SamsTeach Yourself

SQL

in 24 Hours

SIXTH EDITION

800 East 96th Street, Indianapolis, Indiana, 46240 USA
Contents at a Glance

Part I: An SQL Concepts Overview

HOUR 1 Welcome to the World of SQL ... 1

Part II: Building Your Database

HOUR 2 Defining Data Structures ... 19
 3 Managing Database Objects ... 33
 4 The Normalization Process ... 55
 5 Manipulating Data ... 67
 6 Managing Database Transactions ... 81

Part III: Getting Effective Results from Queries

HOUR 7 Introduction to Database Queries .. 93
 8 Using Operators to Categorize Data .. 109
 9 Summarizing Data Results from a Query ... 133
 10 Sorting and Grouping Data ... 145
 11 Restructuring the Appearance of Data .. 159
 12 Understanding Dates and Times .. 181

Part IV: Building Sophisticated Database Queries

HOUR 13 Joining Tables in Queries ... 197
 14 Using Subqueries to Define Unknown Data 213
 15 Combining Multiple Queries into One .. 229

Part V: SQL Performance Tuning

HOUR 16 Using Indexes to Improve Performance 243
 17 Improving Database Performance ... 253
Part VI: Using SQL to Manage Users and Security

HOUR 18 Managing Database Users .. 269

19 Managing Database Security .. 283

Part VII: Summarized Data Structures

HOUR 20 Creating and Using Views and Synonyms 297

21 Working with the System Catalog .. 313

Part VIII: Applying SQL Fundamentals in Today’s World

HOUR 22 Advanced SQL Topics ... 323

23 Extending SQL to the Enterprise, the Internet, and the Intranet 337

24 Extensions to Standard SQL .. 347

Part IX: Appendixes

APPENDIX A Common SQL Commands .. 357

B Installing Oracle and Microsoft SQL .. 363

C Answers to Quizzes and Exercises ... 369

D Bonus Exercises .. 411

E Glossary ... 425

Index .. 429
Table of Contents

Part I: An SQL Concepts Overview

HOUR 1: Welcome to the World of SQL .. 1
 SQL Definition and History ... 1
 SQL Sessions ... 8
 Types of SQL Commands .. 8
 Canary Airlines: The Database Used in This Book 11
 Summary ... 15
 Q&A ... 16
 Workshop .. 16

Part II: Building Your Database

HOUR 2: Defining Data Structures ... 19
 What Is Data? .. 19
 Basic Data Types ... 20
 Summary ... 28
 Q&A ... 29
 Workshop .. 29

HOUR 3: Managing Database Objects ... 33
 Database Objects and Schema .. 33
 Tables: The Primary Storage for Data ... 35
 Integrity Constraints .. 44
 Summary ... 49
 Q&A ... 50
 Workshop .. 50
HOUR 8: Using Operators to Categorize Data ... 109
What Is an Operator in SQL? ... 109
Comparison Operators ... 110
Logical Operators ... 113
Conjunctive Operators ... 120
Negative Operators ... 123
Arithmetic Operators ... 128
Summary .. 130
Q&A ... 131
Workshop .. 131

HOUR 9: Summarizing Data Results from a Query 133
Aggregate Functions ... 133
Summary .. 141
Q&A ... 142
Workshop .. 142

HOUR 10: Sorting and Grouping Data .. 145
Why Group Data? .. 145
The GROUP BY Clause .. 146
GROUP BY Versus ORDER BY ... 150
CUBE and ROLLUP Expressions .. 153
The HAVING Clause .. 155
Summary .. 156
Q&A ... 157
Workshop .. 157

HOUR 11: Restructuring the Appearance of Data 159
ANSI Character Functions ... 159
Common Character Functions ... 160
Miscellaneous Character Functions ... 169
Mathematical Functions ... 172
Conversion Functions .. 173
Combining Character Functions ... 176
Summary ... 177
Q&A ... 177
Workshop .. 178

HOUR 12: Understanding Dates and Times 181
How Is a Date Stored? ... 181
Date Functions ... 183
Date Conversions ... 188
Summary ... 193
Q&A ... 194
Workshop .. 194

Part IV: Building Sophisticated Database Queries

HOUR 13: Joining Tables in Queries 197
Selecting Data from Multiple Tables 197
Understanding Joins .. 198
Join Considerations ... 207
Summary ... 210
Q&A ... 210
Workshop .. 211

HOUR 14: Using Subqueries to Define Unknown Data 213
What Is a Subquery? ... 213
Embedded Subqueries .. 219
Correlated Subqueries .. 223
Subquery Performance ... 225
Summary ... 225
Q&A ... 226
Workshop .. 226

HOUR 15: Combining Multiple Queries into One 229
Single Queries Versus Compound Queries 229
Compound Query Operators 230
Using ORDER BY with a Compound Query 235
Using GROUP BY with a Compound Query 237
Part V: SQL Performance Tuning

HOUR 16: Using Indexes to Improve Performance

- **What Is an Index?** [243]
- **How Do Indexes Work?** [244]
- **The CREATE INDEX Command** [245]
- **Types of Indexes** [245]
- **When Should Indexes Be Considered?** [248]
- **When Should Indexes Be Avoided?** [248]
- **Altering an Index** [250]
- **Dropping an Index** [250]
- **Summary** [251]
- **Q&A** [251]
- **Workshop** [252]

HOUR 17: Improving Database Performance

- **What Is SQL Statement Tuning?** [253]
- **Database Tuning Versus SQL Statement Tuning** [254]
- **Formatting Your SQL Statement** [254]
- **Full Table Scans** [260]
- **Other Performance Considerations** [261]
- **Cost-Based Optimization** [264]
- **Summary** [266]
- **Q&A** [266]
- **Workshop** [266]

Part VI: Using SQL to Manage Users and Security

HOUR 18: Managing Database Users

- **User Management in the Database** [269]
- **The Management Process** [272]
Tools Utilized by Database Users ... 279
Summary ... 279
Q&A ... 280
Workshop .. 280

HOUR 19: Managing Database Security .. 283
What Is Database Security? .. 283
What Are Privileges? .. 284
Controlling User Access .. 287
Controlling Privileges Through Roles 291
Summary ... 293
Q&A ... 293
Workshop .. 294

Part VII: Summarized Data Structures

HOUR 20: Creating and Using Views and Synonyms 297
What Is a View? .. 297
Creating Views ... 300
Updating Data Through a View .. 307
Dropping a View .. 307
Performance Impact of Nested Views 308
What Is a Synonym? .. 308
Summary ... 310
Q&A ... 310
Workshop .. 311

HOUR 21: Working with the System Catalog 313
What Is the System Catalog? .. 313
How Is the System Catalog Created? 314
What Is Contained in the System Catalog? 315
System Catalog Tables by Implementation 316
Querying the System Catalog .. 317
Updating System Catalog Objects 320
Part VIII: Applying SQL Fundamentals in Today's World

