
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337086
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337086
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337086
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337086
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337086/Free-Sample-Chapter

800 East 96th Street, Indianapolis, Indiana 46240 USA

Windows® 8.1
Apps
with XAML and C#

Adam Nathan

UNLEASHED

Windows® 8.1 Apps with XAML and C# Unleashed

Copyright © 2014 by Pearson Education
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33708-6
ISBN-10: 0-672-33708-8

Library of Congress Control Number: 2013951289

Printed in the United States on America

First Printing December 2013

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportu-
nities (which may include electronic versions; custom cover designs; and content
particular to your business, training goals, marketing focus, or branding interests),
please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

EDITOR-IN-CHIEF

Greg Wiegand

EXECUTIVE EDITOR

Neil Rowe

DEVELOPMENT EDITOR

Mark Renfrow

MANAGING EDITOR

Kristy Hart

SENIOR PROJECT

EDITOR

Betsy Gratner

INDEXER

Tim Wright

PROOFREADER

Kathy Ruiz

TECHNICAL EDITOR

Ashish Shetty

PUBLISHING

COORDINATOR

Cindy Teeters

COVER DESIGNER

Mark Shirar

COMPOSITION

Nonie Ratcliff

Introduction 1

Part I Getting Started

1 Hello, Real World! 9

2 Mastering XAML 43

Part II Building an App

3 Sizing, Positioning, and Transforming Elements 63

4 Layout 83

5 Interactivity 117

6 Handling Input: Touch, Mouse, Pen, and Keyboard 133

Part III Working with the App Model

7 App Lifecycle 175

8 Threading, Windows, and Pages 195

9 The Many Ways to Earn Money 213

Part IV Understanding Controls

10 Content Controls 241

11 Items Controls 271

12 Text 295

13 Images 327

14 Audio, Video, and Speech 367

15 Other Controls 401

Contents at a Glance

Part V Leveraging the Richness of XAML

16 Vector Graphics 437

17 Animation 469

18 Styles, Templates, and Visual States 513

19 Data Binding 545

Part VI Exploiting Windows 8.1

20 Working with Data 571

21 Supporting Charms 597

22 Leveraging Contracts 627

23 Reading from Sensors 661

24 Controlling Devices 679

25 Thinking Outside the App: Live Tiles, Notifications, and the Lock Screen 703

Part VII Advanced Features

26 Integrating DirectX 739

27 Custom Controls and Components 755

28 Layout with Custom Panels 781

Index 799

Contents at a Glanceiviviv

Table of Contents

Introduction 1

Part I Getting Started

1 Hello, Real World! 9

Creating, Deploying, and
Profiling an App 9

Understanding the App
Package 12

Updating XAML and C# Code 22

Making the App World-Ready 30

Making the App Accessible 36

Submitting to the Windows
Store 40

Summary 42

2 Mastering XAML 43

Elements and Attributes 44

Namespaces 45

Property Elements 47

Type Converters 48

Markup Extensions 49

Children of Object Elements 51

Mixing XAML with Procedural
Code 56

XAML Keywords 59

Summary 61

Part II Building an App

3 Sizing, Positioning, and

Transforming Elements 63

Controlling Size 64

Controlling Position 68

Applying 2D Transforms 71

Applying 3D Transforms 79

Summary 82

4 Layout 83

Discovering Your Window
Size and Location 84

Panels 89

Handling Content Overflow 105

Summary 116

5 Interactivity 117

Dependency Properties 117

Routed Events 124

Commands 129

Summary 131

6 Handling Input: Touch,

Mouse, Pen, and

Keyboard 133

Touch Input 134

Mouse Input 156

Pen Input 159

Keyboard Input 168

Summary 174

Part III Working with the

App Model

7 App Lifecycle 175

Killing 177

Suspending 178

Resuming 181

Terminating 181

Launching 182

Activating 185

Managing Session State with
SuspensionManager 187

Programmatically Launching
Apps 190

Summary 193

8 Threading, Windows,

and Pages 195

Understanding the
Threading Model for Windows
Store Apps 195

Displaying Multiple Windows 200

Navigating Between Pages 204

Summary 211

9 The Many Ways to

Earn Money 213

Adding Advertisements
to Your App 214

Supporting a Free Trial 220

Supporting In-App Purchases 224

Validating Windows Store
Receipts 232

Testing Windows Store
Features 235

Summary 240

Part IV Understanding

Controls

10 Content Controls 241

Button 244

AppBarButton 247

HyperlinkButton 254

RepeatButton 256

ToggleButton 256

AppBarToggleButton 256

CheckBox 257

RadioButton 258

ToolTip 259

App Bars 262

Summary 269

11 Items Controls 271

Items in the Control 272

Items Panels 274

ComboBox 277

ListBox 279

ListView 281

GridView 285

FlipView 287

SemanticZoom 289

MenuFlyout 292

Summary 293

12 Text 295

TextBlock 295

RichTextBlock 308

TextBox 313

RichEditBox 321

PasswordBox 324

Summary 326

13 Images 327

The Image Element 328

Multiple Files for Multiple
Environments 337

Decoding Images 342

Encoding Images 351

Rendering PDF Content as
an Image 359

Summary 365

14 Audio, Video, and

Speech 367

Playback 368

Capture 380

Transcoding 392

Speech Synthesis 397

Summary 399

15 Other Controls 401

Range Controls 401

SearchBox 404

Popup Controls 411

Hub 421

Date and Time Controls 426

Table of Contentsvi

ProgressRing 429

ToggleSwitch 429

WebView 430

Summary 436

Part V Leveraging the

Richness of XAML

16 Vector Graphics 437

Shapes 438

Geometries 444

Brushes 452

Summary 466

17 Animation 469

Theme Transitions 470

Theme Animations 481

Custom Animations 486

Custom Keyframe Animations 500

Easing Functions 505

Manual Animations 509

Summary 511

18 Styles, Templates, and

Visual States 513

Styles 514

Templates 524

Visual States 533

Summary 543

19 Data Binding 545

Introducing Binding 545

Controlling Rendering 554

Customizing the View of a
Collection 562

High-Performance Rendering
with ListView and GridView 566

Summary 569

Part VI Exploiting

Windows 8.1

20 Working with Data 571

An Overview of Files and
Folders 571

App Data 573

User Data 579

Networking 584

Summary 595

21 Supporting Charms 597

The Search Charm 597

The Share Charm 603

The Devices Charm 611

The Settings Charm 620

Summary 625

22 Leveraging Contracts 627

Account Picture Provider 629

AutoPlay Content and
AutoPlay Device 631

File Type Associations 634

Protocol 636

File Open Picker 637

File Save Picker 641

Contact Picker 642

The New Contact Contract 644

The New Appointments
Provider Contract 648

Background Tasks 650

Summary 659

23 Reading from Sensors 661

Accelerometer 661

Gyrometer 665

Inclinometer 665

Compass 665

Light Sensor 665

Table of Contents vii

Orientation 666

Location 666

Proximity 674

Summary 677

24 Controlling Devices 679

Fingerprint Readers 679

Image Scanners 680

Barcode Scanners 684

Magnetic Stripe Readers 687

Custom Bluetooth Devices 689

Custom Bluetooth Smart
Devices 692

Custom USB Devices 695

Custom HID Devices 698

Custom Wi-Fi Direct Devices 700

Summary 702

25 Thinking Outside the App:

Live Tiles, Notifications,

and the Lock Screen 703

Live Tiles 703

Badges 718

Secondary Tiles 720

Toast Notifications 722

Setting Up Push Notifications 728

The Lock Screen 736

Summary 738

Part VII Advanced Features

26 Integrating DirectX 739

Integrating as an
Image Source 740

Integrating the Swap Chain 747

Summary 752

27 Custom Controls and

Components 755

Creating a User Control 756

Creating a More Complex
Control 759

Creating a Templated
Control 771

Creating a Windows Runtime
Component 776

Summary 779

28 Layout with Custom

Panels 781

Communication Between
Parents and Children 782

Creating a SimpleCanvas 785

Creating a SimpleStackPanel 789

Creating a UniformGrid 792

Summary 798

Index 799

Table of Contentsviii

About the Author

Adam Nathan is a principal software architect for Microsoft, a best-selling technical
author, and arguably the world’s most prolific developer for Windows Phone. He intro-
duced XAML to countless developers through his books on a variety of Microsoft tech-
nologies. Currently a part of Microsoft’s Startup Business Group, Adam has previously
worked on Visual Studio and the Common Language Runtime. He was the founding
developer and architect of Popfly, Microsoft’s first Silverlight-based product, named
by PCWorld as one of its year’s most innovative products. He is also the founder of
PINVOKE.NET, the online resource for .NET developers who need to access Win32.
His apps have been featured on Lifehacker, Gizmodo, ZDNet, ParentMap, and other
enthusiast sites.

Adam’s books are considered required reading by many inside Microsoft and throughout
the industry. Adam is the author of Windows 8 Apps with XAML and C# Unleashed (Sams,
2013), 101 Windows Phone 7 Apps (Sams, 2011), Silverlight 1.0 Unleashed (Sams, 2008),
WPF Unleashed (Sams, 2006), WPF 4 Unleashed (Sams, 2010), WPF 4.5 Unleashed (Sams,
2013), and .NET and COM: The Complete Interoperability Guide (Sams, 2002); a coauthor
of ASP.NET: Tips, Tutorials, and Code (Sams, 2001); and a contributor to books including
.NET Framework Standard Library Annotated Reference, Volume 2 (Addison-Wesley, 2005)
and Windows Developer Power Tools (O’Reilly, 2006). You can find Adam online at
www.adamnathan.net or @adamnathan on Twitter.

http://www.adamnathan.net

This page intentionally left blank

Dedication

To Mom and Dad.

Acknowledgments

First, I thank Eileen Chan for the encouragement and patience that enabled me to
complete this book. I’d also like to give special thanks to Ashish Shetty, Tim Heuer, Mark
Rideout, Jonathan Russ, Joe Duffy, Chris Brumme, Eric Rudder, Neil Rowe, Betsy Gratner,
Ginny Munroe, Bill Chiles, and Valery Sarkisov. As always, I thank my parents for having
the foresight to introduce me to Basic programming on our IBM PCjr when I was in
elementary school.

Finally, I thank you for picking up a copy of this book! I don’t think you’ll regret it!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write us directly to let us know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. We will carefully review your comments and share
them with the author and editors who worked on the book.

E-mail: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

If you ask me, it has never been a better time to be a soft-
ware developer. Not only are programmers in high
demand—due in part to an astonishingly low number of
computer science graduates each year—but app stores make
it easier than ever to broadly distribute your own software
and even make money from it.

When I was in junior high school, I released a few share-
ware games and asked for $5 donations. I earned $15 total.
One of the three donations was from my grandmother,
who didn’t even own a computer! These days, of course,
adults and kids alike can make money on simple apps and
games without relying on kind and generous individuals
going to the trouble of mailing a check.

The Windows Store is an app store like no other, and it
keeps getting better. When you consider the number of
people who use Windows 8.1 (and Windows RT) compared
to the number of people who use any other operating
system on the planet, you realize what a unique and enor-
mous opportunity the Windows Store provides. That’s one
of the reasons that the Windows Store is the fastest-
growing app store in history.

When you write a Windows Store app, you have three
main choices for programming language and UI framework
pairings:

➔ JavaScript with an HTML user interface

➔ C#, Visual Basic, or C++ with a XAML user interface

➔ C++ with a DirectX user interface

Who Should Read This
Book?

Software Requirements

Code Examples

How This Book Is
Organized

Conventions Used in
This Book

Introduction

You can also leverage a number of features and componentization techniques to mix and
match these languages and UI frameworks within the same app.

C# and XAML has been a very popular choice for writing Windows Store apps. It is the
choice for apps such as Netflix, Hulu Plus, Fresh Paint, SkyDrive, Evernote Touch, Reader,
Alarms, Movie Moments, Maps, OneNote, Lync, and many, many more. It is also the
implementation choice for many core experiences in Windows, such as the PC Settings
app, the Search app, and new Contact/Calendar functionality in Windows 8.1. The XAML
team has stated that their goal is to be the high fidelity, high performance framework for
any scenario.

Then why does Microsoft provide so many choices? The idea is to enable you to work
with whatever is most comfortable for you, whatever best leverages your existing assets,
or whatever most naturally consumes the third-party SDK you must use.

Your choice can have other benefits. HTML tends to be the best choice if you need to
support your versions of your app on non-Microsoft platforms or a website. XAML is best
at interoperability, as it’s easy to mix both HTML and DirectX content in a XAML app.
DirectX, the best choice for hardcore games, provides the most potential for getting the
highest performance.

Common perceptions of performance differences between the UI frameworks are often
wrong, however. It’s important to realize that no matter which of the three UI frameworks
you use, about 80% of their core implementation is identical, the Windows APIs are the
same, and the graphics are hardware accelerated. Although DirectX offers the most poten-
tial for getting the highest performance, you have to do a lot of work to realize that
potential! Often, a C#/XAML implementation can outperform a simple C++/DirectX
implementation due to the impressive optimizations that the XAML UI Framework does
on your behalf. Not only that, but the XAML UI Framework gives you a number of addi-
tional features automatically, such as accessibility and localization.

Although your choice of language is generally dictated by your choice of UI Framework,
each language has its strengths. JavaScript benefits from a large community that produces
interesting libraries. C# has the best features for writing concise asynchronous code, and
doesn’t have the same multithreading limitations that plague JavaScript. C++ provides the
most potential for getting the highest performance. (Does that line sound familiar?) Of
course, you have to earn that performance, and you have to be especially careful with
how you mix standard C and C++ code with the C++/CX code that is needed to commu-
nicate with Windows.

The key to the multiple language support is the Windows Runtime, or WinRT for short.
You can think of it like .NET’s Common Language Runtime, except it spans both
managed and unmanaged languages. To enable this, WinRT is COM-based. Most of the
time, you can’t tell when you interact with WinRT. And most of the time, it doesn’t
matter. This is a modern, friendlier version of COM that is more amenable to automatic
correct usage from environments such as .NET or JavaScript. (Contrast this to over a
decade ago, when I wrote a book about mixing COM with .NET. This topic alone required
over 1,600 pages!)

Introduction2

WinRT APIs are automatically projected
into the programming language you use,
so they look natural for that language.
Projections are more than just exposing
the raw APIs, however. Core WinRT data
types such as String, collection types,
and a few others are mapped to appro-
priate data types for the target environ-
ment. For C# or other .NET languages,
this means exposing them as
System.String, System.Collections.Generic.IList<T>, and so on. To match conven-
tions, member names are even morphed to be Camel-cased for JavaScript and Pascal-cased
for other languages, which makes the MSDN reference documentation occasionally look
goofy.

In the set of APIs exposed by Windows:

➔ Everything under the Windows.UI.Xaml namespace is XAML-specific

➔ Everything under the Windows.UI.WebUI namespace is for HTML apps

➔ Everything under System is .NET-specific

➔ Everything else (which is under Windows) is general-purpose WinRT functionality

As you dig into the framework, you notice that the XAML-specific and .NET-specific APIs
are indeed the most natural to use from C# and XAML. General-purpose WinRT APIs
follow slightly different conventions and can sometimes look a little odd to developers
familiar with .NET. For example, they tend to be exception-heavy for situations that
normally don’t warrant an exception (such as the user cancelling an action). Artifacts like
this are caused by the projection mechanism mapping HRESULTs (COM error codes) into
.NET exceptions.

I wrote this book with the following goals in mind:

➔ To provide a solid grounding in the underlying concepts, in a practical and
approachable fashion

➔ To answer the questions most people have when learning how to write Windows
Store apps and to show how commonly desired tasks are accomplished

➔ To be an authoritative source, thanks to input from members of the team who
designed, implemented, and tested Windows 8.1 and Visual Studio 2013

➔ To be clear about where the technology falls short rather than blindly singing its
praises

➔ To optimize for concise, easy-to-understand code rather than enforcing architectural
patterns that can be impractical or increase the number of concepts to understand

➔ To be an easily navigated reference that you can constantly come back to

Introduction 3

Although WinRT APIs are not .NET APIs,
they have metadata in the standardized
format used by .NET. Therefore, you can

browse them directly with familiar .NET tools,
such as the IL Disassembler (ILDASM). You
can find these on your computer as .winmd
files. Visual Studio’s “Object Browser” is also
a convenient way to search and browse
WinRT APIs.

To elaborate on the second-to-last point: You won’t find examples of patterns such as
Model-View-ViewModel (MVVM) in this book. I am a fan of applying such patterns to
code, but I don’t want to distract from the core lessons in each chapter.

Whether you’re new to XAML or a long-time XAML developer, I hope you find this book
to exhibit all these attributes.

Who Should Read This Book?
This book is for software developers who are interested in creating apps for the Windows
Store, whether they are for tablets, laptops, or desktops. It does not teach you how to
program, nor does it teach the basics of the C# language. However, it is designed to be
understandable even for folks who are new to .NET, and does not require previous experi-
ence with XAML.

If you are already well versed in XAML, I’m confident that this book still has a lot of
helpful information for you. And if you are already familiar with writing Windows Store
apps for Windows 8 (perhaps thanks to the first edition of this book), you will still benefit
from the significant amount of new content that covers new features in Windows 8.1. It
also covers features that were already present in Windows 8 in more depth than ever
before. At the very least, this book should be an invaluable reference for your bookshelf.

Software Requirements
This book targets Windows 8.1, Windows RT, and the corresponding developer tools. The
tools are a free download at the Windows Dev Center: http://dev.windows.com. The
download includes the Windows 8.1 SDK, a version of Visual Studio Express specifically
for Windows Store apps, and miscellaneous tools. It’s worth noting that although this
book almost exclusively refers to Windows 8.1, the content applies to Windows RT
as well.

Although it’s not required, I recommend PAINT.NET, a free download at
http://getpaint.net, for creating and editing graphics, such as the set of icons
needed by apps.

Code Examples
Source code for examples in this book can be downloaded from www.informit.com/title/
9780672337086.

How This Book Is Organized
This book is arranged into seven parts, representing the progression of feature areas that
you typically need to understand. But if you want to jump ahead and learn about a topic
such animation or live tiles, the book is set up to allow for nonlinear journeys as well.
The following sections provide a summary of each part.

Introduction4

http://www.informit.com/title/9780672337086
http://www.informit.com/title/9780672337086
http://dev.windows.com
http://getpaint.net

Part I: Getting Started

This part includes the following chapters:

➔ Chapter 1: “Hello, Real World!”

