FREE SAMPLE CHAPTER

w)
-4
w
i
-
e}
I
-
2
w
-4
<
£
w

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336898
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672336898
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336898
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336898
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336898/Free-Sample-Chapter

Daniel Vaughan

Windows®

Phone 8

UNLEASHED

Windows® Phone 8 Unleashed
Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33689-8

ISBN-10: 0-672-33689-8

Library of Congress Control Number: 2013936246
Printed in the United States of America

First Printing May 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Windows is a registered trademark of Microsoft Corporation.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The author and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Copy Editor
Barbara Hacha

Indexer
Ken Johnson

Proofreader
Debbie Williams

Technical Editor
J. Boyd Nolan

Publishing Coordinator
Cindy Teeters

Book Designer
Anne Jones

Compositor
Jake McFarland

Contents at a Glance

Part |

A W DN

Part Il

© 0 ~N O

10
11

Part 11l
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Preface

Windows Phone App Development Fundamentals
Introduction to Windows Phone App Development
Fundamental Concepts in Windows Phone Development
Understanding the Application Execution Model

Controlling Page Orientation

Essential Elements

Using Content Controls, Items Controls, and Range Controls
Mastering Text Elements and Fonts

Employing Media and Web Elements

Taming the Application Bar

Enriching the User Experience with the Windows Phone

Toolkit Controls

Creating Jump Lists with the Long List Selector

Creating Expansive and Engaging Apps with the Pivot and Panorama

Windows Phone App Development

Processing Touch Input

Portraying Your App with Live Tiles

Leveraging Built-In Apps via Launchers and Choosers
Receiving Messages from the Cloud Using Push Notification
Sensing Motion and Attitude

Building Location Aware Apps

Incorporating Map-Based Positioning

Supporting Multiple Cultures and Languages

Extending the Windows Phone Picture Viewer
Capturing Images and Video with the Camera
Recording Audio with the Microphone

Creating Speech Driven Experiences

Unit Testing Apps

Manage Payment Instruments Using Wallet Extensibility

xxii

13
47
99

115
153
183
231

253
303
325

357
389
405
485
525
559
585
613
631
655
691
699
737
773

iv Windows Phone 8 Unleashed

Part IV
26
27
28
29
30
31

Part V
32
33
34

Building Data Driven Apps

Validating User Input

Communicating with Network Services

Preserving App State and Settings

Storing App Data in a Local Database
Auto-Launching with File and Protocol Associations

Extending the Search Experience

Multitasking

Conducting Background Activities with Scheduled Actions
Performing Background File Transfers

Coordinating Background Audio Playback

Bibliography

Index

805
849
881
905
967
983

997
1043
1059
1081
1083

Table of Contents

Part |

Preface
Windows Phone App Development Fundamentals

Introduction to Windows Phone App Development

Installing the Windows Phone SDK

Creating Your First XAML for Windows Phone App
The Application Class

Summary

Fundamental Concepts in Windows Phone Development

Understanding the Role of XAP Files
The Application Deployment Tool
The Windows Phone Capabilities Model
Determining App Capabilities Using the Marketplace Test Kit
The Threading Model for XAML-Based Graphics and Animation
in Windows Phone
Performance and Element Visibility
Deciding Between Visibility and Opacity
Understanding the Frame Rate Counter
The Windows Phone Application Analysis Tool
External Events
Frame Rate Graph
CPU Usage Graph
Memory Usage MB Graph
Storyboards
Image Loads
GC Events
Viewing Detailed Profiling Information
Reading Device Information
Calculating Available Memory
DeviceStatus Events
Applying the Model-View-ViewModel Pattern to a Windows
Phone App
Implementing the MVVM Pattern
viewModelBase Class
Property Change Notification
Implementing INotifyPropertyChanged: The Traditional
Approach

XXii

—_ NN R

13

14
15
16
17

18
19
20
20
22
25
25
25
26
26
26
26
26
27
28
29

31
31
32
33

33

Windows Phone 8 Unleashed

Implementing INotifyPropertyChanged: An Alternative

Approach 35

Using Commands 38
Argument Validation 39
A Platform-Agnostic Dialog Service 41
Consuming Local Web Applications 44
Summary 46
3 Understanding the Application Execution Model 47
Exploring the Execution Model 48
Application State 49

Life Cycle Events 49
Programmatically Exiting an App 53
Saving Transient State 53
Restoring Transient State 55
Saving Persistent State 56
Implementing Fast App Resume 56
Enabling Fast App Resume 56
Optimizing the Resume Experience 57
Running Under the Lock Screen 63
Lock Screen Management 64

Page Navigation 67
Navigation Using Unmapped URIs 69
Passing Page Arguments Using Query Strings 71

URI Mapping 73
Navigation Using the NavigationService 75
Handling Page Navigation 76
Canceling Navigation 77
Cross-Page Communication 77

Page Redirection 78
Hardware Back Button 79
Creating an Application Splash Screen 80
Walking Through the Bookshop Sample Application 83
Displaying the Product List 86
Design-Time Data 92
Image Caching 93
Overview of the Sample Bookshop WCF Service 95
Summary 97
4 Controlling Page Orientation 99
Orientation and the PhoneApplicationpPage Class 99

OrientationChanged Event 100

Part Il

Contents

PhoneApplicationPage Orientation Property

Setting Page Orientation at Runtime

Animating Page Elements When the Page Orientation Changes

Animating the Entire Page When Orientation Changes
Windows Phone Toolkit Animated Page Transitions

Using Windows Phone Toolkit Transitions

Reusing the Transition Attached Properties
Summary

Essential Elements

Using Content Controls, Items Controls, and Range Controls

Control Type Taxonomy
Identifying Controls Not Supported or Absent in Windows
Phone
Content Controls
Defining the Default Content Property
Receiving Input with Buttons
Tap and Click Events
Button Click Mode
Hyperlink Button
Repeat and Toggle Buttons
Radio Button
Check Box
ToolTip
Items Controls
ListBox
ComboBox
Range Controls
ProgressBar
Progress Indicator
Slider
ScrollBar

Summary

Mastering Text Elements and Fonts

Understanding Text Element Types
Displaying Text Using the TextBlock
Using the rRun and LineBreak Objects
Multiline TextBlock Text
Controlling Font Properties
Understanding the Built-In Fonts

Vil

102
105
106
108
110
111
113
114

115
116

118
119
120
121
123
124
124
124
128
131
138
138
140
142
142
144
145
151
152
152

153

154
155
155
158
158
160

viii

Windows Phone 8 Unleashed

Using Third-Party Fonts via Font Embedding
Leveraging FontSource to Assign a Font Using a Stream
Receiving Input Using a TextBox
Software Input Panel
Input Scope
Input Scope Sample Overview
Receiving Password Text Using a passwordBox
Displaying Rich Content Using a RichTextBox
Formatting Text at Runtime
Further Reading
Placing Text on the clipboard
Summary

Employing Media and Web Elements

Displaying Images with the Image Element
Image Sizing
Providing a Drawing Surface with the Inkpresenter Element
Capturing User Input
InkPresenter Sample Code
Playing Audio and Video with the MediaElement
MediaElement Sample Code
XNA soundeffect Class
Harnessing the XNA Game Loop Via the GameTimer Class
XNA Environment Initialization
Saving Music to the Media Library
Viewing High-Resolution Images with the MultiscaleImage Element
Image Tiling
Creating a Deep Zoom Image
Exploring the MultiScaleImage API
Deep Zoom Viewer Sample Code
Displaying Web Content with the webBrowser Element
Monitoring and Canceling Navigation
Communicating with a Web Page
Injecting Web Page Behavior
Storing and Browsing Content in Isolated Storage
Summary

Taming the Application Bar

Exploring the Built-In Application Bar
Using the ApplicationBar
Modifying the Application Bar’s Appearance
Icon Button and Menu Item

162
164
165
165
168
169
175
176
178
179
179
180

183

184
185
186
188
190
193
194
201
202
203
205
207
208
208
210
212
217
217
218
222
225
228

231

231
232
234
234

Contents

Icon Button Image

Retrieving a Button or Menu Item at Runtime
Introducing the Custom appBar

AppBar Buttons and Menu Items

Button and Menu Item Visibility

Sample Code

Switching to Full-Screen

Customizing the Appearance of the System Tray

Inside the appBar Control
Summary

Enriching the User Experience with the Windows Phone Toolkit Controls

Getting Started with the Toolkit
In-Place Selection Using the ListPicker
Display Modes
Suggesting Text with the AutoCompleteBox
Using autoCompleteBox with MVVM
Defining a Custom Filter Using the rtemFilter Property
Dynamic Population of the Suggestion List
Styling the Suggestion List
Data Binding and the AutoCompleteBox.Text Property
Displaying a contextMenu
ContextMenu and MVVM
Hosting a ContextMenu in a ListBoxItem
Selecting Date and Time Values with the patePicker and TimePicker
Using the patePicker and TimePicker
Adding a Control Header
Customizing the Value Format
Customizing the Full-Screen Picker Page
Providing Custom Looping Lists with the Loopingselector
Providing Touch Feedback with the TiltEffect
Supporting Other Controls
Providing a Boolean Option with the Toggleswitch
Using the ToggleSwitch
Localizing the Toggleswitch
Changing the Switch Color
Using Flexible Layouts with the wrappanel
Child Element Spacing
Sample Overview
Using a wrappanel in Conjunction with a ListBox
Summary

