Contents at a Glance

Part I: TCP/IP Basics 1

HOUR 1 What Is TCP/IP? .. 3
2 How TCP/IP Works ... 19

Part II: The TCP/IP Protocol System 31

HOUR 3 The Network Access Layer ... 33
4 The Internet Layer ... 45
5 Subnetting and CIDR ... 69
6 The Transport Layer ... 85
7 The Application Layer .. 109

Part III: Networking with TCP/IP 119

HOUR 8 Routing .. 121
9 Getting Connected ... 143
10 Name Resolution ... 171
11 TCP/IP Security ... 197
12 Configuration ... 223
13 IPv6: The Next Generation .. 247

Part IV: Tools and Service 265

HOUR 14 Classic Tools ... 267
15 Classic Services ... 297

Part V: The Internet 315

HOUR 16 The Internet: A Closer Look 317
17 HTTP, HTML, and the World Wide Web 329
18 Web Services ... 359
19 Encryption, Tracking, and Privacy 379
Part VI: TCP/IP at Work 409

HOUR 20 Email ... 411
21 Streaming and Casting ... 431
22 Living in the Cloud .. 449
23 Internet of Things ... 465
24 Implementing a TCP/IP Network: 7 Days in the Life of a Sys Admin ... 477

Appendixes

A Answers to Quizzes and Exercises 491
B Sources .. 503

Index ... 505
Table of Contents

Part I: TCP/IP Basics

HOUR 1: What Is TCP/IP?
1. Networks and Protocols .. 4
2. The Development of TCP/IP .. 6
3. TCP/IP Features ... 8
4. Standards Organizations and RFCs 13
5. Summary .. 15
6. Q&A .. 15
7. Workshop ... 15
8. Key Terms ... 16

HOUR 2: How TCP/IP Works
1. The TCP/IP Protocol System .. 20
2. TCP/IP and the OSI Model ... 22
3. Data Packages .. 24
4. A Quick Look at TCP/IP Networking 25
5. Summary .. 28
6. Q&A .. 28
7. Workshop ... 28
8. Key Terms ... 29

Part II: The TCP/IP Protocol System

HOUR 3: The Network Access Layer
1. Protocols and Hardware .. 33
2. The Network Access Layer and the OSI Model 34
3. Network Architecture ... 35
4. Physical Addressing .. 38
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q&A</td>
<td>103</td>
</tr>
<tr>
<td>Workshop</td>
<td>104</td>
</tr>
<tr>
<td>Key Terms</td>
<td>105</td>
</tr>
<tr>
<td>HOUR 7: The Application Layer</td>
<td>109</td>
</tr>
<tr>
<td>What Is the Application Layer?</td>
<td>109</td>
</tr>
<tr>
<td>The TCP/IP Application Layer and OSI</td>
<td>110</td>
</tr>
<tr>
<td>Network Services</td>
<td>111</td>
</tr>
<tr>
<td>APIs and the Application Layer</td>
<td>115</td>
</tr>
<tr>
<td>TCP/IP Utilities</td>
<td>115</td>
</tr>
<tr>
<td>Summary</td>
<td>116</td>
</tr>
<tr>
<td>Q&A</td>
<td>116</td>
</tr>
<tr>
<td>Workshop</td>
<td>117</td>
</tr>
<tr>
<td>Key Terms</td>
<td>118</td>
</tr>
</tbody>
</table>

Part III: Networking with TCP/IP	119
HOUR 8: Routing	121
Routing in TCP/IP	121
Routing on Complex Networks	133
Examining Interior Routers	134
Exterior Routers: BGP	136
Classless Routing	137
Higher in the Stack	138
Summary	139
Q&A	139
Workshop	140
Key Terms	140

<p>| HOUR 9: Getting Connected | 143 |
| Cable Broadband | 144 |
| Digital Subscriber Line | 145 |
| Wide Area Networks | 146 |
| Wireless Networking | 148 |
| Dial-Up Networking | 157 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Server Configuration</td>
<td>229</td>
</tr>
<tr>
<td>Network Address Translation</td>
<td>230</td>
</tr>
<tr>
<td>Zero Configuration</td>
<td>232</td>
</tr>
<tr>
<td>Configuring TCP/IP</td>
<td>235</td>
</tr>
<tr>
<td>Summary</td>
<td>244</td>
</tr>
<tr>
<td>Q&A</td>
<td>244</td>
</tr>
<tr>
<td>Workshop</td>
<td>244</td>
</tr>
<tr>
<td>Key Terms</td>
<td>246</td>
</tr>
<tr>
<td>HOUR 13: IPv6: The Next Generation</td>
<td>247</td>
</tr>
<tr>
<td>Why a New IP?</td>
<td>248</td>
</tr>
<tr>
<td>IPv6 Header Format</td>
<td>249</td>
</tr>
<tr>
<td>IPv6 Addressing</td>
<td>253</td>
</tr>
<tr>
<td>Subnetting</td>
<td>254</td>
</tr>
<tr>
<td>Multicasting</td>
<td>255</td>
</tr>
<tr>
<td>Link Local</td>
<td>255</td>
</tr>
<tr>
<td>Neighbor Discovery</td>
<td>256</td>
</tr>
<tr>
<td>Autoconfiguration</td>
<td>256</td>
</tr>
<tr>
<td>IPv6 and Quality of Service</td>
<td>257</td>
</tr>
<tr>
<td>IPv6 with IPv4</td>
<td>258</td>
</tr>
<tr>
<td>IPv6 Tunnels</td>
<td>258</td>
</tr>
<tr>
<td>Summary</td>
<td>261</td>
</tr>
<tr>
<td>Q&A</td>
<td>262</td>
</tr>
<tr>
<td>Workshop</td>
<td>262</td>
</tr>
<tr>
<td>Key Terms</td>
<td>263</td>
</tr>
<tr>
<td>Part IV: Tools and Service</td>
<td>265</td>
</tr>
<tr>
<td>HOUR 14: Classic Tools</td>
<td>267</td>
</tr>
<tr>
<td>Connectivity Problems</td>
<td>268</td>
</tr>
<tr>
<td>Protocol Dysfunction and Misconfiguration</td>
<td>268</td>
</tr>
<tr>
<td>Line Problems</td>
<td>274</td>
</tr>
<tr>
<td>Name Resolution Problems</td>
<td>274</td>
</tr>
<tr>
<td>Network Performance Problems</td>
<td>275</td>
</tr>
</tbody>
</table>
HOUR 17: HTTP, HTML, and the World Wide Web

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Is the World Wide Web?</td>
<td>329</td>
</tr>
<tr>
<td>Understanding HTML</td>
<td>332</td>
</tr>
<tr>
<td>Cascading Style Sheets</td>
<td>337</td>
</tr>
<tr>
<td>Understanding HTTP</td>
<td>338</td>
</tr>
<tr>
<td>Scripting</td>
<td>341</td>
</tr>
<tr>
<td>Web Browsers</td>
<td>344</td>
</tr>
<tr>
<td>The Semantic Web</td>
<td>348</td>
</tr>
<tr>
<td>XHTML</td>
<td>350</td>
</tr>
<tr>
<td>HTML5</td>
<td>351</td>
</tr>
<tr>
<td>Summary</td>
<td>356</td>
</tr>
<tr>
<td>Q&A</td>
<td>356</td>
</tr>
<tr>
<td>Workshop</td>
<td>356</td>
</tr>
<tr>
<td>Key Terms</td>
<td>357</td>
</tr>
</tbody>
</table>

HOUR 18: Web Services

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Management Systems</td>
<td>360</td>
</tr>
<tr>
<td>Social Networking</td>
<td>361</td>
</tr>
<tr>
<td>Peer-to-Peer</td>
<td>364</td>
</tr>
<tr>
<td>Understanding Web Services</td>
<td>365</td>
</tr>
<tr>
<td>XML</td>
<td>368</td>
</tr>
<tr>
<td>SOAP</td>
<td>369</td>
</tr>
<tr>
<td>WSDL</td>
<td>370</td>
</tr>
<tr>
<td>Web Service Stacks</td>
<td>371</td>
</tr>
<tr>
<td>REST</td>
<td>371</td>
</tr>
<tr>
<td>E-Commerce</td>
<td>374</td>
</tr>
<tr>
<td>Summary</td>
<td>377</td>
</tr>
<tr>
<td>Q&A</td>
<td>377</td>
</tr>
<tr>
<td>Workshop</td>
<td>377</td>
</tr>
<tr>
<td>Key Terms</td>
<td>378</td>
</tr>
</tbody>
</table>
Table of Contents

Podcasting ... 442
Voice over IP ... 443
Summary .. 445
Q&A ... 445
Workshop ... 446
Key Terms .. 446

HOUR 22: Living in the Cloud 449

What Is the Cloud? .. 449
Private Clouds .. 460
Future of Computing 461
Summary ... 462
Q&A ... 462
Workshop ... 462
Key Terms .. 463