➔ Chapter 2: “Mastering XAML”

Part I provides the foundation for the rest of the book. If you have previously created
Windows Phone apps or worked with XAML in the context of other Microsoft technolo-
gies, a lot of this should be familiar to you. There are still several unique aspects for
Windows 8.1 and the Windows Store, however. Chapter 1 helps you understand all the
tools available at your disposal, and even dives into topics such as accessibility and
localization, so you can be prepared to get the broadest set of customers possible for
your app. This last set of topics is new to this edition of the book.

Part II: Building an App

This part includes the following chapters:

➔ Chapter 3: “Sizing, Positioning, and Transforming Elements”

➔ Chapter 4: “Layout”

➔ Chapter 5: “Interactivity”

➔ Chapter 6: “Handling Input: Touch, Mouse, Pen, and Keyboard”

Part II equips you with the knowledge of how to place things on the screen, how to
make them adjust to the wide variety of screen types, and how to interact with the user.
Windows 8.1 introduces a new model for how apps should resize, and this is covered in
Chapter 4. In Chapter 6, this edition contains new coverage on supporting pens, includ-
ing rendering strokes and performing handwriting recognition.

Part III: Working with the App Model

This part includes the following chapters:

➔ Chapter 7: “App Lifecycle”

➔ Chapter 8: “Threading, Windows, and Pages “

➔ Chapter 9: “The Many Ways to Earn Money”

The app model for Windows Store apps is significantly different from the app model for
desktop applications in a number of ways. It’s important to understand how the app life-
cycle works and how you need to interact with it in order to create a well-behaved app.
But there are other pieces to what is sometimes called the app model: how one app can
launch another, how to work with the Windows Store to enable free trials and in-app
purchases, and how to deal with multiple windows and pages. This edition greatly

How This Book Is Organized 5

expands the coverage on trials and in-app purchases, and covers the new Windows 8.1 in-
app purchase features. It also contains new coverage on integrating ads into your apps,
the threading model for Windows Store apps, and new support for having multiple
windows.

Part IV: Understanding Controls

This part includes the following chapters:

➔ Chapter 10: “Content Controls”

➔ Chapter 11: “Items Controls”

➔ Chapter 12: “Text”

➔ Chapter 13: “Images”

➔ Chapter 14: “Audio, Video, and Speech”

➔ Chapter 15: “Other Controls”

Part IV provides a tour of the controls built into the XAML UI Framework. There are
many controls that you expect to have available, plus several that you might not expect.
Windows 8.1 adds many new controls and many features to existing controls. Windows
8.1 also introduces speech synthesis features, which are covered in Chapter 14.

Part V: Leveraging the Richness of XAML

This part includes the following chapters:

➔ Chapter 16: “Vector Graphics”

➔ Chapter 17: “Animation”

➔ Chapter 18: “Styles, Templates, and Visual States”

➔ Chapter 19: “Data Binding”

The features covered in Part V are areas in which XAML really shines. Although previous
parts of the book expose some XAML richness (applying transforms to any elements, the
composability of controls, and so on), these features push the richness to the next level.

Part VI: Exploiting Windows 8.1

This part includes the following chapters:

➔ Chapter 20: “Working with Data”

➔ Chapter 21: “Supporting Charms”

➔ Chapter 22: “Leveraging Contracts”

Introduction6

➔ Chapter 23: “Reading from Sensors”

➔ Chapter 24: “Controlling Devices”

➔ Chapter 25: “Thinking Outside the App: Live Tiles, Notifications, and the Lock
Screen”

This part of the book could just as easily appear in a book about JavaScript or C++
Windows Store apps, with the exception of its code snippets. It covers unique and power-
ful Windows features that are not specific to XAML or C#, but they are things that all
Windows Store app developers should know. The most notable new support in Windows
8.1 is covered in Chapter 24: supporting custom devices.

Part VII: Advanced Features

This part includes the following chapters:

➔ Chapter 26: “Integrating DirectX”

➔ Chapter 27: “Custom Controls and Components”

➔ Chapter 28: “Layout with Custom Panels”

The advanced features covered in the last part of the book highlight very different scenar-
ios. Integrating DirectX into your XAML app enables you to do things that aren’t possible
otherwise, whereas the last two chapters are about ways to reuse your code. The coverage
of all these features is new to this edition. These features all existed in Windows 8,
although the DirectX integration support has been improved for Windows 8.1.

Conventions Used in This Book
Various typefaces in this book identify new terms and other special items. These typefaces
include the following:

Typeface Meaning

Italic Italic is used for new terms or phrases when they are initially defined and occa-
sionally for emphasis.

Monospace Monospace is used for screen messages, code listings, and filenames. In code list-
ings, italic monospace type is used for placeholder text.

Code listings are colorized similarly to the way they are colorized in Visual
Studio. Blue monospace type is used for XML elements and C# keywords,
brown monospace type is used for XML element names and C# strings, green
monospace type is used for comments, red monospace type is used for XML
attributes, and teal monospace type is used for type names in C#.

Bold When appropriate, bold is used for code directly related to the main lesson(s) in
a chapter.

Conventions Used in This Book 7

Throughout this book, and even in this introduction, you will find a number of sidebar
elements:

Introduction8

What is a FAQ sidebar?

A Frequently Asked Question (FAQ) sidebar presents a question you might have about the
subject matter—and then provides a concise answer.

Digging Deeper

A Digging Deeper sidebar presents advanced or more detailed information on a subject than is
provided in the surrounding text. Think of Digging Deeper material as something you can look
into if you’re curious but can ignore if you’re not.

A tip offers information about design guidelines, shortcuts or alternative approaches to
produce better results, or something that makes a task easier.

This is a warning!

A warning alerts you to an action or a condition that can lead to an unexpected or unpre-
dictable result—and then tells you how to avoid it.

HELLO, REAL WORLD!

“Oh, no, not another cliché ‘Hello, World’ example,”
you might be thinking as you examine this book. However,
the length of this chapter alone should tell you that it is
not about creating a typical “Hello, World” app.

Sure, we’re going to get started with a simple, contrived
app to demonstrate the anatomy of any Windows Store
XAML app and the tooling available in Visual Studio. But
we’ll also see how to make it really say “hello” to the entire
world; not just English-speaking people with no disabilities.
This means understanding how to localize an app into
other languages so you can exploit the vast, global scale of
the Windows Store. It also means understanding how to
make your app accessible to users who require assistive
technologies such as screen readers or high contrast
themes. No app deserves to be called “Hello, World”
without considering these features.

Creating, Deploying, and
Profiling an App
In Visual Studio, let’s create a new Visual C# Blank App
(XAML) project called HelloRealWorld. This gives us a
project that’s ready to compile and run. Although pressing
F5 or clicking the Start Debugging button in Visual Studio
launches the app locally, you’ve got three slick options to
choose from via the button’s dropdown menu, shown in
Figure 1.1 under Visual Studio’s light theme (used through-
out this book).

Creating, Deploying,
and Profiling an App

Understanding the
App Package

Updating XAML and
C# Code

Making the App
World-Ready

Making the App
Accessible

Submitting to the
Windows Store

Chapter 1 In This Chapter

With the Remote Machine option, you
can deploy and debug to any other
Windows 8.x computer reachable on
your network (although not over the
Internet). This is extremely handy for
testing things on a Surface or other
tablets. The target device must have the
Remote Tools for Visual Studio installed
and running, which you can download
from the Windows Dev Center.

The Simulator option is the next best thing to having a real tablet, as it provides mecha-
nisms to simulate touch input, device orientations, network conditions, location services,
and more. The simulator is shown in Figure 1.2. In fact, it has one huge advantage over
testing on a physical device: It enables you to experience your app in a number of differ-
ent resolutions and virtual screen sizes, including different aspect ratios. Given the wide
variety of shapes and sizes of screens out there that run Windows Store apps, testing your
app in this fashion is a must.

Chapter 1 HELLO, REAL WORLD!10

FIGURE 1.1 The three ways to launch your app
in Visual Studio

FIGURE 1.2 Testing your app on the simulator is like testing it on an army of different-sized devices.

The simulator is your actual computer!

Although the simulator simulates several things, what you see on the virtual device is your
real “host” computer running with your actual user account, apps, files, and so on. (Running the
simulator is like initiating a special kind of remote desktop connection to yourself.) Changes you
make inside the simulator affect your computer just as if you made them outside the simulator.

Creating, Deploying, and Profiling an App 11

How do I run my app outside of Visual Studio?

Although compiling your app produces an .exe file in the bin\Debug or bin\Release
subfolder, you can’t simply double-click it from the Windows desktop to run it. If you try, you get
an error that explains,“This application can only run in the context of an app container.” (An “app
container” refers to the sandbox in which all Windows Store apps run.)

Instead, you can launch it from the searchable list of apps underneath the tiles on the Start
screen. Visual Studio automatically installs your app the first time you launch it. Like all Windows
Store apps in Windows 8.1, however, its tile does not automatically get pinned. Because the Start
screen has been enhanced to make it easier to find apps, pinning is now meant to be done selec-
tively by a user, the same as with pinning apps to the desktop taskbar.

When you run the HelloRealWorld project without any changes, you’ll see why the
project type was called “Blank App.” The app doesn’t actually do anything other than fill
the screen with darkness. (If you launch the app in debug mode, you’ll also see four
numbers on the top edge of the screen. These are frame rate counters described in
Chapter 17, “Animation.”) It does, however, set up a lot of infrastructure that would be
difficult and tedious to create from scratch. The project contains the following items:

➔ The package manifest, a temporary certificate used to sign it, and some images

➔ The main page (MainPage.xaml and MainPage.xaml.cs)

➔ The application definition: App.xaml, App.xaml.cs, and AssemblyInfo.cs

The next section examines the package manifest and the images used by it. After that,
we’ll look at the XAML and C# files and make some code changes.

Visual Studio provides some amazing tools for diagnosing performance problems in your
app. You can access them by clicking Performance and Diagnostics on the Debug menu.
On this page, select a tool to collect data while your app is launched. You perform the
scenario you want to measure, and then stop the data collection. A rich, interactive report
is then presented to you. The three tools on the Performance and Diagnostics page are:

➔ XAML UI Responsiveness—Attributes the time spent to activities such as parsing
XAML and layout of your elements. Shows you the performance cost of each UI
element. You can also investigate times when you’re not achieving the desired 60
frames per second on the UI thread.

➔ CPU Sampling—Traditional profiling, with interactive graphs, diagrams of hot
paths complete with annotated code integration, and much more.

➔ Energy Consumption—Estimates how power-hungry your app is, based on its
usage of the CPU, display, and network.

In addition to the Visual Studio tools, you can download the Windows Performance
Toolkit for additional analysis. This includes a Windows Performance Recorder tool for
capturing a trace, and a Windows Performance Analyzer tool for analyzing the trace.

Understanding the App Package
The package manifest in the Visual Studio project is a file called Package.appxmanifest.
(“AppX” is a term sometimes used within Microsoft for Windows Store app packages that
stuck around in the filename.) This manifest describes your app to Windows as well as the
Windows Store—its name, what it looks like, what it’s allowed to do, and more. It’s an
XML file, although you have to tell Visual Studio to “View Source” in order to see the
XML. There’s usually no need to view and edit the XML directly, however. The default
view is a tabbed set of forms to fill out, which is the easiest way to populate all the infor-
mation. There are six tabs:

➔ Application

➔ Visual Assets

➔ Capabilities

➔ Declarations

➔ Content URIs

➔ Packaging

For our HelloRealWorld app, we don’t need to change anything in the package manifest.
But now is a good time to understand what can be done on each of these tabs.

Application

On the Application tab, you can set the app’s name and description, default language, its
minimum width, and notification settings (if your app supports them). Notifications are
covered in Chapter 25, “Thinking Outside the App: Live Tiles, Notifications, and the Lock
Screen.” You can even restrict the preferred orientations of your app if you’d rather not
have it automatically rotate to all four of them:

➔ Landscape (horizontal)

➔ Landscape-flipped (horizontal but upside down)

➔ Portrait (vertical, with the hardware Start button on the left)

➔ Portrait-flipped (vertical, with the hardware Start button on the right)

Disabling the flipped orientations would be an odd thing to do, but disabling some orien-
tations can make sense for certain types of games that wish to be landscape only. Note
that this is just a preference, not a guarantee, because not all devices support rotation. For
example, a portrait-only app launched on a typical desktop PC must accept the one-and-
only landscape orientation. However, if a device that does support rotation is currently
locked to a landscape orientation, a portrait-only app actually runs in the portrait orienta-
tion, ignoring the lock setting.

Visual Assets

On the Visual Assets tab, you set the characteristics of your app's tile and splash screen, as
well as artwork used in a number of other contexts.

Chapter 1 HELLO, REAL WORLD!12

Customizing the Splash Screen

To ensure that every app’s splash screen can be displayed practically instantaneously
(before your app even gets loaded), you have little control over it. You specify a 620x300
image (plus two optional larger sizes to support high DPI screens), and a background
color for the splash screen. That’s it. Visual Studio gives you an appropriately sized place-
holder SplashScreen.scale-100.png file in an Assets subfolder, intentionally made ugly
to practically guarantee you won’t forget to change it before submitting your app to the
Windows Store.

When your splash screen is shown, the image is displayed centered on top of your chosen
background color. Figure 1.3 shows an example SplashScreen.scale-100.png containing
a Pixelwinks logo, and Figure 1.4 shows what this looks like on the simulator. The splash
screen is given a yellow background for demonstration purposes. A real app should make
the background color match the background of the image or simply make the image’s
background transparent.

Understanding the App Package 13

FIGURE 1.3 An example SplashScreen.scale-100.png with a nontransparent background for
demonstration purposes

When your app is launched, the splash screen automatically animates in and automati-
cally fades out once your app has loaded and has made a call to Window.Current.
Activate. This gives you the flexibility to do arbitrarily complex logic before the splash
screen goes away, although you should avoid doing a lot of work here. (Your app is given
about fifteen seconds to remain on the splash screen before it gets terminated by
Windows.)

Customizing Logo Images

The Tile Images and Logos section on the Visual Assets tab can be confusing and over-
whelming. Besides the Store Logo, which supports up to three different sizes, it lists five
different logo sizes, although each one actually accepts 4–8 different sizes of image files!
All told, you can assign twenty seven different image files representing your logo! Let’s start
making some sense out of these images. Figure 1.5 shows what each logo should have
been called to make things less confusing, and the following list explains each one using
the terminology found in the package manifest:

➔ Square 70x70 Logo—This is used
for the small version of your app’s
tile on the Start screen. Although
assigning an image here is
optional, the small tile size is not.
If you don’t provide an image, the
medium tile image is used (and
scaled down) when a user changes
your tile size to small.

➔ Square 150x150 Logo—This is
used for the medium version of
your app’s tile on the Start screen.
The medium tile size is the one
required size, so at least a 100%
scale image is required.

➔ Wide 310x150 Logo—This is used
for the wide version of your app’s
tile on the Start screen, if you
choose to support that tile size. If
you assign at least a 100% scale
image here, your app automati-
cally supports the wide tile size.
Otherwise, it doesn’t.

➔ Large 310x310 Logo—This is used for the large version of your app’s tile on the
Start screen, if you choose to support that tile size. If you assign at least a 100%
scale image here and for the wide logo, your app automatically supports the large
tile size. (Your app can only support a large tile if it also supports a wide tile.)
Otherwise, it doesn’t.

➔ Square 30x30 Logo—This is used throughout Windows, including on the desktop.
It is used by the apps list, search results, the Share pane, the file picker, an overlay
on live tiles, the Alt+Tab user interface, Task Manager, file icons for associated file
types, and so on. At least the 100% scale image is required. Although the image is
nominally 30x30 pixels, this logo supports four additional sizes to be used for file
icons on the desktop (if your app has associated file types): 16x16, 32x32, 48x48,
and 256x256.

➔ Store Logo—A 50x50 image (at 100% scale) used by the Windows Store. At least the
100% scale image is required.

Visual Studio provides placeholder image files for the required logo images only: the
square 150x150 logo, the square 30x30 logo, and the store logo.

Chapter 1 HELLO, REAL WORLD!14

FIGURE 1.4 A live splash screen shown inside
the simulator with a garish yellow background to
clearly show the bounds of the image

Understanding the App Package 15

Small tile logo

Medium tile logo

Wide tile logo

Large tile logo

Icon logo

FIGURE 1.5 More understandable names for the different logo images you can provide

To make your tile look good on all devices (and to increase the chances of Microsoft
promoting your app in the Windows Store or in advertisements), you should support all
scale sizes for each logo you provide. It’s perfectly okay to omit large tile and wide tile

logos, however. Many of Microsoft’s own apps omit them.

Furthermore, it’s best not to support a large tile and/or wide tile unless you’re going to make it a
live tile (covered in Chapter 25). Otherwise, your pinned app occupies more space without
adding any extra value.

Why does each tile logo support four different image sizes, and how are
they used?

Depending on the pixel density of the screen, Windows automatically scales all non-desktop user
interfaces to prevent items from being too small to touch or too hard to read. This applies to all
Windows Store apps as well as system UI such as the Start screen, file picker, and so on. To
prevent your images from looking unsightly by being scaled upward, you can provide multiple
versions of any image: one at its normal size, one at 140% of its normal size, and one at 180% of
its normal size. The Start screen additionally supports shrinking its content to an 80% scale.

Windows uses a file naming pattern to manage this, and the package manifest designer in Visual
Studio automatically names your assigned image files accordingly. By default, the medium tile
icon is assigned to Assets\Logo.png. However, at runtime, Windows automatically looks for a
file with the following name instead, depending on the current scale being applied:

As with the splash screen, you can specify a background color for your tile. For the best
results, this color (as well as the tile images) should match what you use in your splash
screen. The desired effect of the splash screen is that your tile springs to life and fills the
screen in a larger form. Even if your tile background color is completely covered by
opaque tile images, there are still contexts in which the color is seen, such as the zoomed-
out Start screen view or the Alt+Tab user interface. Therefore, choose your background
color (and determine whether you want your images to use transparency) carefully!

You can choose a “default size,” which is the initial size of your tile if the user decides to
pin it to the Start screen. This can only be set to the medium tile or the wide tile (if you
support a wide tile). If unset, wide is given precedence over medium.

You can also choose a “short name,” which is the text that gets overlaid on the bottom of
your tile. You can even specify which tile sizes should show the text: medium, wide,
and/or large. (Small tiles do not support overlaid text.) Many apps turn off the text
because their images already include a logo with the name.

Finally, you can decide whether you want the overlaid text to be “light” (which means
white) or “dark” (which means a dark gray). Although most apps use white text, you may
need to choose the dark option if you want your tile to have a light background color.

