve
It (1957). Polya’s generalized problem-solving approach focuses on problem solving
in mathematics. Figure 5-10 is a summary of his approach, adapted from a similar
summary in his book (emphases his).

cc2e.com/0592

Figure 5-10 G. Polya developed an approach to problem solving in mathematics that’s also
useful in solving problems in software design (Polya 1957).

1. Understanding the Problem. You have to understand the problem.

 What is the unknown? What are the data? What is the condition? Is it possible to satisfy
the condition? Is the condition sufficient to determine the unknown? Or is it
insufficient? Or redundant? Or contradictory?
 Draw a figure. Introduce suitable notation. Separate the various parts of the
condition. Can you write them down?

2. Devising a Plan. Find the connection between the data and the unknown. You
might be obliged to consider auxiliary problems if you can't find an intermediate
connection. You should eventually come up with a plan of the solution.

 Have you seen the problem before? Or have you seen the same problem in a
slightly different form? Do you know a related problem? Do you know a theorem that
could be useful?
 Look at the unknown! And try to think of a familiar problem having the same or a
similar unknown. Here is a problem related to yours and solved before. Can you use it?
Can you use its result? Can you use its method? Should you introduce some auxiliary
element in order to make its use possible?
 Can you restate the problem? Can you restate it still differently? Go back to
definitions.
 If you cannot solve the proposed problem, try to solve some related problem first.
Can you imagine a more accessible related problem? A more general problem? A
more special problem? An analogous problem? Can you solve a part of the problem?
Keep only a part of the condition, drop the other part; how far is the unknown then
determined, how can it vary? Can you derive something useful from the data? Can
you think of other data appropriate for determining the unknown? Can you change
the unknown or the data, or both if necessary, so that the new unknown and the new
data are nearer to each other?
 Did you use all the data? Did you use the whole condition? Have you taken into
account all essential notions involved in the problem?

3. Carrying out the Plan. Carry out your plan.

 Carrying out your plan of the solution, check each step. Can you see clearly that the
step is correct? Can you prove that it's correct?

4. Looking Back. Examine the solution.

 Can you check the result? Can you check the argument? Can you derive the result
differently? Can you see it at a glance?
 Can you use the result, or the method, for some other problem?

110 Chapter 5: Design in Construction

One of the most effective guidelines is not to get stuck on a single approach. If dia-
gramming the design in UML isn’t working, write it in English. Write a short test pro-
gram. Try a completely different approach. Think of a brute-force solution. Keep
outlining and sketching with your pencil, and your brain will follow. If all else fails,
walk away from the problem. Literally go for a walk, or think about something else
before returning to the problem. If you’ve given it your best and are getting nowhere,
putting it out of your mind for a time often produces results more quickly than sheer
persistence can.

You don’t have to solve the whole design problem at once. If you get stuck, remember
that a point needs to be decided but recognize that you don’t yet have enough infor-
mation to resolve that specific issue. Why fight your way through the last 20 percent
of the design when it will drop into place easily the next time through? Why make bad
decisions based on limited experience with the design when you can make good deci-
sions based on more experience with it later? Some people are uncomfortable if they
don’t come to closure after a design cycle, but after you have created a few designs
without resolving issues prematurely, it will seem natural to leave issues unresolved
until you have more information (Zahniser 1992, Beck 2000).

5.4 Design Practices
The preceding section focused on heuristics related to design attributes—what you
want the completed design to look like. This section describes design practice heuris-
tics, steps you can take that often produce good results.

Iterate

You might have had an experience in which you learned so much from writing a pro-
gram that you wished you could write it again, armed with the insights you gained
from writing it the first time. The same phenomenon applies to design, but the design
cycles are shorter and the effects downstream are bigger, so you can afford to whirl
through the design loop a few times.

Design is an iterative process. You don’t usually go from point A only to point B; you
go from point A to point B and back to point A.

As you cycle through candidate designs and try different approaches, you’ll look at
both high-level and low-level views. The big picture you get from working with high-
level issues will help you to put the low-level details in perspective. The details you
get from working with low-level issues will provide a foundation in solid reality for
the high-level decisions. The tug and pull between top-level and bottom-level

KEY POINT

5.4 Design Practices 111

considerations is a healthy dynamic; it creates a stressed structure that’s more stable
than one built wholly from the top down or the bottom up.

Many programmers—many people, for that matter—have trouble ranging between high-
level and low-level considerations. Switching from one view of a system to another is
mentally strenuous, but it’s essential to creating effective designs. For entertaining exer-
cises to enhance your mental flexibility, read Conceptual Blockbusting (Adams 2001),
described in the “Additional Resources” section at the end of the chapter.

Cross-Reference Refactor-
ing is a safe way to try differ-
ent alternatives in code. For
more on this, see Chapter
24, "Refactoring."

When you come up with a first design attempt that seems good enough, don’t stop!
The second attempt is nearly always better than the first, and you learn things on each
attempt that can improve your overall design. After trying a thousand different mate-
rials for a light bulb filament with no success, Thomas Edison was reportedly asked if
he felt his time had been wasted since he had discovered nothing. “Nonsense,” Edison
is supposed to have replied. “I have discovered a thousand things that don’t work.” In
many cases, solving the problem with one approach will produce insights that will
enable you to solve the problem using another approach that’s even better.

Divide and Conquer

As Edsger Dijkstra pointed out, no one’s skull is big enough to contain all the details
of a complex program, and that applies just as well to design. Divide the program into
different areas of concern, and then tackle each of those areas individually. If you run
into a dead end in one of the areas, iterate!

Incremental refinement is a powerful tool for managing complexity. As Polya recom-
mended in mathematical problem solving, understand the problem, devise a plan,
carry out the plan, and then look back to see how you did (Polya 1957).

Top-Down and Bottom-Up Design Approaches

“Top down” and “bottom up” might have an old-fashioned sound, but they provide
valuable insight into the creation of object-oriented designs. Top-down design begins
at a high level of abstraction. You define base classes or other nonspecific design ele-
ments. As you develop the design, you increase the level of detail, identifying derived
classes, collaborating classes, and other detailed design elements.

Bottom-up design starts with specifics and works toward generalities. It typically
begins by identifying concrete objects and then generalizes aggregations of objects
and base classes from those specifics.

Some people argue vehemently that starting with generalities and working toward
specifics is best, and some argue that you can’t really identify general design principles
until you’ve worked out the significant details. Here are the arguments on both sides.

112 Chapter 5: Design in Construction

Argument for Top Down

The guiding principle behind the top-down approach is the idea that the human brain
can concentrate on only a certain amount of detail at a time. If you start with general
classes and decompose them into more specialized classes step by step, your brain
isn’t forced to deal with too many details at once.

The divide-and-conquer process is iterative in a couple of senses. First, it’s iterative
because you usually don’t stop after one level of decomposition. You keep going for
several levels. Second, it’s iterative because you don’t usually settle for your first
attempt. You decompose a program one way. At various points in the decomposition,
you’ll have choices about which way to partition the subsystems, lay out the inherit-
ance tree, and form compositions of objects. You make a choice and see what hap-
pens. Then you start over and decompose it another way and see whether that works
better. After several attempts, you’ll have a good idea of what will work and why.

How far do you decompose a program? Continue decomposing until it seems as if it
would be easier to code the next level than to decompose it. Work until you become
somewhat impatient at how obvious and easy the design seems. At that point, you’re
done. If it’s not clear, work some more. If the solution is even slightly tricky for you
now, it’ll be a bear for anyone who works on it later.

Argument for Bottom Up

Sometimes the top-down approach is so abstract that it’s hard to get started. If you
need to work with something more tangible, try the bottom-up design approach. Ask
yourself, “What do I know this system needs to do?” Undoubtedly, you can answer
that question. You might identify a few low-level responsibilities that you can assign to
concrete classes. For example, you might know that a system needs to format a partic-
ular report, compute data for that report, center its headings, display the report on the
screen, print the report on a printer, and so on. After you identify several low-level
responsibilities, you’ll usually start to feel comfortable enough to look at the top again.

In some other cases, major attributes of the design problem are dictated from the bot-
tom. You might have to interface with hardware devices whose interface requirements
dictate large chunks of your design.

Here are some things to keep in mind as you do bottom-up composition:

■ Ask yourself what you know the system needs to do.

■ Identify concrete objects and responsibilities from that question.

■ Identify common objects, and group them using subsystem organization, pack-
ages, composition within objects, or inheritance, whichever is appropriate.

■ Continue with the next level up, or go back to the top and try again to work down.

5.4 Design Practices 113

No Argument, Really

The key difference between top-down and bottom-up strategies is that one is a decom-
position strategy and the other is a composition strategy. One starts from the general
problem and breaks it into manageable pieces; the other starts with manageable
pieces and builds up a general solution. Both approaches have strengths and weak-
nesses that you’ll want to consider as you apply them to your design problems.

The strength of top-down design is that it’s easy. People are good at breaking some-
thing big into smaller components, and programmers are especially good at it.

Another strength of top-down design is that you can defer construction details. Since
systems are often perturbed by changes in construction details (for example, changes
in a file structure or a report format), it’s useful to know early on that those details
should be hidden in classes at the bottom of the hierarchy.

One strength of the bottom-up approach is that it typically results in early identifica-
tion of needed utility functionality, which results in a compact, well-factored design. If
similar systems have already been built, the bottom-up approach allows you to start
the design of the new system by looking at pieces of the old system and asking “What
can I reuse?”

A weakness of the bottom-up composition approach is that it’s hard to use exclusively.
Most people are better at taking one big concept and breaking it into smaller concepts
than they are at taking small concepts and making one big one. It’s like the old assem-
ble-it-yourself problem: I thought I was done, so why does the box still have parts in it?
Fortunately, you don’t have to use the bottom-up composition approach exclusively.

Another weakness of the bottom-up design strategy is that sometimes you find that
you can’t build a program from the pieces you’ve started with. You can’t build an air-
plane from bricks, and you might have to work at the top before you know what kinds
of pieces you need at the bottom.

To summarize, top down tends to start simple, but sometimes low-level complexity
ripples back to the top, and those ripples can make things more complex than they
really needed to be. Bottom up tends to start complex, but identifying that complexity
early on leads to better design of the higher-level classes—if the complexity doesn’t tor-
pedo the whole system first!

In the final analysis, top-down and bottom-up design aren’t competing strategies—
they’re mutually beneficial. Design is a heuristic process, which means that no solu-
tion is guaranteed to work every time. Design contains elements of trial and error. Try
a variety of approaches until you find one that works well.

114 Chapter 5: Design in Construction

Experimental Prototyping
cc2e.com/0599 Sometimes you can’t really know whether a design will work until you better under-

stand some implementation detail. You might not know if a particular database orga-
nization will work until you know whether it will meet your performance goals. You
might not know whether a particular subsystem design will work until you select the
specific GUI libraries you’ll be working with. These are examples of the essential
“wickedness” of software design—you can’t fully define the design problem until
you’ve at least partially solved it.

A general technique for addressing these questions at low cost is experimental proto-
typing. The word “prototyping” means lots of different things to different people
(McConnell 1996). In this context, prototyping means writing the absolute minimum
amount of throwaway code that’s needed to answer a specific design question.

Prototyping works poorly when developers aren’t disciplined about writing the abso-
lute minimum of code needed to answer a question. Suppose the design question is,
“Can the database framework we’ve selected support the transaction volume we
need?” You don’t need to write any production code to answer that question. You
don’t even need to know the database specifics. You just need to know enough to
approximate the problem space—number of tables, number of entries in the tables,
and so on. You can then write very simple prototyping code that uses tables with
names like Table1, Table2, and Column1, and Column2, populate the tables with junk
data, and do your performance testing.

Prototyping also works poorly when the design question is not specific enough. A
design question like “Will this database framework work?” does not provide enough
direction for prototyping. A design question like “Will this database framework sup-
port 1,000 transactions per second under assumptions X, Y, and Z?” provides a more
solid basis for prototyping.

A final risk of prototyping arises when developers do not treat the code as throwaway
code. I have found that it is not possible for people to write the absolute minimum
amount of code to answer a question if they believe that the code will eventually end
up in the production system. They end up implementing the system instead of proto-
typing. By adopting the attitude that once the question is answered the code will be
thrown away, you can minimize this risk. One way to avoid this problem is to create
prototypes in a different technology than the production code. You could prototype a
Java design in Python or mock up a user interface in Microsoft PowerPoint. If you do
create prototypes using the production technology, a practical standard that can help
is requiring that class names or package names for prototype code be prefixed with
prototype. That at least makes a programmer think twice before trying to extend pro-
totype code (Stephens 2003).

5.4 Design Practices 115

Used with discipline, prototyping is the workhorse tool a designer has to combat design
wickedness. Used without discipline, prototyping adds some wickedness of its own.

Collaborative Design
Cross-Reference For more
details on collaborative devel-
opment, see Chapter 21,
“Collaborative Construction.”

In design, two heads are often better than one, whether those two heads are organized
formally or informally. Collaboration can take any of several forms:

■ You informally walk over to a co-worker’s desk and ask to bounce some ideas
around.

■ You and your co-worker sit together in a conference room and draw design alter-
natives on a whiteboard.

■ You and your co-worker sit together at the keyboard and do detailed design in
the programming language you’re using—that is, you can use pair programming,
described in Chapter 21, “Collaborative Construction.”

■ You schedule a meeting to walk through your design ideas with one or more co-
workers.

■ You schedule a formal inspection with all the structure described in Chapter 21.

■ You don’t work with anyone who can review your work, so you do some initial
work, put it into a drawer, and come back to it a week later. You will have forgot-
ten enough that you should be able to give yourself a fairly good review.

■ You ask someone outside your company for help: send questions to a special-
ized forum or newsgroup.

If the goal is quality assurance, I tend to recommend the most structured review prac-
tice, formal inspections, for the reasons described in Chapter 21. But if the goal is to
foster creativity and to increase the number of design alternatives generated, not just
to find errors, less structured approaches work better. After you’ve settled on a specific
design, switching to a more formal inspection might be appropriate, depending on
the nature of your project.

How Much Design Is Enough?
We try to solve the problem
by rushing through the
design process so that
enough time is left at the
end of the project to uncover
the errors that were made
because we rushed through
the design process.
—Glenford Myers

Sometimes only the barest sketch of an architecture is mapped out before coding
begins. Other times, teams create designs at such a level of detail that coding
becomes a mostly mechanical exercise. How much design should you do before you
begin coding?

A related question is how formal to make the design. Do you need formal, polished
design diagrams, or would digital snapshots of a few drawings on a whiteboard be
enough?

116 Chapter 5: Design in Construction

Deciding how much design to do before beginning full-scale coding and how much
formality to use in documenting that design is hardly an exact science. The experience
of the team, expected lifetime of the system, desired level of reliability, and size of
project and team should all be considered. Table 5-2 summarizes how each of these
factors influence the design approach.

Two or more of these factors might come into play on any specific project, and in
some cases the factors might provide contradictory advice. For example, you might
have a highly experienced team working on safety critical software. In that case, you’d
probably want to err on the side of the higher level of design detail and formality. In
such cases, you’ll need to weigh the significance of each factor and make a judgment
about what matters most.

If the level of design is left to each individual, then, when the design descends to the
level of a task that you’ve done before or to a simple modification or extension of such
a task, you’re probably ready to stop designing and begin coding.

Table 5-2 Design Formality and Level of Detail Needed

Factor

Level of Detail Needed
in Design Before
Construction

Documentation
Formality

Design/construction team
has deep experience in
applications area.

Low Detail Low Formality

Design/construction team
has deep experience but
is inexperienced in the
applications area.

Medium Detail Medium Formality

Design/construction team
is inexperienced.

Medium to High Detail Low-Medium Formality

Design/construction team
has moderate-to-high
turnover.

Medium Detail —

Application is
safety-critical.

High Detail High Formality

Application is
mission-critical.

Medium Detail Medium-High Formality

Project is small. Low Detail Low Formality

Project is large. Medium Detail Medium Formality

Software is expected to
have a short lifetime
(weeks or months).

Low Detail Low Formality

Software is expected to
have a long lifetime
(months or years).

Medium Detail Medium Formality

5.4 Design Practices 117

If I can’t decide how deeply to investigate a design before I begin coding, I tend to err
on the side of going into more detail. The biggest design errors arise from cases in
which I thought I went far enough, but it later turns out that I didn’t go far enough to
realize there were additional design challenges. In other words, the biggest design
problems tend to arise not from areas I knew were difficult and created bad designs
for, but from areas I thought were easy and didn’t create any designs for at all. I rarely
encounter projects that are suffering from having done too much design work.

I've never met a human
being who would want to
read 17,000 pages of docu-
mentation, and if there was,
I'd kill him to get him out of
the gene pool.
—Joseph Costello

On the other hand, occasionally I have seen projects that are suffering from too much
design documentation. Gresham’s Law states that “programmed activity tends to drive
out nonprogrammed activity” (Simon 1965). A premature rush to polish a design
description is a good example of that law. I would rather see 80 percent of the design
effort go into creating and exploring numerous design alternatives and 20 percent go
into creating less polished documentation than to have 20 percent go into creating
mediocre design alternatives and 80 percent go into polishing documentation of
designs that are not very good.