HOUR 23: Internet of Things 465

What Is the Internet of Things? 465
IoT Platforms .. 467
Up Close: MQTT ... 470
RFID ... 472
Summary ... 474
Q&A ... 474
Workshop ... 474
Key Terms .. 475

HOUR 24: Implementing a TCP/IP Network: 7 Days in the Life of a Sys Admin 477

A Brief History of Hypothetical, Inc. 477
7 Days in the Life of Maurice 478
Summary ... 487
Q&A ... 487
Workshop ... 488
Key Terms .. 488
APPENDIXES

APPENDIX A: Answers to Quizzes and Exercises

Hour 1: What Is TCP/IP? ... 491
Hour 2: How TCP/IP Works ... 491
Hour 3: The Network Access Layer ... 492
Hour 4: The Internet Layer .. 493
Hour 5: Subnetting and CIDR ... 494
Hour 6: The Transport Layer .. 494
Hour 7: The Application Layer .. 495
Hour 8: Routing .. 495
Hour 9: Getting Connected .. 496
Hour 10: Name Resolution .. 496
Hour 11: TCP/IP Security .. 496
Hour 12: Configuration ... 497
Hour 13: IPv6: The Next Generation .. 497
Hour 14: Classic Tools ... 497
Hour 15: Classic Services ... 498
Hour 16: The Internet: A Closer Look .. 498
Hour 17: HTTP, HTML, and the World Wide Web 498
Hour 18: Web Services ... 499
Hour 19: Encryption, Tracking, and Privacy 500
Hour 20: Email ... 500
Hour 21: Streaming and Casting .. 501
Hour 22: Living in the Cloud .. 501
Hour 23: Internet of Things ... 502
Hour 24: Implementing a TCP/IP Network: 7 Days in the Life of a Sys Admin ... 502

APPENDIX B: Sources ... 503

Index .. 505
About the Author

Joe Casad is an engineer, author, and editor who has written widely on computer networking and system administration. He has written or cowritten 12 books on computers and networking. He currently serves as editor-in-chief of Linux Pro Magazine and ADMIN Magazine. In a past life, he was the editor-in-chief of C/C++ Users Journal and the technical editor of Sysadmin Magazine.
Dedication

For Susan

Acknowledgments

Thanks to Laura Lewin, Olivia Basegio, Michael Thurston, Ronald McFarland, Jon Snader, Eric Spielman, Mandie Frank, Dhaya Karunanidhi, and Abby Manheim for their help with envisioning and creating this book. I also want to acknowledge the following individuals for their contributions to previous editions of Sams Teach Yourself TCP/IP in 24 Hours: Bob Willsey, Sudha Putnam, Walter Glenn, Art Hammond, Jane Brownlow, Jeff Koch, Mark Renfrow, Vicki Harding, Mark Cierzniak, Marc Charney, Jenny Watson, Betsy Harris, and Trina MacDonald. Thanks to Xander, Mattie, and Bridget for staying close in the storms and not wandering too far away in the sunshine. Thanks to my life partner Susan Rieger for venturing through canyons and over mountaintops with a guy who’s still working on reading the map. And thanks with fond gratitude to the production department for bringing form and elegance to an inglorious collection of cryptic pencil sketches.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA
Reader Services

Register your copy of *Sams Teach Yourself TCP/IP in 24 Hours, Sixth Edition* at informit.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account*. Enter the product ISBN, 9780672337895, and click Submit. Once the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive exclusive discounts on future editions of this product.
TCP/IP is a system (or suite) of protocols, and a protocol is a system of rules and procedures. For the most part, the hardware and software of the communicating computers carry out the rules of TCP/IP communications—the user does not have to get involved with the details. Still, a working knowledge of TCP/IP is essential if you want to navigate through the configuration and troubleshoot problems you’ll face with TCP/IP networks.

This hour describes the TCP/IP protocol system and shows how the components of TCP/IP work together to send and receive data across the network.

At the completion of this hour, you will be able to

- Describe the layers of the TCP/IP protocol system and the purpose of each layer
- Describe the layers of the OSI model and explain how the OSI layers relate to TCP/IP
- Explain TCP/IP protocol headers and how data is enclosed with header information at each layer of the protocol stack
- Name the data package at each layer of the TCP/IP stack
- Discuss the TCP, UDP, and IP protocols and how they work together to provide TCP/IP functionality
The TCP/IP Protocol System

Before looking at the elements of TCP/IP, it is best to begin with a brief review of the responsibilities of a protocol system.

A protocol system such as TCP/IP must be responsible for the following tasks:

- Dividing messages into manageable chunks of data that will pass efficiently through the transmission medium.
- Interfacing with the network adapter hardware.
- Addressing: The sending computer must be capable of targeting data to a receiving computer. The receiving computer must be capable of recognizing a message that it is supposed to receive.
- Routing data to the subnet of the destination computer, even if the source subnet and the destination subnet are dissimilar physical networks.
- Performing error control, flow control, and acknowledgment: For reliable communication, the sending and receiving computers must be able to identify and correct faulty transmissions and control the flow of data.
- Accepting data from an application and passing it to the network.
- Receiving data from the network and passing it to an application.

To accomplish the preceding tasks, the creators of TCP/IP settled on a modular design. The TCP/IP protocol system is divided into separate components that theoretically function independently from one another. Each component is responsible for a piece of the communication process.

The advantage of this modular design is that it lets vendors easily adapt the protocol software to specific hardware and operating systems. For instance, the Network Access layer (as you learn in Hour 3, “The Network Access Layer”) includes functions relating to the specification and design of the physical network. Because of TCP/IP’s modular design, a vendor such as Microsoft does not have to build a completely different software package for TCP/IP on an optical-fiber network (as opposed to TCP/IP on an ordinary ethernet network). The upper layers are not affected by the different physical architecture; only the Network Access layer must change.

The TCP/IP protocol system is subdivided into layered components, each of which performs specific duties (see Figure 2.1). This model, or stack, comes from the early days of TCP/IP, and it is sometimes called the TCP/IP model. The official TCP/IP protocol layers and their functions are described in the following list. Compare the functions in the list with the responsibilities listed earlier in this section, and you’ll see how the responsibilities of the protocol system are distributed among the layers.
BY THE WAY

Many Models

The four-layer model shown in Figure 2.1 is a common model for describing TCP/IP networking, but it isn’t the only model. The ARPAnet model, for instance, as described in RFC 871, describes three layers: the Network Interface layer, the Host-to-Host layer, and the Process-Level/Applications layer. Other descriptions of TCP/IP call for a five-layer model, with Physical and Data Link layers in place of the Network Access layer (to match OSI). Still other models might exclude either the Network Access or the Application layer, which are less uniform and harder to define than the intermediate layers.

The names of the layers also vary. The ARPAnet layer names still appear in some discussions of TCP/IP, and the Internet layer is sometimes called the Internetwork layer or the Network layer.

This book uses the four-layer model, with names shown in Figure 2.1.

![Figure 2.1](image)

The TCP/IP model’s protocol layers.

- **Network Access layer**: Provides an interface with the physical network. Formats the data for the transmission medium and addresses data for the subnet based on physical hardware addresses. Provides error control for data delivered on the physical network.

- **Internet layer**: Provides logical, hardware-independent addressing so that data can pass among subnets with different physical architectures. Provides routing to reduce traffic and support delivery across the internetwork. (The term *internetwork* refers to an interconnected, greater network of local area networks (LANs), such as what you find in a large company or on the Internet.) Relates physical addresses (used at the Network Access layer) to logical addresses.

- **Transport layer**: Provides flow-control, error-control, and acknowledgment services for the internetwork. Serves as an interface for network applications.

- **Application layer**: Provides applications for network troubleshooting, file transfer, remote control, and Internet activities. Also supports the network application programming interfaces (APIs) that enable programs written for a particular operating environment to access the network.

Later hours provide more detailed descriptions of the activities at each of these TCP/IP protocol layers.
When the TCP/IP protocol software prepares a piece of data for transmission across the network, each layer on the sending machine adds a layer of information to the data that is relevant to the corresponding layer on the receiving machine. For instance, the Internet layer of the computer sending the data adds a header with some information that is significant to the Internet layer of the computer receiving the message. This process is sometimes referred to as encapsulation. At the receiving end these headers are removed as the data is passed up the protocol stack.

BY THE WAY

Layers

The term *layer* is used throughout the computer industry for protocol component levels such as the ones shown in Figure 2.1. Header information is applied in layers to the data as it passes through the components of the protocol stack. (You'll learn more about this later in this hour.) When it comes to the components themselves, however, the term *layer* is somewhat metaphorical. Diagrams such as Figure 2.1 are meant to show that the data passes across a series of interfaces. As long as the interfaces are maintained, the processes within one component are not affected by the processes in other components. If you turned Figure 2.1 sideways, it would look more like an assembly line, and this is also a useful analogy for the relationship of the protocol components. The data proceeds through a series of steps in the line and, as long as it arrives at each step as specified, the components can operate independently.