Chapter 1 HELLO, REAL WORLD!16

➔ Assets\Logo.scale-80.png (for 80% scale)

➔ Assets\Logo.scale-100.png (for 100% scale)

➔ Assets\Logo.scale-140.png (for 140% scale)

➔ Assets\Logo.scale-180.png (for 180% scale)

This is why the file in your project is actually named Logo.scale-100.png despite it being
referenced as simply Logo.png. (It could drop the .scale-100 part, however, because 100%
scale is assumed for a file without that specification.) If an exact match doesn’t exist for the
current scale, Windows uses the next best match and scales it accordingly.

The store logo and splash screen images don’t support the 80% scale size because they are never
shown on a tile on the Start screen. The additional four sizes of the square 30x30 logo, assigned
to Assets\SmallLogo.png by default, use a similar naming scheme:

➔ Assets\SmallLogo.targetsize-16.png (for 16x16 file icons)

➔ Assets\SmallLogo.targetsize-32.png (for 32x32 file icons)

➔ Assets\SmallLogo.targetsize-48.png (for 48x48 file icons)

➔ Assets\SmallLogo.targetsize-256.png (for 256x256 file icons)

You can use a similar technique for providing different files for high contrast mode, different
cultures, and more. This applies not just for the images here, but for images used inside your app
as well. See Chapter 13,“Images,” for more details.

Capabilities

On the Capabilities tab, you select each capability required by your app. A capability is a
special permission for actions that users might not want certain apps to perform, whether
for privacy concerns or concerns about data usage charges. In the Windows Store,
prospective users are told what capabilities each app requires before they decide whether
to download it. To users, they are described as permissions, sometimes with more descrip-
tive names, as shown in Figure 1.6.

Understanding the App Package 17

To create a logo that fits in with the built-in apps, it should have a transparent background
and the drawing inside should:

➔ Be completely white

➔ Be composed of simple geometric shapes

➔ Use an understandable real-world metaphor

The drawing used in all logo images should look the same, just scaled to different sizes and with
different margins.

For example, the drawing for the 150x150 image should generally fit in a 66x66 box centered but
nudged a little higher to leave more space for any overlaid text. Typically the drawing has a 42-
pixel margin on the left and right, a 37-pixel margin on top, and a 47-pixel margin on the bottom.
The drawing for the 30x30 image should generally fit in a 24x24 centered box, leaving just 3
pixels of margin so it’s easier to see at the small size. Similarly, the 50x50 store logo drawing
should occupy a centered 40x40 square (leaving 5 pixels of margin on each side).

Creating white-on-transparent images requires some practice and patience. You’ll want to use
tools such as PAINT.NET, mentioned in this book’s “Introduction” section. A few of the characters
from fonts such as Wingdings, Webdings, and Segoe UI Symbol can even be used to help create a
decent icon! Resources like thenounproject.com can also be helpful.

Of course, games or apps with their own strong branding usually do not follow these guidelines,
as being consistent with their own identity outweighs being consistent with Windows.

FIGURE 1.6 The Fresh Paint app uses three capabilities: Pictures Library, Webcam, and
Internet (Client).

For the most part, user approval of all requested permissions is an implicit part of down-
loading an app. However, the use of privacy-related capabilities, such as location services,
prompts the user the first time an app invokes a relevant API. Furthermore, some capabili-
ties can be disabled or reenabled at any time by a user. When the Settings charm is
invoked while a Windows Store app is running, it contains a “Permissions” link that
displays an app’s capabilities and toggle switches for any that can be turned on and off.
Figure 1.7 shows what this looks like while running HelloRealWorld, both with the
default capability already chosen in our package manifest—Internet (Client)—and after
selecting every listed capability in the package manifest.

Chapter 1 HELLO, REAL WORLD!18

When the app uses the
Internet (Client) capability

When the app uses
every listed capability

FIGURE 1.7 The “Permissions” section of the Settings charm lists the current app’s capabilities, and
enables turning some of them on or off at runtime.

The long list of available capabilities
can be grouped into four different
categories:

➔ File capabilities

➔ Device capabilities

➔ Network capabilities

➔ Identity capabilities

You want to restrict the set of capabili-
ties requested by your app as much as
possible, because it is a competitive

advantage. For example, users might decide
not to buy your fun piano app if it wants
permission to use the Internet!

Most of them can be used freely, although some of them are restricted. Apps that use
restricted capabilities must go through extra processes when uploaded to the Windows
Store and are only granted to business developer accounts with written justification.
Fortunately, the restricted capabilities (called out in the upcoming lists) are for uncom-
mon scenarios.

File Capabilities

As you’ll read in Chapter 20, “Working with Data,” apps can read and write their own
private files in an isolated spot, and those files can even participate in automatic roaming
between a user’s devices. In addition, users can give apps explicit permission to read/write
other “normal” files and folders via the Windows file picker. This is all that most apps
need, and does not require any capabilities.

Beyond these two features, however, programmatic reading and writing of files requires
special capabilities. There is one for each of the four built-in libraries (Documents, Music,
Pictures, and Videos) plus another for attached storage devices:

➔ Music Library, Pictures Library, and Videos Library—Enables enumerating and
accessing all music, pictures, and videos, respectively, without going through the file
picker.

➔ Documents Library—Enables adding, changing, and deleting files in the
Documents library on the local computer without going through the file picker.
However, this capability is restricted to specific file type associations that must also
be declared in the package manifest (on the Declarations tab). This is listed sepa-
rately from the preceding three capabilities because it is a restricted capability that
needs special approval from Microsoft in order to publish the app in the Windows
Store. And unlike the capabilities for the Music, Pictures, and Videos libraries, this
cannot be used to access Documents libraries on other computers in the same
HomeGroup.

➔ Removable Storage—Enables adding, changing, and deleting files on devices such
as external hard drives or thumb drives connected to the local computer, again
without going through the file picker. As with the preceding capability, this is
restricted to file type associations that must also be declared in the package
manifest.

Device Capabilities

Apps can access simple sensors such as an accelerometer or devices such as a printer
without any capabilities. Accessing other sensors or devices does require specific capabili-
ties, however. The list of device types grows over time (and can be extended by third
parties), but the Capabilities tab exposes four choices, listed below. For all of them except
proximity, users can disable them at any time, so apps must be prepared to handle this
gracefully.

➔ Location—Reveals the computer’s location, either precise coordinates from a GPS
sensor (if one exists) or an estimation based on network information.

Understanding the App Package 19

➔ Microphone—Enables recording audio from a microphone.

➔ Webcam—Enables recording video—or capturing still pictures—from a camera. Note
that this doesn’t include sound. If you want to record audio and video, you need
both Webcam and Microphone capabilities.

➔ Proximity—Enables communication with nearby devices, either via Wi-Fi Direct or
near field communication (NFC).

Chapters 14, “Audio, Video, and Speech,” and 23, “Reading from Sensors,” explain how
to write apps that take advantage of these capabilities. Additional device capabilities exist
that don’t appear on the Capabilities tab. These must be added manually to the package
manifest XML. See Chapter 24, “Controlling Devices,” for more information.

Network Capabilities

Without any network capabilities, a Windows Store app cannot do any communication
over any kind of network except for the automatic roaming of application data described
in Chapter 20, the seamless opening/saving of network files enabled by the file picker, or
the peer-to-peer connections enabled by the Proximity capability. Four types of network
capabilities exist:

➔ Internet (Client)—This is the only network capability that most apps need. It
provides outbound access to the Internet and public networks (going through the
firewall).

➔ Internet (Client & Server)—This is just like the preceding capability except it
provides both inbound and outbound access, which is vital for peer-to-peer apps.
It’s a superset of “Internet (Client)” so if you request this capability in your mani-
fest, then you don’t need to request the other one.

➔ Private Networks (Client & Server)—Provides inbound and outbound access to
trusted home and work networks (going through the firewall).

➔ Enterprise Authentication—Enables intranet access using the current Windows
domain credentials. This is a restricted capability.

Identity Capabilities

This is not really a fourth category of
capabilities, but rather a single outlier
that doesn’t fit anywhere else. The
Shared User Certificates capability
enables access to digital certificates that
validate a user’s identity. The certificate
could be installed on the computer or
stored on a smart card. This is mainly
for enterprise environments, and it is a
restricted capability.

Chapter 1 HELLO, REAL WORLD!20

Visual Studio project templates
enable the “Internet (Client)”
capability by default!

This is done because the Visual Studio team
feared that it would be too confusing for
developers if simple network-dependent
calls failed in their brand new projects.
Therefore, be sure to remove the capability if
you don’t need it. Otherwise, your app’s store
listing will say that your app “has permission
to use your Internet connection.”

Declarations

The Declarations tab is the one with the most options. This is where you declare your
app’s support for one or more contracts, if applicable. Contracts enable your app to coop-
erate with another app, or Windows itself, to complete a well-defined task. Every contract
has a source that initiates the task and a target that completes it.

Your app can be the source for a contract without doing anything in the package mani-
fest. (It just makes various API calls.) To be the target, however, your app must be acti-
vated in a special manner. This is what requires the declaration in the package manifest.
Therefore, you can think of the list of available declarations as the list of available contract
targets.

Unlike capabilities, contract target declarations are not listed in the Windows Store as
potentially unwanted features. In fact, you should go out of your way to mention your
supported contract scenarios, because they can be very useful! There’s nothing about
being a contract target that is inherently dangerous for the user. Supporting certain
contracts does require relevant capabilities, but many don’t require any. See Chapter 22,
“Leveraging Contracts,” for specific examples.

Content URIs

This tab, new to Windows 8.1, only applies if you are hosting HTML content inside your
XAML app. It simply houses a list of HTTPS URLs whose JavaScript is allowed (or disal-
lowed) to raise events that can be handled by your app. For more information, see the
discussion of the WebView control in Chapter 15, “Other Controls.”

Packaging

The Packaging tab is meant to describe information needed for the app’s listing in the
Windows Store. However, for apps in the store, this information is managed by the
Windows Dev Center dashboard. You therefore don’t normally need to change these
values in your local package manifest:

➔ The package name is a unique identifier. Visual Studio automatically fills it in with
a globally-unique identifier known as a GUID. That said, for easier debugging and
identification of your app’s local data store, it’s best to replace the GUID with a
human-readable name, such as CompanyName.AppName. This name doesn’t impact
real users of your app, as the Windows Store assigns this value in the package that
users download.

➔ The package display name is the name of your app in the store, but this also gets
replaced when you follow the procedure to upload an app, so you can leave this
item alone.

➔ The version, set to 1.0.0.0 by default, is a four-part value interpreted as
Major.Minor.Build.Revision. You can set this value however you like. There are only
two requirements enforced by the Windows Store:

Understanding the App Package 21

1. Each new published version has a higher version number than previous
published versions (for the same target version of Windows).

2. If your app simultaneously has a package for Windows 8 and a package for
Windows 8.1, the Windows 8 package version number must never exceed the
version number of your first published Windows 8.1 package.

➔ The bottom of this tab contains publisher information based on the certificate used
to authenticate the package. Visual Studio configures this to work with the tempo-
rary certificate it generates, and the store upload process reconfigures it to work with
your developer account.

For testing certain notification or purchase scenarios that depend on an app’s identity in
the Windows Store, you can automatically update your local package manifest’s packaging
values to match the values maintained by the Windows Store. To do this, you can select
Associate App with the Store…, which can be found on the Store menu in Visual Studio
Express or on the Project, Store menu in other editions.

Updating XAML and C# Code
With the tour of the package manifest complete, we are ready to fill our blank app with a
little bit of content. Let’s look at the remaining files in our project and update them
where necessary.

The Main Page User Interface

Every app consists of one or more windows with one or more pages. Our HelloRealWorld
project, created from the Blank App template, is given a single window with a single page
called MainPage. It defines what the user sees once your app has loaded and the splash
screen has gone away. MainPage, like any page that would be used in a XAML app, is
implemented across two files: MainPage.xaml contains the user interface, and
MainPage.xaml.cs contains the logic, often called the code-behind. Listing 1.1 shows the
initial contents of MainPage.xaml.

LISTING 1.1 MainPage.xaml—The Initial Markup for the Main Page

<Page

x:Class=”HelloRealWorld.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:local=”using:HelloRealWorld”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

mc:Ignorable=”d”>

<Grid Background=”{ThemeResource ApplicationPageBackgroundThemeBrush}”>

</Grid>

</Page>

Chapter 1 HELLO, REAL WORLD!22

At a quick glance, this file tells us:

➔ This is a class called MainPage (in the HelloRealWorld namespace) that derives from
a class called Page (the root element in this file).

➔ It contains an empty Grid (an element examined in Chapter 4, “Layout”) whose
background is set to a theme-defined color. From running the app, we know this
color is a very dark gray (#1D1D1D).

➔ It contains a bunch of XML namespaces to make adding new elements and attrib-
utes that aren’t in the default namespace more convenient. These XML namespaces
are discussed in the next chapter.

Listing 1.2 updates the blank-screen MainPage.xaml with a few elements to produce the
result in Figure 1.8.

LISTING 1.2 MainPage.xaml—Updated Markup for the HelloRealWorld App

<Page

x:Class=”HelloRealWorld.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:local=”using:HelloRealWorld”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

mc:Ignorable=”d”>

<Grid Background=”{ThemeResource ApplicationPageBackgroundThemeBrush}”>

<StackPanel Name=”stackPanel” Margin=”100” Background=”Blue”>

<TextBlock FontSize=”80” TextWrapping=”WrapWholeWords” Margin=”12,48”>

Hello, English-speaking world!</TextBlock>

<TextBlock FontSize=”28” Margin=”12”>Please enter your name:</TextBlock>

<Grid>

<Grid.ColumnDefinitions>

<ColumnDefinition/>

<ColumnDefinition Width=”Auto”/>

</Grid.ColumnDefinitions>

<TextBox Name=”nameBox” Margin=”12”/>

<Button Grid.Column=”1” Click=”Button_Click”>Go</Button>

</Grid>

<TextBlock Name=”result” FontSize=”28” Margin=”12”/>

</StackPanel>

</Grid>

</Page>

This listing adds a bunch of new content inside the topmost Grid. The Grid and
StackPanel elements help to arrange the user-visible elements: TextBlocks (i.e. labels), a
TextBox, and a Button. All of these elements are described in depth in upcoming chapters.

Updating XAML and C# Code 23

Chapter 1 HELLO, REAL WORLD!24

FIGURE 1.8 The HelloRealWorld user interface asks the user to type his or her name.

The idea for this app is to display the user’s name in the TextBlock named result once
he or she clicks the Go Button. (Granted, this is not a useful app, but it’s all we need to
demonstrate the concepts throughout the remainder of this chapter.) To act upon the
Button being clicked, this XAML specifies that a method called Button_Click should be
called when its Click event is raised. This method must be defined in the code-behind
file, which we’ll look at next.

The Main Page Logic

Listing 1.3 shows the initial contents of MainPage.xaml.cs, the code-behind file
for MainPage.xaml. Until we add our own logic, it contains only a required call to
InitializeComponent that constructs the page with all the visuals defined in the XAML
file. The class is marked with the partial keyword because its definition is shared with a
hidden C# file that gets generated when the XAML file is compiled.

LISTING 1.3 MainPage.xaml.cs—The Initial Code-Behind for the Main Page

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices.WindowsRuntime;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

// The Blank Page item template is documented at
// http://go.microsoft.com/fwlink/?LinkId=234238

namespace HelloRealWorld
{
/// <summary>
/// An empty page that can be used on its own or navigated to within a Frame.
/// </summary>
public sealed partial class MainPage : Page
{
public MainPage()
{
this.InitializeComponent();

}
}

}

We need to add an implementation of the Button_Click method referenced by the
XAML. It can look as follows:

void Button_Click(object sender, RoutedEventArgs e)

{

this.result.Text = this.nameBox.Text;

}

The named elements in the XAML corre-
spond to fields in this class, so this code
updates the result TextBlock with the

Updating XAML and C# Code 25

Never remove the call to
InitializeComponent in the
constructor of your code-
behind class!

InitializeComponent is what associates
your XAML-defined content with the
instance of the class at run-time.

text from the nameBox TextBox. Figure 1.9 shows what this looks like, after the user types
“Adam” then clicks the Button.

Chapter 1 HELLO, REAL WORLD!26

FIGURE 1.9 The result TextBlock contains the typed text after the user clicks the Button.

The Application Definition

The application definition is contained in App.xaml and its code-behind file, App.xaml.cs.
App.xaml is a special XAML file that doesn’t define any visuals, but rather defines an App
class that can handle application-level tasks. Usually the only reason to touch this XAML
file is to place new application-wide resources, such as custom styles, inside its
Application.Resources collection. Chapter 18, “Styles, Templates, and Visual States”
contains many examples of this. Listing 1.4 shows the contents of App.xaml in our
HelloRealWorld project.

LISTING 1.4 App.xaml—The Markup for the App Class

<Application

x:Class=”HelloRealWorld.App”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:local=”using:HelloRealWorld”>

</Application>

Listing 1.5 contains the auto-generated contents of the code-behind file for App.xaml. It
contains three vital pieces:

➔ A constructor, which is effectively the app’s main method. The plumbing that makes
it the app’s entry point is enabled by an “Entry point” setting in the package mani-
fest (on the Application tab). When you create a project, Visual Studio automatically
sets it to the namespace-qualified name of the project’s App class
(HelloRealWorld.App in this example).

➔ Logic inside an OnLaunched method that enables the frame rate counter overlay in
debug mode, navigates to the app’s first (and in this case only) page, and calls
Window.Current.Activate to dismiss the splash screen. If you want to add a new
page and make it be the starting point of the app, or if you want to customize the
initialization logic, this is where you can do it. See Chapter 7, “App Lifecycle,” for
more information.

➔ An OnSuspending method that is attached to the base class’s Suspending event. This
gives you an opportunity to save state before your app is suspended, although the
generated code does nothing here other than provide a TODO comment. Chapter 7
examines app suspension.

LISTING 1.5 App.xaml.cs—The Code-Behind for the App Class

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Runtime.InteropServices.WindowsRuntime;

using Windows.ApplicationModel;

using Windows.ApplicationModel.Activation;

using Windows.Foundation;

using Windows.Foundation.Collections;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;

using Windows.UI.Xaml.Data;

using Windows.UI.Xaml.Input;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Navigation;

namespace HelloRealWorld

{

/// <summary>

/// Provides application-specific behavior to supplement the base class.

/// </summary>

sealed partial class App : Application

Updating XAML and C# Code 27

{

/// <summary>

/// Initializes the singleton application object. This is the first line

/// of authored code executed; the logical equivalent of main/WinMain.

/// </summary>

public App()

{

this.InitializeComponent();

this.Suspending += OnSuspending;

}

/// <summary>

/// Invoked when the application is launched normally by the end user.

/// Other entry points are used when the application is launched to open

/// a specific file, to display search results, and so forth.