Capturing Your Design Work
cc2e.com/0506 The traditional approach to capturing design work is to write up the designs in a for-

mal design document. However, you can capture designs in numerous alternative
ways that work well on small projects, informal projects, or projects that need a light-
weight way to record a design:

The bad news is that, in our
opinion, we will never find the
philosopher’s stone. We will
never find a process that allows
us to design software in a per-
fectly rational way. The good
news is that we can fake it.
—David Parnas and Paul
Clements

Insert design documentation into the code itself Document key design decisions in
code comments, typically in the file or class header. When you couple this approach
with a documentation extractor like JavaDoc, this assures that design documentation
will be readily available to a programmer working on a section of code, and it
improves the chance that programmers will keep the design documentation reason-
ably up to date.

Capture design discussions and decisions on a Wiki Have your design discussions
in writing, on a project Wiki (that is, a collection of Web pages that can be edited eas-
ily by anyone on your project using a Web browser). This will capture your design dis-
cussions and decision automatically, albeit with the extra overhead of typing rather
than talking. You can also use the Wiki to capture digital pictures to supplement the
text discussion, links to websites that support the design decision, white papers, and
other materials. This technique is especially useful if your development team is geo-
graphically distributed.

Write e-mail summaries After a design discussion, adopt the practice of designating
someone to write a summary of the discussion—especially what was decided—and send
it to the project team. Archive a copy of the e-mail in the project’s public e-mail folder.

118 Chapter 5: Design in Construction

Use a digital camera One common barrier to documenting designs is the tedium of
creating design drawings in some popular drawing tools. But the documentation
choices are not limited to the two options of “capturing the design in a nicely format-
ted, formal notation” vs. “no design documentation at all.”

Taking pictures of whiteboard drawings with a digital camera and then embedding
those pictures into traditional documents can be a low-effort way to get 80 percent of
the benefit of saving design drawings by doing about 1 percent of the work required
if you use a drawing tool.

Save design flip charts There’s no law that says your design documentation has to
fit on standard letter-size paper. If you make your design drawings on large flip chart
paper, you can simply archive the flip charts in a convenient location—or, better yet,
post them on the walls around the project area so that people can easily refer to them
and update them when needed.

cc2e.com/0513 Use CRC (Class, Responsibility, Collaborator) cards Another low-tech alternative
for documenting designs is to use index cards. On each card, designers write a class
name, responsibilities of the class, and collaborators (other classes that cooperate
with the class). A design group then works with the cards until they’re satisfied that
they’ve created a good design. At that point, you can simply save the cards for future
reference. Index cards are cheap, unintimidating, and portable, and they encourage
group interaction (Beck 1991).

Create UML diagrams at appropriate levels of detail One popular technique for
diagramming designs is called Unified Modeling Language (UML), which is defined
by the Object Management Group (Fowler 2004). Figure 5-6 earlier in this chapter
was one example of a UML class diagram. UML provides a rich set of formalized rep-
resentations for design entities and relationships. You can use informal versions of
UML to explore and discuss design approaches. Start with minimal sketches and add
detail only after you’ve zeroed in on a final design solution. Because UML is standard-
ized, it supports common understanding in communicating design ideas and it can
accelerate the process of considering design alternatives when working in a group.

These techniques can work in various combinations, so feel free to mix and match these
approaches on a project-by-project basis or even within different areas of a single project.

5.5 Comments on Popular Methodologies
The history of design in software has been marked by fanatic advocates of wildly con-
flicting design approaches. When I published the first edition of Code Complete in the
early 1990s, design zealots were advocating dotting every design i and crossing every
design t before beginning coding. That recommendation didn’t make any sense.

Additional Resources 119

People who preach software
design as a disciplined activ-
ity spend considerable
energy making us all feel
guilty. We can never be
structured enough or object-
oriented enough to achieve
nirvana in this lifetime. We
all truck around a kind of
original sin from having
learned Basic at an impres-
sionable age. But my bet is
that most of us are better
designers than the purists
will ever acknowledge.
—P. J. Plauger

As I write this edition in the mid-2000s, some software swamis are arguing for not
doing any design at all. “Big Design Up Front is BDUF,” they say. “BDUF is bad. You’re
better off not doing any design before you begin coding!”

In ten years the pendulum has swung from “design everything” to “design nothing.”
But the alternative to BDUF isn’t no design up front, it’s a Little Design Up Front
(LDUF) or Enough Design Up Front—ENUF.

How do you tell how much is enough? That’s a judgment call, and no one can make
that call perfectly. But while you can’t know the exact right amount of design with any
confidence, two amounts of design are guaranteed to be wrong every time: designing
every last detail and not designing anything at all. The two positions advocated by
extremists on both ends of the scale turn out to be the only two positions that are
always wrong!

As P.J. Plauger says, “The more dogmatic you are about applying a design method, the
fewer real-life problems you are going to solve” (Plauger 1993). Treat design as a
wicked, sloppy, heuristic process. Don’t settle for the first design that occurs to you.
Collaborate. Strive for simplicity. Prototype when you need to. Iterate, iterate, and iter-
ate again. You’ll be happy with your designs.

Additional Resources
cc2e.com/0520 Software design is a rich field with abundant resources. The challenge is identifying

which resources will be most useful. Here are some suggestions.

Software Design, General

Weisfeld, Matt. The Object-Oriented Thought Process, 2d ed. SAMS, 2004. This is an
accessible book that introduces object-oriented programming. If you’re already famil-
iar with object-oriented programming, you’ll probably want a more advanced book,
but if you’re just getting your feet wet in object orientation, this book introduces fun-
damental object-oriented concepts, including objects, classes, interfaces, inheritance,
polymorphism, overloading, abstract classes, aggregation and association, construc-
tors/destructors, exceptions, and others.

Riel, Arthur J. Object-Oriented Design Heuristics. Reading, MA: Addison-Wesley, 1996.
This book is easy to read and focuses on design at the class level.

Plauger, P. J. Programming on Purpose: Essays on Software Design. Englewood Cliffs, NJ:
PTR Prentice Hall, 1993. I picked up as many tips about good software design from
reading this book as from any other book I’ve read. Plauger is well-versed in a wide-
variety of design approaches, he’s pragmatic, and he’s a great writer.

120 Chapter 5: Design in Construction

Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. New York, NY: Pren-
tice Hall PTR, 1997. Meyer presents a forceful advocacy of hard-core object-oriented
programming.

Raymond, Eric S. The Art of UNIX Programming. Boston, MA: Addison-Wesley, 2004.
This is a well-researched look at software design through UNIX-colored glasses. Section
1.6 is an especially concise 12-page explanation of 17 key UNIX design principles.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, 2d ed. Englewood Cliffs, NJ: Prentice Hall, 2001.
This book is a popular introduction to object-oriented design in the context of the
Unified Process. It also discusses object-oriented analysis.

Software Design Theory

Parnas, David L., and Paul C. Clements. “A Rational Design Process: How and Why to
Fake It.” IEEE Transactions on Software Engineering SE-12, no. 2 (February 1986): 251–57.
This classic article describes the gap between how programs are really designed and
how you sometimes wish they were designed. The main point is that no one ever
really goes through a rational, orderly design process but that aiming for it makes for
better designs in the end.

I’m not aware of any comprehensive treatment of information hiding. Most software-
engineering textbooks discuss it briefly, frequently in the context of object-oriented
techniques. The three Parnas papers listed below are the seminal presentations of the
idea and are probably still the best resources on information hiding.

Parnas, David L. “On the Criteria to Be Used in Decomposing Systems into Modules.”
Communications of the ACM 5, no. 12 (December 1972): 1053-58.

Parnas, David L. “Designing Software for Ease of Extension and Contraction.” IEEE
Transactions on Software Engineering SE-5, no. 2 (March 1979): 128-38.

Parnas, David L., Paul C. Clements, and D. M. Weiss. “The Modular Structure of Com-
plex Systems.” IEEE Transactions on Software Engineering SE-11, no. 3 (March 1985):
259-66.

Design Patterns

Gamma, Erich, et al. Design Patterns. Reading, MA: Addison-Wesley, 1995. This book
by the “Gang of Four” is the seminal book on design patterns.

Shalloway, Alan, and James R. Trott. Design Patterns Explained. Boston, MA: Addison-
Wesley, 2002. This book contains an easy-to-read introduction to design patterns.

Additional Resources 121

Design in General

Adams, James L. Conceptual Blockbusting: A Guide to Better Ideas, 4th ed. Cambridge,
MA: Perseus Publishing, 2001. Although not specifically about software design, this
book was written to teach design to engineering students at Stanford. Even if you
never design anything, the book is a fascinating discussion of creative thought pro-
cesses. It includes many exercises in the kinds of thinking required for effective
design. It also contains a well-annotated bibliography on design and creative thinking.
If you like problem solving, you’ll like this book.

Polya, G. How to Solve It: A New Aspect of Mathematical Method, 2d ed. Princeton, NJ:
Princeton University Press, 1957. This discussion of heuristics and problem solving
focuses on mathematics but is applicable to software development. Polya’s book was
the first written about the use of heuristics in mathematical problem solving. It draws
a clear distinction between the messy heuristics used to discover solutions and the
tidier techniques used to present them once they’ve been discovered. It’s not easy
reading, but if you’re interested in heuristics, you’ll eventually read it whether you
want to or not. Polya’s book makes it clear that problem solving isn’t a deterministic
activity and that adherence to any single methodology is like walking with your feet in
chains. At one time, Microsoft gave this book to all its new programmers.

Michalewicz, Zbigniew, and David B. Fogel. How to Solve It: Modern Heuristics. Berlin:
Springer-Verlag, 2000. This is an updated treatment of Polya’s book that’s quite a bit
easier to read and that also contains some nonmathematical examples.

Simon, Herbert. The Sciences of the Artificial, 3d ed. Cambridge, MA: MIT Press, 1996.
This fascinating book draws a distinction between sciences that deal with the natural
world (biology, geology, and so on) and sciences that deal with the artificial world cre-
ated by humans (business, architecture, and computer science). It then discusses the
characteristics of the sciences of the artificial, emphasizing the science of design. It has
an academic tone and is well worth reading for anyone intent on a career in software
development or any other “artificial” field.

Glass, Robert L. Software Creativity. Englewood Cliffs, NJ: Prentice Hall PTR, 1995. Is
software development controlled more by theory or by practice? Is it primarily cre-
ative or is it primarily deterministic? What intellectual qualities does a software devel-
oper need? This book contains an interesting discussion of the nature of software
development with a special emphasis on design.

Petroski, Henry. Design Paradigms: Case Histories of Error and Judgment in Engineering.
Cambridge: Cambridge University Press, 1994. This book draws heavily from the field of
civil engineering (especially bridge design) to explain its main argument that successful
design depends at least as much upon learning from past failures as from past successes.

122 Chapter 5: Design in Construction

Standards

IEEE Std 1016-1998, Recommended Practice for Software Design Descriptions. This docu-
ment contains the IEEE-ANSI standard for software-design descriptions. It describes
what should be included in a software-design document.

IEEE Std 1471-2000. Recommended Practice for Architectural Description of Software Inten-
sive Systems. Los Alamitos, CA: IEEE Computer Society Press. This document is the
IEEE-ANSI guide for creating software architecture specifications.

cc2e.com/0527 CHECKLIST: Design in Construction
Design Practices

❑ Have you iterated, selecting the best of several attempts rather than the
first attempt?

❑ Have you tried decomposing the system in several different ways to see
which way will work best?

❑ Have you approached the design problem both from the top down and
from the bottom up?

❑ Have you prototyped risky or unfamiliar parts of the system, creating the
absolute minimum amount of throwaway code needed to answer specific
questions?

❑ Has your design been reviewed, formally or informally, by others?

❑ Have you driven the design to the point that its implementation seems
obvious?

❑ Have you captured your design work using an appropriate technique such
as a Wiki, e-mail, flip charts, digital photography, UML, CRC cards, or
comments in the code itself?

Design Goals
❑ Does the design adequately address issues that were identified and

deferred at the architectural level?

❑ Is the design stratified into layers?

❑ Are you satisfied with the way the program has been decomposed into
subsystems, packages, and classes?

❑ Are you satisfied with the way the classes have been decomposed into
routines?

❑ Are classes designed for minimal interaction with each other?

Key Points 123

❑ Are classes and subsystems designed so that you can use them in other
systems?

❑ Will the program be easy to maintain?

❑ Is the design lean? Are all of its parts strictly necessary?

❑ Does the design use standard techniques and avoid exotic, hard-to-under-
stand elements?

❑ Overall, does the design help minimize both accidental and essential
complexity?

Key Points
■ Software’s Primary Technical Imperative is managing complexity. This is greatly

aided by a design focus on simplicity.

■ Simplicity is achieved in two general ways: minimizing the amount of essential
complexity that anyone’s brain has to deal with at any one time, and keeping
accidental complexity from proliferating needlessly.

■ Design is heuristic. Dogmatic adherence to any single methodology hurts cre-
ativity and hurts your programs.

■ Good design is iterative; the more design possibilities you try, the better your
final design will be.

■ Information hiding is a particularly valuable concept. Asking “What should I
hide?” settles many difficult design issues.

■ Lots of useful, interesting information on design is available outside this book.
The perspectives presented here are just the tip of the iceberg.

885

Index

Symbols and Numbers
* (pointer declaration symbol), 332,

334–335, 763
& (pointer reference symbol), 332
–> (pointer symbol), 328
80/20 rule, 592

A
abbreviation of names, 283–285
abstract data types. See ADTs
Abstract Factory pattern, 104
abstraction

access routines for, 340–342
ADTs for. See ADTs
air lock analogy, 136
checklist, 157
classes for, 152, 157
cohesion with, 138
complexity, for handling, 839
consistent level for class

interfaces, 135–136
defined, 89
erosion under modification

problem, 138
evaluating, 135
exactness goal, 136–137
forming consistently, 89–90
good example for class interfaces,

133–134
guidelines for creating class

interfaces, 135–138
high-level problem domain terms,

847
implementation structures,

low-level, 846
inconsistent, 135–136, 138
interfaces, goals for, 133–138
levels of, 845–847
opposites, pairs of, 137
OS level, 846
patterns for, 103
placing items in inheritance trees,

146
poor example for class interfaces,

134–135
problem domain terms, low-level,

846
programming-language level, 846
routines for, 164

access routines
abstraction benefit, 340
abstraction, level of, 341–342
advantages of, 339–340
barricaded variables benefit, 339
centralized control from, 339
creating, 340
g_ prefix guideline, 340
information hiding benefit, 340
lack of support for, overcoming,

340–342
locking, 341
parallelism from, 342
requiring, 340

accidental problems, 77–78
accreting a system metaphor, 15–16
accuracy, 464
Ada

description of, 63
parameter order, 174–175

adaptability, 464
Adapter pattern, 104
addition, dangers of, 295
ADTs (abstract data types)

abstraction with, 130
access routines, 339–342
benefits of, 126–129
changes not propagating benefit,

128
classes based on, 133
cooling system example, 129–130
data, meaning of, 126
defined, 126
documentation benefit, 128
explicit instancing, 132
files as, 130
guidelines, 130–131
hiding information with, 127
instancing, 132
implicit instancing, 132
interfaces, making more

informative, 128
low-level data types as, 130
media independence with, 131
multiple instances, handling,

131–133
need for, example of, 126–127
non-object-oriented languages

with, 131–133
objects as, 130

operations examples, table of,
129–130

passing of data, minimization of,
128

performance improvements with,
128

purpose of, 126
real-world entities, working with,

128–129
representation question, 130
simple items as, 131
verification of code benefit, 128

agile development, 58, 658
algebraic identities, 630
algorithms

commenting, 809
heuristics compared to, 12
metaphors serving as, 11–12
resources on, 607
routines, planning for, 223

aliasing, 311-316
analysis skills development, 823
approaches to development

agile development, 58, 658
bottom-up approaches, 112–113,

697–698
Extreme Programming, 58,

471–472, 482, 708, 856
importance of, 839–841
iterative approach. See iteration in

development
premature optimization problem,

840
quality control, 840. See also

quality of software
resources for, 58–59
sequential approach, 35–36
team processes, 839–840
top-down approaches, 111–113,

694–696
architecture

building block definition, 45
business rules, 46
buying vs. building components,

51
changes, 44, 52
checklist for, 54–55
class design, 46
commitment delay strategy, 52
conceptual integrity of, 52

Z02I619670.fm Page 885 Wednesday, May 12, 2004 12:23 PM

886 first top-level entry

architecture, continued
data design, 46
defined, 43
error handling, 49–50
fault tolerance, 50
GUIs, 47
importance of, 44
input/output, 49
internationalization planning, 48
interoperability, 48
key point for, 60
localization planning, 48
machine independence, 53
overengineering, 51
percent of total activity, by size of

project, 654–655
performance goals, 48
performance-oriented, 590
prerequisite nature of, 44
program organization, 45–46
quality, 52–53, 55
resource management, 47
resources on developing, 57
reuse decisions, 52
risky areas, identifying, 53
scalability, 48
security design, 47
technical feasibility, 51
time allowed for, 56
user interface design, 47
validation design, 50

arithmetic expressions
misleading precedence example,

733
magnitudes, greatly different, 295
multiplication, changing to

addition, 623–624
rounding errors, 297

arrays
C language macro for, 311
checklist, 317
containers as an alternative, 310
costs of operations, 602
cross-talk, 311
defined, 310
dimensions, minimizing,