HOUR 22: Advanced SQL Topics

- Cursors .. 323
- Stored Procedures and Functions 326
- Triggers .. 329
- Dynamic SQL .. 331
- Call-Level Interface ... 331
- Using SQL to Generate SQL 332
- Direct Versus Embedded SQL 333
- Windowed Table Functions 333
- Working with XML ... 334
- Summary ... 335
- Q&A ... 335
- Workshop .. 336

HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

- SQL and the Enterprise 337
- Accessing a Remote Database 339
- SQL and the Internet .. 342
- SQL and the Intranet .. 343
- Summary ... 344
- Q&A ... 344
- Workshop .. 344

HOUR 24: Extensions to Standard SQL

- Various Implementations 347
- Example Extensions .. 350
- Interactive SQL Statements 353
- Summary ... 354
- Q&A ... 354
- Workshop .. 355
Part IX: Appendixes

APPENDIX A: Common SQL Commands .. 357
 SQL Statements ... 357
 SQL Clauses .. 360

APPENDIX B: Installing Oracle and Microsoft SQL 363
 Windows Installation Instructions for Oracle 363
 Windows Installation Instructions for Microsoft SQL Server 365

APPENDIX C: Answers to Quizzes and Exercises 369
 Hour 1, “Welcome to the World of SQL” 369
 Hour 2, “Defining Data Structures” 371
 Hour 3, “Managing Database Objects” 373
 Hour 4, “The Normalization Process” 374
 Hour 5, “Manipulating Data” 376
 Hour 6, “Managing Database Transactions” 379
 Hour 7, “Introduction to the Database Queries” 380
 Hour 8, “Using Operators to Categorize Data” 383
 Hour 9, “Summarizing Data Results from a Query” 386
 Hour 10, “Sorting and Grouping Data” 388
 Hour 11, “Restructuring the Appearance of Data” 390
 Hour 12, “Understanding Dates and Times” 391
 Hour 13, “Joining Tables in Queries” 392
 Hour 14, “Using Subqueries to Define Unknown Data” 394
 Hour 15, “Combining Multiple Queries into One” 396
 Hour 16, “Using Indexes to Improve Performance” 397
 Hour 17, “Improving Database Performance” 399
 Hour 18, “Managing Database Users” 403
 Hour 19, “Managing Database Security” 404
 Hour 20, “Creating and Using Views and Synonyms” 404
 Hour 21, “Working with the System Catalog” 406
 Hour 22, “Advanced SQL Topics” 407
 Hour 23, “Extending SQL to the Enterprise, the Internet, and the Intranet” 408
Hour 24, “Extensions to Standard SQL” 409

APPENDIX D: Bonus Exercises ... 411

APPENDIX E: Glossary ... 425

Index ... 429
About the Authors

For more than 20 years each, the authors have studied, applied, and documented the SQL standard and its application to critical database systems in this book. The authors are experts in data management, specializing in Oracle, Microsoft, and other leading technologies.

Ryan Stephens is the co-founder and CEO of Perpetual Technologies, Inc. and Indy Data Partners in Indianapolis. Ryan has studied and consulted in the IT field for more than 20 years, specializing in data management, SQL, and Oracle. Ryan authored and taught database and SQL classes for Indiana University-Purdue University in Indianapolis for 5 years, and was a programmer analyst for the Indiana Army National Guard for 12 years. Ryan has written a variety of database and SQL books for Sams Publishing.

Arie D. Jones is the Vice President for Emerging Technologies for Indy Data Partners, Inc. (IDP) in Indianapolis. Arie leads IDP’s team of experts in planning, design, development, deployment, and management of database environments and applications to achieve the best combination of tools and services for each client. He is a regular speaker at technical events and has authored several books and articles pertaining to database-related topics.

Ronald Plew is retired as co-founder and vice president of Perpetual Technologies, Inc. Ron studied and consulted in the field of relational database technology for more than 20 years and has co-authored several books for Sams Publishing. Ron taught SQL and database classes for Indiana University-Purdue University in Indianapolis for 5 years. He is a retired programmer analyst from the Indiana Army National Guard.
Dedication

This book is dedicated to my strong and driven wife, Jill, and to my three children by whom I’m equally smitten and amazed—Daniel, Autumn, and Alivia.

—Ryan

I would like to dedicate this book to my wife, Jackie, for being understanding and supportive during the long hours that it took to complete this book.

—Arie
Acknowledgments

Thank you to all who have been supportive and patient during the writing of the six editions of this book. This includes, but is probably not limited to, our family, friends, employees, partners, and random people in public who might sense our preoccupied minds. Thank you especially to Ron Plew, my original co-author of this book and business partner. Neither the first edition of this book, nor our company, would exist without your contributions; and to Arie Jones for spearheading this edition and taking on the bulk of the work, while providing leadership during the day at Indy Data Partners. Thanks also to Marshall Pyle and Jacinda Simmerman for technical edits and your perspectives to improve the quality of this text for our readers. And as always, thanks to the staff at Sams Publishing for your attention to detail and patience. It is always a pleasure working with you.

—Ryan
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the authors and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Register your copy of *Sams Teach Yourself SQL in 24 Hours, Sixth Edition*, at informit.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account*. Enter the product ISBN, 9780672337598, and click Submit. Once the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive exclusive discounts on future editions of this product.
This page intentionally left blank
In this hour, you learn about SQL’s aggregate functions. You can perform a variety of useful functions with aggregate functions, such as getting the highest total of a sale or counting the number of orders processed on a given day. The real power of aggregate functions will be discussed in the next hour when you tackle the GROUP BY clause.

Aggregate Functions

Functions are keywords in SQL used to manipulate values within columns for output purposes. A *function* is a command normally used with a column name or expression that processes the incoming data to produce a result. SQL contains several types of functions. This hour covers aggregate functions. An *aggregate function* provides summarization information for a SQL statement, such as counts, totals, and averages.

The basic set of aggregate functions discussed in this hour are

- **COUNT**
- **SUM**
- **MAX**
- **MIN**
- **AVG**
The following query lists the employee information from the EMPLOYEES table. Note that some of the employees do not have data assigned in some of the columns. We use this data for most of this hour’s examples.

```
SELECT TOP 10 EMPLOYEEID, LASTNAME, CITY, STATE, PAYRATE, SALARY
FROM EMPLOYEES;
```