235
236
237
237
238
238
244
247
248
252

253

254
255
255
259
260
264
266
268
270
271
273
275
277
279
281
281
282
287
291
292
293
294
295
297
297
298
298
300
302

Windows Phone 8 Unleashed

10 Creating Jump Lists with the Long List Selector 303
Visual Structure of the Long List Selector 304
Presenting Flat Lists 305
Presenting Grouped Lists 307
Marketplace App List Sample 307
Displaying a List of Contacts Using the LongListSelector 316
Summary 323

11 Creating Expansive and Engaging Apps with the Pivot and Panorama 325

pivot and Panorama Differences and Similarities 326
Style Assumptions 326
Introduction to the pivot Control 327
Introduction to the panorama Control 327

pivot and Panorama Placement in the FCL 328

Performance Improvements in Windows Phone 8 329

Using the pivot Control 329
Placing a pivot on a Page 329
Creating a Pivot Application with the Visual Studio

New Project Dialog 331
pivot Anatomy 331
Setting the Active pPivotItem 332
pivot Load Events 333
Hosting Multiple Application Bars with the pivot 333
Populating a pivot Via a Data Bound Collection 344

Using the panorama Control 347
Panorama Anatomy 347
PanoramaItem Control 349
Sample Panorama Application 350

Things to Avoid When Using the Panorama and pivot 355

Windows Phone Toolkit Lockable Pivot 355

Summary 355

Part Il Windows Phone App Development

12 Processing Touch Input 357
Handling Touch with Mouse Events 358
Touch and TouchPoint Classes 360

Mouse Event Promotion 361
Handling the Touch.FrameReported Event 362
Manipulation Events 363
Handling Manipulation Events 364

Manipulation Events Example 366

13

14

Contents

UlElement Touch Gesture Events
Tap Gesture
Double Tap Gesture
Hold Gesture

Windows Phone Toolkit Gestures
Getting Started with Toolkit Gestures
GestureListener Events in Detail
GestureBegin and GestureCompleted Events
Gesture Sample Code

Designing Touch-Friendly User Interfaces
Three Components of Touch
Sizing and Spacing Constraints
General Guidelines

Summary

Portraying Your App with Live Tiles

Getting Started with Live Tiles
Tile Sizes and Resolutions

Introducing the Cycle Tile Template

Introducing the Flip Tile Template

Introducing the Iconic Tile Template

Programmatically Updating Shell Tiles

Controlling the Lock Screen’s Background and Notification Area
Setting the Lock Screen’s Background Image
Setting the Lock Screen’s Notification Text
Creating a Lock Screen Icon

Summary

Leveraging Built-In Apps via Launchers and Choosers

API Overview
Choosers and the Application Execution Model
Internal Workings of the chooserBase.Completed Event
Launchers and Choosers in Detail
Retrieve Driving Directions Using the BingMapsDirectionsTask
Displaying a Location on a Map Using the BingMapsTask
Navigating to a Connection Setting Page Using the
ConnectionSettingsTask
Selecting an Email Address with the EmailaddressChooserTask
Preparing an Email with the EmailComposeTask
Saving a Contact’s Email Using the saveEmailAddressTask
Navigating to an App on the Marketplace with the
MarketplaceDetailTask
Launching the Marketplace App with the MarketplaceHubTask

368
369
370
371
372
373
373
380
381
386
386
387
387
388

389

389
391
391
394
395
396
397
399
401
403
404

405

405
407
407
408
409
413

413
414
417
418

422
425

Xi

Windows Phone 8 Unleashed

Allowing the User to Review Your App Using the

MarketplaceReviewTask 426
Searching the Marketplace with the MarketplaceSearchTask 427
Playing a Media File Using the MediaPlayerLauncher 428
Placing a Call with the phonecallTask 435
Selecting a Phone Number with the PhoneNumberChooserTask 437
Saving a Contact’s Phone Number with the

SavePhoneNumberTask 439
Searching the Web with the searchTask 442
Sending Contacts a Link Using the shareLinkTask 444
Posting a Status Update to Social Networks Using the

ShareStatusTask 445
Preparing an SMS With the smsComposeTask 445
Navigating to a Web Page Using the webBrowserTask 446
Selecting a Contact’s Address Using the AddressChooserTask 447
Saving a Contact to the Phone’s Contact List Using the

SaveContactTask 449
Taking a Photo with the cameracaptureTask 450
Inviting Game Players with the GameInviteTask 453
Selecting a Photo from the Photo Hub Using the

PhotoChooserTask 454
Sharing Images with Other Devices Using NFC or with

Other Registered Phone Services 460
Creating a Ringtone with an Audio File Using the

SaveRingtoneTask 461

Contacts and Appointments 464
Retrieving Contacts 464
Storing Contacts in the Custom Contact Store 469
Detecting Changes in Stored Contacts 477
Converting a Stored Contact to and from a vCard 478
Retrieving Appointments 478

Saving an Appointment Using the saveappointmentTask 483

Summary 484

15 Receiving Messages from the Cloud Using Push Notification 485

Push Notifications Types 485

Benefits of Push Notification 486

Understanding Push Notification 487

Getting Started with Push Notification 489

Subscribing to Push Notification 489
Binding to the Shell 490
HttpNotificationChannel Events 491

Handling Channel Errors 492

16

17

Contents

Power Management and Push Notification
Sending Push Notifications
Toast Notifications
Receiving a Toast Notification from Within an Application
Sending a Toast Notification
Tile Notifications
Sending a Tile Notification
Updating an Application Tile Using a Shell Tile Schedule
Raw Notifications
Sending a Raw Notification
Receiving a Raw Notification
Identifying Notifications in an HttpWebResponse
Notification Classes
Cloud Service Authentication
Authenticating a Cloud Service
Creating a Notification Channel for an Authenticated
Cloud Service
Building a Stock Ticker Application
Sample App Notifications
Summary

Sensing Motion and Attitude

Sensors Overview
Measuring Force with the Accelerometer
Using the Accelerometer Class
Simulating Acceleration with the Emulator
Smoothing Accelerometer Readings
Calibrating the Accelerometer
Shake Detection
Measuring Direction with the Compass
Using the Compass Sensor
Compass Orientation
Calibrating the Compass
Sensing Rotation with the Gyroscope
Using the Gyroscope Sensor
Improving Sensor Accuracy with the Motion Sensor
Using the Motion Sensor
Summary

Building Location Aware Apps
Location Sensing Technologies
A-GPS
Cell Tower Triangulation
Wi-Fi Triangulation

Xiii

493
495
495
496
497
500
501
504
505
505
508
509
509
511
511

511
511
520
524

525

525
527
528
529
530
533
537
539
539
545
546
548
549
552
553
557

559

559
560
561
562

Xiv Windows Phone 8 Unleashed

18

19

Geographic Location Architecture

Getting Started with Location
Geolocator Class

Background Location Tracking

Testing Apps That Use the Geolocator

Code-Driven Location Simulation

A Walkthrough of the Location Viewer Sample
GeoLocationViewModel Class
Displaying Location Using the GeoLocationview Page
Civic Address Resolution

Sampling the PositionChanged Event with Rx
Getting Started with Rx for Windows Phone

Summary

Incorporating Map-Based Positioning

Getting Started with the Map Control
Obtaining an ApplicationId and AuthenticationToken
Overview of the Sample Map View
Adjusting for Low Light Conditions
Changing Cartographic Modes
Panning and Zooming the Map Control
Centering the Map to the Phone’s Current Location
Setting the Viewable Area of the Map
Adjusting Pitch and Heading
Location Tracking
Overlaying Custom Map Content
Calculating and Displaying a Route
Calculating the Shortest Route Between Two Points
Using the Route Calculator
Searching for a Route Using the View
Modifying Page Elements Using Visual States
Displaying the Route and Itinerary
Showing a Location with the Built-In Maps App
Showing Directions with the Built-In Maps App
Downloading Maps for Offline Use
Summary

Supporting Multiple Cultures and Languages
Terminology
Localizability Using Resx Files
Getting Started with Resx Files
Working with Resx Files

562
563
563
569
570
571
575
575
577
580
580
580
584

585

586
587
587
588
589
590
590
592
593
594
596
598
598
601
602
604
609
610
611
612
612

613

613
614
615
615

Contents XV

Dynamic Localizability—Updating the Ul When the Culture Changes... 618

Localizing Images Using Resx Files 620

The Resx Localizability Sample 621
Controlling the UI Culture from the LocalizabilityViewModel....622
Displaying Localized Text and Images Within the

Localizabilityview Page 625
RTL Support 629
Summary 630
Extending the Windows Phone Picture Viewer 631
Creating a Photos Extras Application 632
Adding Your App to the Extras Menu 634
An Edge-Tracing Extras Application 634
Saving the Image 643
Share Menu Extensibility 645
Adding Your App to the Share Menu 646
A Simple Photo Upload Share Application 647
Summary 654
Capturing Images and Video with the Camera 655
PhotoCamera 656
Building a PhotoCamera App 658
Using the Silverlight Webcam API 678
CaptureSourceViewModel 680
Displaying Video in the captureSourceview 684
Extending the Camera Experience with a Lens 686
Registering as a Lens 687
Creating Lens Icons 689
Summary 689
Recording Audio with the Microphone 691
Recording Audio with the Microphone 691
Creating a Helium Voice App 692
Summary 698
Creating Speech Driven Experiences 699
User Input with Speech Recognition 700
Getting Started with Speech Recognition 700
Overview of Recognition Grammars 701
Recognizing Speech Using the Dictation and Web
Search Grammars 702