625–626
end points, checking, 310
foreach loops with, 372
indexes of, 310–311
layout of references, 754
loops with, 387–388
multidimensional, 310
naming conventions for, 280–281

performance tuning, 593–594,
603–604

refactoring, 572
references, minimizing, 626–627
semantic prefixes for, 280–281
sentinel tests for loops, 621–623
sequential access guideline, 310

assembly language
description of, 63
listing tools, 720
recoding to, 640–642

assertions
aborting program recommended,

206
arguments for, 189
assumptions to check, list of, 190
barricades, relation to, 205
benefits of, 189
building your own mechanism

for, 191
C++ example, 191
dangerous use of example, 192
defined, 189
dependencies, checking for, 350
error handling with, 191, 193–194
executable code in, 191–192
guidelines for, 191–193
Java example of, 190
postcondition verification,

192–193
precondition verification,

192–193
removing from code, 190
resources for, 212
Visual Basic examples, 192–194

assignment statements, 249, 758
author role in inspections, 486
auto_ptrs, 333
automated testing, 528–529

B
backup plans, 669, 670
bad data, testing for, 514–515
barricades

assertions, relation to, 205
class-level, 204
input data conversions, 204
interfaces as boundaries, 203
operating room analogy, 204
purpose of, 203

base classes
abstract overridable routines, 145
abstraction aspect of, 89
coupling, too tight, 143

Liskov Substitution Principle,
144–145

overridable vs. non-overridable
routines, 145–146

protected data, 143
routines overridden to do

nothing, 146–147
single classes from, 146

Basic, 65. See also Visual Basic
basis testing, structured, 503,

505–509
BCD (binary coded decimal) type,

297
BDUF (big design up front), 119
beauty, 80
begin-end pairs, 742–743
bibliographies, software, 858
big-bang integration, 691
big design up front (BDUF), 119
binary searches, 428
binding

in code, 252
compile time, 252–253
heuristic design with, 107
just in time, 253
key point, 258
load time, 253
run time, 253
variables, timing of, 252–254

black-box testing, 500
blank lines for formatting, 747–748,

765–766
blocks

braces writing rule, 443
comments on, 795–796
conditionals, clarifying, 443
defined, 443
emulated pure layout style,

740–743
pure, layout style, 738–740
single statements, 748–749

Book Paradigm, 812–813
boolean expressions

0, comparisons to, 441–442
0s and 1s as values, 432
breaking into partial tests, 433
C languages syntax, 442–443
characters, comparisons to zero,

441
checklist for, 459
constants in comparisons,

442–443
decision tables, moving to, 435
DeMorgan’s Theorems, applying,

436–437

arithmetic expressions

Z02I619670.fm Page 886 Wednesday, May 12, 2004 12:23 PM

last top-level entry 887

evaluation guidelines, 438–440
functions, moving to, 434–435
identifiers for, 431–433
if statements, negatives in,

435–436
implicit comparisons, 433
Java syntax, 439, 443
layout guidelines, 749–750
logical identities, 630
negatives in, 435–437
numeric, structuring, 440–441
parentheses for clarifying,

437–438
pointers, comparisons with, 441
positive form recommended,

435–437
refactoring, 572
short circuit evaluation, 438–440
simplifying, 433–435
variables in. See boolean variables
zero, comparisons to, 441–442

boolean functions
creating from expressions,

434–435
if statements, used in, 359

boolean tests
breaking into partial tests, 433
hiding with routines, 165
simplifying, 301–302
zero, comparisons to, 441–442

boolean variables
0s and 1s as values, 432
C, creating data type, 302–303
checklist, 317
documentation with, 301
enumerated types as alternative,

304
expressions with. See boolean

expressions
identifiers for, 431–433
naming, 268–269
simplifying tests with, 301–302
zeros and ones as values, 432

boss readiness test on prerequisites,
30–31

bottom-up approach to design,
112–113

bottom-up integration, 697–698
boundary analysis, 513–514
braces

block layout with, 740–743
styles compared, 734

break statements
C++ loops, 371–372
caution about, 381
guidelines, 379–380

labeled, 381
multiple in one loop, 380
nested-if simplification with,

446–447
while loops with, 379

bridge failure, Tacoma Narrows, 74
Bridge pattern, 104
brute-force debugging, 548–549
buffer overruns, 196
bugs. See debugging; defects in code;

errors
build tools, 716–717. See also

compilers
building metaphor, 16–19
building vs. buying components, 18
builds, daily. See daily build and

smoke tests
business rules

architecture prerequisites, 46
change, identifying areas of, 98
good practices table for, 31–32
subsystem design, 85

buying components, 18, 51

C
C language

ADTs with, 131
boolean expression syntax,

442–443
description of, 64
naming conventions for, 275, 278
pointers, 334–335
string data types, 299–301, 317
string index errors, 299–300

C#, 64
C++

assertion example, 191
boolean expression syntax,

442–443
debugging stubs with, 208–209
description of, 64
DoNothing() macros, 444–445
exceptions in, 198–199
inline routines, 184–185
interface considerations, 139–141
layout recommended, 745
macro routines, 182–184
naming conventions for, 275–277
null statements, 444–445
parameters, by reference vs. by

value, 333
pointers, 325, 328–334, 763
preprocessors, excluding debug

code, 207–208
resources for, 159

side effects, 759–761
source files, layout in, 773

caching, code tuning with, 628–629
Capability Maturity Model (CMM),

491
capturing design work, 117–118
Cardinal Rule of Software Evolution,

565
CASE (computer-aided software

engineering) tools, 710
case statements

alpha ordering, 361
checklist, 365
debugging, 206
default clauses, 363
drop-throughs, 363–365
end of case statements, 363–365
endline layout, 751–752
error detection in, 363
frequency of execution ordering,

361, 612–613
if statements, comparing

performance with, 614
key points, 366
language support for, 361
nested ifs, converting from,

448–449, 451
normal case first rule, 361
numeric ordering, 361
ordering cases, 361
parallel modifications to, 566
phony variables, 361–362
polymorphism preferable to,

147–148
redesigning, 453
refactoring, 566, 573
simple action guideline, 361
table-driven methods using,

421–422
change control. See configuration

management
character arrays, 299–300. See also

string data types
character data types

arrays vs. string pointers, 299
C language, 299–301
character sets, 298
checklist, 316–317
conversion strategies, 299
magic (literal) characters,

297–298
Unicode, 298, 299

character, personal
analysis skills, 823
communication skills, 828

character, personal

Z02I619670.fm Page 887 Wednesday, May 12, 2004 12:23 PM

888 first top-level entry

character, personal, continued
compiler messages, treatment of,

826–827
computer-science graduates, 829
cooperation skills, 828
creativity, 829, 857
curiosity, 822–825
development process awareness,

822
discipline, 829
estimations, 827–828
experience, 831–832
experimentation, 822–823
gonzo programming, 832
habits, 833–834
humility, 821, 826, 834
importance of, 819–820
intellectual honesty, 826–828
intelligence, 821
judgment, 848
key points, 835
laziness, 830
mistakes, admitting to, 826
persistence, 831
practices compensating for

weakness, 821
problem solving, 823
professional development,

824–825
reading, 824
religion in programming, harmful

effects of, 851–853
resources on, 834–835
status reporting, 827
successful projects, learning from,

823–824
checklists

abstraction, 157
architecture, 54–55
arrays, 317
backups, 670
boolean expressions, 459
case statements, 365
character data types, 316–317
classes, 157–158, 233–234,

578–579, 774, 780
coding practices, 69
code tuning, 607–608, 642–643
comments, 774, 816–817
conditional statements, 365
configuration management,

669–670
constants, 317
construction practices, 69–70
control structures, 459, 773, 780

daily build and smoke tests, 707
data organization, 780
data types, 316–318
debugging, 559–561
defects, 489, 559–560
defensive programming, 211–212
design, 122–123, 781
documentation, 780–781,

816–817
encapsulation, 158
enumerated types, 317
fixing defects, 560
formal inspections, 489, 491–492
formatting, 773–774
goto statements, 410
if statements, 365
inheritance, 158
initialization, 257
integration, 707
interfaces, 579
layout, 773–774
list of, xxix–xxx
loops, 388–389
names, 288–289, 780
pair programming, 484
parameters, 185
performance tuning, 607–608
pointers, 344
prerequisites, 59
pseudocoding, 233–234
programming tools, 724–725
quality assurance, 42–43, 70, 476
refactoring, 570, 577–579, 584
requirements, 40, 42–43
routines, 185, 774, 780
speed, tuning for, 642–643
statements, 774
straight-line code, 353
strings, 316–317
structures, 343
table-driven methods, 429
testing, 503, 532
tools, 70
type creation, 318
variables, 257–258, 288–289,

343–344
circular dependencies, 95
classes

abstract data types. See ADTs
abstract objects, modeling, 152
abstraction checklist, 157
alternates to PPP, 232–233
architecture prerequisites, 46
assumptions about users, 141
base. See base classes

bidirectional associations, 577
calls to, refactoring, 575
case statements vs. inheritance,

147–148
centralizing control with, 153
changes, limiting effects of, 153
checklists, 157–158, 774, 780
coding routines from

pseudocode, 225–229
cohesion as refactoring indicator,

566
complexity issues, 152–153
constant values returned, 574
constructors, 151–152
containment, 143–144
coupling considerations,

100–102, 142–143
data-free, 155
deep inheritance trees, 147
defined, 125
delegation vs. inheritance,

refactoring, 576
descendants, refactoring indicator

for, 567
designing, 86, 216, 220–225, 233
disallowing functions and

operators, 150
documenting, 780, 810
encapsulation, 139–143, 158
extension, refactoring with, 576
factoring, benefit of, 154
files containing, 771–772
foreign routines, refactoring with,

576
formalizing contracts for

interfaces, 106
formatting, 768–771
friend, encapsulation violation

concern, 141
functions in. See functions;

routines
global data, hiding, 153
god classes, 155
hacking approach to, 233
hiding implementation details,

153
implementation checklist, 158
indirect calls to other classes, 150
information hiding, 92–93
inheritance, 144–149, 158
initializing members, 243
integration, 691, 694, 697
irrelevant classes, 155
is a relationships, 144
key points for, 160, 234

checklists

Z02I619670.fm Page 888 Wednesday, May 12, 2004 12:23 PM

last top-level entry 889

language-specific issues, 156
layout of, 768–771
limiting collaboration, 150
Liskov Substitution Principle,

144–145
member variables, naming, 273,

279
methods of. See routines
minimizing accessibility rule, 139
mixins, 149
modeling real-world objects, 152
multiple per file, layout of,

769–770
naming, 277, 278
number of members, 143
number of routines, 150
object names, differentiating from,

272–273
objects, contrasted with, 86
overformatting, 770
overriding routines, 145–146, 156
packages, 155–157
parallel modifications refactoring

indicator, 566
planning for program families,

154
private vs. protected data, 148
private, declaring members as,

150
procedures in. See routines
protected data, 148
pseudocode for designing,

232–234
public members, 139, 141, 576
read-time convenience rule, 141
reasons for creating, 152–156
refactoring, 155, 574–576,

578–579, 582
resources, 159
reusability benefit of, 154
review and test step, 217
routine construction step, 217
routines in. See routines
routines, unused, 146–147, 576
semantic violations of

encapsulation, 141–142
Set() routines, unnecessary, 576
similar sub and superclasses, 576
single-instance, 146
singleton property, enforcing, 151
steps in creating, 216–217
streamlining parameter passing,

153
subclasses, 165, 575

superclasses for common code,
575

test-first development, 233
testing with stub objects, 523
unidirectional associations, 577
visibility of, 93
warning signs for, 848, 849

class-hierarchy generators, 713
cleanup steps, PPP, 232
cleanroom development, 521
CMM (Capability Maturity Model),

491
Cobol, 64
code coverage testing, 506
code libraries, 222, 717
code quality analysis tools, 713–714
code reading method, 494
code tuning

80/20 rule, 592
advantages from, 591
algebraic identities, 630
appeal of, 591–592
arrays, 593–594, 603–604,

625–627
assembler, listing tools, 720
assembler, recoding to, 640–642
bottleneck identification, 594
caching data, 628–629
checklists, 607–608, 642–643
comparing logic structures, 614
competing objectives dilemma,

595
compiler considerations, 590,

596–597
converting data types, 635
correctness, importance of,

595–596
data transformations, 624–629
data type choices, 635
database indexing, 601
defects in code, 601
defined, 591
DES example, 605–606
design view, 589–590
disadvantages of, 591
disassemblers, 720
execution profiler tools, 720
expressions, 630–639
feature specific, 595
frequency, testing in order of,

612–613
frequently used code spots, 592
hardware considerations, 591
improvements possible, 605
indexing data, 627–628

inefficiency, sources of, 598–601
initializing at compile time,

632–633
inline routines, 639–640
input/output, 598–599
integers preferred to floating, 625
interpreted vs. compiled

languages, 592, 600–601
iteration of, 608, 850
jamming loops, 617–618
key points, 608, 645
language specificity, 644
lazy evaluation, 615–616
lines of code, minimizing number

of, 593–594
logic manipulation guidelines,

610–616
lookup tables for, 614–615, 635
loops, 616–624
low-level language, recoding to,

640–642
measurement to locate hot spots,

603–604, 644
memory vs. file operations,

598–599
minimizing work inside loops,

620–621
multiplication, changing to

addition, 623–624
nested loop order, 623
old wives’ tales, 593–596
operating system considerations,

590
operation speeds, presumptions

about, 594
operations, costs of common,

601–603
optimizing as you go, 594–595
overview of, 643–644
paging operations, 599
Pareto Principle, 592
precomputing results, 635–638
program requirements view of,

589
refactoring, compared to, 609
resource goals, 590
resources on, 606–607, 644–645
right shifting, 634
routines, 590, 639–640
sentinel tests for loops, 621–623
short-circuit evaluation, 610
speed, importance of, 595–596
strength reduction, 623–624,

630–632

code tuning

Z02I619670.fm Page 889 Wednesday, May 12, 2004 12:23 PM

890 first top-level entry

code tuning, continued
subexpression elimination,

638–639
summary of approach for, 606
system calls, 599–600, 633–634
tools, 720
unrolling loops, 618–620
unswitching loops, 616–617
variations in environments for,

594
when to tune, 596

code-generation wizards, 718
coding. See also construction;

software construction overview
conventions. See conventions,

coding
practices checklist, 69
sequential. See straight-line code
software construction as, 5
style. See layout

cohesion
interfaces, class, 138
routines, designing with, 168–171
strength reduction, 623–624,

630–632
coincidental cohesion, 170
collaboration

code reading, 494
collective ownership benefits, 482
comparisons of techniques, table

of, 495–496
cost advantage, 480–481
defined, 479, 480
design phase, 115
development time benefit, 480
dog-and-pony shows, 495
extending beyond construction,

483
Extreme Programming method,

482
formal inspections. See formal

inspections
General Principle of Software

Quality, 481
inspections. See formal

inspections
key points, 497
mentoring aspect of, 482
pair programming. See pair

programming
purpose of, 480
standards, IEEE, 497
testing, compared to, 481
walk-throughs, 492–493

collections, refactoring, 572

collective ownership, 482. See also
collaboration

comments. See also documentation
/* vs. //, 790
abbreviations in, 799
algorithms, 809
argument against, 782
authorship, 811
bad code, on, 568
blank lines around, 765–766
Book Paradigm for, 812–813
categories of, 786–788
checklists, 774, 816–817
classes, 810
coded meanings, 802–803
control structures, 804–805, 817
declarations with, 794, 802–803,

816
descriptions of code intent, 787
distance to code guideline, 806
efficient creation of, 788–791
endline comments, 793–795
errors, marking workarounds,

800
explanatory, 786
files, 810–811
flags, bit level, 803
global variables, 803, 809
indentation guidelines, 764–765
individual lines with, 792–795
input data, 803, 808
integrating into development, 791
interfaces, class, 810
interfaces, routine, 808
Javadoc, 807, 815
key points, 817
layout guidelines, 763–766
legal notices, 811
length of descriptions, 806
level of code intent, 795–796
loops, 804–805
maintenance of, 220, 788–791,

794
major vs. minor, 799–800
markers, 787
non-code essential information,

788
numerical data, 802
optimum density of, 792
output data, 808
paragraphs of code with,

795–801, 816
parameter declarations, 806–807
parts of programs, 809
performance considerations, 791

preceding code rule, 798
proportionality of, 806
pseudocode, deriving from, 220,

784, 791
purpose of, 782
repeating code with, 786
resources on, 815
routines with, 805–809, 817
self-commenting code, 796–797
Socratic dialog about, 781–785
standards, IEEE, 813–814
style differences, managing, 683
style violations, 801
summaries of code, 787
surprises, 798
tricky code, 798, 801
undocumented features, 800
variables, 803
version control, 811
why vs. how, 797–798
workarounds, 800

commitment delay strategy, 52
communication skills, importance

of, 828
communicational cohesion, 169
communications, development

team, 650
comparisons

boolean. See boolean tests
floating-point equality, 295–296
mixed data types, 293

compilers
binding during compilation,

252–253
broken builds, 703
data type warnings, 293
debugging tools, as, 557, 827
errors, finding in routines,