<table>
<thead>
<tr>
<th>EMPLOYEEID</th>
<th>LASTNAME</th>
<th>CITY</th>
<th>STATE</th>
<th>PAYRATE</th>
<th>SALARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Iner</td>
<td>Red Dog</td>
<td>NULL</td>
<td></td>
<td>54000.00</td>
</tr>
<tr>
<td>2</td>
<td>Denty</td>
<td>Errol</td>
<td>NH</td>
<td>22.24</td>
<td>NULL</td>
</tr>
<tr>
<td>3</td>
<td>Sabbah</td>
<td>Errol</td>
<td>NH</td>
<td>15.29</td>
<td>NULL</td>
</tr>
<tr>
<td>4</td>
<td>Loock</td>
<td>Errol</td>
<td>NH</td>
<td>12.88</td>
<td>NULL</td>
</tr>
<tr>
<td>5</td>
<td>Sacks</td>
<td>Errol</td>
<td>NH</td>
<td>23.61</td>
<td>NULL</td>
</tr>
<tr>
<td>6</td>
<td>Arcoraci</td>
<td>Alexandria</td>
<td>LA</td>
<td>24.79</td>
<td>NULL</td>
</tr>
<tr>
<td>7</td>
<td>Astin</td>
<td>Espanola</td>
<td>NM</td>
<td>18.03</td>
<td>NULL</td>
</tr>
<tr>
<td>8</td>
<td>Contreraz</td>
<td>Espanola</td>
<td>NM</td>
<td>NULL</td>
<td>60000.00</td>
</tr>
<tr>
<td>9</td>
<td>Capito</td>
<td>Espanola</td>
<td>NM</td>
<td>NULL</td>
<td>52000.00</td>
</tr>
<tr>
<td>10</td>
<td>Ellamar</td>
<td>Espanola</td>
<td>NM</td>
<td>15.64</td>
<td>NULL</td>
</tr>
</tbody>
</table>

(10 row(s) affected)

COUNT

You use the `COUNT` function to count rows or values of a column that do not contain a `NULL` value. When used within a query, the `COUNT` function returns a numeric value. You can also use the `COUNT` function with the `DISTINCT` command to only count the distinct rows of a dataset. `ALL` (opposite of `DISTINCT`) is the default; it is not necessary to include `ALL` in the syntax. Duplicate rows are counted if `DISTINCT` is not specified. One other option with the `COUNT` function is to use it with an asterisk. `COUNT(*)` counts all the rows of a table including duplicates, regardless of whether a `NULL` value is contained in a column.

NOTE

DISTINCT Can Be Used Only in Certain Circumstances

You cannot use the `DISTINCT` command with `COUNT(*)`, only with `COUNT(column_name)`.

The syntax for the `COUNT` function follows:

```
COUNT [ (*) | (DISTINCT | ALL) ] (COLUMN NAME)
```

This example counts all employee IDs:

```
SELECT COUNT(EMPLOYEEID) FROM EMPLOYEES
```
This example counts only the distinct rows:

```
SELECT COUNT(DISTINCT SALARY) FROM EMPLOYEES
```

This example counts all rows for SALARY:

```
SELECT COUNT(ALL SALARY) FROM EMPLOYEES
```

This final example counts all rows of the EMPLOYEES table:

```
SELECT COUNT(*) FROM EMPLOYEES
```

COUNT(*) is used in the following example to get a count of all records in the EMPLOYEES table. There are 5,611 employees.

```
SELECT COUNT(*)
FROM EMPLOYEES;
------------
5611
```

(1 row(s) affected)

CAUTION

COUNT(*) Is Different from Other Count Variations

COUNT(*) produces slightly different calculations than other count variations. This is because when the COUNT function is used with the asterisk, it counts the rows in the returned result set without regard to duplicates and NULL values. This is an important distinction. If you need your query to return a count of a particular field and include NULLs, you need to use a function such as ISNULL to replace the NULL values.

```
SELECT COUNT(EMPLOYEEID)
FROM EMPLOYEES;
------------
5611
```

(1 row(s) affected)

COUNT(EMPLOYEEID) is used in the next example to get a count of all the employee identification IDs that exist in the table. The returned count is the same as the last query because all employees have an identification number.

```
SELECT COUNT(EMPLOYEEID)
FROM EMPLOYEES;
------------
5611
```

(1 row(s) affected)

COUNT([STATE]) is used in the following example to get a count of all the employee records that have a state assigned. Look at the difference between the two counts. The difference is the number of employees who have NULL in the STATE column.
SELECT COUNT([STATE])
FROM EMPLOYEES;

5147
Warning: Null value is eliminated by an aggregate or other SET operation.
(1 row(s) affected)

The following examples obtain a count of all salary amounts and then all the distinct salary amounts in the EMPLOYEES table.

SELECT COUNT(SALARY)
FROM EMPLOYEES;

1359
Warning: Null value is eliminated by an aggregate or other SET operation.
(1 row(s) affected)

SELECT COUNT(DISTINCT SALARY)
FROM EMPLOYEES;

45
Warning: Null value is eliminated by an aggregate or other SET operation.
(1 row(s) affected)

The SALARY column had a lot of matching amounts, so the DISTINCT values make the counts drop dramatically.

NOTE

Data Types Do Not Use COUNT
Because the COUNT function counts the rows, data types do not play a part. The rows can contain columns with any data type. The only thing that actually counts is whether the value is NULL.

SUM

The SUM function returns a total on the values of a column for a group of rows. You can also use the SUM function with DISTINCT. When you use SUM with DISTINCT, only the distinct rows are totaled, which might not have much purpose. Your total is not accurate in that case because rows of data are omitted.

The syntax for the SUM function follows:

SUM ([DISTINCT] COLUMN NAME)
CAUTION

SUM Must Be Numeric

The value of an argument must be numeric to use the **SUM** function. You cannot use the **SUM** function on columns that have a data type other than numeric, such as character or date.

This example totals the salaries:

```sql
SELECT SUM(SALARY) FROM EMPLOYEES
```

This example totals the distinct salaries:

```sql
SELECT SUM(DISTINCT SALARY) FROM EMPLOYEES
```

In the following query, the sum, or total amount, of all salary values is retrieved from the EMPLOYEES table:

```sql
SELECT SUM(SALARY) FROM EMPLOYEES;
```

```
70791000.00
Warning: Null value is eliminated by an aggregate or other SET operation.
```

(1 row(s) affected)

Observe the way the **DISTINCT** command in the following example skews the previous results by 68 million dollars. This is why it is rarely useful.

```sql
SELECT SUM(DISTINCT COST) FROM EMPLOYEES;
```

```
2340000.00
Warning: Null value is eliminated by an aggregate or other SET operation.
```

(1 row(s) affected)

The following query demonstrates that although some aggregate functions require numeric data, this is only limited to the type of data. Here the **ZIP** column of the EMPLOYEES table shows that the implicit conversion of the **VARCHAR** data to a numeric type is supported in Oracle:

```sql
SELECT SUM(ZIP) FROM EMPLOYEES;
```

```
280891448
```
Some aggregate functions require numeric data; this is only limited to the type of data. If the data can be converted implicitly, for example, the string '12345' to an integer, then you can use the aggregate function. When you use a type of data that cannot be implicitly converted to a numeric type, such as the POSITION column, it results in an error, as in the following example:

```
SELECT SUM(POSITION)
FROM EMPLOYEES;
Msg 8117, Level 16, State 1, Line 1
Operand data type varchar is invalid for sum operator.
```

AVG

The AVG function finds the average value for a given group of rows. When used with the DISTINCT command, the AVG function returns the average of the distinct rows. The syntax for the AVG function follows:

```
AVG ([ DISTINCT ] COLUMN NAME)
```

NOTE

AVG Must Be Numeric

The value of the argument must be numeric for the AVG function to work.