Recognizing Speech with Phrase List Grammars 703

Xvi

Windows Phone 8 Unleashed

24

Recognizing Speech with SRGS Grammars

Speech Recognizer Settings

Providing a Custom Speech Recognition Ul

Recognizing Speech in Other Languages
Launching Your App via Voice Commands

Understanding the Structure of the VCD File

Installing a VCD

Updating a Phrase List Programmatically
Making the Phone Speak with Text-to-Speech

Getting Started with TTS

Creating a Speech Synthesis Markup Language File
Summary

Unit Testing Apps

Automated Testing
Unit Testing
Integration Testing
Coded Ul Testing
Introduction to the Windows Phone Unit Test Framework
Creating a Test Project
Creating a Test Class
Tag Expressions
Setting the Tag Expression Programmatically
Metadata and Assertions
TestClass Attribute
TestMethod Attribute
Metadata for Test Initialization and Cleanup
Miscellaneous Metadata
WorkItemTest: The Base TestClass Type
Verifying Conditions with Assertions
Verifying Collection Conditions with collectionaAssert
Verifying String Conditions with stringassert
Hiding the Expressions Editor
Testing Multiple Assemblies
Testing Nonpublic Members
A Testable Chat Client
Building the View
Code Driven UI Testing
Using Automation Peers to Manipulate UI Elements at Runtime
Inversion of Control (IoC)
A Custom IoC Container and DI Framework
Testing Trial Conditions
Abstracting the LicenseInformation Class

710
717
718
721
723
724
726
731
732
732
733
735

737

738
738
739
739
739
740
741
743
744
744
744
745
745
747
751
751
752
752
752
753
753
754
758
760
763
765
766
767
767

25

Part IV

26

Contents

Testing with Launchers and Choosers
Summary

Manage Payment Instruments Using Wallet Extensibility

Introducing the Wallet Hub
Required Capabilities for Wallet Integration
Storing Payment Instruments in the Wallet
Overview of the Payment Instruments Sample App
Keeping Payment Instruments Up-To-Date with a
Background Agent
Storing Membership Information in the Wallet
Storing Deals in the Wallet
Keeping Deals and Membership Information Up-to-Date
with a Background Agent
Summary

Building Data Driven Apps

Validating User Input

Defining Input Validation
Syntactic Validation
Semantic Validation
Input Validation Using Property Setters
Validation Class
Critical Exceptions
Binding Errors
Defining Validation Visual States in Windows Phone
Validating a TextBox as the User Types
Performing Group Validation
Displaying Error Details
Property Setter Validation Limitations
Asynchronous and Composite Validation
A Reusable Implementation of the NotifyDataErrorInfo
Interface
Provisioning for Asynchronous or Synchronous Validation
Asynchronous Validation of All Properties
An Example of Asynchronous Input Validation
Detecting a Change of Data Context
Adding INotifyDataErrorInfo Support to the
ValidationSummary Control
Incorporating Group Validation
Summary

Xvii

769
771

773

774
775
775
777

789
792
796

802
804

805

805
806
806
806
809
809
809
810
815
818
820
823
824

825
827
833
836
840

842
844
847

Xviii Windows Phone 8 Unleashed

27

28

29

Communicating with Network Services

Network Service Technologies

Monitoring Network Connectivity
Connection Priorities

Introduction to OData

Consuming OData
OData URI Structure
Generating an OData Proxy
OData Query Options

Using an OData Proxy

Building an eBay OData Consumer Application
Creating an OData Wrapper
EbaySearchvViewModel Class
EbaySearchview Page

Fetching Data When the User Scrolls to the End of a List

Extending OData Entity Classes

Simulating Real-World Conditions with the Simulation Dashboard

Moderating Data Usage with Data Sense
Using the Data Sense API
Summary

Preserving App State and Settings

Understanding Managed Storage

Working with Files and Directories
Introducing the .NET Isolated Storage API
Introducing the WinPRT Windows Storage API
Measuring the Amount of Available Free Space
Application Settings

Abstracting IsolatedStorageSettings

Building an Automatic State Preservation System
Customizing ViewModel State Preservation
Automatic State Preservation Inner Workings
Unwinding a Property Lambda Expression
Creating Property Accessor Delegates

Summary

Storing App Data in a Local Database

SQL Server Compact

Deployment of Local Databases
LINQ to SQL on the Phone

LINQ to SQL Platform Differences

849

850
850
850
855
855
856
858
858
860
862
862
864
867
871
874
876
877
877
879

881

882
883
884
887
888
888
889
890
892
893
901
902
903

905

906
906
908
909

30

Contents

Getting Started with Local Databases
Code-First Data Model Creation
Sample Twitter Timeline Viewer
Using the column Attribute
Data Context Change Tracking
TwitterUser Class
Multiplicity and the association Attribute
Twitter DataContext
Database Utilities
Connection Strings
Leveraging a Custom Twitter Service
Gathering the User’s Credentials with the Sign-In View
Viewing Tweets with the Timeline View
Viewing a Local Database Schema
File Explorers for Isolated Storage
Viewing and Modifying an SQL CE Database File
Database-First Using SqlMetal
Deploying a Database to Isolated Storage
Abstracting the Navigation Service
Observing LINQ to SQL Queries with a Custom Log
Updating a Database Schema
AddColumn
AddTable
AddIndex
AddAssociation
Schema Versioning
Mapping an Inheritance Hierarchy
Concurrency
ColumnAttribute.UpdateCheck
Summary

Auto-Launching with File and Protocol Associations

Understanding File and Protocol Associations
A Note About the Sample
Auto-Launching with a File Extension Association
Registering a File Association
Receiving a File Launch Request
Launching a File
How File and Protocol Associations Affect the User Experience
Auto-Launching with a Protocol Association
Registering for a Protocol Association
Receiving a Protocol Launch Request

XiX

909
909
910
912
915
915
917
918
919
920
924
929
932
937
938
940
942
943
946
948
951
952
952
954
955
957
958
962
965
966

967

968
968
968
968
970
973
976
977
977
977

XX

Windows Phone 8 Unleashed

31

Part V

32

33

Launching a Protocol URI

Reserved Protocol Names
Launching Built-In Apps
Summary

Extending the Search Experience

Understanding Quick Cards
Configuring Your App for Search Integration
Configuring the Application Manifest
Customizing Captions via the Extras.xml File
Defining a Quick Card Target Page
Creating a Landing Page to Display Quick Card Information
App Instant Answer
Summary

Multitasking

Conducting Background Activities with Scheduled Actions

Background Tasks
Scheduled Notifications
Alarm Registration
Alarm Sample
Reminder Registration
Reminder Sample
Scheduled Tasks
Background Agent Types
Using Scheduled Tasks
To-Do List Scheduled Task Sample
Updating Tiles Using a Scheduled Task Agent
Scheduled Task API Limitations
Using a Mutex to Access Common Resources Safely
Summary

Performing Background File Transfers

Background Transfer Requests
Handling App Termination and Resubscription to
Transfer Events
Background File Transfer Sample Code
Using URL Rerouting with a WCF Service
Retrieving the User’s Windows Live Anonymous ID
TodoListViewModel

979
981
981
982

983

983
985
985
987
989
994
996
996

997

998

998
1001
1002
1005
1006
1010
1011
1015
1019
1035
1036
1038
1041

1043
1043

1048
1048
1049
1050
1052

34

Contents

Backing Up the Local Database
Restoring the Local Database
Summary

Coordinating Background Audio Playback

Background Agent Recap
Background Audio Overview
Background Audio Player
Representing Audio Files with the audioTrack Class
Creating a Custom Audio Player Agent
AudioPlayerAgent Sample
AudioPlayerAgent Virtual Methods
Controlling Background Audio from Your Foreground App
Audio Streaming Agents
Using a MediaStreamSource to Play Back an Assembly Resource
Summary

Bibliography

Index

XXi

1052
1055
1058

1059

1059
1060
1060
1062
1063
1064
1066
1070
1076
1078
1079

1081

1083

Preface

Welcome to the second in the series of Windows Phone Unleashed titles. This book extends
the previous book, Windows Phone 7.5 Unleashed, and provides new content cover-

ing the terrific new features of the Windows Phone 8 SDK. The Windows Phone 8 SDK
builds upon the strong foundation of the previous SDK for creating XAML-based apps. If
you read Windows Phone 7.5 Unleashed, you will find much of the content familiar. The
content has, however, been updated across the board to cover changes in the 8.0 SDK, of
which there are many. You also will find seven new chapters covering the new features of
the 8.0 SDK.

Although the scope of this book remains squarely on building XAML-based apps, there
have been some major changes to the other UI technologies supported by Windows
Phone 8. The new SDK still enables you to build XNA UI apps for Windows Phone 7.1
devices, but support has been discontinued for Windows Phone 8 apps. And although
Windows Phone 7.1 apps can be downloaded from the Windows Phone Marketplace and
run on Windows Phone 8 devices, Windows Phone 7.1 apps cannot use the new features
found in the 8.0 SDK. For high-performance games, Microsoft now encourages the use

of Direct3D and C++ for native code, which was not available in Windows Phone 7.1.
Although XNA is no longer directly supported for developing Windows Phone 8 apps,
you can use third-party frameworks, such as MonoGame (www.monogame.net), to create
XNA-based WP8 apps. However, this is outside the scope of this book.

