Contents at a Glance

Preface .. xii
About the Author ... xv

Part I: Getting Started with Apache Spark

<table>
<thead>
<tr>
<th>HOUR</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducing Apache Spark</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Understanding Hadoop</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Installing Spark</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Understanding the Spark Application Architecture</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Deploying Spark in the Cloud</td>
<td>61</td>
</tr>
</tbody>
</table>

Part II: Programming with Apache Spark

<table>
<thead>
<tr>
<th>HOUR</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Learning the Basics of Spark Programming with RDDs</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>Understanding MapReduce Concepts</td>
<td>115</td>
</tr>
<tr>
<td>8</td>
<td>Getting Started with Scala</td>
<td>137</td>
</tr>
<tr>
<td>9</td>
<td>Functional Programming with Python</td>
<td>165</td>
</tr>
<tr>
<td>10</td>
<td>Working with the Spark API (Transformations and Actions)</td>
<td>197</td>
</tr>
<tr>
<td>11</td>
<td>Using RDDs: Caching, Persistence, and Output</td>
<td>235</td>
</tr>
<tr>
<td>12</td>
<td>Advanced Spark Programming</td>
<td>259</td>
</tr>
</tbody>
</table>

Part III: Extensions to Spark

<table>
<thead>
<tr>
<th>HOUR</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Using SQL with Spark</td>
<td>283</td>
</tr>
<tr>
<td>14</td>
<td>Stream Processing with Spark</td>
<td>323</td>
</tr>
<tr>
<td>15</td>
<td>Getting Started with Spark and R</td>
<td>343</td>
</tr>
<tr>
<td>16</td>
<td>Machine Learning with Spark</td>
<td>363</td>
</tr>
<tr>
<td>17</td>
<td>Introducing Sparkling Water (H20 and Spark)</td>
<td>381</td>
</tr>
<tr>
<td>18</td>
<td>Graph Processing with Spark</td>
<td>399</td>
</tr>
<tr>
<td>19</td>
<td>Using Spark with NoSQL Systems</td>
<td>417</td>
</tr>
<tr>
<td>20</td>
<td>Using Spark with Messaging Systems</td>
<td>433</td>
</tr>
</tbody>
</table>
Part IV: Managing Spark

HOUR 21 Administering Spark ... 453
22 Monitoring Spark ... 479
23 Extending and Securing Spark .. 501
24 Improving Spark Performance ... 519

Index ... 543
Table of Contents

Preface xii
About the Author xv

Part I: Getting Started with Apache Spark

HOUR 1: Introducing Apache Spark 1
- What Is Spark? .. 1
- What Sort of Applications Use Spark? 3
- Programming Interfaces to Spark 3
- Ways to Use Spark .. 5
- Summary ... 7
- Q&A .. 8
- Workshop .. 8

HOUR 2: Understanding Hadoop 11
- Hadoop and a Brief History of Big Data 11
- Hadoop Explained ... 12
- Introducing HDFS .. 13
- Introducing YARN .. 19
- Anatomy of a Hadoop Cluster 22
- How Spark Works with Hadoop 24
- Summary ... 24
- Q&A .. 25
- Workshop .. 25

HOUR 3: Installing Spark 27
- Spark Deployment Modes .. 27
- Preparing to Install Spark .. 28
- Installing Spark in Standalone Mode 29
- Exploring the Spark Install 38
Deploying Spark on Hadoop ... 39
Summary ... 42
Q&A .. 43
Workshop ... 43
Exercises ... 44

HOUR 4: Understanding the Spark Application Architecture 45
Anatomy of a Spark Application ... 45
Spark Driver .. 46
Spark Executors and Workers ... 48
Spark Master and Cluster Manager 49
Spark Applications Running on YARN 51
Local Mode ... 56
Summary ... 58
Q&A .. 59
Workshop ... 59

HOUR 5: Deploying Spark in the Cloud 61
Amazon Web Services Primer ... 61
Spark on EC2 ... 64
Spark on EMR .. 73
Hosted Spark with Databricks ... 81
Summary ... 88
Q&A .. 89
Workshop ... 89

Part II: Programming with Apache Spark

HOUR 6: Learning the Basics of Spark Programming with RDDs 91
Introduction to RDDs .. 91
Loading Data into RDDs ... 93
Operations on RDDs .. 106
Types of RDDs ... 111
Summary ... 112
Q&A .. 113
Workshop .. 113
<table>
<thead>
<tr>
<th>HOUR 7: Understanding MapReduce Concepts</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapReduce History and Background</td>
<td>115</td>
</tr>
<tr>
<td>Records and Key Value Pairs</td>
<td>117</td>
</tr>
<tr>
<td>MapReduce Explained</td>
<td>118</td>
</tr>
<tr>
<td>Word Count: The “Hello, World” of MapReduce</td>
<td>126</td>
</tr>
<tr>
<td>Summary</td>
<td>135</td>
</tr>
<tr>
<td>Q&A</td>
<td>135</td>
</tr>
<tr>
<td>Workshop</td>
<td>136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOUR 8: Getting Started with Scala</th>
<th>137</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scala History and Background</td>
<td>137</td>
</tr>
<tr>
<td>Scala Basics</td>
<td>138</td>
</tr>
<tr>
<td>Object-Oriented Programming in Scala</td>
<td>153</td>
</tr>
<tr>
<td>Functional Programming in Scala</td>
<td>157</td>
</tr>
<tr>
<td>Spark Programming in Scala</td>
<td>160</td>
</tr>
<tr>
<td>Summary</td>
<td>163</td>
</tr>
<tr>
<td>Q&A</td>
<td>163</td>
</tr>
<tr>
<td>Workshop</td>
<td>163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOUR 9: Functional Programming with Python</th>
<th>165</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python Overview</td>
<td>165</td>
</tr>
<tr>
<td>Data Structures and Serialization in Python</td>
<td>170</td>
</tr>
<tr>
<td>Python Functional Programming Basics</td>
<td>178</td>
</tr>
<tr>
<td>Interactive Programming Using IPython</td>
<td>183</td>
</tr>
<tr>
<td>Summary</td>
<td>193</td>
</tr>
<tr>
<td>Q&A</td>
<td>194</td>
</tr>
<tr>
<td>Workshop</td>
<td>194</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOUR 10: Working with the Spark API (Transformations and Actions)</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDDs and Data Sampling</td>
<td>197</td>
</tr>
<tr>
<td>Spark Transformations</td>
<td>199</td>
</tr>
<tr>
<td>Spark Actions</td>
<td>206</td>
</tr>
<tr>
<td>Key Value Pair Operations</td>
<td>211</td>
</tr>
<tr>
<td>Join Functions</td>
<td>219</td>
</tr>
<tr>
<td>Numerical RDD Operations</td>
<td>229</td>
</tr>
</tbody>
</table>
Summary ... 232
Q&A ... 232
Workshop ... 233

HOUR 11: Using RDDs: Caching, Persistence, and Output 235
 RDD Storage Levels ... 235
 Caching, Persistence, and Checkpointing 239
 Saving RDD Output .. 247
 Introduction to Alluxio (Tachyon) 254
 Summary .. 257
 Q&A ... 257
 Workshop .. 258

HOUR 12: Advanced Spark Programming 259
 Broadcast Variables ... 259
 Accumulators ... 265
 Partitioning and Repartitioning 270
 Processing RDDs with External Programs 278
 Summary .. 279
 Q&A ... 280
 Workshop .. 280

Part III: Extensions to Spark

HOUR 13: Using SQL with Spark 283
 Introduction to Spark SQL 283
 Getting Started with Spark SQL DataFrames 294
 Using Spark SQL DataFrames 305
 Accessing Spark SQL ... 316
 Summary .. 321
 Q&A ... 321
 Workshop .. 322

HOUR 14: Stream Processing with Spark 323
 Introduction to Spark Streaming 323
 Using DStreams .. 326
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Operations</td>
<td>335</td>
</tr>
<tr>
<td>Sliding Window Operations</td>
<td>337</td>
</tr>
<tr>
<td>Summary</td>
<td>339</td>
</tr>
<tr>
<td>Q&A</td>
<td>340</td>
</tr>
<tr>
<td>Workshop</td>
<td>340</td>
</tr>
<tr>
<td>HOUR 15: Getting Started with Spark and R</td>
<td>343</td>
</tr>
<tr>
<td>Introduction to R</td>
<td>343</td>
</tr>
<tr>
<td>Introducing SparkR</td>
<td>350</td>
</tr>
<tr>
<td>Using SparkR</td>
<td>355</td>
</tr>
<tr>
<td>Using SparkR with RStudio</td>
<td>358</td>
</tr>
<tr>
<td>Summary</td>
<td>360</td>
</tr>
<tr>
<td>Q&A</td>
<td>361</td>
</tr>
<tr>
<td>Workshop</td>
<td>361</td>
</tr>
<tr>
<td>HOUR 16: Machine Learning with Spark</td>
<td>363</td>
</tr>
<tr>
<td>Introduction to Machine Learning and MLlib</td>
<td>363</td>
</tr>
<tr>
<td>Classification Using Spark MLlib</td>
<td>367</td>
</tr>
<tr>
<td>Collaborative Filtering Using Spark MLlib</td>
<td>373</td>
</tr>
<tr>
<td>Clustering Using Spark MLlib</td>
<td>375</td>
</tr>
<tr>
<td>Summary</td>
<td>378</td>
</tr>
<tr>
<td>Q&A</td>
<td>378</td>
</tr>
<tr>
<td>Workshop</td>
<td>379</td>
</tr>
<tr>
<td>HOUR 17: Introducing Sparkling Water (H20 and Spark)</td>
<td>381</td>
</tr>
<tr>
<td>Introduction to H2O</td>
<td>381</td>
</tr>
<tr>
<td>Sparkling Water—H2O on Spark</td>
<td>387</td>
</tr>
<tr>
<td>Summary</td>
<td>396</td>
</tr>
<tr>
<td>Q&A</td>
<td>397</td>
</tr>
<tr>
<td>Workshop</td>
<td>397</td>
</tr>
<tr>
<td>HOUR 18: Graph Processing with Spark</td>
<td>399</td>
</tr>
<tr>
<td>Introduction to Graphs</td>
<td>399</td>
</tr>
<tr>
<td>Graph Processing in Spark</td>
<td>402</td>
</tr>
<tr>
<td>Introduction to GraphFrames</td>
<td>406</td>
</tr>
</tbody>
</table>
Table of Contents

Logging in Spark 492
Summary 498
Q&A 499
Workshop 499

HOUR 23: Extending and Securing Spark 501
 Isolating Spark 501
 Securing Spark Communication 504
 Securing Spark with Kerberos 512
 Summary 516
 Q&A 517
 Workshop 517

HOUR 24: Improving Spark Performance 519
 Benchmarking Spark 519
 Application Development Best Practices 526
 Optimizing Partitions 534
 Diagnosing Application Performance Issues 536
 Summary 540
 Q&A 540
 Workshop 541

Index 543
This book assumes nothing, unlike many big data (Spark and Hadoop) books before it, which are often shrouded in complexity and assume years of prior experience. I don’t assume that you are a seasoned software engineer with years of experience in Java, I don’t assume that you are an experienced big data practitioner with extensive experience in Hadoop and other related open source software projects, and I don’t assume that you are an experienced data scientist.

By the same token, you will not find this book patronizing or an insult to your intelligence either. The only prerequisite to this book is that you are “comfortable” with Python. Spark includes several application programming interfaces (APIs). The Python API was selected as the basis for this book as it is an intuitive, interpreted language that is widely known and easily learned by those who haven’t used it.

This book could have easily been titled Sams Teach Yourself Big Data Using Spark because this is what I attempt to do, taking it from the beginning. I will introduce you to Hadoop, MapReduce, cloud computing, SQL, NoSQL, real-time stream processing, machine learning, and more, covering all topics in the context of how they pertain to Spark. I focus on core Spark concepts such as the Resilient Distributed Dataset (RDD), interacting with Spark using the shell, implementing common processing patterns, practical data engineering/analysis approaches using Spark, and much more.

I was first introduced to Spark in early 2013, which seems like a short time ago but is a lifetime ago in the context of the Hadoop ecosystem. Prior to this, I had been a Hadoop consultant and instructor for several years. Before writing this book, I had implemented and used Spark in several projects ranging in scale from small to medium business to enterprise implementations. Even having substantial exposure to Spark, researching and writing this book was a learning journey for myself, taking me further into areas of Spark that I had not yet appreciated. I would like to take you on this journey as well as you read this book.

Spark and Hadoop are subject areas I have dedicated myself to and that I am passionate about. The making of this book has been hard work but has truly been a labor of love. I hope this book launches your career as a big data practitioner and inspires you to do amazing things with Spark.
Why Should I Learn Spark?

Spark is one of the most prominent big data processing platforms in use today and is one of the most popular big data open source projects ever. Spark has risen from its roots in academia to Silicon Valley start-ups to proliferation within traditional businesses such as banking, retail, and telecommunications. Whether you are a data analyst, data engineer, data scientist, or data steward, learning Spark will help you to advance your career or embark on a new career in the booming area of big data.

How This Book Is Organized

This book starts by establishing some of the basic concepts behind Spark and Hadoop, which are covered in Part I, “Getting Started with Apache Spark.” I also cover deployment of Spark both locally and in the cloud in Part I.

Part II, “Programming with Apache Spark,” is focused on programming with Spark, which includes an introduction to functional programming with both Python and Scala as well as a detailed introduction to the Spark core API.

Part III, “Extensions to Spark,” covers extensions to Spark, which include Spark SQL, Spark Streaming, machine learning, and graph processing with Spark. Other areas such as NoSQL systems (such as Cassandra and HBase) and messaging systems (such as Kafka) are covered here as well.

I wrap things up in Part IV, “Managing Spark,” by discussing Spark management, administration, monitoring, and logging as well as securing Spark.