The average value for all values in the EMPLOYEES table’s SALARY column is retrieved in the following example:

```
SELECT AVG(SALARY)
FROM EMPLOYEES;
-------------------------------
52090.507726
Warning: Null value is eliminated by an aggregate or other SET operation.
(1 row(s) affected)
```

This example returns the distinct average salary:

```
SELECT AVG(DISTINCT SALARY)
FROM EMPLOYEES;
-------------------------------
52000.000000
Warning: Null value is eliminated by an aggregate or other SET operation.
(1 row(s) affected)
```
Sometimes Your Data Is Truncated

In some implementations, the results of your query might be truncated to the precision of the data type. You need to review your database system’s documentation to ensure you understand what the normal precision for the various data types is. This will prevent you from unnecessarily truncating data and possibly getting an unexpected result due to the data not being of the proper precision.

The next example uses two aggregate functions in the same query. Because some employees are paid hourly and others are on salary, you want to retrieve the average value for both PAYRATE and SALARY.

```sql
SELECT AVG(PAYRATE) AS AVG_PAYRATE, AVG(SALARY) AS AVG_SALARY
FROM EMPLOYEES;
```

<table>
<thead>
<tr>
<th>AVG_PAYRATE</th>
<th>AVG_SALARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.473012</td>
<td>52090.507726</td>
</tr>
</tbody>
</table>

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

Notice how the use of aliases makes the output more readable with multiple aggregate values. Also remember that the aggregate function can work on any numeric data. So you can perform calculations within the parentheses of the function as well. So if you need to get the average hourly rate of salaried employees to compare to the average rate of hourly employees, you could write the following:

```sql
SELECT AVG(PAYRATE) AS AVG_PAYRATE, AVG(SALARY/2040) AS AVG_SALARY_RATE
FROM EMPLOYEES;
```

<table>
<thead>
<tr>
<th>AVG_PAYRATE</th>
<th>AVG_SALARY_RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.473012</td>
<td>25.5345625</td>
</tr>
</tbody>
</table>

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

MAX

The MAX function returns the maximum value from the values of a column in a group of rows. NULL values are ignored when using the MAX function. Using MAX with the DISTINCT command is an option. However, because the maximum value for all the rows is the same as the distinct maximum value, DISTINCT is useless.

The syntax for the MAX function is

```
MAX([ DISTINCT ] COLUMN NAME)
```
The following example returns the highest \texttt{SALARY} in the \texttt{EMPLOYEES} table:

\begin{verbatim}
SELECT MAX(SALARY)
FROM EMPLOYEES;
\end{verbatim}

\verbatim
74000.00
\end{verbatim}

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

This example returns the highest distinct salary:

\begin{verbatim}
SELECT MAX(DISTINCT SALARY)
FROM EMPLOYEES;
\end{verbatim}

\verbatim
74000.00
\end{verbatim}

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

You can also use aggregate functions such as \texttt{MAX} and \texttt{MIN} (covered in the next section) on character data. In the case of these values, collation of your database comes into play again. Most commonly your database collation is set to a dictionary order, so the results are ranked according to that. For example, say you perform a \texttt{MAX} on the \texttt{CITY} column of the employees table:

\begin{verbatim}
SELECT MAX(CITY) AS MAX_CITY
FROM EMPLOYEES;
\end{verbatim}

\verbatim
MAX_CITY
Zwara
\end{verbatim}

(1 row(s) affected)

In this instance, the function returned the largest value according to a dictionary ordering of the data in the column.

\textbf{MIN}

The \texttt{MIN} function returns the minimum value of a column for a group of rows. \texttt{NULL} values are ignored when using the \texttt{MIN} function. Using \texttt{MIN} with the \texttt{DISTINCT} command is an option. However, because the minimum value for all rows is the same as the minimum value for distinct rows, \texttt{DISTINCT} is useless.

The syntax for the \texttt{MIN} function is

\begin{verbatim}
MIN([DISTINCT] COLUMN NAME)
\end{verbatim}
The following example returns the lowest \texttt{SALARY} in the \texttt{EMPLOYEES} table:

\begin{verbatim}
SELECT MIN(SALARY)
FROM EMPLOYEES;
\end{verbatim}

\begin{verbatim}
30000.00
\end{verbatim}

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

This example returns the lowest distinct salary:

\begin{verbatim}
SELECT MIN(DISTINCT SALARY)
FROM EMPLOYEES;
\end{verbatim}

\begin{verbatim}
30000.00
\end{verbatim}

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

\section*{NOTE}

\textbf{DISTINCT and Aggregate Functions Don't Always Mix}

One important thing to keep in mind when using aggregate functions with the \texttt{DISTINCT} command is that your query might not return the wanted results. The purpose of aggregate functions is to return summarized data based on all rows of data in a table. When \texttt{DISTINCT} is used it is applied first to the results and then those results are passed on to the aggregate function, which can dramatically alter the results. You need to ensure that when you work with \texttt{DISTINCT} with aggregate functions that you understand this.

As with the \texttt{MAX} function, the \texttt{MIN} function can work against character data and returns the minimum value according to the dictionary ordering of the data.

\begin{verbatim}
SELECT MIN(CITY) AS MIN_CITY
FROM EMPLOYEES;
\end{verbatim}

\begin{verbatim}
AFB MunicipalCharleston SC
\end{verbatim}

(1 row(s) affected)

\section*{Summary}

Aggregate functions can be useful and are quite simple to use. In this hour you learned how to count values in columns, count rows of data in a table, get the maximum and minimum values
for a column, figure the sum of the values in a column, and figure the average value for values in a column. Remember that NULL values are not considered when using aggregate functions, except when using the COUNT function in the format COUNT (*).

Aggregate functions are the first functions in SQL that you have learned in this book, but more follow in the coming hours. You can also use aggregate functions for group values, which are discussed during the next hour. As you learn about other functions, you see that the syntaxes of most functions are similar to one another and that their concepts of use are relatively easy to understand.

Q&A

Q. Why are NULL values ignored when using the MAX or MIN function?
A. A NULL value means that nothing is there, so there would be no maximum or minimum value.

Q. Why don’t data types matter when using the COUNT function?
A. The COUNT function counts only rows.

Q. Does the data type matter when using the SUM or AVG function?
A. Not exactly. If the data can be implicitly converted to numeric data, then it will still work. It’s less a function of what the data type is and more about what data is stored in it.

