
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336904
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672336904
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336904
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336904
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336904/Free-Sample-Chapter

Contents i

 C# 5.0

 UNLEASHED

 800 East 96th Street, Indianapolis, Indiana 46240 USA

 Bart De Smet

 C# 5.0 Unleashed

 Copyright © 2013 by Pearson Education, Inc.

 All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

 ISBN-13: 978-0-672-33690-4

 ISBN-10: 0-672-33690-1

 Library of Congress Cataloging-in-Publication Data is on file.

 Printed in the United States of America

 First Printing: April 2013

 Trademarks

 All terms mentioned in this book that are known be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

 Warning and Disclaimer

 Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The authors and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book.

 Bulk Sales

 Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

 U.S. Corporate and Government Sales

 1-800-382-3419

 corpsales@pearsontechgroup.com

 For sales outside of the U.S., please contact

 International Sales

 international@pearsoned.com

 Editor-in-Chief

Greg Wiegand

 Acquisitions Editor

Neil Rowe

 Development Editor

Mark Renfrow

 Managing Editor

Kristy Hart

 Project Editor

Andy Beaster

 Copy Editor

Keith Cline

 Indexer

Brad Herriman

 Proofreader

Debbie Williams

 Technical Editor

Christopher Wilcox

 Editorial Assistant

Cindy Teeters

 Cover Designer

Anne Jones

 Compositor

Nonie Ratcliff

 Contents at a Glance
 Introduction . 1

 1 Introducing the .NET Platform . 5

 2 Introducing the C# Programming Language . 55

 3 Getting Started with .NET Development Using C# . 103

 4 Language Essentials . 175

 5 Expressions and Operators . 251

 6 A Primer on Types and Objects . 301

 7 Simple Control Flow . 351

 8 Basics of Exceptions and Resource Management . 407

 9 Introducing Types . 463

 10 Methods . 501

 11 Fields, Properties, and Indexers . 547

 12 Constructors and Finalizers . 585

 13 Operator Overloading and Conversions . 609

 14 Object-Oriented Programming . 649

 15 Generic Types and Methods . 701

 16 Collection Types . 755

 17 Delegates . 789

 18 Events . 843

 19 Language Integrated Query Essentials . 913

 20 Language Integrated Query Internals . 977

 21 Reflection . 1057

 22 Dynamic Programming . 1119

 23 Exceptions . 1175

 24 Namespaces . 1221

 25 Assemblies and Application Domains . 1241

 26 Base Class Library Essentials . 1301

 27 Diagnostics and Instrumentation . 1373

 28 Working with I/O . 1399

 29 Threading and Synchronization . 1443

 30 Task Parallelism and Data Parallelism . 1513

 31 Asynchronous Programming . 1551

 32 Introduction to Windows Runtime . 1643

 Index . 1671

 Table of Contents

 Introduction 1

Who Should Read This Book? . 2
What You Need to Know Before You Read This Book . 2
How This Book Is Organized . 3

 1 Introducing the .NET Platform 5

A Historical Perspective . 5
A 10,000-Feet View of the .NET Platform. 9
The Common Language Infrastructure . 12
The Multilanguage Aspect of .NET . 15
Introducing .NET Assemblies. 16
The Common Type System Explained . 17
Executing Managed Code . 24
Diving into the Common Language Runtime . 32
The Base Class Library . 51
Summary . 54

 2 Introducing the C# Programming Language 55

The Evolution of C# . 55
A Sneak Peek at the Future . 95
Summary . 102

 3 Getting Started with .NET Development Using C# 103

Installing the .NET Framework . 103
Your First Application: Take One . 113
Visual Studio 2012 . 119
Your First Application: Take Two . 127
Summary . 173

 4 Language Essentials 175

The Entry Point . 175
Keywords . 181
A Primer on Types . 184
Built-In Types . 190
Local Variables. 212
Intermezzo on Comments . 223
Arrays . 230

Contents v

The Null Reference . 239
Nullable Value Types . 243
Summary . 249

 5 Expressions and Operators 251

What Are Expressions? . 251
The Evaluation Stack . 255
Arithmetic Operators . 258
String Concatenation . 269
Shift Operators . 274
Relational Operators . 275
Logical Operators . 277
Conditional Operators . 281
An Operator’s Result Type . 284
Null-Coalescing Operator . 285
Assignment . 287
Summary . 299

 6 A Primer on Types and Objects 301

Implicit Versus Explicit Conversions . 301
The typeof Operator: A Sneak Peek at Reflection . 319
Default Value Expression . 322
Creating Objects with the new Operator . 324
Member Access . 336
Invocation Expressions . 340
Element Access . 348
Summary . 349

 7 Simple Control Flow 351

What Are Statements, Anyway? . 351
Expression Statements . 353
The Empty Statement . 355
Statement Blocks. 356
Declarations . 357
Selection Statements . 358
Iteration Statements . 375
A Peek at Iterators . 391
Loops in the Age of Concurrency . 398
The goto Statement . 400
The return Statement . 404
Summary . 406

C# 5.0 Unleashedvi

 8 Basics of Exceptions and Resource Management 407

Exception Handling . 407
Deterministic Resource Cleanup . 438
Locking on Objects . 448
Summary . 462

 9 Introducing Types 463

Types Revisited . 463
Classes Versus Structs . 466
Type Members . 486
Summary . 499

 10 Methods 501

Defining Methods . 501
Specifying the Return Type . 502
Declaring Parameters . 504
Overloading . 519
Extension Methods . 524
Partial Methods . 534
Extern Methods . 538
Refactoring . 540
Code Analysis . 545
Summary . 546

 11 Fields, Properties, and Indexers 547

Fields . 547
An Intermezzo About Enums . 563
Properties . 574
Indexers . 580
Summary . 583

 12 Constructors and Finalizers 585

Constructors . 585
Static Constructors . 592
Destructors (Poorly Named Finalizers) . 595
Summary . 608

 13 Operator Overloading and Conversions 609

Operators . 609
Conversions . 633
Summary . 647

Contents viivii

 14 Object-Oriented Programming 649

The Cornerstones of Object Orientation . 649
Inheritance for Classes . 663
Protected Accessibility . 674
Polymorphism and Virtual Members . 676
Abstract Classes . 688
Interface Types . 690
Summary . 699

 15 Generic Types and Methods 701

Life Without Generics . 701
Getting Started with Generics . 704
Declaring Generic Types . 707
Using Generic Types . 712
Performance Intermezzo . 714
Operations on Type Parameters . 718
Generic Constraints . 720
Generic Methods . 736
Co- and Contravariance . 743
Summary . 754

 16 Collection Types 755

Nongeneric Collection Types . 755
Generic Collection Types . 765
Thread-Safe Collection Types . 778
Other Collection Types . 786
Summary . 787

 17 Delegates 789

Functional Programming . 789
What Are Delegates? . 794
Delegate Types . 794
Delegate Instances . 798
Invoking Delegates . 811
Putting It Together: An Extensible Calculator . 815
Case Study: Delegates Used in LINQ to Objects . 819
Asynchronous Invocation . 823
Combining Delegates . 835
Summary . 842

C# 5.0 Unleashedviii

 18 Events 843

The Two Sides of Delegates . 844
A Reactive Application . 845
How Events Work . 853
Raising Events, the Correct Way . 855
add and remove Accessors . 857
Detach Your Event Handlers . 861
Recommended Event Patterns . 871
Case Study: INotifyProperty Interfaces and UI Programming 880
Countdown, the GUI Way . 890
Event Interoperability with WinRT . 896
Introduction to Reactive Programming . 898
Summary . 911

 19 Language Integrated Query Essentials 913

Life Without LINQ . 914
LINQ by Example . 921
Query Expression Syntax . 931
Summary . 975

 20 Language Integrated Query Internals 977

How LINQ to Objects Works . 977
Standard Query Operators . 1000
The Query Pattern . 1033
Parallel LINQ . 1036
Expression Trees . 1045
Summary . 1055

 21 Reflection 1057

Typing Revisited, Static and Otherwise. 1058
Reflection . 1063
Lightweight Code Generation . 1091
Expression Trees . 1101
Summary . 1117

 22 Dynamic Programming 1119

The dynamic Keyword in C# 4.0 . 1119
DLR Internals . 1137
Office and COM Interop . 1159
Summary . 1174

Contents ix

 23 Exceptions 1175

Life Without Exceptions . 1175
Introducing Exceptions . 1178
Exception Handling . 1180
Throwing Exceptions . 1196
Defining Your Own Exception Types . 1198
(In)famous Exception Types . 1201
Summary . 1220

 24 Namespaces 1221

Organizing Types in Namespaces . 1221
Declaring Namespaces . 1227
Importing Namespaces . 1231
Summary . 1240

 25 Assemblies and Application Domains 1241

Assemblies . 1241
Application Domains . 1286
Summary . 1298

 26 Base Class Library Essentials 1301

The BCL: What, Where, and How? . 1303
The Holy System Root Namespace . 1311
Facilities to Work with Text . 1356
Summary . 1372

 27 Diagnostics and Instrumentation 1373

Ensuring Code Quality . 1374
Instrumentation . 1388
Controlling Processes . 1396
Summary . 1398

 28 Working with I/O 1399

Files and Directories . 1399
Monitoring File System Activity . 1407
Readers and Writers . 1409
Streams: The Bread and Butter of I/O . 1415
A Primer to (Named) Pipes . 1434
Memory-Mapped Files in a Nutshell . 1437
Overview of Other I/O Capabilities . 1440
Summary . 1440

 29 Threading and Synchronization 1443

Using Threads . 1444
Thread Pools . 1474
Synchronization Primitives . 1482
Summary . 1511

 30 Task Parallelism and Data Parallelism 1513

Pros and Cons of Threads . 1514
The Task Parallel Library . 1515
Task Parallelism . 1520
Data Parallelism . 1542
Summary . 1550

 31 Asynchronous Programming 1551

Why Asynchronous Programming Matters . 1551
Old Asynchronous Programming Patterns . 1564
Asynchronous Methods and await Expressions . 1584
Behind the Scenes . 1610
Advanced Topics . 1634
Summary . 1641

 32 Introduction to Windows Runtime 1643

What Is Windows Runtime? . 1643
Creating a Windows Runtime Component . 1658
Overview of the Windows Runtime APIs . 1667
Summary . 1669

 Index 1671

C# 5.0 Unleashedx

 About the Author

 Bart J.F. De Smet is a software development engineer on Microsoft’s Cloud Program-
mability Team, an avid blogger, and a popular speaker at various international confer-
ences. In his current role, he’s actively involved in the design and implementation of
Reactive Extensions for .NET (Rx) and on an extended “LINQ to Anything” mission. You
can read about Bart’s technical adventures on his blog at http://blogs.bartdesmet.net/bart .

 His main interests include programming languages, virtual machines and runtimes, func-
tional programming, and all sorts of theoretical foundations. In his spare time, Bart likes
to go out for a hike in the wonderful nature around Seattle, read technical books, and
catch up on his game of snooker.

 Before joining the company in October 2007, Bart was active in the .NET community as
a Microsoft Most Valuable Professional (MVP) for C#, while completing his Bachelor of
Informatics, Master of Informatics, and Master of Computer Science Engineering studies at
Ghent University, Belgium.

http://blogs.bartdesmet.net/bart

 Acknowledgments

 Writing this book was a huge undertaking that would have proven impossible without the
support of many people. I’d like to apologize upfront for forgetting any of you. (I’ll buy
you a Belgian beer if I did.)

 First and foremost, I cannot thank my family enough for the support they’ve given me
over the years to pursue my dreams. Their support for my 6-year university studies in
Ghent and tolerance for my regular absence to participate in the technical community
have all been essential ingredients. If this weren’t enough, my move across the Pacific
Ocean to go and work at the Microsoft headquarters has put us through the ultimate test.
Words fall short to describe how incredibly lucky I am to have their ongoing support.
Thanks once more!

 I wouldn’t have ended up in the world of computer science if not for some of my teach-
ers. For my first exposure to computers, I have to go back to 1993, checking sums during
the mathematics lessons at elementary school. Thanks to “Meester Wilfried” for his
MS-DOS and GWBASIC powered calculator that shaped my future. In high school, several
people kept me on this track, as well. Math teachers Paul, Geert, and Ronny had to endure
endless conversations about programming languages. In a weird twist of history, I never
got educated in informatics in high school, but nonetheless I spent countless hours in
the computer rooms of my school. Without the support of Hans De Four, I wouldn’t have
gotten where I am today. Sorry for all the network downtime caused by my continuous
experiments with ProfPass, domain controllers, and whatnot.

 Looking back over 10 years in history, I’m eternally grateful to the people at the local
Microsoft subsidiary in Belgium (back then called Benelux) for adopting me in the early
.NET community and giving me the chance to work on various projects. In particular, I
want to thank my very first contact at Microsoft, Gunther Beersaerts, for all the advice he
gave me over the years. Gunther’s been a true source of inspiration, encouraging me to
take the speaker stand at various conferences.

 During a few summers in the early 2000s, many Microsoft Belgium people provided a
nice place for me to grow and learn while working on various exciting projects. Thanks to
Chris Volckerick for taking me on board to build the (now defunct) http://www.dotnet.
be website, using what was called ASP+ back then. Later, Gerd De Bruycker took me under
his wing to develop the first MSDN home page for Microsoft Belux. Your passion for the
developer community has always stuck with me (not just that wild community VIP party
in Knokke).

 A bigger project called SchoolServer came around in the summer of 2004 and lasted for
the years after. Christian Ramioul’s faith in my technical skills needed to land this project
was unbelievable. And getting to know the IT professional audience that had to work with
the solution wouldn’t have been possible without the wonderful collaboration I had with
Ritchie Houtmeyers (remember the countless hours spent in our server room office?) and

http://www.dotnet.be
http://www.dotnet.be

Ricardo Noulez. Big thanks go to Bart Vande Ghinste for giving me a crash course
on COM+.

 Over the years, I’ve had the honor to interact with a tremendous number of community
members at various conferences. Mentioning all of them would be a Herculean task, so
I won’t even attempt. I want to call out a few, though. First of all, thanks to the Belgian
developer evangelism team for their relentless support over the years: Gerd De Brucyker
and Tom Mertens, you’ve done a great job. Today’s community is in great hands with
Katrien De Graeve, Hans Verbeeck, and Arlindo Alves. Hans De Smaele, you continue
to be my ongoing source of debugging and bit-twiddling inspiration. Finally, and sadly
enough, this list wouldn’t be complete without taking a moment to remember the late
David Boschmans and Patrick Tisseghem, who passed away suddenly: We miss you!

 Finally, we enter my Redmond-based Microsoft Corporation career that started in October
2007, thanks to Scott Guthrie’s mail through my blog asking me to interview with
the company. Ultimately, I ended up working on Windows Presentation Foundation’s
AppModel team, where I felt welcome from day one. In particular, I want to thank my
first office mate, Chango Valtchev, for the countless hours he spent to bring me up to
speed in the codebase, sharing tons of debugging insights, and epic hikes. Of my first
couple of managers, Grzegorz Zygmunt and Adam Smith have been great in helping me
shape my early career and provided room for my speaking engagements abroad.

 Once I finally started writing this book in 2009, a lot of my colleagues were put through
the test. My office mates Mike Cook and Eric Harding had to withstand the most boring
stories on various language constructs, generated IL code, functional programming adven-
tures, and ways to (ab)use the C# programming language. Benjamin Westbrook, whom
I’ve worked with for several months, underwent a similar faith during lunchtime. I have
to thank Ben for sharing the things he enjoys most when reading technical books: I hope
you find some of your stylistic ideas here and there throughout the book. Patrick Finnigan
deserves a special mention here, too. Not only for being a great colleague taking over
some of the work I’ve been doing on the team, but even more so as a great book reviewer
with tons of feedback both technically and stylistically. Thanks a lot!

 Thanking all the other WPF colleagues I’ve worked with and who gave me various tech-
nical insights would take up way too much space. Instead, here’s a roll-up of folks I’m
very grateful to have worked with. Adam, Alik, Andre, Dwayne, Joe, Eric, Matt, Saied, Zia:
Thanks a ton.

 In the middle of the book-writing adventure, I transitioned to the Cloud Programmability
Team. Thanks to Erik Meijer for taking me on board in the oasis he’s created for inno-
vative and creative ideas, allowing me to work on one of my key passions: LINQ. My
colleagues Danny Van Velzen, Jeffrey Van Gogh, Mark Shields, and Wes Dyer have been
fantastic to bring me up to speed. Endless technical discussions have been a tremendous
source of inspiration that contributed directly to this book’s contents. This is also the right
spot to thank my professor Raymond Boute. It turns out Erik and I caught the passion for
functional programming from the same professor, set a few decades apart in another twist
of history.

Acknowledgments xiii

C# 5.0 Unleashedxiv

 I can’t thank the Sams team enough, in particular Neil Rowe for his incredible patience
with me. Even though I always knew writing this book was going to be a huge task, lots
of unexpected twists made the schedule more challenging every time. Combine this with
an ever-growing page count and changing table of contents: I’m very grateful I could write
the book I think is right for the C# programmer’s audience with virtually no constraints.
Also thanks to the technical team for leading the way through new authoring and publi-
cation software and assisting with my numerous technical requests. A special word of
thanks goes to the technical reviewer, Boyd Nolan, and various other team members who
participated in various reviews. Writing a book is not only about teaching your readers,
it’s also a lot about learning things yourself (including some of the English language,
thanks Keith).

 This book would not exist if not for the wonderful C# language and its designers. So, I
want to thank Anders Hejlsberg and the entire language design team for giving us the
most favorite .NET language out there. This big thank you also applies to the Common
Language Runtime (CLR) team for bringing a managed runtime to a wide variety of plat-
forms. Internal resources have been very helpful in providing valuable insights, in particu-
lar on our C# Discussion List.

 Last but not least, I want to thank the waiters and waitresses in various downtown
Bellevue restaurants for tolerating my regular book-writing presence, hiding behind a
laptop screen and asking for endless soda refills.

 We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

 We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

 Please note that we cannot help you with technical problems related to the topic of this book.

 When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

 Email: consumer@samspublishing.com

 Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

 Reader Services

 Visit our website and register this book at www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

This page intentionally left blank

 Introduction

 Does the world need yet another book about C#? Very rightfully, you might be asking
this question right now (and so did some of my colleagues when I first told them about
this book project). In short, what sets this book apart from many others is its in-depth
coverage of how things work. Personally, I firmly believe in education that stimulates the
student’s curiosity. That’s one of the things this book aims to do.

 The important thing is not to stop questioning. Curiosity has its own reason for existing.
One cannot help but be in awe when he contemplates the mysteries of eternity, of life, of
the marvelous structure of reality. It is enough if one tries merely to comprehend a little of
this mystery every day. Never lose a holy curiosity.

 —Albert Einstein

 Understanding how a language brings its features to life is always a good thing, which
will help you on many fronts. For one thing, coming up with a proper software design
requires a good insight in the à la carte menu of language features, so that you can pick
the ones best suited for the job at hand and that will not leave you with a bitter after-
taste. Also, solid knowledge about the language and its caveats will prove invaluable while
debugging your (or someone else’s) code. Occasional historical perspectives interwoven
throughout this book help you to understand why the language looks the way it does
today.

 A tremendous number of .NET libraries have been born over the years, each addressing
specific needs for particular applications. Doing justice to any of those by trying to reduce
their coverage to a few tens of pages seems overly optimistic. Moreover, different devel-
opers have different needs: Maybe you’re in charge of user interface (UI) design or web
development, but you may well be specialized in service-oriented architectures or design-
ing a data-access layer. Each of those domains has very specific concepts that deserve
whole books dedicated to them.

 For all those reasons, this book shies away from even attempting such shallow in-breadth
coverage of the .NET Framework. Instead, we aim at the common ground where all devel-
opers meet: the way they express their thoughts through programming languages. In
this book, you’ll get essential insights in the foundations of the platform and one of the
most commonly used languages, C#. Armed with this knowledge, you should be able to
discover and understand many technologies that build on the platform.

 As a concrete example, today’s libraries are built using object-oriented programming, so
we spend our time explaining the capabilities of this feature. Similarly, recent application
programming interfaces (APIs) (such as Language Integrated Query [LINQ]) have started
to leverage the expressiveness of programming constructs (such as lambda expression)
borrowed from the functional world, so we take a look at how those work.

Introduction2

 Finally, at the intersection of different developer audiences, there are quite a few librar-
ies that no one can live without. Examples include primitive types, collections, paral-
lel programming capabilities, performing I/O operations, and so on. Discussing those
libraries has several benefits. Not only does the reader get a good idea about the essential
toolset the .NET Framework has to offer, but it also allows us to illustrate various language
features using them. A good example is the discussion of generic types and LINQ through
the lens of collections.

 I sincerely hope you enjoy reading this book as much as I enjoyed writing it. I’ve learned
a lot during the process, and I’m confident you will, too.

 Homines dum docent discunt.
 (Latin phrase translated “Men learn while they teach.”)

 —Seneca, Epistolae, VII , 7

 Happy coding!
 Bart J.F. De Smet
 Bellevue, Washington

 Who Should Read This Book?
 This book is for anyone who wants to learn the C# programming language in depth,
understanding how language features truly work. While giving you those insights, you’ll
learn where and how to use the features to design various kinds of software. Essential tools
and techniques to carry out tasks such as debugging are covered, too.

 If you’ve already had prior exposure to C#—maybe a previous version of the language—
this book will help you grasp the new language features that have been added over the
years. If you’re new to the C# language and/or the .NET platform as a whole, this book
will guide you through the language in a step-by-step manner.

 In summary, this book not only teaches the language’s capabilities, but it also looks
behind the scenes to build a solid foundation that will aid you in studying other parts
of the .NET platform. Because programming languages are at the heart of a developer’s
expressiveness, such a foundation is essential no matter what your day-to-day program-
ming activities are.

 What You Need to Know Before You Read This Book
 No prior knowledge of the C# programming language is assumed, although it helps to
have a basic idea of typical language constructs. Any kind of modern programming back-
ground can help here. For example, readers with a background in C, C++, or Java will feel
at home with the C# syntax immediately. Those coming from C++ or Java will have no
issue appreciating the power of object-oriented programming. For Visual Basic develop-
ers, the different syntax might be a hurdle to overcome, but lots of concepts will sound
familiar.

How This Book Is Organized 3

 Likely the most important thing to have is technical curiosity and the willingness to learn
and truly understand a (new) programming language and the platform on which it’s built.

 How This Book Is Organized
 Two writing principles have been taken as a guide in this book:

 ▶ Avoid backward references, causing mental jumps for the readers. In other words,
this book tells you the story of how various language features are built on top of
each other, starting from primitive constructs such as expressions and statements.
Sometimes making a little jump is unavoidable due to the historical evolution the
language has undergone. In such a case, I present you with the basics of the feature
in question and refer to a later chapter for in-depth coverage.

 ▶ Samples of technologies are interspersed with the coverage of language features that
underpin them. For example, a discussion of generics naturally leads to an overview
of various collection types in the .NET Framework. Similarly, a good explanation of
Language Integrated Query (LINQ) cannot take place without coverage of constructs
such as extension methods and lambda expressions.

 From a 10,000-feet point of view, this book consists of three core pieces:

 ▶ The first four chapters introduce the .NET platform, the tooling ecosystem, and the
C# programming language. In this part, a good historical perspective is provided
that will help you understand why those technologies were created and how they
evolved.

 ▶ Chapters 5 through 25 cover the C# programming language itself, with immedi-
ate application of language features where applicable. A further breakdown looks as
follows:

 ▶ We start by looking at basic constructs, such as expressions, operators, and
statements. These language elements should be familiar to anyone who’s been
programming before, allowing things such as arithmetic, control flow, and so
on. Finally, we introduce the notion of exception handling.

 ▶ Next, our attention is aimed at larger units of code. To set the scene, we start
by introducing the notion of types, and then cover members such as methods
and properties.

 ▶ This naturally leads to a discussion of object-oriented programming in Chapter
 14 , covering the notions of objects, classes, interfaces, virtual methods, and
so on.

 ▶ After explaining generic types and methods, we move on to orthogonal
language features, such as delegates, events, and Language Integrated Query
(introduced in C# 3.0). Constructs borrowed from functional programming are
covered here, too.

Introduction4

 ▶ Next, we revise our notions of typing and introduce runtime services, such
as reflection, that allow a more dynamically typed code characteristic. This
brings us to an in-depth discussion of C# 4.0’s dynamic feature, including the
Dynamic Language Runtime infrastructure that underpins it.

 ▶ To put the icing on the cake, we take a closer look at the largest units of code
the programming language deals with: namespaces and assemblies. The latter
of the two touches quite a few runtime concepts, such as the global assembly
cache, native images, and application domains, all of which are explained
here, too.

 ▶ Finally, the last chapters give an overview of the .NET Framework libraries about
which every good developer on the platform should know. Here we cover essen-
tial types in the BCL, how to perform various kinds of I/O, diagnostic capabili-
ties, and the increasingly important domain of multithreaded and asynchronous
programming.

 All in all, this book takes a language-centric approach to teaching how to program rich
and possibly complex applications on the .NET Framework. Activities such as API design,
coming up with proper application architectures, and even debugging issues with existing
code all benefit from a deep understanding of the language and runtime. That’s precisely
the sweet spot this book aims for.

 IN THIS CHAPTER

 ▶ Installing the .NET Framework

 ▶ Your First Application:
Take One

 ▶ Visual Studio 2012

 ▶ Your First Application:
Take Two

 CHAPTER 3

 Getting Started with
.NET Development

Using C#

 Time to set yourself up for a successful journey through
the world of .NET development using C#. An obvious first
thing to tackle is to install the .NET Framework and the
necessary tools so that we can start running and writing
code. One tool we pay a fair amount of attention to is
Visual Studio 2012, but we cover other useful tools, too.

 To get our hands dirty, we write a simple C# application
and highlight some of the important language elements, go
through the process of building it using various tools, and
look at how we can debug code.

 Installing the .NET Framework
 The first logical step to get started with writing code target-
ing the .NET Framework is to install it on your devel-
opment machine. At this point, let’s skip the in-depth
discussion on how to deploy the .NET Framework to the
machines where your application code is to run ultimately,
be it a client computer, a web server, or even the cloud.

 The .NET Framework Version Landscape

 Over the years, various versions of the .NET Framework
have been released. In this book, we cover the latest (at the
time of this writing) release of the .NET Framework, version
4.5, which goes hand in hand with the Visual Studio 2012
release.

CHAPTER 3 Getting Started with .NET Development Using C#104

 Does that mean you can’t use the knowledge you gain from .NET 4.5 programming to
target older releases of the framework? Certainly not! Although the .NET Framework has
grown release after release, the core principles have remained the same, and a good part of
the evolution is to be found at the level of additional application programming interfaces
(APIs) that are made available through the class libraries. A similar observation of evolu-
tion obviously holds on the level of the managed languages: Features are added every time
around that often require additional framework support (for example, Language Integrated
Query [LINQ] in C# 3.0, dynamic in version 4). As you can imagine, keeping track of all
those versions and their key differentiating features isn’t always easy. To make things
more clear, take a look at Table 3.1 .

 TABLE 3.1 .NET Platform Version History

 Version Codename Visual Studio C# VB Flagship Features

 1.0 Lightning 2002 (7.0) 1.0 7.0 Managed code

 1.1 Everett 2003 (7.1) 1.0 7.0

 2.0 Whidbey 2005 (8.0) 2.0 8.0 Generics

 3.0 WinFX 2005 (8.0) 2.0 8.0 WPF, WCF, WF

 3.5 Orcas 2008 (9.0) 3.0 9.0 LINQ

 4.0 Dev10 2010 (10.0) 4.0 10.0 Dynamic

 4.5 Dev11 2012 (11.0) 5.0 11.0 Asynchronous programming

 Notice that new releases of the .NET Framework typically go hand in hand with
updates to the Visual Studio tooling support. A notable exception to this rule was the
.NET 3.0 release, where Visual Studio 2005 additions were made to support the newly
added features (for example, by providing designer support for Windows Presentation
Foundation [WPF]). Notice, however, how the managed languages evolve at a slightly
slower pace. It’s perfectly imaginable that a future release of the .NET Framework will still
be using C# 5.0 and VB.NET 11.0. History will tell.

 NOTE : WHAT ABOUT OPERATING SYSTEM INTEGRATION?

 Being a logical extension to the Win32 API for Windows programming, it very much makes
sense to have the framework components readily available together with various versions
of the Windows operating system. However, Windows and the .NET Framework have been
evolving at a different pace, so the innovation on the level of the .NET Framework hasn’t
always been immediately available with the operating system out there at that point
in time.

 One first little piece of integration with the operating system happened with Windows XP,
where the image loaded was made aware of the existence of managed code, to be able to
load managed executables with fewer workarounds than would be required otherwise. In
the Windows Server 2003 era, the 1.1 release of the .NET Framework was brought to the
operating system so that the ASP.NET web stack was available out of the box for use in
web server installations.

Installing the .NET Framework 105
3

 The bigger integration story happened around Vista, driven by the WinFX vision of enhanc-
ing core system capabilities like windowing (with WPF) and communication (with WCF).
For a long time during the development of Vista—known as Longhorn at the time—WinFX
formed a core pillar of the next-generation operating system, and development proceeded
hand in hand with the operating system. Only later was WinFX decoupled from Vista and
ported back to other platforms, resulting in what became known as .NET Framework 3.0.
This said, the .NET Framework 3.0 components still shipped with Windows Vista as an
optional Windows component that can be turned on or off. The same holds for Windows
Server 2008.

 With the release of Windows 7, this tradition continued by making the .NET Framework 3.5
components available out of the box. More recently, with Windows 8, the .NET Framework
4.5 shipped out of the box with the product. But there’s more. Thanks to the tight integra-
tion with Windows Runtime, we can now truly speak of a better together story where the
power of Windows is readily accessible for .NET developers.

 What Table 3.1 doesn’t show is the versioning of the Common Language Runtime (CLR).
There’s a very important point to be made about this: The CLR evolves at a much slower
pace than the libraries and languages built on top of it. Slow most often has a pejorative
feel to it, but for the CLR this is a good thing: The less churn made to the core of runtime,
the more guarantees can be made about compatibility of existing code across differ-
ent versions of the .NET Framework. Figure 3.1 illustrates this nicely based on the .NET
Framework 3.x history.

 From this figure, you can see how both .NET Framework 3.0 and .NET Framework 3.5 are
built to run on top of the existing CLR 2.0 runtime bits. This means that for all the good-
ness that ships with those versions of the .NET Framework, no changes were required to
the core execution engine, a good sign of having a solid runtime that’s ready to take on a
big job.

 NOTE : RED BITS VERSUS GREEN BITS

 A concept you might sometimes hear from Microsoft people in the context of framework
versioning is that of red bits and green bits. The categorization of framework assemblies
in red bits and green bits was introduced in the .NET 3.x timeframe to distinguish between
new assemblies (green bits) and modifications to existing ones (red bits). Although .NET
3.x mostly added new library functionality to the existing .NET 2.0 layer, some updates
were required to assemblies that had already shipped. With the distinction between red
bits and green bits, development teams kept track of those modifications also to minimize
the changes required to red bits to reduce the risk of breaking existing applications.