TCP/IP and the OSI Model

The networking industry has a standard seven-layer model for network protocol architecture called the Open Systems Interconnection (OSI) model. The OSI model represents an effort by the International Organization for Standardization (ISO), an international standards organization, to standardize the design of network protocol systems to promote interconnectivity and open access to protocol standards for software developers.

TCP/IP was already on the path of development when the OSI standard architecture appeared and, strictly speaking, TCP/IP does not conform to the OSI model. However, the two models did have similar goals, and enough interaction occurred among the designers of these standards that they emerged with a certain compatibility. The OSI model has been very influential in the growth and development of protocol implementations, and it is quite common to see the OSI terminology applied to TCP/IP.

Figure 2.2 shows the relationship between the four-layer TCP/IP standard and the seven-layer OSI model. Note that the OSI model divides the duties of the Application layer into three layers: Application, Presentation, and Session. OSI splits the activities of the Network Access layer into a Data Link layer and a Physical layer. This increased subdivision adds some complexity, but it also adds flexibility for developers by targeting the protocol layers to more specific services. In particular, the division at the lower level into the Data Link and Physical layers separates
the functions related to organizing communication from the functions related to accessing the communication medium. The three upper OSI layers offer a greater variety of alternatives for an application to interface with the protocol stack.

The seven layers of the OSI model are as follows:

- **Physical layer**: Converts the data into the stream of electrical or analog pulses that will actually cross the transmission medium and oversees the transmission of the data
- **Data Link layer**: Provides an interface with the network adapter; maintains logical links for the subnet
- **Network layer**: Supports logical addressing and routing
- **Transport layer**: Provides error control and flow control for the internetwork
- **Session layer**: Establishes sessions between communicating applications on the communicating computers
- **Presentation layer**: Translates data to a standard format; manages encryption and data compression
- **Application layer**: Provides a network interface for applications; supports network applications for file transfer, communications, and so forth

It is important to remember that the TCP/IP model and the OSI model are standards, not implementations. Real-world implementations of TCP/IP do not always map cleanly to the models shown in Figures 2.1 and 2.2, and the perfect correspondence depicted in Figure 2.2 is also a matter of some discussion within the industry.
Notice that the OSI and TCP/IP models are most similar at the important Transport and Internet (called Network in OSI) layers. These layers include the most identifiable and distinguishing components of the protocol system, and it is no coincidence that protocol systems are sometimes named for their Transport and Network layer protocols. As you will learn later in this book, the TCP/IP protocol suite is named for TCP, a Transport layer protocol, and IP, an Internet/Network layer protocol.

Data Packages

The important thing to remember about the TCP/IP protocol stack is that each layer plays a role in the overall communication process. Each layer invokes services that are necessary for that layer to perform its role. As an outgoing transmission passes down through the stack, each layer includes a bundle of relevant information called a header along with the actual data. The little data package containing the header and the data then becomes the data that is repackaged at the next lower level with the next lower layer’s header. This process is shown in Figure 2.3. The reverse process occurs when data is received on the destination computer. As the data moves up through the stack, each layer unpacks the corresponding header and uses the information.

As the data moves down through the stack, the effect is a little like the nested Russian wooden dolls you might have seen; the innermost doll is enclosed in another doll, which is then enclosed in another doll, and so on. At the receiving end, the data packages are unpacked, one by one, as the data climbs back up the protocol stack. The Internet layer on the receiving machine uses the information in the Internet layer header. The Transport layer uses the information in the Transport layer header. At each layer, the package of data takes a form that provides the necessary information to the corresponding layer on the receiving machine. Because each layer is responsible for different functions, the form of the basic data package is very different at each layer.

![Diagram of the TCP/IP protocol stack](image)

FIGURE 2.3

At each layer, the data is repackaged with that layer’s header.
BY THE WAY

Transporting Dolls

The networking industry has as many analogies as it has acronyms, and the Russian doll analogy, like any of the others, illustrates a point, but must not be taken too far. It is worth noting that on a physical network such as ethernet, the data is typically broken into smaller units at the Network Access layer. A more accurate analogy would call for this lowest layer to break the concentric doll system into smaller pieces, encapsulate those pieces into tinier dolls, and then grind those tiny dolls into a pattern of 1s and 0s. The 1s and 0s are received, reconstituted into tiny dolls, and rebuilt into the concentric doll system. The complexity of this scenario causes many to eschew the otherwise-promising analogy of the dolls.

The data packet looks different at each layer, and at each layer it goes by a different name. The names for the data packages created at each layer are as follows:

- The data package created at the Application layer is called a message.
- The data package created at the Transport layer, which encapsulates the Application layer message, is called a segment if it comes from the Transport layer's TCP protocol. If the data package comes from the Transport layer's User Datagram Protocol (UDP) protocol, it is called a datagram.
- The data package at the Internet layer, which encapsulates the Transport layer segment, is called a datagram.
- The data package at the Network Access layer, which encapsulates and may subdivide the datagram, is called a frame. This frame is then turned into a bitstream at the lowest sub-layer of the Network Access layer.

To be honest, people don’t always use these different protocol package names anymore; the word “packet” has become a popular (if imprecise) shorthand for describing a data package at any protocol level, but it is still worthwhile to consider that the different protocol packages have different names because they are actually quite different. Each layer has a different purpose, and each header contains different information. You learn more about the data packages for each layer in later hours.

A Quick Look at TCP/IP Networking

The practice of describing protocol systems in terms of their layers is widespread and nearly universal. The layering system does provide insights into the protocol system, and it's impossible to describe TCP/IP without first introducing its layered architecture. However, focusing solely on protocol layers also creates some limitations.
First, talking about protocol layers rather than protocols introduces additional abstraction to a subject that is already excruciatingly abstract. Second, itemizing the various protocols as subheads within the greater topic of a protocol layer can give the false impression that all protocols are of equal importance. In fact, though every protocol has a role to play, most of the functionality of the TCP/IP suite can be described in terms of only a few of its most important protocols. It is sometimes useful to view these important protocols in the foreground, against the backdrop of the layering system described earlier in this hour.

Figure 2.4 describes the basic TCP/IP protocol networking system. Of course, there are additional protocols and services in the complete package, but Figure 2.4 shows most of what is going on.

The basic scenario is as follows:

1. Data passes from a protocol, network service, or application programming interface (API) operating at the Application layer through a TCP or UDP port to either of the two Transport layer protocols (TCP or UDP). Programs can access the network through either TCP or UDP, depending on the program's requirements:
 - TCP is a connection-oriented protocol. As you learn in Hour 6, “The Transport Layer,” connection-oriented protocols provide more sophisticated flow control and error control than connectionless protocols. TCP goes to great effort to guarantee the delivery of the data. TCP is more reliable than UDP, but the additional error checking and flow control mean that TCP is slower than UDP.
 - UDP is a connectionless protocol. It is faster than TCP, but it is not as reliable. UDP offloads more of the error control responsibilities to the application.

2. The data segment passes to the Internet level, where the IP protocol provides logical-addressing information and encloses the data into a datagram.

3. The IP datagram enters the Network Access layer, where it passes to software components designed to interface with the physical network. The Network Access layer creates one or more data frames designed for entry onto the physical network. In the case of a LAN system such as ethernet, the frame may contain physical address information obtained from lookup tables maintained using the Internet layer ARP protocol. (ARP, Address Resolution Protocol, translates IP addresses to physical addresses.)

4. The data frame is converted to a stream of bits that is transmitted over the network medium.
Of course, there are endless details describing how each protocol goes about fulfilling its assigned tasks. For instance, how does TCP provide flow control, how does ARP map physical addresses to IP addresses, and how does IP know where to send a datagram addressed to a different subnet? These questions are explored later in this book.
Summary

In this hour, you learned about the layers of the TCP/IP protocol stack and how those layers interrelate. You also learned how the classic TCP/IP model relates to the seven-layer OSI networking model. At each layer in the protocol stack, data is packaged into the form that is most useful to the corresponding layer on the receiving end. This hour discussed the process of encapsulating header information at each protocol layer and outlined the different terms used at each layer to describe the data package. Finally, you got a quick look at how the TCP/IP protocol system operates from the viewpoint of some of its most important protocols: TCP, UDP, IP, and ARP.

Q&A

Q. What are the principal advantages of TCP/IP’s modular design?
A. Because of TCP/IP’s modular design, the TCP/IP protocol stack can adapt easily to specific hardware and operating environments. One layer can change without affecting the rest of the stack. Breaking the networking software into specific, well designed components also makes it easier to write programs that interact with the protocol system.

Q. What functions are provided at the Network Access layer?
A. The Network Access layer provides services related to the specific physical network. These services include preparing, transmitting, and receiving the frame over a particular transmission medium, such as an ethernet cable.

Q. Which OSI layer corresponds to the TCP/IP Internet layer?
A. TCP/IP’s Internet layer corresponds to the OSI Network layer.