Data Used in the Exercises

Data for the Try It Yourself exercises can be downloaded from the book’s Amazon Web Services (AWS) S3 bucket (if you are not familiar with AWS, don’t worry—I cover this topic in the book as well). When running the exercises, you can use the data directly from the S3 bucket or you can download the data locally first (examples of both methods are shown). If you choose to download the data first, you can do so from the book’s download page at http://sty-spark.s3-website-us-east-1.amazonaws.com/.

Conventions Used in This Book

Each hour begins with “What You’ll Learn in This Hour,” which provides a list of bullet points highlighting the topics covered in that hour. Each hour concludes with a “Summary” page summarizing the main points covered in the hour as well as “Q&A” and “Quiz” sections to help you consolidate your learning from that hour.
Key topics being introduced for the first time are typically *italicized* by convention. Most hours also include programming examples in numbered code listings. Where functions, commands, classes, or objects are referred to in text, they appear in monospace type.

Other asides in this book include the following:

NOTE
Content not integral to the subject matter but worth noting or being aware of.

TIP

TIP Subtitle
A hint or tip relating to the current topic that could be useful.

CAUTION

Caution Subtitle
Something related to the current topic that could lead to issues if not addressed.

TRY IT YOURSELF

Exercise Title
An exercise related to the current topic including a step-by-step guide and descriptions of expected outputs.
About the Author

Jeffrey Aven is a big data consultant and instructor based in Melbourne, Australia. Jeff has an extensive background in data management and several years of experience consulting and teaching in the areas of Hadoop, HBase, Spark, and other big data ecosystem technologies. Jeff has won accolades as a big data instructor and is also an accomplished consultant who has been involved in several high-profile, enterprise-scale big data implementations across different industries in the region.
Dedication

This book is dedicated to my wife and three children. I have been burning the candle at both ends during the writing of this book and I appreciate your patience and understanding…

Acknowledgments

Special thanks to Cody Koeninger and Chris Zahn for their input and feedback as editors. Also thanks to Trina McDonald and all of the team at Pearson for keeping me in line during the writing of this book!
We Want to Hear from You

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any updates, downloads, or errata that might be available for this book.
This page intentionally left blank
Now that you’ve gotten through the heavy stuff in the last two hours, you can dive headfirst into Spark and get your hands dirty, so to speak.

This hour covers the basics about how Spark is deployed and how to install Spark. I will also cover how to deploy Spark on Hadoop using the Hadoop scheduler, YARN, discussed in Hour 2.

By the end of this hour, you’ll be up and running with an installation of Spark that you will use in subsequent hours.

Spark Deployment Modes

There are three primary deployment modes for Spark:

- Spark Standalone
- Spark on YARN (Hadoop)
- Spark on Mesos

Spark Standalone refers to the built-in or “standalone” scheduler. The term can be confusing because you can have a single machine or a multinode fully distributed cluster both running in Spark Standalone mode. The term “standalone” simply means it does not need an external scheduler.

With Spark Standalone, you can get up and running quickly with few dependencies or environmental considerations. Spark Standalone includes everything you need to get started.
Spark on YARN and Spark on Mesos are deployment modes that use the resource schedulers YARN and Mesos respectively. In each case, you would need to establish a working YARN or Mesos cluster prior to installing and configuring Spark. In the case of Spark on YARN, this typically involves deploying Spark to an existing Hadoop cluster.

I will cover Spark Standalone and Spark on YARN installation examples in this hour because these are the most common deployment modes in use today.

Preparing to Install Spark

Spark is a cross-platform application that can be deployed on

- Linux (all distributions)
- Windows
- Mac OS X

Although there are no specific hardware requirements, general Spark instance hardware recommendations are

- 8 GB or more memory
- Eight or more CPU cores
- 10 gigabit or greater network speed
- Four or more disks in JBOD configuration (JBOD stands for “Just a Bunch of Disks,” referring to independent hard disks not in a RAID—or Redundant Array of Independent Disks—configuration)

Spark is written in Scala with programming interfaces in Python (PySpark) and Scala. The following are software prerequisites for installing and running Spark:

- Java
- Python (if you intend to use PySpark)

If you wish to use Spark with R (as I will discuss in Hour 15, “Getting Started with Spark and R”), you will need to install R as well. Git, Maven, or SBT may be useful as well if you intend on building Spark from source or compiling Spark programs.

If you are deploying Spark on YARN or Mesos, of course, you need to have a functioning YARN or Mesos cluster before deploying and configuring Spark to work with these platforms.

I will cover installing Spark in Standalone mode on a single machine on each type of platform, including satisfying all of the dependencies and prerequisites.
Installing Spark in Standalone Mode

In this section I will cover deploying Spark in Standalone mode on a single machine using various platforms. Feel free to choose the platform that is most relevant to you to install Spark on.

Getting Spark

In the installation steps for Linux and Mac OS X, I will use pre-built releases of Spark. You could also download the source code for Spark and build it yourself for your target platform using the build instructions provided on the official Spark website. I will use the latest Spark binary release in my examples. In either case, your first step, regardless of the intended installation platform, is to download either the release or source from: http://spark.apache.org/downloads.html

This page will allow you to download the latest release of Spark. In this example, the latest release is 1.5.2, your release will likely be greater than this (e.g. 1.6.x or 2.x.x).

![The Apache Spark downloads page.](image)
NOTE
The Spark releases do not actually include Hadoop as the names may imply. They simply include libraries to integrate with the Hadoop clusters and distributions listed. Many of the Hadoop classes are required regardless of whether you are using Hadoop. I will use the spark-1.5.2-bin-hadoop2.6.tgz package for this installation.

CAUTION
Using the “Without Hadoop” Builds
You may be tempted to download the “without Hadoop” or spark-x.x.x-bin-without-hadoop.tgz options if you are installing in Standalone mode and not using Hadoop. The nomenclature can be confusing, but this build is expecting many of the required classes that are implemented in Hadoop to be present on the system. Select this option only if you have Hadoop installed on the system already. Otherwise, as I have done in my case, use one of the spark-x.x.x-bin-hadoopx.x builds.

▼ TRY IT YOURSELF
Install Spark on Red Hat/Centos
In this example, I’m installing Spark on a Red Hat Enterprise Linux 7.1 instance. However, the same installation steps would apply to Centos distributions as well.

1. As shown in Figure 3.1, download the spark-1.5.2-bin-hadoop2.6.tgz package from your local mirror into your home directory using wget or curl.
2. If Java 1.7 or higher is not installed, install the Java 1.7 runtime and development environments using the OpenJDK yum packages (alternatively, you could use the Oracle JDK instead):
 sudo yum install java-1.7.0-openjdk java-1.7.0-openjdk-devel
3. Confirm Java was successfully installed:
 $ java -version
 java version "1.7.0_91"
 OpenJDK Runtime Environment (rhel-2.6.2.3.el7-x86_64 u91-b00)
 OpenJDK 64-Bit Server VM (build 24.91-b01, mixed mode)
4. Extract the Spark package and create SPARK_HOME:
 tar -xzf spark-1.5.2-bin-hadoop2.6.tgz
 sudo mv spark-1.5.2-bin-hadoop2.6 /opt/spark
 export SPARK_HOME=/opt/spark
 export PATH=$SPARK_HOME/bin:$PATH
NOTE

Most of the popular Linux distributions include Python 2.x with the python binary in the system path, so you normally don’t need to explicitly install Python; in fact, the yum program itself is implemented in Python.

You may also have wondered why you did not have to install Scala as a prerequisite. The Scala binaries are included in the assembly when you build or download a pre-built release of Spark.
TRY IT YOURSELF

Install Spark on Ubuntu/Debian Linux

In this example, I’m installing Spark on an Ubuntu 14.04 LTS Linux distribution.

As with the Red Hat example, Python 2.7 is already installed with the operating system, so we do not need to install Python.

1. As shown in Figure 3.1, download the `spark-1.5.2-bin-hadoop2.6.tgz` package from your local mirror into your home directory using `wget` or `curl`.

2. If Java 1.7 or higher is not installed, install the Java 1.7 runtime and development environments using Ubuntu’s APT (Advanced Packaging Tool). Alternatively, you could use the Oracle JDK instead:
   ```sh
   sudo apt-get update
   sudo apt-get install openjdk-7-jre
   sudo apt-get install openjdk-7-jdk
   ```

3. Confirm Java was successfully installed:
   ```sh
   $ java -version
   java version "1.7.0_91"
   OpenJDK Runtime Environment (IcedTea 2.6.3) (7u91-2.6.3-0ubuntu0.14.04.1)
   OpenJDK 64-Bit Server VM (build 24.91-b01, mixed mode)
   ```

4. Extract the Spark package and create `SPARK_HOME`:
   ```sh
   tar -xzf spark-1.5.2-bin-hadoop2.6.tgz
   sudo mv spark-1.5.2-bin-hadoop2.6 /opt/spark
   export SPARK_HOME=/opt/spark
   export PATH=$SPARK_HOME/bin:$PATH
   ```
 The `SPARK_HOME` environment variable could also be set using the `.bashrc` file or similar user or system profile scripts. You will need to do this if you wish to persist the `SPARK_HOME` variable beyond the current session.

5. Open the PySpark shell by running the `pyspark` command from any directory. If Spark has been successfully installed, you should see the following output:

 Welcome to

 / __/ __ _ _ _/ / __
 \/ ___ _/ / ___ _
 /_/ /_/ / / /_/ /_/ /_/ /_/ /_/ version 1.5.2

 Using Python version 2.7.6 (default, Mar 22 2014 22:59:56)
 SparkContext available as sc, HiveContext available as sqlContext.
 >>>
6. You should see a similar result by running the spark-shell command from any directory.

7. Run the included Pi Estimator example by executing the following command:

   ```bash
   spark-submit --class org.apache.spark.examples.SparkPi \
   --master local \
   $SPARK_HOME/lib/spark-examples*.jar 10
   ```

8. If the installation was successful, you should see something similar to the following result (omitting the informational log messages). Note, this is an estimator program, so the actual result may vary:

   ```
   Pi is roughly 3.140576
   ```

Install Spark on Mac OS X

In this example, I install Spark on OS X Mavericks (10.9.5).

Mavericks includes installed versions of Python (2.7.5) and Java (1.8), so I don’t need to install them.

1. As shown in Figure 3.1, download the `spark-1.5.2-bin-hadoop2.6.tgz` package from your local mirror into your home directory using curl.

2. Extract the Spark package and create `SPARK_HOME`:

   ```bash
   tar -xzf spark-1.5.2-bin-hadoop2.6.tgz
   sudo mv spark-1.5.2-bin-hadoop2.6 /opt/spark
   export SPARK_HOME=/opt/spark
   export PATH=$SPARK_HOME/bin:$PATH
   ```

3. Open the PySpark shell by running the `pyspark` command in the Terminal from any directory. If Spark has been successfully installed, you should see the following output:

   ```
   Welcome to
   /\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_\n```

SparkContext available as sc, HiveContext available as sqlContext.
```

The `SPARK_HOME` environment variable could also be set using the `.profile` file or similar user or system profile scripts.
4. You should see a similar result by running the `spark-shell` command in the terminal from any directory.

5. Run the included Pi Estimator example by executing the following command:

   ```bash
   spark-submit --class org.apache.spark.examples.SparkPi
   --master local
   $SPARK_HOME/lib/spark-examples*.jar 10
   ```

6. If the installation was successful, you should see something similar to the following result (omitting the informational log messages). Note, this is an estimator program, so the actual result may vary:

 Pi is roughly 3.140576

TRY IT YOURSELF

Install Spark on Microsoft Windows

Installing Spark on Windows can be more involved than installing it on Linux or Mac OS X because many of the dependencies (such as Python and Java) need to be addressed first.

This example uses a Windows Server 2012, the server version of Windows 8.

1. You will need a decompression utility capable of extracting `.tar.gz` and `.gz` archives because Windows does not have native support for these archives. 7-zip is a suitable program for this. You can obtain it from http://7-zip.org/download.html.

2. As shown in Figure 3.1, download the `spark-1.5.2-bin-hadoop2.6.tgz` package from your local mirror and extract the contents of this archive to a new directory called `C:\Spark`.

3. Install Java using the Oracle JDK Version 1.7, which you can obtain from the Oracle website. In this example, I download and install the `jdk-7u79-windows-x64.exe` package.

4. Disable IPv6 for Java applications by running the following command as an administrator from the Windows command prompt:

   ```cmd
   setx /M _JAVA_OPTIONS "-Djava.net.preferIPv4Stack=true"
   ```

5. Python is not included with Windows, so you will need to download and install it. You can obtain a Windows installer for Python from https://www.python.org/getit/. I use Python 2.7.10 in this example. Install Python into `C:\Python27`.

6. Download the Hadoop common binaries necessary to run Spark compiled for Windows x64 from [hadoop-common-bin](http://hadoop.apache.org). Extract these files to a new directory called `C:\Hadoop`.

7. Set an environment variable at the machine level for HADOOP_HOME by running the following command as an administrator from the Windows command prompt:

```
setx /M HADOOP_HOME C:\Hadoop
```

8. Update the system path by running the following command as an administrator from the Windows command prompt:

```
setx /M path "%path%;C:\Python27;%PROGRAMFILES%;Java\jdk1.7.0_79\bin;C:\Hadoop"
```

9. Make a temporary directory, C:\tmp\hive, to enable the HiveContext in Spark. Set permission to this file using the winutils.exe program included with the Hadoop common binaries by running the following commands as an administrator from the Windows command prompt:

```
mkdir C:\tmp\hive
C:\Hadoop\bin\winutils.exe chmod 777 /tmp/hive
```

10. Test the Spark interactive shell in Python by running the following command:

```
C:\Spark\bin\pyspark
```

You should see the output shown in Figure 3.2.

![Figure 3.2](image)

The PySpark shell in Windows.