 What all this means in practice is that .NET 3.0 is a superset of .NET 2.0, but with some
updates to the .NET 2.0 binaries, in the form of a service pack. Those service packs are
also made available by themselves because they contain very valuable fixes and optimi-
zations, and they are designed to be fully backward compatible so as not to break exist-
ing code. Windows Update automatically deploys these service packs to machines that
already have the framework installed.

CHAPTER 3 Getting Started with .NET Development Using C#106

.NET Framework 3.5

.NET Framework 3.0

.NET Framework 2.0

.NET Framework 3.5 Class Library Additions

.NET Framework 3.0 Class Library Additions

.NET Framework 2.0 Class Libraries (BCL)

Common Language Runtime (CLR) 2.0

•Language Integrated Query (LINQ)

•Windows Presentation Foundation (WPF)

•Windows Communication Foundation (WCF)

•Windows Workflow Foundation (WF)

 FIGURE 3.1 .NET Framework 3.x is built on CLR 2.0.

 NOTE : LOST IN TRANSLATION

 Even more remarkable than the capability to add gigantic libraries like WPF and Windows
Communication Foundation (WCF) on an already existing runtime without requiring modi-
fications to it is the fact that very powerful language extensions have been made in
.NET 3.5 with the introduction of LINQ. However, none of those new language additions
required changes to the runtime or intermediate language (IL). Therefore, C# 3.0 and VB
9.0 programs can run on the .NET 2.0 CLR. Even more, it’s theoretically possible to cross-
compile C# 3.0 programs into C# 2.0 code with an equivalent meaning. A paper proving
this claim was written by a group of language designers at Microsoft and is titled “Lost in
Translation.”

 One caveat, though: Don’t take this to mean that C# 3.0 programs can be ported blindly
to .NET 2.0 because implementations of various LINQ providers ship in various .NET 3.5
assemblies.

 Another advantage that comes from keeping the runtime the same across a set of frame-
work releases is the capability to reuse existing tooling infrastructure (for example, for
debugging). With the release of Visual Studio 2008, this capability became visible to .NET
developers under the form of multitargeting support. What this feature enables is to use

Installing the .NET Framework 107
3

Visual Studio 2008 to target .NET Framework 2.0, 3.0, and 3.5 using the same comfortable
tooling environment. And with .NET 4.0 and .NET 4.5—as you’ll see later in this chapter
when we explore Visual Studio 2012—multitargeting has been extended to support all
releases from .NET 2.0 to 4.5.

 What about .NET Framework 1.x? Development targeting those platforms will always be
tied to the use of the releases of Visual Studio that shipped with it (that is, Visual Studio
.NET versions 2002 and 2003). Too many fundamental changes to runtime infrastructure
were made between versions 1.x and 2.0 of the CLR, making multitargeting support for
.NET 1.x unfeasible. Luckily nowadays, the use of .NET 1.x has largely been phased out. If
you still have .NET 1.x applications around, now is the time to port them to a more recent
version of the platform (preferably .NET 4.0, of course).

 But why should someone care to target an older release of the .NET Framework? Most
commonly, the answer is to be found in deployment constraints within companies, web
hosting providers, and so on. Having tooling support to facilitate this multitargeting is
pure goodness and also means you can benefit from core enhancements to the Visual
Studio tools while targeting older releases of the .NET Framework.

 .NET Framework 4.5

 The particular version of the .NET Framework we target in this book is .NET 4.5, using
Visual Studio 2012 and C# 5.0. Other than the .NET 3.x releases, .NET 4.x has a new
version of the CLR underneath it, and obviously—in the grand tradition—it comes with a
bunch of new class libraries that will make life easier for developers.

 Two key features about .NET 4.x are important to point out here:

 ▶ Side-by-side support: This means that .NET 4.x can be installed next to existing
versions of the .NET Framework. What’s so special about this compared to .NET 3.x?
The key difference is updates to existing class library assemblies are no longer carried
out in-place, but new versions are put next to the existing ones.

 ▶ Backward compatibility: This provides tremendous value to developers, allowing
reuse of existing code and components. In practice, it means that existing code that
was compiled against .NET 2.0 or 3.x in the past can now be targeted at .NET 4.x
without requiring source-level code changes.

 Figure 3.2 illustrates a machine with all the versions of the .NET Framework installed next
to one another.

 NOTE : WHAT’S UP WITH THOSE VERSION NUMBERS?

 The full version numbers of the CLR and .NET Framework installations and binaries can be
somewhat distracting at first sight. Where do they come from?

 In the .NET Framework 1.x timeframe, the build number (the third component of the
version number) was simply created incrementally. Version 1.0 released at build 3705,
and version 1.1 ended up at build 4322.

CHAPTER 3 Getting Started with .NET Development Using C#108

 With .NET 2.0, it made sense to give more meaning to the build number, and the pattern
ymmdd was chosen: one digit for the year (2005), two digits for the month (July), and two
for the day (27).

 This approach worked very nicely until the theoretical 35th day of the 55th month of the
year 2006: The metadata encoding for build numbers cannot exceed 65535, so we’re out
of luck using this pattern in its full glory. The result was a compromise. The month and
year encodings are kept the same, but the year is now considered relative to the start
of the release. For the .NET 4.0 release, the start of the release was in 2007, so from
 Figure 3.2 , one can infer that .NET 4.0 was built on March 19, 2012. Because the .NET
4.5 release is an in-place update, the folder name has stayed the same, even though the
revision number of the files in the folder has gone up.

 FIGURE 3.2 Side-by-side installation of .NET Framework versions.

 Besides having various versions of the .NET Framework, .NET 4.0 pioneered the avail-
ability of different “flavors.” Around the .NET 3.5 timeframe it became apparent that the
size of the .NET Framework had grown too large to enable fast friction-free installs, which
are especially important for client application deployments. Significant factors for such
deployments are download times and installation times.

 To streamline typical deployments of the framework, a split of the .NET Framework class
libraries was made, factoring out so-called Client Profile assemblies. The Client Profile
bubble contained the Base Class Library (BCL) and libraries required to write client appli-
cations using WPF and WCF. The remaining part (referred to as Extended Profile) was
layered on top of the Client Profile subset and contained features like ASP.NET that client
applications typically don’t need. As a result, the deployment and installation footprint of
the Client Profile is kept small, while it’s still possible to upgrade such an installation to
the full framework. Figure 3.3 shows the layered cake architecture of those profiles in the
.NET 4.0 timeframe.

Installing the .NET Framework 109
3

 FIGURE 3.3 Client Profile subset of the .NET Framework.

 Together with this split, Visual Studio 2010 extended its notion of multitargeting to the
various “profiles” of the .NET Framework. By doing so, developers didn’t have to memo-
rize which libraries are available in each profile. When the Client Profile subset is selected,
Visual Studio prevents assemblies from the Full framework from being referenced.

 During the .NET 4.5 timeframe, a big investment was made to reduce download and
installation sizes and to decrease the installation time. As a result, the split of a Client
Profile and Extended Profile was no longer necessary, resulting in the discontinuation of
the Client Profile package.

 .NET 4.5 introduces a new notion of profiles though, through the new Portable Library
support. When writing portable class libraries, you can select the target platforms the
library can run on. For example, you could build a portable library targeting .NET
Framework 4.5, .NET for Windows Store applications, and Windows Phone 8. The result-
ing project will have access only to the .NET Framework functionality available in the
intersection for those platforms, hence ensuring the resulting assembly works on all of the
selected platforms. In the past, developers had to maintain separate builds of their libraries
for each target platform, causing major grief. Portable Library aims to take away this pain.

 To make the intersection of APIs across different target platforms as stable as possible, the
bottommost layer of the framework was split off in a “.NET Core” set of assemblies. This
foundation is what future releases of the framework are based on, and is used by .NET
4.5 on the desktop, .NET for Windows Store applications, and Windows Phone 8. When
you are targeting older platforms, such as Silverlight or .NET 4.0, the set of APIs available
in the intersection will differ because of prior differences between different flavors of the
.NET Framework. With the .NET Core and Portable Library refactoring in place, the frag-
mentation of the framework libraries should be reduced substantially.

CHAPTER 3 Getting Started with .NET Development Using C#110

 Running the Installer

 Playtime! To write code on the .NET Framework 4.5, let’s start by installing the Full
.NET Framework package. That’s really all you need to get started with managed code
development.

 Where to get it? Browse to http://msdn.com/netframework and click the link to the .NET
Framework 4.5 download. The installer itself should be straightforward to run: Accept the
license agreement, get a cup of coffee, and you’re ready to go. On Windows 8, you can use
the Turn Windows Features On or Off Control Panel applet to enable or disable the .NET
Framework 4.5 feature. Figure 3.4 shows the default feature selection on a clean Windows
8 installation.

 FIGURE 3.4 .NET Framework 4.5 enabled by default on Windows 8.

 What Got Installed?

 When the installation is complete, it’s good to take a quick look at what was installed to
familiarize yourself with where to find stuff.

 The Runtime Shim

 The runtime shim is really something you shouldn’t care much about, but it’s a conve-
nient way to find out the latest version of the installed CLR on the machine. The purpose
of the shim is to load the correct version of the CLR to execute a given application, a
particularly important task if multiple versions of the runtime are installed.

 You can find the shim under %windir%\system32, with the name mscoree.dll. By looking
at the file properties (shown in Figure 3.5), you’ll find out about the latest common
language runtime version on the machine.

http://msdn.com/netframework

Installing the .NET Framework 111
3

 FIGURE 3.5 The version of the CLR runtime shim.

 Although the file description states “Microsoft .NET Runtime Execution Engine,” this is
not the CLR itself, so where does the runtime itself live?

 The .NET 4.0 CLR

 Having a runtime shim is one thing; having the runtime itself is invaluable. All runtime
installations live side by side in the %windir%\Microsoft.NET\Framework folder. On
64-bit systems, there’s a parallel Framework64 folder structure. Having two “bitnesses”
of the CLR and accompanying libraries is required to allow applications to run either as
32-bit (Windows On Windows, or WOW) or 64-bit.

 Starting with .NET 4.0, the CLR itself is called clr.dll (previously, mscorwks.dll), as shown
in Figure 3.6 . The same CLR is used for .NET 4.5, so we’ll refer to it using the 4.0 version
number.

 FIGURE 3.6 The CLR itself.

 The Global Assembly Cache

 The Global Assembly Cache (GAC) is where class library assemblies are loaded for
use in .NET applications. You can view the GAC under %windir%\assembly, but a

CHAPTER 3 Getting Started with .NET Development Using C#112

command-line directory listing reveals the structure of the GAC in more detail. We discuss
the role of the GAC and the impact on your own applications exhaustively in Chapter 25 ,
“Assemblies and Application Domains.”

 Figure 3.7 shows the structure of the .NET 4.0 GAC containing the 4.0 version of the
System.dll assembly, one of the most commonly used assemblies in the world of managed
code development.

 FIGURE 3.7 Inside the GAC.

 NOTE : GAC SPLITTING

 Notice the v4.0 prefix in the name of the folder containing the .NET 4.0 version of
System.dll? This is an artifact of the “GAC splitting” carried out in .NET 4.0. This simple
naming trick hides assemblies targeting different versions of the runtime so that a
specific version of the CLR doesn’t try to load an assembly that’s incompatible with it. In
the preceding example, CLR 2.0 will recognize only the first folder as a valid entry in the
GAC, whereas CLR 4.0 recognizes only the second one. This truly shows the side-by-side
nature of the different runtimes.

 Tools

 Besides the runtime and class library, a set of tools get installed to the framework-specific
%windir%\Microsoft.NET\Framework folder. Although you’ll only use a fraction of those
on a regular basis—also because most of those are indirectly used through the Visual
Studio 2012 graphical user interface (GUI)—it’s always good to know which tools you
have within reach. My favorite tool is, without doubt, the C# compiler, csc.exe. Figure 3.8
shows some of the tools that ship with the .NET Framework installation.

 You can find other tools here, too, including other compilers, the IL assembler, MSBuild,
the NGEN native image generator tool, and so on.

 We explore quite a few of the tools that come with the .NET Framework throughout this
book, so make sure to add this folder to your favorites.

Your First Application: Take One 113
3

 Your First Application: Take One
 With the .NET Framework installation in place, we’re ready to develop our first .NET
application. But wait a minute... where are the development tools to make our lives
easy? That’s right, for just this once, we’ll lead a life without development tools and go
the hardcore route of Notepad-type editors and command-line compilation to illustrate
that .NET development is not tightly bound to the use of specific tools like Visual Studio
2012. Later in this chapter, we get our feet back on the ground and explore the Visual
Studio 2012 tooling support, which will become your habitat as a .NET developer moving
forward.

 NOTE : THE POWER OF NOTEPAD AND THE COMMAND LINE

 Personally, I’m a huge fan of coding with the bare minimum tools required. Any text editor,
the good old command-line interpreter, and the C# compiler suffice to get the job done.
True, colleagues think I endure a lot of unnecessary pain because of this approach, but
I’m a true believer.

 But why? For a couple of reasons, really. For one, it helps me memorize commonly used
APIs; for the more specialized ones, I keep MSDN online open. But more important, the
uncooperative editor forces me into a coding mode, where thinking precedes typing a
single character.

 For any decent-sized project, this approach becomes much less attractive. The ability to
navigate code efficiently and use autocomplete features, source control support, an inte-
grated debugging experience, and so on—all these make the use of a professional editor
like Visual Studio 2012 invaluable.

 However, I recommend everyone go back to the old-fashioned world of Notepad and the
command line once in a while. One day, you might find yourself on an editor-free machine
solving some hot issue, and the ability to fall back to some primitive development mode
will come in handy, for sure. Anyway, that’s my five cents.

 So as not to complicate matters, let’s stick with a simple command-line console applica-
tion for now. Most likely, the majority of the applications you’ll write will either be GUI

 FIGURE 3.8 One of the .NET Framework tools: the C# compiler.

CHAPTER 3 Getting Started with .NET Development Using C#114

applications or web applications, but console applications form a great ground for experi-
mentation and prototyping.

 Our workflow for building this first application is as follows:

 ▶ Writing the code using Notepad

 ▶ Using the C# command-line compiler to compile it

 ▶ Running the resulting program

 Writing the Code

 Clichés need to be honored from time to time, so what’s better than starting with a
good old Hello World program? Okay, let’s make it a little more complicated by making
a generalized Hello program, asking for the user’s name to show a personalized greeting
message.

 Open up Notepad, enter the following code, and save it to a file called Hello.cs:

 using System;

 class Program

 {

 static void Main()

 {

 Console.Write("Enter your name: ");

 string name = Console.ReadLine();

 Console.WriteLine("Hello " + name);

 }

 }

 Make sure to respect the case of letters: C# is a case-sensitive language. In particular, if you
come from a Java or C/C++ background, be sure to spell Main with a capital M . Without
delving too deeply into the specifics of the language just yet, let’s go over the code
quickly.

 On the first line, we have a using directive, used to import the System namespace. This
allows us to refer to the Console type further on in the code without having to type its
full name System.Console .

 Next, we’re declaring a class named Program . The name doesn’t really matter, but it’s
common practice to name the class containing the entry point of the application Program .
Notice the use of curly braces to mark the start and end of the class declaration.

 Inside the Program class, we declare a static method called Main . This special method is
recognized by the common language runtime as the entry point of the managed code
program and is where execution of the program will start. Notice the method declaration
is indented relative to the containing class declaration. Although C# is not a whitespace-
sensitive language, it’s good to be consistent about indentation.

Your First Application: Take One 115
3

 Finally, inside the Main method we’ve written a couple of statements. The first one makes
a method call to the Write method on the Console type, printing the string Enter your
name: to the screen. In the second line, we read the user’s name from the console input
and assign it to a local variable called name . This variable is used in the last statement,
where we concatenate it to the string "Hello " using the + operator to print it to the
console by using the WriteLine method on the Console type.

 Compiling It

 To run the code, we must compile it because C# is a compiled language (at least in today’s
world without an interactive read-eval-print-loop [REPL] loop C# tool). The act of compil-
ing the code results in an assembly ready to be executed on the .NET runtime.

 Open a command prompt window and change the directory to the place where you saved
the Hello.cs file. As an aside, the use of .cs as the extension is not a requirement for the
C# compiler; it’s just a best practice to store C# code files as such.

 Because the search path doesn’t contain the .NET Framework installation folder, we have
to enter the fully qualified path to the C# compiler, csc.exe. Recall that it lives under the
framework version folder in %windir%\Microsoft.NET\Framework. Just run the csc.exe
command, passing in Hello.cs as the argument, as illustrated in Figure 3.9 .

 FIGURE 3.9 Running the C# compiler.

 If the user has installed Visual Studio 2012, a more convenient way to invoke the compiler
is from the Visual Studio 2012 command prompt. This specialized command prompt has
search paths configured properly such that tools like csc.exe will be found.

 NOTE : MSBUILD

 As you’ll see later on, very rarely will you invoke the command-line compilers directly.
Instead, MSBuild project files are used to drive build processes.

CHAPTER 3 Getting Started with .NET Development Using C#116

 Running It

 The result of the compilation is an executable called hello.exe, meaning that we can run
it immediately as a Windows application (see Figure 3.10). This differs from platforms like
Java where a separate application is required to run the compiled code.

 FIGURE 3.10 Our program in action.

 That wasn’t too hard, was it? To satisfy our technical curiosity, let’s take a look at the
produced assembly.

 Inspecting Our Assembly with ILSpy

 Knowing how things work will make you a better developer. One great thing about the
use of an IL format in the .NET world is the capability to inspect compiled assemblies at
any point in time without requiring the original source code.

 Three commonly used tools to inspect assemblies include the .NET Framework IL disas-
sembler tool (ildasm.exe), .NET Reflector from Red Gate, and ILSpy. For the time being,
we’ll use ILSpy, which you can download for free from http://www.ilspy.net .

 When you run the tool for the first time, it loads the ILSpy assembly as the assembly to
inspect, including all of its dependencies, as shown in Figure 3.11 .

 FIGURE 3.11 ILSpy disassembling itself.

http://www.ilspy.net

Your First Application: Take One 117
3

 Because we’re not interested in the decompilation of ILSpy, we’ll load our own hello.exe
using File, Open. This adds “hello” to the list of loaded assemblies, after which we can
start to drill down into the assembly’s structure, as shown in Figure 3.12 .

 FIGURE 3.12 Inspecting the assembly structure in ILSpy.

 Looking at this structure gives us a good opportunity to explain a few concepts briefly.
As we drill down in the tree view, we start from the “hello” assembly we just compiled.
Assemblies are just CLR concepts by themselves and don’t have direct affinity to file-based
storage. Indeed, it’s possible to load assemblies from databases or in-memory data streams,
too. Hence, the assembly’s name does not contain a file extension.

 When expanding the assembly’s entry, we encounter a node with a {} logo. This indicates
a namespace and is a result of ILSpy’s decompilation intelligence, as the CLR does not
know about namespaces by itself. Namespaces are a way to organize the structure of APIs
by grouping types in a hierarchical tree of namespaces (for example, System.Windows.
Forms). To the CLR, types are always referred to—for example, in IL code—by their fully
qualified name (like System.Windows.Forms.Label). In our little hello.exe program we
didn’t bother to declare the Program class in a separate namespace, so ILSpy shows a “-” to
indicate the global namespace.

 Finally, we arrive at our Program type with the Main method inside it. Let’s take a look at
the Main method now, simply by selecting it from the tree view. Figure 3.13 shows the
result.

 The pane on the right shows the decompiled code back in C#. It’s important to realize this
didn’t use the hello.cs source code file at all. The hello.exe assembly doesn’t have any link
back to the source files from which it was compiled. “All” ILSpy does is reconstruct the
C# code from the IL code inside the assembly. You can clearly see that’s the case because
the name of the name variable was changed into str . ILSpy’s interpretation of our Main
method is semantically correct, though; we could have written the code like this.

 Notice the drop-down box in the toolbar at the top. Over there, we can switch to other
views on the disassembled code (for example, plain IL). Let’s take a look at that, too, as
shown in Figure 3.14 .

CHAPTER 3 Getting Started with .NET Development Using C#118

 FIGURE 3.14 IL disassembler for the Main method.

 What you’re looking at now is the code as the runtime sees it to execute it. Notice a few
things here:

 ▶ Metadata is stored with the compiled method to indicate its characteristics: .method
tells it’s a method, private controls visibility, cil reveals the use of IL code in the
method code, and so on.

 ▶ The execution model of the CLR is based on an evaluation stack, as revealed by the
 .maxstack directive and naming of certain IL instructions (pop and push, not shown
in our little example).

 ▶ Method calls obviously refer to the methods being called, but observe how there’s
no trace left of the C# using-directive namespace import and how all names of

 FIGURE 3.13 Disassembling the Main method.

Visual Studio 2012 119
3

methods are fully qualified (for example, [mscorlib]System.Console::WriteLine
(string)).

 ▶ Our local variable “name” has lost its name because the execution engine needs to
know only about the existence (and type) of local variables, not their names. (The
fact that it shows up as str is due to ILSpy’s attempt to be smart about making up
variable names.)

 You might have noticed a few strange things in the IL instructions for the Main method:
Why are those nop (which stands for no operation) instructions required? The answer
lies in the way we compiled our application, with optimizations turned off. This default
mode causes the compiler to preserve the structure of the input code as much as possible
to make debugging easier. In this particular case, the curly braces surrounding the Main
method code body were emitted as nop instructions, which allows a breakpoint to be set
on that line.

 TIP

 Explore the csc.exe command-line options (/?) to find a way to turn on optimization and
recompile the application. Take a look at the disassembler again (you can press F5 in
ILSpy to reload the assemblies from disk) and observe the nop instructions are gone.

 Visual Studio 2012
 Now that we’ve seen the hardcore way of building applications using plain old text editors
and the C# command-line compiler, it’s time to get more realistic by having a look at
professional tooling support provided by the Visual Studio 2012 products. Figure 3.15
shows the Visual Studio 2012 logo, reflecting the infinite possibilities of the technology.

 FIGURE 3.15 The Visual Studio 2012 logo.

 Since the very beginning of software development on the Microsoft platform, Visual
Studio has been an invaluable tool to simplify everyday development tasks significantly.
One core reason for this is its integrated development environment (IDE) concept, which
is really an expansive term with an overloaded meaning today. Although it originally
stood for the combination of source code editing and debugging support, today’s IDE has
capabilities that stretch a whole range of features such as the following:

CHAPTER 3 Getting Started with .NET Development Using C#120

 ▶ Source code editing with built-in language support for various languages such as C#,
Visual Basic, F# and C++, including things such as syntax coloring, IntelliSense auto-
completion, and so on.

 ▶ Refactoring support is one of the powerful tools that makes manipulating code easier
and allows for the restructuring of existing code with just a few clicks in a (mostly)
risk-free manner.

 ▶ Exploring code is what developers do most of their time in the editors. Navigating
between source files is just the tip of the iceberg, with the editor providing means to
navigate to specific types and members.

 ▶ Visualization of project structures bridges the gap between architecture, design, and
implementation of software. In the spirit of Unified Markup Language (UML), class
designers and architecture explorers are available right inside the tool.

 ▶ Designers come into play when code is to be generated for common tasks that
benefit from a visual development approach. Typical examples include GUI design,
web page layout, object/relational mappings, workflow diagrams, and so on.

 ▶ Debugging facilities are the bread and butter for every developer to tame the
complexities of analyzing code behavior and (hopefully not too many) bugs by step-
ping through code and analyzing the state of execution.

 ▶ Project management keeps track of the various items that are part of a software
development project, including source files, designer-generated files, project-level
settings, and so on.

 ▶ Integrated build support is tightly integrated with project management features and
allows immediate invocation of the build process to produce executable code and
feed build errors and warnings back to the IDE.

 ▶ Source control and work item tracking are enterprise-level features for managing
large-scale collaborative software development projects, providing means to check
in/out code, open and close bugs, and so on.

 ▶ Extensibility might not be the most visible feature of the IDE but it provides a huge
opportunity for third parties to provide extensions for nearly every aspect of the
tooling support.

 Editions

 I feel like a marketing guy saying so, but to “differentiate between the needs for various
software development groups,” Visual Studio 2012 is available in different editions. For a
full overview, we refer to the MSDN website, but here’s a short summary nonetheless:

 ▶ Visual Studio Express Editions are free downloads targeted at providing rich tooling
support to build great apps for the Web, the new Windows 8 platform, Windows
Phone, as well as the classic desktop. Each edition comes with language support for
C#, Visual Basic, and C++.

Visual Studio 2012 121
3

 ▶ Visual Studio Professional Edition is aimed at the professional developer and at small
teams. Compared to the Express Editions, it bundles the project types for all applica-
tion types in one suite, also including support for development of Windows Services,
cloud applications, and so on. In addition, rich tooling for testing is included.

 ▶ Visual Studio Premium Edition extends the Professional Edition by adding tools for
agile development teams, using Team Foundation Server (TFS). In addition, tools are
included for project management, UI testing, code coverage analysis, lab infrastruc-
ture management, and much more.

 ▶ Visual Studio Ultimate Edition is the largest edition available, and extends on
the Premium Edition functionality by adding tooling for historical debugging
(IntelliTrace), web performance and load testing, a richer unit test framework
(Fakes), tools for architecture diagrams, and so forth.

 NOTE : TLA OF THE DAY: SKU

 The different editions of Visual Studio—and similarly for other products—are often
referred to as SKUs by Microsoft representatives. SKU is a TLA, a three-letter acronym
that refers to shelve-kept unit . It comes from the days software was mostly distributed
in cardboard boxes that were kept on shelves in the software store around the corner.
Today, though, lots of developers get their tools through downloads, MSDN subscriptions,
or enterprise agreements.

 In this book, we mainly focus on language and framework-level aspects of programming
on the .NET platform, which are separate from the tooling support. However, when cover-
ing tooling support, we assume the reader has access to at least the Professional Edition of
Visual Studio 2012. This said, many of the features covered (such as debugging support to
name an essential one) are available in the Express Edition, too. From time to time, we’ll
have a peek at Team System-level features, as well, but in a rather limited fashion.

 Oh, and by the way, Visual Studio is available in different (natural) languages beyond just
English. However, this book refers to the English vocabulary used in menus, dialogs, and
so on.

 NOTE : VISUAL STUDIO SHELL

 In fact, Visual Studio is a highly extensible shell for all sorts of development and manage-
ment tools. An example of a tool that’s built on the Visual Studio environment is the SQL
Server Management Studio. To allow the use of this infrastructure for use by third-party
tools, there’s the so-called Visual Studio Shell. One can go even further and embed Visual
Studio capabilities in a separate application by using the Visual Studio for Applications
(VSTA) platform.

CHAPTER 3 Getting Started with .NET Development Using C#122

 Expression

 Applications with GUIs, either for Windows or the Web, are typically not just built by
development teams. An important peer to the developer involved in GUI development is a
professional designer working on the look and feel for the application’s user experience.

 Platform-level technologies like Windows Extensible Application Markup Language (XAML),
Windows Presentation Foundation (WPF), Silverlight, and ASP.NET are built with this fact in
mind, allowing for rich styling capabilities and a separation between developer code and UI
definitions (for example, in terms of XAML). This very powerful concept enables developers
and designers to work in parallel with one another.

 Although this book focuses on the developer aspect of .NET application development, it’s
important to know about the Expression family of tools that your designer peers can use.
You can find more information about those tools at http://www.microsoft.com/expression .

 Installing Visual Studio 2012

 Installation of Visual Studio 2012 should be straightforward. If you are using at least the
Professional Edition of the product, check boxes will appear to install managed code/
native code development support (see Figure 3.16). Make sure to check the Managed Code
option or switch the Options page to the more verbose mode where you can turn individual
features on or off.

 FIGURE 3.16 Visual Studio 2012 Professional installation options.

 Depending on the number of features you select (I typically do a full installation to avoid
DVD or other install media hunts afterward), installation might take a while. If you don’t
already have those installed, various prerequisites, such as the .NET Framework, will get
installed as well, potentially requiring a reboot or two. But it’s more than worth the wait.

http://www.microsoft.com/expression

Visual Studio 2012 123
3

 Once Visual Studio setup has completed, install the product documentation, also known
as the Help Library. Although the Visual Studio help system can hook up to the online
version of MSDN seamlessly, it’s convenient to have the documentation installed locally
if you can afford the disk space. To do so, go to the Start Menu and find the Manage Help
Settings entry under the Visual Studio 2012, Visual Studio Tools folder. Figure 3.17 shows
the user interface (UI) of this tool, where one can install content from the installation disk
or by downloading it.

 FIGURE 3.17 Visual Studio 2012 Documentation configuration.

 A Quick Tour Through Visual Studio 2012

 With Visual Studio 2012 installed, let’s take a quick tour through the IDE you’ll be spend-
ing a lot of your time as a developer in.

 What Was Installed

 Depending on the edition you have installed, a number of tools have been installed
in parallel with the Visual Studio 2012 editor itself. Figure 3.18 shows the Windows 8
Start screen entry for Visual Studio 2012 for an Ultimate Edition installation on a 64-bit
machine. (Obviously, users of previous releases of the operating system will find similar
entries in the classic Start menu.) A few notable entries here are as follows:

 ▶ Developer Command Prompt for VS2012 provides a command prompt window with
several environment variables set, including additions to the search path to locate
various tools such as the command-line compilers.

 ▶ Remote Debugger is one of my favorite tools when debugging services or other types
of applications that run on a remote machine. It enables you to enable debugging
applications over the network right from inside Visual Studio 2012.

CHAPTER 3 Getting Started with .NET Development Using C#124

 FIGURE 3.18 Visual Studio 2012 Start screen entries.

 TIP

 Go ahead and use the Visual Studio 2012 command prompt to recompile our first applica-
tion we created earlier in this chapter. You should find that csc.exe is on the search path,
so you can simply invoke it without specifying the full path.

 Another tool that was installed is ildasm.exe, the IL disassembler. Go ahead and use it to
inspect the hello.exe assembly, looking for the Main method’s IL code. Because we’ll be
using this tool from time to time, it’s good to know from where you can launch it.

 Splash Screen and Start Page

 Figure 3.19 shows the Visual Studio 2012 splash screen. Prior to Visual Studio 2010, the
splash screen showed the different extensibility packages that were installed. Now this
information is available from the Help, About menu.

 NOTE : CHOOSE YOUR MOTHER TONGUE

 If this is the first time you’ve started Visual Studio 2012, a dialog appears from which you
select a settings template to configure the IDE for a specific programming language. You
can either stick with a general settings template or indicate your preferred language (your
programming mother tongue, so to speak). If you’re presented with this option, feel free
to go ahead and select the C# template.

 All this means is some settings will be optimized for C# projects (for example, the default
language selection in the New Project dialog), but other languages are still available to
you at any point in time. Hence the word preference .