/// </summary>

/// <param name=”args”>Details about the launch request and process.</param>

protected override void OnLaunched(LaunchActivatedEventArgs args)

{

#if DEBUG

if (System.Diagnostics.Debugger.IsAttached)

{

this.DebugSettings.EnableFrameRateCounter = true;

}

#endif

Frame rootFrame = Window.Current.Content as Frame;

// Do not repeat app initialization when the Window already has content,

// just ensure that the window is active

if (rootFrame == null)

{

// Create a Frame and navigate to the first page

var rootFrame = new Frame();

if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)

{

//TODO: Load state from previously suspended application

}

// Place the frame in the current Window

Window.Current.Content = rootFrame;

}

Chapter 1 HELLO, REAL WORLD!28

if (rootFrame.Content == null)

{

// When the navigation stack isn’t restored, navigate to the first page

if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))

{

throw new Exception(“Failed to create initial page”);

}

}

// Ensure the current Window is active

Window.Current.Activate();

}

/// <summary>

/// Invoked when application execution is being suspended. Application state

/// is saved without knowing whether the application will be terminated or

/// resumed with the contents of memory still intact.

/// </summary>

/// <param name=”sender”>The source of the suspend request.</param>

/// <param name=”e”>Details about the suspend request.</param>

private void OnSuspending(object sender, SuspendingEventArgs e)

{

var deferral = e.SuspendingOperation.GetDeferral();

//TODO: Save application state and stop any background activity

deferral.Complete();

}

}

}

There’s one more file—
AssemblyInfo.cs—but it’s not worth
showing in this book. It contains a
bunch of attributes where you can put a
title, description, company name, copy-
right, and so on that get compiled into
your assembly (the EXE or DLL). But
setting these is unnecessary because all
of the information used by the Windows
Store is separately managed. Still,
the AssemblyVersion and
AssemblyFileVersion attributes, typi-
cally set to the same value, can be useful
for you to keep track of distinct versions
of your application:

Updating XAML and C# Code 29

If you want to create a richer splash
screen, perhaps with an animated
progress graphic, the way to do this is

by mimicking the splash screen with a
custom page. Inside App.OnLaunched, you
can navigate to an initial page that looks just
like the real (static) splash screen but with
extra UI elements and custom logic. The
instance of LaunchActivatedEventArgs
passed to OnLaunched even has a
SplashScreen property that exposes an
ImageLocation rectangle that tells you the
coordinates of the real splash screen image.
This makes it easy to match the splash
screen’s appearance no matter what the
current screen’s resolution is. Such a user
interface is often called an “extended splash
screen.”

[assembly: AssemblyVersion(“1.0.0.0”)]

[assembly: AssemblyFileVersion(“1.0.0.0”)]

By using *-syntax, such as “1.0.*”, you can even let the version number auto-increment
every time you rebuild your app.

Making the App World-Ready
At this point, our HelloRealWorld app still only says “hello” to the English-speaking parts
of the world. The Windows Store serves hundreds of markets and over a hundred differ-
ent languages, so ignoring them greatly reduces the audience for your app. Making your
app world-ready involves two things: globalization and localization.

Globalization refers to making your app act appropriately for different markets
without any changes or customizations. An example of this is formatting the display
of currency correctly for the current region without writing special-case logic. The
Windows.Globalization namespace contains a lot of functionality for handling dates and
times, geographic regions, number formatting, and more. Plus, built-in XAML controls
such as DatePicker and TimePicker, discussed in Chapter 15, are globalization-ready. For
many apps, these features might not apply.

Localization, which is relevant for practically every app, refers to explicit activity to adapt
an app to each new market. The primary example of this is translating text in your user
interface to different languages and then displaying the translations when appropriate.
Performing this localization activity is the focus of this section.

To make an app ready for localization, you should remove hardcoded English strings that
are user-visible, and instead mark such elements with a special identifier unique within
the app. Listing 1.6 updates our XAML from Listing 1.2 to do just that.

LISTING 1.6 MainPage.xaml—Markup with User-Visible English Text Removed

<Page

x:Class=”HelloRealWorld.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:local=”using:HelloRealWorld”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

mc:Ignorable=”d”>

<Grid Background=”{ThemeResource ApplicationPageBackgroundThemeBrush}”>

<StackPanel x:Uid=”Panel” Name=”stackPanel” Margin=”100”>

<TextBlock x:Uid=”Greeting” FontSize=”80” TextWrapping=”WrapWholeWords”

Margin=”12,48”/>

<TextBlock x:Uid=”EnterName” FontSize=”28” Margin=”12”/>

<Grid>

<Grid.ColumnDefinitions>

Chapter 1 HELLO, REAL WORLD!30

<ColumnDefinition/>

<ColumnDefinition Width=”Auto”/>

</Grid.ColumnDefinitions>

<TextBox Name=”nameBox” Margin=”12”/>

<Button x:Uid=”GoButton” Grid.Column=”1” Click=”Button_Click”/>

</Grid>

<TextBlock Name=”result” FontSize=”28” Margin=”12”/>

</StackPanel>

</Grid>

</Page>

The x:Uid marking is completely independent from an element’s Name. The former is
specifically for the localization process, and the latter is for the benefit of code-behind.
Note that Listing 1.6 not only removes the three hardcoded strings from the two
TextBlocks and the Button, but it also removes the explicit “Blue” color from the
StackPanel! This way, we can customize the color for different languages in addition to
the text.

With the IDs in place and the text and color for English removed, we need to add them
back in a way that identifies them as
English-only. To do this, add a new
folder to the solution called en. This is
the language code for all variations of
English. If you want to target the United
Kingdom separately, you could add a
folder called en-GB. If you want to
target Canada separately, you could add
a folder called en-CA. And so forth.

Right-click on the en folder and select
Add, New Item, then pick Resources
file from the General tab. The default
name of Resources.resw is fine. This file
is a table for all your language-specific
strings. Figure 1.10 shows this file populated for English.

Each value must be given a name of the form UniqueId.PropertyName. UniqueId must
match the x:Uid value for the relevant element, so the Panel.Background entry in Figure
1.10 sets Background to Blue on the StackPanel marked with x:Uid=”Panel” in Listing
1.6. From the listing, it’s not obvious that GoButton’s relevant property is called Content,
unlike the TextBlocks’ property called Text, but as you learn about the different elements
throughout this book, you’ll understand which properties to set.

Making the App World-Ready 31

FIGURE 1.10 The Resources.resw file in the
en folder is populated with English-specific values.

After filling out the Resources.resw file,
you can run the HelloRealWorld app
and the result is identical to what we
saw earlier in Figures 1.6 and 1.7.
However, the app is now ready to be
localized for other languages.

We could add additional folders named
after language codes and manually
populate translated resources with the
help of a knowledgeable friend, a profes-
sional translator, or translation software.
Depending on the current user’s
language settings, the appropriate resources are chosen at runtime, with a fallback to the
default language if no such resources exist.

However, a better option exists. To take advantage of it, you must download and install
the Multilingual App Toolkit from the Windows Dev Center. Once you do this, you can
select Enable Multilingual App Toolkit from Visual Studio’s Tools menu. This automati-
cally adds an .xlf file to a new subfolder added to your project called
MultilingualResources for a test-only language called Pseudo Language.

We’ll leverage the Pseudo Language in a
moment, but first let’s add support for a
second real language: Traditional
Chinese. To do this, right-click on your
project in Solution Explorer and select
Add translation languages…. This
produces the dialog shown in Figure
1.11.

In this dialog, Pseudo Language and our
default English language is already
selected, but we can scroll down and
select Chinese (Traditional) [zh-Hant]
from the list. After pressing OK, the
MultilingualResources folder now has
two .xlf files: one for Pseudo Language,
and one for Traditional Chinese.

Chapter 1 HELLO, REAL WORLD!32

Make sure your app’s default
language matches the language
code for your default .resw file!

For me, the default language in the package
manifest is set to en-US. Because we added
default resources for en rather than specifi-
cally for en-US, I must change the default
language to en for the rest of the features
discussed in this section to work correctly.
Fortunately, building your app with such a
mismatch causes a warning to be reported.

FIGURE 1.11 The Multilingual App Toolkit
automates the process for supporting new
languages.

Now rebuild the HelloRealWorld app. This populates each .xlf file with a “translation”
for each item from the default language .resw file. Initially, each translation is just the
duplicated English text. However, for some languages, such as the two we’ve chosen, you
can generate machine translations based on the Microsoft Translator service! To do this
for the entire file, right-click on each .xlf file and select Generate machine translations.
Voilà! Now we’ve got initial translations for all of our resources, which you can see by
opening each .xlf file and examining the list inside the multilingual editor. This is
shown in Figure 1.12.

Your willingness to trust the results from machine translation is a personal decision, but
at least machine translation is a good starting point. (Notice that the generated transla-
tions are automatically placed in a “Needs Review” state.) That said, we definitely don’t
want the Blue text translated to ! This isn’t a user-visible string, and is not a
valid value for Background. Instead, let’s “translate” it to Red, which will serve as our
language-specific background color. Similarly, we don’t want Blue’s Pseudo Language
translation of [D05A0][!!_Bļùè_!!], so let’s change that to Green.

Making the App World-Ready 33

What is Pseudo Language?

Pseudo Language is designed to test how well your app handles being localized to various
(real) languages. When leveraging machine translation to Pseudo Language, you get an English-
looking string whose contents are still recognizable, but designed to catch problems.

Pseudo Language strings are longer than the corresponding English strings, to help you catch
cases where text might get truncated or cause issues from wrapping when you translate to a
real language whose text tends to be longer than English. Each string also begins with an ID, to
help you track a problematic piece of text to its original resource. For example, a Pseudo
Language translation of Hello, English Speaking World! can look like [07223]

Because of the unique appearance of Pseudo
Language, it also helps you catch user-visible text in your user interface that you forgot to extract
to a resource.

What are .xlf files?

These files, which are generated by the Multilingual App Toolkit, are XLIFF files, an industry-
standard XML format for localizable data. In addition to listing source and target strings (with
optional comments), these files enable a workflow in which resources can be marked as New,
Needs Review, Translated, Final, or Signed Off.

The benefit of using XLIFF files to store translations is that you can send them directly to a
professional translation vendor, as they should already have a workflow involving this format. Or,
if you leverage friends to do your translations, you can have them install the Multilingual App
Toolkit and use its Multilingual Editor in a standalone fashion. No Visual Studio installation is
necessary.

Visual Studio includes functionality for packaging and sending XLIFF files, as well as importing
updated files that merge with your local content. These options can be found by right-clicking an
.xlf file in Solution Explorer.

[!!_Ĥȩlĺó, É ġļi̧śh̄-şpêãḰ ˙̂ı ġ ẃòŕld̄ !_!!]N̆ N

FIGURE 1.12 Each .xlf file contains machine-generated initial translations, courtesy of
Microsoft Translator.

We have one more change to make. We don’t want “Hello, English-speaking world!” to be
translated to Chinese, but rather “Hello, Chinese-speaking world!” Both Microsoft
Translator and a colleague tell me that “ !” is a valid translation, so we can
paste that into the appropriate spot of the Chinese .xlf file.

After rebuilding the project, we are now ready to test the localized versions of
HelloRealWorld. Just as if we had manually added separate .resw files in per-language
folders, the translated resources are used automatically based on the current Windows
language settings.

To change the default language used by Windows, you can either use the PC Settings app
or the desktop Control Panel. In PC Settings, this can be found under Time & language;
Region & language. In Control Panel, it’s under Clock, Language, and Region;
Language. Add Chinese (Traditional) and make it the default language to test the
Traditional Chinese resources.

To add Pseudo Language (and make it the default language), you have to use a hidden
trick in Control Panel. After clicking Add languages, type qps-ploc in the search box for

Chapter 1 HELLO, REAL WORLD!34

Pseudo Language

Chinese (Traditional)

the entry called English (qps-ploc) to appear. You must type the whole thing for this to
work! This language is hidden in this way because no normal user should ever enable it.

Figure 1.13 shows the result of running HelloRealWorld when Windows is set to use each
of the two non-English languages. These changes are handled completely by the resource-
loading mechanism. Other than the switch to marking elements with x:Uid, no code
changes were needed. This figure also highlights Pseudo Language’s knack for using really
long strings that can highlight potential weaknesses in your app’s layout.

Making the App World-Ready 35

Pseudo LanguageChinese (Traditional)

FIGURE 1.13 HelloRealWorld now acts appropriately for Traditional Chinese and for the test-
only Pseudo Language.

You can add additional languages to your apps that have already been published in the
Windows Store, thanks to resource pack support in Windows 8.1. As long as you don’t
update any code or your version number, your new resources get downloaded only to users
with a matching language preference.

The Microsoft Local Language Portal (http://www.microsoft.com/language) is a fantastic
resource for getting translations. You can search for terms and get a translation in every
language supported by Windows (over 100). These are not machine translations, but rather

translations Microsoft has used in their own products. As such, they tend to be geared towards
the kind of user-visible labels that are commonly found in software. The portal even shows you
which products have made use of the translated terms. Just be sure you agree with the license
and terms of use, which can be found on the website.

http://www.microsoft.com/language

Making the App Accessible
XAML apps have a number of accessibility features built in, designed to help users with
disabilities. You can test this support by enabling various features in the Ease of Access
section in the PC Settings app. You can configure Narrator, a screen reader, and witness it
convey information about your app with varying degrees of success. (You can quickly
toggle Narrator on and off by pressing Windows+Enter.) You can choose a high contrast
theme and watch controls used by your app automatically change to match the theme.
You can turn off standard animations.
And so on.

To make your app usable to the broadest
set of customers, including people with
disabilities, you should take steps to
ensure it works even better with these
assistive technologies. In this section, we
look at improving the screen reading
experience for our HelloRealWorld app,
and accounting for high contrast
themes.

Improving Screen Reading

If you turn on Narrator and launch the HelloRealWorld app (with English as the
Windows default language), you hear the following:

“HelloRealWorld window”

“Editing”

The first utterance is triggered by the app’s window getting focus, and the second utter-
ance is triggered by the TextBox getting focus (which happens automatically).

This experience isn’t good enough, because Narrator doesn’t report the purpose of the
TextBox. To fix this, we need to leverage the UI Automation framework, which is as
simple as setting the following automation property on the TextBox:

<TextBox AutomationProperties.Name=”Please enter your name”

Name=”nameBox” Margin=”12”/>

If you add this property then rerun HelloRealWorld with Narrator on, you will hear the
following:

“HelloRealWorld window”

“Please enter your name”

“Editing”

Chapter 1 HELLO, REAL WORLD!36

The Windows SDK includes several
tools that help you ensure that your
app is accessible. The most important

one is UI Accessibility Checker, which
reports missing accessibility information in
your app. Others are Inspect, which is a
viewer for accessibility data on your
elements, and Accessible Event Watcher,
which focuses on the accessiblity events that
should be raised.

Note that when you give the Go Button focus, such as by pressing Tab, Narrator says:

“Go button”

This works automatically, thanks to built-in Button behavior that reports its content to
the UI Automation framework.

When you click the Button, however, Narrator gives no indication that text has been
added to the screen. If a message is worth showing, then it’s worth hearing as well. To fix
this problem, we can add the following automation property to the result TextBlock

that identifies it as a live region:

<TextBlock AutomationProperties.LiveSetting=”Polite”

Name=”result” FontSize=”28” Margin=”12”/>

A live region is an area whose content changes. This AutomationProperties.LiveSetting
property can be set to one of the following values:

➔ Off—This is the default value.

➔ Polite—Changes should be communicated, but they should not interrupt the
screen reader.

➔ Assertive—Changes should be communicated immediately, even if the screen
reader is in the midst of speaking.

Live region changes are not detected automatically, however. You must trigger them in
C#. In our example, we just need to add an extra line of code to the existing
Button_Click event handler:

void Button_Click(object sender, RoutedEventArgs e)

{

this.result.Text = this.nameBox.Text;

// Notify a screen reader to report this text

TextBlockAutomationPeer.FromElement(this.result).RaiseAutomationEvent(

AutomationEvents.LiveRegionChanged);

}

TextBlock, as with other controls, has a peer class in the
Windows.UI.Xaml.Automation.Peers namespace. These classes are named with the pattern
ElementNameAutomationPeer, and have several members that are designed for accessibility
as well as automated testing.

Making the App Accessible 37

Handling High Contrast Themes

The built-in controls automatically adjust their appearance when the user enables a high
contrast theme. They adjust their colors to match the theme’s eight user-customizable
colors, and in some cases they change their rendering in other ways. Because of this, your
app can automatically look correct under a high contrast theme without you doing extra
work. However, when you use images or hardcoded colors, which are quite common,
problems arise. Images can be a problem when they convey information but do not use
enough contrast. Hardcoded colors are a problem for the same reason, but also because
they can make things completely unreadable when intermixed with colors that drastically
change under a high contrast theme. In general, mixing hardcoded colors with dynamic
colors can be a recipe for disaster.

HelloRealWorld doesn’t use any images, but Chapter 13 explains how you can provide
separate versions of your images that can be used for high contrast themes only.

For HelloRealWorld, the hardcoded blue (or red or green) background color could be
problematic as the colors of the other elements change. (Although none of the high
contrast themes use blue, red, or green as a text color by default, the user could always
choose it for the color of text.) We can fix this in code-behind by checking whether the
app is running under high contrast and simply removing the StackPanel’s Background in
that case:

public sealed partial class MainPage : Page

{

Brush defaultBackground;

public MainPage()

{

InitializeComponent();

// Save the default background for later

this.defaultBackground = this.stackPanel.Background;

Chapter 1 HELLO, REAL WORLD!38

After the work we did to localize the HelloRealWorld app, it would be unfortunate to give
screen readers a hardcoded English string, as shown earlier:

<TextBox AutomationProperties.Name=”Please enter your name”

Name=”nameBox” Margin=”12”/>

Fortunately, automation properties can be localized just like any other property. To do this,
remove the explicit setting and give the element an x:Uid:

<TextBox x:Uid=”NameBox” Name=”nameBox” Margin=”12”/>

In this example, you should then add an entry in the Resources.resw file named NameBox.
AutomationProperties.Name, and its value for English should be “Please enter your
name”.

AccessibilitySettings settings = new AccessibilitySettings();

// Update the background whenever the theme changes

settings.HighContrastChanged += OnHighContrastChanged;

// Set the background appropriately on initialization

OnHighContrastChanged(settings, null);

}

void OnHighContrastChanged(AccessibilitySettings sender, object args)

{

this.stackPanel.Background =

sender.HighContrast ? null : this.defaultBackground;

}

…

}

Because the user could change the theme while our app is running, we need to handle
the HighContrastChanged event to adjust accordingly. The rest of the app’s elements
already adjust automatically. Figure 1.14 shows the result of adding this code then
running the app under two different high contrast themes. Chapter 18 explains how you
can define theme-specific colors without needing to write C# code such as this.