230–231
line numbers, debugging with,

549
messages, treatment of, 549,

826–827
multiple error messages, 550
optimizations by, 596–597
performance tuning

considerations, 590
project-wide standards for, 557
speeds from optimization, table

of, 597
tools for, 716
tricky code optimization, 597
validators with, 231
warnings, 293, 557

code-generation wizards

Z02I619670.fm Page 890 Wednesday, May 12, 2004 12:23 PM

last top-level entry 891

completeness of requirements
checklist, 43

complex data types. See structures
complexity

abstraction for handling, 839
classes for reducing, 152
coding conventions for reducing,

839
control structure contributions to,

456–459
conventions for managing,

 844–845
decision points, counting, 458
importance of, 457
isolation, classes for, 153
live time, 459
management, 77–79, 844–845
McCabe’s metric, 457–458
mental objects held, measure of,

457
methods for handling, 837–839
minimization goal, 80
patterns, reducing with, 103
problem domain, working at, 845
reliability correlated with, 457
routines for reducing, 164
size of projects, effect on,

656–657
span, 459

component testing, 499
components, buying, 18, 51
Composite pattern, 104
compound boundaries, 514
compound statements. See blocks
computed-value qualifiers of

variable names, 263–264
computer-aided software

engineering (CASE) tools, 710
conditional statements

boolean function calls with, 359
boolean variables recommended,

301–302
case statements. See case

statements
chained if-then-else statements,

358–360
checklist, 365
common cases first guideline,

359–360
comparing performance of, 614
covering all cases, 360
defined, 355
eliminating testing redundancy,

610–611
else clauses, 358–360

equality, branching on, 355
error processing examples,

356–357
frequency, testing in order of,

612–613
if statements. See if statements
key points, 366
lookup tables, substituting,

614–615
looping, conditional. See loops
normal case first guideline,

356–357
normal path first guideline, 355
null if clauses, 357
plain if-then statements, 355–357
refactoring, 573
short-circuit evaluation, 610
switch statements. See case

statements
confessional debugging, 547–548
configuration management

architectural anticipation of
change, 52

backup plans, 669, 670
boards, change-control, 667
bureaucratic considerations, 667
checklist, 669–670
code changes, 667–668
cost, estimating, 666
defined, 664
design changes, 666–667
estimating change costs, 666
grouping change requests, 666
high change volumes, 666
identifying areas of change, 97–99
machine configurations,

reproducing, 668
purpose of, 664–665
requirements changes, 41, 664,

666–667
resources on, 670
SCM, 665
tool version control, 668
version-control software, 668

const keyword, C++, 176, 177, 243,
274, 333

constants
checklist, 317
consistency rule, 309
declarations using, 308
defined, 307
emulation by global variables, 338
initializing, 243
literals, avoiding with, 308–309
naming, 270, 273, 277–279

purpose of, 307
refactoring, 571
simulating in languages lacking,

309
construction. See also software

construction overview
collaborative. See collaboration
decisions. See construction

decisions
guidelines, 66
managing. See managing

construction
percent of total activity, by size of

project, 654–655
prerequisites. See prerequisites,

upstream
quality of. See quality of software
resources on, 856
schedules, estimating. See

construction schedules,
estimating

size of projects, effects on. See size
of projects

tools for. See programming tools
construction decisions

checklist of major construction
practices, 69–70

coding practices checklist, 69
early-wave environments, 67
key points for, 70
major construction practices,

selecting, 69–70
mature technology environments,

67
programming conventions, 66–66
programming into languages,

68–69
programming languages. See

programming language choice
quality assurance checklist, 70
teamwork checklist, 69
technology waves, determining

your location in, 66–69
tools checklist, 70

construction schedules, estimating
approaches to, list of, 671
catching up from behind,

675–676
controlling vs. estimating, 675
factors influencing, 674–675
level of detail for, 672
multiple techniques with

comparisons, 672
objectives, establishing, 671
optimism, 675

construction schedules, estimating

Z02I619670.fm Page 891 Wednesday, May 12, 2004 12:23 PM

892 first top-level entry

construction schedules, estimating,
continued

overview, 671
planning estimation time, 671
reduction of scope, 676
reestimating, 672
requirements specification, 672
resources for, 677
teams, expanding, 676

constructors
deep vs. shallow copies, 151–152
exceptions with, 199
guidelines for, 151–152
initializing data members, 151
refactoring, 577
singleton property, enforcing, 151

container classes, 310
containment, 88, 143
continuation lines, 754–758
continue statements, 379, 380, 381
continuous integration, 706
control structures

boolean expressions in. See
boolean expressions

case. See case statements
checklists, 459, 773, 780
commenting, 804–805, 817
complexity, contributions to,

456–459
compound statements, 443
conditional flow. See conditional

statements
continuation lines in, 757
data types, relationship to,

254–255
documentation, 780
double indented begin-end pairs,

746–747
gotos. See goto statements
if statements. See if statements
iteration, 255, 456
key points, 460
layout styles, 745–752
loops. See loops
multiple returns from routines,

391–393
null statements, 444–445
recursive. See recursion
reliability correlated with

complexity, 457
returns as. See return statements
selective data with, 254
sequential data with, 254
structured programming,

454–455

unindented begin-end pairs, 746
unusual, overview of, 408

conventions, coding
benefits of, 844–845
checklist, 69
formatting. See layout
hazards, avoiding with, 844
predictability benefit, 844

converting data types, 635
cooperation skills, importance of,

828
correctness, 197, 463
costs. See also performance tuning

change estimates, 666
collaboration benefits, 480–481
debugging, time consumed by,

474–475
defects contributing to, 519–520
detection of defects, 472
error-prone routines, 518
estimating, 658, 828
fixing of defects, 472–473, 519
General Principle of Software

Quality, 474–475, 522
pair programming vs. inspections,

480–481
resources on, 658

counted loops. See for loops
coupling

base classes to derived classes,
143

classes, too tightly, 142–143
design considerations, 100–102
flexibility of, 100–101
goals of, 100
loose, 80, 100–102
object-parameter type, 101
semantic type, 102
simple-data-parameter type, 101
simple-object type, 101
size of, 100
visibility of, 100

coverage
monitoring tools, 526
structured basis testing, 505–509

CRC (Class, Responsibility,
Collaboration) cards, 118

creativity, importance of, 829, 857
cross-reference tools, 713
curiosity, role in character, 822–825
Currency data types, 297
customization, building metaphor

for, 18

D
daily build and smoke tests

automation of, 704
benefits of, 702
broken builds, 703, 705
build groups, 704
checklist, 707
defined, 702
diagnosis benefit, 702
holding area for additions,

704–705
importance of, 706
morning releases, 705
pressure, 706
pretest requirement, 704
revisions, 704
smoke tests, 703
unsurfaced work, 702

data
architecture prerequisites, 46
bad classes, testing for, 514–515
change, identifying areas of, 99
code tuning. See data

transformations for code
tuning

combined states, 509–510
defined state, 509–510
defined-used paths, testing,

510–512
design, 46
entered state, 509
exited state, 509
good classes, testing, 515–516
killed state, 509–510
legacy, compatibility with, 516
nominal case errors, 515
test, generators for, 524–525
types. See data types
used state, 509–510

data dictionaries, 715
data flow testing, 509–512
data literacy test, 238–239
data recorder tools, 526
data structures. See structures
data transformations for code

tuning
array dimension minimization,

625–626
array reference minimization,

626–627
caching data, 628–629
floating point to integers, 625
indexing data, 627–628
purpose of, 624

constructors

Z02I619670.fm Page 892 Wednesday, May 12, 2004 12:23 PM

last top-level entry 893

data types
“a” prefix convention, 272
abstract data types. See ADTs
arrays. See arrays
BCD, 297
boolean. See boolean variables
change, identifying areas of, 99
characters. See character data

types
checklist, 316–318
complex. See structures
control structures, relationship to,

254–255
creating. See type creation
Currency, 297
definitions, 278
enumerated types. See

enumerated types
floating-point. See floating-point

data types
integers. See integer data types
iterative data, 255
key points for, 318
naming, 273, 277, 278
numeric. See numeric data types
overloaded primitives, 567
pointers. See pointers
refactoring to classes, 567, 572
resources on, 239
selective data, 254
sequential data, 254
strings. See string data types
structures. See structures
t_ prefix convention, 272
user-defined. See type creation
variables of, differentiating from,

272–273
databases

performance issues, 601
SQL, 65
subsystem design, 85

data-level refactoring, 571–572, 577
days-in-month, determining,

413–414
deallocation

goto statements for, 399
pointers, of, 326, 330, 332

Debug.Assert statements, 191–193
debugging

aids to. See debugging aids
binary searches of code, 546
blindness, sources of, 554–555
breakpoints, 558
breaks, taking, 548
brute-force, 548–549

changes, recent, 547
checklist, 559–561
comments, misplaced, 550
common defects lists, 547
compilers as tools for, 549, 557
confessional debugging, 547–548
costs of, 29–30, 474–475
debugger tools, 526–527, 545,

556–559, 719. See also
debugging aids

defects as opportunities, 537–538
defensive. See debugging aids
defined, 535
Diff tool, 556
execution profilers for, 557–558
expanding suspicious regions,

547
experience of programmers,

effects of, 537
finding defects, 540, 559–560
fixing defects, 550–554
guessing, 539
history of, 535–536
hypothesis testing, 543–544, 546
incremental approach, 547
ineffective approach to, 539–540
key points, 562
line numbers from compilers, 549
lint tool, 557
listing possibilities, 546
locating error sources, 543–544
logic checking tools, 557
multiple compiler messages, 550
narrowing code searches, 546
obvious fixes, 539
performance variations, 536–537
project-wide compilers settings,

557
psychological considerations,

554–556
quality of software, role in, 536
quotation marks, misplaced, 550
readability improvements, 538
recommended approach, 541
reexamining defect-prone code,

547
resources for, 561
Satan’s helpers, 539–540
scaffolding for, 558
scientific method of, 540–544
self-knowledge from, 538
source-code comparators, 556
stabilizing errors, 542–543
superstitious approaches,

539–540

symbolic debuggers, 526–527
syntax checking, 549–550, 557,

560
system debuggers, 558
test case creation, 544
testing, compared to, 500
time for, setting maximums, 549
tools for, 526–527, 545, 556–559,

719. See also debugging aids
understanding the problems, 539
unit tests, 545
varying test cases, 545
warnings, treating as errors, 557

debugging aids
C++ preprocessors, 207–208
case statements, 206
early introduction recommended,

206
offensive programming, 206
planning removal of, 206–209
pointers, checking, 208–209
preprocessors, 207–208
production constraints in

development versions, 205
purpose of, 205
stubs, 208–209
version control tools, 207

decision tables. See table-driven
methods

declarations
commenting, 794, 802–803, 816
const recommended, 243
declare and define near first use

rule, 242–243
define near first use rule,

242–243
final recommended, 243
formatting, 761–763
implicit declarations, 239–240
multiple on one line, 761–762
naming. See naming conventions
numerical data, commenting, 802
order of, 762
placement of, 762
pointers, 325–326, 763
using all declared, 257

Decorator pattern, 104
defects in code

classes prone to error, 517–518
classifications of, 518–520
clerical errors (typos), 519
Code Complete example,

490–491
construction, proportion

resulting from, 520–521

defects in code

Z02I619670.fm Page 893 Wednesday, May 12, 2004 12:23 PM

894 first top-level entry

defects in code, continued
cost of detection, 472
cost of fixing, 472–473
databases of, 527
detection by various techniques,

table of, 470
distribution of, 517–518
ease of fixing defects, 519
error checklists, 489
expected rate of, 521–522
finding, checklist, 559–560
fixing. See debugging; fixing

defects
formal inspections for detecting.

See formal inspections
intermittent, 542–543
misunderstood designs as sources

for, 519
opportunities presented by,

537–538
outside of construction domain,

519
percentage of, measurement,

469–472
performance issues, 601
programmers at fault for, 519
readability improvements, 538
refactoring after fixing, 582
scope of, 519
self-knowledge from, 538
size of projects, effects on,

651–653
sources of, table, 518
stabilizing, 542–543

defensive programming
assertions, 189–194
assumptions to check, list of, 190
barricades, 203–205
checklist, 211–212
debugging aids, 205–209
defined, 187
error handling for, 194–197
exceptions, 198–203, 211
friendly messages guideline, 210
graceful crashing guideline, 210
guidelines for production code,

209–210
hard crash errors guideline, 209
important errors guideline, 209
key points for, 213
logging guideline, 210
problems caused by, 210
quality improvement techniques,

other, 188
robustness vs. correctness, 197

security issues, 212
trivial errors guideline, 209
validating input, 188

defined data state, 509–510
defining variables. See declarations
Delphi, recoding to assembler,

640–642
DeMorgan’s Theorems, applying,

436–437
dependencies, code-ordering

checker tools, 716
circular, 95
clarifying, 348–350
concept of, 347
documentation, 350
error checking, 350
hidden, 348
initialization order, 348
naming routines, 348–349
non-obvious, 348
organization of code, 348
parameters, effective, 349

design
abstractions, forming consistent,

89–90
accidental problems, 77–78
BDUF, 119
beauty, 80
bottom-up approach to design,

112–113
business logic subsystem, 85
capturing work, 117–118
central points of control, 107
change, identifying areas of,

97–99
changes, management of,

666–667
characteristics of high quality,

80–81
checklists, 122–123, 781
classes, division into, 86
collaboration, 115
communications among

subsystems, 83–84
completion of, determining,

115–117
complexity management, 77–80
construction activity, as, 73–74
contract, by, 233
coupling considerations, 100–102
database access subsystem, 85
defined, 74
diagrams, drawing, 107
discussion, summarizing, 117

divide and conquer technique,
111

documentation, as, 781
documentation overkill, 117
emergent nature of, 76
encapsulation, 90–91
enough, determining, 118–119
essential problems, 77–78
extensibility goal, 80
formality of, determining,

115–117
formalizing class contracts, 106
goals checklist, 122–123
good practices table for, 31–32
heuristic. See heuristic design
hierarchies for, 105–106
high fan-in goal, 80
IEEE standards, 122
information hiding, 92–97, 120
inheritance, 91–92
iteration practice, 111–117
key points, 123
leanness goal, 81
level of detail needed, 115–117
levels of, 82–87
loose coupling goal, 80
low-to-medium fan-out goal, 81
maintenance goals, 80
mental limitations of humans, 79
metrics, warning signs from, 848
nondeterministic nature of, 76, 87
object-oriented, resource for, 119
objects, real world, finding, 87–89
packages level, 82–85
patterns, common. See patterns
performance tuning

considerations, 589–590
portability goal, 81
practice heuristics. See heuristic

design
practices, 110–118, 122
prioritizing during, 76
prototyping, 114–115
resources for, 119–121
restrictive nature of, 76
reusability goal, 80
routines, of, 86–87
sloppy process nature of, 75–76
software system level, 82
standard techniques goal, 81
standards, IEEE, 122
stratification goal, 81
strong cohesion, 105
subsystem level, 82–85

defensive programming

Z02I619670.fm Page 894 Wednesday, May 12, 2004 12:23 PM

last top-level entry 895

system dependencies subsystem,
85

testing for implementation, 503
tools for, 710
top-down approach, 111–113
tradeoffs, 76
UML diagrams, 118
user interface subsystem, 85
visual documentation of, 118
wicked problem nature of, 74–75
Wikis, capturing on, 117

destructors, exceptions with, 199
detailed-design documents, 778
developer testing. See testing
development processes. See

approaches to development
development standards, IEEE, 813
diagrams

heuristic design use of, 107
UML, 118

Diff tools, 556, 712
direct access tables

advantages of, 420
arrays for, 414
case statement approach,

421–422
days-in-month example, 413–414
defined, 413
design method for, 420
flexible-message-format example,

416–423
fudging keys for, 423–424
insurance rates example, 415–416
keys for, 423–424
object approach, 422–423
transforming keys, 424

disassemblers, 720
discipline, importance of, 829
discourse rules, 733
disposing of objects, 206
divide and conquer technique, 111
division, 292–293
Do loops, 369–370. See also loops
documentation

abbreviation of names, 284–285
ADTs for, 128
bad code, of, 568
Book Paradigm for, 812–813
capturing work, 117–118
checklists, 780–781, 816–817
classes, 780
comments. See comments
control structures, 780
CRC cards for, 118
dependencies, clarifying, 350

design as, 117, 781
detailed-design documents, 778
external, 777–778
Javadoc, 807, 815
key points, 817
names as, 284–285, 778–779,

780
organization of data, 780
parameter assumptions, 178
pseudocode, deriving from, 220
resources on, 815
routine parameter assumptions,

178
routines, 780
SDFs, 778
self-documenting code, 778–781
size of projects, effects of, 657
source code as, 7
standards, IEEE, 813–814
style differences, managing, 683
UDFs, 778
visual, of designs, 118
why vs. how, 797–798

dog-and-pony shows, 495
dog tag fields, 326–327
DoNothing() macros, 444–445
DRY (Don’t Repeat Yourself)

principle, 565
duplication

avoiding with routines, 164–165
code as refactoring indicator, 565

E
early-wave environments, 67
ease of maintenance design goal, 80
eclecticism, 851–852
editing tools

beautifiers, 712
class-hierarchy generators, 713
cross-reference tools, 713
Diff tools, 712
grep, 711
IDEs, 710–711
interface documentation, 713
merge tools, 712
multiple-file string searches,