 The first thing you’ll see in Visual Studio is the Start page shown in Figure 3.20 . It
provides links to various tasks (for example, to reload recently used projects). An RSS feed
shows news items from the MSDN website.

Visual Studio 2012 125
3

 FIGURE 3.19 Visual Studio 2012 splash screen.

 FIGURE 3.20 Visual Studio 2012 Start page.

CHAPTER 3 Getting Started with .NET Development Using C#126

 Core UI Elements

 The menu and toolbar contain a wealth of features. (We cover only the essential ones.)
Make sure to explore the menu a bit for things that catch your eye. Because we haven’t
loaded a project yet, various toolbars are not visible yet.

 Various collapsible panels are docked on the borders. There are several of those, but only
a few are visible at this point: Toolbox, Solution Explorer, and Error List are the ones we’ll
interact with regularly. More panels can be enabled through the View menu, but most
panels have a contextual nature and will appear spontaneously when invoking certain
actions (for example, while debugging). Figure 3.21 shows how panels can be docked at
various spots in the editor. The little pushpin button on the title bar of a panel can be
used to prevent it from collapsing. As you get more familiar with the editor, you’ll start
rearranging things quite a bit to adapt to your needs.

 FIGURE 3.21 Customizing the look and feel by docking panels.

 NOTE : “INNOVATION THROUGH INTEGRATION” WITH WPF

 If you’ve used earlier releases of Visual Studio, you no doubt have noticed the different
look and feel of the IDE in the 2010 and 2012 versions. Starting with Visual Studio 2010,
large portions of the UI have been redesigned to use WPF technology.

 This has several advantages in both the short and long term, and today we’re seeing just
the tip of the iceberg of capabilities this unlocks. For example, by having the code editor
in WPF, whole new sets of visualizations become possible. To name just one example,
imagine what it’d be like to have code comments with rich diagrams in it to illustrate
some data flow or architectural design. Also, the rebranding in Visual Studio 2012 was
made possible in a relatively short release cycle thanks to the flexibility of XAML and WPF.

 It’s worth pointing out explicitly that Visual Studio is a hybrid managed and native (mostly
for historical reasons) code application. An increasing number of components are written
using managed code, and new extensibility APIs are added using the new Managed
Extensibility Framework (MEF). Another great reason to use managed code!

Your First Application: Take Two 127
3

 Your First Application: Take Two
 To continue our tour through Visual Studio 2012, let’s make things a bit more concrete
and redo our little Hello C# application inside the IDE.

 New Project Dialog

 The starting point to create a new application is the New Project dialog, which can be
found through File, New, Project or invoked by Ctrl+Shift+N. A link is available from the
Projects tab on the Start Page, too. A whole load of different project types are available,
also depending on the edition used and the installation options selected. Actually, the
number of available project templates has grown so much over the years that the dialog
was redesigned in Visual Studio 2010 to include features such as search.

 Because I’ve selected Visual C# as my preferred language at the first start of Visual Studio
2012, the C# templates are shown immediately. (For other languages, scroll down to
the Other Languages entry on the left.) Subcategories are used to organize the various
templates. Under the Windows category, we find the following commonly used project
types:

 ▶ Console Application is used to create command-line application executables. This is
what we’ll use for our Hello application.

 ▶ Class Library provides a way to build assemblies with a .dll extension that can be
used from various other applications (for example, to provide APIs).

 ▶ Portable Class Library is new in Visual Studio 2012 and is used to create class librar-
ies that can run on multiple .NET Framework flavors (such as Silverlight, Windows
Phone, .NET 4.5, and so on).

 ▶ Windows Forms Application creates a project for a GUI-driven application based on
the Windows Forms technology, targeting the classic Windows desktop.

 ▶ WPF Application is another template for GUI applications but based on the new and
more powerful WPF framework, also targeting the classic Windows desktop.

 Visual Studio 2012 adds the Windows Store category with templates used to build applica-
tions targeting the Windows 8 platform:

 ▶ Different XAML templates are available as starting points for the GUI design of a
Windows Store application (for example, using a grid or a split view).

 ▶ Class Library (Windows Store apps) gives you a way to build class library assemblies
that you can reuse across different Windows Store app projects.

 ▶ Windows Runtime Component allows for the creation of WinMD components using
C#. Such components can be used for Windows Store apps built-in managed code,
JavaScript, and C++.

 ▶ When you are writing web applications, the Web category is a good starting point,
providing different templates for ASP.NET-based applications.

CHAPTER 3 Getting Started with .NET Development Using C#128

 We cover other types of templates, too, but for now those are the most important ones to
be aware of. Figure 3.22 shows the New Project dialog, where you pick the project type of
your choice.

 FIGURE 3.22 The New Project dialog.

 Notice the NET Framework 4.5 drop-down at the top of the dialog. This is where the
multitargeting support of Visual Studio comes in. In this list, you can select to target older
versions of the framework, all the way back to 2.0. Give it a try and select the 2.0 version
of the framework to see how the dialog filters out project types that are not supported on
that version of the framework.

 For now, keep .NET Framework 4.5 selected, mark the Console Application template, and
specify Hello as the name for the project. Notice the Create Directory for Solution check
box. Stay tuned. We’ll get to the concept of projects and solutions in a while. Just leave it
as is for now. Figure 3.23 shows the result of creating the new project.

 Once the project has been created, it is loaded, and the first (and in this case, only) rele-
vant file of the project shows up. In our little console application, this is the Program.cs
file containing the managed code entry point.

 Notice how an additional toolbar (known as the Text Editor toolbar), extra toolbar items
(mainly for debugging), and menus have been made visible based on the context we’re
in now.

Your First Application: Take Two 129
3

 Solution Explorer

 With the new project created and loaded, make the Solution Explorer (usually docked on
the right side) visible, as shown in Figure 3.24 . Slightly simplified, Solution Explorer is a
mini file explorer that shows all the files that are part of the project. In this case, that’s
just Program.cs. Besides the files in the project, other nodes are shown as well:

 ▶ Properties provides access to the project-level settings (see later) and reveals a code
file called AssemblyInfo.cs that contains assembly-level attributes, something we
discuss in Chapter 25 .

 ▶ References is a collection of assemblies the application depends on. Notice that by
default quite a few references to commonly used class libraries are added to the
project, also depending on the project type.

 NOTE : V WORRIED ABOUT UNUSED REFERENCES?

 People sometimes freak out when they see a lot of unused references. Our simple Hello
application will actually use only the System assembly (which contains things such as the
basic data types and the Console type), so there are definitely grounds for such a worry.
However, rest assured that there’s no performance impact in having unused assembly
references because the CLR loads referenced assemblies only when they’re actually used.
As time goes on, you’ll become more familiar with the role of the various assemblies that
have been included by default.

 FIGURE 3.23 A new Console Application project.

CHAPTER 3 Getting Started with .NET Development Using C#130

 So, what’s the relation between a solution and a project? Fairly simple: Solutions are
containers for one or more projects. In our little example, we have just a single Console
Application project within its own solution. The goal of solutions is to be able to express
relationships between dependent projects. For example, a Class Library project might be
referred to by a Console Application in the same solution. Having them in the same solu-
tion makes it possible to build the whole set of projects all at once.

 NOTE : SOURCE CONTROL

 For those of you who’ll be using Visual Studio 2012 in combination with TFS, Solution
Explorer is also one of the gateways to source control, enabling you to perform check-in/
out operations on items in the solution, just to name one thing.

 Project Properties

 Although we don’t need to reconfigure project properties at this point, let’s take a quick
look at the project configuration system. Double-click the Properties node for our Hello
project in Solution Explorer (or right-click and select Properties from the context menu).
 Figure 3.25 shows the Build tab in the project settings.

 As a concrete example of some settings, I’ve selected the Build tab on the left, but feel free
to explore the other tabs at this point. The reason I’m highlighting the Build configura-
tion at this point is to stress the relationship between projects and build support, as will
be detailed later on.

 FIGURE 3.24 Solution Explorer.

Your First Application: Take Two 131
3

 Code Editor

 Time to take a look at the center of our development activities: writing code. Switch back
to Program.cs and take a look at the skeleton code that has been provided:

 using System;

 using System.Collections.Generic;

 using System.Linq;

 using System.Text;

 namespace Hello

 {

 class Program

 {

 static void Main(string[] args)

 {

 }

 }

 }

 There are a few differences with the code we started from when writing our little console
application manually.

 FIGURE 3.25 Project properties.

CHAPTER 3 Getting Started with .NET Development Using C#132

 First of all, more namespaces with commonly used types have been imported by means
of using directives. Second, a namespace declaration is generated to contain the Program
class. We talk about namespaces in more detail in the next chapters, so don’t worry
about this for now. Finally, the Main entry point has a different signature: Instead of not
taking in any arguments, it now does take in a string array that will be populated with
command-line arguments passed to the resulting executable. Because we don’t really want
to use command-line arguments, this doesn’t matter much to us. We discuss the possible
signatures for the managed code entry point in Chapter 4 , “Language Essentials,” in the
section “The Entry Point.”

 Let’s write the code for our application now. Recall the three lines we wrote earlier:

 static void Main()

 {

 Console.Write("Enter your name: ");

 string name = Console.ReadLine();

 Console.WriteLine("Hello " + name);

 }

 As you enter this code in the editor, you’ll observe a couple of things. One little feature
is auto-indentation, which positions the cursor inside the Main method indented a bit
more to the right than the opening curly brace of the method body. This enforces good
indentation practices (the behavior of which you can control through the Tools, Options
dialog). More visible is the presence of IntelliSense. As soon as you type the member
lookup dot operator after the Console type name, a list of available members appears that
filters out as you type. Figure 3.26 shows IntelliSense in action.

 FIGURE 3.26 IntelliSense while typing code.

 After you’ve selected the Write method from the list (note you can press Enter or the
spacebar as soon as the desired member is selected in the list to complete it further) and

Your First Application: Take Two 133
3

you type the left parenthesis to supply the arguments to the method call, IntelliSense pops
up again showing all the available overloads of the method. You learn about overloading
in Chapter 10 , “Methods,” so just type the “Enter your name:” string.

 IntelliSense will help you with the next two lines of code in a similar way as it did for
the first. As you type, notice different tokens get colorized differently. Built-in language
keywords are marked with blue, type names (like Console) have a color that I don’t know
the name of but that looks kind of lighter bluish, and string literals are colored with a red-
brown color. Actually, you can change all those colors through the Tools, Options dialog.

 NOTE : WORRIED ABOUT UNUSED NAMESPACE IMPORTS?

 Just as with unused references, people sometimes freak out when they see a lot of
unused namespace imports. Again, this is not something to worry about but for a differ-
ent reason this time. Namespaces are a compile-time aid only, telling the compiler where
to look for types that are used throughout the code. Even though the preceding code has
imported the System.Text namespace, you won’t find a trace of it in the compiled code
because we’re not using any of the types defined in that namespace.

 Agreed, unused namespace imports can be disturbing when reading code, so Visual
Studio comes with an option to weed out unused namespace imports by right-clicking the
code and selecting Organize Usings, Remove Unused Usings.

 If you try this on our code, you’ll see that only the System namespace import remains,
and that’s because we’re using the Console type that resides in that namespace.
Figure 3.27 shows this handy feature.

 FIGURE 3.27 Reducing the clutter of excessive imported namespaces.

 Another great feature about the code editor is its background compilation support. As you
type, a special C# compiler is running constantly in the background to spot code defects
early. Suppose we have a typo when referring to the name variable ; it will show up
almost immediately, marked by red squiggles, as shown in Figure 3.28 .

 If you’re wondering what the yellow border on the left side means, it simply indicates the
lines of code you’ve changed since the file was opened and last saved. If you press Ctrl+S
to save the file now, you’ll see the lines marked green. This feature helps you find code
you’ve touched in a file during a coding session by providing a visual cue, which is quite
handy if you’re dealing with large code files.

CHAPTER 3 Getting Started with .NET Development Using C#134

 Build Support

 As software complexity grows, so does the build process: Besides the use of large numbers
of source files, extra tools are used to generate code during a build, references to depen-
dencies need to be taken care of, resulting assemblies must be signed, and so on. You
probably don’t need further convincing that having integrated build support right inside
the IDE is a great thing.

 In Visual Studio, build is integrated tightly with the project system because that’s ulti-
mately the place where source files live, references are added, and properties are set. To
invoke a build process, either use the Build menu (see Figure 3.29) or right-click the solu-
tion or a specific project node in Solution Explorer. A shortcut to invoke a build for the
entire solution is F6.

 FIGURE 3.29 Starting a build from the project node context menu.

 TIP

 Although launching a build after every few lines of code you write might be tempting, I
recommend against such a practice. For large projects, this is not feasible because build
times might be quite long (though C# code compilation is relatively fast); but more impor-
tant, this style has the dangerous potential of making developers think less about the
code they write.

 Personally, I try to challenge myself to write code that compiles immediately without errors
or even warnings. The background compilation support for C# in the code editor helps
greatly to achieve this goal, catching silly typos early, leaving the more fundamental code
flaws something to worry about.

 FIGURE 3.28 The background compiler detecting a typo.

Your First Application: Take Two 135
3

 Behind the scenes, this build process figures out which files need to compile, which addi-
tional tasks need to be run, and so on. Ultimately, calls are made to various tools such
as the C# compiler. This is not a one-way process: Warnings and errors produced by the
underlying tools are bubbled up through the build system into the IDE, allowing for a
truly interactive development experience. Figure 3.30 shows the Error List pane in Visual
Studio 2012.

 FIGURE 3.30 The Error List pane showing a build error.

 Starting with Visual Studio 2005, the build system is based on a .NET Framework tech-
nology known as MSBuild. One of the rationales for this integration is to decouple the
concept of project files from exclusive use in Visual Studio. To accomplish this, the project
file (for C#, that is a file with a .csproj extension) serves two goals: It’s natively recognized
by MSBuild to drive build processes for the project, and Visual Studio uses it to keep track
of the project configuration and all the files contained in it.

 To illustrate the project system, right-click the project node in Solution Explorer and
choose Unload Project. Next, select Edit Hello.csproj from the same context menu (see
 Figure 3.31).

 In Figure 3.32 , I’ve collapsed a few XML nodes in the XML editor that is built into Visual
Studio. As you can see, the IDE is aware of many file formats. Also notice the additional
menus and toolbar buttons that have been enabled as we’ve opened an XML file.

CHAPTER 3 Getting Started with .NET Development Using C#136

 From this, we can see that MSBuild projects are XML files that describe the structure of
the project being built: what the source files are, required dependencies, and so forth.
Visual Studio uses MSBuild files to store a project’s structure and to drive its build. Notable
entries in this file include the following:

 ▶ The Project tag specifies the tool version (in this case, version 4.0 of the .NET
Framework tools, including MSBuild itself), among other build settings.

 ▶ PropertyGroups are used to define name-value pairs with various project-level
configuration settings.

 ▶ ItemGroups contain a variety of items, such as references to other assemblies and
the files included in the project.

 FIGURE 3.31 Showing the project definition file.

 FIGURE 3.32 Project file in the XML editor.

Your First Application: Take Two 137
3

 ▶ Using an Import element, a target file is specified that contains the description of
how to build certain types of files (for example, using the C# compiler).

 You’ll rarely touch up project files directly using the XML editor. However, for advanced
scenarios, it’s good to know it’s there.

 Now that you know how to inspect the MSBuild project file, go ahead and choose Reload
Project from the project’s node context menu in Solution Explorer. Assuming a successful
build (correct the silly typo illustrated before), where can the resulting binaries be found?
Have a look at the project’s folder, where you’ll find a subfolder called bin. Underneath
this one, different build flavors have their own subfolder. Figure 3.33 shows the Debug
build output.

 FIGURE 3.33 Build output folder.

 For now, we’ve just built one particular build flavor: Debug. Two build flavors, more offi-
cially known as solution configurations, are available by default. In Debug mode, symbol
files with additional debugging information are built. In Release mode, that’s not the case,
and optimizations are turned on, too. This is just the default configuration, though: You
can tweak settings and even create custom configurations altogether. Figure 3.34 shows
the drop-down list where the active project build flavor can be selected.

 FIGURE 3.34 Changing the solution configuration.

CHAPTER 3 Getting Started with .NET Development Using C#138

 NOTE : THE ROLE OF PDB FILES IN MANAGED CODE

 In the introductory chapters on the CLR and managed code, we stressed the important
role metadata plays, accommodating various capabilities such as IntelliSense, rich type
information, reflection facilities, and so on. Given all this rich information, you might
wonder how much more information is required to support full-fledged debugging support.
The mere fact that managed code assemblies still have PDB files (Program Database
files) reveals there’s a need for additional “debugging symbols.” One such use is to map
compiled code back to lines in the sources. Another one is to keep track of names of
local variable names, something the CLR doesn’t provide metadata storage for.

 One of the biggest advantages of the MSBuild technology is that a build can be done
without the use of Visual Studio or other tools. In fact, MSBuild ships with the .NET
Framework itself. Therefore, you can take any Visual Studio project (since version 2005,
to be precise) and run MSBuild directly on it. That’s right: Visual Studio doesn’t even
need to be installed. Not only does this allow you to share your projects with others who
might not have the IDE installed, but it also makes automated build processes possible
(for example, by TFS). Because you can install TFS on client systems nowadays, automated
(that is, nightly) build of personal projects becomes available for individual professional
developers, too.

 In fact, MSBuild is nothing more than a generic build task execution platform that has
built-in notions of dependency tracking and timestamp checking to see what parts of
an existing build are out of date (to facilitate incremental, and hence faster, builds). The
fact it can invoke tools such as the C# compiler is because the right configuration files,
so-called target files, are present that declare how to run the compiler. Being written in
managed code, MSBuild can also be extended easily. See the MSDN documentation on the
subject for more information.

 To see a command-line build in action, open a Developer Command Prompt for VS2012
from the Start menu, change the directory to the location of the Hello.csproj file, and
invoke msbuild.exe (see Figure 3.35). The fact there’s only one recognized project file
extension causes MSBuild to invoke the build of that particular project file.

 Because we already invoked a build through Visual Studio for the project before, all
targets are up-to-date, and the incremental build support will avoid rebuilding the project
altogether.

 TIP

 Want to see a more substantial build in action? First clean the project’s build output by
invoking msbuild /target:clean . Next, you can simply rebuild by issuing the msbuild
command again.

 To convince yourself the C# compiler got invoked behind the scenes, turn on verbose
logging by running msbuild /clp:verbosity=detailed . This causes a spew of output
to be emitted to the console, in which you’ll find an invocation of csc.exe with a bunch of
parameters.

Your First Application: Take Two 139
3

 Debugging Support

 One of the first features that found a home under the big umbrella of the IDE concept was
integrated debugging support on top of the editor. This is obviously no different in Visual
Studio 2012, with fabulous debugging support facilities that you’ll live and breathe on a
day-to-day basis as a professional developer on the .NET Framework.

 The most commonly used debugging technique is to run the code with breakpoints
set at various places of interest, as shown in Figure 3.36 . Doing so right inside a source
code file is easy by putting the cursor on the line of interest and pressing F9. Alternative
approaches include clicking in the gray margin on the left or using any of the toolbar or
menu item options to set breakpoints.

 To start a debugging session, press F5 or click the button with the VCR Play icon. (Luckily,
Visual Studio is easier to program than such an antique and overly complicated device.)
Code will run until a breakpoint is encountered, at which point you’ll break in the debug-
ger, as illustrated in Figure 3.37 .

 FIGURE 3.35 MSBuild invoked from the command line.

CHAPTER 3 Getting Started with .NET Development Using C#140

 Notice a couple of the debugging facilities that have become available as we entered the
debugging mode:

 ▶ The Call Stack pane shows where we are in the execution of the application code.
In this simple example, there’s only one stack frame for the Main method, but in
typical debugging sessions, call stacks get much deeper. By double-clicking entries in
the call stack list, you can switch back and forth between different stack frames to
inspect the state of the program.

 ▶ The Locals pane shows all the local variables that are in scope, together with their
values. More complex object types will result in more advanced visualizations and
the ability to drill down into the internal structure of the object kept in a local vari-
able. Also, when hovering over a local variable in the editor, its current value is
shown to make inspection of program state much easier.

 FIGURE 3.36 Code editor with a breakpoint set.

 FIGURE 3.37 Hitting a breakpoint in the debugger.

Your First Application: Take Two 141
3

 ▶ The Debug toolbar has become visible, providing options to continue or stop execu-
tion and step through code in various ways: one line at a time, stepping into or over
methods calls, and so on.

 More advanced uses of the debugger are sprinkled throughout this book, but nevertheless
let’s highlight a few from a 10,000-foot view:

 ▶ The Immediate window enables you to evaluate expressions, little snippets of code.
This way, you can inspect more complex program state that might not be immedi-
ately apparent from looking at individual variables. For example, you could execute
a method to find out about state in another part of the system.

 ▶ The Breakpoints window simply displays all breakpoints currently set and provides
options for breakpoint management: the ability to remove breakpoints or enable/
disable them.

 ▶ The Memory window and Registers window are more advanced means of looking at
the precise state of the machine by inspecting memory or processor registers. In the
world of managed code, you won’t use those very often.

 ▶ The Disassembly window can be used to show the processor instructions executed
by the program. Again, in the world of managed code this is less relevant (recall the
role of the Just-in-Time [JIT] compiler), but all in all the Visual Studio debugger is
usable for both managed and native code debugging.

 ▶ The Threads window shows all the threads executing in a multithreaded application.
Since .NET Framework 4, new concurrency libraries have been added to System.
Threading and new Parallel Stacks and Parallel Tasks windows have been added to
assist in debugging those, too.

 Debugging is not necessarily initiated by running the application straight from inside the
editor. Instead, you can attach to an already running process, even on a remote machine,
using the Remote Debugger.

 Visual Studio 2010 introduced the IntelliTrace feature, which enables a time-travel mecha-
nism to inspect the program’s state at an earlier point in the execution (for example, to
find out about some state corruption that happened long before a breakpoint was hit).

 NOTE : ALTERNATIVE DEBUGGERS

 The Visual Studio IDE is not the only debugger capable of dealing with managed code,
although it’s likely the most convenient one due to its rich graphical nature, which allows
direct visual inspection of various pieces of state and such.

 Command-line savvy developers on the Windows platform will no doubt have heard about
CDB and its graphical counterpart, WinDbg. Both are available from the Microsoft website
as separate downloads, known as the Debugger Tools for Windows.

 Although the original target audience for CDB and WinDbg consists of Win32 native code
developers and driver writers, an extension for managed code ships right with the .NET
Framework. This debugger extension is known as SOS, which stands for Son of Strike,

CHAPTER 3 Getting Started with .NET Development Using C#142

with Strike being an old code name for the CLR. You can find it under the framework
installation folder in a file called sos.dll. We take a look at the use of SOS sporadi-
cally—for example, in Chapter 18 , “Events,” to debug a memory leak in the sidebar called
“Using SOS to Trace Leaks.”

 Besides SOS, there’s also a purely managed code debugger called MDbg, which stands
for Managed Debugger. This one, too, comes as a command-line debugger. Originally
meant as an example to illustrate the use of the CLR debugger APIs, I find it a useful tool
from time to time when I don’t have Visual Studio installed.

 Given the typical mix of technologies and tools applications are written with nowadays,
it’s all-important to be able to flawlessly step through various types of code during the
same debugging session. In the world of managed code, one natural interpretation of
this is the ability to step through pieces of code written in different managed languages,
such as C# and Visual Basic. Visual Studio goes even further by providing the capability
to step through other pieces of code: T-SQL database stored procedures, workflow code
in Windows Workflow Foundation (WF), JavaScript code in the browser, and so on. Core
pillars enabling this are the capability to debug different processes simultaneously (for
example, a web service in some web server process, the SQL Server database process, the
web browser process running JavaScript) and the potential for setting up remote debug-
ging sessions.

 Object Browser

 With the .NET Framework class libraries ever growing and other libraries being used in
managed code applications, the ability to browse through available libraries becomes quite
important. You’ve already seen IntelliSense as a way to show available types and their
available members, but for more global searches, different visualizations are desirable.
Visual Studio’s built-in Object Browser is one such tool (see Figure 3.38).

 FIGURE 3.38 Object Browser visualizing the System.Core assembly.

Your First Application: Take Two 143
3

 This tool feels a lot like ILSpy, with the ability to add assemblies for inspection, browse
namespaces, types, and members, and a way to search across all of those. It doesn’t have
decompilation support, though.

 NOTE : .NET FRAMEWORK SOURCE CODE

 Want to see the .NET Framework source code itself? This has been a longstanding
request from the community to help boost the understanding of framework functionality
and, in answer to this request, Microsoft has started to make parts of the source code
for the .NET Framework available through a shared source program starting from .NET
3.5. Even more so, Visual Studio has been enhanced to be able to step through .NET
Framework source code available from the Microsoft servers.

 You can find more information on the Microsoft Shared Source Initiative for the .NET
Framework site at http://referencesource.microsoft.com/netframework.aspx .

 Code Insight

 An all-important set of features that form an integral part of IDE functionality today is
what we can refer to collectively as “code insight” features. No matter how attractive the
act of writing code may look—because that’s what we, developers, are so excited about,
aren’t we?—the reality is we spend much more time reading existing code in an attempt
to understand it, debug it, or extend it. Therefore, the ability to look at the code from
different angles is an invaluable asset to modern IDEs.

 NOTE

 For the examples that follow, we shy away from our simple Hello application because its
simplicity does not allow us to illustrate more complex software projects. Instead, we use
one of the sample applications that you can download through the Help, Samples menu
in Visual Studio 2012. In this dialog, search for “LINQ Sample Queries” to locate the C#
sample project that illustrates the use of LINQ.

 To start with, three closely related features are directly integrated with the code editor
through the context menu, shown in Figure 3.39 . These enable navigating through source
code in a very exploratory fashion.

 Go To Definition simply navigates to the place where the highlighted “item” is defined.
This could be a method, field, local variable, and so on. We talk about the meaning of
those terms in the next few chapters.

 Find All References is similar in nature but performs the opposite operation: Instead of
finding the definition site for the selection, it looks for all use sites of it. For example,
when considering changing the implementation of some method, you better find out
who’s using it and what the impact of any change might be.

http://referencesource.microsoft.com/netframework.aspx

CHAPTER 3 Getting Started with .NET Development Using C#144

 View Call Hierarchy was added in Visual Studio 2010 and somewhat extends upon the
previous two in that it presents the user with a hierarchical representation of outgoing
and incoming calls for a selected member. Figure 3.40 shows navigation through some call
hierarchy.

 FIGURE 3.40 Call Hierarchy analyzing some code.

 So far, we’ve been looking at code with a fairly local view: hopping between definitions,
tracing references, and drilling into a hierarchy of calls. Often, you want to get a more
global view of the code to understand the bigger picture. Let’s zoom out gradually and
explore more code exploration features that make this task possible.

 Another addition in Visual Studio 2010 was the support for sequence diagrams, which
can be generated using Generate Sequence Diagram from the context menu in the code

 FIGURE 3.39 Code navigation options.

Your First Application: Take Two 145
3

editor. People familiar with UML notation will immediately recognize the visualization of
sequence diagrams. They enable you to get an ordered idea of calls being made between
different components in the system, visualizing the sequencing of such an exchange.

 Notice that the sequence diagrams in Visual Studio are not passive visualizations. Instead,
you can interact with them to navigate to the corresponding code if you want to drill
down into an aspect of the implementation. This is different from classic UML tools where
the diagrams are not tightly integrated with an IDE. Figure 3.41 shows a sequence diagram
of calls between components.

 FIGURE 3.41 A simple sequence diagram.

 To look at a software project from a more macroscopic scale, you can use the Class
Diagram feature in Visual Studio, available since version 2008. To generate such a
diagram, right-click the project node in Solution Explorer and select View Class Diagram.
The Class Diagram feature provides a graphical veneer on top of the project’s code,
representing the defined types and their members, as well as the relationships between
those types (such as object-oriented inheritance relationships, as discussed in Chapter 14 ,
“Object-Oriented Programming”).

 Once more, this diagram visualization is interactive, which differentiates it from classi-
cal approaches to diagramming of software systems. In particular, the visualization of the
various types and their members is kept in sync with the underlying source code so that
documentation never diverges from the actual implementation. But there’s more. Besides
visualization of existing code, you can use the Class Diagram feature to extend existing
code or even to define whole new types and their members. Using Class Diagrams you can
do fast prototyping of rich object models using a graphical designer. Types generated by
the designer will have stub implementations of methods and such, waiting for code to be

CHAPTER 3 Getting Started with .NET Development Using C#146

supplied by the developer at a later stage. Figure 3.42 shows the look and feel of the Class
Diagram feature.

 FIGURE 3.42 A class diagram for a simple type hierarchy.

 Other ways of visualizing the types in a project exist. We’ve already seen the Object
Browser as a way to inspect arbitrary assemblies and search for types and their members.
In addition to this, there’s the Class View window that restricts the view to the projects
in the current solution. A key difference is this tool’s noninteractive nature: It’s a one-way
visualization of types.

 Finally, to approach a solution from a high-level view, there’s the Architecture Explorer
(illustrated in Figure 3.43). This one can show the various projects in a solution and the
project items they contain, and you can drill down deeper into the structure of those
items (for example, types and members). By now, it should come as no surprise this view
on the world is kept in sync with the underlying implementation, and the designer can
be used to navigate to the various items depicted. What makes this tool unique is its rich
analysis capabilities, such as the ability to detect and highlight circular references, unused
references, and so on.

Your First Application: Take Two 147
3

 FIGURE 3.43 Graph view for the solution, project, a code file item, and some types.

 NOTE : IT’S AN ML WORLD: DGML

 Designer tools are typically layered on top of some markup language (ML); for example,
web designers visualize HTML, and in WPF and WF, they use XAML. This is no different
for the Architecture Explorer’s designer, which is based on a new format called DGML,
for Directed Graph Markup Language. In essence, it describes a graph structure based
on nodes and links and hence can be used for a variety of tools that require such graph
representations/visualizations.

 Integrated Help

 During the installation of Visual Studio 2012, I suggested that you install the full MSDN
documentation locally using the Manage Help Settings utility. Although this is not a
requirement, it’s convenient to have a wealth of documentation about the tools, frame-
work libraries, and languages at your side at all times.

 Although you can launch the MSDN library directly from the Start menu by clicking
the Microsoft Visual Studio 2012 Documentation entry, more regularly you’ll invoke it
through the Help menu in Visual Studio or by means of the context-sensitive integrated
help functionality. Places where help is readily available from the context (by pressing F1)

CHAPTER 3 Getting Started with .NET Development Using C#148

include the Error List (to get information on compiler errors and warnings) and the code
editor itself (for lookup of API documentation). Notice that starting with Visual Studio
2012, documentation is provided through the browser rather than a standalone applica-
tion. This mirrors the online MSDN help very closely.

 NOTE : COMMUNITY CONTENT

 Online MSDN documentation at msdn.microsoft.com has a more recent feature addition,
allowing users to contribute content in some kind of wiki style. For example, if the use of
a certain API is not as straightforward as you might expect, chances are good that some
other user has figured it out and shared it with the world over there.