11. You should get a similar result by running the following command to open an interactive Scala shell:

```
C:\Spark\bin\spark-shell
```

12. Run the included Pi Estimator example by executing the following command:

```
C:\Spark\bin\spark-submit --class org.apache.spark.examples.SparkPi --master local C:\Spark\lib\spark-examples*.jar 10
```
Installing a Multi-node Spark Standalone Cluster

Using the steps outlined in this section for your preferred target platform, you will have installed a single node Spark Standalone cluster. I will discuss Spark’s cluster architecture in more detail in **Hour 4, “Understanding the Spark Runtime Architecture.”** However, to create a multi-node cluster from a single node system, you would need to do the following:

- Ensure all cluster nodes can resolve hostnames of other cluster members and are routable to one another (typically, nodes are on the same private subnet).
- Enable passwordless SSH (Secure Shell) for the Spark master to the Spark slaves (this step is only required to enable remote login for the slave daemon startup and shutdown actions).
- Configure the `spark-defaults.conf` file on all nodes with the URL of the Spark master node.
- Configure the `spark-env.sh` file on all nodes with the hostname or IP address of the Spark master node.
- Run the `start-master.sh` script from the `sbin` directory on the Spark master node.
- Run the `start-slave.sh` script from the `sbin` directory on all of the Spark slave nodes.
- Check the Spark master UI. You should see each slave node in the `Workers` section.
- Run a test Spark job.

If the installation was successful, you should see something similar to the following result shown in Figure 3.3. Note, this is an estimator program, so the actual result may vary:

![Image of SparkPi example program in Windows]

FIGURE 3.3
The results of the SparkPi example program in Windows.
TRY IT YOURSELF ▼

Configuring and Testing a Multinode Spark Cluster

Take your single node Spark system and create a basic two-node Spark cluster with a master node and a worker node.

In this example, I use two Linux instances with Spark installed in the same relative paths: one with a hostname of `sparkmaster`, and the other with a hostname of `sparkslave`.

1. Ensure that each node can resolve the other. The `ping` command can be used for this. For example, from `sparkmaster`:
   ```
   ping sparkslave
   ```

2. Ensure the firewall rules of network ACLs will allow traffic on multiple ports between cluster instances because cluster nodes will communicate using various TCP ports (normally not a concern if all cluster nodes are on the same subnet).

3. Create and configure the `spark-defaults.conf` file on all nodes. Run the following commands on the `sparkmaster` and `sparkslave` hosts:
   ```
   cd $SPARK_HOME/conf
   sudo cp spark-defaults.conf.template spark-defaults.conf
   sudo sed -i "s/\$spark.master\tspark://sparkmaster:7077/" spark-defaults.conf
   ```

4. Create and configure the `spark-env.sh` file on all nodes. Complete the following tasks on the `sparkmaster` and `sparkslave` hosts:
   ```
   cd $SPARK_HOME/conf
   sudo cp spark-env.sh.template spark-env.sh
   sudo sed -i "s/\$SPARK_MASTER_IP=sparkmaster/\&-SPARK_MASTER_IP=sparkmaster/" spark-env.sh
   ```

5. On the `sparkmaster` host, run the following command:
   ```
   sudo $SPARK_HOME/sbin/start-master.sh
   ```

6. On the `sparkslave` host, run the following command:
   ```
   sudo $SPARK_HOME/sbin/start-slave.sh spark://sparkmaster:7077
   ```

7. Check the Spark master web user interface (UI) at `http://sparkmaster:8080/`.

9. Run the built-in Pi Estimator example from the terminal of either node:
   ```
   spark-submit --class org.apache.spark.examples.SparkPi \
   --master spark://sparkmaster:7077 \
   --driver-memory 512m \
   --executor-memory 512m \
   --executor-cores 1 \
   $SPARK_HOME/lib/spark-examples*.jar
   ```
Spark Master Is a Single Point of Failure in Standalone Mode

Without implementing High Availability (HA), the Spark Master node is a single point of failure (SPOF) for the Spark cluster. This means that if the Spark Master node goes down, the Spark cluster would stop functioning, all currently submitted or running applications would fail, and no new applications could be submitted.

High Availability can be configured using Apache Zookeeper, a highly reliable distributed coordination service. You can also configure HA using the filesystem instead of Zookeeper; however, this is not recommended for production systems.

Exploring the Spark Install

Now that you have Spark up and running, let’s take a closer look at the install and its various components.

If you followed the instructions in the previous section, “Installing Spark in Standalone Mode,” you should be able to browse the contents of $SPARK_HOME.

In Table 3.1, I describe each subdirectory of the Spark installation.

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>Contains all of the commands/scripts to run Spark applications interactively through shell programs such as pyspark, spark-shell, spark-sql and sparkR, or in batch mode using spark-submit.</td>
</tr>
<tr>
<td>conf</td>
<td>Contains templates for Spark configuration files, which can be used to set Spark environment variables (spark-env.sh) or set default master, slave, or client configuration parameters (spark-defaults.conf). There are also configuration templates to control logging (log4j.properties), metrics collection (metrics.properties), as well as a template for the slaves file, which controls which slave nodes can join the Spark cluster.</td>
</tr>
</tbody>
</table>
Deploying Spark on Hadoop

As discussed previously, deploying Spark with Hadoop is a popular option for many users because Spark can read from and write to the data in Hadoop (in HDFS) and can leverage Hadoop's process scheduling subsystem, YARN.

Using a Management Console or Interface

If you are using a commercial distribution of Hadoop such as Cloudera or Hortonworks, you can often deploy Spark using the management console provided with each respective platform: for example, Cloudera Manager for Cloudera or Ambari for Hortonworks.

Directory Description

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ec2</td>
<td>Contains scripts to deploy Spark nodes and clusters on Amazon Web Services (AWS) Elastic Compute Cloud (EC2). I will cover deploying Spark in EC2 in Hour 5, “Deploying Spark in the Cloud.”</td>
</tr>
<tr>
<td>lib</td>
<td>Contains the main assemblies for Spark including the main library (spark-assembly-x.x.x-hadoopx.x.x.jar) and included example programs (spark-examples-x.x.x-hadoopx.x.x.jar), of which we have already run one, SparkPi, to verify the installation in the previous section.</td>
</tr>
<tr>
<td>licenses</td>
<td>Includes license files covering other included projects such as Scala and JQuery. These files are for legal compliance purposes only and are not required to run Spark.</td>
</tr>
<tr>
<td>python</td>
<td>Contains all of the Python libraries required to run PySpark. You will generally not need to access these files directly.</td>
</tr>
<tr>
<td>sbin</td>
<td>Contains administrative scripts to start and stop master and slave services (locally or remotely) as well as start processes related to YARN and Mesos. I used the start-master.sh and start-slave.sh scripts when I covered how to install a multi-node cluster in the previous section.</td>
</tr>
<tr>
<td>data</td>
<td>Contains sample data sets used for testing mllib (which we will discuss in more detail in Hour 16, “Machine Learning with Spark”).</td>
</tr>
<tr>
<td>examples</td>
<td>Contains the source code for all of the examples included in lib/spark-examples-x.x.x-hadoopx.x.x.jar. Example programs are included in Java, Python, R, and Scala. You can also find the latest code for the included examples at https://github.com/apache/spark/tree/master/examples.</td>
</tr>
<tr>
<td>R</td>
<td>Contains the SparkR package and associated libraries and documentation. I will discuss SparkR in Hour 15, “Getting Started with Spark and R”</td>
</tr>
</tbody>
</table>
If you are using the management facilities of a commercial distribution, the version of Spark deployed may lag the latest stable Apache release because Hadoop vendors typically update their software stacks with their respective major and minor release schedules.

Installing Manually

Installing Spark on a YARN cluster manually (that is, not using a management interface such as Cloudera Manager or Ambari) is quite straightforward to do.

TRY IT YOURSELF

Installing Spark on Hadoop Manually

1. Follow the steps outlined for your target platform (for example, Red Hat Linux, Windows, and so on) in the earlier section “Installing Spark in Standalone Mode.”

2. Ensure that the system you are installing on is a Hadoop client with configuration files pointing to a Hadoop cluster. You can do this as shown:

   ```bash
   hadoop fs -ls
   ```

 This lists the contents of your user directory in HDFS. You could instead use the path in HDFS where your input data resides, such as

   ```bash
   hadoop fs -ls /path/to/my/data
   ```

 If you see an error such as `hadoop: command not found`, you need to make sure a correctly configured Hadoop client is installed on the system before continuing.

3. Set either the `HADOOP_CONF_DIR` or `YARN_CONF_DIR` environment variable as shown:

   ```bash
   export HADOOP_CONF_DIR=/etc/hadoop/conf
   # or
   export YARN_CONF_DIR=/etc/hadoop/conf
   ```

 As with `SPARK_HOME`, these variables could be set using the `.bashrc` or similar profile script sourced automatically.

4. Execute the following command to test Spark on YARN:

   ```bash
   spark-submit --class org.apache.spark.examples.SparkPi --master yarn-cluster
   $SPARK_HOME/lib/spark-examples*.jar 10
   ```
5. If you have access to the YARN Resource Manager UI, you can see the Spark job running in YARN as shown in Figure 3.4:

![Figure 3.4](image1.png)

FIGURE 3.4
The YARN ResourceManager UI showing the Spark application running.

6. Clicking the **ApplicationsMaster** link in the **ResourceManager UI** will redirect you to the Spark UI for the application:

![Figure 3.5](image2.png)

FIGURE 3.5
The Spark UI.

Submitting Spark applications using YARN can be done in two submission modes: `yarn-cluster` or `yarn-client`.

Using the `yarn-cluster` option, the Spark Driver and Spark Context, ApplicationsMaster, and all executors run on YARN NodeManagers. These are all concepts we will explore in detail in **Hour 4, “Understanding the Spark Runtime Architecture.”** The `yarn-cluster` submission mode is intended for production or non interactive/batch Spark applications. You cannot use
yarn-cluster as an option for any of the interactive Spark shells. For instance, running the following command:

```
spark-shell --master yarn-cluster
```

will result in this error:

```
Error: Cluster deploy mode is not applicable to Spark shells.
```

Using the `yarn-client` option, the Spark Driver runs on the client (the host where you ran the Spark application). All of the tasks and the ApplicationsMaster run on the YARN NodeManagers however unlike `yarn-cluster` mode, the Driver does not run on the ApplicationsMaster. The `yarn-client` submission mode is intended to run interactive applications such as `pyspark` or `spark-shell`.

CAUTION

Running Incompatible Workloads Alongside Spark May Cause Issues

Spark is a memory-intensive processing engine. Using Spark on YARN will allocate containers, associated CPU, and memory resources to applications such as Spark as required. If you have other memory-intensive workloads, such as Impala, Presto, or HAWQ running on the cluster, you need to ensure that these workloads can coexist with Spark and that neither compromises the other. Generally, this can be accomplished through application, YARN cluster, scheduler, or application queue configuration and, in extreme cases, operating system cgroups (on Linux, for instance).

Summary

In this hour, I have covered the different deployment modes for Spark: Spark Standalone, Spark on Mesos, and Spark on YARN.

Spark Standalone refers to the built-in process scheduler it uses as opposed to using a preexisting external scheduler such as Mesos or YARN. A Spark Standalone cluster could have any number of nodes, so the term “Standalone” could be a misnomer if taken out of context. I have showed you how to install Spark both in Standalone mode (as a single node or multi-node cluster) and how to install Spark on an existing YARN (Hadoop) cluster.

I have also explored the components included with Spark, many of which you will have used by the end of this book.

You’re now up and running with Spark. You can use your Spark installation for most of the exercises throughout this book.
Q&A

Q. What are the factors involved in selecting a specific deployment mode for Spark?

A. The choice of deployment mode for Spark is primarily dependent upon the environment you are running in and the availability of external scheduling frameworks such as YARN or Mesos. For instance, if you are using Spark with Hadoop and you have an existing YARN infrastructure, Spark on YARN is a logical deployment choice. However, if you are running Spark independent of Hadoop (for instance sourcing data from S3 or a local filesystem), Spark Standalone may be a better deployment method.

Q. What is the difference between the yarn-client and the yarn-cluster options of the --master argument using spark-submit?

A. Both the yarn-client and yarn-cluster options execute the program in the Hadoop cluster using YARN as the scheduler; however, the yarn-client option uses the client host as the driver for the program and is designed for testing as well as interactive shell usage.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. True or false: A Spark Standalone cluster consists of a single node.

2. Which component is not a prerequisite for installing Spark?
 - A. Scala
 - B. Python
 - C. Java

3. Which of the following subdirectories contained in the Spark installation contains scripts to start and stop master and slave node Spark services?
 - A. bin
 - B. sbin
 - C. lib

4. Which of the following environment variables are required to run Spark on Hadoop/YARN?
 - A. HADOOP_CONF_DIR
 - B. YARN_CONF_DIR
 - C. Either HADOOP_CONF_DIR or YARN_CONF_DIR will work.
Answers

1. **False.** Standalone refers to the independent process scheduler for Spark, which could be deployed on a cluster of one-to-many nodes.

2. **A.** The Scala assembly is included with Spark; however, Java and Python must exist on the system prior to installation.

3. **B.** `sbin` contains administrative scripts to start and stop Spark services.

4. **C.** Either the `HADOOP_CONF_DIR` or `YARN_CONF_DIR` environment variable must be set for Spark to use YARN.

Exercises

1. Using your Spark Standalone installation, execute `pyspark` to open a PySpark interactive shell.

3. Click the Environment top menu link or navigate to Environment page directly using the url: `http://localhost:4040/environment/`.