Q. Why is header information enclosed at each layer of the TCP/IP protocol stack?
A. Because each protocol layer on the receiving machine needs different information to process the incoming data, each layer on the sending machine encloses header information.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz questions are designed to test your overall understanding of the current material. The practical exercises are intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz questions and exercises before continuing. Refer to Appendix A, “Answers to Quizzes and Exercises,” for answers.
Quiz
1. What two OSI layers map into the TCP/IP Network Access layer?
2. What TCP/IP layer is responsible for routing data from one network segment to another?
3. What are the advantages and disadvantages of UDP as compared to TCP?
4. What does it mean to say that a layer encapsulates data?

Exercises
1. List the functions performed by each layer in the TCP/IP stack.
2. List the layer(s) that deal with datagrams.
3. Explain how TCP/IP would have to change to use a newly invented type of network hardware.
4. Explain what it means to say that TCP is a reliable protocol.

Key Terms
Review the following list of key terms:

- **Address Resolution Protocol (ARP)**: A protocol that resolves logical IP addresses to physical addresses.
- **Application layer**: The layer of the TCP/IP stack that supports network applications and provides an interface to the local operating environment.
- **Datagram**: The data package passed between the Internet layer and the Network Access layer, or a data package passed between UDP at the Transport layer and the Internet layer.
- **Frame**: The data package created at the Network Access layer.
- **Header**: A bundle of protocol information attached to the data at each layer of the protocol stack.
- **Internet layer**: The layer of the TCP/IP stack that provides logical addressing and routing.
- **IP (Internet Protocol)**: The Internet layer protocol that provides logical addressing and routing capabilities.
- **Message**: In TCP/IP networking, a message is the data package passed between the Application layer and the Transport layer. The term is also used generically to describe a message from one entity to another on the network. The term doesn’t always refer to an Application layer data package.
Network Access layer: The layer of the TCP/IP stack that provides an interface with the physical network.

Segment: The data package passed between TCP at the Transport layer and the Internet layer.

Transport layer: The layer of the TCP/IP stack that provides error control and acknowledgment and serves as an interface for network applications.

UDP (User Datagram Protocol): An unreliable, connectionless protocol of the Transport layer.
Symbols

<video> element, 442

Numbers

6in4 tunneling, 260
6to4 tunneling, 260
802.11 networks, 148–154, 168
 access points, association, 152
 address types, 151–152
 frame fields, 152–153
 IBSS, 149
 infrastructure BSS, 149–151
 security, 153–154
 WEP, 153
 WPA2, 154
 transmission speeds, 149

A

 access methods, 35, 43
 access points, association, 152, 168

ACK, 105
Acknowledgment Number (32-bit) field, 96
active open connections, 97, 105
active RFID tags, 473
AD (Active Directory), 309
Adaptive Bitrate streaming, 441
address classes, 54–55, 66
address ranges
 for classful addresses, 55
 for IPv6 addresses, 253–254
Adobe Flash, 439
AES (Advanced Encryption Standard), 384
AJAX (Asynchronous JavaScript and XML), 344
algorithms, encryption, 381–382
announcements, 96
anonymity networks, 403–404
anycast, 263
Apache, 371
APIPA (Automatic Private IP Addressing), 233, 246
APIs (application programming interfaces), 109–110, 115, 118
 network APIs, 115
Apple Remote Desktop utility, 310
Application layer firewalls, 199
Application layer (OSI model), 23, 110
Application layer (TCP/IP model), 21, 29, 109–110
APIs, 115
corresponding OSI layers, 110–111
file and print services, 112–113
messages, 25
name resolution services, 113
network services, 111–112
remote access, 114
utilities, 116
web services, 114
application-level attacks, 213–214
applications
Juggernaut, 213
ports, 12–13, 89
and firewalls, 102
SaaS, 451–453
sockets, 89–90
architectures, 35–36, 44
ethernet, 38–40
frames, 40–41
PPPoE, 146
in Network Access layer, 36–37
web services architecture, 366
ARP (Address Resolution Protocol), 9, 29, 37, 61–62, 66
connectivity problems, 272–274
arp utility, 116
ARPAnet, 16
ARPA (Advanced Research Projects Agency network), 6
ascii command, 302
ASNs (autonomous system numbers), 137
assigning
IP addresses, 9
DHCP, 225
NAT, 230–232
Zeroconf system, 232–235
subnet masks, 73
association, 152
asymmetric encryption, 384–385
attacks
application-level attacks, 213–214
credential attacks, 207–212
guessing, 210
intercepting, 210–211
mitigating, 211–212
password protection, 208
Trojan horses, 208–209
derial-of-service attacks, 217–218
network-level attacks, 212–213
phishing, 215–217, 426–427
security best practices, 218–219
authentication
digital certificates, 386–388
digital signatures, 385–386
Kerberos, 393–395
Authentication header (IPv6), 252
authority field (URLs), 323–324
autoconfiguration, IPv6, 256–257
autonomous systems, 133–134, 140
interior gateways, 134
interior routing protocols, 134
AWS (Amazon Web Services), 459–460
B
back doors, 207
backbone, 318
backup solutions, cloud-based, 452–453
basic header (RTMP), 439
Berkeley r* utilities, 283–284
Berners-Lee, Tim, 329–330
best practices, for security, 218–219
BGP (Border Gateway Protocol), 136–137, 140
binary command, 301
binary IP addresses, converting to dotted-decimal format, 56–57, 74–75
BinHex utility, 412
BitTorrent, 112
blacklists, 424
blogs, 362–363
Bluetooth, 155–156, 168
BOOTP, 63, 66, 225
bridges, 161–162, 168
broadband technologies
cable broadband, 144–145
DSL, 145–146
broadcasts, 60, 100
connections, TCP 507

browsers, 337, 344–347
 microformats, 349–350
 plug-ins, 345–346
 security, 346–347
BSD Unix, 283–284
bye command, 302

C

cable broadband, 144–145
 cabling, 43
 cabling rules, 35
 CAs (certificate authorities), 386–387
 cd command, 301
 Cerberus, 395
 Cerf, Vinton, 6
 CGI (Common Gateway Interface), 343
 chain of trust, DNSSEC, 187–188
 Chatty Things, 468
 Checksum field (TCP), 96
 Checksum field (UDP), 101
 chunk header (RTMP), 439
 CIDR (Classless Inter-Domain Routing), 51, 70, 79–81, 83, 137–138, 480
 CIFS (Common Internet File System), 112, 305–306
 Class A addresses, 54
 delivering data to, 70–71
 subnetting, 78
 Class B addresses, 54
 subnetting, 75, 78–79
 Class C addresses, 54, 479
 subnetting, 75–77, 79
Class D addresses, 55
Class E addresses, 55
classful addresses, address ranges, 55
classless routing, 137–138
 clients, 97
 client-side scripting, 343–344
 close command, 302
 closing TCP connections, 99
cloud computing, 449–450
 comparing to World Wide Web, 450
 containers, 457–458
 data centers, 458–459
 elastic cloud services, 459–460
 hybrid cloud, 454
 laaS, 453–455
 IoT platforms, 469–470
 orchestration, 458
 PaaS, 455
 private clouds, 460–461
 SaaS, 451–453
 backup solutions, 452–453
 storage, 452
 virtualization, 456–457
 drivers for adoption, 456–457
 provisioning, 458
 vendors, 456
CMS (content management system), 360–361
 blogs, 362–363
 Facebook, 361–362
 WYSIWYG editing, 360
CMTS (cable modem termination service), 144–145, 168
CNAME (canonical name) records, 183
codecs, 446
collisions, 38–40
 commands
 FTP, 300–303
 SNMP, 289–290
 communities (SNMP), 286
 comparing
 cloud computing and World Wide Web, 450
 routing and switching, 165–166
 confidentiality, 380
 configuring
 IPv6, 256–257
 TCP/IP, 223–224, 235–236
 on Linux, 241–243
 on MAC OS, 240–241
 on Windows operating systems, 236–239
connecting to the Internet
 broadband technologies
 cable broadband, 144–145
 DSL, 145–146
 dial-up networking, 157–161
 point-to-point connections, 157–158
 Mobile IP, 154–155
 WANs, 146–147
 connectionless protocols, 87, 105
 connection-oriented protocols, 87, 88, 105
 connections, TCP
 active open, 97
 closing, 99
 establishing, 98–99
connections, TCP

flow control, 99
passive open, 97
connectivity devices
hubs, 162–163
switches, 163–164
connectivity problems, troubleshooting, 268–274
ARP, 272–274
configuration information utilities, 271–272
ping utility, 269–271
container files, 432, 433
containers, 457–458
provisioning, 458
content caching, 204
control flags, 96, 106
converting
binary IP addresses to
dotted-decimal format, 56–57, 74–75
decimal numbers to binary octet, 58–60
cookies, 396–398
managing, 399–400
persistent cookies, 398
session cookies, 397–398
third-party cookies, 398–399
core routers, 133
counters, 288
CRC (cyclical redundancy check), 43
creating hosts files, 174–175
credential attacks, 207–212
guessing, 210
intercepting, 210–211
mitigating, 211–212
password protection, 208
Trojan horses, 208–209
cross-site scripting, 216
CSMA/CD (carrier sense multiple access with collision detection), 38, 43
CSS (Cascading Style Sheets), 337–338
cut-through switching, 168