 Designers

 Since the introduction of Visual Basic 1.0 (as early as 1991), Rapid Application
Development (RAD) has been a core theme of the Microsoft tools for developers. Rich
designers for UI development are huge time savers over a coding approach to accomplish
the same task. This was true in the world of pure Win32 programming and still is today,
with new UI frameworks benefiting from designer support. But as you will see, designers
are also used for a variety of other tasks outside the realm of UI programming.

 Windows Forms

 In .NET 1.0, Windows Forms (WinForms) was introduced as an abstraction layer over the
Win32 APIs for windowing and the common controls available in the operating system.
By nicely wrapping those old dragons in the System.Windows.Forms class library, the
creation of UIs became much easier. And this is not just because of the object-oriented
veneer provided by it, but also because of the introduction of new controls (such as the
often-used DataGrid control) and additional concepts, such as data binding to bridge
between data and representation.

 Figure 3.44 shows the Windows Forms designer in the midst of designing a UI for a simple
greetings program. On the left, the Toolbox window shows all the available controls we
can drag and drop onto the designer surface. When we select a control, the Properties
window on the right shows all the properties that can be set to control the control’s
appearance and behavior.

 To hook up code to respond to various user actions, you can create event handlers
through that same Properties window by clicking the “lightning” icon on the toolbar.
Sample events include Click for a button, TextChanged for a text box, and so on. And
the most common event for each control can be wired up by simply double-clicking the
control. For example, double-clicking the selected button produces an event handler for
a click on Say Hello. Now we find ourselves in the world of C# code again, as shown in
 Figure 3.45 .

Your First Application: Take Two 149
3

 FIGURE 3.44 The Windows Forms designer.

 FIGURE 3.45 An empty event handler ready for implementation.

 The straightforward workflow introduced by Windows Forms turned it into a gigantic
success right from the introduction of the .NET Framework. Although we now have the
Windows Presentation Foundation (WPF) as a new and more modern approach to UI
development, there are still lots of Windows Forms applications out there. (So it’s in your
interest to know a bit about it.)

 NOTE : CODE GENERATION AND THE C# LANGUAGE

 You might be wondering how the UI definition for the previous WinForms application is
stored. Is there a special on-disk format to describe graphical interfaces, or what? In the
world of classic Visual Basic, this was the case with .frm and .frx files. With WinForms,
though, the answer is no: The UI definition is simply stored as generated C# (or VB) code,

CHAPTER 3 Getting Started with .NET Development Using C#150

using the System.Windows.Forms types, just as you’d do yourself if you were to define a
UI without the use of the designer. Actually, the designer is a live instance of your UI but
with certain interactions rewired to the designer’s functionality (for example, when clicking
a button, it gets selected).

 So where does this code live? In the screenshot with the event handler method; notice
the call to InitializeComponent in the constructor of the Form class. When you right-
click the call and Go to Definition, you’ll see another code file opens with the extension
.designer.cs:

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.label1 = new System.Windows.Forms.Label();

 this.button1 = new System.Windows.Forms.Button();

 this.textBox1 = new System.Windows.Forms.TextBox();

 Here you’ll find code that sets all the properties on the controls, adds them to the form,
wires up event handlers, and more.

 Notice that the XML document comment on top of the InitializeComponent method
saying not to modify this code as it gets generated by the graphical designer and changes
will get overridden (at best) or might confuse the designer resulting in weird behavior. Why
is this important to point out? Well, the first release of the designer in .NET 1.0 had to
use the first version of the C# language. Nothing wrong with that, of course, except for the
fact that the generated code had to be emitted to the same file as the one containing the
event handlers’ code. Although technically challenging to ensure the user’s code is not
tampered with when updating the generated code, there was a bigger flaw. Developers,
curious as they are, felt tempted to tweak the generated code from time to time, despite
the warning comment on top of it, sometimes with disastrous results. As a way to miti-
gate this (partly), code was emitted inside a #region preprocessor directive to collapse it
in the code editor, hiding it from the developer by default.

 A better way to deal with this situation was highly desirable, and the solution came online
in the .NET Framework 2.0 with the introduction of C# 2.0’s partial classes . In essence, a
partial class allows the definition of a class to be spread across multiple files. Windows
Forms was one of the first tools to take advantage of this by emitting generated code to a
separate file (with a .designer.cs extension) while keeping user-written code elsewhere. In
this regard, notice the partial keyword on the class definition shown in Figure 3.45 . As an
implication, the designer can always rewrite the entire generated file, and the generated
code file can be hidden from the user more efficiently. Actually, just for that reason, by
default Solution Explorer doesn’t show this file.

 With this, we finish our discussion of Windows Forms for now and redirect our attention
to its modern successor: WPF.

Your First Application: Take Two 151
3

 Windows Presentation Foundation

 With the release of the .NET Framework 3.0 (formerly known as WinFX), a new UI
platform was introduced: Windows Presentation Foundation. WPF solves a number of
problems:

 ▶ Mixed use of various UI technologies, such as media, rich text, controls, vector
graphics, and so on, was too hard to combine in the past, requiring mixed use of
GDI+, DirectX, and more.

 ▶ Resolution independence is important to make applications that scale well on differ-
ent form factors.

 ▶ Decoupled styling from the UI definition allows you to change the look and feel of
an application on-the-fly without having to rewrite the core UI definition.

 ▶ A streamlined designer-developer interaction is key to delivering compelling user
experiences because most developers are not very UI savvy and want to focus on the
code rather than the layout.

 ▶ Rich graphics and effects allow for all sorts of UI enrichments, making applications
more intuitive to use.

 One key ingredient to achieve these goals—in particular the collaboration between design-
ers and developers—is the use of XAML. In essence, XAML is a way to use XML for creat-
ing object instances (for example, to represent a UI definition). The use of such a markup
language allows true decoupling of the look and feel of an application from the user’s
code. As you can probably guess by now, Visual Studio has an integrated designer (code
named Cider) for WPF (see Figure 3.46).

 FIGURE 3.46 The integrated WPF designer.

CHAPTER 3 Getting Started with .NET Development Using C#152

 As in the Windows Forms designer, three core panes are visible: the Toolbox window
containing controls, the Properties window with configuration options for controls and
the ability to hook up event handlers, and the designer sandwiched in between.

 One key difference is in the functionality exposed by the designer. First of all, observe
the zoom slider on the left, reflecting WPF’s resolution-independence capabilities. A more
substantial difference lies in the separation between the designer surface and the XAML
view at the bottom. With XAML, no typical code generation is involved at design type.
Instead, XAML truly describes the UI definition in all its glory.

 Based on this architecture, it’s possible to design different tools (such as Expression Blend)
that allow refinement of the UI without having to share out C# code. The integrated
designer therefore provides only the essential UI definition capabilities, decoupling more-
involved design tasks from Visual Studio by delegating those to the more-specialized
Expression Blend tool for use by professional graphical designers.

 Again, double-clicking the button control generates the template code for writing an event
handler to respond to the user clicking it. Although the signature of the event handler
method differs slightly, the idea is the same. Figure 3.47 shows the generated empty event
handler for a WPF event.

 FIGURE 3.47 Code skeleton for an event handler in WPF.

 Notice, though, that there’s still a call to InitializeComponent in theWindow1 class’s
constructor. But didn’t I just say there’s no code generation involved in WPF? That’s
almost true, and the code generated here does not contain the UI definition by itself.
Instead, it contains the plumbing required to load the XAML file at runtime, to build
up the UI. At the same time, it contains fields for all the controls that were added to the
UI for you to be able to address them in code. This generated code lives in a partial class
definition stored in a file with a .g.i.cs extension, as illustrated in Figure 3.48 . To see this
generated code file, toggle the Show All Files option in Solution Explorer.

 Notice how the XAML file (which gets compiled into the application’s assembly in a
binary format called Binary Application Markup Language [BAML]) is loaded through the
generated code. From that point on, the XAML is used to instantiate the UI definition,
ready for it to be displayed by WPF’s rendering engine.

Your First Application: Take Two 153
3

 As an aside, you can actually create WPF applications without using XAML at all by creat-
ing instances of the window and control types yourself. In other words, there’s nothing
secretive about XAML; it’s just a huge convenience not to have to go through the burden
of defining objects by hand.

 NOTE : LIGHTING UP THE WEB WITH SILVERLIGHT

 There’s no reason why the advantages of WPF with regard to designer support, rich
graphics layout capabilities, and so on should not be extended to the Web. That’s
precisely what Silverlight is about. Originally dubbed WPF/E, for WPF Everywhere,
Silverlight is a cross-platform (Windows, Mac, Linux) and cross-browser (Internet Explorer,
Firefox, Safari) subset of the CLR and .NET Framework class libraries (including WPF) that
you can use to create rich Web experiences. In the field of UI design, it shares a lot of
the WPF concepts, including the use of XAML to establish a designer-developer collabora-
tion foundation. Given all of this, it’s very straightforward for WPF developers to leverage
Silverlight and vice versa.

 Since Visual Studio 2010, Silverlight project support has been added to the IDE, requiring
only additional installation of the Silverlight SDK.

 A little tidbit for geeks: The main Silverlight in-process browser DLL is called agcore, as a
subtle hint to the chemical symbol for silver. I’ll leave it to your imagination to figure out
what was first: agcore or the public Silverlight name.

 Windows Workflow Foundation

 A more specialized technology, outside the realm of UI programming, is the Windows
Workflow Foundation (abbreviated WF, not WWF, to distinguish from a well-known orga-
nization for the conservation of the environment). Workflow-based programming enables
the definition and execution of business processes, such as order management, using
graphical tools. The nice thing about workflows is they have various runtime services
to support transaction management, long-running operations (that can stretch multiple
hours, day, weeks or even years), and so on.

 The reason I’m mentioning WF right after WPF is the technology they have in common:
XAML. In fact, XAML is a generic language to express object definitions using an

 FIGURE 3.48 Generated code for a WPF window definition.

CHAPTER 3 Getting Started with .NET Development Using C#154

XML-based format, which is totally decoupled from UI specifics. Because workflow has a
similar declarative nature, it just made sense to reuse the XAML technology in WF, as well
(formerly dubbed XOML, for Extensible Orchestration Markup Language).

 Figure 3.49 shows the designer of WF used to define a sequential workflow.

 FIGURE 3.49 A simple sequential workflow.

 The golden triad (Toolbox, Properties, and designer) is back again. This time in the
Toolbox you don’t see controls but so-called activities with different tasks, such as control
flow, transaction management, sending and receiving data, invoking external compo-
nents (such as PowerShell), and so on. Again, the Properties window is used to config-
ure the selected item. In this simple example, we receive data from an operation called
 AskUserName , bind it to the variable called name , and feed it in to a WriteLine activity
called SayHello . The red bullet next to SayHello is a breakpoint set on the activity for
interactive debugging, illustrating the truly integrated nature of the workflow designer
with the rest of the Visual Studio tooling support.

 For such a simple application it’s obviously overkill to use workflow, but you get the idea.
A typical example of a workflow-driven application is order management, where orders
might need (potentially long-delay) confirmation steps, interactions with credit card
payment services, sending out notifications to the shipping facilities, and so on. Workflow
provides the necessary services to maintain this stateful long-running operation, carrying
out suspend and resume actions with state (de)hydration when required.

 NOTE : WPF STRIKES AGAIN

 Not only is Visual Studio presented using WPF technology, the new workflow designer
is too. This clearly illustrates the richness that WPF can provide. Actually, the workflow
designer can be rehosted in custom applications, too.

Your First Application: Take Two 155
3

 ASP.NET

 Also introduced right from the inception of the .NET Framework is ASP.NET, the server-
side web technology successor to classic Active Server Pages (ASP). Core differences
between the old and the new worlds in web programming with ASP-based technologies
include the following:

 ▶ Support for rich .NET languages, leveraging foundations of object-oriented program-
ming, eliminating the use of server-side script as with VBScript in classic ASP.

 ▶ First-class notion of controls that wrap the HTML and script aspects of client-side
execution.

 ▶ Related to control support is the use of an event-driven approach to control interac-
tions with the user, hiding the complexities of HTTP postbacks or AJAX script to
make callbacks to the server.

 ▶ Various aspects, such as login facilities, user profiles, website navigation, and so on,
have been given built-in library support to eliminate the need for users to reinvent
the wheel for well-understood tasks. An example is the membership provider
taking care of safe password storage, providing login and password reset controls,
and so on.

 ▶ Easy deployment due to the .NET’s xcopy vision. For instance, when requiring a
class library to be deployed to the server, there’s no need to perform server-side
registrations in the world of .NET.

 ▶ A rich declarative configuration system makes deployment of web applications
easier, having settings stored in a file that’s deployed with the rest of the application
over any upload mechanism of choice.

 From the Visual Studio point of view, ASP.NET has rich project support with a built-in
designer and deployment facilities. Figure 3.50 shows ASP.NET’s page designer.

 By now, designers should start to look very familiar. This time around, the markup is
stored in HTML, containing various ASP.NET controls with an asp: prefix. The runat attri-
bute set to server reveals the server-side processing involved, turning those controls into
browser-compatible markup:

 <asp:Button ID="Button1" runat="server" Text="Say Hello" />

 Again, the Toolbox contains a wealth of usable controls available for web development,
and the Properties window joins the party to assist in configuring the controls with
respect to appearance, behavior, data binding, and more. Starting with Visual Studio 2012,
the web page designer only shows the HTML and ASP.NET markup. No visual designer is
included anymore, in favor of the separate Expression Web tool.

 Hooking up event handlers is done from the markup view, by adding an attribute to the
control, pointing at the handler method that can be generated on-the-fly. Figure 3.51
shows the result of adding a Click handler to a Button control. What goes on behind the
scenes is much more involved. Although you still write managed code, ASP.NET wires up

CHAPTER 3 Getting Started with .NET Development Using C#156

event handlers through postback mechanisms at runtime. With the introduction of AJAX,
various postback operations can be made asynchronous as well. By doing so, no whole
page refreshes have to be triggered by postback operations, improving the user experience
a lot.

 FIGURE 3.50 ASP.NET’s page designer.

 FIGURE 3.51 Event handler code in ASP.NET.

 To simplify testing ASP.NET applications, a lightweight version of Internet Information
Services (IIS), called IIS Express, comes with Visual Studio 2012. Figure 3.52 shows the
notification area icon for IIS Express used in a debugging session (by a press of F5, for
example).

Your First Application: Take Two 157
3

 FIGURE 3.52 The Development Server has started.

 Debugging ASP.NET applications is as simple as debugging any regular kind of application,
despite the more complex interactions that happen under the covers. In the latest releases
of Visual Studio, support has been added for richer JavaScript debugging as well, making
the debugging experience for web applications truly end to end.

 Different application models to write web applications exist. This quick tour showed
you the oldest approach using web forms. More recent additions to the ASP.NET stack
include several versions of the MVC framework. Refer to books on ASP.NET for in-depth
information.

 Visual Studio Tools for Office

 Office programming has always been an area of interest to lots of developers. With the
widespread use of Office tools, tight integration with those applications provides an ideal
interface to the world for business applications. Originally shipped as a separate product,
Visual Studio Tools for Office (VSTO) is now integrated with Visual Studio and has
support to create add-ins for the Office 2007 and later versions of Word, Excel, Outlook,
PowerPoint, Visio, and InfoPath. Support for SharePoint development has been added, as
well, significantly simplifying tasks like deployment, too.

 One of the designer-related innovations in Visual Studio 2012 is built-in support to create
Office ribbon extensions, as shown in Figure 3.53 .

 NOTE : C# 4.0 DYNAMIC IN THE WORLD OF VSTO

 Visual Studio 2010 and .NET Framework 4.0 are great releases for developers who
target Office. With the underlying Office APIs written in COM, use from inside C# has
always been quite painful due to the lack of optional and named parameters, the required
use of “by ref” passing for all sorts of parameters, and the loose typing of the Office
APIs. Because of all this, C# code targeting the Office APIs has always looked quite
cumbersome.

 C# 4.0 eliminates all those problems, making the code look as it was intended to in the
world of the Office COM-based APIs. In addition, one of the core features that makes this
possible—dynamic typing—proves useful in lots of other domains, too.

 Furthermore, there’s the concept of No PIA (primary interop assembly), significantly
improving the deployment story for managed Office add-ins. PIAs contain wrappers for the
Office APIs but can be quite large (in the order of several megabytes). Previously, those

CHAPTER 3 Getting Started with .NET Development Using C#158

needed to be deployed together with the application and were loaded into memory as a
whole at runtime. With the No PIA feature, the used portions of the PIAs can be linked
in to the application’s assembly, eliminating the deployment burden and reducing the
memory footprint.

 FIGURE 3.53 Ribbon designer support in Visual Studio 2012.

 Server Explorer

 Modern software is rarely ever disconnected from other systems. Database-driven applica-
tions are found everywhere, and so are an increasing number of service-oriented applica-
tions. Server Explorer is one of the means to connect to a server, explore aspects of it, and
build software components that are used to interact with the system in question. Figure
 3.54 shows one view of Server Explorer, when dealing with database connections. Adding
a Component file to the project, you get an empty design surface ready for drag and drop
of different types of server objects.

 Server Explorer has built-in support for a variety of commonly used server-side technolo-
gies, including the following:

 ▶ A variety of database technologies, with support for SQL Server, Access, Oracle,
OLEDB, and ODBC. Connecting to a database visualizes things such as tables and
stored procedures.

 ▶ Event logs are useful from a management perspective both for inspection and the
emission of diagnostic information during execution of the program. .NET has rich
support to deal with logging infrastructure.

 ▶ Management Classes and Events are two faces for the Windows Management
Instrumentation (WMI) technology, allowing for thorough querying and modifica-
tion of the system’s configuration.

Your First Application: Take Two 159
3

 ▶ Message queues enable reliable, possibly offline, communication between machines
using the Microsoft Message Queuing (MSMQ) technology. To send and receive data
to and from a queue, a mapping object can be made.

 ▶ Performance counters are another cornerstone of application manageability, provid-
ing the capability to emit diagnostic performance information to counters in the
system (for example, the number of requests served per second by a service).

 ▶ The Services node provides a gateway to management of Windows Services, such as
querying of installed services, their states, and configuration and to control them. In
fact, C# can even be used to write managed code OS services.

 For example, in Figure 3.55 , a component designer was used to create a management
component containing management objects for a Windows server, a performance counter,
and an event log. No code had to be written manually thanks to the drag-and-drop
support from the Server Explorer onto the designer surface. You can use the Properties
window to tweak settings for the generated objects.

 FIGURE 3.54 Server Explorer with an active database connection.

CHAPTER 3 Getting Started with .NET Development Using C#160

 FIGURE 3.55 Component designer surface with management objects.

 NOTE : WHAT’S A COMPONENT?

 The term component is probably one of the most overloaded words in the world of soft-
ware design. In the context of Visual Studio’s Component project item, it refers to a
subtype of the Component base class found in the System.ServiceModel namespace.
What precisely makes up such a component is discussed in Chapter 27 , “Diagnostics and
Instrumentation,” where components are used quite often. In essence, components make
it possible to share code, access it remotely, manage memory correctly, and so on. And
on top of that, the notion of designer support is closely tied to the component model, too.

 Server Explorer is not only involved in the creation of management-focused components.
In various other contexts, Server Explorer can be used to drive the design of a piece of
software. One such common use is in the creation of database mappings, something so
common we dedicate the whole next section to it.

 Database Mappers

 Almost no application today can live without some kind of data store. An obvious choice
is the use of relational databases, ranging from simple Access files to full-fledged client/
server database systems such as SQL Server or Oracle. While having library support for
communicating with the database is a key facility present in the .NET Framework through
the System.Data namespaces, there’s more to it.

 One of the biggest challenges of database technologies is what’s known as impedance
mismatch between code and data. Where databases consist of tables that potentially partic-
ipate in relationships between one another, .NET is based on object-oriented program-
ming; therefore, a need exists to establish a two-way mapping between relational data
and objects. In this context, two-way means it should be possible to construct objects out

Your First Application: Take Two 161
3

of database records, while having the ability to feed changes back from the objects to the
database.

 To facilitate this, various mapping mechanisms have been created over the years, each
with its own characteristics, making them applicable in different contexts. At first, this
might seem a bit messy, but let’s take a look at them in chronological order. We won’t
go into detail on them: Whole books have been written explaining all of them in much
detail. For now, let’s just deal with databases in .NET programming.

 DataSet

 .NET Framework 1.0 started coloring the database mapping landscape by providing
a means for offline data access. This was envisioned by the concept of occasionally
connected clients. The core idea is as follows.

 First, parts of a database are queried and mapped onto rich .NET objects, reflecting the
structure of the database records with familiar managed types. Next, those objects can
be used for visualization in UIs through mechanisms like data binding in ASP.NET and
Windows Forms. In addition, objects can be directly updated in-memory, either directly
through code or through data-binding mechanisms. An example of a popular control used
in data binding is a DataGrid , which presents the data in a tabular form, just like Excel
and Access do.

 Visualizing and updating in-memory objects that originate from a database is just one
piece of the puzzle. What about tracking the changes made by the user and feeding those
back to the database? That’s precisely one of the roles of the offline mapping established
through a DataSet, in collaboration with so-called data adapters that know how to feed
changes back when requested (for example, by emitting UPDATE statements in SQL).

 A DataSet can be used in two ways. The most interesting one is to create a strongly typed
mapping where database schema information is used to map types and create full-fidelity
.NET objects. For example, a record in a Products table gets turned into a Product object
with properties corresponding to the columns, each with a corresponding .NET type.

 To create a strongly typed DataSet, Visual Studio provides a designer that can interact with
Server Explorer. This makes it incredibly easy to generate a mapping just by carrying out a
few drag-and-drop operations. Figure 3.56 shows the result of creating such a mapping.

 NOTE : THE FUTURE OF DATASET

 Some people believe that the use of DataSet has become redundant since LINQ’s intro-
duction in .NET 3.5 and its new mapping mechanisms. Nothing is further from the truth.
As a matter of fact, there’s even a LINQ to DataSet provider in the .NET Framework class
libraries.

 DataSet is still a convenient way to represent tabular data, regardless of the type of
underlying data store. The reason this works is because DataSet was intentionally
designed to be decoupled from a particular database provider and to serve as a generic
data container mechanism.

CHAPTER 3 Getting Started with .NET Development Using C#162

 One of the key advantages of DataSet is its direct support for XML-based serialization. In
fact, the extension of a strongly typed DataSet is .xsd, revealing this relationship. When
generating mappings from database schemas, you’re actually creating an XML schema
capturing type definitions and their mutual relationship. The command-line tool xsd.exe
that ships with the .NET Framework developer tools can be used to generate C# or VB
code from such a schema, just like the integrated designer does.

 FIGURE 3.56 DataSet designer.

 LINQ to SQL

 After the relatively calm .NET 2.0 and 3.0 releases on the field of database mapping tech-
nologies, Language Integrated Query (LINQ) was introduced in .NET 3.5. As discussed in
 Chapter 2 , “Introducing the C# Programming Language” (and detailed in Chapter 18 ,
“Events,” and Chapter 19 , “Language Integrated Query Essentials”), LINQ provides rich
syntax extensions to both C# and VB, to simplify data querying regardless of its shape
or origin. Besides LINQ providers used to query in-memory object graphs or XML data, a
provider targeting SQL Server database queries shipped with .NET Framework 3.5.

 In a similar way to the DataSet designer, LINQ to SQL comes with tooling support to map
a database schema onto an object model definition. Figure 3.57 shows the result of such
a mapping using the Northwind sample database. One core difference with DataSet lies in
the SQL-specific mapping support, as opposed to a more generic approach. This means the
LINQ to SQL provider has intimate knowledge of SQL’s capabilities required to generate
SQL statements for querying and create/update/delete (CRUD) operations at runtime.

Your First Application: Take Two 163
3

 Similar to the DataSet designer, Server Explorer can be used to drag and drop tables
(among other database items) onto the designer surface, triggering the generation of a
mapping. Notice how relationships between tables are detected, as well, and turned into
intuitive mappings in the object model.

 Once this mapping is established, it’s possible to query the database using LINQ syntax
against the database context object. This context object is responsible for connection
maintenance and change tracking so that changes can be fed back to the database.

 It’s interesting to understand how the designer generates code for the mapping object
model. Most designers use some kind of markup language to represent the thing being
designed. ASP.NET takes an HTML-centered approach, WPF uses XAML, and DataSet is
based on XSD. For LINQ to SQL, an XML file is used containing a database mapping defi-
nition, hence the extension .dbml.

 To turn this markup file into code, a so-called single file generator is hooked up in Visual
Studio, producing a .cs or .vb file, depending on the project language. Figure 3.58 shows
the code generation tool configured for .dbml files used by LINQ to SQL. The generated
code lives in the file with .designer.cs extension. Other file formats, such as .diagram
and .layout, are purely used for the look and feel of the mapping when displayed in the
designer. Those do not affect the meaning of the mapping in any way.

 FIGURE 3.57 LINQ to SQL designer.

CHAPTER 3 Getting Started with .NET Development Using C#164

 Not surprisingly, the emitted code leverages the partial class feature from C# 2.0 once
more. This allows for additional code to be added to the generated types in a separate
file. But there’s more: A C# 3.0 feature is lurking around the corner, too. Notice the
Extensibility Method Definitions collapsed region in Figure 3.59 ?

 FIGURE 3.58 How the DBML file turns into C# code.

 FIGURE 3.59 Generated LINQ to SQL mapping code.

Your First Application: Take Two 165
3

 You’ll see such a region in the various generated types, containing partial method defini-
tions. In the data context type in Figure 3.59 , one such partial method is OnCreated :

 public partial class NorthwindDataContext : System.Data.Linq.DataContext

 {

 #region Extensibility Method Definitions

 partial void OnCreated();

 #endregion

 public NorthwindDataContext(string connection)

 : base(connection, mappingSource)

 {

 OnCreated();

 }

 The idea of partial methods is to provide a means of extending the functionality of the
autogenerated code efficiently. In this particular example, the code generator has emitted
a call to an undefined OnCreated method. By doing so, an extensibility point has been
created for developers to leverage. If it’s desirable to take some action when the data
context is created, an implementation for OnCreated can be provided in the sister file for
the partial class definition. This separates the generated code from the code written by the
developer, which allows for risk-free regeneration of the generated code at all times.

 ADO.NET Entity Framework

 Finally, we’ve arrived at the latest of database mapping technologies available in the .NET
Framework: the Entity Framework. Introduced in .NET 3.5 SP1, the Entity Framework
provides more flexibility than its predecessors. It does this by providing a few key
concepts, effectively decoupling a conceptual model from the mapping onto the database
storage. This makes it possible to have different pieces of an application evolve indepen-
dent of each other, even when the database schema changes. The Entity Framework also
benefits from rich integration with the WCF services stack, especially OData-based WCF
Data Services.

 Figure 3.60 presents an architectural overview.

 On the right is the execution architecture, a topic we’ll save for later. The most important
takeaway from it is the ability to use LINQ syntax to query a data source exposed through
the Entity Framework. In return for such a query, familiar .NET objects come back. That’s
what mapping is all about.

 Under the covers, the data source has an Entity Client Data Provider that understands
three things:

 ▶ The conceptual model captures the intent of the developer and how the data is
exposed to the rest of the code. Here entities and relationships are defined that get
mapped into an object model.

CHAPTER 3 Getting Started with .NET Development Using C#166

 ▶ The storage model is tied to database specifics and defines the underlying storage
for the data, as well as aspects of the configuration. Things such as table definitions,
indexes, and so on belong here.

 ▶ Mappings play the role of glue in this picture, connecting entities and relation-
ships from the conceptual model with their database-level storage as specified in the
storage model.

ADO.NET providers

Object mapping

Entity Client Data Provider

ADO.NET providers

LINQ to
Entities

Objects

eSQL Command
Tree

Data

Command
Tree

Data

Database

Entity Data Model (EDM)

Conceptual
Model

Storage
Model

M
ap

pi
ng

 FIGURE 3.60 Entity Framework overview.

 To define both models and the mapping between the two, Visual Studio 2012 has built-in
designers and wizards for the ADO.NET Entity Framework, as shown in Figure 3.61 .

 NOTE : WHAT’S IN A NAME? ADO.NET

 ADO.NET was introduced in .NET Framework 1.0 as the successor to the popular ADO
technology available for COM developers, including the Visual Basic classic community.
ADO stands for ActiveX Data Objects and was by itself a successor to other database
access technologies such as RDO and DAO. Luckily, all of that belongs to the past, and in
fact the only relevant thing ADO.NET shares with its predecessor is its name. All concepts
in ADO.NET fit seamlessly in the bigger picture of managed code and an object-oriented
programming style.

Your First Application: Take Two 167
3

 Unit Testing

 A proven technique to catch bugs and regressions early is to use unit tests that exercise
various parts of the system by feeding in different combinations of input and checking
the expected output. Various unit testing frameworks for .NET have been created over the
years (NUnit being one of the most popular ones), and for the past few releases Visual
Studio has built-in support for unit testing.

 To set the scene, consider a very simple Calculator class definition, as shown here:

 public static class Calculator

 {

 public static int Add(int a, int b)

 {

 return a + b;

 }

 public static int Subtract(int a, int b)

 {

 return a - b;

 }

 FIGURE 3.61 ADO.NET Entity Framework designer.

CHAPTER 3 Getting Started with .NET Development Using C#168

 public static int Multiply(int a, int b)

 {

 return a * b;

 }

 public static int Divide(int a, int b)

 {

 return a / b;

 }

 }

 To verify the behavior of our Calculator class, we want to call the calculator’s various
methods with different inputs, exercising regular operation as well as boundary condi-
tions. This is a trivial example, but you get the idea.

 Unit tests in Visual Studio are kept in a separate type of project that’s hooked up to a
test execution harness, reporting results back to the user. This underlying test execution
infrastructure can also be used outside Visual Studio (for example, to run tests centrally
on some source control server). While different types of test projects exist, unit tests are
by far the most common, allowing for automated testing of a bunch of application types.
Manual tests describe a set of manual steps to be carried out to verify the behavior of a
software component. Other types of test projects include website testing, performance
testing, and so on.

 To create a unit test project, right-click the solution in Solution Explorer and choose Add,
New Project to add a test project (see Figure 3.62).

 FIGURE 3.62 Creating a new unit test project.

Your First Application: Take Two 169
3

 Next, right-click the newly created project node in Solution Explorer, and choose Add
Reference. In the Reference Manager dialog, add a reference to the project containing the
 Calculator (see Figure 3.63).

 FIGURE 3.63 Add a cross-project reference.

 The unit test project contains an empty test class with an empty test method, as shown
here:

 [TestClass]

 public class UnitTest1

 {

 [TestMethod]

 public void TestMethod1()

 {

 }

 }

 Our task is now to replace the code in the template with test methods that check the
behavior of our Calculator. A much too simplistic example is shown here:

 [TestMethod]

 public void AddTest()

 {

 int a = 28;

 int b = 14;

 int expected = 42;

 int actual;

 actual = Calculator.Add(a, b);

 Assert.AreEqual(expected, actual);

 }

CHAPTER 3 Getting Started with .NET Development Using C#170

 To assert the expected behavior, we use helper methods on the Assert class. For example,
the Assert.AreEqual test checks for equality of the supplied arguments.