Making the App Accessible 39

FIGURE 1.14 Removing the explicit StackPanel background makes the app look appropri-
ate under any high contrast theme.

High contrast white themeHigh contrast #1 theme

Chapter 1 HELLO, REAL WORLD!40

By defining and using the defaultBackground member, the code that handles the
HighContrastChanged event preserves the language-specific background color that
comes from one of the Resources.resw files. It does so without needing to programmati-

cally retrieve the current resource value. However, if you need to do so, you can use code like the
following for the Panel.Background value:

ResourceCandidate rc = ResourceManager.Current.MainResourceMap.GetValue(

“Resources/Panel/Background”, ResourceContext.GetForCurrentView());

string backgroundString = rc.ValueAsString;

If you do the following:

➔ check that the Windows SDK accessibility tools have no high-priority complaints
about your app

➔ verify that your app acts appropriately when using Narrator

➔ verify that your app acts approrpiately when running under high contrast

➔ verify that your app can be used when navigating using only the keyboard

then you should take credit for your work and check the “My app meets accessibility guidelines”
checkbox within your app’s listing in your Windows Dev Center dashboard. This fact gets
advertised in the Windows Store, and it makes your app shows up for users who search for
accessible apps.

Submitting to the Windows Store
Once your app is finished, you can submit it to the Windows Store via items on the Store
menu in Visual Studio Express, or via the Project, Store menu in other editions of Visual
Studio. The Visual Studio integration works in concert with pages on the Windows Dev
Center website to help you complete your submission. Before doing this, however, you
have some tasks to complete:

➔ Set up your developer account at http://dev.windows.com, get it verified, and fill
out your payout and tax information. This can take a couple of days for an individ-
ual account, or a couple of weeks for a business account.

➔ Reserve your app name with the Windows Store, as it requires each app’s name to
be unique. You can reserve names at any time, and you have up to a year to submit
the app before losing each reservation. You can also reserve additional names for
other languages.

http://dev.windows.com

➔ Download, install, and run the Windows App Certification Kit (WACK) from the
Windows Dev Center. This tests your app for violations that cause it to fail the
Windows Store certification process, so running it in advance can save you a lot
of time.

The Windows Store certification process consists of three parts:

➔ Technical checks. This is simply running the Windows App Certification Kit on
your app. If you pass its tests before submitting your app, you should have nothing
to worry about here.

➔ Security checks. This ensures that your software isn’t infected with a virus, which
again should not be a concern for most developers.

➔ Content checks. This is the trickiest part of the process and, unlike the other two, is
performed manually by human reviewers. Reviewers ensure that the app does what
it claims to do and follows all the app certification requirements published in the
Windows Dev Center.

The very first certification requirement is that the app “must offer customers unique,
creative value or utility,” so HelloRealWorld is bound to fail this requirement. This
requirement may be obvious, but there are some requirements that often surprise people
and cause many apps to fail certification:

➔ If your app requires a network capability, you must write a privacy statement that
explains what data you collect, how you store or share it, how users can access the
collected data, and so on. Requirement 4.1 in the Windows Dev Center helps you
figure out how to write one. Furthermore, a link to the statement must be reachable
from the Settings pane for your app, and the same link must be included in your
listing in the Windows Store. See Chapter 21, “Supporting Charms,” for information
about adding content to the Settings pane.

➔ You must select an appropriate age rating, using guidelines from the Windows Dev
Center. For example, most apps that share personal information must be rated at
least 12+. Regardless of your app’s rating, its listing for the Windows Store cannot
contain content that is considered too mature for a 12+ rating.

➔ You must provide descriptions and screenshots for every language you support. If
your app is only partially localized for some languages, you must mention this in
your listing.

If you fail certification, you must
address the issue(s) and resubmit your
app. When you do so, it goes through
the entire process again, at the end of
the line. Fortunately, at the time of this
writing, the average length of certifica-
tion is only about 2.5 days.

Submitting to the Windows Store 41

Don’t forget to remove
capabilities you don’t need!

The certification process doesn’t warn you
about capabilities you don’t actually use, so
it’s up to you to make sure the list is not
larger than it needs to be.

Summary
You’ve now seen the basic structure of a Visual Studio project for a XAML-based Windows
Store app and gotten a taste for making an app that is ready to sell across the world. If
you’ve previously done .NET development, much of this should look familiar. If you’ve
previously dabbled in Windows Presentation Foundation (WPF) and/or Silverlight, the
role of the XAML files and the C# files should be obvious. And if you’ve previously done
development for Windows Phone, then all of these concepts, including things like capa-
bilities, shouldn’t surprise you one bit. If you don’t have any such experience, then you
should at least be able to appreciate how easy it is to hit the ground running.

Personally, I’m struck by how easy it has become to localize your app and make it accessi-
ble. Software development has come a long way over the years, and you’ll see evidence of
this throughout the book, when it comes to handling heterogeneous screen DPI, making
money through the Windows Store, communicating with slick peripherals, and much
more. The team behind Windows Store apps has taken the best ideas from .NET, XAML,
Windows Phone, the Web, C++, and COM in order to create a compelling platform that’s
easy for developers to dive into. And now it’s time to dive much deeper into the language
of XAML.

Chapter 1 HELLO, REAL WORLD!42

Be sure to fill out the Notes to testers section in your Windows Dev Center dashboard to
help the reviewers understand how to use any features of your app that might not be
obvious. This is also the place to give them test credentials, if your app requires some sort of
sign in.

To increase the chances of Microsoft promoting your app in the Windows Store, put a lot of
effort into your listing. Every screenshot should be compelling, and you should feel free to
enhance screenshots with explanations or other branding that increases the “wow factor”

(as long as it’s clear what is part of the app and what isn’t). To get a feel for what makes a good
description, you should look at the descriptions for apps that are already featured prominently in
the Windows Store. In general, you should think of designing your listing like designing a box to
sell your software in a retail store.

The optional promotional images are not optional at all if you want a chance for your app to be
promoted. Again, they don’t necessarily have to be screenshots, but they should be compelling
and professional. You don’t need to provide all possible sizes, but the 414x180 and 414x468 sizes
are very important.

INDEX

Symbols & Numerics
{} (curly braces), escaping, 50

2D transforms, applying, 71-72

RotateTransform, 73

ScaleTransform, 74-75

SkewTransform, 76

TranslateTransform, 77

3D transforms, 79-81

3D video, 369

A
AAMA (American Association of Motor Vehicle

Administrators) cards, 688

absolute sizing, 98

absolute URIs, referencing files with, 330

accelerometer, reading from, 661-662

shake detection, 664

tossing motion, 663-664

accessibility features of XAML apps, 36-37

accessing known folders, 582-583

Account Picture Provider contract, 629-631

activating

apps, 182, 185-186

versus launching, 186

activation contracts, 628

AdControls, 216-217

ErrorOccurred event, 219

IsEngagedChanged event, 218

refresh behavior, 218

relevant ads, displaying, 219

AddAudioEffect method, 373-374

AddDeleteThemeTransition, 476-478

adding

ads to a page, 216-218

search results page to SearchBox control, 405

AddVideoEffect method, 373-374

adjusting

camera settings, 388-389

theme animations, 486

agile objects, 196

alarm apps, 725

alarm notifications, 726-727

alignment, 69

content alignment, 70

flow direction, 69

Stretch alignment, 69

Alipay, 214

altform-xxx resource qualifier, 340

animation

custom animations

data types, 486-487

dependent versus independent
animations, 488-489

duration of, 489

easing functions, 505, 508-509

From property, 490-492

property paths, 496-498

Storyboards, 495-500

Timeline properties, 493-495

To property, 490-492

dependent animations, 470

DirectX swap chain, integrating, 747-751

duration of, 495

EnableDependentAnimation property,
488-489

event triggers, 483-484

hardware acceleration, 470

independent animations, 470

keyframes, 500

discrete keyframes, 503-504

easing keyframes, 504

linear keyframes, 500-501

spline keyframes, 501-502

manual animations, 509-511

theme animations

adjusting, 486

Storyboards, 481-484

Timeline class, 486

theme transitions, 470

AddDeleteThemeTransition, 476, 478

applying to elements, 470-471

ContentThemeTransition, 474

EdgeUIThemeTransition, 475

EntranceThemeTransition, 472

PageThemeTransition, 475-476

PopupThemeTransition, 474

ReorderThemeTransition, 480

RepositionThemeTransition, 478-479

visual transitions, 537-542

XAML, 469

APIs

device protocol APIs, 679

device scenario APIs, 679

DirectX, integration with XAML UI Framework,
739-751

KeyboardCapabilities, 317

SimpleOrientationSensor API, reading
from, 666

WinRT, 3

app bars. See also app data; apps

bottom app bar, 262

CommandBar control, 267-269

top app bar, 262

app data, 573

app files, 576

local files, 577

roaming files, 577

temporary files, 578

app settings, 574

local settings, 574

roaming settings, 575-576

AppBar content controls, 264-266

AppBarButton content controls, 247-248

AppBarToggleButton content controls, 256

application definition, HelloRealWorld

project, 26-29

AddAudioEffect method800

Application tab (Visual Studio), 12-16

applying

2D transforms, 71-72

RotateTransform, 73

ScaleTransform, 74-75

SkewTransform, 76

TranslateTransform, 77

background color to Grid panel, 100

theme transitions to animation, 470-471

appointments providers

sources, 649

targets, 650

apps

closing, 177-179

customizing launch, 192-193

files, 576

local files, 577

roaming files, 577

temporary files, 578

launching in Visual Studio, 10-11

lifecycle, 175-177

activating apps, 185-186

killing apps, 177-178

launching apps, 182-185

resuming apps, 181

suspending apps, 178-179

suspending event, handling, 180

terminating apps, 181

package manifest, 12

settings, 574

local settings, 574

roaming settings, 575-576

sideloaded, 221

states of, 176

submitting to Windows Store, 40-41

suspended, 175

themes, 242

content controls, 243

Flyouts, 247

UI framework pairings, 1

XAML, accessibility features, 36-37

arbitrary objects (content controls), 243

ArcSegment class, 445

arrange step (layout), 784-785

ASHWID (App Specific Hardware ID), 234

associating flyouts to buttons, 245-246

ASTA (App Single-Threaded Apartment)