Q. Are you limited to using only column names inside of aggregate functions?
A. No, you can use any type of calculation or formula as long as the output corresponds to the proper type of data that the function is expecting to use.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz questions are designed to test your overall understanding of the current material. The practical exercises are intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz questions and exercises before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,” for answers.
Quiz

1. True or false: The `AVG` function returns an average of all rows from a `SELECT` column, including any `NULL` values.

2. True or false: The `SUM` function adds column totals.

3. True or false: The `COUNT(*)` function counts all rows in a table.

4. True or false: The `COUNT([column name])` function counts `NULL` values.

5. Will the following `SELECT` statements work? If not, what fixes the statements?
 a. `SELECT COUNT * FROM EMPLOYEES;`
 b. `SELECT COUNT(EMPLOYEEID), SALARY FROM EMPLOYEES;`
 c. `SELECT MIN(PAYRATE), MAX(SALARY) FROM EMPLOYEES WHERE SALARY > 50000;`
 d. `SELECT COUNT(DISTINCT EMPLOYEEID) FROM EMPLOYEES;`
 e. `SELECT AVG(LASTNAME) FROM EMPLOYEES;`
 f. `SELECT AVG(CAST(ZIP AS INT)) FROM EMPLOYEES;`

Exercises

1. Use the `EMPLOYEES` table to construct SQL statements to solve the following exercises:
 a. What is the average salary?
 b. What is the maximum pay rate for hourly employees?
 c. What are the total salaries?
 d. What is the minimum pay rate?
 e. How many rows are in the table?

2. Write a query to determine how many employees are in the company whose last names begin with a `G`.

3. Write a query to determine the minimum and maximum salary and pay rates per city for employees.

4. Write two sets of queries to find the first employee name and last employee name when they are listed in alphabetical order.

5. Write a query to perform an `AVG` function on the employee names. Does the statement work? Determine why it is that you got that result.

6. Write a query to display the average value of employees’ salaries that takes `NULL` values into account. Hint: You won’t be using the `AVG` function.
Index

A
accessing remote databases, 339-340
ALTER USER, 285
ALTER VIEW, 300
altering
indexes, 250
users, 277-278
American National Standards Institute (ANSI), 2, 159
AND, 120-121
ANSI (American National Standards Institute), 2, 159
ANSI SQL, 2, 349
ANSI standard, SELECT, 348
ANY, 118-120
arguments, 94
arithmetic operators, 128
addition, 128
combinations, 130
division, 129
multiplication, 129
subtraction, 128-129
arranging tables, FROM clause, 257
aggregate functions, 133-134, 334
AVG, 138-139
COUNT, 134-136
creating groups and, 147-150
DISTINCT, 141
MAX, 139-140
MIN, 140-141
SUM, 136-138
aliases, table aliases, 200
ALL, 118-120
ALTER ANY TABLE, 285
ALTER DATABASE, 285
ALTER TABLE, 39, 47, 357

B
back-end applications, 337-338
BACKUP ANY TABLE, 285
BACKUP DATABASE, 285
base tables, joins, 207-208
basic data types, 20-21
BOOLEAN values, 26-27
date and time data types, 24-25
decimal types, 23-24
domains, 28
fixed-length strings, 21
floating-point decimals, 24
integers, 24
large object types, 22
literal strings, 25-26
NULL data types, 26
numeric types, 22-23
user-defined data types, 27
varying-length strings, 21-22
batch loads, disabling indexes during, 264
benefits of normalization, 62-63
BETWEEN, 115
BLOB, 22
bonus exercises, 411-423
BOOLEAN values, 26-27
call-level interface (CLI), 331-332
Canary Airlines, 11-12
cardinality, columns, 250
Cartesian product, joins, 208-210
CASCADE, 289, 305
case-sensitivity, 101-102
data, 68
CAST operator, 188
character functions, 159-160
ASCII function, 172
COALESCE, 170-171
combining, 176-177
CONCAT, 160-162
ISNULL, 169-170
LENGTH, 169
LOWER, 163-164
LPAD, 171
LTRIM, 167-168
REPLACE, 166
RPAD, 171-172
RTRIM, 168
SUBSTR, 164-165
TRANSLATE, 165-166
UPPER, 162-163
character strings
converting dates to, 191-192
converting numbers to, 175-176
converting to dates, 192-193
converting to numbers, 173-174
check constraints, 48-49
CLI (call-level interface), 331-332
client/server model, 5-6
closing cursors, 326
COALESCE, 170-171
Codd, Dr. E.F., 2
coding standards, 257
collation, 101
column aliases, queries, 105-106
column lists, ordering, 70
columns, 14
adding auto-incrementing columns, 40-41
adding mandatory columns to tables, 40
cardinality, 250
controlling user access on individual columns, 289-290
inserting data into limited columns, 69-70
modifying, 41-42
qualifying in queries, 199
restricting access with views, 299
tables, part of, 35-36
updating multiple columns, 74-75
value of single column, 74
combining
arithmetic operators, 130
character functions, 176-177
commands, 8-11
data administration commands, 10-11
DCL (Data Control Language), 10
DDL (Data Definition Language), 9
DML (Data Manipulation Language), 9-10
DQL (Data Query Language), 10
transactional control commands, 11
COMMIT, 11, 357
controlling transactions, 83-84
comparing
GROUP BY clause versus ORDER BY clause, 150-153
single queries versus compound queries, 229-230
comparison operators, 110
combinations of, 113
equality, 110
less than and greater than, 111-112
non-equality, 111
compliance, ANSI SQL, 349
composite indexes, 247
compound queries
GROUP BY clause, 237-238
ORDER BY clause, 235-236
retrieving accurate data, 238-239
versus single queries, 229-230
compound query operators, 230
EXCEPT, 234-235
INTERSECT, 233-234
UNION, 230-232
UNION ALL, 232-233
CONCAT, 160-162
concatenation, 160
conjunctive operators, 120
AND, 120-121
OR, 121-123
CONNECT, 8
constraints, dropping, 49.
See also integrity constraints
controlling
privileges through roles, 291
CREATE ROLE, 292
DROP ROLE, 292
SET ROLE, 292-293
transactions, 82-83
 COMMIT, 83-84
 RELEASE SAVEPOINT, 89
 ROLLBACK, 85-86
 ROLLBACK TO SAVEPOINT, 87-89
 SAVEPOINT, 86
 SET TRANSACTION, 89
user access, 287
 GRANT, 287-288
 on individual columns, 289
 privileges, 290-291
 PUBLIC database account, 289-290
 REVOKE, 289
conversion functions, 173
 converting numbers to character strings, 175-176
 converting character strings to numbers, 173-174
conversions, date conversions, 188
 date pictures, 189-191
converting
 character strings to dates, 192-193
 character strings to numbers, 173-174
dates to character strings, 191-192
 numbers to character strings, 175-176
 correlated subqueries, 223-224
cost-based optimization, performance, 264-265
COUNT, 104, 134-136
 counting records in tables, 103-104
CREATE ANY TABLE, 285
CREATE DATABASE, 285
CREATE INDEX, 245, 357
CREATE PROCEDURE, 285
CREATE ROLE, 292, 357
CREATE SCHEMA, 275-276
CREATE SYNONYM, 309
CREATE TABLE AS, 358
CREATE TABLE, 37-39, 245, 285, 358
CREATE TRIGGER, 285, 329-330
CREATE TYPE, 358
CREATE USER, 273, 285, 358
CREATE VIEW, 285, 300, 358
cross joins, 208-210
 CUBE expression, grouping data, 153-155
current date, 183-184
cursors, 323-324
 closing, 326
 fetching data, 325-326
 grouping, 145
 CUBE expression, 153-155
 GROUP BY clause. See GROUP BY clause
 HAVING clause, 155-156
 ROLLUP expression, 153-155
inserting
 in limited columns of tables, 69-70
 from other tables, 70-72
 in tables, 68-69
opening, 324
 populating tables, 68
redundancy
 denormalization, 63-64
 logical database design, 57-58
retrieving accurate data,
 compound query operators, 238-239
selecting from multiple tables, 197
summarized data, views, 299
tables. See tables
 updating, 73
 multiple columns, 74-75
 through views, 307
 value of single column, 74