 NOTE : TEST GENERATION WITH PEX

 From the preceding example, it’s clear that Visual Studio 2012 does not possess magical
powers to understand your code and to thus generate a series of unit tests by itself. This
does not mean such a thing is impossible to achieve, though.

 By analyzing code carefully, specialized tools can infer lots of valid test cases that hit
interesting conditions. In the preceding example, we haven’t written a test that deals with
overflow situations when the two arguments to the Add method are too big for their sum
to be represented as a 32-bit integer. Tools could infer such cases by looking at the types
being used.

 Another appealing property of automated test generation is the capability to ensure high
numbers of code coverage. Assume you have some code with a bunch of conditional
branches, leading to an explosion in the possible execution paths. Flow analysis tools can
generate different sets of input values so that various code paths in the unit being tested
are hit.

 If all of this sounds like a wonderful dream, wake up now. With Pex, Microsoft Research
has created such a toolkit that plugs in to Visual Studio. Pex stands for Program
Exploration, reflecting its automated test case generation powers based on reasoning
about the program. If you care about test coverage (you should!), Pex is definitely some-
thing to check out. Visit http://research.microsoft.com/Pex for more information.

 The nice thing about using Pex with .NET 4.0 is its synergy with managed code contracts,
something we’ll talk about later. An example of a contract is constraining the range of an
input value, a so-called precondition. Contracts not only serve documentation purposes
but are also used to enforce correctness by means of theorem provers or runtime checks.
But combining the information captured in contracts with Pex is even more exciting. Pex
can use this wealth of information to come up with more test cases that check violations
of contracts and such.

 Does all of this mean you should no longer write unit tests yourself? No. Although Pex
can take over the burden of generating various types of tests, there’s still lots of value in
writing more complex test cases that exercise various concrete scenarios your software
component needs to deal with. In other words, Pex enables you to focus more on the
more involved test cases while relieving you from the creation of slightly more boring (but
nevertheless important) test cases.

 Once unit tests are written, they’re ready to be compiled and executed in the test harness.
This is something you’ll start to do regularly to catch regressions in code when making
changes. Figure 3.64 shows a sample test run result, triggered through the Test, Run, All
Tests menu item.

 Turns out I introduced some error in the Subtract method code, as caught by the unit
test. Or the test could be wrong. Regardless, a failed test case screams for immediate atten-
tion to track down the problem. Notice you can also debug through tests cases, just like
regular program code.

http://research.microsoft.com/Pex

Your First Application: Take Two 171
3

 Tightly integrated with unit testing is the ability to analyze code coverage. It’s always a
worthy goal to keep code coverage numbers high (90% as a bare minimum is a good goal,
preferably more) so that you can be confident about the thoroughness of your test cases.
Visual Studio actually has built-in code highlighting to contrast the pieces of code that
were hit during testing from those that weren’t.

 Team Development

 To finish off our in-depth exploration of Visual Studio 2012 tooling support, we take a
brief look at support for developing software in a team context. Today’s enterprise applica-
tions are rarely ever written by a single developer or even by a handful of developers. For
example, the .NET Framework itself has hundreds of developers and testers working on it
on a day-to-day basis.

 Team System and Team Foundation Server

 To deal with the complexities of such an organization, Visual Studio Team System (VSTS)
provides development teams with a rich set of tools. Besides work item and bug tracking,
project status reporting, and centralized document libraries, source control is likely the
most visible aspect of team development.

 The entry point for the use of Team Foundation Server (TFS) is the Team Explorer window
integrated in Visual Studio 2012 (see Figure 3.65).

 Here is a quick overview of the different parts of the Team Explorer:

 ▶ The drop-down at the top represents the TFS server we’re connected to. One of the
nice things about TFS is its use of HTTP(S) web services (so there is no hassle with
port configurations). Each server can host different team projects.

 ▶ Work Items is the collective name for bug descriptions and tasks assigned to
members of the team. Queries can be defined to search on different fields in the
database. Via the Work Items view, bugs can be opened, resolved, and so on.

 FIGURE 3.64 Test results.

CHAPTER 3 Getting Started with .NET Development Using C#172

 FIGURE 3.65 Team Explorer in Visual Studio 2012.

 ▶ Documents displays all sorts of documentation—Word documents, Visio diagrams,
plain old text files, and such—that accompany the project. Those are also available
through a SharePoint web interface.

 ▶ Reports leverages the SQL Server Reporting Services technology to display informa-
tion about various aspects of the project to monitor its state. Examples include bug
counts, code statistics, and so on.

 ▶ Builds allows developers to set up build definitions that can be used for product
builds, either locally or remotely. It’s a good practice for team development to have
a healthy product build at all times. Automated build facilities allow configuration
of daily builds and such.

 ▶ Source Control is where source code is managed through various operations to
streamline the process of multiple developers working on the code simultaneously.
This is further integrated with Solution Explorer.

 Source Control

 Source control stores source code centrally on a server and provides services to manage
simultaneous updates by developers. When a code file requires modification, it’s checked
out to allow for local editing. After making (and testing) the changes, the opposite opera-
tion of checking in is used to send updates to the source database. If a conflicting edit is
detected, tools assist in resolving that conflict by merging changes.

 Figure 3.66 shows the presence of source control in Visual Studio 2012, including rich
context menus in Solution Explorer and the Source Control Explorer window.

 Other capabilities of source control include rich source code versioning (enabling going
back in time), shelving edits for code review by peer developers, correlation of check-ins
to resolved bugs, and the creation of branches in the source tree to give different feature
crews their own playgrounds.

Summary 173
3

 FIGURE 3.66 Source control integrated in Visual Studio 2012.

 Summary
 In this chapter, we installed the .NET Framework 4.5 and went through the motions
of building our first trivial but illustrative C# console application. While doing so, we
focused on the development process of writing and compiling code, and then we took
a look at how to inspect it using ILSpy. Because it’s unrealistic today to build software
without decent tooling support, we explored various aspects of the Visual Studio 2012
family. We covered integrated source exploration, build and debugging support, and took
a peek at the various project types and associated tools available.

 In the next chapter, we leave the realm of extensive tooling for a while and learn about
the core fundamentals of the C# language.

This page intentionally left blank

Index

 .NET and COM: The Complete Interoperability
Guide , 602

 .NET Framework, 1-4, 11-12, 27 54 , 103 , 173
 .NET 4.5, 107 - 109

 asynchronous programming, 1429 - 1433
 applications

 deployment, 10
 types, 11

 assemblies, 16 - 17
 BCL (Base Class Library), 11 , 51 ,

1301 - 1303 , 1372
 assemblies, 1304 - 1308
 default project references, 1303 - 1304
 encoding text, 1371
 formatting text, 1357 - 1362
 history, 53 - 54
 namespaces, 51 - 52 , 1304 - 1306
 Object Browser, 1305 - 1306
 parsing text to objects, 1362 - 1363
 string methods, 1366 - 1369
 StringBuilder class, 1369 - 1371
 support, 11
 System namespace, 1311 - 1320 ,

1344 - 1356
 classes, 19 - 20
 CLI (Common Language Infrastructure),

12 - 14
 CLR (Common Language Runtime), 32 - 33

 application domains, 37 - 39
 assembly loading, 35 - 36
 automatic memory management, 43 - 46
 bootstrapping runtime, 33 - 35
 entry points, 33
 exception handling, 46 - 48
 JIT compilation, 39 - 41
 NGEN (native image generation), 41 - 43
 shims, 34

 CLS (Common Language Specification),
23 - 24

 COM interop, 1163 - 1172
 component-driven development, 10
 continuations, hidden, 1533

 creating applications, 113 - 119
 delegates, 21 - 22
 enums, 19 - 20
 events, 850 - 852 , 908
 exception handling, 11
 executing managed code, 24 - 31
 GAC (Global Assembly Cache), 111 - 112
 generics, 23
 installing, 103 - 112
 interfaces, 20 - 21
 members, 22 - 23
 metadata, 1058 - 1059
 modules, 16
 multiple language, 10

 support, 10 , 15
 usability, 1058 - 1062

 OOP (object-oriented programming), 10
 primitive types, 19
 refactoring, 1280 - 1281
 runtime shim, 110 - 111
 source code, 143
 structs, 19 - 20
 thread pools, 1475 - 1482
 type

 hierarchy, 203 - 204
 safety, 18 - 19
 system, 17 - 24

 unified runtime infrastructure, 11
 versions, 103 - 107
 web services, 12

 A
 aborting threads, 1456
 absolute time, 1327 - 1329
 abstract classes, 688 - 690
 abstracting concurrency, 1481
 access, type members, 486 - 489

1672 accessing1672

 accessing
 fields, 548 - 551
 members, 1106 - 1107

 accessors, add and remove, 857 - 861
 ACID transactions, locks, 461
 add accessors, 857 - 861
 Add method, 792
 addressing, 64-bit, limitations, 1506
 ADO.NET Entity Framework, 165 - 166
 Aggregate query operator, 1019 - 1022
 AggregateException type, 1218 - 1220 ,

 1526 - 1527
 unwrapping, 1624 - 1627

 aggregation query operators, 1019 - 1026
 AJAX (Asynchronous JavaScript and XML),

898 - 900
 dictionary suggest, 908 - 911

 aliases
 built-in types, 212
 extern, 1235 - 1238
 importing namespaces, 1234 - 1235

 All query operator, 1026 - 1027
 analysis, code, 1374 - 1376
 anonymous closures, 63
 anonymous function expressions, 801 - 802
 anonymous iterators, 993
 anonymous methods, 63 , 345 - 347
 anonymous types, 66

 LINQ (Language Integrated Query), 941 - 944
 Any query operator, 1026 - 1027
 APIs (application programming interfaces), 6

 expression trees, 1103 - 1114
 fluent, extension methods, 68
 public, renaming parameters, 812
 WinRT (Windows Runtime), 1667 - 1668

 Windows Store application, 1644 - 1646
 APM (Asynchronous Programming Model), 899 ,

 1421 - 1433 , 1564 - 1569
 versus EAP (Event-based Asynchronous

Pattern), 1569 - 1570
 methods, 1423 - 1428
 threading state, 1424 - 1427

 appcontainerexe target, 1245
 application domains, 1241 , 1286 , 1298 - 1299

 CLR (Common Language Runtime), 37 - 39
 creating, 1287 - 1288

 cross-domain communication, 1288 - 1297
 managed add-in framework, 1296 - 1298

 application extensibility, 1069 - 1080
 built-in operations, 1071 - 1072
 defining interface, 1070 - 1071
 extensions

 deploying, 1076 - 1077
 loading, 1074 - 1076
 writing, 1076 - 1077

 MEF (Managed Extensibility Framework),
 1069 , 1077 - 1080

 user interface, 1072 - 1074
 ApplicationException class, 1201
 applications

 I/O (input/output), 1399 - 1400 , 1440 - 1441
 localizable, 1360
 monitoring

 event logs, 1388 - 1391
 performance counters, 1391 - 1395

 reactive, 845 - 852
 delegates, 846 - 849

 trivial console, running, 179 - 180
 ArgumentException class, 1193 , 1213
 ArgumentNullException class, 1193 ,

1213 - 1214
 ArgumentOutOfRangeException class,

1214 - 1215
 arguments, 504
 arithmetic expressions, toy compiler,

1093 - 1100
 arithmetic operators, 258 - 259

 character arithmetic, 262 - 263
 decimal arithmetic, 261 - 262
 floating-point arithmetic, 260 - 261
 integer arithmetic, 259
 nullable value types, 269
 overflow checking, 263 - 269
 unary plus and minus, 263

 array types, broken covariance, 745 - 747
 arrays, 230 - 239 , 249

 initializers, 234 - 236
 internal representation, 231
 jagged, 236 - 237
 multidimensional, 238 - 239
 parameters, 510 - 511

How can we make this index more useful? Email us at indexes@samspublishing.com

AJAX (Asynchronous JavaScript and XML) 1673

 single-dimensional, 231 - 233
 System namespace, 1315 - 1318

 ArrayTypeMismatchException class, 1204
 as keyword, type checks, 637
 as operator, 312 - 317
 ascending keyword, 947
 AsEnumerable query operator, 1031 - 1033
 AsOrdered operator, PLINQ (Parallel Language

Integrated Query), 1042 - 1043
 AsParallel method, 1037 - 1040
 ASP.NET, page designer, 155 - 157
 assemblies, 1241

 .NET platform, 16 - 17
 appcontainerexe target, 1245
 BCL (Base Class Library), 1306 - 1311
 CLS (Common Language Specification)

compliance, 206 - 212
 deployment, 1249 - 1252
 embedded resources, 1278 - 1279
 exe target, 1244
 files, 1244
 GAC (Global Assembly Cache), 1258 - 1262
 library target, 1245
 loading, 1283 - 1286

 CLR (Common Language Runtime), 35 - 36
 loading at runtime, 1264 - 1271
 locating, 1267 - 1271
 manifest, 26 - 27
 modules, 1242 - 1244
 mscorlib, 1306 - 1308
 namespaces, 1224 - 1227

 versus, 1304 - 1306
 naming, 1249 - 1252

 strong, 1252 - 1257
 native image generation, 1271 - 1275
 PIAs (primary interop assemblies), 50

 embedding, 1172 - 1174
 properties, 1245 - 1249
 reference, 1311
 referenced, loading, 1266 - 1267
 referencing, 1262 - 1264
 reflection, 1282 - 1286
 strong-name verification, 1257 - 1258
 System, 1306 - 1308
 System.Core, 1308 - 1311

 type forwarding, 1279 - 1281
 types, 1244 - 1245
 versioning, 1249 - 1252
 visibility, 1274 - 1277
 winexe target, 1245
 winmdobj target, 1245

 Assembly class, 1282 - 1283
 assertions, 243 , 1375 - 1379
 assignments, 287 - 288

 compound, 290 - 292
 overloading operators, 617

 versus declarations, 288 - 290
 definite, 292 - 296
 expression statements, 354 - 355
 local variables, 215 - 216
 redundant, 295

 associativity of operators, 253 - 254
 asynchronous anonymous functions,

1609 - 1610
 asynchronous await expressions, 1584 - 1585 ,

 1588 - 1591
 synchronization behavior, 1603 - 1607

 asynchronous delegates, invocation,
 823 - 835 , 1427

 asynchronous methods, 1584 - 1585
 control flow, 1595 - 1597
 declaring, 1585 - 1588
 execution, 1591 - 1595
 Main, 1607 - 1609
 manual callback plumbing, 1597 - 1603
 refactoring, 1593
 returning from, 1614 - 1619
 state machine, 1610 - 1614

 asynchronous processing
 I/O (input/output) operation, 1561
 versus synchronous, 1556

 asynchronous programming, 88 - 95 , 101 ,
1551 - 1561 , 1641

 AggregateException type, unwrapping,
1624 - 1627

 dictionary suggest, 908 - 911
 AJAX (Asynchronous JavaScript and XML),

 898 - 900
 arbitrary control flow, 1627 - 1630
 awaitable types, building, 1634 - 1640
 exceptions, propagation, 1619 - 1624

AJAX (Asynchronous JavaScript and XML)1674

 language support, 91 - 95
 latency, 1552
 patterns, 89 - 91 , 1564

 APM (asynchronous programming model),
 1564 - 1569

 EAP (Event-based Asynchronous Pattern),
 1569 - 1571

 exception behavior, 1576 - 1578
 method naming, 1573 - 1575
 overloading, 1573 - 1575
 progress reporting, 1575 - 1576
 synchronization behavior, 1578 - 1579
 TAP (Task-based Asynchronous Pattern),

 1571 - 1573 , 1579 - 1584
 saving evaluation state, stack spilling,

 1630 - 1634
 scalability, 1561 - 1564
 simplifying, .NET 4.5, 1429 - 1433
 WinRT (Windows Runtime), 1656

 Asynchronous Programming Model (APM), 899 ,
 1421 - 1433 , 1564 - 1569

 versus EAP (Event-based Asynchronous
Pattern), 1569 - 1570

 methods, 1423 - 1428
 threading state, 1424 - 1427

 asynchronous read and write I/O operations,
 1420 - 1433

 atomicity, 1483 - 1486
 attributes

 custom
 defining, 1086 - 1087
 discovering, 1089 - 1091
 reflection, 1085 - 1091
 storage, 1088 - 1089

 InternalsVisibleTo, 1276 - 1277
 ThreadStatic, 1464 - 1467

 auto-implemented properties, 73 - 75 , 578 ,
882 - 883

 automatic memory management, CLR (Common
Language Runtime), 43 - 46

 Average query operator, 1023 - 1024
 await expressions, 616

 asynchronous, 1584 - 1585 , 1588 - 1591
 manual callback plumbing, 1597 - 1603
 synchronization behavior, 1603 - 1607

 cascading completion, 1593
 continuations, 1536

 awaitable types, building, 1634 - 1640

 B
 background threads, 1458 - 1460
 BackgroundWorker component, 1507 - 1510
 backward compatibility, 59 , 183
 Bar method, 479
 barriers, synchronization, 1506
 base calls, 687
 base class constraints, generic types, 727 - 728
 base class members, hiding, 672 - 674
 BCL (Base Class Library), 11 , 51 , 1301 - 1303 ,

 1372
 assemblies, 1304 - 1306

 mscorlib, 1306 - 1308
 System, 1306 - 1308
 System.Core, 1308 - 1311

 default project references, 1303 - 1304
 encoding text, 1371
 formatting text, 1357 - 1362
 history, 53 - 54
 namespaces, 1304 - 1306

 organization, 51 - 52
 Object Browser, 1305 - 1306
 parsing text to objects, 1362 - 1363
 string methods, 1366 - 1369
 StringBuilder class, 1369 - 1371
 System namespace, 1311

 arrays, 1315 - 1318
 BitInteger type, 1320 - 1322
 complex numbers, 1322 - 1324
 GC (garbage collector), 1344 - 1351
 GUID values, 1335 - 1337
 interacting with environment, 1339 - 1344
 lazy initiation, 1353 - 1354
 native interop, 1351 - 1353
 nullability, 1337 - 1338
 primitive value types, 1311 - 1315

How can we make this index more useful? Email us at indexes@samspublishing.com

character arithmetic, operators 1675

 System.Math class, 1318 - 1320
 tuple types, 1354 - 1356
 Uri type, 1338 - 1339

 BeforeFieldInit type attribute, 1205
 BeginInvoke method, 1427
 Big O notation, 756
 binary expressions, 1105
 BinaryWriter class, 1418 - 1420
 binders, DLR (Dyanmic Language

Runtime), 1137 - 1143
 BindingFlags enum, 1084 - 1085
 bindings, query expressions, 972 - 974
 BitArray type, 763
 blocked threads, interrupting, 1457 - 1458
 blocking, 1556

 inheritance, 671
 blocks

 exception handling, 352
 statements, 351 , 356

 Boole, George, 200
 Boolean logical operators, 279 - 281
 Boolean types, 200 - 201
 bootstrapping runtime, CLR (Common Language

Runtime), 33 - 35
 boxed value types, 622
 boxing

 conversions, 637 - 638
 types, 478 - 483

 break statement, 378 - 379
 broken covariance, array types, 745 - 747
 bugs, common source, 241 - 243
 build support, Visual Studio 2012 projects,

 134 - 138
 building WinRT (Windows Runtime) components,

 1662 - 1665
 built-in conversions, 634

 boxing and unboxing, 637 - 638
 enumeration, 634 - 635
 nullable, 635
 numeric, 634
 reference, 635 - 637

 built-in types, 190 - 212
 aliases, 212
 Boolean, 200 - 201

 decimal, 199 - 200
 floating-point, 194 - 198
 integral, 190 - 194
 object, 203 - 205
 string, 201 - 202

 C
 C# programming language, 15

 enriching core features, 58 - 63
 evolution, 55
 managed code development, 56 - 58
 name origin, 57

 C++ programming language, 6 , 15
 CaaS (compiler as a service), 97 - 99
 caching, 1422
 calendar systems, 1331 - 1332
 call sites, DLR (Dyanmic Language Runtime),

 1137 - 1143
 call stacks, overflowing, 413
 caller info attributes, optional parameters,

516 - 519
 calling

 methods
 generic, 737
 optional parameters, 513 - 516

 through delegates, 343
 calls

 base, 687
 tail, 1212
 virtual, 683 - 687

 cancellation, tasks, 1536 - 1538
 Cardone, Felice, 347
 CAS (Code Access Security), 258

 CLR (Common Language Runtime), 48
 case labels, 366
 cast expressions, 302 - 307 , 309

 syntax, 303
 Cast projection query operator, 1008
 catching exceptions, 426 - 427
 CDS (Coordination Data Structures), 102
 character arithmetic, operators, 262 - 263

character literals1676

 character literals, 194
 checked arithmetic, 265 - 266 , 352
 Church, Alonzo, 347 , 811
 Class Library, Visual Studio 2012, 127
 classes, 465

 abstract, 688 - 690
 ApplicationException, 1201
 ArgumentException, 1193 , 1213
 ArgumentNullException, 1193 , 1213 - 1214
 ArgumentOutOfRangeException, 1214 - 1215
 ArrayTypeMismatchException, 1204
 Assembly, 1282 - 1283
 BCL (Base Class Library), 11 , 51 ,

 1301 - 1303
 assemblies, 1304 - 1311
 default project references, 1303 - 1304
 formatting text, 1357 - 1362
 history, 53 - 54
 namespace organization, 51 - 52
 namespaces, 1304 - 1306
 System namespace, 1311 - 1356

 BinaryWriter, 1418 - 1420
 CLI (Common Language Infrastructure),

 19 - 20
 CountDownEvent, 1501 - 1502
 Debugger.IsAttached, 1385
 derived, designing events, 878 - 880
 DirectoryInfo, 1407
 DirectoryNotFoundException, 1193
 DriveInfo, 1400
 DynamicMetaObject, 1154 - 1156
 DynamicObject, 1149 - 1153
 EventLog, 1388 - 1391
 Expression, 1103 - 1104
 File, 1409 - 1415
 FileInfo, 1406 - 1407
 FileNotFoundException, 418 , 1193
 IndexOutOfRangeException, 1203
 inheritance, 663 - 666

 single, 667 - 668
 InsufficientMemoryException, 1208
 InvalidCastException class, 1203
 InvalidOperationException class, 1215
 Lazy, 1353 - 1354
 ManualResetEvent, 1500 - 1502

 MemoryStream, 1417
 MFCs (Microsoft Foundation Classes), 6
 NotImplementedException, 1215 - 1216
 NotSupportedException, 1193 , 1216 - 1217
 OOP (object-oriented programming), 662
 PipeStream, 1434
 Process, 1374 , 1396
 static, 527 , 595
 Steamwriter, 1417 - 1418
 Stream, 1415 - 1434
 StreamReader, 1414 - 1415 , 1417 - 1418
 StreamWriter, 1414 - 1415
 StringBuilder, 1369 - 1371
 versus structs, 466 - 486
 System.Convert, 644
 System.Exception, 1198
 System.Math, 1318 - 1320
 System.Object, 306 , 702 , 703

 banning, 204 - 205
 Equals method, 622 - 632
 ReferenceEquals method, 628 - 630

 TaskCreationOptions, 1522
 TaskFactory, 1521 - 1522
 TaskScheduler, 1540 - 1542
 TextReader, 1413 - 1414
 TextWriter, 1413 - 1414
 Thread, 1448 - 1453
 ThreadLocal , 1467 - 1470 , 1482
 TimeZone, 1332 - 1333
 TypeConvert, 645 - 646
 WaitHandle, 1502 - 1503

 clauses
 from, source selection, 933 - 938
 group, 953 - 960
 into, 966 - 971
 join, 960 - 965
 let, 972 - 974
 select, projection, 938 - 944

 cleanup logic, 408
 CLFS (Common Log File System), 1440
 CLI (Common Language Infrastructure), 15

 classes, 19 - 20
 enumerations, 19 - 20
 structures, 19 - 20

How can we make this index more useful? Email us at indexes@samspublishing.com

code 1677

 closures, 802 - 807 , 1450
 anonymous, 63
 foreach loop variable, scoping, 805 - 806
 heap allocated, 804
 space leaks, 806 - 807
 stack-allocated, 804

 CLR (Common Language Runtime), 17 - 24 ,
 32 - 33 , 180 - 181 , 247 , 301 , 1161

 application domains, 37 - 39
 assembly loading, 35 - 36
 automatic memory management, 43 - 46
 bootstrapping runtime, 33 - 35
 CAS (Code Access Security), 48
 entry points, 33
 exception handling, 46 - 48
 generic types, 701 - 703 , 704 - 707 ,

712 - 713 , 754
 constraints, 720 - 736
 performance, 714 - 718

 interoperability facilities, 49 - 50
 JIT compilation, 39 - 41
 managed code, 1446 - 1448
 modifiers, 675 - 676
 NGEN (native image generation), 41 - 43
 shims, 34
 stack-based evaluation, 258
 type safety, 18 - 19
 types, primitive, 19

 CLS (Common Language Specification),
14 , 23 - 24

 compliance, 176
 assemblies, 206 - 212

 cmdlets, 178
 code

 analysis, 1374 - 1376
 asserts, 1375 - 1379
 Code Analysis, 545 - 546
 comments, 223 - 230

 delimited, 226 - 227
 documentation, 227 - 230
 single-line, 223 - 224

 compiling, 115
 contracts, 243 , 1375 - 1376 , 1379 - 1381
 data, 184 - 185

 versus data, 343

 debugging
 controlling debugger, 1383 - 1385
 diagnostic output, 1381 - 1383

 defects, 410 - 413
 ensuring quality, 1374 - 1388
 entry points, 175 - 181

 signatures, 177 - 179
 exceptions, 243 , 407 , 462 , 1175 , 1178 -

 1180 , 1220
 .NET 4.5, 1530 - 1531
 behavior, asynchronous programming,

 1576 - 1578
 catching, 426 - 427
 causes, 410 - 420
 checked, 1179
 continuations, 1527
 first-chance, enabling, 424
 handling, 11 , 46 - 48 , 407 - 409 , 421 - 431 ,

 1180 - 1183 , 1187 - 1196
 as objects, 409 - 410
 propagation, 429 - 431 , 1619 - 1624
 rethrowing, 427 - 429
 SEH (structured exception

handling), 1175
 ThreadAbortException, 458
 threads, 1463 - 1464
 throwing, 420 - 421 , 1196 - 1198
 types, 1201 , 1208
 unhandled, 1527 - 1529

 expression trees, 1101
 API (application programming interface),

 1103 - 1114
 compiler-generated, 1101 - 1103
 ExpressionVisitor type, 1114 - 1117
 statement trees, 1110 - 1114

 expressions, 251 , 299
 anonymous function, 801 - 802
 arithmetic, 1093 - 1100
 arithmetic operators, 258 - 269
 assignments, 287 - 299
 await, 616 , 1536
 binary, 1105
 cast, 302 - 307
 conditional operators, 281 - 284
 conversions, 301 - 319
 default value, 322 - 324

code1678

 dynamic, 1062 - 1063
 evaluation stack, 255 - 258
 initializers, 66 - 67
 invocation, 340 - 348
 lambda, 69 - 71 , 347 - 348 , 807 - 809 ,

 1107 - 1110
 logical operators, 277 - 281
 new operator, 324 - 336
 null-coalescing operators, 285 - 287
 operator overloading, 609 - 633
 operator result type, 284 - 285
 operators, 252 - 254
 relational operators, 275 - 277
 shift operators, 274 - 275
 string concatenation, 269 - 274
 subexpressions, 254
 trees, 71 - 73 , 810 - 811
 unary, 1105

 function pointers, 345
 FxCop, 362
 generation, locks, 457 - 458
 homoiconicity, 73
 IL, 27 - 28
 IL-generated, dumping, 1271 - 1273
 input validation, 410 - 413
 inspecting, ILSpy, 116 - 119
 JIT-generated, dumping, 561 , 1271 - 1273
 Just My Code feature, disabling, 422
 LCG (Lightweight Code Generation), 1091

 Hello World program, 1091 - 1093
 toy compiler for arithmetic expressions,

 1093 - 1100
 locks, 352
 loops, 398 - 400
 managed, 1446 - 1448

 executing, 24 - 31
 managed development, 56 - 58
 measuring performance, 1386 - 1388
 optimization, 256 , 282
 quotations, 72 - 73
 reflection, 1057 , 1063 , 1117

 application extensibility, 1069 - 1080
 custom attributes, 1085 - 1091
 events, 1083 - 1084

 fields, 1084 - 1085
 indexers, 1082 - 1083
 late-bound property access, 1083
 methods, 1080 - 1081
 properties, 1082 - 1083
 System.Type type, 1064 - 1066
 types, 1066 - 1068
 typing, 1058 - 1063

 running, 116
 runtime disasters, 413 - 416
 Sandcastle project code, 230
 snippets

 common tasks, 490
 writing, 1200

 stack traces, logging, 1385 - 1386
 statement trees, 1110 - 1114
 statements, 351 - 353

 blocks, 351 , 356
 declaration, 351
 declarations, 357 - 358
 empty, 355 - 356
 exception handling, 352
 expression, 351 , 353 - 355
 goto, 400 - 403
 iteration, 352 , 375 - 397
 jump, 352
 resource management, 352
 return, 404 - 406
 selection, 352 , 358 - 375

 StyleCop, 362
 synchronization, 1506 - 1511

 primitives, 1482 - 1510
 syntax versus semantics, 619
 threads, 1444 - 1446

 background, 1458 - 1460
 creating, 1448 - 1450
 debugging techniques, 1471 - 1474
 exceptions, 1463 - 1464
 foreground, 1458 - 1460
 frozen, 1471 - 1474
 IDs, 1461
 life cycle, 1453 - 1458
 managed, 1458 - 1463
 naming, 1460

How can we make this index more useful? Email us at indexes@samspublishing.com

Console Application, Visual Studio 2012 1679

 per-thread state, 1481 - 1482
 pools, 1474 - 1482
 starting, 1450 - 1453
 stopping, 1454 - 1456
 Thread class, 1448 - 1453
 threading apartments, 1461 - 1463
 thread-local storage, 1470 - 1471
 thread-specific state, 1464 - 1471

 types, 184 - 185
 unsafe, 1318
 Visual Studio 2012 projects, 143 - 148
 whitespace sensitivity, 360 - 361
 writing, 114 - 115

 Code Access Security (CAS), 48-49, 258
 Code Analysis, 545 - 546
 code editor, Visual Studio 2012, 131 - 133
 code metrics, projects, calculating, 541
 CodeDOM, 1110
 collection initializers, 334 - 336 , 706

 syntax, 772
 collection types, 701 - 703 , 755 , 787

 generic, 765 - 778
 nongeneric, 755 - 764

 hash tables, 757 - 760
 queues, 761
 stacks, 762 - 763

 specialized, 786 - 787
 thread-safe, 778 - 786

 collections, GC (garbage collector), 1348 - 1349
 COM (Component Object Model), 9

 component-driven development, 7
 error handling, 1177 - 1178
 interop, 1159 - 1161