threads, 196

Async suffix, 196-198

asynchronous methods, 196-198

attached properties, 123-124

attributes, 60

audio

capturing, 380, 391

custom media formats, 377-380

effects, adding, 373-374, 397

format, changing, 395

markers, 373

playback, 368-370

customizing, 370-372

looping, 371

quality, changing, 392-394

speech synthesis, 397-399

trimming, 396

authentication, fingerprint authentication, 680

Auto length, 65

AutoConfiguration property

(ImageScanner), 682

automated testing, 238-240

AutoPlay Content contract, 631-633

AutoPlay Device contract, 631-633

AutoReverse property (Timeline), 493

autosizing, 98

await feature (C#), 196-198

awaitable CreateWindowsAsync method, 200

awaiting a method, 197

B
back button command (CoreWindowDialog

control), 413

BackEase function, 508

background audio task, 651-654

background color, applying to Grid panel, 100

background color, applying to Grid panel 801

background tasks

background audio, 651-654

custom background tasks, 655-658

BackgroundDownloader class, 589-591

badges, 718-720

bank cards, 688

barcode scanners, 684

claiming the device, 685-686

enabling the device, 686

retrieving the data, 686-687

BarCodeScannerReport, 686

BaseTextBlockStyle, 518

BasicProperties, reading and writing

from a file, 347

BeginTime property (Timeline), 493

behaviors

of AdControl, 218

refresh behavior, 218

relevant ads, displaying, 219

creating

PlayingCard control, 759-761

templated controls, 771-772

user controls, 757-758

Bézier curves, 445

BezierSegment class, 445

BGRA8, 335

binary format (XAML), 59

Binding markup extension, 545

binding

to collections, 550-553

to plain properties, 548

views, 562-565

C#, 547

controlling rendering, 554

data templates, 554, 556-557

template selectors, 558

DataContext property, 549-550

RelativeSource property, 547

rendering, improving performance of, 566-569

source property, 546

target property, 546

UpdateSourceTrigger property, 549

value converters, 558-562

BitmapDecoder class

decoding images, 342-343

pixels, retrieving data from, 343-344

transcoding, 356-359

BitmapEncoder class

encoding images, 351, 353

transcoding, 356-359

writing pixel data, 353-354

BitmapIcon content controls, 252-254

BitmapProperties, reading from decoder,

349-350

BitmapSource class, WriteableBitmap subclass,

334-337

BitmapTransform class, 346

Blocks, 304

Bluetooth Smart devices

connecting to the device, 690-691

communicating with the device, 691, 694

declaring device capability, 689, 692-693

bottom app bar, 262

BounceEase function, 508

Brushes, 452

color brushes, 452

LinearGradientBrush, 453-459

SolidColorBrush, 452-453

tile brushes, 459

ImageBrush, 460-461

WebViewBrush, 461-463, 466

bubbling, 125-128

bulk transfers, 697

business models, 213

Button content control, 244

ButtonBase behaviors, 247

Flyouts, 245-247

ButtonBase behaviors, 247

buttons

AppBarToggleButton content control, 256

back button command (CoreWindowDialog
control), 413

clicking, 244, 283

custom buttons, adding to MessageDialog
control, 416

HyperlinkButton content control, 254-255

password reveal button, 324

background tasks802

RadioButton control, 258-259

RepeatButton content control, 256

tapping, 244

ToggleButton content control, 256

C
C#, 2

await feature, 197-198

composing JavaScript, 434-435

data binding, 547

updating, 22

cached composition, 467

caching (HTTP), retrieving data over

networks, 587

caching pages, 207-208

camera, adjusting settings, 388-389

CameraCaptureUI class, 381, 383

Canvas, SimpleCanvas, 589, 785-789

Canvas panel, 89-92

Capabilities tab (Visual Studio), 17-18

device capabilities, 19-20

file capabilities, 19

identity capabilities, 20

network capabilities, 20

CaptureElement, 384-386

capturing

audio, 380, 391

photos, 381-383, 387-389

pointers, 138-143

video, 380, 383-386, 389-390

web content with WebView control, 435-436

catalog, displaying, 227-228

certification process (Windows Store), 41

change notification, 120

CharacterSpacing property (TextBlock), 296

charms

Devices charm, 611

Play To feature, 618-620

printing, 611-617

projection, customizing, 620

Search charm, 597-598

Search pane, customizing, 599-600, 603

Search pane, showing programatically, 603

WIndows 8 Search Contract, 598-599

Settings Charm, 621-622, 624

Share charm, 603-610

CheckBox content controls, 257-258

CheckLicense method, 221

children of object elements

collection items, 52

dictionaries, 54-55

lists, 52-53

content property, 52

processing rules, 55

CircleEase function, 508

classes

ArcSegment, 445

BackgroundDownloader, 589-591

BezierSegment, 445

BitmapDecoder

decoding images, 342-343

retrieving pixel data, 343-344

transcoding, 356-359

BitmapEncoder

encoding images, 351-353

transcoding, 356-359

writing pixel data, 353-354

BitmapTransform, 346

CameraCaptureUI, 381, 383

CompositeTransform class, 77

CurrentAppSimulator, 235-239

EdgeGesture, 150

Geolocator, 666-668

GestureRecognizer, 146-149

InkManager, 161-165

handwriting recognition, 166-167

ItemControl, 271

LicenseInformation, 222

LineSegment, 445

MatrixTransform, 78-79

MediaCapture, 199

MediaStreamSource, 378

MediaTranscoder, transcoding, 392-397

classes 803

MouseCapabilities, 156

MouseDevice, 156

NavigationHelper, 208

NetworkInformation, 594

OrientationSensor, 666

PlaneProjection, 79

PolyBezierSegment, 445

PolyLineSegment, 445

PolyQuadraticBezierSegment, 445

PowerEase, 506

QuadraticBezierSegment, 445

StorageFile, 572

StorageFolder, 572

StorageLibrary, 583

SurfaceImageSource, 740

SuspensionManager, 188-189

TextElement, 303-304

TextPointer, 307

Thickness, 66-68

Timeline, 486

TransformGroup class, 78

UserConsentVerifier, 680

UserInformation, 630

VisualState, 534

clearing local values, 123

clicking, 244, 283

client-side code, 734-736

clipping, handling content overflow, 105-106

ClockIdentifier property (TimePicker

control), 428

Closed state (MediaElement), 372

closing apps, 177-179

code-behind, 22, 58

collections

binding to, 550-553

dictionaries, 54-55

lists, 52-53

views, navigating, 565

views, customizing, 562-565

color brushes, 452

LinearGradientBrush, 453-459

SolidColorBrush, 452-453

columns, sizing in Grid panel, 98, 100

combining transforms

CompositeTransform class, 77

MatrixTransform class, 78

TransformGroup class, 78

combo boxes, DatePicker control, 426-427

ComboBox items control, 277-279

CommandBar content controls, 267-269

commands, 129

CoreWindowFlyout control, 415

MVVM architecture, 129-130

communicating with peer devices, 675-676

comparing

dependent and independent animations,
488-489

DispatcherTimer and ThreadPoolTimer classes,
509-511

launching and activation, 186

compass, reading from, 665

compatibility, viral compatibility, 141

composing

HTML with XAML, 433-434

JavaScript with C#, 434-435

CompositeTransform class, 77

configuring scan sources (image scanners), 682

connection information, obtaining, 594

constructors, 27

consumable products

custom catalogs, managing, 231-232

purchases, initiating, 228-230

consuming controls, 759, 764

Contact Manager, Contact contract, 644-648

contact sources, 645-646

contact targets, 646-648

Contact Picker contract, 642

contact picker sources, 642

contact picker targets, 643-644

ContainerContentChanging event, 567-569

containers, item containers, 273

content alignment, 70

content controls, 241-242

app themes, 243

AppBar, 264-266

AppBarButton, 247-248

classes804

AppBarToggleButton, 256

BitmapIcon, 252-254

Button, 244

ButtonBase behaviors, 247

Flyouts, 245-247

CheckBox, 257-258

CommandBar, 267-269

Content property, 244

FontIcon, 251

HyperlinkButton, 254-255

PathIcon, 252

RadioButton, 258-259

RepeatButton, 256

SymbolIcon, 249-250

ToggleButton, 256

ToolTip, 259-262

content overflow, handling, 105

with clipping, 105-106

with scaling, 113-115

with scrolling, 107-111

content property, 52, 244

Content URIs tab (Visual Studio), 21

ContentThemeTransition, 474

contracts, 21, 627

Account Picture Provider contract, 629-631

activation contracts, 628

AutoPlay Content, 631-633

AutoPlay Device, 631-633

Contact Picker contract

contact picker sources, 642

contact picker targets, 643-644

File Associations declarations, 634-635

File Open Picker contract, 637-638, 640

File Save Picker contract, 641-642

New Appointments Provider contract

appointments provider sources, 649

appointments provider targets, 650

New Contact contract, 644

contact sources, 645

contact targets, 647-648

Protocol contract, 636-637

Share contract, 627

contrast resource qualifier, 339

control parts, 775

control points (Bézier curves), 445

control templates, 524-525, 555

dependency properties, hijacking, 531-532

property values, inserting, 526-531

controlling

rendering in data binding, 554

data templates, 554-557

template selectors, 558

size

Auto length, 65

height, 64-66

Margin property, 66-68

Padding property, 66-68

controls

behavior, creating, 759-761

consuming, 764

content controls, 243

AppBar, 264-266

AppBarButton, 247-248

AppBarToggleButton, 256

BitmapIcon, 252-254

Button, 244-247

CheckBox, 257-258

CommandBar, 267-269

FontIcon, 251

HyperlinkButton, 254-255

PathIcon, 252

RadioButton, 258-259

RepeatButton, 256

SymbolIcon, 249-250

ToggleButton, 256

ToolTip, 259-262

creating, 759

date and time controls

DatePicker, 426-427

ProgressRing, 429

TimePicker, 428

interactivity, handling, 775-776

items controls

ComboBox, 277-279

DisplayMemberPath property, 552

FlipView, 287

controls 805

items panels, 274-276

ListBox, 272, 279-281

ListView, 281-285

MenuFlyout, 292-293

PasswordBox, 324

PlayingCard control

making “lookless,” 765-768

visual states, defining, 769-770

popup controls, 411

CoreWindowDialog control, 411-413

CoreWindowFlyout control, 414-416

Hub control, 421-426

MessageDialog control, 416

Popup control, 418-420

PopupMenu control, 417-418

range controls, 401

ProgressBar, 402

Slider, 402-404

RichEditBox, 321-324

RichTextBlock, 308-309

embedding UIElements, 309-310

text overflow, 310-313

SearchBox, 404-405

history suggestions, providing, 406

local content suggestions, providing,
407-409

query suggestions, providing, 407

result suggestions, providing, 409

search results page, adding, 405

SemanticZoom, 289-292

templated controls, creating, 771-774

TextBlock, 295-297

Inlines property, 301-302

IsColorFontEnabled property, 300-301

OpticalMarginAlignment property, 299-300

properties, 297

Runs, 302-303

Spans, 304-305

text selection, 306-307

TextLineBounds property, 298-299

TextPointer class, 307

TextReadingOrder property, 300

underlining, 302

whitespace, 303

TextBox, 313

input scope, 317-319

MaxLength property, 314

multiline mode, 314

PreventKeyboardDisplayOnProgrammaticFocus
property, 313

spell check functionality, 315-316

text prediction, 315-316

text selection, 316

ToggleSwitch, 429-430

UI automation, supporting, 776

user controls

consuming, 759

creating, 756-758

user interface, creating, 761-763

visual states, responding to changes in,
534-537

WebView, 430

HTML, composing with XAML, 433-434

JavaScript, composing with C#, 434-435

navigation, 431-433

web content, capturing, 435-436

XAML, 249

cookies (HTTP), retrieving data over

networks, 587

CoreDispatcher property, 199-200

CoreWindowDialog control, 411-412

back button command, 413

custom commands, adding, 412-413

CoreWindowFlyout control, 414

commands, 415

formatting, 416

crashes, handling, 178

CreateAsync method, 351

CreateForTranscoding method, 356

creating

controls

behavior, 759, 761

templated controls, 771-774

user interface, 761-763

HelloRealWorld project, 9-11

SimpleCanvas, 785-787, 789

SimpleStackPanel, 789-792

UniformGrid, 792, 794-797

controls806

user controls, 756

behavior, 757-758

user interface, 756-757

WindowsRuntime component, 776-778

cropping images, 358-359, 683

curly braces, escaping, 50

CurrentAppSimulator class, 235-240

custom animations

data types, 486-487

dependent versus independent animations,
488-489

duration of, 489, 495

easing functions, 505, 508-509

From property, 490-492

keyframes, 500

discrete keyframes, 503-504

easing keyframes, 504

linear keyframes, 500-501

spline keyframes, 501-502

property paths, 496-498

Storyboards

multiple animations, 495-496

Timeline properties, 498-500

Timeline properties

AutoReverse, 493

BeginTime, 493

FillBehavior, 495

RepeatBehavior, 494

SpeedRatio, 493

To property, 490-492

custom background tasks, 655-657

conditions, 658-659

triggers, 657-658

custom Bluetooth devices, 689. See also custom

Bluetooth Smart devices

communicating with the device, 691

connecting to the device, 690-691

declaring device capability, 689

custom Bluetooth Smart devices

communicating with the device, 694

declaring device capability, 692-693

custom buttons, adding to MessageDialog

control, 416

custom catalogs, managing, 231-232

custom commands, adding to

CoreWindowDialog control, 412-413

custom HID devices, 698

communicating with the device, 699-700

connecting to the device, 699

declaring the device capability, 698

custom media formats, 377-380

custom panels, creating, 781

custom USB devices

bulk transfers, 697

connecting to the device, 696

control transfers, 696

declaring device capability, 695

interrupt transfers, 697

custom Wi-Fi Direct devices, 701-702

customizing

app launch, 192-193

collection views

groups, 562-565

navigation, 565

current value display (Slider control), 404

data updates flow in data binding, 548-549

logo images in Visual Studio, 13-16

media playback, 370-372

PDF page rendering, 362-364

projection (Devices charm), 620

Search pane, 599-600, 603

splash screen in Visual Studio, 13

CustomResource markup extension, 523

D
dark app themes, 242

data

app data, 573-576

user data, 579

file picker, 580

folder picker, 580-581

known folders, accessing, 582-583

libraries, managing, 583-584

data 807

data binding, 526, 545

binding

to collections, 550-553, 562-565

to plain properties, 548

controlling rendering, 554

data templates, 554-557

template selectors, 558

data flow, customizing, 548-549

in C#, 547

RelativeSource property, 547

rendering, improving performance of, 566-569

source object, designating as data context,
549-550

source property, 546

target property, 546

value converters, 558-562

data context, designating source object as,

549-550

data packages, 604

data templates, controlling rendering in data

binding, 554-557

data virtualization, 284

DataContext property (Binding), 549-550

date and time controls

DatePicker, 426-427

ProgressRing, 429

TimePicker, 428

DatePicker control, 426-427

debugging JavaScript runtime exceptions, 433

Declarations tab (Visual Studio), 21

decoders

BitmapProperties, reading, 349-350

enumerating, 343

decoding images, 342-343

default values, 122

deferrals, 180

defining

ad units, 214-216

async method with void return type, 198

dependency default values, 122

dependency properties, 117-118

attached properties, 123-124

change notification, 120

comparing with routed events, 126

example of, 118-120

hijacking in control templates, 531-532

local values, 122-123

multiple provider support, 122

property value inheritance, 120-121

property wrappers, 119

DependencyProperty.Register method, 119

dependent animations, 470, 488-489

designating source object as data context,

549-550

device capabilities, 19-20

device protocol APIs, 679

device scenario APIs, 679

barcode scanners, 684

claiming the device, 685-686

enabling the device, 686

retrieving the data, 686-687

custom Bluetooth devices, 689

communicating with the device, 691

connecting to the device, 690-691

declaring device capability, 689

custom Bluetooth Smart devices

communicating with the device, 694

declaring device capability, 692-693

custom USB devices

bulk transfers, 697

connecting to the device, 696

control transfers, 696

declaring device capability, 695

interrupt transfers, 697

custom Wi-Fi Direct devices, 701-702

fingerprint readers, 680

HID devices, 698

communicating with the device, 699-700

connecting to the device, 699

declaring the device capability, 698

image scanners, 680-681

previews, displaying, 683

scan sources, configuring, 682

scans, performing, 681-682

magnetic stripe readers, 687-688

data binding808

Devices charm, 611

Play To feature, 618-620

printing, 611-614

changing default options, 616

custom options, adding, 617

displayed options, changing, 617

projections, customizing, 620

dictionaries, 54-55

dimensions of pixels, retrieving, 343-344

direct routing, 125

Direct2D, 741-744

Direct3D, 744-746

DirectX, 2

integration with XAML UI Framework, 739-740

as image source, 740

swap chain, integrating, 747-751

using Direct2D content, 741-744

using Direct3D content, 744-746

discovering

orientation, 88

window size, 84-85

discrete keyframes, 503-504

Dispatcher property, 199-200

DispatcherTimer class, 509-511

displaying

catalog, 227-228

dynamic pixel content, 334-336

multiple windows, 200-203

preview of media capture, 384-386

relevant ads, 219

toast notifications, 727-728

DisplayMemberPath property

(item controls), 552

downloading files, BackgroundDownloader,

589-591

drag-and-drop operations

pointers, capturing, 138

reordering items, 284

dragging, recognizing, 158

DragItemThemeAnimation, 485

DragOverThemeAnimation, 485

drop-downs, 278

DropTargetItemThemeAnimation, 485

durable products, 225

catalog, displaying, 227-228

purchased products, identifying, 226

purchases, initiating, 226-227

duration of animations, 489, 495

dynamic images, generating

with RenderTargetBitmap, 337

with WriteableBitmap, 334-336

E
easing functions, 505, 508-509

easing keyframes, 504

EasingFunction, 505

EdgeUIThemeTransition, 475

effects, adding to media, 373-374, 397

ElasticEase function, 508

elements

named elements in templates, 542

theme transitions, applying, 470-471

visual trees, 125-126

ElementTheme property, 242

Ellipse, 439

embedding

Frames, 209-210

UIElements with RichTextBlock, 309-310

emoji symbols, 300

EnableDependentAnimation property, 488

encoding

images, 351

options, selecting, 353

writing pixel data, 353-354

transcoding, 356-359

EntranceThemeTransition, 472

enumerating decoders, 343

ErrorOccurred event (AdControl), 219

escaping curly braces, 50

event triggers, 483-484

events

ErrorOccurred (AdControl), 219

IsEngagedChanged (AdControl), 218

keyboard events, 169-171

events 809

OrientationChanged, 88

pointer events, 137

handlers, 137

keyboard modifiers, 172-174

routed events, 124

bubbling, 127-128

comparing with dependency
properties, 126

handlers, 127

Silverlight, 129

visual tree, 125-126

SelectionChanged, 272

example of dependency properties, 118-120

execution states of apps, 176

expiring durable in-app purchases, 214

explicit Runs, 303

explicit sizes, 65

ExponentialEase function, 508

extensibility, attached properties, 124

F
FadeInThemeAnimation, 484

FadeOutThemeAnimation, 484

feature reports (HID devices), 700

feature-differentiated trials, 220-222

features of Windows Store, testing, 235

FeederConfiguration property

(ImageScanner), 682

File Associations declarations, adding to

package manifest, 634-635

file capabilities, 19

File Open Picker contract, 637-640

File Save Picker contract, 641-642

files, 572

app files, 576

local files, 577

roaming files, 577

temporary files, 578

downloading, 589-591

saving to local file system, 573

user data, 579-580

FillBehavior property (Timeline), 495

FillRule property (PathGeometry), 447-448

filters (HTTP), 586-587

fingerprint readers, 680

FlatbedConfiguration property

(ImageScanner), 682

FlipView items control, 287

flow direction, 69

FlowDirection property, 71

flyouts, 245-247

focus, 169

focus rectangle, 173

folder picker, 580-581

folders, 572

known folders, accessing, 582-583

libraries, managing, 583-584

FontIcon content controls, 251

FontStretch property (TextBlock), 295

FontWeight property (TextBlock), 295

format (audio/video), changing, 395

formatting CoreWindowFlyout control, 416

Frames, embedding, 209-211

free trials

feature-differentiated trials, 220-222

time-based trials, 220

freemium business model, 213

From property (custom animations), 490, 492

full licenses, 222

listing details, obtaining, 223

purchase dialog, launching, 223

functions, easing functions, 505, 508

G
generating dynamic images

with RenderTargetBitmap, 337

with WriteableBitmap, 334-336

geofencing, 670-674

Geolocator class, retrieving current location,

666-668

events810

geometries

GeometryGroup, 448

parameters, syntax, 452

PathSegments, 445-447

representing as strings, 449-451

subclasses, 444

GeometryGroup, 448-449

Geoposition, 668

gesture recognizers, 145-146. See also gestures

dragging, 158

EdgeGesture class, 150

GestureRecognizer class, 146-149

gestures, 145-146

EdgeGesture class, 150

GestureRecognizer class, 146-149

manipulations, 151-156

swipes, recognizing, 150

tap and send, 674

zooming, 289-292

GET requests, 585-586

GetAsyncKeyState method, 170

GetFolderAsync method, 583

GetForCurrentView methods, 204

GetKeyState method, 170

GetPixelDataAsync method, 343

GetScaledImageAsThumbnailAsync

method, 573

globalization, 30-32