D
Data access, simplifying with views, 298-299
Data Control Language (DCL), 10
Data Definition Language (DDL), 9
data dictionary. See system catalog
data manipulation, overview, 67
Data Manipulation Language.
 See DML (Data Manipulation Language)
Data Query Language. See DQL (Data Query Language)
data types, 19
 basic data types, 20-21
 BOOLEAN values, 26-27
 date and time data types, 24-25, 182
 decimal types, 23-24
 fixed-length strings, 21
 floating-point decimals, 24
 integers, 24
 large object types, 22
 NULL data types, 26
 numeric types, 22-23
data types

user-defined data types, 27
varying-length strings, 21-22
database administrator (DBA), 19
database design information, system catalog, 316
database management system (DBMS), 1
database objects, schemas, 33-35
database queries, 93
case-sensitivity, 101-102
constraints, 103
SELECT, 93-96
FROM clause, 97
ORDER BY clause, 99-101
SELECT clause, 94-96
WHERE clause, 97-98
writing, 102-103
column aliases, 105-106
counting records in tables, 103-104
selecting data from another table, 105
database security, 283-284
controlling privileges through roles, 291-292
CREATE ROLE, 292
DROP ROLE, 292
SET ROLE, 292-293
controlling user access, 287
GRANT, 287-288
on individual columns, 289
PUBLIC database account, 289-290
REVOKE, 289
database tuning, 254
versus SQL statement tuning, 254
database vendors, 7-8
databases
defined, 4-5
denormalization, 63-64
relational, 5
web-based database systems, 6-7
DATE, 182
date and time, 182
adding time to dates, 186-187
current date, 183-184
leap years, 182
time zones, 184-185
date and time data types, 24-25, 182
implementation-specific data types, 183
date and time storage, 181
date conversions, 188
date pictures, 189
date functions, 183, 187-188
converting dates to character strings, 191-192
current date, 183-184
time zones, 184-185
date pictures, 189
dates
adding time to, 186-187
converting character strings to, 192-193
converting to character strings, 191-192
date types, 182
date parts by platform, 189-191
DATETIME elements, 182
DB_DATAREADER, 291
DB_DATAWRITER, 291
DB_DDLADMIN, 290
DBA (database administrator), 19
DBMS (database management system), 1
DCL (Data Control Language), 10
DDL (Data Definition Language), 9
decimal types, 23-24
DELETE statement, 75-76, 358
subqueries, 218-219
deleting data from tables, 75-76
denormalization, 63-64
differences between implementation, 347-349
Direct SQL, 333
disabling indexes during batch loads, 264
DISCONNECT, 8
DISTINCT, 96
aggregate functions, 141
MIN, 140-141
division, 129
DML (Data Manipulation Language), 9-10
INSERT statement, subqueries, 217
overview, 67
domains, data types, 28
DQL (Data Query Language), 10
SELECT, 93-94
functions

DROP, 279
DROP INDEX, 359
DROP ROLE, 292
DROP SCHEMA, 277
DROP SYNONYM, 310
DROP TABLE, 285, 359
DROP USER, 285, 359
DROP VIEW, 307-308, 359

dropping
 constraints, 49
 indexes, 250-251
 schemas, 277
 synonyms, 310
 tables, 44
 used by views, 298
 triggers, 331
 views, 307-308

dynamic SQL, 331

E

elements of
 DATETIME, 182
 tables, modifying, 40
embedded functions, 177
embedded SQL, 333
embedded subqueries, 219-223
end user needs, logical database design, 57
enterprises, 337
 back-end applications, 337-338
 front-end applications, 338-339
equality operators, 110
equijoins, 198-200
examples, Canary Airlines, 11-12
EXISTS, 117-118
EXIT, 8
EXPLAIN PLAN, 265
extensions to SQL, 349
EXTRACTVALUE, 334

F

FETCH, 325-326
fetching data from cursors, 325-326
fields, 14
first normal form, 58-59
fixed-length strings, 21
FLOAT, 24
floating-point decimals, 24
foreign key constraints, 46-47
formatting SQL statements, 254
 arranging tables in FROM clause, 257
 most restrictive condition, 258-259
 ordering join conditions, 257-258
 for readability, 255-257
FROM clause, 360
 arranging tables, 257
 with SELECT, 97
front-end applications, 338-339
full table scans, 243, 260-261
 avoiding, 260
functions
 aggregate functions,
 133-134, 334
 AVG, 138-139
 COUNT, 134-136
 creating groups, 147-150
 MAX, 139-140
 MIN, 140-141
 SUM, 136-138
character functions, 159-160
 ASCII function, 172
 COALESCE, 170-171
 combining, 176-177
 CONCAT, 160-162
 ISNULL, 169-170
 LENGTH, 169
 LOWER, 163-164
 LPAD, 171
 LTRIM, 167-168
 REPLACE, 166
 RPAD, 171-172
 RTRIM, 168
 SUBSTR, 164-165
 TRANSLATE, 165-166
 UPPER, 162-163
conversion functions, 173
 converting character strings to numbers, 173-174
 converting numbers to character strings, 175-176
date functions, 183, 187-188
 current date, 183-184
 time zones, 184-185
embedded functions, 177
EXTRACTVALUE, 334
mathematical functions, 172-173
TRANSLATE, 160
windowed table functions, 333-334
generating SQL, 332-333
GETDATE(), 184
GRANT, 273, 359
controlling user access, 287-288
GRANT ENABLE TO, 333
GRANT ENABLE TO USERNAME, 333
GRANT OPTION, 288-289
granting privileges, 287
greater than operators, 111-112
GROUP BY clause, 145-146, 361
with compound queries, 237-238
creating groups with aggregate functions, 147-150
grouping selected data, 147
versus ORDER BY, 150-153
group functions, GROUP BY clause, 146
grouping data, 145
CUBE expression, 153-155
GROUP BY clause. See GROUP BY clause
HAVING clause, 155-156
ROLLUP expression, 153-155
GUI tools, 279
HAVING clause, 361
avoiding, 263
grouping data, 155-156
home pages, 342
implementation
differences between, 347-349
system catalog tables, 316-317
implicit indexes, 247-248
IN operator, 115-116
indexes
altering, 250
composite indexes, 247
creating, 245
CREATE INDEX, 245
disabling during batch loads, 264
dropping, 250-251
how they work, 244-245
implicit, 247-248
overview, 243-244
reasons for using, 248
reasons to avoid, 248-250
single-column, 246
unique, 246-247
ineffective indexes, 249
information stored in system catalog, 315
inner joins, 198-200
INSERT statement, 68-69, 286, 359
subqueries, 217
INSERT(column_name), 286
inserting data
in limited columns of tables, 69-70
in tables, 68-69
from other tables, 70-72
NULL values, 72-73
INSERT...SELECT, 359
installing
Microsoft SQL Server on Windows, 365-367
Oracle on Windows, 363-365
integers, data types, 24
integrity, referential integrity, 44-47, 62-63
integrity constraints, 44
check constraints, 48-49
foreign key constraints, 46-47
NOT NULL constraints, 48
primary key constraints, 44-45
unique constraints, 46
interactive SQL statements, 353-354
International Standards Organization (ISO), 2
Internet
making data available to employees and privileged customers, 342
making data available worldwide, 342
security, 343
web interfaces, 341
INTERSECT, 233-234
INTERVAL command, 187
intranets
making data available to employees and privileged customers, 342
SQL and, 343-344
IS NOT NULL, 127
IS NULL, 127
ISNULL, 135, 169-170
ISO (International Standards Organization), 2
non-equality operators