 .NET 3.5, 1163 - 1168
 .NET 4.0, 1169 - 1172
 dispatch services, 1161
 embedding PIAs, 1172 - 1174
 improving, 82 - 85
 marshaling services, 1161

 obsolescence, 50
 combining delegates, 835 - 842
 command line, 113
 commands

 PrintException, 1190
 StopOnException, 1190

 subst, 1401
 Threads, 1191

 comments, 223 - 230
 delimited, 226 - 227
 documentation, 227 - 230
 single-line, 223 - 224

 Common Language Runtime (CLR). See CLR
(Common Language Runtime)

 Common Language Specification (CLS),
 14, 23-24

 Common Log File System (CLFS), 1440
 Common Type System (CTS), 14 , 56
 compile method, 1096 - 1100
 compile time type, versus runtime type, 206
 compiler-generated expression trees,

 1101 - 1103
 compilers

 CaaS (compiler as a service), 97 - 99
 extension methods, marking and finding,

 531 - 534
 optimization, 256
 restrictions, 666

 compiling code, 115
 complex numbers, System namespace,

1322 - 1324
compliance, 176
 components, WinRT (Windows Runtime)

 activation, 1653 - 1655
 building, 1662 - 1665
 creating, 1658 - 1667
 debugging, 1667
 using, 1665 - 1667
 writing, 1658 - 1662

 compound assignments, 290 - 292
 overloading operators, 617

 compound keys, 956 - 960
 computed keys, 956
 Concat query operator, 1028 - 1029
 concatenation, string, operators, 269 - 274
 concrete types, constructors, 326
 concurrency, 97 , 99 - 102

 abstracting, 1481
 conditional debugger output, 1381
 conditional operators, 281 - 284 , 617 - 621
 console application, running, 179 - 180
 Console Application, Visual Studio 2012, 127

constants1680

 constants, 557 - 559
 enums, 565
 local variables, 216 - 218

 constituent types, 577 - 578
 constraints, generic types, 720 - 721

 base class, 727 - 728
 constructor, 728 - 735

 default constructor, 728 - 735
 interface-based, 721 - 727

 constructors, 22 , 326 - 329 , 585 , 608
 concrete types, 326
 default, 587 - 589
 generic types, 728 - 735
 inheritance, 664
 initializers, 591 - 592
 instance, 585 - 592
 static, 592 - 595
 structs, 589 - 591

 Contains query operator, 1027
 context switches, 1445 , 1514
 contextual keywords, 60 , 182 - 183 , 1586 - 1587
 continuations

 await expressions, 1536
 exceptions, 1527
 hidden, .NET Framework, 1531 - 1536
 specifying options, 1534 - 1536
 tasks, 1533 - 1534

 continue statement, 378 - 379
 contracts, 243

 code, 1375 - 1376 , 1379 - 1381
 as interfaces, 691 - 695 , 1295 - 1297

 contravariance, 85 - 88
 generic, 743 - 754 , 798

 safety guarantees, 748 - 749
 control flow

 asynchronous methods, 1595 - 1597
 asynchronous programming, 1627 - 1630

 controlling processes, 1396 - 1398
 conversions, 609 , 633 , 647

 built-in, 634
 boxing and unboxing, 637 - 638
 enumeration, 634 - 635
 nullable, 635
 numeric, 634
 reference, 635 - 637

 date and time values, 1329 - 1331
 explicit, 301 - 319
 IConvertible interface, 644 - 645
 implicit, 301 - 319
 System.Convert class, 644
 TypeConvert class, 645 - 646
 user-defined, 638 - 644

 cooperative scheduling, 454 - 455
 yielding, 1457

 Coordination Data Structures (CDS), 102
 Count query operator, 1022
 CountDownEvent class, 1501 - 1502
 CountdownEvent synchronization, 1479
 covariance, 85 - 88

 broken, array types, 745 - 747
 generic, 798
 generic types, 743 - 754

 safety guarantees, 748 - 749
 CreateInstance method, 728
 cross-domain communication, application

domains, 1288 - 1297
 C-style function pointers, 794 , 800
 CTS (Common Type System), 14 , 56
 curly braces, 422
 custom attributes

 defining, 1086 - 1087
 discovering, 1089 - 1091
 reflection, 1085 - 1091
 storage, 1088 - 1089

 custom ordering, query expressions, 952

 D
 data

 binding, WPF (Windows Presentation
Foundation), 884

 code, 184 - 185
 versus code, 343
 in-memory, 914 - 915

 LINQ (Language Intergrated Query),
921 - 923

 parallelism, 1542 - 1550
 structures, 724

How can we make this index more useful? Email us at indexes@samspublishing.com

delegates 1681

 database mappers, 160 - 161
 ADO.NET Entity Framework, 165 - 166
 DataSet, 161 - 162
 LINQ to SQL, 162 - 165

 databases
 horizontal partitioning, 946 - 947
 relational, 915 - 919

 LINQ (Language Intergrated Query),
923 - 929

 vertical partitioning, 944
 DataSet, 161 - 162
 date and time values, 1327 - 1335

 conversions, 1329 - 1331
 DateTime values, 1327 - 1335
 DateTimeOffset value, 1335
 debug support, Visual Studio 2012 projects,

 139 - 142
 Debugger.IsAttached class, 1385
 debuggers, controlling, 1383 - 1385
 debugging

 code
 controlling debugger, 1383 - 1385
 diagnostic output, 1381 - 1383

 MDAs (Managed Debugging Assistants),
 1189

 WinRT (Windows Runtime) components,
 1667

 debugging code, IntelliTrace, 1191 - 1192
 decimal arithmetic, operators, 261 - 262
 decimal types, 199 - 200
 declaration statements, 351
 declarations

 asynchronous methods, 1585 - 1588
 fields, 548
 generic types, 707 - 712
 local variables, 212 - 213
 method parameters, 504 - 519
 namespaces, 1227 - 1230
 pairwise, relational and equality operators,

 621 - 622
 properties, 575 - 578
 statements, 357 - 358
 versus

 assignments, 288 - 290
 imperative, 1516 - 1519

 virtual members, 680 - 681

 declarative languages, 95
 declarative programming, 97
 decomposing, types, 465
 Decrement method, 1504 - 1505
 decrement operators

 expression statements, 355
 overloading, 616 - 617
 prefix and postfix, 297 - 299

 default constructors, 587 - 589
 constraints, generic types, 728 - 735

 default value expressions, 322 - 324
 default values, type parameter operations,

 718 - 720
 defaults, members, 658
 defining

 custom attributes, 1086 - 1087
 exception types, 1198 - 1201
 extension methods, 526 - 528
 finalizers, 597
 flags enums, 571 - 572
 indexers, 580 - 582
 interfaces, 691 - 692
 method overloads, 519 - 520
 methods, 501 - 502
 operators, 610 - 611
 rules, 24

 definite assignments, 292 - 296
 delegate invocation, expressions, 341 - 348
 delegates, 21 - 22 , 789 , 794 , 842 ,

844 - 845 , 911
 anonymous function expressions, 801 - 802
 asynchronous, invocation, 1427
 calling through, 343
 closures, 802 - 807
 combining, 835 - 842
 EventHandler, 871 - 878 , 901
 expression trees, 810 - 811
 extensible calculator, 815 - 819
 versus function pointers, 345
 instances, 798 - 800

 creating, 343 - 347
 invocation, 1107 - 1110
 invoking, 811 - 815 , 844

 asynchronous invocation, 823 - 835
 lambda expressions, 807 - 809
 LINQ (Language Intergrated Query), 819 - 823

delegates1682

 MulticastDelegate, 796
 plain use, 849 - 850
 types, 794 - 798

 generic, 814 - 815
 delimited comments, 226 - 227
 dependencies, language, 1307 - 1308
 deployment

 assemblies, 1249 - 1252
 Xcopy, 1264 - 1265

 derived classes, designing events, 878 - 880
 designers

 ASP.NET, 155 - 157
 VSTO (Visual Studio Tools for Office),

 157 - 158
 Windows Forms, 148 - 150
 WPF (Windows Presentation Foundation),

 151 - 153
 designing events, derived classes, 878 - 880
 destructors, 585 , 595 - 608 , 862

 defining, 597
 garbage collection, 601 - 607
 implementing, 600
 running, 597 - 600

 detaching, event handlers, 861 - 870
 Deterministic Resource Clean Up, 438-448
DGML (Directed Graph Markup Language), 147
 diagnostic, debugging code, 1381 - 1383
 dictionary suggest, 900 - 901

 AJAX, 908 - 911
 direct invocation, expressions, 340 - 341
 Directed Graph Markup Language (DGML), 147
 directives, preprocessing, 224 - 226
 directories, 1402 - 1404

 paths, 1405 - 1406
 DirectoryInfo class, 1407
 DirectoryNotFoundException class, 1193
 discovering custom attributes, 1089 - 1091
 dispatch services, COM interop, 1161
 Dispose method, 603 - 607
 Distinct restriction operator, 1003
 DivideByZeroException, 1201
 DLR (Dyanmic Language Runtime), 80 - 82 ,

 1137 , 1158 - 1159
 dynamic binders, 1137 - 1143
 dynamic call sites, 1137 - 1143

 dynamic dispatch, 1143 - 1149
 dynamic operations, 1157 - 1158
 DynamicMetaObject, 1154 - 1156
 DynamicObject, 1149 - 1153

 DNA (Distributed interNet Applications
Architecture), 8

 documentation comments, 227 - 230
 DOM (Document Object Model) APIs,

919 , 1644
 domains, application, 1286 , 1298 - 1299

 creating, 1286
 cross-domain communication, 1288 - 1297
 managed add-in framework, 1296 - 1298

 domain-specific languages (DSLs), 97
 do.while statement, 379 - 380
 DriveInfo class, 1400
 drives, listing, 1400 - 1402
 DSLs (domain-specific languages), 97
 duck typing, 336
 dumping IL and JIT-generated code, 1271 - 1273
 dynamic binders, 1137 - 1143
 dynamic call sites, 1137 - 1143
 dynamic dispatch, DLR (Dyanmic Language

Runtime), 1143 - 1149
 dynamic expressions, 1062 - 1063
 dynamic keyword, 79 - 80 , 1119 - 1121

 deferred overload resolution, 1124 - 1126
 dynamic type, 1121 - 1122
 dynamic typing, 1122 - 1124
 IronPython, 1128 - 1137
 using, 1128 - 1137

 Dynamic Language Runtime (DLR), 80 - 82
 dynamic languages, 75 - 88

 versus static, 77 - 79
 dynamic parameters, 1138
 dynamic programming, 1119 , 1174

 COM interop, 1159 - 1161
 .NET 3.5, 1163 - 1168
 .NET 4.0, 1169 - 1172
 dispatch services, 1161
 embedding PIAs, 1172 - 1174
 marshaling services, 1161

 DLR (Dyanmic Language Runtime), 1137
 dynamic binders, 1137 - 1143
 dynamic call sites, 1137 - 1143

How can we make this index more useful? Email us at indexes@samspublishing.com

Event-based Asynchronous Pattern (EAP) 1683

 dynamic dispatch, 1143 - 1149
 dynamic operations, 1157 - 1159
 DynamicMetaObject, 1154 - 1156
 DynamicObject, 1149 - 1153

 dynamic keyword, 1119 - 1121
 deferred overload resolution, 1124 - 1126
 dynamic type, 1121 - 1122
 dynamic typing, 1122 - 1124
 System.Dynamic type, 1126 - 1128
 using, 1128 - 1137

 dynamic type, 1121 - 1122
 dynamic typing, 205 - 206 , 312

 dynamic keyword, 1122 - 1124
 member access, 338 - 339
 versus static, 207

 DynamicMetaObject class, 1154 - 1156
 DynamicObject class, 1149 - 1153

 E
 EAP (Event-based Asynchronous Pattern),

899 , 1569 - 1571
 versus APM (Asynchronous Programming

Model), 1569 - 1570
 editions, Visual Studio 2012, 120 - 121
 Einstein, Albert , 1
 ElementAt restriction operator, 1006
 ElementAtOrDefault restriction operator, 1006
 elements, access, 348 - 349
 embedded resources, assemblies, 1278 - 1279
 Empty source generator, 1001
 empty statements, 355 - 356
 encapsulation, 653 - 654
 encoding text, 1371
 Entity Framework, 165 - 166
 entry points, 175 - 181

 CLR (Common Language Runtime), 33
 signatures, 177 - 179

 enumerations
 conversions, 634 - 635
 logical operators, 277 - 278

 enums, 563 - 564
 CLI (Common Language Infrastructure),

 19 - 20
 constants, 565
 enumerating, 567 - 568
 flags, describing, 570 - 573
 members, assigning values to, 565 - 566
 string representations, 566 - 567
 switch statement, 573 - 574
 System.Enum type, 566 - 569
 underlying types, 564
 values

 converting integral values to, 568 - 569
 converting strings to, 569

 environment error conditions, 416 - 420
 epsilon-delta definitions, 260
 equality checks, types, 275 - 276
 equality operators

 overloading, 621
 pairwise declaration, 621 - 622

 Equals method
 GetHashCode consistency, 625 - 628
 overloading operators, 622 - 632
 overriding, 623 - 625
 required properties, 625

 errors
 environment error conditions, 416 - 420
 handling

 COM (Component Object Model),
1177 - 1178

propagation, 408-409
 Win32, 601-602

 tasks, dealing with, 1524 - 1531
 Evaluate method, 620
 evaluation stack, 255 - 258
 evaluators, 371
 event handlers, 851

 detaching, 861 - 870
 EventHandler<T>, 875 - 878 , 901
 naming, 872
 Visual Basic, declarative approach, 889 - 890

 event logs, monitoring software, 1388 - 1391
 EventArgs, 871 - 875
 Event-based Asynchronous Pattern (EAP), 899

EventHandler delegate1684

 EventHandler delegate, 871 - 878 , 901
 EventLog class, 1388 - 1391
 events, 22 , 843 , 853 - 855 , 911

 .NET, 850 - 852
 existing, 908

 add accessors, 857 - 861
 delegates, 844 - 845
 designing, derived classes, 878 - 880
 EAP (Event-based Asynchronous

Pattern), 899
 event handlers

 detatching, 861 - 870
 EventHandler, 871 - 878 , 901
 naming, 872

 GUIs (graphical user interfaces), 890 - 896
 handling, 844
 multithreading interaction, 856
 patterns, 871 - 880
 raising, 855 - 857
 reactive applications, 845 - 852

 delegates, 846 - 850
 reactive programming, 898 - 905
 reflection, 1083 - 1084
 remove accessors, 857 - 861
 signaling, 1498 - 1503
 UI frameworks, 885 - 890
 UnobservedTaskException, 1529 - 1530
 WinRT (Windows Runtime), interoperability,

 896 - 898
 Except query operator, 1028
 exception handling

 SEH (structured exception handling), 1175
 statements, 352

 exception text, printing, 918
 ExceptionDispatchInfo type, 1624

 exceptions, propagation, 429 - 431
 exceptions, 243 , 407 , 462 , 1175 ,

1178 - 1180 , 1220
 behavior, asynchronous programming, 1576 -

 1578
 catching, 426 - 427
 causes, 410 - 420
 checked, 1179
 continuations, 1527
 first-chance, enabling, 424

 handling, 11 , 407 - 409 , 421 - 431 , 1180 -
 1183 , 1193 - 1196

 CLR (Common Language Runtime), 46 - 48
 filters, 431
 finally clause, 432 - 437
 first-chance exceptions, 1187 - 1190
 handler order, 1181
 IntelliTrace, 1191 - 1192
 try statements, 1183 - 1186

 as objects, 409 - 410
 propagation, 429 - 431 , 1619 - 1624
 rethrowing, 427 - 429
 SEH (structured exception handling), 1175
 ThreadAbortException, 458
 threads, 1463 - 1464
 throwing, 420 - 421 , 1196 - 1198
 types, 1201

 AggregateException, 1218 - 1220
 ApplicationException, 1201
 ArgumentException, 1193 , 1213
 ArgumentNullException, 1193 ,

 1213 - 1214
 ArgumentOutOfRangeException,

1214 - 1215
 ArrayTypeMismatchException, 1204
 defining, 1198 - 1201
 DirectoryNotFoundException, 1193
 DivideByZeroException, 1201
 ExecutionEngineException, 1212 - 1213
 FileNotFoundException, 1193
 FormatException, 1217 - 1218
 IndexOutOfRangeException, 1203
 InsufficientMemoryException, 1208
 InvalidCastException, 1203
 InvalidOperationException, 1215
 NotImplementedException, 1215 - 1216
 NotSupportedException, 1193 ,

1216 - 1217
 NullReferenceException, 1202 - 1203
 ObjectDisposedException, 1206 - 1208
 OutOfMemoryException, 1208 - 1209
 OverflowException, 1201 - 1202
 PathTooLongException, 1193
 StackOverflowException, 1209 - 1212
 TypeInitializationException, 1204 - 1205

How can we make this index more useful? Email us at indexes@samspublishing.com

expressions 1685

 UnauthorizedAccessException, 1193
 unhandled
 .NET 4.0, 1527 - 1529
 .NET 4.5, 1530 - 1531

 exe target, assemblies, 1244
 ExecutionEngineException, 413 , 1212 - 1213
 expandos, versus extension methods,

534 , 1152
 explicit conversions, versus implicit, 301 - 319
 explicit implementation, interfaces, 696 - 697
 exposed locks, 1497 - 1498
 Express Editions, Visual Studio, 121
 Expression base class, 1103 - 1104
 expression statements, 351 , 353

 assignments, 354 - 355
 decrement operators, 355
 increment operators, 355
 method calls, 353 - 354

 expression trees, 1101
 API (application programming interface),

 1103 - 1114
 compiler-generated, 1101 - 1103
 delegate invocation, 1107 - 1110
 ExpressionVisitor type, 1114 - 1117
 lambda expressions, 1107 - 1110
 leaf nodes, 1104 - 1105
 LINQ (Language Intergrated Query), 1045

 homoiconicity, 1048 - 1050
 query expression translation, 1045 - 1048
 query expressions, 1050 - 1055

 object model, 1094 - 1096
 statement trees, 1110 - 1114

 expressions, 251 , 299 , 349
 anonymous function expressions, 801 - 802
 arithmetic, toy compiler, 1093 - 1100
 assignments, 287 - 288

 compound, 290 - 292
 versus declarations, 288 - 290
 definite, 292 - 296

 await, 616
 asynchronous, 1588 - 1591 , 1603 - 1607
 continuations, 1536
 manual callback plumbing, 1597 - 1603

 binary, 1105

 cast, 302 - 307 , 309
 syntax, 303

 conversions, 301 - 319
 default value, 322 - 324
 dynamic, 1062 - 1063
 evaluation stack, 255 - 258
 initializers, 66 - 67
 invocation, 340 - 348

 delegate, 341 - 348
 method, 340 - 341

 lambda, 22 , 69 - 71 , 347 - 348 , 807 - 809
 expression trees, 1107 - 1110

 operators
 arithmetic, 258 - 269
 arity, 252
 as, 312 - 317
 associativity, 253 - 254
 conditional, 281 - 284
 conversion, 633 - 646
 defining, 610 - 611
 finding, 611 - 612
 is, 307 - 312
 lifted, 612 - 615
 logical, 277 - 281
 new, 324 - 336
 nullability, 612 - 615
 null-coalescing, 285 - 287
 overloading, 609 - 633 , 647
 postfix increment and decrement,

297 - 299
 precedence, 252 - 253
 prefix increment and decrement,

 297 - 299
 relational, 275 - 277
 result type, 284 - 285
 shift, 274 - 275
 translation, 633
 typeof, 319 - 322

 query
 expression trees, 1050 - 1055
 group clause, 953 - 960
 IntelliSense, 929 - 931
 into clause, 966 - 971
 join clause, 960 - 965
 let clause, 972 - 974

expressions1686

 orderby keyword, 946 - 952
 patterns, 952
 select clause, 938 - 944
 syntax, 931 - 974
 where clause, 944 - 947

 regular, 1363 - 1366
 versus statements, 1102 - 1103
 string concatenation, 269 - 274
 subexpressions, 254
 trees, 71 - 73 , 810 - 811
 unary, 1105

 ExpressionVisitor type, 1114 - 1117
 extensibility, 1069 - 1080

 built-in operations, 1071 - 1072
 defining interface, 1070 - 1071
 extensions

 deploying, 1076 - 1077
 loading, 1074 - 1076
 writing, 1076 - 1077

 MEF (Managed Extensibility Framework),
 1069 , 1077 - 1080

 user interface, 1072 - 1074
 Extensible Application Markup Language

(XAML), 122
 extensible calculator, 815 - 819
 EXtensible Stylesheet Language (XSLT), 230
 extension methods, 68 - 69 , 524 - 534 , 1214

 compilers, marking and finding, 531 - 534
 defining, 526 - 528
 versus expandos, 534
 importing namespaces, 1238 - 1240
 LINQ to Objects, 980 - 984
 overload resolution, 528 - 529

 extern aliases, 1235 - 1238
 extern methods, 538 - 539

 F
 F# programming language, 15
 factory methods, 187
 fibers, 1445

 fields, 22 , 547 , 583 - 584
 accessing, 548 - 551
 constants, 557 - 559
 declaring, 548
 default values, automatic assignment, 552
 initializing, 551 - 555
 naming conventions, 548
 object initializers, 334
 read-only, 555 - 557
 reflection, 1084 - 1085
 volatile, 559 - 563

 File class, 1409 - 1415
 file system, monitoring activity, 1407 - 1409
 FileInfo class, 1406 - 1407
 FileNotFoundException class, 418 , 1193
 files

 directories, 1402 - 1404
 memory-mapped, 1437 - 1440
 PE/COFF, 1420

 filters, 1197
 exception handling, 431
 where clause, 944 - 947

 finalization, 598-600, 1349-1350
 finalizers, 22 , 585 , 595 - 607 , 608

 defining, 597
 GC (garbage collector), 601 - 607 ,

 1349 - 1350
 implementing, 600
 running, 597 - 600

 finally clause, exception handling, 432 - 437
 finding

 assemblies, 1267 - 1271
 operators, 611 - 612

 First restriction operator, 1005
 first-chance exceptions, 1187 - 1190

 enabling, 424
 first-class functions, 793 - 794
 FirstOrDefault restriction operator, 1005
 flags

 checking for, 572 - 573
 enum, describing, 570 - 573

 floating-point arithmetic, operators, 260 - 261

How can we make this index more useful? Email us at indexes@samspublishing.com

Gyro generic types 1687

 floating-point types, 194 - 198
 fluent APIs, extension methods, 68
 folders, structures, namespaces, 210
 For loops, parallel, 1543 - 1548
 for statement, 380 - 382
 ForAll method, PLINQ (Parallel Language

Integrated Query), 1043 - 1045
 ForEach loops, 1548 - 1550

 constructs, 297
 variable, scoping, 805 - 806

 foreach statement, 382 - 390 , 757
 hidden cast, 841 - 842

 foreground threads, 1458 - 1460
 format strings, 1357 - 1362
 FormatException, 1217 - 1218
 formatting text, 1357 - 1362

 BCL (Base Class Library), 1357 - 1362
 format strings, 1357 - 1362
 IFormattable interface, 1357

 from clause, source selection, 933 - 938
 frozen threads, 1471 - 1474
 function pointers, 345

 C-style function pointers, 794 , 800
 functional programming, 96 , 789 - 794
 functions, 793 - 794

 asynchronous anonymous, 1609 - 1610
 first-class, 793 - 794
 Iif, 284
 programming with, 791 - 794

 Fusion Log Viewer, 1267 - 1271
 FxCop rule, 362 , 878 , 1214

 G
 GAC (Global Assembly Cache), 36 , 1258 - 1262

 .NET Framework, 111 - 112
 inspecting, 1258 - 1260
 installing assemblies in, 1260 - 1262

 GC (garbage collector), 438 - 440 , 1344 - 1351
 collections, 1348 - 1349
 finalization, 1349 - 1350

 IDisposable, 601 - 607
 memory pressure, 1349
 weak references, 1350 - 1351

 generic co- and contravariance, 798
 generic collection types, 765 - 778
 generic methods, 502 , 523 - 524 , 736 - 743

 calling, 737
 generics, 23 , 60 - 61 , 87 - 88 , 306 , 321 - 324 ,

 701 - 707 , 712 - 713 , 754 , 1068
 constraints, 720 - 721

 base class, 727 - 728
 default constructor, 728 - 735
 interface-based, 721 - 727

 contravariance, 743 - 754
 safety guarantees, 748 - 749

 covariance, 743 - 754
 safety guarantees, 748 - 749

 declaring, 707 - 712
 delegates, 814 - 815
 Gyro, 707
 performance, 714 - 718
 polymorphism, 707
 static type checking, 705
 universal quantification, 707

 GetAccessControl method, 1404
 GetHashCode method, 625 - 628
 GetResult method, 1636
 GetType method, 540
 Global Assembly Cache (GAC). See GAC

(Global Assembly Cache)
 goto statement, 366 , 400 - 403
 green bits, 105
 group clause, query expressions, 953 - 960
 GroupBy query operator, 1013 - 1015 ,

1025 - 1026
 grouping query operators, 1013 - 1016
 GroupJoin query operator, 1015 - 1016
 groups, methods, 520 - 522 , 799
 GUIs (graphical user interfaces), events,

 890 - 896
 Gyro generic types, 707

handling1688

 H
 handling

 events, 844 , 871 - 875
 exceptions, 11 , 407 - 409 , 421 - 431 , 1180 -

 1183 , 1193 - 1196
 CLR (Common Language Runtime), 46 - 48
 filters, 431
 finally clause, 432 - 437
 first-chance exceptions, 1187 - 1190
 handler order, 1181
 IntelliTrace, 1191 - 1192
 try statements, 1183 - 1186

 hash codes, 757 - 760
 hash tables, nongeneric collection types,

757 - 760
 Haskell programming language, 931 - 932
 headers, 1224

 methods, 502
 heap allocated closures, 804
 heaps, 1353

 versus stacks, 469 - 478 , 590
 Hejlsberg, Anders, 57
 Hello World program

 compiling, 115
 inspecting, 116 - 119
 running, 116
 writing, 114 - 115

 helpers, interlocked, 1504 - 1506
 hidden continuations, .NET Framework,

1531 - 1536
 hiding, base class members, 672 - 674
 Hindley, J. Roger, 347
 homoiconicity

 code, 73
 expression trees, 1048 - 1050

 horizontal partitioning, databases, 946 - 947
 hosting, IronPython, 1130 - 1132
 Hungarian notation, 892
 Hypotenuse method, 344

 I
 ICloneable method, 764
 IConvertible interface, 644 - 645
 ICriticalNotifyCompletion interface, 1638
 identifiers, naming, 358
 identity key selector, 947 - 948
 identity projection, select clause, 938 - 940
 IDisposable interface, 601 - 607

 resource cleanup, 444 - 448
 IEnumerable interface, 388 - 389 , 978 - 980
 IEqualityComparer interface, 627
 if statement, 358 - 363
 IFormattable interface, 1357
 Iif function, 284
 IInspectable object, 1654 - 1655
 IL (Intermediate Language)

 code, 27 - 28
 generated, dumping, 1271 - 1273

 round tripping, 26
 ILDASM tool, 713 , 1651
 ILSpy, inspecting assemblies, 116 - 119
 images, native, generation, 1271 - 1275
 “immediate if” function, 284
 immutability, 100
 imperative languages versus declarative,

1516 - 1519
 implementing

 finalizers, 600
 indexers, 582 - 583
 interfaces, 695 - 699

 implicit conversions, versus explicit, 301 - 319
 implicit implementation, interfaces, 696 - 697
 implicitly typed declarations, local variables,

 218 - 223
 implicitly typed local variables, 771
 importing namespaces, 1231 - 1240

 aliases, 1234 - 1235
 extension methods, 1238 - 1240
 name clashes, 1230

 Increment method, 1504 - 1505
 increment operators

 expression statements, 355
 overloading, 616 - 617
 prefix and postfix, 297 - 299

How can we make this index more useful? Email us at indexes@samspublishing.com

interning strings 1689

 indexers, 22 , 580 , 583 - 584
 defining, 580 - 582
 implementing, 582 - 583
 reflection, 1082 - 1083

 indexing manual arrays, 297
 IndexOutOfRangeException class, 1203
 indirect invocation, expressions, 341 - 348
 infoof operator, 1083
 inheritance, 654 - 659

 blocking, 671
 classes, 663 - 666

 single, 667 - 668
 constructors, 664
 interfaces, multiple, 669 - 670
 members, 665

 initial capacity, constructor overloads, 761
 initialization, zero-initialization, 591
 initializers

 arrays, 234 - 236
 collection, 334 - 336 , 706

 syntax, 772
 constructors, 591 - 592
 expressions, 66 - 67
 object, 329 - 334 , 941 - 944

 properties versus fields, 334
 initializing fields, 551 - 555
 in-memory data, 914 - 915

 LINQ (Language Intergrated Query), 921 - 923
 InnerScope method, 214
 INotifyProperty interfaces, 880 - 890
 input validation, code, 410 - 413
 inspecting, GAC (Global Assembly Cache),

 1258 - 1260
 inspecting assemblies, ILSpy, 116 - 119
 installing

 .NET Framework, 103 - 112
 Visual Studio 2012, 122

 instance constructors, 585 - 592
 instance members, versus static members,

 490 - 495
 instances, 249

 delegates, 798 - 800
 creating, 343 - 347

 object, creating, 1289 - 1290
 types, 186 - 187

 instantiating objects, 1106
 instantiating types, 1068
 instrumentation, System.Diagnostics

namespace, 1388 - 1396
 InsufficientMemoryException class, 1208
 integer arithmetic, operators, 259
 integral bitwise logical operators, 277
 integral types, 190 - 194
 integral values, enum values, converting

to, 568 - 569
 IntelliSense

 member access, 337 - 339
 query expressions, 922

 IntelliTrace, debugging, 1191 - 1192
 interface-based constraints, generic types,

 721 - 727
 interfaces, 20 - 21

 APIs (application programming interfaces), 6
 as contracts, 691 - 695 , 1295 - 1297
 defining, 691 - 692 , 1070 - 1071
 design recommendations, 693 - 695
 GUIs (graphical user interfaces), events,