D

data centers, 458–459
data frame format, 43
Data Link layer (OSI model), 23, 43
sublayers, 35
Data Offset field (TCP), 96
data packages, 24–25
datagrams, 25, 29
DHCP, 226–227
IP, header fields, 51–53
DCCP (Datagram Congestion Control Protocol), 101, 440
decentralized environments, 6–7
decimal numbers, converting to binary octet, 58–60
default routers, 127
delivery process (email), 413–416
demultiplexing, 86, 92, 106
denial-of-service attacks, 217–218
depletion of IPv4 addresses, 248
DES (Data Encryption Standard), 384
Destination IP Address field (IP), 53
Destination Options header (IPv6), 251
Destination Port field (UDP), 101
Destination Unreachable messages, 63
development of TCP/IP, 6–7
devices
bridges, 161–162
codecs, 446
encoder devices, 433
firewalls, 102, 106
hubs, 162–163
Layer 2, 139
Layer 3, 121–122
link status lights, 274
modems, 144
NAT, 231
network interface devices, 46
routers, 9–11, 122–124
core routers, 133
exterior routers, 134
higher-level access, 138–139
Home Agent, 154
routing tables, 73
switches, 163–164
DHCP (Dynamic Host Configuration Protocol), 112, 224, 225, 481–482
leasing IP addresses, 226–227
relay agents, 227–228
server configuration, 229–230
time fields, 228–229
dial-up networking, 157–161
modems, 157
point-to-point connections, 157–158
PPP, 158–161
connection lifecycle, 161
frames, 160
Encrypted Security Payload header (IPv6)

LCP, 159
NCPs, 159
packets, 160
SLIP, 158
Dig utility, 191–192
digital certificates, 386–388
digital signatures, 385–386
direct routing, 128
directory services, LDAP, 306–309
distance-vector routing, 130–132.
See also link-state routing
hop count, 130–131
RIP, 135–136
updates, 131–132
DMZ (demilitarized zone), 200–202
DN (distinguished name), 307
DNS (Domain Name System) names, 11, 112, 173, 482–483
Dig utility, 191–192
domain name registration, 181
dynamic DNS, 192–193
FQDNs, 177
mDNS, 234
name resolution, 175–180
name server types, 182
TLDs, 177
verifying name resolution with NSlookup utility, 190–191
with ping, 189
zones, 182–186
resource records, 183
reverse lookup files, 185–186
SOA records, 184–185
DNS-SD (DNS Service Discovery), 234–235
DNSSEC (DNS Security Extensions), 186–189
chain of trust, 187–188
resource records, 187
Do Not Track initiative, 402
DOCSIS (Data Over Cable Service Interface Specification), 145, 168
domain names, 11, 16
registering, 181
dotted-decimal format, 53–54, 66
binary IP addresses, converting to, 56–57, 74–75
downloading multimedia files, 433
Dreamweaver, 360
DSL (digital subscriber line), 145–146
forms of, 146
DSLAM (digital subscriber line access multiplexer), 145
DSSS (direct-sequence spread spectrum), 148
Duration/ID field (802.11), 152
dynamic DNS, 192–193
dynamic routing, 7, 126, 129, 141
e-commerce, 374–376
payment gateways, 375
web transactions, 375
editing hosts files, 174
elastic cloud services, 459–460
e-mail, 411–412
address format, 415
clients, 420–422
delivery process, 413–416
format, 412–413
body, 412
header fields, 413
IMAP, 414
IMAP4, 420
mailbox, 414
MIME, 412
phishing, 426–427
POP, 415
POP3, 419–420
privacy, 427
retrieving mail, 418–419
security, 422
SMTP, 415, 416–418
client commands, 417
delivering email to mailbox, 417–418
spam, 423–426
blacklists, 424
graylists, 425–426
whitelists, 425
webmail, 422–423
EME (Encrypted Media Extension), 442
encapsulation, 22
encoder devices, 433
Encrypted Security Payload header (IPv6), 253
encryption, 210, 380
algorithm, 381–382
asymmetric encryption, 384–385
digital certificates, 386–388
digital signatures, 385–386
keys, 380–382
symmetric encryption, 382–384
end-node verification, 7
error control, 12
establishing TCP connections, 98–99
ethernet, 38–40, 43
802.11 networks, 148–154
collisions, 38–40
CSMA/CD, 38
frames, fields, 40–41
IEEE 802.3, 36
PPPoE, 146
extension headers, IPv6, 250–253
Authentication header, 252
Destination Options header, 251
Encrypted Security Payload header, 253
Fragment header, 252
Hop-by-Hop options header, 251
Routing header, 252
exterior routers, 134, 141
BGP, 136–137

F

Facebook, 361–362
FCS (Frame Check Sequence)
field, 41, 44, 152
FHSS (frequency-hopping spread spectrum), 148
fields
of 802.11 frame, 152–153
of ethernet frame, 40–41
of IP header, 51–53
of IPv6 header, 250
t of TCP segment, 95–97
of UDP header, 100–101
file and print services, 112–113
CIFS, 305–306
NFS, 304–305
SMB, 305–306
FIN flag, 96, 106
finger protocol, 112, 116
Firebase, 468–469
firewalls, 102, 106, 197–199, 484. See also attacks
Application layer
firewalls, 199
DMZ, 200–202
intruders, 205–206
back doors, 207
motivations of, 206–207
options, 199–200
packet filters, 198
personal firewalls, 199
proxy services, 203–204
reverse proxy, 204–205
rules, 202–203
SOHO firewalls, 199
stateful firewalls, 198–199
UNIX/Linux systems, 200
Flags field (IP), 52
flow control, 12, 93
TCP, 99
flow levels, 249
Foreign Agent, 154
format of email, 412–413
body, 412
header fields, 413
FQDNs (fully qualified domain names), 173, 177
Fragment header (IPv6), 252
Fragment Offset field (IP), 53
fragment section (URLs), 325
Fragmentation Needed messages, 64
frame control field (802.11), 152
frames, 25, 29
802.11
address types, 151–152
fields, 152–153
ethernet, fields, 40–41
PPP, 160
ftp, 13
FTP (File Transfer Protocol), 112,
299–303
commands, 300–303
on WWW, 299

G

gateways, 7, 16
default gateways, 127
interior gateways, 134
VoIP, 444–445
golocation, 354
get command, 302
goals of IPv6, 249
graceful close, 93
graylists, 425–426
H.323 protocol, 444
Header Checksum field (IP), 53
headers, 24, 29. See also extension headers, IPv6
IP, 51–53
IPv6, 249–253
pseudo-headers, 101
RTMP, 439
RTP, 436–437
TCP, 95–97
UDP, 100–101
Home Agent, 154
HomeKit, 468
hop count, 130–131
Hop-by-Hop options header (IPv6), 251
hops, 53
host ID, 50, 66
hostname utility, 116
hosts, 49
calculating for address classes, 54–55
hosts files, 172
creating, 174–175
editing, 174
name resolution, 173–175
HR/DSSS (high-rate direct sequence spread spectrum), 148
HTML (Hyper Text Markup Language), 298, 329–330, 332–337
links, 337
tags, 332–336
HTML5, 351–355
drawing, 353–354
embedded audio and video, 354
EME, 442
geloocation, 354
local storage, 351–353
MSE, 442
offline application support, 351–353
semantics, 355
header fields, 340
status codes, 340
streaming, 434, 440–441
HTTP Live Streaming, 441
hubs, 162–163
link status lights, 274
hybrid cloud, 454
IaaS (infrastructure as a service), 453–455
IAB (Internet Architecture Board), 13
IANA (Internet Assigned Names Numbers Authority), 13–14
iBGP (Interior Border Gateway Protocol), 136
IBSS (Independent Basic Service Set), 149
ICANN (Internet Corporation for Assigned Names and Numbers), 13, 79–80
assignment of IP addresses, 9
domain name registration, 181
ICMP (Internet Control Message Protocol), 63–64, 66
Identification field (IP), 52
IEEE 802.11, 43
IEEE 802.3, 36, 43
IETF (Internet Engineering Task Force), 13
ifconfig, 116
ifconfig command, 271–272
IHL (Internet Header Length) field, 52
IMAP (Internet Message Access Protocol), 112, 414
IMAP4 (Internet Message Access Protocol version 4), 420
implementations, 5, 17
indirect routing, 129, 141
infrastructure BSS, 149–151
intelligent hubs, 163
intercepting passwords, 210–211
interior gateways, 134
interior routing protocols, 134
OSPF, 136
RIP, 135–136
Internet autonomous systems, 133–134
broadband technologies
cable broadband, 144–145
DSL, 145–146
client applications, 321
decentralized environment, 6–7
development of, 6
dial-up networking, 157–161
Internet layer (TCP/IP model), 21, 29, 45, 47–49. See also
IP addresses
ARP, 61–62
datagrams, 25
dial-up networking, PPP, 158–161
IMCP, 63–64
IP addresses, 46
hosts, 49
RARP, 62–63
internetworks, 21
intruders
back doors, 207
motivations of, 206–207
IoT (Internet of Things), 465–467, 484–486
management systems, 469
MQTT, 470–472
platforms, 467–470
cloud-based, 469–470
Firebase, 468–469
HomeKit, 468
publishing model, 472
RFID, 472–474
active tags, 473
subscriptions, 472
IoTivity, 468
IP (Internet Protocol), 29, 49–53
IP addresses, 9, 16, 46, 53–55
address classes, 54–55
broadcasts, 60
CIDR, 51
dotted-decimal format, 53–54
host ID, 50
hosts, 49
leasing, 226–227
relay agents, 227–228
time fields (DHCP), 228–229
loopback addresses, 61
multicasting, 55
name resolution, 11, 171–173
DNS, 175–180, 182
domain name registration, 181
dynamic DNS, 192–193
hosts files, 173–175
NetBIOS, 193–194
network ID, 50
octets, 53–54
routing tables, 126–128
next-hop entry, 126
static IP addressing, 224–225
subnetting, 50, 51, 55, 69–70, 480–481
CIDR, 79–81
Class A addresses, 78
Class B addresses, 75, 78–79
Class C addresses, 75–77, 79
subnet masks, 71–79
Zeroconf system, 232–235
IP Data Payload field (IP), 53
IP forwarding, 127–128
IP Options field, 53
IP telephony, VoIP, 443–445
gateways, 444–445
H.323 protocol, 444
SIP, 444
iPodder, 443
IPsec, 64, 390–391