4. Note some of the various environment settings and configuration parameters set. I will explain many of these in greater detail throughout the book.
Symbols

<- (assignment operator) in R, 344

daughter (assignment operator) in R, 344

class (SparkSubmit job), 68

A

ABC programming language, 166
abstraction, Spark as, 2
access control lists (ACLs), 503
accumulator() method, 266
accumulators, 265–266
 accumulator() method, 266
 custom accumulators, 267
 in DStreams, 331, 340
 usage example, 268–270
 value() method, 266
 warning about, 268
ACLs (access control lists), 503
actions
 aggregate actions, 209
 fold(), 210
 reduce(), 209
 collect(), 207
 count(), 206
defined, 47, 206
first(), 208–209
foreach(), 210–211
map() transformation versus, 233
lazy evaluation, 107–108
on RDDs, 92
saveAsHadoopFile(), 251–252
saveAsNewAPIHadoopFile(), 253
saveAsSequenceFile(), 250
saveAsTextFile(), 93, 248
spark-ec2 shell script, 65
take(), 207–208
takeSample(), 199
top(), 208
adjacency lists, 400–401
adjacency matrix, 401–402
aggregation, 209
 fold() method, 210
 foldByKey() method, 217
 groupBy() method, 202, 313–314
 groupByKey() method, 215–216, 233
 reduce() method, 209
reduceByKey() method, 216–217, 233
sortByKey() method, 217–218
subtractByKey() method, 218–219
Alluxio, 254, 258
architecture, 254–255
benefits of, 257
explained, 254
as filesystem, 255–256
off-heap persistence, 256
ALS (Alternating Least Squares), 373
Amazon DynamoDB, 429–430
Amazon Kinesis Streams. See
Kinesis Streams
Amazon Machine Image (AMI), 66
Amazon Software License (ASL), 448
Amazon Web Services (AWS), 61–62
EC2 (Elastic Compute Cloud), 62–63
Spark deployment on, 64–73
EMR (Elastic MapReduce), 63–64
Spark deployment on, 73–80
pricing, 64
S3 (Simple Storage Service), 63
AMI (Amazon Machine Image), 66
anonymous functions
in Python, 179–180
in Scala, 158
Apache Cassandra. See Cassandra
Apache Drill, 290
Apache HAWQ, 290
Apache Hive. See Hive
Apache Kafka. See Kafka
Apache Mahout, 367
Apache Parquet, 299
Apache Software Foundation
(ASF), 1
Apache Solr, 430
Apache Spark. See Spark
Apache Storm, 323
Apache Tez, 289
Apache Zeppelin, 75
Apache Zookeeper, 38, 436
installing, 441
API access to Spark History Server, 489–490
appenders in Log4j framework, 493, 499
application support in Spark, 3
application UI, 48, 479
diagnosing performance problems, 536–539
Environment tab, 486
example Spark routine, 480
Executors tab, 486–487
Jobs tab, 481–482
in local mode, 57
security via Java Servlet Filters, 510–512, 517
in Spark History Server, 488–489
Stages tab, 483–484
Storage tab, 484–485
tabs in, 499
applications
components of, 45–46
cluster managers, 49, 51
drivers, 46–48
executors, 48–49
masters, 49–50
workers, 48–49
defined, 21
deployment environment variables, 457
external applications
accessing Spark SQL, 319
processing RDDs with, 278–279
managing
in Standalone mode, 466–469
on YARN, 473–475
Map-only applications, 124–125
optimizing
associative operations, 527–529
collecting data, 530
diagnosing problems, 536–539
dynamic allocation, 531–532
with filtering, 527
functions and closures, 529–530
serialization, 531
planning, 47
returning results, 48
running in local mode, 56–58
running on YARN, 20–22, 51, 472–473
application management, 473–475
ApplicationsMaster, 52–53
log file management, 56
ResourceManager, 51–52, 471–472
yarn-client submission mode, 54–55
yarn-cluster submission mode, 53–54

Scala
compiling, 140–141
packaging, 141
scheduling, 47
in Standalone mode, 469–471
on YARN, 475–476
setting logging within, 497–498
viewing status of all, 487

ApplicationsMaster, 20–21, 471–472
as Spark master, 52–53
arrays in R, 345
ASF (Apache Software Foundation), 1
ASL (Amazon Software License), 448
assignment operator (<-) in R, 344
associative operations, 209
optimizing, 527–529
asymmetry, speculative execution and, 124
attribute value pairs. See key value pairs (KVP)
authentication, 503–504
encryption, 506–510
with Java Servlet Filters, 510–511
with Kerberos, 512–514, 517
client commands, 514
configuring, 515–516
with Hadoop, 514–515
terminology, 513
shared secrets, 504–506
authentication service (AS), 513
authorization, 503–504
with Java Servlet Filters, 511–512

AWS (Amazon Web Services).
See Amazon Web Services (AWS)

B
BackType, 323
Bagel, 403
Bayes’ Theorem, 372
Beeline, 287, 318–321
Beeswax, 287
benchmarks, 519–520
spark-perf, 521–525
Terasort, 520–521
TPC (Transaction Processing Performance Council), 520
when to use, 540
big data, history of, 11–12
Bigtable, 417–418
bin directory, 38
block reports, 17
blocks
in HDFS, 14–16
replication, 25
bloom filters, 422
bound variables, 158

breaking for loops, 151
broadcast() method, 260–261
broadcast variables, 259–260
advantages of, 263–265, 280
broadcast() method, 260–261
configuration options, 262
in DStreams, 331
unpersist() method, 262
usage example, 268–270
value() method, 261–262

brokers in Kafka, 436
buckets, 63
buffering messages, 435
built-in functions for DataFrames, 310
bytecode, machine code versus, 168

c()
method (combine), 346
cache() method, 108, 314
cacheTable() method, 314
caching
DataFrames, 314
DStreams, 331
RDDs, 108–109, 239–240, 243
callback functions, 180
canary queries, 525
CapacityScheduler, 52
capitalization. See naming conventions
cartesian() method, 225–226
case statement in Scala, 152
Cassandra
accessing via Spark, 427–429
CQL (Cassandra Query Language), 426–427
data model, 426
HBase versus, 425–426, 431
Cassandra Query Language (CQL), 426–427
Centos, installing Spark, 30–31
centroids in clustering, 366
columnar storage formats, 253, 299
columns method, 305
Combiner functions, 122–123
command line interface (CLI) for Hive, 287
commands, spark-submit, 7, 8
committers, 2
commutative operations, 209
community managers, 45, 49, 51
independent variables, 454–455
ResourceManager as, 51–52
cluster mode (EMR), 74
clustering in machine learning, 365–366, 375–377
clustering keys in Cassandra, 426
coalesce() method, 274–275, 314
collaborative filtering in machine learning, 365, 373–375
collections
in Cassandra, 426
diagnosing performance problems, 538–539
in Scala, 144
lists, 145–146, 163
maps, 148–149
sets, 146–147, 163
tuples, 147–148
column families, 420
coarse-grained transformations, 107
coatings, 94, 249
cogroup() method, 224–225
coGroupedRDDS, 112
conf directory, 38
configuring
Kerberos, 515–516
local mode options, 56–57
Log4j framework, 493–495
SASL, 509
Spark
broadcast variables, 262
columnar storage formats, 253, 299
collection properties, 457–460
environment variables, 454–457
managing configuration, 461
precedence, 460–461
Spark History Server, 488
SSL, 506–510
connected components algorithm, 405
consumers
 defined, 434
 in Kafka, 435
containers, 20–21
content filtering, 434–435, 451
contributors, 2
control structures in Scala, 149
 do while and while loops, 151–152
 for loops, 150–151
 if expressions, 149–150
 named functions, 153
 pattern matching, 152
converting DataFrames to RDDs, 301
core nodes, task nodes versus, 89
Couchbase, 430
CouchDB, 430
count() method, 206, 306
counting words. See Word Count
algorithm (MapReduce example)
cPickle, 176
CPython, 167–169
CQL (Cassandra Query Language), 426–427
CRAN packages in R, 349
createDataFrame() method, 294–295
createDirectStream() method, 439–440
createStream() method
 KafkaUtils package, 440
 KinesisUtils package, 449–450
 MQTUtils package, 445–446
CSV files, creating SparkR data frames from, 352–354
current directory in Hadoop, 18
Curry, Haskell, 159
currying in Scala, 159
cutting, Doug, 11–12, 115
d
daemon logging, 495
daemon logging, 495
DAG (directed acyclic graph), 47, 399
Data Definition Language (DDL) in
 Hive, 288
data deluge
 defined, 12
 origin of, 117
data directory, 39
data distribution in HBase, 422
data frames
 matrices versus, 361
 in R, 345, 347–348
 in SparkR
 creating from CSV files, 352–354
 creating from Hive tables, 354–355
 creating from R data frames, 351–352
data locality
 defined, 12, 25
 in loading data, 113
 with RDDs, 94–95
data mining, 355. See also
 R programming language
data model
 for Cassandra, 426
 for DataFrames, 301–302
 for DynamoDB, 429
 for HBase, 420–422
data sampling, 198–199
 sample() method, 198–199
 takeSample() method, 199
data sources
 creating
 JDBC datasources, 100–103
 relational databases, 100
 for DStreams, 327–328
 HDFS as, 24
data structures
 in Python
 dictionaries, 173–174
 lists, 170, 194
 sets, 170–171
 tuples, 171–173, 194
 in R, 345–347
 in Scala, 144
 immutability, 160
 lists, 145–146, 163
 maps, 148–149
 sets, 146–147, 163
 tuples, 147–148
data types
 in Hive, 287–288
 in R, 344–345
data types

in Scala, 142
in Spark SQL, 301–302
Databricks, Spark deployment on, 81–88
Databricks File System (DBFS), 81
Datadog, 525–526
data.frame() method, 347
DataFrameReader, creating DataFrames with, 298–301
DataFrames, 102, 111, 294
built-in functions, 310
caching, persisting, repartitioning, 314
converting to RDDs, 301
creating with DataFrameReader, 298–301
from Hive tables, 295–296
from JSON files, 296–298
from RDDs, 294–295
data model, 301–302
functional operations, 306–310
GraphFrames. See GraphFrames
metadata operations, 305–306
saving to external storage, 314–316
schemas
defining, 304
efferring, 302–304
set operations, 311–314
UDFs (user-defined functions), 310–311
DataNodes, 17
Dataset API, 118
datasets, defined, 92, 117.
See also RDDs (Resilient Distributed Datasets)
datasets package, 351–352
DataStax, 425
DBFS (Databricks File System), 81
dbutils.fs, 89
DDL (Data Definition Language)
in Hive, 288
Debian Linux, installing Spark, 32–33
decision trees, 368–372
DecisionTree.trainClassifier function, 371–372
deep learning, 381–382
defaults for environment variables and configuration properties, 460
defining DataFrame schemas, 304
degrees method, 408–409
deleting objects (HDFS), 19
deploying. See also installing cluster applications, environment variables for, 457
H2O on Hadoop, 384–386
Spark on Databricks, 81–88
on EC2, 64–73
on EMR, 73–80
Spark History Server, 488
deployment modes for Spark.
See also Spark on YARN deployment mode; Spark Standalone deployment mode
list of, 27–28
selecting, 43
describe method, 392
design goals for MapReduce, 117
destructuring binds in Scala, 152
diagnosing performance problems, 536–539
dictionaries
keys() method, 212
in Python, 101, 173–174
values() method, 212
direct stream access in Kafka, 438, 451
directed acyclic graph (DAG), 47, 399
directory contents
listing, 19
subdirectories of Spark installation, 38–39
discretized streams. See DStreams
distinct() method, 203–204, 308
distributed, defined, 92
distributed systems, limitations of, 115–116
distribution of blocks, 15
do while loops in Scala, 151–152
docstrings, 310
document stores, 419
documentation for Spark SQL, 310
DoubleRDDs, 111
downloading
files, 18–19
Spark, 29–30
Drill, 290
drivers, 45, 46–48
application planning, 47
application scheduling, 47
application UI, 48
masters versus, 50
returning results, 48
SparkContext, 46–47
drop() method, 307
DStream.checkpoint() method, 330
DStreams (discretized streams), 324, 326–327
broadcast variables and accumulators, 331
caching and persistence, 331
checkpointing, 330–331, 340
data sources, 327–328
lineage, 330
output operations, 331–333
sliding window operations, 337–339, 340
state operations, 335–336, 340
transformations, 328–329
dtypes method, 305–306
Dynamic Resource Allocation, 476, 531–532
DynamoDB, 429–430
E
EBS (Elastic Block Store), 62, 89
EC2 (Elastic Compute Cloud), 62–63, 64–73
e2 directory, 39
ecosystem projects, 13
edge nodes, 502
EdgeRDD objects, 404–405
edges
creating edge DataFrames, 407
in DAG, 47
defined, 399
edges method, 407–408
Elastic Block Store (EBS), 62, 89
Elastic Compute Cloud (EC2), 62–63, 64–73
Elastic MapReduce (EMR), 63–64, 73–80
ElasticSearch, 430
election analogy for MapReduce, 125–126
encryption, 506–510
Environment tab (application UI), 486, 499
environment variables, 454
cluster application deployment, 457
cluster manager independent variables, 454–455
defaults, 460
Hadoop-related, 455
Spark on YARN environment variables, 456–457
Spark Standalone daemon, 455–456
ephemeral storage, 62
ETags, 63
examples directory, 39
exchange patterns. See pub-sub messaging model
executors, 45, 48–49
logging, 495–497
number of, 477
in Standalone mode, 463
workers versus, 59
Executors tab (application UI), 486–487, 499
explain() method, 310
external applications
accessing Spark SQL, 319
processing RDDs with, 278–279
external storage for RDDs, 247–248
Alluxio, 254–257, 258
columnar formats, 253, 299
compressed options, 249–250
Hadoop input/output formats, 251–253
saveAsTextFile() method, 248
saving DataFrames to, 314–316
sequence files, 250
external tables (Hive), internal tables versus, 289
F
FairScheduler, 52, 470–471, 477
fault tolerance
in MapReduce, 122
with RDDs, 111
fault-tolerant mode (Alluxio), 254–255
feature extraction, 366–367, 378
features in machine learning, 366–367
files
compression, 93–94
CSV files, creating SparkR data frames from, 352–354
downloading, 18–19
in HDFS, 14–16
JSON files, creating RDDs from, 103–105
object files, creating RDDs from, 99
text files
creating DataFrames from, 298–299
creating RDDs from, 93–99
saving DStreams as, 332–333
uploading (ingesting), 18
filesystem, Alluxio as, 255–256
filter() method, 201–202, 307
in Python, 170
filtering
messages, 434–435, 451
optimizing applications, 527
find method, 409–410
fine-grained transformations, 107
first() method, 208–209
first-class functions in Scala, 157, 163
flags for RDD storage levels, 237–238
flatMap() method, 131, 200–201
in DataFrames, 308–309
map() method versus, 135, 232
flatMapValues() method, 213–214
fold() method, 210
foldByKey() method, 217
followers in Kafka, 436–437
foreach() method, 210–211, 306
map() method versus, 233
foreachPartition() method, 276–277
foreachRDD() method, 333
for loops in Scala, 150–151
free variables, 158
frozensets in Python, 171
full outer joins, 219
fullOuterJoin() method, 223–224
functional programming
in Python, 178
anonymous functions, 179–180
closures, 181–183
higher-order functions, 180, 194
parallelization, 181
short-circuiting, 181
tail calls, 180–181
in Scala
anonymous functions, 158
closures, 158–159
currying, 159
first-class functions, 157, 163
function literals versus function values, 163
higher-order functions, 158
immutable data structures, 160
lazy evaluation, 160
functional transformations, 199
filter() method, 201–202
flatMap() method, 200–201
map() method versus, 232
flatMapValues() method, 213–214
keyBy() method, 213
map() method, 199–200
flatMap() method versus, 232
foreach() method versus, 233
mapValues() method, 213
functions
optimizing applications, 529–530
passing to map
transformations, 540–541
in R, 348–349
Funnel project, 138
future of NoSQL, 430