 890 - 896
 IConvertible, 644 - 645
 ICriticalNotifyCompletion, 1638
 IEnumerable, 388 - 389 , 978 - 980
 IEqualityComparer , 627
 IFormattable, 1357
 implementing, 695 - 699
 inheritance, multiple, 669 - 670
 INotifyProperty, 880 - 890
 IObservable, 905 - 908
 IObserver, 905 - 908
 IQueryable, 1052 - 1055
 IRule, 1375
 OOP (object-oriented programming), 662
 single-method, 693 - 694
 types, 690 - 699
 versioning, 693
 zero-method, 693 - 694

 interference, types, 738 - 741
 interlocked helpers, 1504 - 1506
 internal representation, arrays, 231
 internal visibility, 1275 - 1276
 InternalsVisibleTo attribute, 1276 - 1277
 interning strings, 632

interoperability, WinRT (Windows Runtime) events1690

 interoperability, WinRT (Windows Runtime)
events, 896 - 898

 interoperability facilities, CLR (Common
Language Runtime), 49 - 50

 interrupting blocked threads, 1457 - 1458
 Intersect query operator, 1028
 into clause, query expressions, 966 - 971
 IntPtr value, System namespace, 1351 - 1353
 InvalidCastException class, 1203
 InvalidOperationException class, 1215
 invocation

 asynchronous delegates, 1427
 expressions, 340 - 348

 delegate, 341 - 348
 method, 340 - 341

 parallel, 1538 - 1539
 invoking

 delegates, 811 - 815
 asynchronous invocation, 823 - 835

 members, 1106 - 1107
 I/O (input/output), 1399 - 1400 , 1440 - 1441

 asynchronous read and write operations,
 1420 - 1433

 caching, 1422
 Common Log File System (CLFS), 1440
 directories, 1402 - 1404

 paths, 1405 - 1406
 file system, monitoring activity, 1407 - 1409
 FileInfo class, 1406 - 1407
 isolated storage, 1440
 listing drives, 1400 - 1402
 memory-mapped files, 1437 - 1440
 Open Packaging Convention (OPC), 1440
 pipes, 1434 - 1436
 readers, 1409 - 1410 , 1411 - 1415
 serial port communication, 1440
 streams, 1415 , 1433 - 1434

 SteamReader class, 1417 - 1418
 StreamWriter class, 1417 - 1418

 writers, 1410 - 1415
 IObservable interface , 905 - 908
 IObserver interface , 905 - 908
 IQueryable interface, 1052 - 1055

 IronPython
 dynamic keyword, 1128 - 1137
 hosting, 1130 - 1132

 IRule interface, 1375
 is keyword, type checks, 637
 is operator, 307 - 312
 isolated storage, I/O (input/output), 1440
 iteration statements, 352 , 375

 do…while, 379 - 380
 for, 380 - 382
 foreach, 382 - 390
 while, 375 - 379

 iterators, 62 - 63 , 391 - 397
 anonymous, 993
 generating code for, 394
 lazy evaluation, 990 - 999
 LINQ to Objects, 984 - 990

 J
 J++ programming language, 8
 jagged arrays, 236 - 237
 JIT compilation, 39 - 41
 JIT-generated code, dumping, 1271 - 1273
 join clause, query expressions, 960 - 965
 Join method, 1369
 Join query operator, 1016 - 1018
 joining query operators, 1016 - 1018
 jump statements, 352
 Just My Code feature, disabling, 422

 K
 Kennedy, Andrew, 60 , 707
 keys

 compound, 956 - 960
 computed, 956
 identity, 947 - 948
 simple, 956

How can we make this index more useful? Email us at indexes@samspublishing.com

LINQ (Language Integrated Query) 1691

 keywords, 181 - 183
 ascending, 947
 contextual, 60 , 182 - 183 , 1586 - 1587
 dynamic, 79 - 80 , 1119 - 1121

 deferred overload resolution, 1124 - 1126
 dynamic type, 1121 - 1124
 IronPython, 1128 - 1137
 System.Dynamic type, 1126 - 1128
 using, 1128 - 1137

 lock, 1486 - 1489
 orderby, 946 - 952
 override, 678
 primitive types, 1315
 reuse, 183
 reuse of, 735 - 736
 syntax highlighting, Visual Studio, 183
 type checks, is and as, 637
 var, 218 - 219

 Kleene closure operators, 61 , 246

 L
 lambda expressions, 22 , 69 - 71 , 347 - 348

 delegates, 807 - 809
 expression trees, 1107 - 1110

 Language Integrated Query (LINQ). See LINQ
(Language Intergrated Query)

 language projections, WinRT (Windows
Runtime), 1655 - 1658

 language support, asynchronous programming,
 91 - 95

 languages
 dependencies, 1307 - 1308
 mini-languages, 1359
 mixing, 30 - 31

 Last restriction operator, 1005
 LastOrDefault restriction operator, 1005
 late-bound invocation of methods, 1080 - 1081
 late-bound property access, reflection, 1083
 latency, asynchronous programming, 1552
 Lazy class, 1353 - 1354
lazy evaluation, iterators, 990 - 999

 lazy initiation, 1353 - 1354
 LCG (Lightweight Code Generation), 1091

 Hello World program, 1091 - 1093
 toy compiler for arithmetic expressions,

 1093 - 1100
 leaf nodes, expression trees, 1104 - 1105
 leaks, 865

 tracing, SOS (Son of Strike), 865
 let clause, 972 - 974
 libraries

 BCL (Base Class Library) , 11 , 51 , 1301 -
 1303 , 1372

 assemblies, 1304 - 1308
 default project references, 1303 - 1304
 encoding text, 1371
 formatting text, 1357 - 1362
 history, 53 - 54
 namespaces, 51 - 52 , 1304 - 1306
 Object Browser, 1305 - 1306
 parsing text to objects, 1362 - 1363
 string methods, 1366 - 1369
 StringBuilder class, 1369 - 1371
 support, 11
 System namespace, 1311 - 1320 ,

 1344 - 1356
 runtime, 1307 - 1308
 TPL (Task Parallel Library), 1444 ,

 1515 - 1520
 library target, assemblies, 1245
 life cycle, threads, 1453 - 1458
 lifted operators, 276 - 277 , 612 - 615
 Lightning, 8 - 9
 LINQ (Language Integrated Query), 57 , 63 - 65 ,

 913 , 920 - 921 , 975 , 977 , 1055
 anonymous types, 941 - 944
 benefits, 914 - 920
 catalyst, 335
 delegates, 819 - 823
 expression trees, 1045

 homoiconicity, 1048 - 1050
 query expressions, 1045 - 1048 ,

1050 - 1055
 group clause, 953 - 960
 join clause, 960 - 965

LINQ (Language Integrated Query)1692

 LINQ to Objects, 977
 extension methods, 980 - 984
 IEnumerable interface, 978 - 980
 IEnumerator interface , 978 - 980
 iterators, 984 - 990
 lazy evaluation, 990 - 999
 query operator methods, 983

 in-memory data, 921 - 923
 methods, 766
 MinLINQ, 1031
 origins, 920
 PLINQ (Parallel Language Integrated Query),

 102 , 1036 , 1041 - 1043
 AsOrdered operator, 1042 - 1043
 ForAll method, 1043 - 1045
 optimization, 1036 - 1040
 tweaking parallel querying behavior,

 1043
 query expressions

 from clause, 933 - 938
 into clause, 966 - 971
 let clause, 972 - 974
 orderby keyword, 946 - 952
 syntax, 931 - 934
 where clause, 944 - 947

 query operators, 1000
 aggregation, 1019 - 1026
 grouping, 1013 - 1016
 joining, 1016 - 1018
 local, 1031 - 1033
 ordering, 1012 - 1013
 predicates, 1026 - 1027
 projection, 1007 - 1012
 remote, 1031 - 1033
 restriction, 1002 - 1007
 sequence persistence, 1029 - 1031
 sequencing, 1027 - 1029
 set theoretical, 1027 - 1029
 source generators, 1000 - 1002

 query pattern, 1033
 methods, 1033 - 1034
 overloading query expression syntax,

 1034 - 1036
 relational databases, 923 - 929
 XML (eXtensible Markup Language),

 929 - 931

 LINQ to Objects, 977
 extension methods, 980 - 984
 IEnumerable interface, 978 - 980
 IEnumerator interface , 978 - 980
 iterators, 984 - 990

 lazy evaluation, 990 - 999
 query operator methods, 983

 listing drives, 1400 - 1402
 literals

 decimal, 199 - 200
 integral, 192 - 193
 real, 198
 string, 201 - 202

 loading assemblies, 1283 - 1286
 at runtime, 1264 - 1271

 local query operators, 1031 - 1033
 local variables, 212 - 223

 assignments, 215 - 216
 constants, 216 - 218
 declarations, 212 - 213

 implicitly typed, 218 - 223
 scope, 213 - 215
 type inference, 65 - 66

 localizable applications, 1360
 locating

 assemblies, 1267 - 1271
 operators, 611 - 612

 lock keyword, 1486 - 1489
 lock statement, 453 - 457
 locking on objects, 448 - 462

 lock statement, 453 - 457
 locks, 459 - 462

 ACID transactions, 461
 code generation, 457 - 458
 exposed, 1497 - 1498

 logging
 stack traces, 1385 - 1386
 Windows Store applications, 1268

 logic, cleanup, 408
 logic programming, 96
 logical operators, 277

 Boolean, 279 - 281
 enumerations, 277 - 278
 integral bitwise, 277
 non-short-circuiting, 620
 short-circuiting, 617 - 621

How can we make this index more useful? Email us at indexes@samspublishing.com

methods 1693

 logs, event, 1388 - 1391
 LongCount query operator, 1022
 loops, 398 - 400

 ForEach, 1548 - 1550
 REPLs (read-eval-print-loops), 1130 , 1364

 M
 magic strings, 1361
 Main method, 25 , 117 , 176 , 359 , 501

 asynchronous, 1607 - 1609
 signature, 176 - 177

 managed add-in framework, 1296 - 1298
 managed code, 1446 - 1448

 executing, 24 - 31
 Managed Debugging Assistants (MDAs), 1189
 Managed Extensibility Framework (MEF), 1069 ,

 1077 - 1080 , 1298
 managed threads, 1458 - 1463
 manifests, assembly, 26 - 27
 manual array indexing, 297
 manual callback plumbing, asynchronous

methods and await expressions, 1597 - 1603
 ManualResetEvent class, 1500 - 1502
 MarshalByRefObject calculator, 1293 - 1294
 marshaling services, COM interop, 1161
 Max query operator, 1025
 MDAs (Managed Debugging Assistants), 1189
 measuring code performance, 1386 - 1388
 MEF (Managed Extensibility Framework), 1069 ,

 1077 - 1080 , 1298
 member access, 336 - 339

 dynamic typing, 338 - 339
 encapsulation, 653 - 654
 IntelliSense, 337 - 339

 members, 22 - 23
 accessing, 1106 - 1107
 base class, hiding, 672 - 674
 defaults, 658
 enums, assigning values to, 565 - 566
 inheritance, 665
 invoking, 1106 - 1107

 type, 486
 limiting access, 486 - 489
 static versus instance, 490 - 495
 visibility, 488 - 489

 virtual
 declaring, 680 - 681
 overriding, 678 - 680
 polymorphism, 676 - 687

 memory, automatic management, CLR
(Common Language Runtime), 43 - 46

 memory pressure, GC (garbage collector), 1349
 memory streams, 1416 - 1417
 memory-mapped files, 1437 - 1440
 MemoryStream class, 1417
 messaging, named pipes, 1434
 metadata, 28 - 30 , 1058 - 1059

 Windows Metadata format, 1650 - 1652
 meta-programming, 73
 method calls, expression statements, 353 - 354
 method invocation, expressions, 340 - 341
 methods, 22 , 408 , 501 , 546

 Add, 792
 anonymous, 63 , 345 - 347
 APM (Asynchronous Programming Model),

 1423 - 1428
 arguments, 504
 AsParallel, 1037 - 1040
 asynchronous, 1584 - 1585

 control flow, 1595 - 1597
 declaring, 1585 - 1588
 execution, 1591 - 1595
 Main, 1607 - 1609
 manual callback plumbing, 1597 - 1603
 refactoring, 1593
 returning from, 1614 - 1619
 state machine, 1610 - 1614

 Bar, 479
 BeginInvoke, 1427
 calling, optional parameters, 513 - 516
 compile, 1096 - 1100
 CreateInstance, 728
 Decrement, 1504 - 1505
 defining, 501 - 502
 Dispose, 603 - 607

methods1694

 Equals
 GetHashCode consistency, 625 - 628
 overloading operators, 622 - 632
 overriding, 623 - 625
 required properties, 625

 Evaluate, 620
 extension, 68 - 69 , 524 - 534 , 1214

 defining, 526 - 528
 versus expandos, 534
 importing namespaces, 1238 - 1240
 LINQ to Objects, 980 - 984
 marking and finding, 531 - 534
 overload resolution, 528 - 529

 extern, 538 - 539
 factory, 187
 finalizer, 22
 ForAll, 1043 - 1045
 generic, 502 , 523 - 524 , 736 - 743

 calling, 737
 GetAccessControl, 1404
 GetHashCode, 625 - 628
 GetResult, 1636
 GetType, 540
 groups, 520 - 522 , 799
 headers, 502
 Hypotenuse, 344
 ICloneable, 764
 Increment, 1504 - 1505
 InnerScope, 214
 Join, 1369
 late-bound invocation of, 1080 - 1081
 LINQ query pattern, 1033 - 1034
 Main, 25 , 117 , 176 , 359 , 501 , 1607 - 1609

 signature, 176 - 177
 naming, 1573 - 1575
 op_Explicit, 641
 overloading, 519 - 524

 defining overloads, 519 - 520
 resolution, 522 - 524

 Pad, 1368 - 1369
 Parallel.For, 1548 - 1550
 Parallel.Invoke, 1539
 parameters, 504

 arrays, 510 - 511
 declaring, 504 - 519

 named, 511 - 512 , 513 - 516
 optional, 511 - 519
 output, 508 - 510
 reference, 507 - 508
 value, 505 - 507

 partial, 498 , 534 - 538
 PrintUsage, 491
 Process.Start, 1396 - 1398
 query operator, 983
 QueueUserWorkItem, 1476 - 1478
 ReadAllLines, 1410
 refactoring, 540 - 545
 ReferenceEquals, 628 - 630
 reflection, 1080 - 1081
 return type, specifying, 502 - 504
 Run, 1522
 SchedulePayment, 494
 SetAccessControl, 1404
 signatures, 176 - 177
 Sort, 1377
 string, 1366 - 1369
 String.Concat, 1368
 ToString, 676 , 679 , 686 , 1357 ,

1369 , 1385
 Trim, 1368 - 1369
 Workflow, 1639

 MFCs (Microsoft Foundation Classes), 6
 Min query operator, 1025
 mini-languages, 1359
 MinLINQ, 1031
 mixing languages, 30 - 31
 modifiers, CLR (Common Language Runtime),

 675 - 676
 modules, 16

 assemblies, 1242 - 1244
 monitoring

 applications
 event logs, 1388 - 1391
 performance counters, 1391 - 1395

 Moore, Gordon, 99
 mscorlib assembly, 1306 - 1308
 MulticastDelegate objects, 796 , 836
 multidimensional arrays, 238 - 239
 multilanguage usability, .NET platform,

1058 - 1062

How can we make this index more useful? Email us at indexes@samspublishing.com

native image generation 1695

 multiparadigm programming language, 95 - 97
 multiple inheritance, interfaces, 669 - 670
 multiple tasks, 1539 - 1540
 multithreading, 855

 interaction, events, 856
 offloading computation, 1560

 mumble types, 743
 mutability, 468
 mutable value types, 484 - 486
 mutexes, 1489 - 1492

 semaphores, 1492 - 1495

 N
 name clashes, namespaces, 1230

 importation, 1230
 named parameters, 332 , 513 - 516 , 765

 methods, 511 - 512
 syntax, 83

 named pipes, 1434 - 1436
 namespaces, 1221 , 1240

 aliases, 1234 - 1235
 extern, 1235 - 1238

 assemblies, 1224 - 1227
 versus assemblies, 1304 - 1306
 declaring, 1227 - 1230
 folder structures, 210
 importing, 1231 - 1240

 aliases, 1234 - 1235
 extension methods, 1238 - 1240
 name clashes, 1230

 name clashes, 1230
 importation, 1230

 naming conventions, 1229
 organization, BCL (Base Class Library),

 51 - 52
 System, 1229 , 1311

 arrays, 1315 - 1318
 BitInteger type, 1320 - 1322
 complex numbers, 1322 - 1324
 date and time values, 1327 - 1335
 GC (garbage collector), 1344 - 1351
 generating random numbers, 1324 - 1327

 GUID values, 1335 - 1337
 interacting with environment, 1339 - 1344
 lazy initiation, 1353 - 1354
 nullability, 1337 - 1338
 primitive value types, 1311 - 1315
 System.Math class, 1318 - 1320
 tuple types, 1354 - 1356
 Uri type, 1338 - 1339

 System.Collections, 51
 controlling processes, 1396 - 1398
 ensuring code quality, 1374 - 1388
 instrumentation, code access security,

1388 - 1396
 System.Data, 51
 System.Diagnostics, 1373 , 1381 - 1383 ,

 1398
 System.Globalization, 51
 System.IO, 51
 System.Linq, 52
 System.Net, 52
 System.Numerics, 643 , 1322 - 1324
 System.Reflection, 52
 System.Security, 52
 System.ServiceModel, 52
 System.Text, 52 , 1369
 System.Web, 52
 System.Windows, 52
 System.Xml, 52
 types, organizing in, 1221 - 1227
 visibility, 1229 - 1230
 Windows, 1229

 naming
 assemblies, 1249 - 1252

 strong, 1252 - 1257
 event handlers, 872
 identifiers, 358
 methods, 1573 - 1575
 threads, 1460

 naming conventions
 fields, 548
 namespaces, 1229
 types, 209

 n-ary ordering, query expressions, 949 - 951
 Nathan, Adam, 602 , 1353
 native image generation, 41 - 43 , 1271 - 1275

native interop1696

 native interop, 1351 - 1353
 network cards, time, 1554
 new operator, creating objects, 324 - 336
 New Project dialog (Visual Studio 2012),

127 - 128
 NGEN (native image generation), 41 - 43 ,

 1271 - 1275
 non-case-sensitive suffixes, 193
 nongeneric collection types, 755 - 764

 queues, 761
 stacks, 762 - 763

 non-short-circuiting logical operators, 620
 nontrivial ordering, query expressions, 948 - 949
 nontrivial projections, 940 - 941
 Notepad, 113

 Hello World program, writing, 114 - 115
 NotImplementedException class, 1215 - 1216
 NotSupportedException class, 1193 ,

1216 - 1217
 null, 275 - 276
 null reference, 239 - 243
 nullability, 248 - 249

 operators, 612 - 615
 nullable Boolean logic, 280 - 281
 nullable conversions, 635
 nullable types, 61
 nullable value types, 243 - 249

 arithmetic operators, 269
 null-coalescing operators, 285 - 287
 NullReferenceException, 1202 - 1203
 numeric conversions, 634

 O
 Object Browser, 1305 - 1306
 object initializers, 329 - 334

 properties versus fields, 334
 object instances, creating, 1289 - 1290
 object model, expression trees, 1094 - 1096
 object types, 203 - 205
 ObjectDisposedException, 1206 - 1208
 object-oriented programming (OOP). See OOP

(object-oriented programming)

 objects, 63 - 75 , 249 , 301 , 349
 creating, new operator, 324 - 336
 delegates, 794 , 842

 anonymous function expressions,
801 - 802

 closures, 802 - 807
 combining, 835 - 842
 expression trees, 810 - 811
 instances, 798 - 800
 invoking, 811 - 815
 lambda expressions, 807 - 809
 LINQ (Language Intergrated Query),

819 - 823
 types, 794 - 798

 disposal, 440 - 441
 IInspectable, 1654 - 1655
 initializers, 941 - 944
 instantiating, 1106
 locking on, 448 - 462

 lock statement, 453 - 457
 parsing text to, 1362 - 1363
 reflection info, types, 720
 SafeHandle, 607
 space leaks, 806 - 807
 Timer, rooting, 1580
 TreeNode, 668
 types, 186 - 187

 offloading computation, multithreading, 1560
 OfType restriction operator, 1006 - 1007
 OOP (object-oriented programming), 95 ,

649 - 653 , 699 , 790 - 791
 .NET platform, 10
 classes, 662

 abstract, 688 - 690
 inheritance, 663 - 674

 encapsulation, 653 - 654
 inheritance, 654 - 659

 classes, 663 - 674
 interface types, 690 - 699
 interfaces, 662
 polymorphism, 659 - 661

 virtual members, 676 - 687
 protected accessibility, 674 - 676

 op_Explicit method, 641
 OPC (Open Packaging Convention), 1440

How can we make this index more useful? Email us at indexes@samspublishing.com

ordering 1697

 Open Packaging Convention (OPC), 1440
 operations, type parameters, 718 - 720
 operators, 299 , 609 - 610

 arithmetic, 258 - 259
 character arithmetic, 262 - 263
 decimal arithmetic, 261 - 262
 floating-point arithmetic, 260 - 261
 integer arithmetic, 259
 nullable value types, 269
 overflow checking, 263 - 269
 unary plus and minus, 263

 arity, 252
 as, 312 - 317
 AsOrdered, 1042 - 1043
 associativity, 253 - 254
 conditional, 281 - 284 , 617 - 621
 conversion, 633

 built-in, 634 - 638
 conversions

 IConvertible interface, 644 - 645
 System.Convert, 644
 TypeConvert class, 645 - 646
 user-defined, 638 - 644

 defining, 610 - 611
 equality

 overloading, 621
 pairwise declaration, 621 - 622

 finding, 611 - 612
 infoof, 1083
 is, 307 - 312
 Kleene, 61
 Kleene closure, 246
 lifted, 612 - 615
 logical, 277

 Boolean, 279 - 281
 enumerations, 277 - 278
 integral bitwise, 277
 non-short-circuiting, 620
 short-circuiting, 617 - 621

 new, creating objects, 324 - 336
 nullability, 612 - 615
 null-coalescing, 285 - 287
 overloading, 609 - 610 , 647

 compound assignments, 617
 decrement operators, 616 - 617

 drawbacks, 610
 equality operators, 621
 Equals method, 622 - 632
 increment operators, 616 - 617
 support for, 615 - 622

 postfix increment and decrement, 297 - 299
 expression statements, 355
 overloading, 616 - 617

 precedence, 252 - 253
 prefix increment and decrement, 297 - 299

 expression statements, 355
 overloading, 616 - 617

 query, 819 , 1000
 aggregation, 1019 - 1026
 grouping, 1013 - 1016
 joining, 1016 - 1018
 local, 1031 - 1033
 ordering, 1012 - 1013
 predicates, 1026 - 1027
 projection, 1007 - 1012
 remote, 1031 - 1033
 restriction, 1002 - 1007
 sequence persistence, 1029 - 1031
 source generators, 1000 - 1002

 relational, 275 - 277
 lifted, 276 - 277
 pairwise declaration, 621 - 622

 result type, 284 - 285
 shift, 274 - 275
 string concatenation, 269 - 274
 translation, 633
 typeof, 319 - 322

 optimization
 code, 256 , 282
 PLINQ (Parallel Language Integrated Query),

 1036 - 1040
 optional parameters

 caller info attributes, 516 - 519
 methods, 511 - 519

 declaring, 512 - 513
 orderby keyword, query expressions, 946 - 952
 ordering

 custom, query expressions, 952
 n-ary, query expressions, 949 - 951
 nontrivial, query expressions, 948 - 949

ordering1698

 secondary, 949 - 951
 syntactical, 741

 ordering query operators, 1012 - 1013
 organizing types in namespaces, 1221 - 1227
 OutOfMemoryException, 1208 - 1209
 output parameters, methods, 508 - 510
 overflow checking, arithmetic operators,

 263 - 269
 OverflowException, 1201 - 1202
 overflowing call stacks, 413
 overloading

 asynchronous patterns, 1573 - 1575
 methods, 519 - 524

 defining overloads, 519 - 520
 resolution, 522 - 524 , 528 - 529

 operators, 609 - 610 , 647
 compound assignments, 617
 decrement, 616 - 617
 drawbacks, 610
 equality, 621
 Equals method, 622 - 632
 increment, 616 - 617
 support for, 615 - 622

 query expression syntax, 1034 - 1036
 overloads, simple, 1544 - 1547
 override keyword, 678
 overriding

 Equals method, 623 - 625
 virtual members, 678 - 680

 P
 Pad method, 1368 - 1369
 page designer, ASP.NET, 155 - 157
 pairwise declaration, relational and equality

operators, 621 - 622
 parallel For loops, 1543 - 1548
 parallel programming, 100 - 101 , 1513 , 1550

 continuations, 1531 - 1536
 data parallelism, 1542 - 1550
 declarative languages, 1516 - 1519
 ForEach loops, 1548 - 1550
 imperative languages, 1516 - 1519

 parallel invocation, 1538 - 1539
 task parallelism, 1519 - 1520

 creating tasks, 1520 - 1523
 tasks

 cancellation, 1536 - 1538
 dealing with errors, 1524 - 1531
 multiple, 1539 - 1540
 retrieving results, 1523 - 1524

 threads, pros and cons, 1514 - 1515
 TPL (Task Parallel Library), 1515 - 1520

 architecture, 1515 - 1516
 Parallel.For method, 1548 - 1550
 Parallel.Invoke method, 1538-1539
 ParallelQuery type, 1041 - 1042
 parameterized threads, 1452
 parameters

 dynamic, 1138
 methods, 504

 arrays, 510 - 511
 declaring, 504 - 519
 named, 511 - 512 , 513 - 516
 optional, 511 - 519
 output, 508 - 510
 reference, 507 - 508
 value, 505 - 507

 named, 765
 syntax, 83

 renaming, public APIs, 812
 types, operations, 718 - 720

 parsing
 strings, 1312 - 1314
 text to objects, 1362 - 1363

 partial methods, 498 , 534 - 538
 partial types, 496 - 498
 partitioners, parallelism, 1549 - 1550
 paths, directories, 1405 - 1406
 PathTooLongException, 1193
 patterns

 asynchronous programming, 89 - 91 , 1564
 APM (asynchronous programming model),

 1564 - 1569
 EAP (Event-based Asynchronous Pattern),

 1569 - 1571
 exception behavior, 1576 - 1578
 method naming, 1573 - 1575

How can we make this index more useful? Email us at indexes@samspublishing.com

programming 1699

 overloading, 1573 - 1575
 progress reporting, 1575 - 1576
 synchronization behavior, 1578 - 1579
 TAP (Task-based Asynchronous Pattern),

 1571 - 1573 , 1579 - 1584
 events, 871 - 880
 queries, 960
 query expressions, query expressions, 952

 PE/COFF files, 1420
 performance, code, measuring, 1386 - 1388
 performance counters, monitoring applications,

 1391 - 1395
 per-thread state, 1481 - 1482
 PIAs (primary interop assemblies), 50

 embedding, 1172 - 1174
 P/Invoke, 49
 pipes, named, 1434 - 1436
 PipeStream class, 1434
 plain use, delegates, 849 - 850
 PLINQ (Parallel Language Integrated Query), 65 ,

 102 , 1036 , 1041 - 1043
 AsOrdered operator, 1042 - 1043
 ForAll method, 1043 - 1045
 optimization, 1036 - 1040
 tweaking parallel querying behavior, 1043

 pointers, C-style function pointers, 794 , 800
 polymorphism, 659 - 661

 generic types, 707
 virtual members, 676 - 687

 pools, threads, 1474 - 1482
 Portable Class Library, Visual Studio 2012, 127
 postfix, 257
 postfix increment and decrement operators,

 297 - 299
 expressions, 355
 overloading, 616 - 617

 PowerShell (Windows), 178
 precedence, operators, 252 - 253
 predicate query operators, 1026 - 1027
 preemptive scheduling, 454 - 455
 prefix increment and decrement operators,

297 - 299
 expression statements, 355
 overloading, 616 - 617

 Premium Edition, Visual Studio, 121
 preprocessing directives, 224 - 226
 primitive types, 19
 primitive value types

 keywords, 1315
 System namespace, 1311 - 1315
 type names, 1315

 primitives
 synchronization, 1482 - 1510

 atomicity, 1483 - 1486
 interlocked helpers, 1504 - 1506
 lock keyword, 1486 - 1489
 locks, 1495 - 1498
 monitors, 1486 - 1489
 mutexes, 1489 - 1492
 semaphores, 1492 - 1495
 signaling events, 1498 - 1503

 PrintException command, 1190
 printing exception text, 918
 PrintUsage method, 491
 Process class, 1374 , 1396
 processes

 controlling, 1396 - 1398
 starting, 1396 - 1398

 Process.Start method, 1396 - 1398
 Professional Edition, Visual Studio, 121
 programming

 asynchronous, 88 - 95 , 101 , 1551 - 1552 ,
 1561 , 1641

 APM (Asynchronous Programming
Model), 899

 arbitrary control flow, 1627 - 1630
 await expressions, 1584 - 1585
 building awaitable types, 1634 - 1640
 language support, 91 - 95
 latency, 1552
 methods, 1584 - 1597
 patterns, 89 - 91 , 1564 - 1584
 saving evaluation state, 1630 - 1634
 scalability, 1561 - 1564
 WinRT (Windows Runtime), 1656

 dynamic, 1119 , 1174
 COM interop, 1159 - 1174
 deferred overload resolution, 1124 - 1126

programming1700

 DLR (Dyanmic Language Runtime), 1137
 dynamic keyword, 1119 - 1122 ,

1128 - 1137
 dynamic languages, 75 - 88
 extensible calculator, 815 - 819
 functional, 789 - 794
 meta- 73
 OOP (object-oriented programming),

649 - 653 , 699 , 790 - 791
 abstract classes, 688 - 690
 classes, 662
 encapsulation, 653 - 654
 inheritance, 654 - 659 , 663 - 674
 interface types, 690 - 699
 interfaces, 662
 polymorphism, 659 - 661 , 676 - 687
 protected accessibility, 674 - 676
 virtual members, 676 - 687

 parallel, 100 - 101 , 1513 , 1550
 data parallelism, 1542 - 1550
 ForEach loops, 1548 - 1550
 invocation, 1538 - 1539
 multiple tasks, 1539 - 1540
 task cancellation, 1536 - 1538
 task parallelism, 1519 - 1542
 threads, 1514 - 1515
 TPL (Task Parallel Library), 1515 - 1520

 reactive, 898 - 905
 side-effect-free, 101
 Win32, 6

 project folders, usage-first development, 496
 projection query operators, 1007 - 1012
 projects

 assemblies, 1262 - 1263
 Code Analysis, 545 - 546
 code metrics, calculating, 541
 maintainability, 541
 Visual Studio 2012, 127

 code, 143 - 148
 database mappers, 160 - 165
 designers, 148 - 158
 properties, 130
 team development, 171 - 172
 unit testing, 167 - 171

 propagation, exceptions, 429 - 431 , 1619 - 1624

 properties, 22 , 185 , 575 , 579 , 583 - 584
 assemblies, 1245 - 1249
 auto-implemented, 73 - 75 , 578 , 882 - 883
 declaring, 575 - 578
 Equals method, 625
 object initializers, 334
 reflection, 1082 - 1083

 late-bound access, 1083
 trivial, 73

 protected accessibility, OOP (object-oriented
programming), 674 - 676

 public APIs, renaming parameters, 812
 Python

 IronPython, dynamic keyword, 1128 - 1137
 types, 1132 - 1136

 Q
 queries

 optimization, 1029
 patterns, 960

 query expression, patterns, 952
 query expressions

 into clause, 966 - 971
 expression trees, 1050 - 1055
 from clause, source selection, 933 - 938
 group clause, 953 - 960
 IntelliSense, 922
 join clause, 960 - 965
 let clause, 972 - 974
 orderby keyword, 946 - 952
 ordering

 custom, 952
 n-ary, 949 - 951
 nontrivial, 948 - 949
 secondary, 949 - 951

 overloading syntax, 1034 - 1036
 select clause, 938 - 944
 syntax, 931 - 934
 translation, LINQ (Language Integrated