Mobile IP, 154–155
proliferation of personal
computers, 7–8
security, 320
server applications, 321
services, 321–322
structure of, 317–320
backbone, 318
IXPs, 319–320
Tier 1 networks, 318
Tier 2 networks, 318
Tier 3 networks, 318
URLs, 323–325
authority field, 323–324
fragment section, 325
path component, 324
query component, 324–325
scheme field, 323
WANs, 146–147
IPv4, 48
IPv4-mapped IPv6 addresses, 258
IPv6
address ranges, 253–254
autoconfiguration, 256–257
extension headers, 250–253
headers, 249–253
with IPv4, 258
link-local addresses, 255–256
multicasting, 255
neighbor discovery, 256
QoS, 257
reasons for, 248–249
subnetting, 254–255
tunnels, 258–261
6in4 tunneling, 260
6to4 tunneling, 260
TSP, 261
IRTF (Internet Research Task Force), 13
ISN (initial sequence number), 106
ISO (International Organization for Standardization), 22
ISPs (Internet service providers), interior routers, 134
iTunes, 443
IXPs (Internet exchange points), 319–320

K
Kahn, Robert E.6
KDC (Key Distribution Center), 393
Kerberos, 393–395
key loggers, 215
keys, 380–382
private key, 384
public key, 384

L
LANs (local area networks), 7–8, 16
architectures, 35–36
ethernet, 38–40
Layer 2 devices, 139
Layer 3 devices, 121–122
layers, 22
of ARPAnet model, 21
encapsulation, 22
of OSI model, 22–24
of TCP/IP model, 21–22
Application layer, 21
headers, 24
Internet layer, 21
Network Access layer, 22
Transport layer, 21
LCP (Link Control Protocol), 159
AD, 309
schema, 307
LDIF (LDAP Data Interchange Format), 308
leasing IP addresses, 226–227.
See also name resolution
DHCP time fields, 228–229
relay agents, 227–228
Length field (ethernet), 41
Length field (UDP), 101
line problems, troubleshooting, 274
link status lights, 274
link-local addresses, IPv6, 255–256
links, HTML, 337
link-state routing, 132–133
OSPF, 136
Linux, 371
firewalls, 200
FTP, 300
ifconfig command, 271–272
TCP/IP, configuring, 241–243
LLC (Logical Link Control) sublayer, 35, 44
LLNR (Link-Local Multicast Name Resolution), 235
LMHosts files, 194
logical addressing, 8–9, 16
physical address, 8
loopback addresses, 61
Lpr, 13

J
Jobs, Steve, 439
JSON (JavaScript Object Notation), 367
Juggernaut, 213
jumbo payload, 263

MAC (Media Access Control) sublayer, 8, 37
MAC (Media Access Control) address, 8, 37
MAC OS, configuring TCP/IP, 240–241
Macromedia, 438
mailbox, 414
management console (SNMP), 286
markup languages, 329–330
HTML, 332–337
mDNS (multicast DNS), 234
MediaWiki, 363
messages, 25, 29. See also email
ICMP, 63–64
SOAP, 370
metadata, 372
metafiles, 435
mget command, 302
MIB (Management Information Base), 287–288
counters, 288
RMON, 290–292
structure of, 288
microformats, 349–350
MIME (Multipurpose Internet Mail Extensions), 412
mitigating credential attacks, 211–212
mkdir command, 301
Mobile IP, 154–155
modem (modulator/demodulator), 144, 157
modular design of TCP/IP, 20
motivations of intruders, 206–207
MPEG-DASH (MPEG Dynamic Adaptive Streaming over HTTP), 441
mput command, 302
MQTT, 468, 470–472
MSE (Media Source Extensions), 442
multicasting, 55, 67
IPv6, 255
multihomed computers, 122–124, 479
multimedia
container files, 432
downloading files, 433
HTML5, 354, 442
podcasting, 442–443
software, 435
streaming, 431–432
container files, 433
DCCP, 440
encoder devices, 433
HTTP, 434, 440–441
metafiles, 435
QoS, 432
RTMP, 438–439
RTP, 435–438
SCTP, 440
video file formats, 434–435
multiplexing, 86, 92, 106
MySQL, 371

name resolution, 11, 113, 171–173, 482–483
DNS, 175–180
DNSSEC, 186–189
FQDNs, 177
name server types, 182
TLDs, 177
zones, 182–186
domain name registration, 181
dynamic DNS, 192–193
hosts files, 173–175
creating, 174–175
editing, 174
NetBIOS, 193–194
troubleshooting, 274–275
verifying
with Dig utility, 191–192
with NSlookup utility, 190–191
with ping, 189
name services, 16
NAT (Network Address Translation), 9, 230–232, 481–482
National Science Foundation, 6
NCPs (network control protocols), 159
NDP (Neighbor Discovery Protocol), 256
neighbor discovery, IPv6, 256
netstat utility, 116, 279–280
Network Access layer (TCP/IP model), 22, 30, 33–34
architectures, 36–37
ethernet, 38–40
frames, 40–41
frames, 25
and OSI model, 34–35
physical addressing, 37
responsibilities, 33
network adapters, physical address, 8
network APIs, 115
network ID, 50, 67
routing tables, 126–128
network interface devices, 46