G
garbage collection, 169
gateway services, 503
generalized linear model, 357
Generic Java (GJ), 137
getCheckpointFile() method, 245
getStorageLevel() method, 238–239
glm() method, 357
glom() method, 277
Google
graphs and, 402–403
in history of big data, 11–12
PageRank. See PageRank
graph stores, 419
GraphFrames, 406
accessing, 406
creating, 407
defined, 414
methods in, 407–409
motifs, 409–410, 414
PageRank implementation, 411–413
subgraphs, 410
GraphRDD objects, 405
graphs
adjacency lists, 400–401
adjacency matrix, 401–402
HDFS (Hadoop Distributed File System) 551

characteristics of, 399
defined, 399
Google and, 402–403
GraphFrames, 406
accessing, 406
creating, 407
defined, 414
methods in, 407–409
motifs, 409–410, 414
PageRank implementation, 411–413
subgraphs, 410
GraphX API, 403–404
EdgeRDD objects, 404–405
graphing algorithms in, 405
GraphRDD objects, 405
VertexRDD objects, 404
termology, 399–402

GraphX API, 403–404
EdgeRDD objects, 404–405
graphing algorithms in, 405
GraphRDD objects, 405
VertexRDD objects, 404
groupBy() method, 202, 313–314
groupByKey() method, 215–216, 233, 527–529
grouping data, 202

distinct() method, 203–204
foldByKey() method, 217
groupBy() method, 202, 313–314
groupByKey() method, 215–216, 233
reduceByKey() method, 216–217, 233
sortBy() method, 202–203

H20, 381
advantages of, 397
architecture, 383–384
deployment on Hadoop, 384–386
interfaces for, 397
saving models, 395–396
Sparkling Water, 387, 397
architecture, 387–388
elementary exercise, 393–395
H2OFrames, 390–393
pysparkling shell, 388–390
web interface for, 382–383

H2O Flow, 382–383
H2OContext, 388–390
H2OFrames, 390–393
HA (High Availability), implementing, 38

Hadoop, 115
clusters, 22–23
current directory in, 18
Elastic MapReduce (EMR), 63–64, 73–80
environment variables, 455
explained, 12–13
external storage, 251–253
H2O deployment, 384–386
HDFS. See HDFS (Hadoop Distributed File System)
history of big data, 11–12
Kerberos with, 514–515
Spark and, 2, 8
developing Spark, 39–42
downloading Spark, 30
HDFS as data source, 24
YARN as resource scheduler, 24
SQL on Hadoop, 289–290
YARN. See YARN (Yet Another Resource Negotiator)

Hadoop Distributed File System (HDFS). See HDFS (Hadoop Distributed File System)
hadoopFile() method, 99
HadoopRDDs, 111
hash partitioners, 121
Haskell programming language, 159

HAWQ, 290
HBase, 419

Cassandra versus, 425–426, 431
data distribution, 422
data model and shell, 420–422
reading and writing data with Spark, 423–425

HCatalog, 286

HDFS (Hadoop Distributed File System), 12
blocks, 14–16
DataNodes, 17
explained, 13
files, 14–16
interactions with, 18
deleting objects, 19
downloading files, 18–19
HDFS (Hadoop Distributed File System)

- Listing directory contents, 19
- Uploading (ingesting) files, 18
- NameNode, 16–17
- Replication, 14–16
- As Spark data source, 24

- HFile objects, 422

- High Availability (HA), implementing, 38

- Higher-order functions
 - In Python, 180, 194
 - In Scala, 158

- History
 - Of big data, 11–12
 - Of IPython, 183–184
 - Of MapReduce, 115
 - Of NoSQL, 417–418
 - Of Python, 166
 - Of Scala, 137–138
 - Of Spark SQL, 283–284
 - Of Spark Streaming, 323–324

- History Server. See Spark
- History Server

- Hive
 - Conventional databases versus, 285–286
 - Data types, 287–288
 - DDL (Data Definition Language), 288
 - Explained, 284–285
 - Interfaces for, 287
 - Internal versus external tables, 289
 - Metastore, 286
 - Spark SQL and, 291–292
 - Tables
 - Creating DataFrames from, 295–296
 - Creating SparkR data frames from, 354–355
 - Writing DataFrame data to, 315
 - Hive on Spark, 284
 - HiveContext, 292–293, 322
 - HiveQL, 284–285
 - HiveServer2, 287
 - Hive on Spark, 284
 - HiveContext, 292–293, 322
 - HiveQL, 284–285
 - HiveServer2, 287

- IAM (Identity and Access Management) user accounts, 65

- If expressions in Scala, 149–150

- Immutability
 - Of HDFS, 14
 - Of RDDs, 92

- Immutable data structures in Scala, 160

- Immutable sets in Python, 171

- Immutable variables in Scala, 144

- Impala, 289

- Indegrees, 400

- InDegrees method, 408–409

- Inferring DataFrame schemas, 302–304

- Ingesting files, 18

- Inheritance in Scala, 153–155

- Initializing RDDs, 93
 - From datasources, 100
 - From JDBC datasources, 100–103
 - From JSON files, 103–105
 - From object files, 99
 - Programmatically, 105–106
 - From text files, 93–99

- Inner joins, 219

- Input formats
 - Hadoop, 251–253
 - For machine learning, 371

- Input split, 127

- Input/output types in Spark, 7

- Installing. See also deploying
 - IPython, 184–185
 - Jupyter, 189
 - Python, 31
 - R packages, 349
 - Scala, 31, 139–140

- Spark
 - On Hadoop, 39–42
 - On Mac OS X, 33–34
 - On Microsoft Windows, 34–36
 - As multi-node Standalone cluster, 36–38
 - On Red Hat/Centos, 30–31
 - Requirements for, 28
 - In Standalone mode, 29–36
 - Subdirectories of installation, 38–39
 - On Ubuntu/Debian Linux, 32–33
 - Zookeeper, 441

- Instance storage, 62

- EBS versus, 89

- Instance Type property (EC2), 62

- Instances (EC2), 62

- Int methods in Scala, 143–144

- Integer data type in R, 345
Interactive Computing Protocol, 189
Interactive Python. See IPython (Interactive Python)
interactive use of Spark, 5–7, 8 internal tables (Hive), external tables versus, 289
interpreted languages, Python as, 166–167 intersect() method, 313
intersection() method, 205
IoT (Internet of Things)
defined, 443. See also MQTT (MQ Telemetry Transport)
MQTT characteristics for, 451
IPython (Interactive Python), 183
history of, 183–184
Jupyter notebooks, 187–189
advantages of, 194
kernels and, 189
with PySpark, 189–193
Spark usage with, 184–187
IronPython, 169
isCheckpointed() method, 245
Java, word count in Spark (listing 1.3), 4–5
Java Database Connectivity (JDBC) datasources, creating RDDs from, 100–103
Java Management Extensions (JMX), 490
Java Servlet Filters, 510–512, 517
Java virtual machines (JVMs), 139
defined, 46
heap, 49
javac compiler, 137
JavaScript Object Notation (JSON). See JSON (JavaScript Object Notation)
JDBC (Java Database Connectivity) datasources, creating RDDs from, 100–103
JDBC/ODBC interface, accessing Spark SQL, 317–318, 319
JdbcRDDs, 112
JMX (Java Management Extensions), 490
jobs
in Databricks, 81
diagnosing performance problems, 536–538
scheduling, 470–471
Jobs tab (application UI), 481–482, 499
join() method, 219–221, 312
joints, 219
cartesian() method, 225–226
cogroup() method, 224–225
example usage, 226–229
fullOuterJoin() method, 223–224
join() method, 219–221, 312
leftOuterJoin() method, 221–222
optimizing, 221
rightOuterJoin() method, 222–223
types of, 219
JSON (JavaScript Object Notation), 174–176
creating DataFrames from, 296–298
creating RDDs from, 103–105
json() method, 316
jsonFile() method, 104, 297
jsonRDD() method, 297–298
Jupyter notebooks, 187–189
advantages of, 194
kernels and, 189
with PySpark, 189–193
JVMs (Java virtual machines), 139
defined, 46
heap, 49
Jython, 169
Kafka, 435–436
cluster architecture, 436–437
Spark support, 437
direct stream access, 438, 451
KafkaUtils package, 439–443
receivers, 437–438, 451
KafkaUtils package, 439–443
createDirectStream() method, 439–440
createStream() method, 440
KCL (Kinesis Client Library), 448
KDC (key distribution center), 512–513
Kerberos, 512–514, 517
client commands, 514
configuring, 515–516
with Hadoop, 514–515
terminology, 513
kernels, 189
key distribution center (KDC), 512–513
key value pairs (KVP)
defined, 118
in Map phase, 120–121
pair RDDs, 211
flatMapValues() method, 213–214
foldByKey() method, 217
groupByKey() method, 215–216, 233
keyBy() method, 213
keys() method, 212
mapValues() method, 213
reduceByKey() method, 216–217, 233
sortByKey() method, 217–218
subtractByKey() method, 218–219
values() method, 212
key value stores, 419
keyBy() method, 213
keys, 118
keys() method, 212
keyspaces in Cassandra, 426
keytab files, 513
Kinesis Client Library (KCL), 448
Kinesis Producer Library (KPL), 448
Kinesis Streams, 446–447
KCL (Kinesis Client Library), 448
KPL (Kinesis Producer Library), 448
Spark support, 448–450
KinesisUtils package, 448–450
k-means clustering, 375–377
KPL (Kinesis Producer Library), 448
Kryo serialization, 531
KVP (key value pairs), See key value pairs (KVP)