As Microsoft continues to converge its various platforms, the Windows Phone SDK now
contains some APIs that overlap with Windows 8’s WinRT. Windows Phone does not
inherit all these new APIs, and in fact, has its own new set of partially overlapping APIs
known as WinPRT. No prizes for guessing what the ‘P’ stands for.

The environmental requirements for developing Windows Phone 8 apps are now restricted
to Windows 8 x64 and Visual Studio 2012. And Windows Phone 8 apps do not run on
older devices running Windows Phone 7.1. You can, however, develop Windows Phone
7.1 apps using the Windows Phone 8.0 SDK.

Scope of This Book

This book targets Windows Phone 8 (Apollo). Although you see some examples incor-
porating XNA for audio and media, this book’s focus is squarely on XAML for Windows
Phone. The book covers all main areas of the topic in a deep, yet easily comprehensible
way, using practical examples with a real-world context. The goal is to provide you with
concepts and techniques that will help you to design and develop well-engineered and
robust Windows Phone apps.

Throughout this book you see a small number of techniques and custom code applied to
make developing phone apps easier. It is not the intention to make what you will learn in
the book harder to reach; on the contrary, the techniques are tried and tested approaches
that, when they become familiar, will help you build more testable and maintainable apps

http://www.monogame.net

Preface Xxiii

that can be potentially ported to other platforms. The competition between apps on the
Windows Phone platform has intensified as the number of apps in the Windows Phone
Marketplace has increased dramatically. This competition not only brings with it a “long
tail,” where independent developers find evermore niche categories to create apps for, but
also requires apps competing in the more popular categories to increase their feature sets.
As apps become more complex, maintainability comes to the fore, and greater attention to
managing complexity is required.

This book is not a book for those without at least some knowledge of XAML. Although
there is considerable reference material for some essential XAML infrastructure, included
within these chapters are advanced topics, such as the Model-View-ViewModel design
pattern (MVVM). In fact, most sample apps follow the MVVM pattern. The concepts and
techniques used throughout the book are described in Chapter 2, “Fundamental Concepts
in Windows Phone Development.” Do not worry if some of these approaches seem foreign
to you; by the end of the book they will be second nature.

Wherever possible, you are provided with tips and techniques that go beyond the topic,
and you will frequently find content not easily found elsewhere. A substantial amount
of custom code is provided that extends the Windows Phone SDK to support real app
scenarios.

Assumptions About the Reader

If you are an experienced developer who has basic experience in Silverlight, WPF, or
Windows 8 XAML apps looking to transfer your skills to Windows Phone, then this book
is for you. It is assumed that you are familiar with C#, XAML, and Visual Studio.

Book Structure
The book is divided into five parts:

» Part I, “Windows Phone App Development Fundamentals”
» Part II, “Essential Elements”

» Part III, “Windows Phone App Development”
» Part IV, “Building Data Driven Apps”

» Part V, “Multitasking”

Most chapters have sample apps. Chapter 2 is required reading to understand the tech-
niques used throughout the book and the samples.

Some chapters, in particular Chapter 9, “Enriching the User Experience with the Windows
Phone Toolkit Controls,” are not intended to be read from beginning-to-end, but rather
are intended as a reference that you may refer back to when you need to learn about a
particular topic within the chapter.

XXiV Windows Phone 8 Unleashed

Code Samples

To demonstrate each concept, this book contains more than 100 samples. The sample
code for this book can be downloaded from www.informit.com/title/9780672336898.

All code is in C#. The project structure is divided into topic areas. To view a particular
sample, you can run the main solution and select the sample page from the index (see
Figure 1).

index

BingMaps

ChatClient

ContactsAndAppointments

FIGURE 1 The sample code index page.

In the downloadable sample code are several solutions. In most cases, the
Vaughan.WPUnleashed.sIn is used. The code for some topics, however, has been placed
into separate solutions because of technical constraints.

Much of the infrastructure code presented in the book has been consolidated into the
Calcium open source project. You can find more information about the Calcium SDK at
http://calciumsdk.net.

http://www.informit.com/title/9780672336898
http://calciumsdk.net

About the Author

Daniel Vaughan is cofounder of Outcoder, a Swiss
software and consulting company dedicated to creat-
ing best-of-breed connected user experiences and
leading-edge back-end solutions, using the Microsoft
stack of technologies—in particular WPF, Windows 8,
WinRT, Silverlight, and Windows Phone.

Daniel is a Microsoft MVP for Client Application
Development, with commercial experience across

a wide range of industries, including finance,
e-commerce, and multimedia. Daniel is a Silverlight
and WPF Insider, a member of the elite WPF
Disciples group, a three-time CodeProject MVP, and
is a member of the Microsoft Developer Guidance
Advisory Council.

He is a technical advisory board member of PebbleAge, a Swiss finance company special-
izing in business process management.

He also is the creator of a number of open source projects, including Calcium and Clog.

Daniel blogs at http://danielvaughan.org, where he publishes articles and software proto-
types. You also can catch Daniel on Twitter at @dbvaughan.

Daniel has a degree in Computer Science from UNE, where he received various awards,
including twice the annual School of Mathematics, Statistics and Computer Science Prize,
and the Thomas Arnold Burr Memorial Prize in Mathematics.

With his wife, Daniel runs the Windows Phone Experts group on LinkedIn at
http://linkd.in/jnFoqE.

Originally from Australia and the UK, Daniel is based in Zurich, Switzerland, where he
lives with his wife, Katka, and son Bertie.

http://danielvaughan.org
http://linkd.in/jnFoqE

Dedication

To my wonderful wife, Katerina and my son, Bertie.

Acknowledgments

Katka Vaughan, for endless advice, proofreading, and formatting. Your contribution and
unending patience made this book possible.

Peter Torr, for invaluable assistance on Microsoft forums.
Microsoft, for answering questions and building great tools.

The terrific team at Sams. Especially Neil Rowe, for guidance throughout the entire
process. Technical editor J. Boyd Nolan, for going over my code with a fine-toothed comb.

The great folks at PebbleAge. In particular, Olivier Parchet and Christian Kobel for their
encouragement and goodwill.

Inspiration and support (in no particular order):

Cliff Simpkins, John Papa, Davide Zordan, Jaime Rodriguez, Marlon Grech, Glenn Block,
Charles Petzold, Josh Smith, Sacha Barber, David Anson, Peter O’Hanlon, Corrado Cavalli,
Colin Eberhardt, René Schulte, Laurent Bugnion, Jeff Wilcox, Damian Mehers, Shawn
Wildermuth, Sascha Corti, Rob Tiffany, Walt Ritscher, Michael Crump, Matteo Pagani,
Atley Hunter, Ginny Caughey, my friends at Wintellect, Jeremy Likness, Steven Porter,
Todd Fine, and Jeff Prosise.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

CHAPTER 2

Fundamental Concepts in
Windows Phone Development

This chapter provides an overview of some common
pieces of phone infrastructure and describes various tech-
niques that are useful when building Windows Phone apps.

This chapter begins with a look at the principal output of

a Windows Phone Application project: the XAP file. The
chapter discusses its composition and shows how to deploy
a XAP file to a developer unlocked device.

The chapter then looks at the security capability model

of the phone and at how this model is used to notify the
user of any potential dangers before downloading an app
from the Windows Phone Marketplace. You also look at
using the Marketplace Test Kit to determine the capability
requirements of your app.

Next, the chapter examines the threading model of XAML
for Windows Phone and examines various performance
considerations when creating animations or hiding and
showing visual elements. You see how the Windows Phone
frame rate counter works and learn how to interpret each
reading shown on the display.

The chapter then looks at the Windows Phone Application
Analysis tool. You see how to profile your app’s perfor-
mance and memory usage, improve the responsiveness

of your app, and help ensure that your app passes the
Windows Phone Marketplace certification requirements.

The chapter turns to the custom code and commonly used
techniques that you see throughout the book and that
underpin many of the examples in subsequent chapters.

It is not uncommon to have many pages in a Windows
Phone app, and having a solid codebase that contains a

IN THIS CHAPTER

» Understanding the role of XAP
files

» Using the Application
Deployment tool

» Enabling and identifying
app capabilities using the
Marketplace Test Kit

» The threading model for XAML
graphics and animation

» Optimizing animation
performance

» Enabling and reading the
Frame Rate Counter

» Using memory and execution
profiling to identify
bottlenecks

» Retrieving device information
using the DeviceStatus class

» Applying MVVM to a Windows
Phone app

» Simplifying property change
notification

» Using commanding with MVVM
» Validating method arguments

» Building a platform agnostic
dialog service

» Enabling communication with
local WCF services

14 CHAPTER 2 Fundamental Concepts in Windows Phone Development

common infrastructure and frequently used services can save a lot of time. In fact, with
more than 100 example pages included in the downloadable sample code, creating the
code for this book would have taken considerably longer without it.

The techniques demonstrated are tried and tested approaches that help you build more
maintainable apps and, by the end of the book, will have become exceedingly familiar to
you if they are not so already.