Network layer (OSI model), 23

network services, 111–112

network-level attacks, 212–213

networks, 4. See also wireless networks

architectures, 35–36

ARPAnet, 6

connectivity devices

bridges, 161–162

hubs, 162–163

switches, 163–164

LANs, 7–8

management tools, 285–292

RMON, 290–292

SNMP, 286–290

performance, troubleshooting, 275–280

netstat utility, 279–280

route utility, 277–278

traceroute utility, 276–277

routting, 9–11

TOR networks, 403–404

next-hop, 126

NFS (Network File System), 112, 304–305

nodes (SNMP), 286

NS (Name Server) records, 183

NSlookup, 13

verifying name resolution, 190–191

NTIA (U.S. National Telecommunications and Information Administration), 13–14

NTP (Network Time Protocol), 112

O

oxets, 53–54, 67

decimal numbers, converting to, 58–60

OFDM (orthogonal frequency-division multiplexing), 148

open command, 302

Optional VLAN tag field (Ethernet), 40

orchestration, 458

OSI (Open Systems Interconnection) model, 22–24, 34–35

Application layer, 110

Data Link layer, sublayers, 35

Presentation layer, 111

Session layer, 111

OSPF (Open Shortest Path First), 136, 141

P

PaaS (Platform as a Service), 455

packet filters, 198

packets, 160

Padding field (IP), 53

PAM (Pluggable Authentication Module), 309

passive open connections, 97

passive RFID tags, 473

passwords

encryption, 210

intercepting, 210–211

protecting, 208

path component (URLs), 324

path MTU, 263

payment gateways, 375

peer-to-peer networking, 321, 364–365

persistent cookies, 397

personal computers

firewalls, 199

multihomed computers, 122–124

proliferation of, 7–8

PGP (Pretty Good Privacy), 427

phishing, 215–217, 426–427

PHP, 343, 371

physical addressing, 16, 37, 44

Physical layer (OSI model), 23

ping utility, 13, 116, 480

connectivity problems, troubleshooting, 269–271

output, 271

verifying name resolution, 189

platforms, IoT, 467–470

cloud-based, 469–470

Firebase, 468–469

HomeKit, 468

plug-ins, 345–346

podcasting, 442–443

point-to-point connections, 157–158

POP (point of presence) connections, 318

POP (Post Office Protocol), 112, 415

POP (Post Office Protocol version 3), 419–420
ports, 12–13, 16, 89
and firewalls, 102
well-known ports
TCP, 90–91
UDP, 91
PowerShell, 192
PPP (Point-to-Point Protocol), 36, 158–161
connection lifecycle, 161
frames, 160
LCP, 159
NCPs, 159
packets, 160
SLIP, 158
PPPoE (Point-to-Point Protocol over Ethernet), 146
Preamble field (ethernet), 40, 44
preconfigured static routes, 126
Presentation layer (OSI model), 23, 111
print servers, 112–113
printing
Lpr utility, 13
print servers, 112–113
privacy, encryption, 380
private clouds, 460–461
private key, 384
privileges, root access, 214–215
proliferation of personal computers, 7–8
proprietary technologies, 6, 16
protecting passwords, 208
Protocol field (IP), 53
protocol suites, 5
implementations, 5
protocol systems, 3
ARPAnet, 6
responsibilities of, 20
TCP/IP. See TCP/IP protocols
collectionless, 87
connection-oriented, 87, 88
network protocols, 4–5
provisioning, 458
proxy services, 203–204
pseudo-headers, 101, 106
PSH announcement, 96
public key, 384
publishing model, IoT, 472
put command, 302
pwd command, 301
Q
QoS (quality of service), 257, 432
quality assurance, 86
query component (URLs), 324–325
quit command, 302
R
r* utilities, 283–284
RARP (Reverse Address Resolution Protocol), 9, 37, 62–63, 67. See also ARP (Address Resolution Protocol)
RDF (Resource Description Framework), 348–349
RDN (relative distinguished name), 307
readers, RFID, 473
Recipient address field (ethernet), 40
redirectors, 114, 118, 304
registering domain names, 181
relay agents, 227–228
remote access, 114, 309–311
BSD Unix, 283–284
SSH, 284–285
Telnet, 280–282
VPNs, 391–393
resequencing, 93, 100, 106
Reserved field (TCP), 96
resource records, 183
DNSSEC, 187
responsibilities
of Network Access layer, 33
of protocol systems, 20
of TCP, 93
of Transport layer, 86
REST (Representational State Transfer), 371–374, 452
metadata, 372
requests, 372–373
URIs, 374
reverse lookup files, 185–186
reverse proxy, 204–205
rexec, 295
rfc-editor.org, 14
RFCs (Requests for Comments), 14, 17
RFID (Radio Frequency Identification), 472–474
active tags, 473
RIP (Routing Information Protocol), 135–136, 141
rmkdir command, 301
RMON (Remote Monitoring), 290–292
 versions of, 291
root access, 214–215
rootkits, 215
route utility, 116, 277–278
routers, 17, 122–124. See also routing
 core routers, 133
 exterior routers, 134
 BGP, 136–137
 higher-level access, 138–139
 Home Agent, 154
 link status lights, 274
 routing tables, 73
routing, 9–11, 124–125
 classless routing, 137–138
 direct routing, 128
 dynamic routing, 126
 distance-vector routing, 130–132
 indirect routing, 129
 IP forwarding, 127–128
 static routing, 125
 versus switching, 165–166
Routing header (IPv6), 252
routing loops, 64
routing protocols
 BGP, 136–137
 distance-vector routing, 130–132
 hop count, 130–131
 RIP, 135–136
 updates, 131–132
 link-state routing, 132–133
 OSPF, 136
routiing tables, 73, 126–128
 next-hop entry, 126
RPC (Remote Procedure Call), 92–93, 112
RST announcement, 96
RTCP (Real-Time Control Protocol), 436
RTMP (Real Time Messaging Protocol), streaming over TCP, 438–439
RTP (Real-Time Transport Protocol), 101, 435–438
 header fields, 436–437
RTSP (Real Time Streaming Protocol), 437
rules, firewall rules, 202–203
S
SaaS (software as a service), 451–453
 backup solutions, 452–453
 storage, 452
schema, 307, 368
scheme field (URLs), 323
script kiddies, 205
scripting, 341–344
 client-side scripting, 343–344
 server-side scripting, 342–343
SCTP (Stream Control Transmission Protocol), 101, 440
security
 802.11 networks, 153–154
 WEP, 153
 WPA2, 154
 attackers, 205–206
attacks
 application-level attacks, 213–214
 credential attacks, 207–212
 denial-of-service attacks, 217–218
 network-level attacks, 212–213
 phishing, 215–217
 best practices, 218–219
DNSSEC, 186–189
 resource records, 187
email, 422
 encryption, 380
 algorithm, 381–382
 asymmetric encryption, 384–385
 keys, 380–382
 symmetric encryption, 382–384
firewalls, 102, 197–199, 484
 Application layer firewalls, 199
 DMZ, 200–202
 options, 199–200
 packet filters, 198
 personal firewalls, 199
 proxy services, 203–204
 reverse proxy, 204–205
 rules, 202–203
 SOHO firewalls, 199
 stateful firewalls, 198–199
 UNIX/Linux systems, 200
Internet, 320
 IPsec, 390–391
security

Kerberos, 393–395
root access, 214–215
SSL, 388–390
TLS, 388–390
tracking, 395–404
anonymity networks, 403–404
cookies, 396–398
Do Not Track initiative, 402
tagged access, 295
VPNs, 391–393
web browsers, 346–347
segmenting, 480–481
segments, 25, 30
TCP, fields, 95–97
Semantic Web, 348
microformats, 349–350
RDF, 348–349
Sequence Number (32-bit) field, 95
servers, 97, 112
DNS servers, 176–177
virtual server systems, 454
WINS, 194
server-side scripting, 342–343
services
daemons, 299
e-mail, 298–299
FTP, 299–303
HTTP, 298
LDAP, 306–309
NFS, 304–305
remote control, 309–311
SMB, 305–306
TFTP, 303
web services, 365–367
e-commerce, 374–376
HTTP, 366
JSON, 367
REST, 371–374
SOAP, 369–370
stacks, 371
WSDL, 370–371
XML, 367, 368–369
session cookies, 397
session hijacking, 212
Session layer (OSI model), 23, 111
shortcomings of SNMP, 290
signatures, 486–487
SIP (Session Initiation Protocol), 444
SIP, 362
sliding windows, 99, 106
SLIP (Serial Line Internet Protocol), 158
SLP (Service Location Protocol), 235
smartphones, IoT solutions, 469
SMB (Server Message Block), 112, 305–306
SMTP (Simple Mail Transfer Protocol), 415, 416–418
client commands, 417
delivering email to mailbox, 417–418
Smurt attacks, 217–218
SNMP (Simple Network Management Protocol), 112, 286–290
commands, 289–290
communities, 286
management console, 286
MIB, 287–288
counters, 288
structure of, 288
nodes, 286
shortcomings of, 290
traps, 295
SOA (Start of Authority) records, 183, 184–185
SOAP (Simple Object Access Protocol), 367, 369–370
social networking, 361–362
sockets, 89–90, 106
Sockets API, 115, 118
software
implementations, 5
MediaWiki, 363
multimedia, 435
SOHO (small office/home office) firewalls, 199
Source address field (ethernet), 40
Source IP Address field (IP), 53
Source Port (16-bit) field, 95
Source Port field (UDP), 101
Source Quency messages, 63
spam, 423–426
blacklists, 424
graylists, 425–426
whitelists, 425
SPT (shortest path tree), 136, 141
SSDP (Simple Service Discovery Protocol), 235
SSH (Secure Shell), 102, 284–285
SSL (Secure Sockets Layer), 388–390
stacks, 20
TCP/IP. See also DHCP (Dynamic Host Configuration Protocol)