J

JDBC (Java Database Connectivity), 340
JOIN, 199
joins, 198
 base tables, 207-208
 Cartesian product, 208-210
cross joins, 208-210
 equijoins, 198-200
 joining multiple keys, 206-207
 non-equijoin joins, 200-201
ordering, 257-258
outer joins, 201-204
self joins, 204-206
table aliases, 200

K

keys
 joining multiple keys, 206-207
primary keys, 14, 44

keywords
 COMMIT, 83
 SELECT, 95
 SET, 75

L

LAN (local area network), 6
large object types, 22
large sort operations, avoiding, 263
leap years, 182
LENGTH, 169

mathematical functions, 172-173
MAX, 139-140
Microsoft SQL Server
 installing, 365-367
 privileges, 290-291
SELECT, 348-
 users, creating, 274
MIN, 140-141
modifying
 columns, 41-42
 indexes, 250
tables
 adding auto-incrementing columns, 40-41
 adding mandatory columns, 40
 ALTER TABLE, 39
 columns, 41-42
 elements of, 40
 users, 277-278
most restrictive condition, SQL statements, formatting, 258-259
multiple columns, updating, 74-75
multiple keys, joining, 206-207
multiple tables, creating views from, 302-303
MySQL, 352-353
date parts, 191
users, creating, 275

negative operators, 123
 IS NOT NULL, 127
 NOT BETWEEN, 124-125
 NOT EQUAL, 124
 NOT EXISTS, 127-128
 NOT IN, 125-126
 NOT LIKE, 126-127
nested views, performance, 308
non-equality operators, 111
non-equijoin joins, 200-201
normal forms, 58
 first, 58-59
 second, 59-61
 third, 61
normalization, 55
 benefits of, 62-63
 limitations of, 63
logical database design, 57
 data redundancy, 57-58
 end user needs, 57
 naming conventions, 61-62
normal forms, 58
 first, 58-59
 second, 59-61
 third, 61
raw databases, 56
NOT BETWEEN, 124-125
NOT EQUAL, 124
NOT EXISTS, 127-128
NOT IN, 125-126
NOT LIKE, 126-127
NOT NULL constraints, 48
NOW, 184
NULL data types, 26
NULL value checker, 169-170
NULL values, 14-15
 inserting, 72-73
numbers
 converting character strings to, 173-174
 converting to character strings, 175-176
numeric types, 22-23

O

ODBC (Open Database Connectivity), 339-340
OLE DB, 340
opening cursors, 324
operators, 109-113
 arithmetic operators, 128
 addition, 128
 combinations, 130
 division, 129
 multiplication, 129
 subtraction, 128-129
 comparison operators, 110-113
 equality, 110
 less than and greater than, 111-112
 non-equality, 111
 conjunctive operators, 120
 AND, 120-121
 OR, 121-123
 defined, 109
 EXCEPT, 234-235
 INTERSECT, 233-234
 logical operators, 113-114
 ALL, 118-120
 ANY, 118-120
 BETWEEN, 115
 EXISTS, 117-118
 IN, 115-116
 IS NULL, 114
 LIKE, 116-117
 SOME, 118-120
 negative operators, 123
 IS NOT NULL, 127
 NOT BETWEEN, 124-125
 NOT EQUAL, 124
 NOT EXISTS, 127-128
 NOT IN, 125-126
 NOT LIKE, 126-127
 UNION, 229-230
 UNION ALL, compound query operators, 232-233
optimization, cost-based, 264-265
OR, 121-123
 avoiding, 262-263
Oracle
 date parts, 189-190
 EXTRACTVALUE, 334
 privileges, 290
 SELECT, 348-349
 Users, creating, 273-274
 for Windows, installing, 363-365
Oracle Fusion Middleware, 340
ORDER BY clause, 146, 361
 compound queries, 235-236
 versus GROUP BY clause, 150-153
 SELECT, 99-101
 views, 306-307
ordering
 column lists, 70
 join conditions, 257-258
outer joins, 201-204

P

parentheses, 122
 arithmetic operators, 130
DISTINCT, 96
parsing, 264
ROLLBACK TO SAVE, controlling transactions

performance
 cost-based optimization, 264-265
database tuning, 254
 versus SQL statement tuning, 254
HAVING clause, avoiding, 263
 indexes, 250
 disabling during batch loads, 264
large sort operations, avoiding, 263
LIKE, 261-262
nested views, 308
OR, avoiding, 262-263
SQL statement tuning, 253
 stored procedures, 263-264
subqueries, 225
wildcards, 261-262
performance statistics, system catalog, 316
performance tools, 265
PL/SQL, 351-352
poor transactional control, 90
populating tables with data, 68
primary key constraints, 44-45
primary keys, 14
privileges, 284
 controlling with roles
 CREATE ROLE, 292
 DROP ROLE, 292
 SET ROLE, 292-293
 controlling user access, 290-291
 granting/revoking, 287
object privileges, 286
Oracle, 290
SQL Server, 290-291
system privileges, 285
pseudocolumns, 184
PUBLIC database account, 289-290
Q
 qualifying columns in queries, 199
queries
 case-sensitivity, 101-102
 compound queries. See compound queries constraints, 103
 SELECT, 93-94
 FROM clause, 97
 ORDER BY clause, 99-101
 SELECT clause, 94-96
 WHERE clause, 97-98
 single queries versus compound queries, 229-230
 subqueries. See subqueries
 writing, 102-103
 column aliases, 105-106
 counting records in tables, 103-104
 selecting data from another table, 105
Query Analyzer, 265
querying system catalog, 317-320
R
 READ ONLY, 89
 READ WRITE, 89
 readability, formatting SQL statements, 255-257
 REAL, 22
 records, 14
 counting in tables, 103-104
redundancy, data
 denormalization, 63-64
 logical database design, 57-58
REFERENCES, 286
REFERENCES(column_name), 286
referential integrity, 62-63
relational database management system (RDBMS), 1, 101
relational databases, 5
RELEASE SAVEPOINT, 89
remote databases, accessing, 340
 JDBC (Java Database Connectivity), 340
 ODBC (Open Database Connectivity), 340
 OLE DB, 340
 vendor connectivity products, 340-341
 web interfaces, 341
removing user access, 279
REPLACE, 166
RESTRICT option, 44
REVOKE, 289
REVOKE, 279, 289, 359
revoking privileges, 287
roles, controlling privileges, 291
ROLLBACK, 360
 controlling transactions, 85-86
rollback area, transactions, 82-83
ROLLBACK TO SAVE, controlling transactions, 87-89
ROLLUP expression, grouping data, 153-155
rows, 14
tables, 36-37
RPAD, 171-172
RTRIM, 168