The overview of the custom infrastructure begins with an exposé of the Model-View-
ViewModel pattern, and you see how it is applied in the downloadable sample code. You
then examine how property change notification is implemented and see techniques for
improving the traditional implementation of INotifyPropertyChanged so that it works
effortlessly with multithreaded apps.

Next, the chapter looks at the commanding infrastructure used throughout the book and
examines a custom Icommand that allows you to specify handlers for command evalu-
ation and execution. There is also a brief overview of the argument validation system
commonly used in the sample code to validate method arguments.

The chapter then explores a custom dialog service that enables you to ask the user a ques-
tion from your viewmodel, while remaining compatible with unit testing.

Finally, the chapter shows how to consume Windows Communication Foundation (WCF)
services that reside on the same machine as the emulator, and outlines important steps to
enable several of the apps in the downloadable sample code.

Understanding the Role of XAP Files

The output of a Visual Studio project normally consists of a multitude of files, which may
include assemblies, images, config files, manifest files, and so forth. XAP (pronounced zap)
files contain project output that is bundled up, ready for deployment.

XAP files have been around since the early days of Silverlight 2 (beta 1) and allow devel-
opers to easily deploy an entire Silverlight application to a remote server. On the Windows
Phone platform, they are used to deploy an app to the Windows Phone Marketplace or to
a developer unlocked device.

A XAP file is a compressed zip file that contains your project assemblies and resources,
along with two application manifest files: AppManifest.xml and WMAppManifest.xml,
both of which are located in the Properties directory of the project.

It is a certification requirement that the XAP file contains both an AppManifest.xml file
and a WMAppManifest.xml file. Both of these files are automatically generated when
creating a new Windows Phone application from within Visual Studio. In nearly all cases,
AppManifest.xml does not require changes by you. WMAppManifest.xml, however, may
require editing depending on the features supported by your app.

Understanding the Role of XAP Files 15

When publishing to the Windows Phone Marketplace, your app’s XAP file is submitted as
part of the publishing process.

To obtain the XAP file for your app, perform a build using a Release build configuration.
You can then find the XAP file located in your app’s Bin/Release directory.

NOTE

When submitting your application to the Windows Phone Marketplace, the XAP file that you
submit must be built using a release configuration without debug information or it may fail
the certification process.

NOTE

The maximum allowed size of the XAP package file for Windows Phone Marketplace certifi-
cation is 225MB.

The Application Deployment Tool

XAP files allow you to circulate your app to developers that have a developer unlocked
device. This is done using the Application Deployment tool that is installed along with
the Windows Phone SDK. The tool allows you to navigate to select a XAP file and deploy
it to a connected phone device (see Figure 2.1).

Application Deployment ER Windows Phone

This tool allows you to install a prepackaged XAP on a registered Windows
Phone.

Please select the device target for installation and the XAP to be installed,
and click "Deploy”

Target: | Device . ‘
XAP: | [Browse
Status:

FIGURE 2.1 The Application Deployment tool.

If you have not encountered XAP files before, they will certainly become relevant when
you want to publish your first app to the Windows Phone Marketplace.

16 CHAPTER 2 Fundamental Concepts in Windows Phone Development

The Windows Phone Capabilities Model

Microsoft recognizes that making the user experience on the phone the best it can be
helps to secure greater adoption of the platform. To this end, users should never regret
installing an app, and one way to ensure this is by using a security model that requires
users to opt-in to certain functionality within the app, called capabilities.

A capability is a phone resource that when used by your app may bring with it privacy or
security concerns, or it may incur a cost that the user should be made aware of. Examples
of capabilities include the camera, geographic location services, microphone, and SMS.

Capabilities are a way of disclosing to the user what an app is potentially able to do. Your
app’s capabilities are displayed to potential users, those considering downloading the app
from the Windows Phone Marketplace. It is at the user’s discretion whether to down-
load your app; if a user does not want an app to have access to, for example, the phone’s
camera, the user may decide not to download that app.

You define your app’s capabilities in its WMAppManifest.xml file. When a new Windows
Phone application is created, a subset of the available capabilities is included by default in
the manifest file. The Windows Phone operating system grants security permissions to the
application according to the capabilities listed in the manifest file. See http://bit.ly/Pj2YgE
for a list of these capabilities.

When an app is submitted to the Windows Phone Marketplace, the XAP file is decom-
pressed, validated, and repackaged. During this process the security capabilities of the app
are discovered and written back to the WMAppManifest.xml file. As a result, if the mani-
fest does not contain capabilities that are used by your app, these capabilities are inserted
as part of the submission process.

NOTE

The capabilities specified in the WMAppManifest.xml file before submission are relevant
only while debugging your app. By removing unnecessary capabilities from the manifest
you ensure that no unintended capabilities have crept in during development.

Two capabilities, however, are exceptions to this process: ID_CAP_NETWORKING and
ID_HW_FFCCAMERA.

If the ID_CAP_NETWORKING (networking) capability is removed from your app’s manifest,
it will not be reinserted during the submission process; this enables you to prevent all
network activity from your app if you want.

If the ID_HW_FFCCAMERA (front facing camera) capability is specified in your manifest file,
it is not automatically removed during the submission process.

NOTE

After submission to the Windows Phone Marketplace, and during the capability discovery
process, the Microsoft Intermediate Language (MSIL) of the assemblies located in your
XAP file are analyzed. If a phone API that requires a particular capability is detected, the
capability is added to the WMAppManifest.xml file. This occurs even if your app never

http://bit.ly/Pj2YgE

The Windows Phone Capabilities Model 17

calls the code at runtime. It is therefore important to be mindful that referencing another
assembly can inadvertently add security capabilities to your app if the other assembly
uses an API that requires capabilities. The security capability detection mechanism is not
clever enough to walk your MSIL to discover whether it is actually used; it merely identifies
the presence of the API.

NOTE

To pass Windows Phone Marketplace certification, apps are not allowed to use P/Invoke
or COM Interop.

Determining App Capabilities Using the Marketplace Test Kit

The Windows Phone SDK includes a tool for analyzing the capabilities required by your
app. To analyze your app’s capability requirements, perform the following steps:

1. Build the app using a Release configuration.

2. Right-click the Windows Phone app project’s node in the Visual Studio Solution
Explorer and select Open Store Test Kit (see Figure 2.2).

3. Click the Run Tests button to begin the analysis process.

The Capabilities Validation test that is present for Windows Phone 7.1 apps is not avail-
able for apps that target Windows Phone 8.

NOTE

The Iconography and Screenshots automated tests fail if you have not specified any icons
or screenshots for your app.

The Marketplace Test Kit offers numerous tests that can assist you in ensuring that your
app is Marketplace ready. It can also save you time and the frustration caused by failing
the Marketplace submission requirements.

18 CHAPTER 2 Fundamental Concepts in Windows Phone Development

b HelloWorldXam| - Microsoft Visual Studio Quick Launch (Ctrl+Q) i - B =2
File Edt View Project Buld Debug Team SQL Tools Test Architecture .NETReflector ReSharper Amalyze Window Help
©-0 B-& M| - C | b EmustorWVGASIMS ~ Release - || L] | M ReSharper Misbehaves ~

Application Details Click the Run Tests button below to run the automated test cases, o &
z °
> Automated Tests o
& MonualTests 7
° Passed: 1 Failed: 2 &
B u ame Test Description Result Details z
2.’ nts | Validation of XAP file size and content files a
S Validation of Application lcons [ERROR]: Store application t g
0 equired az part of the Store H
2 e
& @Fsied Screenshots Validation of Screenshots ified for WVGA. At least one b
B e il e L s e e e e S
2z ified for WXGA. At least one.
& ified for 720P. At lesst one
z
3
g
2 Th luated lyz Click here for more details.
L] Click Start App Analysis to start an analysis session.
i S T
H
Ready O

FIGURE 2.2 Store Test Kit.

The Threading Model for XAML-Based Graphics and
Animation in Windows Phone

XAML apps use two threads for graphics and animation: a UI thread and a composi-

tion thread. The composition thread was introduced with the second release (7.5) of the
Windows Phone OS. The first release of the OS had issues with performance around user
input. A single UI thread had been largely acceptable for Silverlight for the desktop and
browser because both generally rely on the mouse for input. The phone, however, relies
on touch, which, as it turned out, needs to be substantially more reactive to user input.
When using a mouse, a slight delay does not unduly affect the user’s perception of your
app, but when using touch, a slight delay can make the user feel like the device is broken.
Thus, the composition thread was introduced in Windows Phone 7.5' to assist in render-
ing visuals by offloading some of the work traditionally done by the UI thread.

The UI thread is the main thread in Windows Phone XAML apps and handles user input,
events, parsing, and creation of objects from XAML, and the initial drawing of all visuals.

The composition thread aides the Ul thread in handling graphics and animation, freeing

up the UI thread and making it more responsive to user input. Storyboard-driven anima-

tions that run on the composition thread are cached and handled by the device GPU in a
process called autocaching.

1. The composition thread was also introduced to Silverlight for the browser with Silverlight 5 but still
lacks the autocaching capabilities present in Windows Phone. Autocaching is described in a moment.

The Threading Model for XAML-Based Graphics and Animation in Windows Phone 19

NOTE

Although the composition thread frees the Ul thread in some situations, the key to writing
responsive apps is still making sure that the Ul thread is not overloaded or blocked by
user code—in event handlers, for example. If you anticipate that a particular section of
code will tie up the Ul thread for a considerable amount of time, for more than, say, 50
milliseconds, use a background thread to perform the activity. The web service APIs, for
example, are all designed to be used asynchronously so that they do not block the Ul
thread.