LabeledPoint objects, 370
lambda calculus, 119
lambda operator
in Java, 5
in Python, 4, 179–180
lazy evaluation, 107–108, 160
leaders in Kafka, 436–437
left outer joins, 219
leftOuterJoin() method, 221–222
lib directory, 39
libraries in R, 349
library() method, 349
licenses directory, 39
limit() method, 309
lineage
of DStreams, 330
of RDDs, 109–110, 235–237
linear regression, 357–358
lines. See edges
linked lists in Scala, 145
Lisp, 119
listing directory contents, 19
listings
accessing
Amazon DynamoDB from Spark, 430
columns in SparkR data frame, 355
data elements in R matrix, 347
elements in list, 145
History Server REST API, 489
and inspecting data in R data frames, 348
struct values in motifs, 410
and using tuples, 148
Alluxio as off heap memory for RDD persistence, 256
Alluxio filesystem access using Spark, 256
anonymous functions in Scala, 158
appending and prepending to lists, 146
associative operations in Spark, 527
basic authentication for Spark UI using Java servlets, 510
broadcast method, 261
building generalized linear model with SparkR, 357
caching RDDs, 240
cartesian transformation, 226
Cassandra insert results, 428
checkpointing
 RDDs, 245
 in Spark Streaming, 330
class and inheritance example
 in Scala, 154–155
closures
 in Python, 182
 in Scala, 159
colapse() method, 275
cogroup transformation, 225
collect action, 207
combine function to create R
 vector, 346
configuring
 pool for Spark application, 471
 SASL encryption for block
 transfer services, 509
cosedComponents
 algorithm, 405
converting
 DataFrame to RDD, 301
 H2OFrame to Spark SQL
 DataFrame, 392
count action, 206
creating
 and accessing
 accumulators, 265
 broadcast variable from
 file, 261
 DataFrame from Hive ORC
 files, 300
 DataFrame from JSON
 document, 297
 DataFrame from Parquet
 file (or files), 300
DataFrame from plain text
 file or file(s), 299
DataFrame from RDD, 295
DataFrame from RDD
 containing JSON objects, 298
edge DataFrame, 407
GraphFrame, 407
H2OFrame from file, 391
H2OFrame from Python
 object, 390
H2OFrame from Spark
 RDD, 391
keyspace and table in
 Cassandra using cqlsh, 426–427
PySparkling H2OContext
 object, 389
R data frame from column
 vectors, 347
R matrix, 347
RDD of LabeledPoint
 objects, 370
RDDs from JDBC
 datasource using load() method, 101
RDDs from JDBC
 datasource using read.
 jdbc() method, 103
RDDs using parallelize() method, 106
RDDs using range() method, 106
RDDs using textFile() method, 96
RDDs using wholeTextFiles() method, 97
SparkR data frame from
 CSV file, 353
SparkR data frame from
 Hive table, 354
SparkR data frame from
 R data frame, 352
StreamingContext, 326
subgraph, 410
table and inserting data in
 HBase, 420
vertex DataFrame, 407
and working with RDDs
 created from JSON files, 104–105
currying in Scala, 159
custom accumulators, 267
declaring lists and using
 functions, 145
defining schema
 for DataFrame explicitly, 304
 for SparkR explicitly, 353
degrees, inDegrees, and
 outDegrees methods, 408–409
detailed H2OFrame
 information using describe
 method, 393
dictionaries in Python, 173–174
dictionary object usage in
 PySpark, 174
dropping columns from
 DataFrame, 307
DStream transformations, 329
EdgeRDDS, 404
enabling Spark dynamic
 allocation, 532
evaluating k-means clustering
 model, 377
external transformation program sample, 279
filtering rows from DataFrame, 307 duplicates using distinct, 308
final output (Map task), 129 first action, 209 first five lines of Shakespeare file, 130 fold action, 210 compared with reduce, 210 foldByKey example to find maximum value by key, 217 foreach action, 211 foreachPartition() method, 276 for loops break, 151 with filters, 151 in Scala, 150 fullOuterJoin transformation, 224
getStorageLevel() method, 239 getting help for Python API Spark SQL functions, 310 GLM usage to make prediction on new data, 357 GraphFrames package, 406 GraphRDDS, 405 groupBy transformation, 215 grouping and aggregating data in DataFrames, 314 H2OFrame summary function, 392 higher-order functions in Python, 180 in Scala, 158 Hive CREATE TABLE statement, 288 human readable representation of Python bytecode, 168–169 if expressions in Scala, 149–150 immutable sets in Python and PySpark, 171 implementing implementing ACLs for Spark UI, 512 Naive Bayes classifier using Spark MLib, 373 importing graphframe Python module, 406 including Databricks Spark CSV package in SparkR, 353 initializing SQLContext, 101 input to Map task, 127 int methods, 143–144 intermediate sent to Reducer, 128 intersection transformation, 205 join transformation, 221 joining DataFrames in Spark SQL, 312 joining lookup data using broadcast variable, 264 using driver variable, 263–264 using RDD join(), 263 JSON object usage in PySpark, 176 in Python, 175 Jupyter notebook JSON document, 188–189 KafkaUtils.createDirectStream method, 440 KafkaUtils.createStream (receiver) method, 440 keyBy transformation, 213 keys transformation, 212 Kryo serialization usage, 531 launching pyspark supplying JDBC MySQL connector JAR file, 101 lazy evaluation in Scala, 160 leftOuterJoin transformation, 222 listing functions in H2O Python module, 389 R packages installed and available, 349 lists with mixed types, 145 in Scala, 145 log events example, 494 log4j.properties file, 494 logging events within Spark program, 498 map, flatMap, and filter transformations in Spark, 201 map(), reduce(), and filter() in Python and PySpark, 170 map functions with Spark SQL DataFrames, 309 mapPartitions() method, 277 maps in Scala, 148 mapValues and flatMapValues transformations, 214 max function, 230 max values for R integer and numeric (double) types, 345
mean function, 230
min function, 230
mixin composition using traits, 155–156
motifs, 409–410
mtcars data frame in R, 352
mutable and immutable variables in Scala, 144
mutable maps, 148–149
mutable sets, 147
named functions
and anonymous functions in Python, 179
versus lambda functions in Python, 179
in Scala, 153
non-interactive Spark job submission, 7
object serialization using Pickle in Python, 176–177
obtaining application logs from command line, 56
ordering DataFrame, 313
output from Map task, 128
pageRank algorithm, 405
partitionBy() method, 273
performing functions in each RDD in DStream, 333
persisting RDDs, 241–242
pickleFile() method usage in PySpark, 178
pipe() method, 279
PyPy with PySpark, 532
pyspark command with pyspark-cassandra package, 428
PySpark interactive shell in local mode, 56
PySpark program to search for errors in log files, 92
Python program sample, 168
RDD usage for multiple actions
with persistence, 108
without persistence, 108
reading Cassandra data into Spark RDD, 428
reduce action, 209
reduceByKey transformation to average values by key, 216
reduceByKeyAndWindow function, 339
repartition() method, 274
groupBy() method, 275
returning-column names and data types from DataFrame, 306
list of columns from DataFrame, 305
rightOuterJoin transformation, 223
running SQL queries against Spark DataFrames, 102
sample() usage, 198
saveAsHadoopFile action, 252
saveAsNewAPISaveFile action, 253
saveAsPickleFile() method usage in PySpark, 178
saving
DataFrame to Hive table, 315
DataFrame to Parquet file or files, 316
DStream output to files, 332
H2O models in POJO format, 396
and loading H2O models in native format, 395
RDDs as compressed text files using GZip codec, 249
RDDs to sequence files, 250
and reloading clustering model, 377
scanning HBase table, 421
scheduler XML file example, 470
schema for DataFrame created from Hive table, 304
schema inference for DataFrames
created from JSON, 303
created from RDD, 303
select method in Spark SQL, 309
set operations example, 146
sets in Scala, 146
setting
log levels within application, 497
Spark configuration properties programmatically, 458
spark.scheduler.allocation.
file property, 471
Shakespeare RDD, 130
short-circuit operators in
Python, 181
showing current Spark
configuration, 460
simple vector, 346
singleton objects in Scala, 156
socketTextStream() method, 327
sortByKey transformation, 218
Spark configuration object
methods, 459
Spark configuration properties
in spark-defaults.conf file, 458
Spark environment variables
set in spark-env.sh file, 454
Spark HiveContext, 293
Spark KafkaUtils usage, 439
Spark MLlib decision tree
model to classify new data, 372
Spark pi estimator in local
mode, 56
Spark routine example, 480
Spark SQLContext, 292
Spark Streaming
using Amazon Kinesis, 449–450
using MQTTUtils, 446
Spark usage on Kerberized
Hadoop cluster, 515
spark-ec2 syntax, 65
spark-perf core tests, 521–522
specifying
local mode in code, 57
log4j.properties file using
JVM options, 495
splitting data into training and
test data sets, 370
sql method for creating
DataFrame from Hive table, 295–296
state DStreams, 336
stats function, 232
stdev function, 231
StorageClass constructor, 238
submitting
Spark application to YARN
cluster, 473
streaming application with
Kinesis support, 448
subtract transformation, 206
subtractByKey transformation, 218
sum function, 231
table method for creating
dataFrame from Hive table, 296
tail call recursion, 180–181
take action, 208
takeSample() usage, 199
textFileStream() method, 328
toDebugString() method, 236
top action, 208
training
decision tree model with
Spark MLlib, 371
k-means clustering model
using Spark MLlib, 377
triangleCount algorithm, 405
tuples
in PySpark, 173
in Python, 172
in Scala, 147
union transformation, 205
unpersist() method, 262
updating
cells in HBase, 422
data in Cassandra table
using Spark, 428
user-defined functions in
Spark SQL, 311
values transformation, 212
variance function, 231
VertexRDDs, 404
vertices and edges methods, 408
viewing applications using
REST API, 467
web log schema sample, 203–204
while and do while loops in
Scala, 152
window function, 338
word count in Spark
using Java, 4–5
using Python, 4
using Scala, 4
yarn command usage, 475
to kill running Spark
application, 475
yield operator, 151
lists
in Python, 170, 194
in Scala, 145–146, 163
load() method, 101–102
load_model function, 395
loading data
data locality in, 113
into RDDs, 93
from datasources, 100
from JDBC datasources, 100–103
from JSON files, 103–105
from object files, 99
programmatically,
105–106
from text files, 93–99
local mode, running applications,
56–58
log aggregation, 56, 497
Log4j framework, 492–493
appenders, 493, 499
daemon logging, 495
executor logs, 495–497
log4j.properties file, 493–495
severity levels, 493
log4j.properties file, 493–495
loggers, 492
logging, 492
Log4j framework, 492–493
appenders, 493, 499
daemon logging, 495
executor logs, 495–497
log4j.properties file, 493–495
severity levels, 493
setting within applications,
497–498
in YARN, 56
logical data type in R, 345
logs in Kafka, 436
lookup() method, 277
loops in Scala
do while and while loops,
151–152
for loops, 150–151
M
Mac OS X, installing Spark, 33–34
machine code, bytecode versus,
168
machine learning
classification in, 364, 367
decision trees, 368–372
Naive Bayes, 372–373
clustering in, 365–366,
375–377
collaborative filtering in, 365, 373–375
defined, 363–364
features and feature
extraction, 366–367
H2O. See H2O
input formats, 371
in Spark, 367
Spark MLlib. See Spark MLlib
splitting data sets, 369–370
Mahout, 367
managing
applications
in Standalone mode,
466–469
on YARN, 473–475
configuration, 461
performance. See
performance management
map() method, 120–121, 130,
199–200
in DataFrames, 308–309, 322
flatMap() method versus,
135, 232
foreach() method versus, 233
passing functions to, 540–541
in Python, 170
in Word Count algorithm,
129–132
Map phase, 119, 120–121
Map-only applications, 124–125
mapPartitions() method, 277–278
MapReduce, 115
asymmetry and speculative
execution, 124
Combiner functions, 122–123
design goals, 117
election analogy, 125–126
fault tolerance, 122
history of, 115
limitations of distributed
computing, 115–116
Map phase, 120–121
Map-only applications,
124–125
partitioning function in, 121
programming model versus
processing framework,
118–119
Reduce phase, 121–122
Shuffle phase, 121, 135
Spark versus, 2, 8
terminology, 117–118
whitepaper website, 117
Word Count algorithm
element, 126
map() and reduce() methods, 129–132
operational overview,
127–129
in PySpark, 132–134
reasons for usage,
126–127
YARN versus, 19–20
maps in Scala, 148–149
mapValues() method, 213
Marz, Nathan, 323
master nodes, 23
master UI, 463–466, 487
masters, 45, 49–50
 ApplicationsMaster as, 52–53
drivers versus, 50
 starting in Standalone mode, 463
match case constructs in Scala, 152
Mathematica, 183
matrices
 data frames versus, 361
 in R, 345–347
matrix command, 347
matrix factorization, 373
max() method, 230
MBeans, 490
McCarthy, John, 119
mean() method, 230
members, 111
Memcached, 430
memory-intensive workloads, avoiding conflicts, 42
Mesos, 22
message oriented middleware (MOM), 433
mesos systems, 433–434
 buffering and queuing messages, 435
 filtering messages, 434–435
 Kafka, 435–436
 cluster architecture, 436–437
direct stream access, 438, 451
KafkaUtils package, 439–443
receivers, 437–438, 451
Spark support, 437
Kinesis Streams, 446–447
KCL (Kinesis Client Library), 448
KPL (Kinesis Producer Library), 448
Spark support, 448–450
MQTT, 443
 characteristics for IoT, 451
 clients, 445
 message structure, 445
 Spark support, 445–446
 as transport protocol, 444
as transport protocol, 444
MQTTUtils package, 445–446
MR1 (MapReduce v1), YARN versus, 19–20
multi-node Standalone clusters, installing, 36–38
multiple concurrent applications, scheduling, 469–470
multiple inheritance in Scala, 155–156
multiple jobs within applications, scheduling, 470–471
mutable variables in Scala, 144

movies dataset, 374
MQTT (MQ Telemetry Transport), 443
characteristics for IoT, 451
clients, 445
message structure, 445
Spark support, 445–446
as transport protocol, 444
MQTTUtils package, 445–446
MR1 (MapReduce v1), YARN versus, 19–20
multi-node Standalone clusters, installing, 36–38
multiple concurrent applications, scheduling, 469–470
multiple inheritance in Scala, 155–156
multiple jobs within applications, scheduling, 470–471
mutable variables in Scala, 144

N
Naive Bayes, 372–373
NaiveBayes.train method, 372–373
name value pairs. See key value pairs (KVP)
named functions
 in Python, 179–180
 in Scala, 153
NameNode, 16–17
 DataNodes and, 17
naming conventions
 in Scala, 142
 for SparkContext, 47
narrow dependencies, 109
neural networks, 381
newAPIHadoopFile() method, 128
NewHadoopRDDs, 112
Nexus, 22
NodeManagers, 20–21
nodes. See also vertices
 in clusters, 22–23
 in DAG, 47
DataNodes, 17
in decision trees, 368
defined, 13
EMR types, 74
NameNode, 16–17
non-deterministic functions, fault
tolerance and, 111
non-interactive use of Spark, 7, 8
non-splittable compression
formats, 94, 113, 249
NoSQL
 Cassandra
 accessing via Spark, 427–429
 CQL (Cassandra Query Language), 426–427
data model, 426
HBase versus, 425–426, 431
characteristics of, 418–419, 431
DynamoDB, 429–430
future of, 430
HBase, 419
data distribution, 422
data model and shell, 420–422
reading and writing data
with Spark, 423–425
history of, 417–418
implementations of, 430
system types, 419, 431
notebooks in IPython, 187–189
advantages of, 194
kernels and, 189
with PySpark, 189–193
numeric data type in R, 345
numeric functions
 max(), 230
 mean(), 230
 min(), 229–230
 in R, 349
 stats(), 231–232
 stdev(), 231
 sum(), 230–231
 variance(), 231
NumPy library, 377
Nutch, 11–12, 115