.xlf files, 33-34

pseudo languages, 33-34

GoBack method, 206

GoForward method, 206

GPU (graphics processing unit), hardware

acceleration, 470, 488-489

graphics. See also vector graphics

immediate-mode systems, 466

retained-mode systems, 466

Grid panel, 93-97

background color, applying, 100

columns and rows, sizing, 98-100

comparing to other panels, 100

percentage sizing support, 99

GridView items control, 285

GridView incremental rendering, 566-569

grouping items in collections, 562-565

gyrometer, reading from, 665

H
halting bubbling, 127-128

handlers. See also handling

for pointer events, 137

for routed events, 127

handling

content overflow, 105

with clipping, 105-106

with scaling, 113, 115

with scrolling, 107, 109-111

crashes, 178

suspending events, 180

handwriting

recognizing, 166-167

rendering, 161-165

hardcoded colors, 38

hardware, ASHWID, 234

hardware acceleration, 470, 488-489

Header property (ListView control), 282

height

Auto length, 65

controlling, 64-66

minimum window height, selecting, 86

HelloRealWorld project

application definition, 26-29

creating, 9-12

globalization, 30-34

localization, 30-31, 33-34

main page logic, 24-25

main page user interface, 22-24

Narrator, 37

hero images, 421

HID (Human Interface Device) devices

communicating with device, 699-700

connecting to device, 699

declaring device capability, 698

HID (Human Interface Device) devices 811

high contrast themes, 38-39

hijacking, dependency properties in control

templates, 531-532

history suggestions, providing to SearchBox

users, 406

hit testing, 141-142

hittability, 142

homeregion-xxx resource qualifier, 340

HorizontalAlignment property, 69

HorizontalContentAlignment property, 70

HTML (Hypertext Markup Language), 2, 433-434

HTTP requests, 584

caching, 587

cookies, 587

filters, 586-587

GET requests, 585-586

prefetching, 588

Hub control, 421-422

HubSection property, 423-424

Orientation property, 422

SectionHeaders property, 425-426

sections, 422

HubSection property (Hub control), 423-424

HyperlinkButton content controls, 254-255

I
IBuffer, 334

IconElement, 248

identifying

hardware, ASHWID, 234

purchased products, 226

identity capabilities, 20

IID_PPV_ARGS, 740

ILDASM (IL Disassembler), 3

Image element (XAML), 327-328

decoding images, 342-343

dynamic images, generating

with RenderTargetBitmap, 337

with WriteableBitmap, 334-336

nine-grid, 331-334

referencing files

in app data, 330

with URIs, 328-330

scaling, 337-338

file variations, loading automatically,
338-339

file variations, loading manually, 340

image scanners, 680

previews, displaying, 683

scan sources, configuring, 682

scans, performing, 681-682

image-based large templates, 715

ImageBrush, 460-461

ImageProperties, reading and writing from a

file, 347-349

images

cropping, 358-359

decoders

BitmapProperties, reading, 349-350

enumerating, 343

decoding, 342-343

dynamic images, generating

with RenderTargetBitmap, 337

with WriteableBitmap, 334-336

encoding, 351-353

hero images, 421

metadata

BasicProperties, 347

ImageProperties, 347-349

writing, 355-356

PDF pages, rendering, 359-360

photos

camera settings, adjusting, 388-389

capturing, 381-383, 387

pixels

transforming, 346

writing data, 353-354

scaling, 337-338

file variations, loading automatically,
338-339

file variations, loading manually, 340

stretching with nine-grid, 331-334

transcoding, 356-359

high contrast themes812

ImageScanner, properties, 682

immediate-mode graphics systems, 466

implicit Runs, 303

implicit styles, 519

improving

rendering performance, 566

with incremental item rendering, 566-569

with scrolling placeholders, 566-569

screen reading, 36-37

in-app purchases, 214, 225

consumable products

custom catalogs, managing, 231-232

purchases, initiating, 228-230

durable products, 225

catalog, displaying, 227-228

purchased products, identifying, 226

purchases, initiating, 226-227

in-memory data, sources of, 571

inclinometer, reading from, 665

incoming call notifications, 726-727

incremental item rendering, 566-569

independent animations, 470

versus dependent animations, 488-489

independent input, 751-752

indeterminate ProgressBar control, 429

index markers, 373

indirection, 515

inertia, 156

inheritance

style inheritance, 518

TextElement class, 304

initiating purchases, 226-230

InkManager class, 161-167

Inlines property (TextBlock control), 301-302

input

gestures, 145-146

EdgeGesture class, 150

GestureRecognizer class, 146-149

independent input, 751

keyboard input, 168-169, 171

manipulations, 151-156

mouse input, 156

palm rejection, 159

pen input, 159

handwriting, recognizing, 166-167

handwriting, rendering, 161-165

properties, 159-160

touch input, 134

multiple pointers, tracking, 143-145

pointer events, 137

pointers, 134-136

pointers, capturing, 138-143

input reports (HID devices), 699

input scope, 317-319

insert.js script, 730

client-side code, 734-736

server-side, 732-733

inserting properties in control templates,

526-531

integration of DirectX with XAML UI Framework

as image source, 740

swap chain, integrating, 747-751

using Direct2D content, 741-744

using Direct3D content, 744-746

interactive zooming, 116

interactivity (controls), handling, 775-776

interrupt transfers, 697

invoking software keyboard from custom

controls, 321

IsAvailable property (StorageFile), 572

IsColorFontEnabled property (TextBlock

control), 298-301

IsEngagedChanged event (AdControl), 218

IsFullWindow property (MediaElement), 371

IStorageItem interface, 571-572

item containers, 273

ItemControl class, 271

items controls

ComboBox, 277-279

DisplayMemberPath property, 552

FlipView, 287

GridView, 285

items panels, 274-276

ListBox, 272, 279-281

items controls 813

ListView

data virtualization, 284

Header property, 282

incremental data reordering, 285

reordering items, 284

SelectionMode property, 283-284

properties, 281-282

ScrollIntoView, 282

items panels, 274-276

J-K
JavaScript

composing with C#, 434-435

runtime exceptions, debugging, 433

jumping to HubSections, 425-426

keyboard

display, changing, 317-319

input, 168-171, 317-319

invoking from custom controls, 321

responding to showing/hiding, 321

keyboard modifiers in pointer events, 172-174

KeyboardCapabilities API, 317

keyframes, 500

discrete keyframes, 503-504

easing keyframes, 504

linear keyframes, 500-501

spline keyframes, 501-502

keywords (XAML), 59

killing apps, 177-178

known folders, accessing, 582-583

L
language-xxx resource qualifer, 340

large tile templates

image-based large templates, 715

text-only large templates, 713

launching

apps, 182-185

launching programmatically, 190-191

in Visual Studio, 10-12

comparing with activation, 186

layout, 63

arrange step, 784-785

Auto length, 65

content alignment, 70

explicit sizes, 65

FlowDirection property, 71

height, controlling, 64-66

Margin property, 66-68

measure step, 782-783

orientation, discovering, 88

Padding property, 66-68

panels, 84, 89

Canvas, 89-92

Grid, 93-100

StackPanel, 92

VariableSizedWrapGrid, 101-104

parent elements, 63

positioning, 68-69

snap points, 111-112

view states (Windows 8), 87

window size

discovering, 84-85

minimum height, selecting, 86

minimum width, selecting, 85

layoutdir-xxx resource qualifier, 340

libraries

known folders, accessing, 582-583

managing, 583-584

Windows Runtime component, creating,
776-778

LicenseInformation class, 222

licensing, full licenses, 222-223

lifecycle of apps, 175-177

activating apps, 185-186

killing apps, 177-178

launching apps, 182-185

resuming apps, 181

suspending apps, 178-180

terminating apps, 181

items controls814

lifting pointers, 247

light app themes, 242

light sensor, reading from, 665

linear interpolation, 487

linear keyframes, 500-501

LinearGradientBrush, 453-459

LineHeight property (TextBlock), 296

Lines, 440

LineSegment class, 445

ListBox control, 272

listing details, obtaining, 223

ListBox items control, 279

properties, 280

when to use, 281

lists, 52-53

ListView incremental rendering, 566-569

ListView items control

data virtualization, 284

Header property, 282

incremental data reordering, 285

properties, 281-282

reordering items, 284

ScrollIntoView, 282

SelectionMode property, 283-284

live regions, 37

live tiles, 703

tile templates, 704-705

large tile templates, 713, 715

medium tile templates, 706

static medium templates, 706-709

wide tile templates, 710

loading

scale variations for images, 338-340

XAML at runtime, 56

LoadListingInformation method, 224

local content suggestions, providing to

SearchBox users, 407-409

local files, 577

local settings, 574

local updates, 717

local values, 122-123

localization, 30-34

.xlf files, 33-34

pseudo languages, 33-34

location information

geofencing, 670-674

proximity, 674-675

retrieving, 666-668

lock screen, 736, 738

log images (Visual Studio), customizing, 13-16

logical products, 232

looping media playback, 371

M
magnetic stripe readers, 687-688

main page logic, HelloRealWorld project, 24-25

main page user interface, HelloRealWorld

project, 22-24

managed-to-unmanaged code transitions, 335

managing

custom catalogs, 231-232

libraries, 583-584

session state with SuspensionManager,
187-188

manipulations, 151-156

manual animations, 509-511

Margin property, 66-68

markers, 373

markup compatibility XML namespace, 47

markup extensions

curly braces, escaping, 50

procedural code, 51

syntax, 49-50

Matrix3DProjection, 82

MatrixTransform class, 78-79

MaxLength property (TextBox), 314

measure step (layout), 782-783

media. See also media players

audio

capturing, 391

speech synthesis, 397-398

SSML, 398-399

capturing, 380

custom formats, 377-380

markers, 373

media 815

playback, 368-370

customizing, 370-372

looping, 371

video, capturing, 383-384, 389-390

media extensions, 367-368

Media Foundation components, 367-368

media players

MediaElement as, 374-375

MediaPlayer, 376-377

MediaCapture class, 199

audio, capturing, 391

video, capturing, 389-390

MediaElement class

Closed state, 372

IsFullWindow property, 371

Paused state, 372

playback, 368-370

customizing, 370-372

looping, 371

using as media player, 374-375

video, capturing, 383-384

MediaPlayer, 376-377

MediaStreamSource class, 378

MediaTranscoder class, transcoding, 392

adding effects, 397

format, changing, 395

quality, changing, 392-394

trimming, 396

MenuFlyout, 292-293

MessageDialog control, 416

metadata

BitmapProperties, reading from decoder,
349-350

ImageProperties, reading and writing from a
file, 347-349

reading with WIC metadata query language,
350-351

writing, 355-356

methods

AddAudioEffect, 373-374

AddVideoEffect, 373-374

asynchronous, 196-197

defining with void return types, 198

awaitable CreateWindowAsync, 200

awaiting, 197

CheckLicense, 221

CreateAsync, 351

CreateForTranscoding, 356

DependencyProperty.Register, 119

GetFolderAsync, 583

GetForCurrentView, 204

GetKeyState, 170

GetPixelDataAsync, 343

GetScaledImageAsThumbnailAsync, 573

GoBack, 206

GoForward, 206

LoadListingInformation, 224

Navigate, 206

OnNavigatedFrom, 206

OnNavigatingFrom, 206

RenderToStreamAsync, 362-364

ScrollToSection, 422

SetPixelData, 353

SetSource, 369

ShowUserSelectedFile, 359-362

TryGetItemAsync, 572

UseDecoder, 351

Microsoft Advertising pubCenter

ad units, defining, 214-216

ads, adding to a page, 216-218

Microsoft MediaPlayer, 376-377

middle mouse button event handling, 157

minimum height, selecting, 86

minimum width, selecting, 85

MinuteIncrement property

(TimePicker control), 428

modal dialog boxes, CoreWindowDialog control,

411-412

back button command, 413

custom commands, adding, 412-413

mouse input, 156

MouseCapabilities class, 156

MouseDevice class, 156

multicolor font support (TextBlock control), 300

multiline mode (TextBox control), 314

multiple windows, displaying, 200-203

media816

multithreading, 195

transitioning between threads, 199-200

multitouch input, 134

MVVM (Model-View-ViewModel) architecture,

129-130

N
named elements in templates, 542

named styles, 520

namespaces, 45-47

naming object elements, 57

Narrator, 37

Navigate method, 206

navigating

views, 565

between pages, 204-207

NavigationHelper class, 208

page caching, 207-208

WebView control, 431-433

NavigationHelper class, 208

.NET classes, using with XAML, 55

network capabilities, 20

NetworkInformation class, 594

networking

connection information, obtaining, 594

data, retrieving

BackgroundDownloader, 589-591

HTTP prefetching, 588

HTTP requests, 584-587

sockets, 591

syndication, 591-593

peer devices, communicating with, 675-676

New Appointments Provider contract

appointments provider sources, 649

appointments provider targets, 650

New Contact contract, 644

contact sources, 645-646

contact targets, 647-648

NFC (Near Field Communication) tags, sending

and receiving information, 674-675

nine-grid feature (Image element), 331-334

notifications

push notifications, 728-729

toast notifications, 722

alarm notifications, 726-727

displaying, 727-728

responding to, 725

templates, 723, 725

O
object elements, 44-45

agile objects, 196

children, processing rules, 55

collection items, 52

dictionaries, 54-55

lists, 52-53

content property, 52

naming, 57

visual trees, 125-126

OfferIds, 232

offers, 232

OneTime binding, 549

OneWay binding, 549

OnNavigatedFrom method, 206

OnNavigatedTo method, 206

OnNavigatingFrom method, 206

OnSuspending handler, 180

OpticalMarginAlignment property (TextBlock

control), 298-300

orientation, discovering, 88

Orientation property (Hub control), 422

OrientationChanged event, 88

OrientationSensor class, 666

output reports (HID devices), 700

P
package manifest, 12

Packaging tab (Visual Studio), 21-22

Padding property, 66-68

Padding property 817

pages, navigating between, 204-207

NavigationHelper class, 208

page caching, 207-208

PageThemeTransition, 475-476

PAINT.NET, 4

palm rejection, 159

panels, 63, 84, 89

Canvas, 89-92

content alignment, 70

creating, 781

FlowDirection property, 71

Grid, 93-96

background color, applying, 100

comparing to other panels, 100

percentage sizing support, 99

rows and columns, sizing, 98-100

items panels, 274-276

layout

arrange step, 784-785

measure step, 782-783

positioning, 68-69

SimpleStackPanel, creating, 789-792

StackPanel, 92

VariableSizedWrapGrid, 101-104

parameters for geometries, syntax, 452

parent elements

layout, 63

panels, 63

templated parents, 526

parsing XAML at runtime, 56

password reveal button, 324

PasswordBox control, 324-325

PathFigures, 445-447

PathGeometry, FillRule property, 447-448

PathIcon content controls, 252

Paths, 442

PathSegments, 445-447

Paused state (MediaElement), 372

PDF pages

customizing rendering, 362-364

rendering, 359-362

peek templates, 708

peek wide templates, 710

peer devices, communicating with, 675-676

pen input, 159

handwriting

recognizing, 166-167

rendering, 161-165

properties, 159-160

percentage sizing support, Grid panel, 99

performance

cached composition, 467

managed-to-unmanaged code transitions, 335

of DirectX integration with XAML
UI Framework, 739-740

of rendering, improving, 566

with incremental item rendering, 566-569

with scrolling placeholders, 566-569

Performance and Diagnostics page (Visual

Studio), 11

perimeters, geofencing, 670-674

permissions, 17

perspective transforms, 79-81

photos, capturing, 381-383, 387

adjusting camera settings, 388-389

preview, displaying, 384-386

pixels, 67

BGRA8, 335

dynamic pixel content, displaying, 334-336

retrieving data from, dimensions, 343-344

transforming, 346

writing data, 353-354

plain properties, binding to, 548

PlaneProjection class, 79

Play To feature (Devices charm), 618-620

playback, custom media formats, 377-380

PlayingCard control

behavior, creating, 759, 761

consuming, 764

creating, 759

interactivity, handling, 775-776

making “lookless,” 765-768

UI automation, supporting, 776

user interface, creating, 761-763

visual states, defining, 769-770

point of sale devices, 684

point of service devices, 684

pages, navigating between818

Pointer class, 135

pointer events, keyboard modifiers, 172-174

PointerDevice class, 135

PointerDownThemeAnimation, 484

PointerPoint class, 136

PointerPointProperties, 157

pointers, 134

capturing, 138-143

events, 137

gesture recognizers, 145-146

EdgeGesture class, 150

GestureRecognizer class, 146-149

independent input, 751

lifting, 247

multiple pointers, tracking, 143-145

Pointer class, 135

PointerDevice class, 135

PointerPoint class, 136

releasing, 138

PointerUpThemeAnimation, 484

PolyBezierSegment class, 445

Polygons, 441

PolyLines, 440

PolyLineSegment class, 445

PolyQuadraticBezierSegment class, 445

PopInThemeAnimation, 484

PopOutThemeAnimation, 484

Popup control, 418-420

popup controls, 411

CoreWindowDialog, 411

back button command, 413

custom commands, adding, 412-413

CoreWindowFlyout, 414

commands, 415

formatting, 416

Hub, 421-422

HubSection property, 423-424

Orientation property, 422

SectionHeaders property, 425-426

sections, 422

MessageDialog, 416

Popup, 418-420

PopupMenu, 417-418

PopupMenu control, 417-418

PopupThemeTransition, 474

positioning, 68-69

content alignment, 70

power easing functions, 505

PowerEase class, 506

prefetching (HTTP), retrieving data over

networks, 588

PreventKeyboardDisplayOnProgrammaticFocus

property (TextBox), 313

PreviousExecutionState property, 183-185

printing, 611-614

custom options, 617

default options, 616

displayed options, changing, 617

procedural code, mixing with XAML, 56

processing rules for object element children, 55

programmatically launching apps, 190-191

programming language, selecting, 2

ProgressBar control, 402

ProgressRing control, 429

projections

customizing (Devices charm), 620

Matrix3DProjection, 81

PlaneProjection, 79

projects

C#, updating, 22

HelloRealWorld

application definition, 26-29

creating, 9-11

globalization, 30-34

localization, 30-34

main page logic, 24-25

main page user interface, 22-24

package manifest, 12

Split App, 204

XAML, updating, 22

propa snippet (Visual Studio), 123

properties

ClockIdentifier (TimePicker control), 428

Content property (content controls), 52, 244

CoreDispatcher, 199

properties 819

data binding, 545

binding to collections, 550-553

data flow, customizing, 548-549

in C#, 547

RelativeSource, 547

source object, designating as data object,
549-550

source property, 546

target property, 546

to plain properties, 548

value converters, 558-562

views, 562-565

dependency default values, 122

dependency properties, 117-118

attached properties, 123-124

change notification, 120

comparing with routed events, 126

example of, 118-120

local values, 122-123

multiple provider support, 122

property value inheritance, 120-121

property wrappers, 119

ElementTheme, 242

FillRule (PathGeometry), 447-448

FlowDirection, 71

for Slider control, 403

HorizontalAlignment, 69

HorizontalContentAlignment, 70

HubSection (Hub control), 423-424

IsFullWindow (MediaElement), 371

Lines, 440

ListBox items control, 280

ListView items control, 281-282

Header, 282

SelectionMode, 283-284

Margin, 66-68

MaxLength (TextBox), 314

MinuteIncrement (TimePicker control), 428

NineGrid (Image), 333-334

Orientation (Hub control), 422

Padding, 66-68

for pen input, 159-160

PointerPoint class, 136

PreventKeyboardDisplayOnProgrammaticFocus
(TextBox), 313

PreviousExecutionState, reacting to, 183-185

ProgressBar control, 402

RequestedTheme, 242

RoutedEvent (Storyboards), 484

SectionHeaders (Hub control), 425-426

Selector subclass, 271

SpreadMethod (LinearGradientBrush), 455

Style, setters, 515-516

TargetName (Storyboards), 482

TextBlock, 295

CharacterSpacing, 296

Inlines, 301-302

IsColorFontEnabled, 298, 300-301

LineHeight, 296

OpticalMarginAlignment, 298-300

TextAlignment, 296

TextLineBounds, 298-299

TextReadingOrder, 298-300

TextTrimming, 296

TextWrapping, 296

Timeline (Storyboard), 498-500

VerticalAlignment, 69

VerticalContentAlignment, 70

property elements, 47-48

property paths, 271, 496-498

property value inheritance, 120-121

property wrappers, 119

proportional sizing, 98

Protocol contract, 636-637

providers

dependency default values, 122

dependency properties

attached properties, 123-124

change notification, 120

example of, 118-120

local values, 122-123

multiple provider support, 122

property value inheritance, 120-121

property wrappers, 119

properties820

providing suggestions to SearchBox users, 405

history suggestions, 406

local content suggestions, 407-409

query suggestions, 407

result suggestions, 409

proximity information, retrieving, 674-675

pseudo languages, 33-34

pubCenter, 214

ad units, defining, 214-216

ads, adding to a page, 216-218

pull updates, 717-718

purchase dialog, launching, 223

purchases

consumable products

custom catalogs, managing, 231-232

initiating, 228-230

identifying, 226

in-app purchases

consumable products, 228-232

durable products, 225-228

initiating, 226-227

Push Notification wizard, 729

push notifications, 718, 728-729

Q
quadratic Bézier curves, 445

QuadraticBezierSegment class, 445

quality (audio/video), changing, 392-394