711–712
templates, 713

efficiency, 464
eighty/twenty (80/20) rule, 592
else clauses

boolean function calls with, 359
case statements instead of, 360
chains, in, 358–360

common cases first guideline,
359–360

correctness testing, 358
default for covering all cases, 360
gotos with, 406–407
null, 358

embedded life-critical systems,
31–32

emergent nature of design process,
76

emulated pure blocks layout style,
740–743

encapsulation
assumptions about users, 141
checklist, 158
classes, role for, 139–143
coupling classes too tightly,

142–143
downcast objects, 574
friend class concern, 141
heuristic design with, 90–91
minimizing accessibility, 139
private details in class interfaces,

139–141
public data members, 567
public members of classes, 139
public routines in interfaces

concern, 141
semantic violations of, 141–142
weak, 567

endless loops, 367, 374
endline comments, 793–795
endline layout, 743–745, 751–752,

767
enumerated types

benefits of, 303
booleans, alternative to, 304
C++, 303–304, 306
changes benefit, 304
checklist, 317
comments substituting for,

802–803
creating for Java, 307
defined, 303
emulation by global variables, 338
explicit value pitfalls, 306
first entry invalid trick, 305–306
iterating through, 305
Java, creating for, 307
languages available in, 303
loop limits with, 305
naming, 269, 274, 277–279
parameters using, 303
readability from, 303
reliability benefit, 304

enumerated types

Z02I619670.fm Page 895 Wednesday, May 12, 2004 12:23 PM

896 first top-level entry

enumerated types, continued
standard for, 306
validation with, 304–305
Visual Basic, 303–306

equality, floating-point, 295–296
equivalence partitioning, 512
error codes, 195
error detection, doing early, 29–30
error guessing, 513
error handling. See also exceptions

architecture prerequisites, 49–50
assertions, compared to, 191
barricades, 203–205
buffer overruns compromising,

196
closest legal value, 195
defensive programming,

techniques for, 194–197
error codes, returning, 195
error-processing routines, calling,

196
high-level design implication, 197
local handling, 196
logging warning messages, 195
messages, 49, 195–196, 210
next valid data, returning, 195
previous answers, reusing, 195
propagation design, 49
refactoring, 577
returning neutral values, 194
robustness, 51, 197
routines, designing along with,

222
shutting down, 196
validation design, 50

error messages
codes, returning, 195
design, 49
displaying, 196
friendly messages guideline, 210

errors. See also defects in code;
exceptions

classifications of, 518–520
coding. See defects in code
dog tag fields, 326–327
exceptions. See exceptions
handling. See error handling
goto statements for processing,

401–402
sources of, table, 518

essential problems, 77–78
estimating schedules

approaches to, list of, 671
change costs, 666
control, compared to, 675

factors influencing, 674–675
level of detail for, 672
inaccuracy, character-based,

827–828
multiple techniques with

comparisons, 672
objectives, establishing, 671
optimism, 675
overview, 671
planning for estimation time, 671
redoing periodically, 672
reduction of scope, 676
requirements specification, 672
resources for, 677
teams, expanding, 676

event handlers, 170
evolution. See software evolution
Evolutionary Delivery. See

incremental development
metaphor

exceptions. See also error handling
abstraction issues, 199–200
alternatives to, 203
base classes for, project specific,

203
C++, 198–199
centralized reporters, 201–202
constructors with, 199
defensive programming checklist,

211
destructors with, 199
empty catch blocks rule, 201
encapsulation, breaking, 200
full information rule, 200
Java, 198–201
languages, table comparing,

198–199
level of abstraction rule, 199–200
library code generation of, 201
local handling rule, 199
non-exceptional conditions, 199
purpose of, 198, 199
readability of code using, 199
refactoring, 577
resources for, 212–213
standardizing use of, 202–203
Visual Basic, 198–199, 202

execution profilers, 557–558, 720
executable-code tools

build tools, 716–717
code libraries, 717
code-generation wizards, 718
compilers. See compilers
installation tools, 718
linkers, 716

preprocessors, 718–719
setup tools, 718

Exit Function, 391. See also return
statements

Exit statements. See break
statements

Exit Sub, 392–393. See also return
statements

exiting loops, 369–372, 377–381
experience, personal, 831–832
experimental prototyping, 114–115
experimentation as learning,

822–823, 852–853
exponential expressions, 631–632
expressions

boolean. See boolean expressions
constants, data types for, 635
initializing at compile time,

632–633
layout guidelines, 749–750
precomputing results, 635–638
right shifting, 634
strength reduction, 630–632
subexpression elimination,

638–639
system calls, performance of,

633–634
extensibility design goal, 80
external audits, 467
external documentation, 777–778
Extreme Programming

collaboration component of, 482
defect detection, 471–472
defined, 58
resources on, 708, 856

F
Facade pattern, 104
factorials, 397–398
factoring, 154. See also refactoring
factory methods

Factory Method pattern, 103–104
nested ifs refactoring example,

452–453
refactoring to, 577

fan-in, 80
fan-out, 81
farming metaphor, 14–15
fault tolerance, 50
feature-oriented integration,

700–701
Fibonacci numbers, 397–398
figures, list of, xxxiii

equality, floating-point

Z02I619670.fm Page 896 Wednesday, May 12, 2004 12:23 PM

last top-level entry 897

files
ADTs, treating as, 130
authorship records for, 811
C++ source file order, 773
deleting multiple example,

401–402
documenting, 810–811
layout within, 771–773
naming, 772, 811
routines in, 772

final keyword, Java, 243
finally statements, 404–405
fixing defects

checking fixes, 553
checklist, 560
diagnosis confirmation, 551
hurrying, impact of, 551
initialization defects, 553
maintenance issues, 553
one change at a time rule, 553
reasoning for changes, 553
saving unfixed code, 552
similar defects, looking for, 554
special cases, 553
symptoms, fixing instead of

problems, 552–553
understand first guideline,

550–551
unit tests for, 554

flags
change, identifying areas of,

98–99
comments for bit-level meanings,

803
enumerated types for, 266–267
gotos, rewriting with, 403–404
names for, 266–267
semantic coupling with, 102

flexibility
coupling criteria for, 100–101
defined, 464

floating-point data types
accuracy limitations, 295
BCD, 297
checklist, 316
costs of operations, 602
equality comparisons, 295–296
magnitudes, greatly different,

operations with, 295
rounding errors, 297
Visual Basic types, 297

for loops
advantages of, 374
formatting, 732–733, 746–747
indexes, 377–378
purpose of, 372

foreach loops, 367, 372
formal inspections

author role, 486
benefit summary, 491
blame game, 490
checklist, 491–492
CMM, 491
Code Complete example,

490–491
compared to other collaboration,

495–496
defined, 485
egos in, 490
error checklists, 489
expected results from, 485–486
fine-tuning, 489
follow-up stage, 489
inspection meetings, 488
key points, 497
management role, 486–487
moderator role, 486
overview stage, 487
performance appraisals from, 487
planning stage, 487
preparation stage, 487–488
procedure for, 487–489
rate of code review, 488
reports, 488–489
resources for, 496–497
reviewer role, 486
reviews, compared to, 485
rework stage, 489
roles in, 486–487
scenarios approach, 488
scribe role, 486
stages of, 487–489
three-hour solutions meeting, 489

formal technical reviews, 467
formatting code. See layout
Fortran, 64
functional cohesion, 168–169
functional specification. See

requirements
functions. See also routines

calculations converted to
example, 166–167

defined, 181
disallowing, 150
key point for, 186
naming conventions for, 172, 181
private, overriding, 146
return values, setting, 182
status as return value, 181
when to use, 181–182

Fundamental Theorem of
Formatting, 732

G
General Principle of Software

Quality
collaboration effects, 481
costs, 522
debugging, 537
defined, 474–475

global variables
access routines for. See access

routines
aliasing problems with, 336–337
alternatives to, 339–342
annotating, 343
changes to, inadvertent, 336
checklist for, 343–344
class variable alternatives, 339
code reuse problems, 337
commenting, 803, 809
enumerated types emulation by,

338
g_ prefix guideline, 340
hiding implementation in classes,

153
information hiding problems

with, 95–96
initialization problems, 337
intermediate results, avoiding,

343
key points, 344
local first guideline, 339
locking, 341
modularity damaged by, 337–338
named constants emulation by,

338
naming, 263, 273, 277, 278, 279,

342
objects for, monster, 343
overview of, 335–336
persistence of, 251
preservation of values with, 338
re-entrant code problems, 337
refactoring, 568
risk reduction strategies, 342–343
routines using as parameters, 336
semantic coupling with, 102
streamlining data use with, 338
tramp data, eliminating with, 338

god classes, 155
gonzo programming, 832
good data, testing, 515–516
goto statements

Ada, inclusion in, 399
advantages of, 399
alternatives compared with, 405
checklist, 410

goto statements

Z02I619670.fm Page 897 Wednesday, May 12, 2004 12:23 PM

898 first top-level entry

goto statements, continued
deallocation with, 399
disadvantages of, 398–399
duplicate code, eliminating with,

399
else clauses with, 406–407
error processing with, 401–402
Fortran’s use of, 399
forward direction guideline, 408
guidelines, 407–408
indentation problem with, 398
key points, 410
layout guidelines, 750–751
legitimate uses of, 407–408
optimization problem with, 398
phony debating about, 400–401
readability issue, 398
resources for, 409–410
rewritten with nested ifs,

402–403
rewritten with status variables,

403–404
rewritten with try-finally,

404–405
trivial rewrite example, 400–401
unused labels, 408

graphical design tools, 710
grep, 711
growing a system metaphor, 14–15
GUIs (graphical user interfaces)

architecture prerequisites, 47
refactoring data from, 576
subsystem design, 85

H
habits of programmers, 833–834
hacking approach to design, 233
hardware

dependencies, changing, 98
performance enhancement with,

591
has a relationships, 143
heuristic design

abstractions, forming consistent,
89–90

alternatives from patterns, 103
avoiding failure, 106–107
binding time considerations, 107
bottom-up approach to design,

112–113
brute force, 107
capturing work, 117–118
central points of control, 107

change, identifying areas of,
97–99

checklist for, 122–123
collaboration, 115
communications benefit from

patterns, 104
completion of, determining,

115–117
coupling considerations, 100–102
diagrams, drawing, 107
divide and conquer technique,

111
encapsulation, 90–91
error reduction with patterns, 103
formality of, determining,

115–117
formalizing class contracts, 106
goals checklist, 122–123
guidelines for using, 109–110
hierarchies for, 105–106
information hiding, 92–97, 120
inheritance, 91–92
interfaces, formalizing as

contracts, 106
iteration practice, 111–117
key points, 123
level of detail needed, 115–117
modularity, 107
multiple approach suggestion,

110
nature of design process, 76
nondeterministic basis for, 87
object-oriented, resource for, 119
objects, real world, finding, 87–89
patterns, 103–105, 120
practices, 110–118, 122
prototyping, 114–115
resources for, 121
responsibilities, assigning to

objects, 106
strong cohesion, 105
summary list of rules, 108
testing, anticipating, 106
top-down approach, 111–112, 113

heuristics
algorithms compared to, 12
design with. See heuristic design
error guessing, 513

hiding. See information hiding
hierarchies, benefits of, 105–106
high fan-in design goal, 80
human aspects of software

development. See character,
personal

humility, role in character, 821, 826,
834

Hungarian naming convention, 279
hybrid coupling of variables,

256–257

I
I/O (input/output)

architecture prerequisites, 49
change, identifying areas of, 98
performance considerations,

598–599
IDEs (Integrated Development

Environments), 710–711
IEEE (Institute for Electric and

Electrical Engineers), 813
if statements

boolean function calls with, 359
break blocks, simplification with,

446–447
case statements, compared to,

360, 614
case statements, converting to,

448–449, 451
chains of, 358–360
checklist, 365
common cases first guideline,

359–360
continuation lines in, 757
covering all cases, 360
else clauses, 358–360, 406–407
equality, branching on, 355
error processing examples,

356–357
factoring to routines, 449–451
flipped, 358
frequency, testing in order of,

612–613
gotos rewritten with, 402–403,

406–407
if-then-else statements, converting

to, 447–448
key points, 366
lookup tables, substituting,

614–615
multiple returns nested in,

392–393
negatives in, making positive,

435–436
nested. See nested if statements
normal case first guideline,

356–357
normal path first guideline, 355
null if clauses, 357

graphical design tools

Z02I619670.fm Page 898 Wednesday, May 12, 2004 12:23 PM

last top-level entry 899

plain if-then statements, 355–357
refactoring, 573
simplification, 445–447
single-statement layout, 748–749
tables, replacing with, 413–414
types of, 355

implicit declarations, 239–240
implicit instancing, 132
in keyword, creating, 175–176
incomplete preparation, causes of,

25–27
incremental development metaphor,

15–16
incremental integration

benefits of, 693–694
bottom-up strategy, 697–698
classes, 694, 697
customer relations benefit, 694
defined, 692
disadvantages of top-down

strategy, 695–696
errors, locating, 693
feature-oriented integration,

700–701
interface specification, 695, 697
progress monitoring benefit, 693
resources on, 708
results, early, 693
risk-oriented integration, 699
sandwich strategy, 698–699
scheduling benefits, 694
slices approach, 698
steps in, 692
strategies for, overview, 694
stubs, 694, 696
summary of approaches, 702
test drivers, 697
top-down strategy for, 694–696
T-shaped integration, 701
vertical-slice approach, 696

indentation, 737, 764–768
indexed access tables, 425–426,

428–429
indexes, supplementing data types

with, 627–628
indexes, loop

alterations, 377
checklist, 389
enumerated types for, 305
final values, 377–378
scope of, 383–384
variable names, 265

infinite loops, 367, 374
informal reviews, 467, 492–493

information hiding
access routines for, 340
ADTs for, 127
barriers to, 95–96
categories of secrets, 94
circular dependencies problem,

95
class data mistaken for global

data, 95–96
class design considerations, 93
class implementation details, 153
example, 93–94
excessive distribution problem,

95
importance of, 92
interfaces, class, 93
performance issues, 96
privacy rights of classes, 92–93
resources for, 120
secrets concept, 92
type creation for, 313–314

inheritance
access privileges from, 148
case statements, 147–148
checklist, 158
containment compared to, 143
decisions involved in, 144
deep trees, 147
defined, 144
design rule for, 144
functions, private, overriding, 146
guidelines, list of, 149
heuristic design with, 91–92
identifying as a design step, 88
is a relationships, 144
key points for, 160
Liskov Substitution Principle,

144–145
main goal of, 136
mixins, 149
multiple, 148–149
overridable vs. non-overridable

routines, 145–146
parallel modifications refactoring

indicator, 566
placement of common items in

tree, 146
private vs. protected data, 148
private, avoiding, 143
recommended bias against, 149
routines overridden to do

nothing, 146–147
single-instance classes, 146
similar sub and super classes, 576

initializing variables
accumulators, 243
at declaration guideline, 241
C++ example, 241
checklist for, 257
class members, 243
compiler settings, 243
consequences of failing to, 240
const recommended, 243
constants, 243
counters, 243
declare and define near first use

rule, 242–243
final recommended, 243
first use guideline, 241–242
fixing defects, 553
global variables, 337
importance of, 240–241
Java example, 242–243
key point, 258
loops, variables used in, 249
parameter validity, 244
pointer problems, 241, 244,

325–326
Principle of Proximity, 242
reinitialization, 243
strings, 300
system perturbers, testing with,

527
Visual Basic examples, 241–242

initializing working memory, 244
inline routines, 184–185
input parameters, 274
input/output. See I/O
inspections. See formal inspections
installation tools, 718
instancing objects

ADTs, 132
factory method, 103–104
singleton, 104, 151

integer data types
checklist, 316
costs of operations, 602
division considerations, 293
overflows, 293–295
ranges of, 294

Integrated Development
Environments (IDEs), 710–711

integration
benefits of, 690–691, 693–694
big-bang, 691
bottom-up strategy, 697–698
broken builds, 703
checklist, 707

integration

Z02I619670.fm Page 899 Wednesday, May 12, 2004 12:23 PM

900 first top-level entry

integration, continued
classes, 691, 694, 697
continuous, 706
customer relations, 694
daily build and smoke test,

702–706
defined, 689
disadvantages of top-down

strategy, 695–696
errors, locating, 693
feature-oriented strategy, 700–701
importance of approach methods,

689–691
incremental. See incremental

integration
interface specification, 695, 697
key points, 708
monitoring, 693
phased, 691–692
resources on, 707–708
risk-oriented strategy, 699
sandwich strategy, 698–699
scheduling, 694
slices approach, 698
smoke tests, 703
strategies for, overview, 694
stubs, 694, 696
summary of approaches, 702
testing, 499, 697
top-down strategy for, 694–696
T-shaped integration, 701
unsurfaced work, 702
vertical-slice approach, 696

integrity, 464
intellectual honesty, 826–828
intellectual toolbox approach, 20
intelligence, role in character, 821
interfaces, class

abstraction aspect of, 89,
133–138, 566

calls to classes, refactoring, 575
cohesion, 138
consistent level of abstraction,