SAVEPOINT, 86, 360
savepoints, naming conventions, 87
schemas
creating, 275-276
database objects and, 33-35
dropping, 277
versus users, 271-272
second normal form, 59-61
security, 283-284
controlling privileges with roles, 291-292
CREATE ROLE, 292
DROP ROLE, 292
SET ROLE, 292-293
controlling user access, 287
GRANT, 287-288
on individual columns, 289
privileges, 290-291
PUBLIC database account, 289-290
REVOKE, 289
Internet, 343
intranets, 343
privileges, 284
views, 299
SELECT, 10, 286, 360
ANSI standard, 348
FROM clause, 97
DML (Data Manipulation Language), 67
keywords, 94
Oracle, 348-349
ORDER BY clause, 99-101
SELECT clause, 94-96
SQL Server, 348-349
subqueries, 215-217
WHERE clause, 97-98
SELECT ANY TABLE, 285
SELECT clause, 94-96
selected data, grouping (GROUP BY clause), 147
selecting data
from another user’s table, 105
from multiple tables, 197
self joins, 204-206
sessions, SQL, 8
CONNECT, 8
DISCONNECT, 8
EXIT, 8
SET keyword, 75
SET ROLE, 292-293
SET TRANSACTION, 11, 89
simplifying data access with views, 298-299
single queries versus compound queries, 229-230
single quotation marks, 161
single-column indexes, 246
SOME, 118-120
SP_ADDUSER, 274
special characters, 161
SQL (Structured Query Language)
ANSI SQL, 2
direct SQL, 333
generating, 332-333
intranets and, 343-344
overview, 2
SQL clauses, 360
FROM, 360
GROUP BY, 361
HAVING, 361
ORDER BY, 361
SELECT, 360
WHERE, 361
SQL extensions, 349
SQL optimizer, 255
SQL Server
date parts, 189
installing, 365-367
privileges, 290-291
SELECT, 348
users, creating, 274
SQL sessions, 8
CONNECT, 8
DISCONNECT, 8
EXIT, 8
SQL statement tuning, 253
versus database tuning, 254
SQL statements
formatting, 254
arranging tables in FROM clause, 257
most restrictive condition, 258-259
ordering join conditions, 257-258
for readability, 255-257
interactive SQL statements, 353-354
transactions 439

SQL-99, 2
SQL-2011, 2-4
standards
coding standards, 257
SQL-2011, 3-4
table-naming standards, 13
storage, date and time, 181
stored procedures, 263-264, 326-329
strings
fixed-length strings, 21
literal strings, 25-26
varying-length strings, 21-22
subqueries
correlated, 223-224
DELETE statement, 218-219
embedded, 219-223
INSERT statement, 217
overview, 213-215
performance, 225
SELECT, 215-217
unknown values, 215
UPDATE statement, 218
SUBSTR function, 164-165
substrings, 160
subtraction, 128-129
SUM, 136-138
summarized data, views, 299
synonyms, 308-309
creating, 309
dropping, 310
SYSDATE, 184
system catalog
creation of, 314-315
database design information, 316
information, 315
overview, 313-314

performance statistics, 316
querying, 317-320
security information, 316
tables by implementation, 316-317
updating objects, 320
user data, 316

MODIFYING
adding auto-incrementing columns, 40-41
adding mandatory columns, 40
ALTER TABLE, 39
elements of, 40
naming conventions, 39
NULL values, 14-15
populating with data, 68
primary keys, 14
records, 14
rows, 14, 36-37
selecting data from multiple, 197
system catalog, 316-317
temporal database support, 3
terminals, 6
testing WHERE clause, 258
TEXT, 22
third normal form, 61
TIME, 182
time, adding to dates, 186-187
time zones, 184-185
TIMESTAMP, 182
TKPROF, 265
tools, GUI tools, 272
transactions, 81
controlling, 82-83
COMMIT, 83-84
RELEASE SAVEPOINT, 89
ROLLBACK, 85-86
ROLLBACK TO SAVEPOINT, 87-89
SAVEPOINT, 86
SET TRANSACTION, 89
defined, 81-82
poor transactional control, 90
rollback area, 82-83
TRANSLATE, 160, 165-166
triggers, 329
creating, 329-330
dropping, 331-

U
UNION, 229-232
UNION ALL, 232-233
unique constraints, 46
unique indexes, 246-247
unknown values, subqueries, 215
UPDATE statement, 74, 286, 360
subqueries, 218
UPDATE(column_name), 286
updating
data, 73
multiple columns, 74-75
through views, 307
value of single column, 74
system catalog objects, 320
UPPER function, 162-163
USAGE, 286
user access
controlling, 287
GRANT, 287
on individual columns, 289
privileges, 290-291
PUBLIC database account, 289-290
REVOKE, 289
removing, 279
user data, system catalog, 316
user management, 269-272
GUI tools, 279
schemas
creating, 275-276
dropping, 277
versus users, 271-272
types of users, 270
user access, removing, 279
user sessions, 278
users
altering, 277-278
creating, 272
creating in MySQL, 275
creating in Oracle, 273-274
creating in SQL Server, 274
user sessions, 278
user-defined data types, 27
users
altering, 277-278
creating, 272
in MySQL, 275
in Oracle, 273-274
in SQL Server, 274
versus schemas, 271-272
types of, 270

V
varying-length strings, 21-22
vendor connectivity products, 340-341
vendors, database vendors, 7-8
view dependencies, 303
views, 297-298
creating, 300
WITH CHECK OPTION, 304-305
from multiple tables, 302-303
from a single table, 300-302
tables from, 305-306
from views, 303-304
dropping, 307-308
dropping tables, 298
nested views, performance, 308
ORDER BY clause, 306-307
as security, 299
simplifying data access, 298-299
summarized data, 299
updating data, 307

W
WAN (wide area network), 6
web interfaces, 341
web-based database systems, 6-7
WHERE clause, 74, 76, 97-98, 103
testing, 258
wide area network (WAN), 6
wildcards, performance, 261-262
windowed table functions, 333-334
Windows
Microsoft SQL Server,
installing, 365-367
Oracle, installing, 363-365
WITH CHECK OPTION, 304-305
writing
 database queries, 102-103
 column aliases, 105-106
 selecting data from
 another table, 105
queries, counting records in
tables, 103-104

X-Y-Z

XML, 334-335