Query), 1045 - 1048
 where clause, 944 - 947

 query operator methods, LINQ to Objects, 983

How can we make this index more useful? Email us at indexes@samspublishing.com

regular expressions 1701

 query operators, 819 , 1000
 aggregation, 1019 - 1026
 grouping, 1013 - 1016
 joining, 1016 - 1018
 local, 1031 - 1033
 ordering, 1012 - 1013
 predicates, 1026 - 1027
 projection, 1007 - 1012
 remote, 1031 - 1033
 restriction, 1002 - 1007
 sequence persistence, 1029 - 1031
 sequencing, 1027 - 1029
 set theoretical, 1027 - 1029
 source generators, 1000 - 1002

 query pattern (LINQ), 1033
 methods, 1033 - 1034
 overloading query expression syntax,

1034 - 1036
 querying behavior, PLINQ (Parallel Language

Integrated Query), tweaking, 1043
 QueueUserWorkItem method, 1476 - 1478
 quotations, 72 - 73

 R
 RAD (Rapid Application Development), 148
 raising events, 855 - 857
 random numbers, generating, System

namespace, 1324 - 1327
 Range source generator, 1001
 Rapid Application Development (RAD), 148
 reactive applications, 845 - 852

 delegates, 846 - 849
 plain use, 849 - 850

 events, .NET, 850 - 852
 Reactive Extensions (RX), 843
 reactive programming, 898 - 905
 read operations (asynchronous), 1420 - 1433
 ReadAllLines method, 417 , 1410
 readers, files, 1409 - 1410
 read-eval-print loops (REPLs), 98 , 1364
 read-only fields, 555 - 557

 real literals, 198
 red bits, 105
 redundant assignments, 295
 reentrant calls, guarding against, 1604
 refactoring

 .NET Framework, 1280 - 1281
 methods, 540 - 545

 reference assemblies, 1311
 reference parameters, methods, 507 - 508
 reference types, 188 - 190

 restrictions, 735 - 736
 versus value types, 466 - 470

 referenced assemblies, loading, 1266 - 1267
 ReferenceEquals method, 628 - 630
 references

 BCL (Base Class Library), 1303 - 1304
 weak, 719

 referencing assemblies, 1262 - 1264
 reflection, 479 , 1057 , 1063 , 1117

 APIs (application programming
interfaces), 179

 application extensibility, 1069 - 1080
 assemblies, 1282 - 1286
 custom attributes, 1085 - 1091
 events, 1083 - 1084
 expression trees, 1101

 API (application programming interface),
 1103 - 1114

 compiler-generated, 1101 - 1103
 fields, 1084 - 1085
 indexers, 1082 - 1083
 LCG (Lightweight Code Generation), 1091

 Hello World program, 1091 - 1093
 toy compiler for arithmetic expressions,

 1093 - 1100
 methods, 1080 - 1081
 properties, 1082 - 1083

 late-bound access, 1083
 as relational database, 1082 - 1083
 System.Type type, 1064 - 1066
 typing, 1058 - 1063 , 1066 - 1068

 reflection info object, types, 720
 regular expressions, 1363 - 1366

relational databases1702

 relational databases, 915 - 919
 horizontal partitioning, 946 - 947
 LINQ (Language Intergrated Query), 923 - 929
 reflection, 1082 - 1083
 vertical partitioning, 944

 relational operators, 275 - 277
 lifted, 276 - 277
 pairwise declaration, 621 - 622

 relative time, 1333 - 1335
 remote query operators, 1031 - 1033
 remoting, flavors, 1290 - 1293
 remove accessors, 857 - 861
 renaming parameters, public APIs, 812
 Repeat source generator, 1001
 REPLs (read-eval-print-loops), 77 , 98 ,

1130 , 1364
 resource cleanup, 438

 garbage collection, 438 - 440
 IDisposable, 444 - 446
 object disposal, 440 - 441
 using statement, 441 - 444

 resource management, 352
 restriction query operators, 1002 - 1007
 restrictions

 compilers, 666
 reference types, 735 - 736
 value types, 735 - 736

 result type, operators, 284 - 285
 results

 tasks, retrieving, 1523 - 1524
 rethrowing, exceptions, 427 - 429
 return statement, 404 - 406
 return type

 methods, specifying, 502 - 504
 return values, 1179
 reuse, keywords, 183
 reverse Polish notation, 257
 Reverse query operator, 1029
 rooting, Timer objects, 1580
 rules, defining, 24
 Run method, starting tasks, 1522
 running

 code, 116
 finalizers, 597 - 600
 trivial console application, 179 - 180

 runtime
 assembly strong-name verification,

1257 - 1258
 bootstrapping, CLR (Common Language

Runtime), 33 - 35
 loading assemblies at, 1264 - 1271

 runtime binder, 1120
 runtime disasters, code, 413 - 416
 runtime libraries, 1307 - 1308
 runtime shim, .NET Framework, 110 - 111
 runtime type versus compile type, 206
 RX (Reactive Extensions), 843 , 901 , 911

 S
 SafeHandle objects, 607
 safety, types, 1345
 safety guarantees, co- and contravariance,

748 - 749
 Sandcastle project code, 230
 saving evaluation state, 1630 - 1634
 scalability, asynchronous programming,

1561 - 1564
 SchedulePayment method, 494
 scheduling abstracting, 1481
 scope, local variables, 213 - 215
 secondary ordering, query expressions,

 949 - 951
 security, CAS (Code Access Security), 258
 SEH (structured exception handling), 1175
 select clause, projection, 938 - 944
 Select projection query operator, 1007
 selection statements, 352 , 358

 if, 358 - 363
 switch, 363 - 375

 SelectMany projection query operator,
1008 - 1010

 semantics, versus syntax, 619
 semaphores, 1489 , 1492 - 1495
 sequence persistence query operators,

 1029 - 1031
 SequenceEqual query operator, 1027
 sequencing query operators, 1027 - 1029
 serial port communication, 1440

How can we make this index more useful? Email us at indexes@samspublishing.com

statements 1703

 Server Explorer, 158 - 160
 set theoretical query operators, 1027 - 1029
 SetAccessControl method, 1404
 shift operators, 274 - 275
 shims, CLR (Common Language Runtime), 34
 short-circuiting logical operators, 617 - 621
 side-effect-free programming, 101
 signaling events, 1498 - 1503
 signatures

 entry points, 177 - 179
 methods, 176 - 177

 signing keys, strong-name, 1253 - 1255
 Silverlight, 122 , 153
 simple keys, 956
 simple overloads, 1544 - 1547
 single inheritance, classes, 667 - 668
 Single restriction operator, 1006
 single-dimensional arrays, 231 - 233
 single-line comments, 223 - 224
 single-method interfaces, 693 - 694
 SingleOrDefault restriction operator, 1006
 singletons, 494
 SIPs (software isolated processes), 38
 64-bit addressing, limitations, 1506
 Skip restriction operator, 1003
 SkipWhile restriction operator, 1003
 Smye, Don, 60
 snippets

 common tasks, 490
 writing, 1200

 software isolated processes (SIPs), 38
 software transactional memory (STM), 101
 Solution Explorer (Visual Studio 2012),

129 - 130
 solutions, assemblies, 1262 - 1263
 Sort method, 1377
 SOS (Son of Strike), tracing leaks, 865
 source control, Visual Studio 2012, 172
 source generators, query operators, 1000 - 1002
 space leaks, 806 - 807
 specialized collection types, 786 - 787
 SpinLock struct, 1498
 splash screen, Visual Studio 2012, 124 - 125
 stack spilling, evaluation state, saving,

1630 - 1634

 stack traces, logging, 1385 - 1386
 stack-allocated closures, 804
 StackOverflowException, 1209 - 1212
 stacks

 evaluation, 255 - 258
 versus heaps, 469 - 478 , 590
 nongeneric collection types, 762 - 763

 starting code, 1450 - 1453
 starting processes, 1396 - 1398
 statement trees, 1110 - 1114
 statements, 351 - 353 , 406

 blocks, 351 , 356
 checked contexts, 352
 declarations, 351 , 357 - 358
 empty, 355 - 356
 exception handling, 352
 expression, 351 , 353

 assignments, 354 - 355
 decrement operators, 355
 increment operators, 355
 method calls, 353 - 354
 versus, 1102 - 1103

 foreach, 757
 hidden cast, 841 - 842

 goto, 366 , 400 - 403
 iteration, 352 , 375

 do…while, 379 - 380
 for, 380 - 382
 foreach, 382 - 390
 while, 375 - 379

 iterators, 391 - 397
 jump, 352
 lock, 453 - 457
 resource management, 352
 return, 404 - 406
 selection, 352 , 358

 if, 358 - 363
 switch, 363 - 375

 switch, 317 - 319
 enums, 573 - 574

 try, exception handling, 1183 - 1186
 try-catch-finally, 1180
 unchecked contexts, 352
 using, resource cleanup, 441 - 444

static classes1704

 static classes, 527 , 595
 static constructors, 592 - 595
 static languages versus dynamic, 77 - 79
 static members versus instance

members, 490 - 495
 static type checking, 705
 static typing, 80 , 301

 versus dynamic, 207
 STM (software transactional memory), 101
 StopOnException command, 1190
 stopping threads, 1454 - 1456
 Stopwatch, measuring code performance,

 1386 - 1388
 storage, custom attributes, 1088 - 1089
 Stream class, 1415 - 1434
 StreamReader class, 1414 - 1415 , 1417 - 1418
 streams, 1415 , 1433 - 1434

 asynchronous read and write I/O operations,
 1420 - 1433

 memory, 1416 - 1417
 StreamReader class, 1417 - 1418
 StreamWriter class, 1417 - 1418

 StreamWriter class, 1414 - 1415 , 1417 - 1418
 string concatenation, operators, 269 - 274
 string methods, 1366 - 1369
 string representations, enums, 566 - 567
 string types, 201 - 202
 StringBuilder class, 1369 - 1371
 String.Concat method, 1368
 strings

 character sequences, 1366
 checking, 1366 - 1367
 enum values, converting to, 569
 format, 1357 - 1362
 interning, 632
 magic, 1361
 parsing, 1312 - 1314
 verbatim, 1366

 strong naming assemblies, 1252 - 1257
 strong-name signing keys, 1253 - 1255
 strong-name verification, assemblies,

1257 - 1258

 structs, 465 , 589 - 591
 versus classes, 466 - 486
 CLI (Common Language Infrastructure),

 19 - 20
 SpinLock, 1498

 StyleCop, 362
 subexpressions, 254
 subst command, 1401
 suffixes, non-case-sensitive, 193
 Sum query operator, 1023 - 1024
 switch statement, 317 - 319 , 363 - 375

 enums, 573 - 574
 switches, context, 1514
 symbols, defining for conditional

compilation, 225
 Syme, Don, 707
 synchronization, 1443 - 1444 , 1506 - 1510 , 1511

 asynchronous await expressions,
1603 - 1607

 atomicity, 1483 - 1486
 barriers, 1506
 behavior, asynchronous programming,

1578 - 1579
 CountdownEvent, 1479
 primitives, 1482 - 1510

 atomicity, 1483 - 1486
 interlocked helpers, 1504 - 1506
 lock keyword, 1486 - 1489
 locks, 1495 - 1498
 monitors, 1486 - 1489
 mutexes, 1489 - 1492
 semaphores, 1492 - 1495
 signaling events, 1498 - 1503

 SynchronizationContext, 1506
 synchronous processing, versus

asynchronous, 1556
 syntactical ordering, 741
 syntax

 cast, 303
 collection initializers, 772
 named parameters, 83
 overloading query expression, 1034 - 1036
 versus semantics, 619

How can we make this index more useful? Email us at indexes@samspublishing.com

tasks 1705

 syntax highlighting, keywords, Visual
Studio, 183

 System assembly, 1306 - 1308
 System namespace, 51 , 1229 , 1311

 arrays, 1315 - 1318
 BitInteger type, 1320 - 1322
 complex numbers, 1322 - 1324
 date and time values, 1327 - 1335
 GC (garbage collector), 1344 - 1351
 generating random numbers, 1324 - 1327
 GUID values, 1335 - 1337
 interacting with environment, 1339 - 1344
 lazy initiation, 1353 - 1354
 nullability, 1337 - 1338
 primitive value types, 1311 - 1315
 System.Math class, 1318 - 1320
 tuple types, 1354 - 1356
 Uri type, 1338 - 1339

 System.Collections namespace, 51
 System.Convert class, 644
 System.Core assembly, 1308 - 1311
 System.Data namespace, 51
 System.Delegate type, 895
 System.Diagnostics namespace, 51 , 1373 ,

 1381 - 1383 , 1398
 controlling processes, 1396 - 1398
 ensuring code quality, 1374 - 1388
 instrumentation, 1388 - 1396

 System.Drawing types, 363 - 365
 System.Dynamic type, 1126 - 1128
 System.Enum type, 566 - 569
 System.Exception base class, 1198
 System.Globalization namespace, 51
 System.IO namespace, 51
 System.Linq namespace, 52
 System.Math class, 1318 - 1320
 System.Net namespace, 52
 System.Numerics namespace, 643 , 1322 - 1324
 System.Object class, 306 , 702

 banning, 204 - 205
 Equals method

 GetHashCode consistency, 625 - 628
 overloading operators, 622 - 632
 overriding, 623 - 625
 required properties, 625

 performance, 703
 ReferenceEquals method, 628 - 630

 System.Reflection namespace, 52
 systems, type, 17 - 24
 System.Security namespace, 52
 System.ServiceModel namespace, 52
 System.Text namespace, 52 , 1369
 System.Type type, 319 , 1064 - 1066
 System.Web namespace, 52
 System.Windows namespace, 52
 System.Xml namespace, 52

 T
 tail calls, 1212
 Take restriction operator, 1003 - 1005
 TakeWhile restriction operator, 1003 - 1005
 TAP (Task-based Asynchronous Pattern), 1522 ,

 1571 - 1573 , 1583 - 1584 , 1641
 methods, implementing, 1579 - 1583

 Task constructor, creating tasks, 1520 - 1521
 Task Manager, non-responsive

applications, 1560
 Task Parallel Library (TPL). See TPL (Task

Parallel Library)
 task parallelism, 1519 - 1520

 creating, 1520 - 1523
 Task-based Asynchronous Pattern (TAP). See

TAP (Task-based Asynchronous Pattern)
 TaskCreationOptions class, 1522
 TaskFactory class, creating tasks, 1521 - 1522
 tasks

 cancellation, 1536 - 1538
 continuations, 1533 - 1534
 creating, 1520 - 1523
 dealing with errors, 1524 - 1531
 multiple, 1539 - 1540

 creating, 1520 - 1523
 parallelism, 1519 - 1520
 retrieving results, 1523 - 1524
 starting, 1520 - 1523

 methods, implementing, 1579 - 1583

TAP (Task-based Asynchronous Pattern)1706

 TAP (Task-based Asynchronous Pattern), 1522 ,
 1571 - 1573 , 1583 - 1584 , 1641

 Task Manager, non-responsive
applications, 1560

 TaskScheduler class, 1540 - 1542
 TDD (test-driven development), 1373
 team development, Visual Studio 2012

projects, 171 - 172
 Team Foundation Server (TFS), 171 - 172
 test-driven development (TDD), 1373
 text

 encoding, 1371
 formatting, 1357 - 1362

 format strings, 1357 - 1362
 IFormattable interface, 1357

 parsing to objects, 1362 - 1363
 TextReader class, 1413 - 1414
 TextWriter class, 1413 - 1414
 TFS (Team Foundation Server), 171 - 172
 this reference, 456
 Thread class, 1448 - 1453
 ThreadAbortException, 458
 threading apartments, 1461 - 1463
 threading state, APM (Asynchronous

Programming Model), 1423 - 1428 , 1424 - 1427
 thread-local data, 1547 - 1548
 thread-local storage, 1470 - 1471
 ThreadLocal class, 1467 - 1470 , 1482
 threads, 1443 - 1444 , 1446 , 1514 - 1515

 background, 1458 - 1460
 blocked, interrupting, 1457 - 1458
 creating, 1448 - 1450
 cross-threading violations, 1443
 debugging techniques, 1471 - 1474
 exceptions, 1463 - 1464
 foreground, 1458 - 1460
 frozen, 1471 - 1474
 ideal number, 1514 - 1515
 IDs, 1461
 life cycle, 1453 - 1458
 managed, 1458 - 1463
 naming, 1460
 parameterized, 1452
 per-thread state, 1481 - 1482
 pools, 1474 - 1482

 starting, 1450 - 1453
 stopping, 1454 - 1456
 Thread class, 1448 - 1453
 thread pools, .NET 4.0, 1540 - 1542
 threading apartments, 1461 - 1463
 thread-local storage, 1470 - 1471
 thread-specific state, 1464 - 1471

 Threads command, 1191
 thread-safe collection types, 778 - 786
 thread-specific state, 1464 - 1471
 ThreadStatic attribute, 1464 - 1467
 throwing exceptions, 420 - 421 , 1196 - 1198

 rethrowing, 427 - 429
 time

 calendar systems, 1331 - 1332
 date and time values, 1327 - 1335
 network cards, 1554
 relative, 1333 - 1335
 zones, 1332 - 1333

 Timer objects, rooting, 1580
 timers, accuracy, 849
 TimeSpan type, 329 - 330
 TimeSpan value, 1333 - 1335
 TimeZone class, 1332 - 1333
 ToArray query operator, 1030
 ToDictionary query operator, 1030 - 1031
 ToList query operator, 1030
 ToLookup query operator, 1030 - 1031
 ToString method, 676 , 679 , 686 , 1369 , 1385

 formatting text, 1357
 TPL (Task Parallel Library), 101 , 1444 ,

 1515 - 1520
 architecture, 1515 - 1516

 tracing leaks, SOS (Son of Strike), 865
 translation, operators, 633
 TreeNode objects, 668
 trees, expression, 71 - 73 , 810 - 811
 Trim method, 1368 - 1369
 trivial console application, running, 179 - 180
 trivial properties, 73
 truth tables, nullable Boolean logic, 280 - 281
 try statements, exception handling, 1183 - 1186
 try-catch-finally statement, 1180
 type forwarding, assemblies, 1279 - 1281
 type inference, 76 - 77

How can we make this index more useful? Email us at indexes@samspublishing.com

types 1707

 type names, primitive value types, 1315
 type systems

 CLR (Common Language Runtime), 301
 static typing, 301

 TypeConvert class, 645 - 646
 TypeInitializationException, 1204 - 1205
 typeof operator, 319 - 322
 types, 184 - 190 , 249 , 301 , 319 , 349 , 463 -

 465 , 499 , 1066 - 1068
 AggregateException, 1526 - 1527

 unwrapping, 1624 - 1627
 anonymous, 66

 LINQ (Language Intergrated Query),
 941 - 944

 array, broken covariance, 745 - 747
 awaitable, building, 1634 - 1640
 background, 247
 BitArray, 763
 BitInteger, 1320 - 1322
 boxing, 478 - 483
 built-in, 190 - 212

 aliases, 212
 Boolean, 200 - 201
 decimal, 199 - 200
 floating-point, 194 - 198
 integral, 190 - 194
 object, 203 - 205
 string, 201 - 202

 checks, is and as keywords, 637
 code, 184 - 185
 collection, 701 - 703 , 755 , 787

 generic, 765 - 778
 nongeneric, 755 - 764 , 757 - 760
 specialized, 786 - 787
 thread-safe, 778 - 786

 compile time, 206
 concrete, constructors, 326
 constituent, 577 - 578
 decomposing, 465
 delegates, 794 - 798
 duck typing, 336
 dynamic, 1121 - 1122
 dynamic typing, 205 - 206 , 312

 member access, 338 - 339
 enums, underlying, 564

 equality checks, 275 - 276
 exception, 1201

 AggregateException, 1218 - 1220
 ApplicationException, 1201
 ArgumentException, 1193 , 1213
 ArgumentNullException, 1193 ,

1213 - 1214
 ArgumentOutOfRangeException,

 1214 - 1215
 ArrayTypeMismatchException, 1204
 defining, 1198 - 1201
 DirectoryNotFoundException, 1193
 DivideByZeroException, 1201
 ExecutionEngineException, 1212 - 1213
 FileNotFoundException, 1193
 FormatException, 1217 - 1218
 IndexOutOfRangeException, 1203
 InsufficientMemoryException, 1208
 InvalidCastException, 1203
 InvalidOperationException, 1215
 NotImplementedException, 1215 - 1216
 NotSupportedException, 1193
 NullReferenceException, 1202 - 1203
 ObjectDisposedException, 1206 - 1208
 OutOfMemoryException, 1208 - 1209
 OverflowException, 1201 - 1202
 PathTooLongException, 1193
 StackOverflowException, 1209 - 1212
 TypeInitializationException, 1204 - 1205
 UnauthorizedAccessException, 1193

 ExceptionDispatchInfo, 1624
 exceptions, NotSupportedException,

1216 - 1217
 ExpressionVisitor, 1114 - 1117
 generic, 87 - 88 , 306 , 321 - 324 , 701 - 707 ,

 712 - 713 , 754 , 1068
 constraints, 720 - 721
 contravariance, 743 - 754
 covariance, 743 - 754
 declaring, 707 - 712
 delegates, 814 - 815
 Gyro, 707
 polymorphism, 707
 static type checking, 705
 universal quantification, 707

types1708

 heaps versus stacks, 469 - 478
 instances, 186 - 187 , 319
 instantiating, 1068
 interface, 690 - 699
 interference, 738 - 741
 local variable inference, 65 - 66
 members, 22 - 23 , 486

 limiting access, 486 - 489
 static versus instance, 490 - 495

 visibility, 488 - 489
 mumble, 743
 mutable value, 484 - 486
 namespaces, organizing in, 1221 - 1227
 naming conventions, 209
 nullable, 61
 nullable value, 243 - 249
 objects, 186 - 187
 ParallelQuery, 1041 - 1042
 parameters, operations, 718 - 720
 partial, 496 - 498
 performance, 714 - 718
 primitive, 19
 Python, 1132 - 1136
 reference, 188 - 190

 restrictions, 735 - 736
 versus value, 466 - 470

 reflection info object, 720
 runtime, 206
 safety, 18 - 19 , 1345
 structs versus classes, 466 - 486
 System.Delegate, 895
 System.Drawing, 363 - 365
 System.Dynamic, 1126 - 1128
 System.Enum, 566 - 569
 systems, 17 - 24
 System.Type, 319 , 1064 - 1066
 TimeSpan, 329 - 330
 tuple, 1354 - 1356
 Uri, 1338 - 1339
 value, 188

 boxed, 622
 restrictions, 735 - 736

 variables, 187 - 188
 visibility, 486 - 488
 Windows.ApplicationModel, 1667

 Windows.Data, 1667
 Windows.Devices, 1668
 Windows.Foundation, 1668
 Windows.Graphics, 1668
 Windows.Media, 1668
 Windows.Networking, 1668
 Windows.Security, 1668
 Windows.Storage, 1668
 Windows.System, 1668
 Windows.UI, 1668

 U
 UIs (user interfaces)

 frameworks, events, 885 - 890
 programming, INotifyProperty, 880 - 890
 Visual Studio 2012, 125 - 126

 Ultimate Edition, Visual Studio, 121
 unary expressions, 1105
 unary plus and minus, 263
 UnauthorizedAccessException, 1193
 unboxing conversions, 637 - 638
 unchecked arithmetic, 265 - 266 , 352
 unhandled exceptions

 .NET 4.0, 1527 - 1529
 .NET 4.5, 1530 - 1531

 Unified Code Object Model, 98
 Union query operator, 1028
 unit testing, Visual Studio 2012 projects,

167 - 171
 universal quantification, generic types, 707
 UnobservedTaskException event, 1529 - 1530
 unsafe code, 1318
 unwrapping AggregateException type,

1624 - 1627
 Uri type, 1338 - 1339
 usage-first development, project folders, 496
 user mode scheduling, 1445
 user-defined conversions, 609 , 633 , 638 - 644
 using directive, System.Text namespace,

 1369 - 1370
 using statement, resource cleanup, 441 - 444

How can we make this index more useful? Email us at indexes@samspublishing.com

volatile fields 1709

 V
 value parameters, methods, 505 - 507
 value types, 188

 boxed, 622
 versus reference types, 466 - 470
 restrictions, 735 - 736

 values
 date and time, 1327 - 1335
 DateTimeOffset, 1335
 enums

 converting integral values to, 568 - 569
 converting strings to, 569

 fields, automatic assignment, 552
 GUID, 1335 - 1337
 IntPtr, 1351 - 1353
 return, 1179
 TimeSpan, 1333 - 1335

 var keyword, 218 - 219
 variables, 249

 assignments, 287 - 288 - 290
 definite, 292 - 296
 redundant, 295

 captured, 802 - 807
 declarations, 288 - 290
 foreach loop, scoping, 805 - 806
 local, 212 - 223

 assignments, 215 - 216
 constants, 216 - 218
 declarations, 212 - 213
 implicitly typed declarations, 218 - 223
 scope, 213 - 215

 reference types, 188 - 190
 types, 187 - 188

 value, 188
 variance

 co- and contravariance, 743 - 754
 contravariance, 85 - 88
 covariance, 85 - 88
 when to use, 753 - 754

 verbatim strings, 1366
 versioning

 assemblies, 1249 - 1252
 interfaces, 693

 versions, .NET Framework, 103 - 107
 vertical partitioning, relational databases, 944
 VES (Virtual Execution System), 13
 virtual dispatch, 683 - 687
 Virtual Execution System (VES), 13
 virtual members

 declaring, 680 - 681
 overriding, 678 - 680
 polymorphism, 676 - 687

 visibility
 assemblies, 1274 - 1277
 internal, 1275 - 1276
 namespaces, 1229 - 1230
 types, 486 - 488

 members, 488 - 489
 Visual Basic, 7

 aggregates, 1026
 Visual Basic .NET, 15
 Visual Studio 2012, 119 - 120 , 123 - 126 , 173

 code editor, 131 - 133
 editions, 120 - 121
 expression, 122
 installing, 122
 keywords, syntax highlighting, 183
 New Project dialog, 127 - 128
 project types, 127
 projects

 build support, 134 - 138
 code, 143 - 148
 database mappers, 160 - 165
 debug support, 139 - 142
 designers, 148 - 158
 properties, 130
 team development, 171 - 172
 unit testing, 167 - 171

 Solution Explorer, 129 - 130
 source control, 172
 splash screen, 124 - 125
 templates, 127
 UI elements, 124 - 126
 VSTO (Visual Studio Tools for Office),

157 - 158
 Visual Studio Team System (VSTS), 171 - 172
 volatile fields, 559 - 563

von Neumann machine model1710

 von Neumann machine model, 343
 VSTO (Visual Studio Tools for Office), 157 - 158
 VSTS (Visual Studio Team System), 171 - 172

 W
 WaitHandle class, 1502 - 1503
 WCF (Windows Communication Foundation),

 53 , 105 , 694
 weak references, 719

 GC (garbage collector), 1350 - 1351
 web services, .NET platform, 12
 WF (Workflow Foundation), 53
 where clause, filtering, 944 - 947
 Where restriction operator, 1002 - 1003
 while statement, 375 - 379
 whitespace sensitivity, 360 - 361
 Win32 programming, 6
 Windows Communication Foundation (WCF),

 53 , 694
 Windows Distributed interNet Applications

Architecture (DNA), 8
 Windows Forms Application, Visual Studio

2012, 127
 designer, 148 - 150

 Windows Management Instrumentation
(WMI), 1396

 Windows Metadata format, 1650 - 1652
 Windows namespace, 1229
 Windows OS, garbage collection, 603 - 604
 Windows PowerShell, 178 , 1396
 Windows Presentation Foundation (WPF). See

WPF (Windows Presentation Foundation)
 Windows Runtime (WinRT), 16 , 843
 Windows Shell, execute behavior, 1396 - 1398
 Windows Store application, WinRT (Windows

Runtime), 1644 - 1646
 Windows Workflow Foundation (WWF), 153 - 154
 Windows.ApplicationModel type, 1667
 Windows.Data type, 1667
 Windows.Devices type, 1668
 Windows.Foundation type, 1668

 Windows.Graphics type, 1668
 Windows.Media type, 1668
 Windows.Networking type, 1668
 Windows.Security type, 1668
 Windows.Storage type, 1668
 Windows.System type, 1668
 Windows.UI type, 1668
 winexe target, assemblies, 1245
 winmdobj target, assemblies, 1245
 WinRT (Windows Runtime), 16 , 843 , 1643 -

 1644 , 1669
 APIs (application programming interfaces),

 1667 - 1668
 Windows Store application, 1644 - 1646

 asynchronous programming, 1656
 COM, 1646 - 1650
 components

 activation, 1653 - 1655
 building, 1662 - 1665
 creating, 1658 - 1667
 debugging, 1667
 using, 1665 - 1667
 writing, 1658 - 1662

 events, interoperability, 896 - 898
 IInspectable object, 1654 - 1655
 language projections, 1655 - 1658
 Windows Metadata format, 1650 - 1652

 WMI (Windows Management Instrumentation),
 1396

 Workflow Foundation (WF), 53
 Workflow method, 1639
 WPF (Windows Presentation Foundation), 53 ,

 122 , 175
 data binding, 884
 designer, 151 - 153

 WPF Application, Visual Studio 2012, 127
 write operations (asynchronous), 1420 - 1433
 writers, files, 1410 - 1415
 writing

 code, 114 - 115
 snippets, 1200

 WinRT (Windows Runtime) components,
 1658 - 1662

 WWF (Windows Workflow Foundation), 153 - 154

How can we make this index more useful? Email us at indexes@samspublishing.com

zero-method interfaces 1711

 X
 XAML (Extensible Application Markup

Language), 122 , 497 - 498
 Xcopy, deployment, 1264 - 1265
 XML (eXtensible Markup Language), 919 - 920

 LINQ (Language Intergrated Query), 929 - 931
 XSD (XML Schema Definition), LINQ (Language

Intergrated Query), 929 - 931
 XSLT (EXtensible Stylesheet Language), 230

 Z
 zero-initialization, 591
 zero-method interfaces, 693 - 694
 1, 1010 - 1012

	Table of Contents
	Introduction
	Who Should Read This Book?
	What You Need to Know Before You Read This Book
	How This Book Is Organized

	3 Getting Started with .NET Development Using C#
	Installing the .NET Framework
	Your First Application: Take One
	Visual Studio 2012
	Your First Application: Take Two
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