The Windows Phone 8 SDK sees the inclusion of the new .NET async keyword that makes
consuming asynchronous APIs far easier than it used to be.

If you are not familiar with the various mechanisms for spawning background threads, do
not be concerned; you see many examples throughout the book.

The composition thread is used for animations involving the UIElement’s RenderTransform
and projection properties. Typically these animations include the following from the
System.Windows.Media namespace:

» PlaneProjection
» RotateTransform
» ScaleTransform
>

TranslateTransform

NOTE

The composition thread is used only for scale transforms that are less than 50% of the
original size. If the scale transform exceeds this amount, the Ul thread performs the
animation. In addition, the UIElement .Opacity and UIElement .Clip properties are
handled by the composition thread. If an opacity mask or nonrectangular clip is used,
however, the Ul thread takes over.

Animations and Threads

The composition thread is ideal for handling storyboard animations because it is able to
pass them to the device GPU for processing, even while the UI thread is busy. Code-driven
animations, however, do not benefit from the composition thread because these kinds

of animations are handled exclusively by the Ul thread, frame by frame using a callback.
They are, therefore, subject to slowdown depending on what else occupies the UI thread,
and the animation will update only as fast as the frame rate of the UI thread.

Performance and Element Visibility

XAML-based apps provide two properties that allow you to hide or reveal Ul elements:
UIElement.Visibility and UIElement.Opacity—each of which has performance implica-
tions depending on how it is used.

20 CHAPTER 2 Fundamental Concepts in Windows Phone Development

The UTElement .Visibility property is handled by the UI thread. When an element’s
visibility property is set to Collapsed, the visual tree must be redrawn. The upside is
that when collapsed, the uTElement is not retained in visual memory, and thus decreases
the amount of memory used by your app.

Conversely, controlling the visibility of an element using the urElement .Opacity prop-
erty allows the element to be bitmap cached; the element is stored as a simple bitmap
image after the first render pass. Bitmap caching allows the rendering system to bypass
the render phase for the cached element and to use the composition thread to display
the bitmap instead, which can free up the UI thread considerably. By setting the opacity
of a cached element to zero, you hide the element without requiring it to be redrawn
later. This, however, does mean that unlike the visibility property, the element is still
retained in visual memory.

NOTE

Avoid manipulating the UTElement .Opacity property without enabling bitmap caching. Set
the UTIElement .CacheMode property to BitmapCache, as shown in the following example:

<Path CacheMode="BitmapCache" ... />

Deciding Between Visibility and Opacity

Element opacity in conjunction with bitmap caching usually produces the best perfor-
mance when hiding and revealing elements. There may be times, however, when the
UIElement.Visibility property is better, and this is influenced by the number and
complexity of the visual elements being rendered. In such cases it may require experimen-
tation to determine the best approach.

Understanding the Frame Rate Counter

Developing for a mobile device requires particular attention to performance. Mobile
devices have less computing power than desktop systems and are more susceptible to
performance bottlenecks.

The Windows Phone SDK comes with a built-in control that allows you to monitor the
performance of your app, including frames per second and memory usage.

By default, the frame rate counter is enabled in your app’s App.xaml.cs file if a debugger is
attached, as shown in the following excerpt:

if (System.Diagnostics.Debugger.IsAttached)

{

// Display the current frame rate counters.
Application.Current.Host.Settings.EnableFrameRateCounter = true;

Understanding the Frame Rate Counter 21

NOTE

It is possible to enable or disable the frame rate counter programmatically at any time
from your app.

The EnableFrameRateCounter property is somewhat of a misnomer because the control
also reports a number of other UI metrics, such as texture memory usage, as shown in
Figure 2.3.

User Interface Thread FPS

Texture Memory Usage (bytes)
—_—

| |

188 =208 S=E=2EAA

=1 = R

FIGURE 2.3 The Frame Rate Counter.

Each field is updated periodically while the app is running. Table 2.1 describes each
counter field.

TABLE 2.1 Frame Rate Counter Field Descriptions

Field Description

Composition (Render) The rate at which the screen is updated. It also represents how

Thread Frame Rate (FPS) often supported animations driven by a storyboard are updated.
This value should be as close to 60 as possible. Application
performance begins to degrade when this value is below 30. The
text in this counter is red when displaying a value below 30.

User Interface Thread The rate at which the Ul thread is running. The Ul thread drives

Frame Rate (FPS) input, per-frame callbacks, and any other drawing not handled by
the composition thread. The larger this value, the more respon-
sive your application should be. Typically this value should be
above 20 to provide an acceptable response time to user input.
The text in this counter is red when displaying a value below 15.

Texture Memory Usage The video memory and system memory copies of textures being
used in the application. This is not a general memory counter for
the application but represents only memory that surfaces use.

22 CHAPTER 2 Fundamental Concepts in Windows Phone Development

Field Description

Surface Counter The number of explicit surfaces being passed to the GPU for
processing. The biggest contributor to this number is automatic
or developer-cached elements.

Intermediate Surface The number of implicit surfaces generated as a result of cached

Counter surfaces. These surfaces are created in between Ul elements
so that the application can accurately maintain the Z-order of
elements in the Ul.

Screen Fill Rate Counter The number of pixels being painted per frame in terms of
screens. A value of 1 represents 480x800 pixels. The recom-
mended value is about 2.5. The text in this counter turns red
when displaying a value higher than 3.

Source: MSDN: http://bit.ly/18i020

The frame rate counter is a valuable tool for identifying performance bottlenecks in
your app. For more detailed performance metrics turn to the Application Analysis tool,
discussed next.

The Windows Phone Application Analysis Tool

Not only is performance important in ensuring that your app provides an enjoyable expe-
rience for your users, but it is also important in a stricter sense: for meeting the certifica-
tion requirements of the Windows Phone Marketplace. Marketplace certification includes
a number of performance related criteria that your app must adhere to. The requirements
are as follows:

» If an application performs an operation that causes the device to appear to be unre-
sponsive for more than 3 seconds, such as downloading data over a network connec-
tion, the app must display a visual progress or busy indicator.

» An app must display the first screen within 5 seconds after launch. You see how to
work around this requirement for slow loading apps by creating a splash screen, in
Chapter 3, “Understanding the Application Execution Model.”

» An app must be responsive to user input within 20 seconds after launch.

The Windows Phone Application Analysis tool comes with the Windows Phone SDK and
is integrated into Visual Studio, allowing you to analyze and improve the performance of
your apps. The tool profiles your app during runtime to gather either execution metrics or
memory usage information.

Execution profiling may include method call counts and visual profiling, allowing you to
view the frame rate of your app over time, while memory profiling allows you to analyze
your app’s memory usage.

http://bit.ly/l8i020

The Windows Phone Application Analysis Tool 23

To launch the tool select Start Windows Phone Application Analysis from the Debug
menu in Visual Studio. You can select the profiling type, along with other advanced
metrics, by expanding the Advanced Settings node, as shown in Figure 2.4.

o PhoneApp36 - Microsoft Visual Studio Quick Launch (Chife) p o A X
Fle Edit View Projet Duld Debug Tesm QL Took Tet Architestore NETReflector MeSharper Anshze Window Help

3 Solution Explerer =3
g @ o-08E £ g
Search Solition Exploner (Chile:) F-
7 Selution ‘Phonespp’ (1 project) fg
4 =
e PhoneApp36 .
b *8 References ing and peofiling your apphcesi help > o 'g
b D Appaaent qualty of your appleation, Te begin, choase ane of th
8 applicationicen.png E
3 Em-;z::? M?‘M““mw o
gwum&mw ety (e ity asp i
nimageipg Sty ’
wE i
4 Advenced Settings L
Visual Prafiing
e o et A s
[] Collect cache detads
[C] Collect medka (imsge and vides) events
Coda Sampling

[Collect call stackto a depth of |Fyll - |onceevery | gp | milliseconds
[C] Collect detailed performance counter
) Mawmeory fewak y alocath

b Advanced Settings

Wisming: Thee app per sy e actual
performance on the device
St Seaviun dhon will slar)

MNETR. CodeA.. Schstic.. TeamE. ClasgV..

FIGURE 2.4 Configuring the Application Analysis settings.

To begin the profiling session, click the Start Session link.

Whenever the Application Analysis tool runs, it creates a .sap file in the root directory of
your project. A .sap file is an XML file that contains the profiling information gathered
during a profiling session and can later be opened by the profiling analysis tools built in
to Visual Studio.

When done putting your app through its paces, click the End Session link, shown in
Figure 2.5. You can, alternatively, use the device’s hardware Back button to end the profil-
ing session.

Avoid disconnecting the phone device to end a profiling session, because this can lead to
sampling errors. Instead, always use the End Session link or the hardware Back button.

24 CHAPTER 2 Fundamental Concepts in Windows Phone Development

D ProneApp3s - Microsoft Visual Studio Quick Launch (Cirke Pla B ®

Fle Edt View Prepoct Budd Debug Tesm SO Tooh Test Archilecture (METReflector ReSharper Analyee Window Help

(- Boa . B Emulster WGA $1IME + Relesse =[] A ReSharper Mishehsves
% Salution Explerer -2
H @ o-ude £ =
Sesoch Solution faplorer {Cerfs: 2~ g
(3] Sehutian Phanakppls’ (1 prajact) ¥
4 3 Phonehppis -
b & Propeties B
b em Raferances i
b 0 Appxeeni E
B ppliestionicanpng z
B Backgreundpng 3
b [MunPagessmi Phonefppié f
0] Phonetppi6 2002112818, 44 3 5ap 3
3 SplshSerssnimagepg Praflling b progress L
3
£,)
o
Callecting data.