135–136
delegation vs. inheritance,

refactoring, 576
documenting, 713, 810
erosion under modification

problem, 138
evaluating abstraction of, 135
extension classes, refactoring

with, 576
formalizing as contracts, 106
good abstraction example,

133–134

guidelines for creating, 135–138
foreign routines, refactoring with,

576
inconsistency with members

problem, 138
inconsistent abstraction, example

of, 135–136
information hiding role, 93
integration, specification during,

695, 697
key points for, 160
layout of, 768
mixins, 149
objects, designing for, 89
opposites, pairs of, 137
poor abstraction example,

134–135
private details in, 139–141
programmatic preferred to

semantic, 137
public routines in interfaces

concern, 141
read-time convenience rule, 141
refactoring, 575–576, 579
routines, moving to refactor, 575
routines, unused, 576
semantic violations of

encapsulation, 141–142
unrelated information, handling,

137
interfaces, graphic. See GUIs
interfaces, routine. See also

parameters of routines
commenting, 808
foreign routines, refactoring with,

576
pseudocode for, 226
public member variables, 576
routines, hiding, 576
routines, moving to refactor, 575

internationalization, 48
interoperability, 48
interpreted languages, performance

of, 600–601
invalid input. See validation
iteration, code. See also loops

foreach loops, 367, 372
iterative data, 255
iterator loops, defined, 367
Iterator pattern, 104
structured programming concept

of, 456
iteration in development

choosing, reasons for, 35–36
code tuning, 850

design practice, 111–117
Extreme Programming, 58
importance of, 850–851
prerequisites, 28, 33–34
sequential approach compared,

33–34
pseudocode component of, 219

J
jamming loops, 617–618
Java

assertion example in, 190
boolean expression syntax, 443
description of, 65
exceptions, 198–201
layout recommended, 745
live time examples, 247–248
naming conventions for, 276, 277
parameters example, 176–177
persistence of variables, 251
resources for, 159

Javadoc, 807, 815
JavaScript, 65
JUnit, 531
just in time binding, 253

K
key construction decisions. See

construction decisions
killed data state, 509–510
kinds of software projects, 31–33

L
languages, programming. See

programming language choice
Law of Demeter, 150
layout

array references, 754
assignment statement

continuations, 758
begin-end pairs, 742–743
blank lines, 737, 747–748
block style, 738–743
brace styles, 734, 740–743
C++ side effects, 759–761
checklist, 773–774
classes, 768–771
closely related statement

elements, 755–756
comments, 763–766
complicated expressions,

749–750
consistency requirement, 735

integrity

Z02I619670.fm Page 900 Wednesday, May 12, 2004 12:23 PM

last top-level entry 901

continuing statements, 754–758
control statement continuations,

757
control structure styles, 745–752
declarations, 761–763
discourse rules, 733
documentation in code, 763–766
double indented begin-end pairs,

746–747
emulating pure blocks, 740–743
endline layout, 743–745, 751–752
ends of continuations, 756–757
files, within, 771–773
Fundamental Theorem of

Formatting, 732
gotos, 750–751
incomplete statements, 754–755
indentation, 737
interfaces, 768
key points, 775
language-specific guidelines, 745
logical expressions, 753
logical structure, reflecting, 732,

735
mediocre example, 731–732
misleading indentation example,

732–733
misleading precedence, 733
modifications guideline, 736
multiple statements per line,

758–761
negative examples, 730–731
objectives of, 735–736
parentheses for, 738
pointers, C++, 763
pure blocks style, 738–740
readability goal, 735
religious aspects of, 735
resources on, 774–775
routine arguments, 754
routine call continuations, 756
routine guidelines, 766–768
self-documenting code, 778–781
single-statement blocks, 748–749
statement continuation, 754–758
statement length, 753
structures, importance of,

733–734
styles overview, 738
unindented begin-end pairs, 746
violations of, commenting, 801
Visual Basic blocking style, 738
white space, 732, 736–737,

753–754
laziness, 830
lazy evaluation, 615–616

leanness design goal, 81
legal notices, 811
length of variable names, optimum,

262
levels of design

business logic subsystem, 85
classes, divisions into, 86
database access subsystem, 85
overview of, 82
packages, 82–85
routines, 86–87
software system, 82
subsystems, 82–85
system dependencies subsystem,

85
user interface subsystem, 85

libraries, code
purpose of, 717
using functionality from, 222

libraries, book. See software-
development libraries

life-cycle models
good practices table for, 31–32
development standard, 813

linked lists
deleting pointers, 330
node insertion, 327–329
pointers, isolating operations of,

325
linkers, 716
lint tool, 557
Liskov Substitution Principle (LSP),

144–145
lists

of checklists, xxix–xxx
of figures, xxxiii
of tables, xxxi–xxxii

literal data, 297–298, 308–309
literate programs, 13
live time of variables, 246–248, 459
load time, binding during, 253
localization

architecture prerequisites, 48
string data types, 298

locking global data, 341
logarithms, 632–634
logging

defensive programming guideline,
210

tools for testing, 526
logic coverage testing, 506
logical cohesion, 170
logical expressions. See also boolean

expressions
code tuning, 610–616
comparing performance of, 614

eliminating testing redundancy,
610–611

frequency, testing in order of,
612–613

identities, 630
layout of, 753
lazy evaluation, 615–616
lookup tables, substituting,

614–615
short-circuit evaluation, 610

loops
abnormal, 371
arrays with, 387–388
bodies of, processing, 375–376,

388
brackets recommended, 375
break statements, 371–372,

379–380, 381
checklist, 388–389
code tuning, 616–624
commenting, 804–805
completion tests, location of, 368
compound, simplifying, 621–623
continuously evaluated loops,

367. See also while loops
continuation lines in, 757
continue statements, 379, 380,

381
counted loops, 367. See also for

loops
cross talk, 383
defined, 367
designing, process for, 385–387
do loops, 369–370
empty, avoiding, 375–376
endless loops, 367, 374
endpoint considerations,

381–382
entering, guidelines for, 373–375,

388
enumerated types for, 305
exit guidelines, 369–372,

377–381, 389
for loops, 372, 374–378,

732–733, 746–747
foreach loops, 367, 372
fusion of, 617–618
goto with, 371
housekeeping statements, 376
index alterations, 377
index checklist, 389
index final values, 377–378
index variable names, 265
index scope, 383-384
infinite loops, 367, 374

loops

Z02I619670.fm Page 901 Wednesday, May 12, 2004 12:23 PM

902 first top-level entry

loops, continued
initialization code for, 373, 374
iterative data structures with, 255
iterator loops, 367, 456
jamming, 617–618
key points, 389
kinds of, generalized, 367–368
labeled break statements, 381
language-specific, table of, 368
length of, 385
minimizing work inside, 620–621
multiple break statements, 380
naming variables, 382–383
nested, 382–383, 385, 623
null statements, rewriting, 445
off-by-one errors, 381–382
one-function guideline, 376
order of nesting, 623
performance considerations, 599
pointers inside, 620
problems with, overview of, 373
pseudocode method, 385–387
refactoring, 565, 573
repeat until clauses, 377
routines in, 385
safety counters with, 378–379
scope of indexes, 383–384
sentinel tests for, 621–623
size as refactoring indicator, 565
strength reduction, 623–624
switching, 616
termination, making obvious, 377
testing redundancy, eliminating,

610–611
unrolling, 618–620
unswitching, 616–617
variable guidelines, 382–384
variable initializations, 249
variables checklist, 389
verifying termination, 377
while loops, 368–369

loose coupling
design goal, as, 80
strategies for, 100–102

low-to-medium fan-out design goal,
81

LSP (Liskov Substitution Principle),
144–145

M
Macintosh naming conventions, 275
macro routines. See also routines

alternatives for, 184
limitations on, 184
multiple statements in, 183

naming, 183, 277–278
parentheses with, 182–183

magazines on programming,
859–860

magic variables, avoiding, 292,
297–298, 308–309

maintenance
comments requiring, 788–791
design goal for, 80
error-prone routines, prioritizing

for, 518
fixing defects, problems from, 553
maintainability defined, 464
readability benefit for, 842
structures for reducing, 323

major construction practices
checklist, 69–70

managing construction
approaches. See approaches to

development
change control. See configuration

management
code ownership attitudes, 663
complexity, 77–79
configuration management. See

configuration management
good coding, encouraging,

662–664
inspections, management role in,

486–487
key points, 688
managers, 686
measurements, 677–680
programmers, treatment of,

680–686
readability standard, 664
resources on, 687
reviewing all code, 663
rewarding good practices, 664
schedules, estimating, 671–677
signing off on code, 663
size of projects, effects of. See size

of projects
standards, authority to set, 662
standards, IEEE, 687, 814
two-person teams, 662

markers, defects from, 787
matrices. See arrays
mature technology environments,

67
maximum normal configurations,

515
maze recursion example, 394–396
McCabe’s complexity metric, 457,

458
measure twice, cut once, 23

measurement
advantages of, 677
arguing against, 678
goals for, 679
outlier identification, 679
resources for, 679–680
side effects of, 678
table of useful types of, 678–679

memory
allocation, error detection for, 206
corruption by pointers, 325
fillers, 244
initializing working, 244
paging operation performance

impact, 599
pointers, corruption by, 325
tools for, 527

mentoring, 482
merge tools, 712
metaphors, software

accreting a system, 15–16
algorithmic use of, 11, 12
building metaphor, 16–19
building vs. buying components,

18
combining, 20
computer-centric vs. data-centric

views, 11
customization, 18
discoveries based on, 9–10
earth centric vs. sun centric views,

10–11
examples of, 13–20
farming, 14–15
growing a system, 14–15
heuristic use of, 12
importance of, 9–11
incremental development, 15–16
key points for, 21
modeling use for, 9
overextension of, 10
oyster farming, 15–16
pendulum example, 10
power of, 10
readability, 13
relative merits of, 10, 11
simple vs. complex structures,

16–17
size of projects, 19
throwing one away, 13–14
toolbox approach, 20
using, 11–12
writing code example, 13–14

methodologies, 657–659. See also
approaches to development

methods. See routines

loose coupling

Z02I619670.fm Page 902 Wednesday, May 12, 2004 12:23 PM

last top-level entry 903

metrics reporters, 714
minimum normal configurations,

515
mission-critical systems, 31–32
mixed-language environments, 276
mixins, 149
mock objects, 523
modeling, metaphors as. See

metaphors, software
moderator role in inspections, 486
modularity

design goal of, 107
global variables, damage from,

337–338
modules, coupling considerations,

100–102
multiple inheritance, 148–149
multiple returns from routines,

391–393
multiple-file string search capability,

711–712

N
named constants. See constants
naming conventions

“a” prefix convention, 272
abbreviating names, 282–285
abbreviation guidelines, 282
arrays, 280–281
benefits of, 270–271
C language, 275, 278
C++, 275–277
capitalization, 274, 286
case-insensitive languages, 273
characters, hard to read, 287
checklist, 288–289, 780
class member variables, 273
class vs. object names, 272–273
common operations, for, 172–173
constants, 273–274
cross-project benefits, 270
descriptiveness guideline, 171
documentation, 284–285,

778–780
enumerated types, 269, 274,

277–279
formality, degrees of, 271
files, 811
function return values, 172
global variables, 273, 342
homonyms, 286
Hungarian, 279
informal, 272–279
input parameters, 274
Java, 276, 277

key points, 289
kinds of information in names,

277
language-independence

guidelines, 272–274
length, not limiting, 171
Macintosh, 275
meanings in names, too similar,

285
misleading names, 285
misspelled words, 286
mixed-language considerations,

276
multiple natural languages, 287
numbers, differentiating solely by,

171
numerals, 286
opposites, use of, 172
parameters, 178
phonic abbreviations, 283
prefix standardization, 279–281
procedure descriptions, 172
proliferation reduction benefit,

270
pronunciation guideline, 283
purpose of, 270–271
readability, 274
relationships, emphasis of, 271
reserved names, 287
routines, 171–173, 222
semantic prefixes, 280–281
short names, 282–285, 288–289
similarity of names, too much,

285
spacing characters, 274
t_ prefix convention, 272
thesaurus, using, 283
types vs. variables names,

272–273
UDT abbreviations, 279–280
variables, for. See variable names
Visual Basic, 278–279
when to use, 271

nested if statements
case statements, converting to,

448–449, 451
converting to if-then-else

statements, 447–448
factoring to routines, 449–451
factory method approach,

converting to, 452–453
functional decomposition of,

450–451
object-oriented approach,

converting to, 452–453

redesigning, 453
simplification by retesting

conditions, 445–446
simplification with break blocks,

446–447
summary of techniques for

reducing, 453–454
too many levels of, 445–454

nested loops
designing, 382–383, 385
ordering for performance, 623

nondeterministic nature of design
process, 76, 87

nonstandard language features, 98
null objects, refactoring, 573
null statements, 444–445
numbers, literal, 292
numeric data types

BCD, 297
checklist, 316
compiler warnings, 293
comparisons, 440–442
conversions, showing, 293
costs of operations, 602
declarations, commenting, 802
floating-point types, 295–297,

316, 602
hard coded 0s and 1s, 292
integers, 293–295
literal numbers, avoiding, 292
magic numbers, avoiding, 292
magnitudes, greatly different,

operations with, 295
mixed-type comparisons, 293
overflows, 293–295
ranges of integers, 294
zero, dividing by, 292

O
objectives, software quality, 466,

468–469
object-oriented programming

hiding information. See
information hiding

inheritance. See inheritance
objects. See classes; objects
polymorphism. See

polymorphism
resources for, 119, 159

object-parameter coupling, 101
objects

ADTs as, 130
attribute identification, 88

objects

Z02I619670.fm Page 903 Wednesday, May 12, 2004 12:23 PM

904 first top-level entry

objects, continued
class names, differentiating from,

272–273
classes, contrasted to, 86
containment, identifying, 88
deleting objects, 206
factory methods, 103–104,

452–453, 577
identifying, 88
inheritance, identifying, 88. See

also inheritance
interfaces, designing, 89. See also

interfaces, class
operations, identifying, 88
parameters, using as, 179, 574
protected interfaces, designing,

89
public vs. private members,

designing, 89
real world, finding, 87–89
refactoring, 574–576
reference objects, 574
responsibilities, assigning to, 106
singleton property, enforcing, 151
steps in designing, 87–89

Observer pattern, 104
off-by-one errors

boundary analysis, 513–514
fixing, approaches to, 553

offensive programming, 206
one-in, one-out control constructs,

454
operating systems, 590
operations, costs of common,

601–603
opposites for variable names, 264
optimization, premature, 840. See

also performance tuning
oracles, software, 851
out keyword creation, 175–176
overengineering, 51
overflows, integer, 293–295
overlay linkers, 716
overridable routines, 145–146, 156
oyster farming metaphor, 15–16

P
packages, 156–157
paging operations, 599
pair programming

benefits of, 484
checklist, 484
coding standards support for, 483
compared to other collaboration,

495–496

defined, 483
inexperienced pairs, 484
key points, 497
pace, matching, 483
personality conflicts, 484
resources, 496
rotating pairs, 483
team leaders, 484
visibility of monitor, 484
watching, 483
when not to use, 483

parameters of routines
abstraction and object

parameters, 179
actual, matching to formal, 180
asterisk (*) rule for pointers,

334–335
behavior dependence on, 574
by reference vs. by value, 333
checklist for, 185
C-library order, 175
commenting, 806–807
const prefix, 176, 177, 274
dependencies, clarifying, 349
documentation, 178
enumerated types for, 303
error variables, 176
formal, matching to actual, 180
global variables for, 336
guidelines for use in routines,

174–180
in keyword creation, 175–176
input-modify-output order,

174–175
Java, 176–177
list size as refactoring indicator,

566
matching actual to formal, 180
naming, 178, 180, 274, 277, 278,

279
number of, limiting, 178
objects, passing, 179
order for, 174–176
out keyword creation, 175–176
passing, types of, 333
refactoring, 571, 573
status, 176
structures as, 322
using all of rule, 176
variables, using as, 176–177
Visual Basic, 180

parentheses
balancing technique, 437–438
layout with, 738

Pareto Principle, 592

passing parameters, 333
patterns

advantages of, 103–104
alternatives suggested by, 103
communications benefit, 104
complexity reduction with, 103
disadvantages of, 105
error reduction benefit, 103
Factory Method, 103–104
resource for, 120
table of, 104

people first theme. See readability
performance appraisals, 487
performance tuning

algorithm choice, 590
architecture prerequisites, 48
arrays, 593–594, 603–604
checklist, 607–608
code tuning for. See code tuning
comments, effects on, 791
competing objectives dilemma,

595, 605
compiler considerations, 590,

596–597
correctness, importance of,

595–596
database indexing, 601
defects in code, 601
DES example, 605–606
design view, 589–590
feature specific, 595
hardware considerations, 591
inefficiency, sources of, 598–601
information hiding

considerations of, 96
input/output, 598–599
interpreted vs. compiled

languages, 600–601
key points, 608
lines of code, minimizing number

of, 593–594
measurement of, 603–604
memory vs. file operations,

598–599
old wives’ tales, 593–596
operating system considerations,

590
operations, costs of common,

601–603
overview of, 643–644
paging operations, 599
premature optimization, 840
program requirements view of,

589
purpose of, 587

Observer pattern

Z02I619670.fm Page 904 Wednesday, May 12, 2004 12:23 PM

last top-level entry 905

quality of code, impact on, 588
resource goals, 590
resources, 606–607
routine design, 165, 222–223,