Stallings, William, 395
standards, 5, 23–24
OASIS, 470–471
standards organizations
IAB, 13
IANA, 13–14
ICANN, 9, 13
IETF, 13
IRTF, 13
stateful firewalls, 198–199
static IP addressing, 224–225
static routing, 125, 129, 141
status codes (HTTP), 340
status command, 302
storage, cloud-based, 452
store-and-forward switching, 169
streaming, 431–432
container files, 432, 433
DCCP, 440
coder devices, 433
HTTP, 434, 440–441
metadata, 435
QoS, 432
RTMP, 438–439
RTP, 435–438
SCTP, 440
software, 435
video file formats, 434–435
stream-oriented processing, 93, 106
structure of the Internet, 317–320
backbone, 318
IXPs, 319–320
Tier 1 networks, 318
Tier 2 networks, 318
Tier 3 networks, 318
sublayers of Data Link layer, 35
subnet masks, 71–79, 83
assigning, 73
dotted notation to binary pattern, 78–79
subnetonline.com, 262
subnetting, 50, 51, 55, 67, 69–70, 480–481
CIDR, 79–81
Class A addresses, 78
Class B addresses, 75, 78–79
Class C addresses, 75–77, 79
IPv6, 254–255
subnet masks, 71–79
subscriptions, IoT, 472
supernet masks, 83
switches, 163–164
link status lights, 274
symmetric encryption, 382–384
SYN flag, 96
tags
HTML, 332–336
RFID, 473
XML, 368
tasks of protocol systems, 20
TCP (Transmission Control Protocol), 26–27, 30, 92–94
announcements, 96
connections, 97–99
active open, 97
closing, 99
establishing, 98–99
flow control, 99
passive open, 97
data format, 95–97
quality assurance, 86
responsibilities, 93
well-known ports, 90–91
windows, 96
TCP/IP. See also DHCP (Dynamic Host Configuration Protocol)
Application layer, 21, 109–110
APIs, 115
file and print services, 112–113
messages, 25
name resolution services, 113
network services, 111–112
remote access, 114
utilities, 116
web services, 114
configuring, 223–224, 235–236
on Linux, 241–243
on MAC OS, 240–241
on Windows operating systems, 236–239
development of, 6–7
error control, 12
flow control, 12
headers, 24
Internet layer, 21, 45
ARP, 61–62
datagrams, 25
hosts, 49
ICMP, 63–64
IP addresses, 46
RARP, 62–63
layers, 21–22
logical addressing, 8–9
modular design of, 20
name resolution, 11
Network Access layer, 33–34
architectures, 36–37
eternet, 38–40
frames, 25
and OSI model, 34–35
physical addressing, 37
responsibilities, 33
networking, 25–27
ports, 12–13
RFCs, 14
routing, 9–11, 121–122
IP forwarding, 127–128
security
IPsec, 390–391
SSL, 388–390
TLS, 388–390
TCP, 26–27
Transport layer, 21, 85–87
ports, 89
responsibilities of, 86
segments, 25
TCP, 92–94
UDP, 99–100
UDP, 26–27, 30
Telnet, 280–282
TFTP (Trivial File Transfer Protocol), 303
tftp utility, 116
third-party cookies, 398–399
three-way handshake, 107
Tier 1 networks, 318
Tier 2 networks, 318
Tier 3 networks, 318
Time Exceeded messages, 63
time fields (DHCP), 228–229
TLDs (top-level domains), 177
TLS (Transport Layer Security), 388–390
topologies, . See architectures
TOR networks, 403–404
Total Length field (IP), 52
traceroute, 13, 116
traceroute utility, 276–277
tracking, 395–404
anonymity networks, 403–404
cookies, 396–398
managing, 399–400
persistent cookies, 398
session cookies, 397–398
third-party cookies, 398–399
Do Not Track initiative, 402
tracking pixels, 401
tracking scripts, 401
tracking tokens, 401–402
transmission speeds, for 802.11, 149
Transport layer (OSI model), 23
Transport layer (TCP/IP model), 21, 85–87
multiplexing/demultiplexing, 92
ports, 89
well-known TCP ports, 90–91
well-known UDP ports, 91
responsibilities of, 86
segments, 25
sockets, 89–90
TCP, 92–94
announcements, 96
data format, 95–97
responsibilities, 93
windows, 96
UDP, 99–100
broadcasts, 100
transport mode (IPsec), 391
traps, 295
Trojan horses, 208–209
troubleshooting
connectivity problems, 268–274
ARP, 272–274
configuration information utilities, 271–272
ping utility, 269–271
line problems, 274
name resolution, 274–275
network performance, 275–280
netstat utility, 279–280
route utility, 277–278
traceroute utility, 276–277
trusted access, 295
TSP (Tunnel Setup Protocol), 261
TTL (Time To Live) field, 53
tunnel mode (IPsec), 391
tunnels, IPv6, 258–261
6in4 tunneling, 260
6to4 tunneling, 260
TSP, 261
type command, 302
Type of Service field (IP), 52
WINS (Windows Internet Naming Service) servers

U

UDP (User Datagram Protocol), 26–27, 30, 99–100
broadcasts, 100
header fields, 100–101
quality assurance, 86–87
RTP, 435–438
well-known ports, 91
UNIX, 478
BSD Unix, 283–284
daemons, 299
firewalls, 200
ifconfig command, 271–272
updates, distance-vector routing, 131–132
uPnP (Universal Plug and Play), 235
URG announcement, 96
Urgent Pointer, 96
URIs (Uniform Resource Identifiers), 323, 374
URLs (Uniform Resource Locators), 308–309, 323–325, 331–332, 452
authority field, 323–324
fragment section, 325
path component, 324
query component, 324–325
scheme field, 323
utilities, 116
Apple Remote Desktop, 310
BSD Unix, 283–284
Dig, 191–192
NSlookup, 190–191
ping utility, 189
PowerShell, 192
TCP/IP, 13
Uuencode utility, 412

V

VBScript, 343
verifying name resolution
with Dig utility, 191–192
with NSlookup utility, 190–191
with ping, 189
Version field (IP), 52
versions of RMON, 291
video streaming, common file formats, 434–435
virtualization, 456–457
drivers for adoption, 456–457
laaS, 453–455
orchestration, 458
provisioning, 458
vendors, 456
viruses, 422
VMs (virtual machines), 458
VNC (Virtual Network Computing), 310
VoIP (Voice over IP), 443–445
H.323 protocol, 444
SIP, 444
VPNs (virtual private networks), 391–393, 486–487

W

WANs (wide-area networks), 146–147
web beacon, 401
web browsers, 344–347
well-known ports, 107
TCP, 90–91
UDP, 91
WEP (Wired Equivalent Privacy), 153
WEP2, 154
whitelists, 425
Wikipedia, 363
wikis, 363–364
windows (TCP), 96
sliding windows, 99
Windows operating systems, TCP/IP, configuring, 236–239
WINS (Windows Internet Naming Service) servers, 194

web servers, CMS, 360–361
web services, 114, 365–367, 484–486
e-commerce, 374–376
HTTP, 366
JSON, 367
REST, 371–374
requests, 372–373
URIs, 374
SOAP, 369–370
stacks, 371
WSDL, 370–371
XML, 367, 368–369
web transactions, 375
webmail, 422–423
websites, 331
RESTful, 374
rfc-editor.org, 14
Slashdot.org, 362
subnetonline.com, 262
wikis, 363–364
well-known ports, 107
TCP, 90–91
UDP, 91
WEP (Wired Equivalent Privacy), 153
WEP2, 154
whitelists, 425
Wikipedia, 363
wikis, 363–364
windows (TCP), 96
sliding windows, 99
Windows operating systems, TCP/IP, configuring, 236–239
WINS (Windows Internet Naming Service) servers, 194
wireless networks, 148
802.11 networks, 148–154
address types, 151–152
IBSS, 149
infrastructure BSS, 149–151
security, 153–154
transmission speeds, 149
access points, association, 152
Bluetooth, 155–156
IoT, 465–467
Mobile IP, 154–155
workshops
chapter 1, 15–16
chapter 2, 28–29
chapter 3, 42–43
chapter 4, 65–66
chapter 5, 82–83
chapter 6, 104–105
chapter 7, 117
chapter 8, 140
chapter 9, 167–168
chapter 10, 195–196
chapter 11, 220
chapter 12, 244–245
chapter 13, 262–263
chapter 14, 293–294
chapter 15, 311–312
chapter 16, 326
chapter 17, 356–357
chapter 18, 377–378
chapter 19, 405–406
chapter 20, 427–428
chapter 21, 446
chapter 22, 462–463
chapter 23, 474–475
chapter 24, 488
worms, 422
WPA2 (Wi-Fi Protected Access II), 154
WSDL (Web Services Description Language), 370–371
WWW (World Wide Web)
browsers, 337, 344–347
plug-ins, 345–346
security, 346–347
CSS, 337–338
FTP, 299
HTML, 332–337
links, 337
tags, 332–336
HTML5, 351–355
drawing, 353–354
embedded audio and video, 354
geolocation, 354
local storage, 351–353
offline application support, 351–353
semantics, 355
HTTP, 338–341
header fields, 340
status codes, 340
scripting, 341–344
client-side scripting, 343–344
server-side scripting, 342–343
Semantic Web, 348
microformats, 349–350
RDF, 348–349
XHTML, 350
WYSIWYG editing, 360
X
X.509 standard, 388
XHTML, 350
XML (Extensible Markup Language), 367, 368–369, 452
AJAX, 344
schema, 368
tags, 368
Z
Zeroconf system, 61, 232–235
zones, 182–186
DNSSEC, 186–189
resource records, 183
reverse lookup files, 185–186
SOA records, 184–185