End Sexsion (App will cxit)

METR- Codea.. Selutic.. | TeamE.. ClaiaVi

L ——————————————————

FIGURE 2.5 Profiling in progress with the Application Analysis tool.

Once stopped, the analysis tool automatically parses the .sap file and presents a summary
of the analyzed data. Clicking the Alerts link presents a graph view (see Figure 2.6).

The .sap file can be reloaded into the analysis tools by double-clicking the .sap file in the
Visual Studio Solution Explorer.

o PhoneApp36 - Microsoft Visual Studio Quick Launch (Ctri+Q) A = B x
Fie Edit View Project Buld Debug Teom SQL Tools Test Architecture NETReflector ReSharper Analyze Window Help

o - B - e = © = P Emulator WGASIZMB ~ Release ~ L] S ReSharper Misbehaves _
Bl Proneapp36
g summary > All Alerts [OZF; OB
= Graphs o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 o
7 &
% External events =
o = 3
£ Frame rate 5 &
B = 1 &
é‘ 30 =)
2 o
% CPUusage % 100
2
3 0 o
£ | Wl 3
F &
E 2 [:
& App responsiveness 100
) 50
8 o
= Battery consumption mah .10
3
£ e -
o Monitoring Wamings
i Issue Start Time (s) End Time (s) Observation Summary
T) Wamings notavailable. 0.000 5386 Thereare no identi on, Select a time ysi

FIGURE 2.6 Viewing performance metrics in the Application Analysis tool.

The Windows Phone Application Analysis Tool 25

Each section of the analysis tools view is discussed in the following sections.

External Events
External events indicate user events, such as Ul input, or simulated network changes.

Frame Rate Graph

The Frame Rate graph displays the number of screen redraws (in frames per second) that
the app completed at the particular point in the timeline.

NOTE

The Frame Rate graph shows nonzero values for periods in the timeline where the applica-
tion was updating the display in some way. Therefore, areas that appear to have a zero
frame rate indicate that no updating was taking place and not necessarily that your app
was not able to render any frames.

NOTE

You should aim to have the frame rate value averaging between 30 and 60fps.

CPU Usage Graph
The CPU Usage graph displays the activity of various threads using different colors, as
described in Table 2.2.

TABLE 2.2 CPU Graph Colors

Color Thread Notes

Green Ul Thread Green shading indicates screen updates and touch input. You
should aim to keep the Ul thread to less than 50% of CPU
usage.

Purple App Threads Purple indicates application activity that is not on the Ul

thread. Activity can be from the composition thread or from
your apps background threads, such as those used from the

AppPool.

Gray System Threads Gray indicates activity that is independent of your app, such as
background agent activity.

White Idle Threads White indicates the available CPU percentage. The higher the

idle thread percentage, the more responsive the app should
be.

26 CHAPTER 2 Fundamental Concepts in Windows Phone Development

Memory Usage MB Graph

Memory Usage MB shows the amount of RAM being consumed by your app in megabytes,
at any point along the timeline. This graph allows you to identify excessive memory
usage.

Storyboards

Storyboards are displayed as an S flag on the timeline to indicate the occurrence of a story-
board event, and typically indicate the start of an animation. There are two kinds of flags:
A red flag indicates a storyboard that is CPU bound; a purple flag indicates a storyboard
that is not CPU bound.

Image Loads

When an image is loaded into memory, an I flag is displayed on the graph. Although JPG
and PNG files might have a small size when stored in isolated storage, when displayed
using an Image control for example, images are expanded into bitmaps and consume a
lot more memory. Use the image load flag to identify places in your app where excessive
memory consumption is taking place.

GC Events

When the CLR performs garbage collection, a G flag is displayed on the graph. Garbage
collection reclaims memory and ordinarily decreases the value shown in the Memory
Usage MB graph.

Viewing Detailed Profiling Information

Within the analysis tool, a region can be selected within the graph to view detailed
performance warnings for that period. Much like Visual Studio’s Error List view, the
Performance Warnings view identifies three types of items: Information, Warning, and
Error items (see Figure 2.7).

The Observation Summary provides advice on how to rectify each particular warning item.

The CPU Usage breadcrumb can also be expanded and allows you to view various other
CPU-related metrics, such as a function call tree.

The Application Analysis tool provides detailed runtime performance metrics and allows
you to identify the source of performance bottlenecks, enabling you to improve the
responsiveness of your app and in turn the user experience for your app.

e Eat View Proec Buld Debug Team

[}2--Sddls anfa- o~

o0 0.5

| W

Reading Device Information 27

|.0 LS
FEREBRES U A o0 o) AUy SR

20 2.5
L1l

Menu expands to reveal
Frames and CPU Usage views.

Performance Warnings |® {*CPU Usage *

Thread Name Frames

i

CPU Time (%)

4 User Interface Threa CPU Usage
Frame Dperaﬂnnsl 375344654
Other Tasks 375344654

Profiler Theead 418659102

- TA%

0.000 0,00 %
453150 W 77.24%
7.000 119%

FIGURE 2.7 The Performance Warnings view.

Reading Device Information

The Microsoft.Phone.Info.DeviceStatus class is a static class used to retrieve informa-
tion about the phone device, such as the device manufacturer, firmware version, and total
memory available to your app.

Table 2.3 describes each property of the Devicestatus class.

TABLE 2.3 DeviceStatus Properties

Name

Description

ApplicationCurrentMemoryUsage

ApplicationMemoryUsageLimit

ApplicationPeakMemoryUsage

DeviceFirmwareVersion
DeviceHardwareVersion
DeviceManufacturer
DeviceName
DeviceTotalMemory

IsKeyboardDeployed

The memory usage of the current application in bytes.

The maximum additional amount of memory, in bytes,
that your application process can allocate.

The peak memory usage of the current application in
bytes.

The firmware version running on the device.
The hardware version running on the device.
The device manufacturer name.

The device name.

The physical RAM size of the device in bytes.

If true the user has deployed the physical hardware
keyboard of the device.

28 CHAPTER 2 Fundamental Concepts in Windows Phone Development

Name Description
IsKeyboardPresent If true the device contains a physical hardware keyboard.
PowerSource Indicates if the device is currently running on battery

power or is plugged in to an external power supply.

In the first release of the Windows Phone OS, the DeviceExtendedProperties class was
used to retrieve many of the Devicestatus property values. DeviceExtendedProperties
has since been deprecated, and pevicestatus takes its place for retrieving most device
information.

The downloadable sample code contains a DeviceStatusView.xaml page, which displays
each of the pevicestatus properties. The memory related values have been converted
from byte values to megabytes to make them more easily comprehendible (see Figure 2.8).

status

FIGURE 2.8 DeviceStatusView page.

Calculating Available Memory

Windows Phone 8 device manufacturers are obligated to produce phones that have at
least 512MB of RAM.

Although many phones have more than 512MB of RAM, be mindful of the minimum speci-
fication and aim to support the lowest common denominator. Do not assume your app will

Reading Device Information 29

be running on a device with more than 512MB of RAM. Regardless of how much memory
the device has, your app’s memory is capped at either 150MB for lower memory

phones or 300MB for higher memory phones. The ID_FUNCCAP_EXTEND_MEM capability
can be added to your WMAppManifest.xml file to grant more memory to your app. See
http://bit.ly/1307Pmu for details.

To determine how much memory your app has to work with, use the
DeviceStatus.ApplicationMemoryUsageLimit.

For example, if a particular task is estimated at costing an additional 10MB of memory,
determining whether the task will exceed the memory usage limit can be calculated as
follows:

long requiredBytesEstimate = 10 * 1048576; /* 1048576 bytes equals 1 megabyte. */
if (DeviceStatus.ApplicationMemoryUsageLimit
>= DeviceStatus.ApplicationCurrentMemoryUsage + requiredBytesEstimate)

/* Perform expensive task. */

NOTE

If your app attempts to allocate more memory than is available on the device, that is, it
exceeds the value of DeviceStatus.ApplicationMemoryUsageLimit, the application
terminates with an outOfMemoryException.

In addition to foreground app memory constraints, background tasks are limited to 6MB
of memory. Background tasks and their memory usage requirements are discussed in
Chapter 32, “Conducting Background Activities with Scheduled Actions.”

DeviceStatus Events

While pevicestatus allows you to retrieve device information, it also includes the follow-
ing two events:

» KeyboardDeployedChanged

» PowerSourceChanged

If the phone device has a hardware keyboard, such as a sliding keyboard, the
KeyboardDeployedChanged event allows you to detect when the keyboard is extended.

You can subscribe to the KeyboardDeployedChanged event as shown:

DeviceStatus.KeyboardDeployedChanged += HandleKeyboardDeployedChanged;

http://bit.ly/13o7Pmu

30 CHAPTER 2 Fundamental Concepts in Windows Phone Development

The event handler can be used to determine whether the keyboard is deployed using the
DeviceStatus class, as shown:

void HandleKeyboardDeployedChanged (object sender, EventArgs e)

{

bool keyboardDeployed = DeviceStatus.IsKeyboardDeployed;

—— .