590
speed, importance of, 595–596
summary of approach for, 606
system calls, 599–600
timing issues, 604
user view of coding, 588
when to tune, 596

periodicals on programming,
859-860

Perl, 65
persistence of variables, 251–252,

831
personal character. See character,

personal
perturbers. See system perturbers
phased integration, 691–692
phonic abbreviations of names, 283
PHP (PHP Hypertext Processor), 65,

600
physical environment for

programmers, 684–685
planning

analogy argument for, 27–28
building metaphor for, 18–19
data arguing for, 28–30
good practices table for, 31–32
logical argument for, 27

pointers
* (pointer declaration symbol),

332, 334–335, 763
& (pointer reference symbol), 332
–> (pointer symbol), 328
address of, 323, 326
allocation of, 326, 330, 331
alternatives to, 332
as function return values, 182
asterisk (*) rule, 334–335
auto_ptrs, 333
bounds checking tools, 527
C language, 334–335
C++ examples, 325, 328–334
C++ guidelines, 332–334
checking before using, 326, 331
checklist for, 344
comparisons with, 441
contents, interpretation of,

324–325
cover routines for, 331–332
dangers of, 323, 325
data types pointed to, 324–325
deallocation of, 326, 330, 332

debugging aids, 208–209
declaring, 325–326, 763
deleting, 330–331, 332
diagramming, 329
dog tag fields, 326–327
explicit typing of, 334
explicitly redundant fields, 327
extra variables for clarity,

327–329
hiding operations with routines,

165
initializing, 241, 244, 325–326
interpretation of address

contents, 324–325
isolating operations of, 325
key points, 344
languages not providing, 323
linked lists, deleting in, 330
location in memory, 323
memory corruption by, 325–327
memory parachutes, 330
null, setting to after deleting, 330
null, using as warnings, 849
overwriting memory with junk,

330
parts of, 323
passing by reference, 333
references, C++, 332
resources for, 343
SAFE_ routines for, 331–332
simplifying complicated

expressions, 329
sizeof(), 335
smart, 334
string operations in C, 299
type casting, avoiding, 334
variables referenced by, checking,

326
polymorphism

case statements, replacing with,
147–148

defined, 92
language-specific rules, 156
nested ifs, converting to, 452–453

polynomial expressions, 631–632
portability

data types, defining for, 315–316
defined, 464
routines for, 165

postconditions
routine design with, 221
verification, 192–193

PPP (Pseudocode Programming
Process)

algorithms, researching, 223

alternates to, 232–233
checking for errors, 230–231
checklist for, 233–234
cleanup steps, 232
coding below comments,

227–229
coding routines from, 225–229
data structure for routines, 224
declarations from, 226
defined, 218
designing routines, 220–225
error handling considerations,

222
example for routines, 224
functionality from libraries, 222
header comments for routines,

223
high-level comments from,

226–227
iterating, 225
key points for, 234
naming routines, 222
performance considerations,

222–223
prerequisites, 221
problem definition, 221
refactoring, 229
removing errors, 231
repeating steps, 232
reviewing pseudocode, 224–225
stepping through code, 231
testing the code, 222, 231
writing pseudocode step,

223–224
precedence, misleading, 733
preconditions

routine design with, 221
verification, 192–193

prefixes, standardization of,
279–281

premature optimization, 840
preparation. See prerequisites,

upstream
preprocessors

C++, 207–208
debugging aids, removing with,

207–208
purpose of, 718–719
writing, 208

prerequisites, upstream
analogy argument for, 27–28
architectural. See architecture
boss readiness test, 30–31
checklist for, 59

prerequisites, upstream

Z02I619670.fm Page 905 Wednesday, May 12, 2004 12:23 PM

906 first top-level entry

prerequisites, upstream, continued
choosing between iterative and

sequential approaches, 35–36
coding too early mistake, 25
compelling argument for, 27–31
data arguing for, 28–30
error detection, doing early,

29–30
goal of, 25
good practices table for, 31–32
importance of, 24
incomplete preparation, causes of,

25–27
iterative and sequential mixes,

34–35
iterative methods with, 28, 33–34
key points for, 59–60
kinds of projects, 31–33
logical argument for, 27
manager ignorance problem, 26
problem definition, 36–38
requirements development. See

requirements
risk reduction goal, 25
skills required for success, 25
time allowed for, 55–56
WIMP syndrome, 26
WISCA syndrome, 26

Principle of Proximity, 242, 351
private data, 148
problem-definition prerequisites,

36–38
problem domain, programming at,

845–847
problem-solving skills development,

823
procedural cohesion, 170
procedures. See also routines

naming guidelines for, 172
when to use, 181–182

processes, development. See
approaches to development

productivity
effects of good construction

practice, 7
industry average, 474
size of projects, effects on, 653

professional development, 824–825
professional organizations, 862
program flow

control of. See control structures
sequential. See straight-line code

program organization prerequisite,
45–46

program size. See size of projects

programmers, character of. See
character, personal

programmers, treatment of. See also
teams

overview, 680
physical environment, 684–685
privacy of offices, 684
religious issues, 683–684
resources on, 685–686
style issues, 683–684
time allocations, 681
variations in performance,

681–683
programming conventions

choosing, 66
coding practices checklist, 69
formatting rules. See layout

programming into languages,
68–69, 843

programming language choice
Ada, 63
assembly language, 63
Basic, 65
C, 64
C#, 64
C++, 64
Cobol, 64
expressiveness of concepts, 63
familiar vs. unfamiliar languages,

62
Fortran, 64
higher- vs. lower-level language

productivity, 62
importance of, 61–63
Java, 65
JavaScript, 65
Perl, 65
PHP, 65
productivity from, 62
programming into languages,

68–69, 843
Python, 65
ratio of statements compared to C

code, table of, 62
SQL, 65
thinking, effects on, 63
Visual Basic, 65

programming tools
assembler listing tools, 720
beautifiers, 712
build tools, 716–717
building your own, 721–722
CASE tools, 710
checklist, 724–725
class-hierarchy generators, 713

code libraries, 717
code tuning, 720
code-generation wizards, 718
compilers, 716
cross-reference tools, 713
data dictionaries, 715
debugging tools, 526–527, 545,

558–559, 719
dependency checkers, 716
design tools, 710
Diff tools, 712
disassemblers, 720
editing tools, 710–713
executable-code tools, 716–720
execution profiler tools, 720
fantasyland, 722–723
graphical design tools, 710
grep, 711
IDEs, 710–711
interface documentation, 713
key points, 725
linkers, 716
merge tools, 712
metrics reporters, 714
multiple-file string searches,

711–712
preprocessors, 718–719
project-specific tools, 721–722
purpose of, 709
quality analysis, 713–714
refactoring tools, 714–715
resources on, 724
restructuring tools, 715
scripts, 722
semantics checkers, 713–714
source-code tools, 710–715
syntax checkers, 713–714
templates, 713
testing tools, 719
tool-oriented environments,

720–721
translators, 715
version control tools, 715

project types, prerequisites
corresponding to, 31–33

protected data, 148
prototyping, 114–115, 468
Proximity, Principle of, 242, 351
pseudocode

algorithms, researching, 223
bad, example of, 218–219
benefits from, 219–220
changing, efficiency of, 220
checking for errors, 230–231
checklist for PPP, 233–234

Principle of Proximity

Z02I619670.fm Page 906 Wednesday, May 12, 2004 12:23 PM

last top-level entry 907

classes, steps in creating, 216–217
coding below comments,

227–229
coding from, 225–229
comments from, 220, 791
data structure for routines, 224
declarations from, 226
defined, 218
designing routines, 220–225
error handling considerations,

222
example for routines, 224
functionality from libraries, 222
good, example of, 219
guidelines for effective use, 218
header comments for routines,

223
high-level comments from,

226–227
iterative refinement, 219, 225
key points for creating, 234
loop design, 385–387
naming routines, 222
performance considerations,

222–223
PPP. See PPP
prerequisites, 221
problem definition, 221
refactoring, 229
reviewing, 224–225
routines, steps in creating, 217,

223–224
testing, planning for, 222

Pseudocode Programming Process.
See PPP

psychological distance, 556
psychological set, 554–555
psychological factors. See character,

personal
public data members, 567
pure blocks layout style, 738–740
Python

description of, 65
performance issues, 600

Q
quality assurance. See also quality of

software
checklist, 70
good practices table for, 31–32
prerequisites role in, 24
requirements checklist, 42–43

quality gates, 467

quality of software
accuracy, 464
adaptability, 464
change-control procedures, 468
checklist for, 476
collaborative construction. See

collaboration
correctness, 463
costs of finding defects, 472
costs of fixing defects, 472–473
debugging, role of, 474–475, 536
detection of defects by various

techniques, table of, 470
development process assurance

activities, 467–468
efficiency, 464
engineering guidelines, 467
explicit activity for, 466
external audits, 467
external characteristics of,

463–464
Extreme Programming, 471–472
flexibility, 464
gates, 467
General Principle of Software

Quality, 474–475
integrity, 464
internal characteristics, 464–465
key points, 477
maintainability, 464
measurement of results, 468
multiple defect detection

techniques recommended,
470–471

objectives, setting, 466, 468–469
optimization conflicts, 465–466
percentage of defects

measurement, 469–472
portability, 464
programmer performance,

objectives based, 468–469
prototyping, 468
readability, 464
recommended combination for,

473
relationships of characteristics,

465–466
reliability, 464
resources for, 476
reusability, 464
reviews, 467
robustness, 464
standards, IEEE, 477, 814
testing, 465, 467, 500–502

understandability, 465
usability, 463
when to do assurance of, 473

R
random-data generators, 525
readability

as management standard, 664
defects exposing lack of, 538
defined, 464
formatting for. See layout
importance of, 13, 841–843
maintenance benefit from, 842
naming variables for. See naming

conventions; variable names
positive effects from, 841
private vs. public programs, 842
professional development,

importance to, 825
structures, importance of,

733–734
warning sign, as a, 849

reading as a skill, 824
reading plan for software

developers, 860–862
records, refactoring, 572
recursion

alternatives to, 398
checklist, 410
defined, 393
factorials using, 397–398
Fibonacci numbers using,

397–398
guidelines for, 394
key points, 410
maze example, 394–396
safety counters for, 396
single routine guideline, 396
sorting example, 393–394
stack space concerns, 397
terminating, 396

refactoring
80/20 rule, 582
adding routines, 582
algorithms, 573
arrays, 572
backing up old code, 579
bidirectional class associations,

577
boolean expressions, 572
case statements, 573
checklists for, 570, 577–579
checkpoints for, 580

refactoring

Z02I619670.fm Page 907 Wednesday, May 12, 2004 12:23 PM

908 first top-level entry

refactoring, continued
class cohesion indicator, 566
class interfaces, 575–576
classes, 566–567, 574–576,

578–579, 582
code tuning, compared to, 609
collections, 572
comments on bad code, 568
complex modules, 583
conditional expressions, 573
constant values varying among

subclass, 574
constructors to factory methods,

577
data from uncontrolled sources,

576
data sets, related, as indicator, 566
data types to classes, 572
data-level, 571–572, 577
defects, fixes of, 582
defined, 565
designing code for future needs,

569–570
Don’t Repeat Yourself principle,

565
duplicate code indicator, 565
error-prone modules, 582
expressions, 571
global variables, 568
GUI data, 576
if statements, 573
interfaces, 566, 575–576, 579
key points, 585
listing planned steps, 580
literal constants, 571
loops, 565, 573
maintenance triggering, 583
middleman classes, 567
misuse of, 582
null objects, 573
objects, 574–576
one-at-a-time rule, 580
overloaded primitive data types,

567
parallel modifications required

indicator, 566
parameters, 566, 571, 573
PPP coding step, 229
public data members, 567
queries, 574
reasons not to, 571
records, 572
redesigning instead of, 582
reference objects, 574
resources on, 585

reviews of, 580–581
risk levels of, 581
routines, 565–567, 573–574, 578,

582
safety guidelines, 579–581, 584
setup code, 568–569
size guideline, 580
statement-level, 572–573,

577–578
strategies for, 582–584
subclasses, 567, 575
superclasses, 575
system-level, 576–577, 579
takedown code, 568–569
testing, 580
to do lists for, 580
tools for, 714–715
tramp data, 567
ugly code, interfaces to, 583–584
unidirectional class associations,

577
unit tests for, 580
variables, 571
warnings, compiler, 580

references (&), C++, 332
regression testing

diff tools for, 524
defined, 500
purpose of, 528

reliability
cohesive routines, 168
defined, 464

religious attitude toward
programming

eclecticism, 851–852
experimentation compared to,

852–853
harmful effects of, 851–853
layout styles becoming, 735
managing people, 683–684
software oracles, 851

reports. See formal inspections
requirements

benefits of, 38–39
business cases for, 41
change-control procedures, 40–41
checklists for, 40, 42–43
coding without, 26
communicating changes in, 40–41
completeness, checklist, 43
configuration management of,

664, 666–667
defined, 38
development approaches with, 41

development process effects on,
40

dumping projects, 41
errors in, effects of, 38–39
functional, checklist, 42
good practices table for, 31–32
importance of, 38–39
key point for, 60
nonfunctional, checklist, 42
performance tuning, 589
quality, checklist, 42–43
rate of change, typical, 563
resources on developing, 56–57
stability of, 39–40, 840
testing for, 503
time allowed for, 55–56

resource management
architecture for, 47
cleanup example, 401–402

restrictive nature of design, 76
restructuring tools, 715
retesting. See regression testing
return statements

checklist, 410
guard clauses, 392–393
key points, 410
multiple, from one routine,

391–393
readability, 391–392
resources for, 408

reusability
defined, 464
architecture prerequisites, 52

reviewer role in inspections, 486
reviews

code reading, 494
dog-and-pony shows, 495
educational aspect of, 482
every line of code rule, 663
formal inspections, compared to,

485
formal, quality from, 467
informal, defined, 467
iteration process, place in, 850
refactoring conducting after,

580–581
walk-throughs, 492–493

right shifting, 634
risk-oriented integration, 699
robustness

architecture prerequisites, 51
assertions with error handling,

193–194
correctness, balanced against, 197
defined, 197, 464

references (&), C++

Z02I619670.fm Page 908 Wednesday, May 12, 2004 12:23 PM

last top-level entry 909

rounding errors, 297
routines

abstract overridable, 145
abstraction benefit, 164
abstraction with object

parameters, 179, 574
access. See access routines
algorithm selection for, 223, 573
alternates to PPP, 232–233
black-box testing of, 502
blank lines in, 766
boolean test benefit, 165
calculation to function example,

166–167
calls, costs of, 601
checking for errors, 230–231
checklists, 185, 774, 780
classes, converting to, criteria for,

573
cleanup steps, 232
code tuning, 639–640
coding from pseudocode,

225–229
cohesion, 168–171
coincidental cohesion, 170
commenting, 805–809, 817
communicational cohesion, 169
compiling for errors, 230–231
complexity metric, 458
complexity reduction benefit, 164
construction step for classes, 217
continuations in call lines, 756
coupling considerations, 100–102
data states, 509
data structures for, 224
declarations, 226
defined, 161
descriptiveness guideline for

naming, 171
design by contract, 233
designing, 86, 220–225
documentation, 178, 780
downcast objects, 574
duplication benefit, 164–165
endline layout, 767
error handling considerations,

222
errors in, relation to length of, 173
event handlers, 170
fields of objects, passing to, 574
files, layout in, 772
functional cohesion, 168–169
functionality from libraries, 222

functions, special considerations
for, 181–182

hacking approach to, 233
header comments for, 223
high quality, counterexample,

161–163
high-level comments from

pseudocode, 226–227
importance of, 163
in keyword creation, 175–176
indentation of, 766–768
internal design, 87
inline, 184–185
input-modify-output parameter

order, 174–175
interface statements, 226
iterating pseudocode, 225
key points for, 186, 234
layout of, 754, 766–768
length of, guideline for, 173–174
limitations, documenting, 808
logical cohesion, 170
low-quality example, 161–163
macro. See macro routines
mentally checking for errors, 230
multiple returns from, 391–393
named parameters in, 180
naming, 171–173, 222, 277–278,

567
nested deeply, 164
objects, passing to, 179, 574
out keyword creation, 175–176
overridable vs. non-overridable

routines, 145–146
overridden to do nothing,

146–147
overriding, 156
parameters. See parameters of

routines
performance considerations, 165,

222–223
pointer hiding benefit, 165
portability benefit, 165
postconditions, 221
PPP checklist for, 233–234
preconditions, 221
prerequisites, 221
problem definition, 221
procedural cohesion, 170
procedure naming guideline, 172
pseudocode writing step,

223–224
public, using in interfaces

concern, 141
queries, refactoring, 574

reasons for creating, list of, 167
refactoring, 229, 573–575, 578,

582
reliability from cohesiveness, 168
removing errors, 231
repeating steps, 232
returns from, multiple, 391–393
reviewing pseudocode, 224–225
sequence hiding benefit, 165
sequential cohesion, 168
setup code for, refactoring,

568–569
similar parameters, order for, 176
similar, refactoring, 574
simple, usefulness of, 166–167
size as refactoring indicator,