O
object comparison in Scala, 143
object files, creating RDDs from, 99
object serialization in Python, 174
 JSON, 174–176
 Pickle, 176–178
object stores, 63
objectFile() method, 99
object-oriented programming
 in Scala
 classes and inheritance, 153–155
 mixin composition, 155–156
 polymorphism, 157
 singleton objects, 156–157
objects (HDFS), deleting, 19
observations in R, 352
Odersky, Martin, 137
off-heap persistence with Alluxio, 256
OOP. See object-oriented
programming in Scala
Optimized Row Columnar (ORC), 299
optimizing. See also performance
management
 applications
 associative operations, 527–529
 collecting data, 530
 diagnosing problems, 536–539
 dynamic allocation, 531–532
 with filtering, 527
 functions and closures, 529–530
 serialization, 531
 joins, 221
 parallelization, 531
 partitions, 534–535
ORC (Optimized Row Columnar), 299
orc() method, 300–301, 316
orderBy() method, 313
outdegrees, 400
outDegrees method, 408–409
outer joins, 219
output formats in Hadoop, 251–253
output operations for DStreams, 331–333
packages
GraphFrames. See GraphFrames in R, 348–349
datasets package, 351–352
Spark Packages, 406
packaging Scala programs, 141
Page, Larry, 402–403, 414
PageRank, 402–403, 405
defined, 414
implementing with GraphFrames, 411–413
pair RDDs, 111, 211
flatMapValues() method, 213–214
foldByKey() method, 217
groupByKey() method, 215–216, 233
keyBy() method, 213
keys() method, 212
mapValues() method, 213
reduceByKey() method, 216–217, 233
sortByKey() method, 217–218
subtractByKey() method, 218–219
values() method, 212
parallelization
optimizing, 531
in Python, 181
parallelize() method, 105–106
parent RDDs, 109
Parquet, 299
writing DataFrame data to, 315–316
parquet() method, 299–300, 316
Partial DAG Execution (PDE), 321
partition keys
in Cassandra, 426
in Kinesis Streams, 446
partitionBy() method, 273–274
partitioning function in MapReduce, 121
PartitionPruningRDDs, 112
partitions
default behavior, 271–272
foreachPartition() method, 276–277
glom() method, 277
in Kafka, 436
limitations on creating, 102
lookup() method, 277
mapPartitions() method, 277–278
optimal number of, 273, 536
repartitioning, 272–273
coalesce() method, 274–275
partitionBy() method, 273–274
repartition() method, 274
repartitionAndSortWithinPartitions() method, 275–276
sizing, 272, 280, 534–535, 540
pattern matching in Scala, 152
PDE (Partial DAG Execution), 321
Pérez, Fernando, 183
performance management. See also optimizing
benchmarks, 519–520
spark-perf, 521–525
Terasort, 520–521
TPC (Transaction Processing Performance Council), 520
when to use, 540
canary queries, 525
Datadog, 525–526
diagnosing problems, 536–539
Project Tungsten, 533
PyPy, 532–533
perimeter security, 502–503, 517
persist() method, 108–109, 241, 314
persistence
of DataFrames, 314
of DStreams, 331
of RDDs, 108–109, 240–243
off-heap persistence, 256
Pickle, 176–178
Pickle files, 99
pickleFile() method, 178
pipe() method, 278–279
Pivotal HAWQ, 290
Pizza, 137
planning applications, 47
POJO (Plain Old Java Object) format, saving H2O models, 396
policies (security), 503
polymorphism in Scala, 157
POSIX (Portable Operating System Interface), 18
Powered by Spark web page, 3
pprint() method, 331–332
precedence of configuration properties, 460–461
Pprett() method, 357
predictive analytics, 355–356
machine learning.
See machine learning with SparkR. See SparkR
predictive models
building in SparkR, 355–358
steps in, 361
Pregel, 402–403
pricing
AWS (Amazon Web Services), 64
Databricks, 81
primary keys in Cassandra, 426
primitives
in Scala, 141
in Spark SQL, 301–302
principals
in authentication, 503
in Kerberos, 512, 513
printSchema method, 410
probability functions in R, 349
producers
defined, 434
in Kafka, 435
in Kinesis Streams, 448
profile startup files in IPython, 187
programming interfaces to Spark, 3–5
Project Tungsten, 533
properties, Spark configuration, 457–460, 477
managing, 461
precedence, 460–461
Psyco, 169
public data sets, 63
pub-sub messaging model, 434–435, 451
.py file extension, 167
Py4J, 170
PyPy, 169, 532–533
PySpark, 4, 170. See also Python
dictionaries, 174
higher-order functions, 194
JSON object usage, 176
Jupyter notebooks and, 189–193
pickleFile() method, 178
saveAsPickleFile() method, 178
shell, 6
tuples, 172
Word Count algorithm (MapReduce example) in, 132–134
pysparkling shell, 388–390
Python, 165. See also PySpark
architecture, 166–167
CPython, 167–169
IronPython, 169
Jython, 169
Psyco, 169
PyPy, 169
PySpark, 170
Python.NET, 169
data structures
dictionaries, 173–174
lists, 170, 194
sets, 170–171
tuples, 171–173, 194
functional programming in, 178
anonymous functions, 179–180
closures, 181–183
higher-order functions, 180, 194
parallelization, 181
short-circuiting, 181
tail calls, 180–181
history of, 166
installing, 31
IPython (Interactive Python), 183
advantages of, 194
history of, 183–184
Jupyter notebooks, 187–193
kernels, 189
Spark usage with, 184–187
object serialization, 174
JSON, 174–176
Pickle, 176–178
word count in Spark (listing 1.1), 4
python directory, 39
Python.NET, 169
queueing messages, 435
quorums in Kafka, 436–437
R
directory, 39
programming language, 343–344
assignment operator (\texttt{<-}), 344
data frames, 345, 347–348
creating SparkR data frames from, 351–352
matrices versus, 361
data structures, 345–347
data types, 344–345
datasets package, 351–352
functions and packages, 348–349
SparkR. See SparkR
randomSplit function, 369–370
range() method, 106
RBAC (role-based access control), 503
RDDs (Resilient Distributed Datasets), 2, 8
actions, 206
collect(), 207
count(), 206
first(), 208–209
foreach(), 210–211, 233
take(), 207–208
top(), 208
aggregate actions, 209
cartesian() method, 225–226
cogroup() method, 224–225
collected() method, 219
creating join() method, 219–221
datatypes, 219
leftOuterJoin() method, 221–222
rightOuterJoin() method, 222–223
types of, 219
key value pairs (KVP), 211
flatMapValues() method, 213–214
foldByKey() method, 217
groupByKey() method, 215–216, 233
keyBy() method, 213
keys() method, 212
mapValues() method, 213
reduceByKey() method, 216–217, 233
sortByKey() method, 217–218
subtractByKey() method, 218–219
values() method, 212
lazy evaluation, 107–108
lineage, 109–110, 235–237
loading data, 93
from datasources, 100
from JDBC datasources, 100–103
from JSON files, 103–105
from object files, 99
programmatically, 105–106
from text files, 93–99
numeric functions
max(), 230
mean(), 230
min(), 229–230
stats(), 231–232
Default partition behavior, 271–272
in DStreams, 333
EdgeRDD objects, 404–405
explained, 91–93, 197–198
external storage, 247–248
Alluxio, 254–257, 258
columnar formats, 253, 299
compressed options, 249–250
Hadoop input/output formats, 251–253
saveAsTextFile() method, 248
sequence files, 250
fault tolerance, 111
functional transformations, 199
filter() method, 201–202
flatMap() method, 200–201, 232
map() method, 199–200, 232, 233
groupByKey() method, 215–216, 233
join() method, 219–221
leftOuterJoin() method, 221–222
rightOuterJoin() method, 222–223
types of, 219
key value pairs (KVP), 211
flatMapValues() method, 213–214
foldByKey() method, 217
groupByKey() method, 215–216, 233
keyBy() method, 213
keys() method, 212
mapValues() method, 213
reduceByKey() method, 216–217, 233
sortByKey() method, 217–218
subtractByKey() method, 218–219
values() method, 212
lazy evaluation, 107–108
lineage, 109–110, 235–237
loading data, 93
from datasources, 100
from JDBC datasources, 100–103
from JSON files, 103–105
from object files, 99
programmatically, 105–106
from text files, 93–99
numeric functions
max(), 230
mean(), 230
min(), 229–230
stats(), 231–232
stddev(), 231
sum(), 230–231
variance(), 231
off-heap persistence, 256
persistence, 108–109
processing with external programs, 278–279
resilient, explained, 113
set operations, 204
intersection() method, 205
subtract() method, 205–206
union() method, 204–205
storage levels, 237
caching RDDs, 239–240, 243
checkpointing RDDs, 244–247, 258
flags, 237–238
getStorageLevel() method, 238–239
persisting RDDs, 240–243
selecting, 239
Storage tab (application UI), 484–485
types of, 111–112
VertexRDD objects, 404
read command, 348
read.csv() method, 348
read.fwf() method, 348
reading HBase data, 423–425
read.jdbc() method, 102–103
read.json() method, 104
read.table() method, 348
realms, 513
receivers in Kafka, 437–438, 451
recommenders, implementing, 374–375
records
defined, 92, 117
key value pairs (KVP) and, 118
Red Hat Linux, installing Spark, 30–31
Redis, 430
reduce() method, 122, 209
in Python, 170
in Word Count algorithm, 129–132
Reduce phase, 119, 121–122
reduceByKey() method, 131, 132, 216–217, 233, 527–529
reduceByKeyAndWindow() method, 339
reference counting, 169
reflection, 302
regions (AWS), 62
regions in HBase, 422
relational databases, creating RDDs from, 100
repartition() method, 274, 314
repartitionAndSortWithinPartitions() method, 275–276
repartitioning, 272–273
coalesce() method, 274–275
DataFrames, 314
expense of, 215
partitionBy() method, 273–274
repartition() method, 274
repartitionAndSortWithinPartitions() method, 275–276
replication
benefits of, 257
of blocks, 15–16, 25
in HDFS, 14–16
replication factor, 15
requirements for Spark installation, 28
resilient
defined, 92
RDDs as, 113
Resilient Distributed Datasets (RDDs). See RDDs (Resilient Distributed Datasets)
resource management
Dynamic Resource Allocation, 476, 531–532
list of alternatives, 22
with MapReduce.
See MapReduce in Standalone mode, 463
with YARN. See YARN (Yet Another Resource Negotiator)
ResourceManager, 20–21, 471–472
as cluster manager, 51–52
Riak, 430
right outer joins, 219
rightOuterJoin() method, 222–223
role-based access control (RBAC), 503
roles (security), 503
RStudio, SparkR usage with, 358–360
running applications
in local mode, 56–58
on YARN, 20–22, 51, 472–473
application management, 473–475
ApplicationsMaster, 52–53, 471–472
log file management, 56
ResourceManager, 51–52
yarn-client submission mode, 54–55
yarn-cluster submission mode, 53–54
runtime architecture of Python, 166–167
 CPython, 167–169
 IronPython, 169
 Jython, 169
 Psyco, 169
 PyPy, 169
 PySpark, 170
 Python.NET, 169