query suggestions, providing to SearchBox

users, 407

R
RadioButton content controls, 258-259

range controls, 401

ProgressBar, 402

Slider, 402

current value display, customizing, 404

properties, 403

reacting to PreviousExecutionState property,

183-185

reading

BitmapProperties from decoder, 349-350

from accelerometer, 661-662

shake detection, 664

tossing motion, 663-664

from compass, 665

from gyrometer, 665

from inclinometer, 665

from light sensor, 665

from SimpleOrientationSensor API, 666

metadata

BasicProperties, 347

ImageProperties, 347-349

with WIC metadata query language,
350-351

reading order of text, 300

receipts, validating, 232-234

receiving NFC tag information, 674-675

recognizing

gestures, swipes, 150. See also gesture
recognizers

handwriting, 166-167

Rectangles, 438-439

referencing files

in app data, 330

with URIs, 328-330

refresh behavior (AdControl), 218

regions (lock screen), 736

RelativeSource property (Binding), 547

releasing pointers, 138

relevant ads, displaying, 219

rendering

controlling in data binding, 554

data template, 554-557

template selectors, 558

handwriting, 161-165

improving performance of, 566

with incremental item rendering, 566-569

with scrolling placeholders, 566-569

PDF pages, 359-364

RenderTargetBitmap, generating dynamic

images, 337

RenderTargetBitmap, generating dynamic images 821

RenderToStreamAsync method, 362-364

RenderTransformOrigin property, 71-72

reordering items, 284

ReorderThemeTransition, 480

RepeatBehavior property (Timeline), 494

RepeatButton content controls, 256

reports, HID devices, 700

RepositionThemeAnimation, 484

RepositionThemeTransition, 478-479

representing geometries as strings, 449-451

RequestedTheme, 242

resource packages, 341

resource qualifiers, 338

contrast, 339

language-xxx, 340

responding

to changes in visual states, 534-537

to clicked toast notifications, 725

result suggestions, providing to SearchBox

users, 409

resuming apps, 181

retained-mode graphics systems, 466

retrieving

accelerometer data, 662

shake detection, 664

tossing motion, 663-664

compass data, 665

data over networks

BackgroundDownloader, 589-591

HTTP prefetching, 588

HTTP requests, 584-587

sockets, 591

syndication, 591-593

gyrometer data, 665

inclinometer data, 665

light sensor data, 665

location information, 666-668

pixel data, dimensions, 343-344

proximity information, 674-675

SensorOrientationSensor API data, 666

session state information, 188

RichEditBox control, 321-324

RichTextBlock control, 308

text overflow, 310-313

UIElements, embedding, 309-310

RichTextBlockOverflow element, 310-313

right-to-left environments, and

VariableSizedWrapGrid panel, 104

roaming files, 577

roaming settings, 575-576

RotateTransform, 73

routed events, 124

bubbling, 127-128

comparing with dependency properties, 126

handlers, 127

Silverlight, 129

visual tree, 125-126

RoutedEvent property (Storyboards), 484

rows, sizing in Grid panel, 98-100

RTF files, handling with RichEditBox control, 323

Runs, 301-303

S
saving files to local file system, 573

scale resource qualifier, 338

ScaleTransform, 74-75

scaling

handling content overflow, 113-115

Image element, 337-338

file variations, loading automatically,
338-339

file variations, loading manually, 340

scheduled updates, 717

screen reading, improving, 36-37

scrolling

GridView, 566-569

handling content overflow, 107-111

ListView, 566-569

snap points, 111-112

scrolling placeholders, 566-569

ScrollToSection method, 422

ScrollViewer, 111, 116

RenderToStreamAsync method822

Search charm, 597-598

Search pane

customizing, 599-600

showing programmatically, 603

WIndows 8 Search Contract, 598-599

search results page, adding to SearchBox

control, 405

SearchBox control, 404

history suggestions, providing, 406

local content suggestions, providing, 407-409

query suggestions, providing, 407

result suggestions, providing, 409

search results page, adding, 405

secondary tiles, 703, 720-722

SectionHeaders property (Hub control), 425-426

sections (Hub control), 422

HubSection property, 423-424

jumping to, 425-426

Segoe UI Emoji, 300

selecting

image encoding options, 353

programming language, 2

text

with TextBlock control, 306-307

with TextBox control, 316

window size

minimum height, 86

minimum width, 85

selection boxes, 277

SelectionChanged event, 272

SelectionMode property (ListView control),

283-284

Selector class, 271

selectors

ComboBox, 277-279

FlipView, 287

GridView, 285

ListBox, 279-280

properties, 280

when to use, 281

ListView

data virtualization, 284

Header property, 282

incremental data reordering, 285

properties, 281-282

reordering items, 284

ScrollIntoView, 282

SelectionMode property, 283-284

style selectors, 516-517

template selectors, controlling rendering in
data binding, 558

SemanticZoom control, 289-292

sending NFC tag information, 674-675

sensor APIs, SimpleOrientationSensor, 666

sensors

accelerometer

reading from, 661-662

shake detection, 664

tossing motion, reading, 663-664

compass, reading from, 665

gyrometer, reading from, 665

inclinometer, reading from, 665

light sensor, reading from, 665

separators for query suggestions, 410

server-side code, 730-733

session state

managing with SuspensionManager, 187-188

retrieving values, 188

SetPixelData method, 353-354

SetSource method, 369

Setters, 515-516

Settings Charm, 621-624

shake detection (accelerometer), 664

Shapes, 438. See also geometries

Ellipse, 439

Lines, 440

Paths, 442

Polygons, 441

PolyLines, 440

Rectangle, 438-439

Stroke property, 442-444

Share charm, 603-610

Share contract, 627

share sources, 603

share targets, 607-610

SharpDX, 740

SharpDX 823

ShowScrollingPlaceholders, 566-569

ShowUserSelectedFile method, 359-362

sideloaded apps, 221

Silverlight, routed events, 129

SimpleCanvas, creating, 785-789

SimpleOrientationSensor API, 666

SimpleStackPanel, creating, 789-792

simulator, 10

CurrentAppSimulator class, 236-238

automated testing, 239

SineEase function, 508

sizing

absolute sizing, 98

autosizing, 98

Grid panel, percentage sizing support, 99

height

Auto length, 65

controlling, 64-66

Margin property, 66-68

Padding property, 66-68

proportional sizing, 98

SkewTransform, 76

SkyDrive, 572

Slider control, 402

current value display, customizing, 404

properties, 403

snap points, 111-112

snap-point enabled ScrollViewers, 109

snippets, propa (Visual Studio), 123

sockets, retrieving data over networks, 591

software keyboard, 317

input scope, 317-319

invoking from custom controls, 321

responding to showing/hiding, 321

SolidColorBrush, 452-453

source property (data binding), 546

Spans, 304-305

speech synthesis, 397-399

SpeechSynthesisStream, 397-398

SpeechSynthesizer, 398-399

speeding up/down playback, 371

SpeedRatio property (Timeline), 493

spell check functionality (TextBox control),

315-316

splash screen (Visual Studio), customizing, 13

SplashScreen property, 183

spline keyframes, 501-502

Split App project, 204

SplitCloseThemeAnimation, 485

SplitOpenThemeAnimation, 485

SpreadMethod property

(LinearGradientBrush), 455

SSML (Speech Synthesis Markup Language),

398-399

StackPanel panel, 92

star syntax, 98

states of apps, 176

static image-based wide templates, 710

static medium templates, 706-709

StaticResource markup extension, 521-522

stereoscopic 3D video, 369

sticky buttons, 256

StorageFile class, 572

StorageFolder class, 572

StorageLibrary class, 583

Storyboards, 481-482

RoutedEvent property, 484

TargetName property, 482

TargetProperty, 496-498

Timeline properties, 498-500

VisualStates, 483

with multiple animations, 495-496

streching images, nine-grid feature (Image

element), 331-334

Stretch alignment, 69

strings, representing geometries as, 449-451

StrokeDashArray property, 442

StrokeDashCap property, 442

StrokeEndLineCap property, 442

StrokeLineJoin property, 442

strokes, 442-444

StrokeStartLineCap property, 442

Style property, setters, 515-516

ShowScrollingPlaceholders824

styles, 514

base TargetType, 517

BaseTextBlockStyle, 518

implicit styles, 519

indirection, 515

inheritance, 518

named styles, 520

selectors, 516-517

templates, setting inside, 532-533

theme resources, 520-523

theme style, 771

subclasses

of Geometries, 444

Selector, 271

WriteableBitmap, generating dynamic images,
334-336

submitting apps to Windows Store, 40-41

suggestions, providing for SearchBox users, 405

history suggestions, 406

local content suggestions, 407-409

query suggestions, 407

result suggestions, 409

SurfaceImageSource class, 740

suspended apps, 175

suspending apps, 178-179

suspending event, handling, 180

SuspensionManager, managing session state,

187-188

SuspensionManager class, 188-189

swap chains, integrating, 747-751

SwapChainBackgroundPanel element, 751

SwapChainPanel element, 749

SwipeBackThemeAnimation, 485

SwipeHintThemeAnimation, 485

swipes, recognizing, 150

SymbolIcon content controls, 249-250

syndication, retrieving data over networks,

591-593

syntax

geometry parameters, 452

markup extensions, 49-50

MatrixTransform class, 79

property elements, 48

star syntax, 98

T
tabs (Visual Studio)

Application tab, 12-16

Capabilities tab, 19

device capabilities, 19-20

file capabilities, 19

identity capabilities, 20

network capabilities, 20

Content URIs tab, 21

Declarations tab, 21

Packaging tab, 21-22

tap and send, 674

tapping versus clicking, 244

target property (data binding), 546

TargetName property (Storyboards), 482

TargetProperty, 498

targetsize-xxx resource qualifier, 340

tasks

background audio, 651-654

custom background tasks, 655-657

conditions, 658-659

triggers, 657-658

template selectors, controlling rendering in data

binding, 558

templated controls, 755

behaviors, creating, 771-772

creating, 771

templated controls user interface, creating,

772-774

templated parents, 526

templates, 524

control templates, 524-525, 555

dependency properties, hijacking, 531-532

property values, inserting, 526-531

data templates, controlling rendering in data
binding, 554-557

named elements, 542

setting inside Styles, 532-533

tile templates, 704-705

large tile templates, 713, 715

medium tile templates, 706

static medium templates, 706-709

wide tile templates, 710

toast templates, 723-725

templates 825

temporary files, 578

terminating apps, 181

testing Windows Store features, 235

text

reading order, 300

Runs, 301

selecting

with TextBlock, 306-307

with TextBox control, 316

Spans, 304-305

speech synthesis, 397-399

underlining, 302

text prediction functionality (TextBox control),

315-316

text-only large templates templates, 713

TextAlignment property (TextBlock), 296

TextBlock control, 295-296

properties, 297

Inlines, 301-302

IsColorFontEnabled, 300-301

new properties in Windows 8.1, 297

OpticalMarginAlignment, 299-300

TextLineBounds, 298-299

TextReadingOrder, 300

Runs, 302-303

Spans, 304-305

text selection, 306-307

TextPointer class, 307

underlining, 302

whitespace, 303

TextBox control, 313

input scope, 317-319

MaxLength property, 314

multiline mode, 314

PreventKeyboardDisplayOnProgrammaticFocus
property, 313

spell check functionality, 315-316

text prediction, 315-316

text selection, 316

TextElement class, 303-304

TextLineBounds property (TextBlock control),

298-299

TextPointer class, 307

TextReadingOrder property (TextBlock control),

298-300

TextTrimming property (TextBlock control), 296

TextWrapping property (TextBlock control), 296

theme animations, 481, 484. See also theme

transitions

adjusting, 486

Storyboards, 481-482

RoutedEvent property, 484

TargetName property, 482

VisualStates, 483

Timeline class, 486

theme resources, 520-523

theme style, 771

theme transitions

AddDeleteThemeTransition, 476-478

applying to elements, 470-471

ContentThemeTransition, 474

EdgeUIThemeTransition, 475

EntranceThemeTransition, 472

PageThemeTransition, 475-476

PopupThemeTransition, 474

ReorderThemeTransition, 480

RepositionThemeTransition, 478-479

ThemeResource markup extension, 521-522

themes, 242

app themes, flyouts, 247

high contrast, 38-39

Thickness class, 66-68

third-party payment systems, Windows

Store, 213

ThreadPoolTimer class, 509-511

threads, 195

ASTA threads, 196

transitioning between, 199-200

ticks (Slider control), 402

tile brushes, 459

ImageBrush, 460-461

WebViewBrush, 461-463, 466

tiles

badges, 718-720

live tiles, 703

secondary tiles, 703, 720-721

temporary files826

templates, 704-705

large tile templates, 713, 715

medium tile templates, 706

static templates, 706-709

wide tile templates, 710

updating, 716

local updates, 717

pull updates, 717-718

push notifications, 718

scheduled updates, 717

time, duration of custom animations, 489.

See also date and time controls

time-based trials, 220

Timeline class, 486

Timeline properties (custom animations),

498-500

AutoReverse, 493

BeginTime, 493

FillBehavior, 495

RepeatBehavior, 494

SpeedRatio, 493

TimePicker control, 428

To property (custom animations), 490-492

toast notifications, 722

alarm notifications, 726-727

displaying, 727-728

responding to, 725

templates, 723-725

ToggleButton content controls, 256

ToggleSwitch control, 429-430

tombstoning, 193

ToolTip content controls, 259-262

top app bar, 262

tossing motion, reading from accelerometer,

663-664

touch input, pointers, 134

capturing, 138-143

events, 137

multiple pointers, tracking, 143-145

Pointer class, 135

PointerDevice class, 135

PointerPoint class, 136

tracking multiple pointers, 143-145

transcoding, 356-359, 392

effects, adding, 397

format, changing, 395-396

quality, changing, 392-394

TransformGroup class, 78

transforming pixels, 346

transforms

3D transforms, 79-81

combining, 77

CompositeTransform class, 77

MatrixTransform class, 78

TransformGroup class, 78

RotateTransform, 73

ScaleTransform, 74-75

SkewTransform, 76

TranslateTransform, 77

TransitionCollections, applying to elements, 471

transitioning between threads, 199-200

transitions, 176, 537-542

TranslateTransform, 77

trimming media files, 396

TryGetItemAsync method, 572

tunneling, 125

tweaking theme animations, 486

TwoWay binding, 549

type converters, 48-49

typed styles, 519

U
UI automation, custom control support for, 776

UI framework pairings, 1

UI threads, 195-196

UI virtualization, 274

UIElements

embedding with RichTextBlock, 309-310

hit testing, 140, 142

RenderTransform property, 71

RenderTransformOrigin property, 71-72

UIElements 827

underlining with TextBlock, 302

UniformGrid, creating, 792-797

UpdateSourceTrigger property (Binding), 549

updating

C#, 22

tiles, 716

local updates, 717

pull updates, 717-718

push notifications, 718

scheduled updates, 717

XAML, 22

URIs

apps, launching, 190-191

referencing files with, 328-330

USB devices

bulk transfers, 697

connecting to the device, 696

control transfers, 696

declaring device capability, 695

interrupt transfers, 697

UseDecoder method, 351

user controls, 755

behavior, creating, 757-758

consuming, 759

creating, 756

user interface, creating, 756-757

user data, 579

file picker, 580

folder picker, 580-581

known folders, accessing, 582-583

libraries, managing, 583-584

user interfaces, creating

for PlayingCard control, 761-764

for templated controls, 772-774

user themes, 242

UserConsentVerifier class, 680

UserInformation class, 630

V
validating Windows Store receipts, 232-234

value converters, 558-562

VariableSizedWrapGrid panel, 101-104

vector graphics

Brushes, 452

color brushes, 452-459

tile brushes, 459-463, 466

geometries, 444

GeometryGroup, 448-449

PathFigures, 445-447

PathSegments, 445-447

representing as strings, 449-451

syntax, 452

Shapes, 438

Ellipse, 439

Lines, 440

Paths, 442

Polygons, 441

PolyLines, 440

Rectangle, 438-439

Stroke property, 442-444

vendor-specific magnetic stripe cards, 688

VerticalAlignment property, 69

VerticalContentAlignment property, 70

video

capturing, 380, 383-386, 389-390

custom media formats, 377-380

effects, adding, 373-374, 397

format, changing, 395

index markers, 373

markers, 373

playback, 368-370

customizing, 370-372

looping, 371

quality, changing, 392-394

stereoscopic 3D video, 369

trimming, 396

video stabilization, 374

view model, 556-557

underlining with TextBlock828

view states, 87

Viewbox, 115

views, 200

GridView, 566-569

ListView, 566-569

navigating, 565

of collections, customizing, 562-565

viral compatibility, 141

virtualization

data virtualization, 284

UI virtualization, 274

Visual State Manager, 533-542

visual states, responding to, 534-537

visual transitions, 537-542

visual states, 533-534

of PlayingCard control, defining, 769-770

responding to changes in, 534-537

visual transitions, 537-542

Visual Studio

ad units, defining, 214-216

Application tab, 12-16

apps

launching, 10-11

package manifest, 12

Capabilities tab, 19

device capabilities, 19-20

file capabilities, 19

identity capabilities, 20

network capabilities, 20

Content URIs tab, 21

Declarations tab, 21

logo images, customizing, 13-16

Packaging tab, 21-22

Performance and Diagnostics page, 11

propa snippet, 123

search results page, adding to SearchBox
control, 405

simulator, 10

splash screen, customizing, 13

support for XAML, 57-59

visual transitions, 537-542

visual tree, 125-126

VisualState class, 534

VisualStateManager, 533-542

visual states, responding to, 534-537

visual transitions, 537-542

VisualStates, 483

voices

speech synthesis, 398

SSML, 398-399

void return type, defining async methods with,

198

VSM, 533-542

visual states, responding to, 534-537

visual transitions, 537-542

W
W3C (World Wide Web Consortium), 60

web content, capturing with WebView control,

435-436

WebView control, 430

HTML, composing with XAML, 433-434

JavaScript, composing with C#, 434-435

navigation, 431-433

web content, capturing, 435-436

WebViewBrush, 461-463, 466

when to use ListBox items control, 281

Wi-Fi Direct devices, 700-702

WIC (Windows Imaging Component) metadata

language, reading metadata, 350-351

wide tile templates, 710

width

Auto length, 65

controlling, 64-66

minimum window width, selecting, 85

window size

discovering, 84-85

minimum height, selecting, 86

minimum width, selecting, 85

window size 829

windows

Frames, embedding, 209-210

multiple windows, displaying, 200-203

orientation, discovering, 88

pages

navigating between, 204-207

NavigationHelper class, 208

page caching, 207-208

panels

Canvas panel, 89-92

Grid panel, 93-100

StackPanel panel, 92

VariableSizedWrapGrid, 101-104

snap points, 111-112

Windows 8 Search Contract, 598-599

Windows 8.1

ApplicationModel.Search namespace, 600

resource packages, 341

TextBlock Control properties, 297

view states, 87

Windows Media, 367-368

Windows Runtime

components, creating, 776-779

IStorageItem interface, 571-572

Windows Store, 1

apps

compatibility with XBox controllers, 134

submitting, 40-41

business models, 213

certification process, 41

features, testing, 235

free trials

feature-differentiated trials, 220-222

time-based trials, 220

full licenses, 222

listing details, obtaining, 223

purchase dialog, launching, 223

receipts, validating, 232-234

third-party payment systems, 213

Windows.Devices.Scanners namespace, 680

Windows.Networking.Sockets namespace, 591

WIndows.Storage.FileIO class, 572

Windows.Web.Syndication namespace, 591-593

WinRT (Windows Runtime), 2

WPF (Windows Presentation Foundation), 43

wrappers, property wrappers, 119

WriteableBitmap subclass, generating dynamic

images, 334-336

writing metadata, 355-356

BasicProperties, 347

ImageProperties, 347-349

X
x:name syntax, 57

XAML, 2, 43-44

accessibility features, 36-37

animation, 469

composing HTML, 433-434

content controls, 241

controls, 249

Image element, 327-328

dynamic images, generating, 334-337

images, encoding, 351-353

nine-grid, 331-334

referencing files in app data, 330

referencing files with URIs, 328-330

writing pixel data, 353-354

keywords, 59

layout, 63

loading and parsing at runtime, 56

markup extensions, 49-51

and procedural code, 51

curly braces, escaping, 50

syntax, 49-50

MediaElement

customizing playback, 370-372

playback, 368-370

mixing with procedural code, 56

.NET classes, 55

object elements, 44-45

naming, 57

processing rules for children of object
elements, 55

windows830

property elements, 47-48

routed events, 124

comparing with dependency
properties, 126

visual tree, 125-126

type converters, 48-49

updating, 22

Visual Studio’s support for, 57-59

XML namespaces, 45-47

XAML binary format, 59

XAML language namespace, 46

XBox controllers, compatibility with Windows

Store apps, 134

XLIFF files, 33-34

.xlf files, 33-34

XML namespaces, 45-47

xml:lang attribute, 60

xml:space attribute, 60

Y-Z
zigzag motion, creating with keyframe

animation, 501

zooming

interactive zooming with ScrollViewer, 116

SemanticZoom, 290-292

zooming 831

	Table of Contents
	Introduction
	1 Hello, Real World!
	Creating,Deploying, and Profiling an App
	Understanding the App Package
	Updating XAML and C# Code
	Making the App World-Ready
	Making the App Accessible
	Submitting to the Windows Store
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