565–566
small vs. large, 166, 173–174
specification example, 221
stepping through code, 231
strength, 168
subclassing benefit, 165
temporal cohesion, 169
test-first development, 233
testing, 222, 231, 523
tramp data in, 567
unused, refactoring, 576
valid reasons for creating,

164–167
variable names, differentiating

from, 272
wrong class, indicator for, 566

run time, binding during, 253

S
safety counters in loops, 378–379
sandwich integration, 698–699
scaffolding

debugging with, 558
testing, 523–524, 531

scalability, 48. See also size of
projects

scientific method, classic steps in,
540

SCM (software configuration
management), 665. See also
configuration management

schedules, estimating. See estimating
schedules

scope of variables
convenience argument, 250
defined, 244
global scope, problems with, 251

scope of variables

Z02I619670.fm Page 909 Wednesday, May 12, 2004 12:23 PM

910 first top-level entry

scope of variables, continued
grouping related statements,

249–250
key point, 258
language differences, 244
live time, minimizing, 246–248
localizing references to variables,

245
loop initializations, 249
manageability argument, 251
minimizing, guidelines for,

249–251
restrict and expand tactic, 250
span of variables, 245
value assignments, 249
variable names, effects on,

262–263
scribe role in inspections, 486
scripts

programming tools, as, 722
slowness of, 600-601

SDFs (software development
folders), 778

security, 47
selections, code, 455
selective data, 254
self-documenting code, 778–781,

796–797
semantic coupling, 102
semantic prefixes, 280–281
semantics checkers, 713–714
sentinel tests for loops, 621–623
sequences, code. See also blocks

hiding with routines, 165
order of. See dependencies,

code-ordering
structured programming concept

of, 454
sequential approach, 33–36
sequential cohesion, 168
Set() routines, 576
setup code, refactoring, 568–569
setup tools, 718
short-circuit evaluation, 438–440,

610
side effects, C++, 759–761
signing off on code, 663
simple-data-parameter coupling, 101
simple-object coupling, 101
single points of control, 308
single-statement blocks, 748–749
singleton property, enforcing, 104,

151

size of projects
activities, list of fastest growing,

655
activity types, effects on, 654–655
building metaphor for, 19
communications between people,

650
complexity, effect of, 656–657
defects created, effects on,

651–653
documentation requirements,

657
estimation errors, 656–657
formality requirements, 657
key points, 659
methodology considerations,

657–658
overview, 649
productivity, effects on, 653
ranges in, 651
resources on, 658–659
single product, multiple users,

656
single program, single user, 656
system products, 656
systems, 656

sizeof(), 335
sloppy processes, 75–76
smart pointers, 334
smoke tests, 703
software accretion metaphor, 15–16
software construction overview

activities excluded from, 6
activities in, list of, 3
centralness to development

process, 7
defined, 3–6
documentation by source code, 7
guaranteed done nature of, 7
importance of, 6–7
key points for, 8
main activities of, 4
percent of total development

process, 7
productivity, importance in, 7
programming as, 5
programming vs., 4
source code as documentation, 7
tasks in, list of, 5

software design. See design
software development folders

(SDFs), 778
software engineering overview of

resources, 858

software evolution
background for, 563–564
Cardinal Rule of, 565
construction vs. maintenance,

564
improving vs. degrading direction

of, 564
philosophy of, 564–565

software metaphors. See metaphors,
software

software oracles, 851
software quality. See quality of

software
Software’s Primary Technical

Imperative, 92
software-development libraries

bibliographies, 858
construction, 856
magazines, 859–860
overview, 855, 857–858
reading plan, 860–862
software engineering overviews,

858
software-engineering guidelines,

467
sorting, recursive algorithm for,

393–394
source code

documentation aspect of, 7
resource for, 815

source-code tools
analyzing quality, 713–714
beautifiers, 712
class-hierarchy generators, 713
comparators, 556
cross-reference tools, 713
data dictionaries, 715
Diff tools, 712
editing tools, 710–713
grep, 711
IDEs, 710–711
interface documentation, 713
merge tools, 712
metrics reporters, 714
multiple-file string searches,

711–712
refactoring tools, 714–715
restructuring tools, 715
semantics checkers, 713–714
syntax checkers, 713–714
templates, 713
translators, 715
version control tools, 715

span, 245, 459

scribe role in inspections

Z02I619670.fm Page 910 Wednesday, May 12, 2004 12:23 PM

last top-level entry 911

specific functional requirements
checklist, 42

specific nonfunctional requirements
checklist, 42

specification. See requirements
speed improvement checklist,

642–643. See also code tuning;
performance tuning

SQL, 65
stabilizing errors, 542–543
stair-step access tables, 426–429
standards, overview of, 814
state variables. See status variables
statements

checklist, 774
closely-related elements, 755–756
continuation layout, 754–758
ends of continuations, 756–757
incomplete, 754–755
length of, 753
refactoring, 572–573, 577–578
sequential. See straight-line code

status reporting, 827
status variables

bit-level meanings, 803
change, identifying areas of,

98–99
enumerated types for, 266–267
gotos rewritten with, 403–404
names for, 266–267
semantic coupling of, 102

straight-line code
checklist, 353
clarifying dependencies, 348–350
dependencies concept, 347
documentation, 350
error checking, 350
grouping related statements,

352–353
hidden dependencies, 348
initialization order, 348
naming routines, 348–349
non-obvious dependencies, 348
organization to show

dependencies, 348
parameters, effective, 349
proximity principle, 351
specific order, required, 347–350
top to bottom readability

guideline, 351–352
Strategy pattern, 104
stratification design goal, 81
strcpy(), 301
streams, 206
strength. See cohesion

string data types
C language, 299–301
character sets, 298
checklist, 316–317
conversion strategies, 299
indexes, 298, 299–300, 627
initializing, 300
localization, 298
magic (literal) strings, 297–298
memory concerns, 298, 300
pointers vs. character arrays, 299
Unicode, 298, 299

string pointers, 299
strncpy(), 301
strong cohesion, 105
structs. See structures
structured basis testing

recommended, 503
theory of, 505–509

structured programming
core thesis of, 456
iteration, 456
overview, 454
selections, 455
sequences, 454

structures
blocks of data, operations on,

320–322
checklist for, 343
clarifying data relationships with,

320
classes performing as, 319
defined, 319
key points, 344
maintenance reduction with, 323
overdoing, 322
parameter simplification with,

322
relationships, clear example of,

320
routine calls with, 322
simplifying data operations with,

320–322
swapping data, 321–322
unstructured data example, 320
Visual Basic examples, 320–322

stub objects, testing with, 523
stubs as integration aids, 694, 696
stubs with debugging aids, 208–209
style issues

formatting. See layout
self-documenting code, 778–781
human aspects of, 683–684

sub procedures, 161. See also
routines

subsystem design level, 82–85
subtraction, 295
swapping data using structures,

321–322
switch statements. See case

statements
symbolic debuggers, 526–527
syntax, errors in, 549–550, 560,

713–714
system architecture. See architecture
system calls

code tuning, 633–634
performance issues, 599–600

system dependencies, 85
system perturbers, 527
system testing, 500
system-level refactoring, 576–577,

579

T
table-driven methods

advantages of, 420
binary searches with, 428
case statement approach,

421–422
checklist, 429
code-tuning with, 614–615
creating from expressions, 435
days-in-month example, 413–414
defined, 411
design method, 420
direct access. See direct access

tables
endpoints of ranges, 428
flexible-message-format example,

416–423
fudging keys for, 423–424
indexed access tables, 425–426,

428–429
insurance rates example, 415–416
issues in, 412–413
key points, 430
keys for, 423–424
lookup issue, 412
miscellaneous examples, 429
object approach, 422–423
precomputing calculations, 635
purpose of, 411–412
stair-step access tables, 426–429
storage issue, 413
transforming keys, 424

Tacoma Narrows bridge, 74
takedown code, refactoring,

568–569
Team Software Process (TSP), 521

Team Software Process

Z02I619670.fm Page 911 Wednesday, May 12, 2004 12:23 PM

912 first top-level entry

teams. See also managing
construction

build groups, 704
checklist, 69
development processes used by,

840
expanding to meet schedules, 676
managers, 686
physical environment, 684–685
privacy of offices, 684
process, importance to, 839–840
religious issues, 683–684
resources on, 685–686
size of projects, effects of, 650–653
style issues, 683–684
time allocations, 681
variations in performance,

681–683
technology waves, determining your

location in, 66–69
Template Method pattern, 104
template tools, 713
temporal cohesion, 169
temporary variables, 267–268
testability

defined, 465
strategies for, 467

test-data generators, 524–525
test-first development, 233
testing

automated testing, 528–529
bad data classes, 514–515
black-box testing, 500
boundary analysis, 513–514
bounds checking tools, 527
cases, creating, 506–508,

522–525, 532
characteristics of, troublesome,

501
checklist, 532
classes prone to error, 517–518
classifications of errors, 518–520
clean test limitation, 504
clerical errors (typos), 519
code coverage testing, 506
component testing, 499
compound boundaries, 514
construction defects, proportion

of, 520–521
coverage of code, 505–509, 526
data flow testing, 509–512
data generators for, 524–525
data recorder tools, 526
debuggers, 526–527
debugging, compared to, 500

defined-used data paths, 510–512
design concerns, 503
designs, misunderstanding, 519
developer-view limitations, 504
developing tests, 522
diff tools for, 524
driver routines, 523
dummy classes, 523
dummy files for, 524
during construction, 502–503
ease of fixing defects, 519
equivalence partitioning, 512
error checklists for, 503
error databases, 527
error guessing, 513
error presence assumption, 501
errors in testing itself, 522
expected defect rate, 521–522
first or last recommendation,

503–504, 531
frameworks for, 522, 524
goals of, 501
good data classes, 515–516
integration testing, 499
JUnit for, 531
key points, 533
limitations on developer testing,

504
logging tools for, 526
logic coverage testing, 506
maximum normal configurations,

515
measurement of, 520, 529
memory tools, 527
minimum normal configurations,

515
mock objects, 523
nominal case errors, 515
old data, compatibility with, 516
optimistic programmers

limitation, 504
outside of construction domain

defects, 519
planning for, 528
prioritizing coverage, 505
provability of correctness, 501,

505
quality not affected by, 501
random-data generators, 525
recommended approach to,

503–504
record keeping for, 529–530
regression testing, 500, 528
requirements, 503
resources for, 530–531

results, uses for, 502
role in software quality assurance,

500–502
routines, black-box testing of, 502
scaffolding, 523–524, 531
scope of defects, 519
selecting cases for convenience,

516
stabilizing errors, 542
standards, IEEE, 532
structured basis testing, 503,

505–509
stub objects, 523
symbolic debuggers, 526–527
system perturbers, 527
system testing, 500
testability, 465, 467
test case errors, 522
time commitment to, 501–502
test-first development, 233
tools, list of, 719
unit testing, 499, 545
varying cases, 545
white-box testing, 500, 502

threading, 337
throwaway code, 114
throwing one away metaphor, 13–14
time allowances, 55–56
tool version control, 668
toolbox approach, 20
tools

checklist, 70
debugging. See debugging
editing. See editing tools
programming. See programming

tools
source code. See source-code tools

top-down approach to design,
111–113

top-down integration, 694–696
transcendental functions, 602, 634
translator tools, 715
try-finally statements, 404–405
T-shaped integration, 701
type casting, avoiding, 334
type creation

C++, 312
centralization benefit, 314
checklist, 318
classes, compared to, 316
example of, 313–315
guidelines for, 315–316
information hiding aspect of,

313–314

teams

Z02I619670.fm Page 912 Wednesday, May 12, 2004 12:23 PM

last top-level entry 913

languages with, evaluation of,
314–315

modification benefit, 314
naming conventions, 315
Pascal example, 312–313
portability benefit, 315–316
predefined types, avoiding, 315
purpose of, 311–312
reasons for, 314
redefining predefined, 315
reliability benefit, 314
validation benefit, 314

type definitions, 278

U
UDFs (unit development folders),

778
UDT (user-defined type)

abbreviations, 279–280
UML diagrams, 118, 120
understandability, 465. See also

readability
Unicode, 288–299
unit development folders (UDFs),

778
unit testing, 499
UNIX programming environment,

720
unrolling loops, 618–620
unswitching loops, 616–617
upstream prerequisites. See

prerequisites, upstream
usability, 463
used data state, 509–510
user-defined type (UDT)

abbreviations, 279–280
user interfaces

architecture prerequisites, 47
refactoring data from, 576
subsystem design, 85

V
validation

assumptions to check, list of, 190
data types, suspicious, 188
enumerated types for, 304–305
external data sources rule, 188
input parameters rule, 188

variable names
abbreviation guidelines, 282

accurate description rule,
260–261

bad names, examples of,
259–260, 261

boolean variables, 268–269
C language, 275, 278
C++, 263, 275–277
capitalization, 286
characters, hard to read, 287
checklist, 288–289
class member variables, 273
computed-value qualifiers,

263–264
constants, 270
enumerated types, 269
full description rule, 260–261
global, qualifiers for, 263
good names, examples of, 260,

261
homonyms, 286
Java conventions, 277
key points, 289
kinds of information in, 277
length, optimum, 262
loop indexes, 265
misspelled words, 286
multiple natural languages, 287
namespaces, 263
numerals in, 286
opposite pairs for, 264
phonic abbreviations, 283
problem orientation rule, 261
psychological distance, 556
purpose of, 240
reserved names, 287
routine names, differentiating

from, 272
scope, effects of, 262–263
similarity of names, too much,

285
specificity rule, 261
status variables, 266–267
temporary variables, 267–268
type names, differentiating from,

272–273
Visual Basic, 279

variables
binding time for, 252–254
change, identifying areas of,

98–99
checklist for using, 257–258
comments for, 803
counters, 243

data literacy test, 238–239
data type relationship to control

structures, 254–255
declaring. See declarations
global. See global variables
hidden meanings, avoiding,

256–257
hybrid coupling, 256–257
implicit declarations, 239–240
initializing, 240–244, 257
iterative data, 255
key points, 258
live time, 246–248, 459
localizing references to, 245
looping, 382–384
naming. See variable names
persistence of, 251–252
Principle of Proximity, 242
public class members, 576
refactoring, 571, 576
reusing, 255–257
scope of. See scope of variables
selective data, 254
sequential data, 254
span of, 245
types of. See data types
using all declared, 257

version control
commenting, 811
debugging aid removal, 207
tools for, 668, 715

visibility. See also scope of variables
coupling criteria for, 100
classes, of, 93

vision statement prerequisites. See
problem definition
prerequisites

Visual Basic
assertion examples, 192–194
blocking style, 738
case-insensitivity, 273
description of, 65
enumerated types, 303–306
exceptions in, 198–199, 202
implicit declarations, turning off,

240
layout recommended, 745
naming conventions for, 278–279
parameters example, 180
resources for, 159
structures, 320–322

Visual Basic

Z02I619670.fm Page 913 Wednesday, May 12, 2004 12:23 PM

914 first top-level entry

W
walk-throughs, 492–493, 495–496
warning signs, 848–850
while loops

advantages of, 374–375
break statements, 379
do-while loops, 369
exits in, 369–372
infinite loops, 374
misconception of evaluation, 554
null statements with, 444

purpose of, 368
tests, position of, 369

white space
blank lines, 737, 747–748
defined, 732
grouping with, 737
importance of, 736
indentation, 737
individual statements with,

753–754
white-box testing, 500, 502

wicked problems, 74–75
Wikis, 117
WIMP syndrome, 26
WISCA syndrome, 26
workarounds, documenting, 800
writing metaphor for coding, 13–14

Z
zero, dividing by, 292

walk-throughs

Z02I619670.fm Page 914 Wednesday, May 12, 2004 12:23 PM

Steve McConnell
Steve McConnell is Chief Software Engineer at Construx Soft-
ware where he oversees Construx’s software engineering prac-
tices. Steve is the lead for the Construction Knowledge Area of
the Software Engineering Body of Knowledge (SWEBOK)
project. Steve has worked on software projects at Microsoft, Boe-
ing, and other Seattle-area companies.

Steve is the author of Rapid Development (1996), Software Project
Survival Guide (1998), and Professional Software Development
(2004). His books have twice won Software Development maga-
zine’s Jolt Excellence award for outstanding software develop-
ment book of the year. Steve was also the lead developer of SPC
Estimate Professional, winner of a Software Development Pro-
ductivity award. In 1998, readers of Software Development magazine named Steve one of the
three most influential people in the software industry, along with Bill Gates and Linus Tor-
valds.

Steve earned a Bachelor’s degree from Whitman College and a Master’s degree in software
engineering from Seattle University. He lives in Bellevue, Washington.

If you have any comments or questions about this book, please contact Steve at
stevemcc@construx.com or via www.stevemcconnell.com.

	Cover
	Copyright
	Further Praise for Code Complete
	Contents at a Glance
	Table of Contents
	Preface
	Who Should Read This Book?
	Where Else Can You Find This Information?
	Key Benefits of This Handbook
	Why This Handbook Was Written
	Author Note

	Acknowledgments
	Checklists
	Tables
	Figures
	Chapter 5: Design in Construction
	5.1 Design Challenges
	5.2 Key Design Concepts
	5.3 Design Building Blocks: Heuristics
	5.4 Design Practices
	5.5 Comments on Popular Methodologies
	Additional Resources
	Key Points

	Bibliography
	Index
	About the Author