saving
 DataFrames to external storage, 314–316
 H2O models, 395–396

sbin directory, 39
sbt (Simple Build Tool for Scala and Java), 139
Scala, 2, 137
 architecture, 139
 comparing objects, 143
 compiling programs, 140–141
 control structures, 149
 do while and while loops, 151–152
 for loops, 150–151
 if expressions, 149–150
 named functions, 153
 pattern matching, 152
 data structures, 144
 lists, 145–146, 163
 maps, 148–149
 sets, 146–147, 163
 tuples, 147–148
 functional programming in
 anonymous functions, 158
 closures, 158–159
 currying, 159
 first-class functions, 157, 163
 function literals versus function values, 163
 higher-order functions, 158
 immutable data structures, 160
 lazy evaluation, 160
 history of, 137–138
 installing, 31, 139–140
 naming conventions, 142
 object-oriented programming in
 classes and inheritance, 153–155
 mixins, 155–156
 polymorphism, 157
 singleton objects, 156–157
 packaging programs, 141
 primitives, 141
 shell, 6
 type inference, 144
 value classes, 142–143
 variables, 144
 Word Count algorithm
 example, 160–162
 word count in Spark (listing 1.2), 4
 scalability of Spark, 2
 scalac compiler, 139
 scheduling
 application tasks, 47
 in Standalone mode, 469
 multiple concurrent applications, 469–470
 multiple jobs within applications, 470–471
 with YARN. See YARN (Yet Another Resource Negotiator)
 schema-on-read systems, 12
 SchemaRDDS. See DataFrames
 schemas for DataFrames
 defining, 304
 inferring, 302–304
 schemes in URIs, 95
Secure Sockets Layer (SSL), 506–510
security, 501–502
authentication, 503–504
encryption, 506–510
shared secrets, 504–506
authorization, 503–504
gateway services, 503
Java Servlet Filters, 510–512, 517
Kerberos, 512–514, 517
client commands, 514
configuring, 515–516
with Hadoop, 514–515
terminology, 513
perimeter security, 502–503, 517
security groups, 62
select() method, 309, 322
selecting
Spark deployment modes, 43
storage levels for RDDs, 239
sequence files
creating RDDs from, 99
external storage, 250
sequenceFile() method, 99
SequenceFileRDDS, 111
serialization
optimizing applications, 531
in Python, 174
JSON, 174–176
Pickie, 176–178
service ticket, 513
set operations, 204
for DataFrames, 311–314
intersection() method, 205
subtract() method, 205–206
union() method, 204–205
setCheckpointDir() method, 244
sets
in Python, 170–171
in Scala, 146–147, 163
severity levels in Log4j framework, 493
shards in Kinesis Streams, 446
shared nothing, 15, 92
shared secrets, 504–506
shared variables.
See accumulators; broadcast variables
Shark, 283–284
shells
Cassandra, 426–427
HBase, 420–422
interactive Spark usage, 5–7, 8
pysparkling, 388–390
SparkR, 350–351
short-circuiting in Python, 181
show() method, 306
shuffle, 108
diagnosing performance problems, 536–538
expense of, 215
Shuffle phase, 119, 121, 135
ShuffledRDDS, 112
side effects of functions, 181
Simple Authentication and Security Layer (SASL), 506, 509
Simple Storage Service (S3), 63
SiMR (Spark In MapReduce), 22
single master mode (Alluxio), 254–255
single point of failure (SPOF), 38
singleton objects in Scala, 156–157
sizing partitions, 272, 280, 534–535, 540
slave nodes
defined, 23
starting in Standalone mode, 463
worker UIs, 463–466
sliding window operations with DStreams, 337–339, 340
slots (MapReduce), 20
Snappy, 94
socketTextStream() method, 327–328
Solr, 430
sortBy() method, 202–203
sortByKey() method, 217–218
sorting data, 202
distinct() method, 203–204
foldByKey() method, 217
groupBy() method, 202
groupByKey() method, 215–216, 233
orderByKey() method, 313
reduceByKey() method, 216–217, 233
sortBy() method, 202–203
subtractByKey() method, 218–219
sources. See data sources
Spark
as abstraction, 2
application support, 3
application UI. See application UI
Cassandra access, 427–429
configuring
broadcast variables, 262
configuration properties, 457–460, 477
Spark environment variables, 454–457
managing configuration, 461
precedence, 460–461
defined, 1–2
deploying
on Databricks, 81–88
on EC2, 64–73
on EMR, 73–80
deployment modes. See also
Spark on YARN deployment mode; Spark Standalone deployment mode
list of, 27–28
selecting, 43
downloading, 29–30
Hadoop and, 2, 8
HDFS as data source, 24
YARN as resource scheduler, 24
input/output types, 7
installing
on Hadoop, 39–42
on Mac OS X, 33–34
on Microsoft Windows, 34–36
as multi-node Standalone cluster, 36–38
on Red Hat/Centos, 30–31
requirements for, 28
in Standalone mode, 29–36
subdirectories of installation, 38–39
on Ubuntu/Debian Linux, 32–33
interactive use, 5–7, 8
IPython usage, 184–187
Kafka support, 437
direct stream access, 438, 451
KafkaUtils package, 439–443
receivers, 437–438, 451
Kinesis Streams support, 448–450
logging. See logging
machine learning in, 367
MapReduce versus, 2, 8
master UI, 487
metrics, collecting, 490–492
MQTT support, 445–446
non-interactive use, 7, 8
programming interfaces to, 3–5
scalability of, 2
security. See security
Spark applications. See
applications
Spark History Server, 488
API access, 489–490
configuring, 488
deploying, 488
diagnosing performance problems, 539
UI (user interface) for, 488–489
Spark In MapReduce (SIMR), 22
Spark ML, 367
Spark MLlib versus, 378
Spark MLlib, 367
classification in, 367
decision trees, 368–372
Naive Bayes, 372–373
clustering in, 375–377
collaborative filtering in, 373–375
Spark ML versus, 378
Spark on YARN deployment mode,
27–28, 39–42, 471–473
application management, 473–475
environment variables, 456–457
scheduling, 475–476
Spark Packages, 406
Spark SQL, 283
accessing
via Beeline, 318–321
via external applications, 319
via JDBC/ODBC interface, 317–318
via spark-sql shell, 316–317
architecture, 290–292
DataFrames, 294
built-in functions, 310
converting to RDDs, 301
creating from Hive tables, 295–296
creating from JSON objects, 296–298
creating from RDDs, 294–295
creating with
DataFrameReader, 298–301
data model, 301–302
defining schemas, 304
functional operations, 306–310
starting masters/slaves in Standalone mode

inferring schemas, 302–304
metadata operations, 305–306
saving to external storage, 314–316
set operations, 311–314
UDFs (user-defined functions), 310–311
history of, 283–284
Hive and, 291–292
HiveContext, 292–293, 322
SQLContext, 292–293, 322
Spark SQL DataFrames
caching, persisting, repartitioning, 314
application management, 466–469
daemon environment variables, 455–456
on Mac OS X, 33–34
master and worker UIs, 463–466
on Microsoft Windows, 34–36
as multi-node Standalone cluster, 36–38
on Red Hat/Centos, 30–31
resource allocation, 463
scheduling, 469
multiple concurrent applications, 469–470
multiple jobs within applications, 470–471
starting masters/slaves, 463
on Ubuntu/Debian Linux, 32–33

Spark Streaming
architecture, 324–325
DStreams, 326–327
broadcast variables and accumulators, 331
caching and persistence, 331
checkpointing, 330–331, 340
data sources, 327–328
lineage, 330
output operations, 331–333
sliding window operations, 337–339, 340
state operations, 335–336, 340
transformations, 328–329
history of, 323–324
StreamingContext, 325–326
word count example, 334–335
SPARK_HOME variable, 454
SparkContext, 46–47
spark-ec2 shell script, 65
actions, 65
options, 66
syntax, 65
spark-env.sh script, 454
Sparkling Water, 387, 397
architecture, 387–388
example exercise, 393–395
H2OFrames, 390–393
pysparkling shell, 388–390
spark-perf, 521–525
SparkR
building predictive models, 355–358
creating data frames
from CSV files, 352–354
from Hive tables, 354–355
from R data frames, 351–352
documentation, 350
RStudio usage with, 358–360
shell, 350–351
spark-sql shell, 316–317
spark-submit command, 7, 8
--master local argument, 59
sparsity, 421
speculative execution, 135, 280
defined, 21
in MapReduce, 124
splittable compression formats, 94, 113, 249
SPOF (single point of failure), 38
spot instances, 62
SQL (Structured Query Language), 283. See also Hive; Spark SQL
sql() method, 295–296
SQL on Hadoop, 289–290
SQLContext, 100, 292–293, 322
SSL (Secure Sockets Layer), 506–510
stages
in DAG, 47
diagnosing performance problems, 536–538
tasks and, 59
Stages tab (application UI), 483–484, 499
Standalone mode. See Spark
deployment mode
starting masters/slaves in Standalone mode, 463
state operations with DStreams, 335–336, 340

statistical functions
max(), 230
mean(), 230
min(), 229–230
in R, 349
stats(), 231–232
stdev(), 231
sum(), 230–231
variance(), 231

stats() method, 231–232
stdev() method, 231
stemming, 128
step execution mode (EMR), 74
stopwords, 128
storage levels for RDDs, 237
caching RDDs, 239–240, 243
checkpointing RDDs, 244–247, 258
external storage, 247–248
Alluxio, 254–257, 258
columnar formats, 253, 299
compressed options, 249–250
Hadoop input/output formats, 251–253
saveAsTextFile() method, 248
sequence files, 250
flags, 237–238
getStorageLevel() method, 238–239
persisting RDDs, 240–243
selecting, 239
Storage tab (application UI), 484–485, 499

StorageClass constructor, 238
Storm, 323
stream processing. See also messaging systems
DStreams, 326–327
broadcast variables and accumulators, 331
caching and persistence, 331
checkpointing, 330–331, 340
data sources, 327–328
lineage, 330
output operations, 331–333
sliding window operations, 337–339, 340
state operations, 335–336, 340
transformations, 328–329

Spark Streaming
architecture, 324–325
history of, 323–324
StreamingContext, 325–326
word count example, 334–335

StreamingContext, 325–326
StreamingContext.checkpoint() method, 330

streams in Kinesis, 446–447
strict evaluation, 160
Structured Query Language (SQL), 283. See also Hive; Spark SQL
subdirectories of Spark
installation, 38–39
subgraphs, 410
subtract() method, 205–206, 313
subtractByKey() method, 218–219
sum() method, 230–231
summary function, 357, 392
supervised learning, 355

T

table() method, 296
tables
in Cassandra, 426
in Databricks, 81
in Hive
creating DataFrames from, 295–296
creating SparkR data frames from, 354–355
internal versus external, 289
writing DataFrame data to, 315
tables (Bigtable), 422
Tachyon. See Alluxio
tail call recursion in Python, 180–181
tail calls in Python, 180–181
take() method, 207–208, 306, 530
takeSample() method, 199
task attempts, 21
task nodes, core nodes versus, 89
tasks
in DAG, 47
defined, 20–21
diagnosing performance problems, 536–538
scheduling, 47
stages and, 59
URIs (Uniform Resource Identifiers), schemes in 571

Terasort, 520–521

Term Frequency-Inverse Document Frequency (TF-IDF), 367
test data sets, 369–370
text files
 creating DataFrames from, 298–299
 creating RDDs from, 93–99
 saving DStreams as, 332–333
text input format, 127
text() method, 298–299
textFile() method, 95–96
text input format, 128
 wholeTextFiles() method versus, 97–99
textFileStream() method, 328
Tez, 289
TF-IDF (Term Frequency-Inverse Document Frequency), 367
Thrift JDBC/ODBC server, accessing Spark SQL, 317–318
ticket granting service (TGS), 513
ticket granting ticket (TGT), 513
tokenization, 127
top() method, 208
topic filtering, 434–435, 451
TPC (Transaction Processing Performance Council), 520
training data sets, 369–370
traits in Scala, 155–156
Transaction Processing Performance Council (TPC), 520
transformations
 cartesian(), 225–226
 coarse-grained versus fine-grained, 107
cogroup(), 224–225
defined, 47
distinct(), 203–204
for DStreams, 328–329
filter(), 201–202
flatMap(), 131, 200–201
 map() versus, 135, 232
 flatMapValues(), 213–214
foldByKey(), 217
fullOuterJoin(), 223–224
groupBy(), 202
groupByKey(), 215–216, 233
intersection(), 205
join(), 219–221
distributed evaluation, 107–108
keyBy(), 213
distinct, 212
lazy evaluation, 107–108
leftOuterJoin(), 221–222
lineage, 109–110, 235–237
map(), 130, 199–200
 flatMap() versus, 135, 232
 foreach() action versus, 233
 passing functions to, 540–541
 mapValues(), 213
of RDDs, 92
reduceByKey(), 131, 132, 216–217, 233
rightOuterJoin(), 222–223
sample(), 198–199
distributed sampling, 198–202
sortBy(), 202–203
distinct, 198
sortByKey(), 217–218
subtract(), 205–206
subtractByKey(), 218–219
distributed sampling, 198
union(), 204–205
distinct, 212
distinct, 212
transport protocol, MQTT as, 444
Trash settings in HDFS, 19
triangle count algorithm, 405
triplets, 402
tuple extraction in Scala, 152
tuples, 132
 in Python, 171–173, 194
 in Scala, 147–148
type inference in Scala, 144
Typesafe, Inc., 138

U

Ubuntu Linux, installing Spark, 32–33
udf() method, 311
UDFs (user-defined functions) for DataFrames, 310–311
UI (user interface)
 See application UI
Uniform Resource Identifiers (URIs), schemes in, 95
union() method, 204–205
unionAll() method, 313
UnionRDDs, 112
unnamed functions
 in Python, 179–180
 in Scala, 158
unpersist() method, 241, 262, 314
unsupervised learning, 355
updateStateByKey() method, 335–336
uploading (ingesting) files, 18
URIs (Uniform Resource Identifiers), schemes in, 95
user interface (UI).
See application UI
user-defined functions (UDFs) for DataFrames, 310–311

V
value classes in Scala, 142–143
value() method
accumulators, 266
broadcast variables, 261–262
values, 118
values() method, 212
van Rossum, Guido, 166
variables
accumulators, 265–266
accumulator() method, 266
custom accumulators, 267
usage example, 268–270
value() method, 266
warning about, 268
bound variables, 158
broadcast variables, 259–260
advantages of, 263–265, 280
broadcast() method, 260–261
configuration options, 262
unpersist() method, 262
usage example, 268–270
value() method, 261–262
environment variables, 454
cluster application deployment, 457
cluster manager independent variables, 454–455
Hadoop-related, 455
Spark on YARN environment variables, 456–457
Spark Standalone daemon, 455–456
free variables, 158
in R, 352
in Scala, 144
variance() method, 231
vectors in R, 345–347
VertexRDD objects, 404
vertices
creating vertex DataFrames, 407
in DAG, 47
defined, 399
indegrees, 400
outdegrees, 400
vertices method, 407–408
VPC (Virtual Private Cloud), 62
windowed DStreams, 337–339, 340
Windows, installing Spark, 34–36
Word Count algorithm (MapReduce example), 126
map() and reduce() methods, 129–132
operational overview, 127–129
in PySpark, 132–134
reasons for usage, 126–127
in Scala, 160–162
word count in Spark
using Java (listing 1.3), 4–5
using Python (listing 1.1), 4
using Scala (listing 1.2), 4
workers, 45, 48–49
executors versus, 59
worker UIs, 463–466
WORM (Write Once Read Many), 14
write ahead log (WAL), 435
writing HBase data, 423–425

W
WAL (write ahead log), 435
weather dataset, 368
web interface for H2O, 382–383
websites, Powered by Spark, 3
WEKA machine learning software package, 368
while loops in Scala, 151–152
wholeTextFiles() method, 97
textFile() method versus, 97–99
wide dependencies, 110
window() method, 337–338

Y
Yahoo! in history of big data, 11–12
YARN (Yet Another Resource Negotiator), 12
executor logs, 497
explained, 19–20
reasons for development, 25
running applications, 20–22, 51
ApplicationsMaster, 52–53
log file management, 56
ResourceManager, 51–52
yarn-client submission mode, 54–55
yarn-cluster submission mode, 53–54
running H2O with, 384–386
Spark on YARN deployment mode, 27–28, 39–42, 471–473
application management, 473–475
environment variables, 456–457
scheduling, 475–476
as Spark resource scheduler, 24
YARN Timeline Server UI, 56
yarn-client submission mode, 42, 43, 54–55
yarn-cluster submission mode, 41–42, 43, 53–54
Yet Another Resource Negotiator (YARN). See YARN (Yet Another Resource Negotiator)
yield operator in Scala, 151

Z
Zeppelin, 75
Zharia, Matei, 1
Zookeeper, 38, 436
installing, 441