PowerSourceChanged Event

When the phone device is connected to a user’s computer, it may be a good time to
perform some processor-intensive task that could potentially consume a lot of power,
which would otherwise flatten the user’s battery. The Powersourcechangedivent allows
you to detect when the user attaches or detaches an external power supply.

The powersourceChanged event can be subscribed to as shown:

DeviceStatus.PowerSourceChanged += HandlePowerSourceChanged;

The event handler can be used to retrieve the new powersource value from the
DeviceStatus class, as shown:

void HandlePowerSourceChanged (object sender, EventArgs e)

{

PowerSource powerSource = DeviceStatus.PowerSource;

— .

NOTE

The DeviceState.PowerSourceChanged event is not raised on the app’s Ul thread. All
updates to visual elements must, therefore, be invoked on the Ul thread, either directly by
using the app’s global Dispatcher or indirectly via a custom property change notification
system, discussed later in this chapter.

NOTE

Avoid using DeviceState.PowerSource for determining whether to use the phone’s
network connection to transfer a substantial amount of data. See Chapter 27,
“Communicating with Network Services,” to learn how to monitor network connectivity and
how to determine the type of network connection being used.

Applying the Model-View-ViewModel Pattern to a Windows Phone App 31

Applying the Model-View-ViewModel Pattern to a
Windows Phone App

A dominant pattern that has emerged in XAML UI based technologies, in particular WPF
and Silverlight, is the Model-View-ViewModel (MVVM) pattern. MVVM is an architec-
tural pattern largely based on the Model-View-Controller (MVC) pattern, which, like the
MVC pattern, serves to isolate the domain logic from the user interface logic. In addi-
tion, MVVM leverages the strong data binding capabilities of XAML based technologies,
which allows loose coupling between the view and the viewmodel so that the viewmodel
does not need to directly manipulate the view. This eliminates the need for almost all
code-beside, which has a number of benefits, including freeing interactive designers from
writing view specific code.

The following are the principal elements of the MVVM pattern:
» Model—The model is responsible for managing and delivering data.

» View—The view is responsible for displaying data. The view is ordinarily a Ul
element, and, in the case of XAML-based Windows Phone apps, it is a Usercontrol
such as a PhonerpplicationPage.

» ViewModel—A bridge or intermediary between the model and the view, which
commonly retrieves model objects and exposes them to the view. Often the view-
model is designed to respond to commands that are bound to UI elements in the
view. The viewmodel can be thought of as the model of the view.

With the release of the Windows Phone 7.1 SDK came Silverlight 4 and support for
Icommands. The use of commands is discussed in the section “Using Commands” later in
the chapter.

There are numerous benefits to using MVVM in your apps. MVVM can improve an app’s
testability because it is easier to test code from a unit test that does not rely on surfacing
UI objects. Testing apps is discussed further in Chapter 24, “Unit Testing Apps.”

Placing application interaction logic in a viewmodel also makes it easier to redesign your
app while reducing the need to refactor interaction logic. Occasionally you may like to
reuse some of your Ul logic in different apps or, to a lesser extent, you might want to
target different UI technologies, such as WPF, Silverlight, or Windows Store XAML appli-
cations. Decoupling interaction logic from any particular UI technology makes it easier to
target multiple platforms.

Implementing the MVVM Pattern

There are two general approaches to MVVM viewmodel and view creation: view-first and
viewmodel-first. The first approach sees the creation of the view before the viewmodel.
Conversely, in the viewmodel-first approach, it is the viewmodel that creates the view.
Both approaches have their pros and cons. Viewmodel-first potentially offers complete
independence from the UI, allowing an app to be executed entirely without a UI; yet it

32 CHAPTER 2 Fundamental Concepts in Windows Phone Development

suffers from various implementation challenges. View-first is far simpler to implement
when page navigation is used, as is the case in a Silverlight for Windows Phone app.

This book uses the view-first approach exclusively.

MVVM in a XAML app relies on the assignment of a viewmodel to the view’s Datacontext
property. There are a number of commonly used techniques for marrying a viewmodel

to its view. Some offer a high degree of flexibility at the cost of greater complexity and
decreased visibility. The technique employed throughout this book, and the one I find to
be adequate in most cases, has the viewmodel instantiated in the view’s constructor. In
the following example a viewmodel is assigned to the view’s DataContext property:

public partial class FooView : PhoneApplicationPage

{

public FooView ()

{

InitializeComponent () ;

DataContext = new FooViewModel () ;

With the patacontext set to the viewmodel, properties of the viewmodel can be used in
data binding expression in the view’s XAML.

ViewModelBase Class

Windows Phone apps often consist of many pages and, in turn, many viewmodels. It is
useful to employ a viewmodel base class to share common infrastructure across all view-
models in your app.

In the samples throughout this book, most viewmodels subclass a custom viewModelBase
class that provides, among other things, navigation support, error validation, state pres-
ervation, and property change notification (see Figure 2.9). Each of these capabilities is
discussed alongside related topics in subsequent chapters.

ViewModelBase inherits from a custom NotifyPropertyChangeBase class, which provides
for property change notification, discussed in the next section.

Property Change Notification 33

) INotifyDataErrorinfo
WalidateData
IstatePreservation

£

' ViewModelBase
Abstract Class
= NotifyPropertyChangeBase

= Properties
% HasErors
= MessageService
= Title

= Methods

&

BeginValidation
DeregisterState<T>
DeregisterStatefulProperty
Deserialize<T>
GetErrors
GetPropertyErrors
GoBack
IsComplete
LoadState
ReadStateAttributes

&% RegisterStatefulProperty<T> (+ 1 overload)
B Events

ErrorsChanged

ValidationComplete

T

%

FIGURE 2.9 viewModelBase class diagram.

Property Change Notification

A key aspect of MVVM related to data binding is property change notification. Property
change notification allows a source object (for example, a viewmodel) to signal to a target
FrameworkElement that a value needs updating in the UL

There are two ways to implement change notification in a source class: either using
dependency properties or by implementing the INotifyPropertyChanged interface, which
is often referred to as just INPC.

NOTE

The use of dependency properties is not recommended for viewmodels because it
requires that the viewmodel class inherit from Dependencyobject and that all property
updates occur on the Ul thread. This can lead to a lot of thread-related plumbing code in
the viewmodel and makes your code less portable because of dependence on the depen-
dency property system.

Implementing INotifyPropertyChanged: The Traditional Approach

The INotifyPropertyChanged interface has a single event called propertyChanged. The
implementation of INotifyPropertyChanged ordinarily includes the following construct:

public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged (

34 CHAPTER 2 Fundamental Concepts in Windows Phone Development

[CallerMemberName] string propertyName = null)

PropertyChangedEventHandler tempEvent = PropertyChanged;
if (tempEvent != null)

{

tempEvent (this, new PropertyChangedEventArgs (propertyName)) ;

The callerMemberName attribute is used by a new compiler feature that automatically
passes the name of the calling member to the target method. No longer is it necessary in
most cases to pass the name of a property as a loosely typed string.

NOTE

To determine whether the propertyChanged event field has any subscribers, it is copied
to a temporary local variable, which allows you to then test whether it is null in a thread-
safe manner. Without first obtaining a copy, another thread could potentially unsubscribe
from the event after the null check but before the event is raised, which would inadver-
tently lead to a NullReferenceException being thrown.

An alternative that avoids the null check is to assign the event to an empty handler, as
shown:

public event PropertyChangingEventHandler PropertyChanging = delegate {};

A property is then able to signal to a subscriber of the event that a property value needs
updating, like so:

string foo;

public string Foo

{

get

{

return foo;
set

if (foo != value)
{
foo = value;

OnPropertyChanged () ;

Property Change Notification 35

When setting a property that is the source property of a data binding, the update must
occur on the Ul thread or an UnauthorizedaAccessException will ensue. Source properties
can be set from non-UI threads using the application’s pispatcher as shown in the follow-
ing excerpt:

Deployment.Current.Dispatcher.BeginInvoke (
delegate

{

Foo = "bah";

1)

There are a number of reasons why peppering your code with BeginInvoke calls is not

a good idea. First, it imposes an unnecessary threading model on your viewmodel code.
Second, it can lead to code that need not be executed on the Ul thread, creeping in to the
delegate. And, third, it is pretty ugly and decreases the readability of your code.

The next section looks at extracting INPC into a reusable and UI thread friendly class.

Implementing INotifyPropertyChanged: An Alternative Approach
Although there is nothing manifestly wrong with adding the onpropertychanged method
to every class that implements INotifyPropertyChanged (apart from violating the DRY
principle), it makes sense to extract the change notification code into a reusable class,
because this allows you to not only reduce boilerplate code but also to add other features
to the event-raising code, such as improving support for multithreaded apps and imple-
menting INotifyPropertyChanging (as well as INotifyPropertyChanged).

The WPUnleashed project in the downloadable sample code includes such a class, named
PropertyChangeNotifier. The viewModelBase class delegates change notification to a
PropertyChangeNotifier instance.

Throughout this book you frequently see viewmodel properties (with backing fields)
resembling the following:

string foo;

public string Foo

{

get

{

return foo;

Assign(ref foo, value);

36 CHAPTER 2 Fundamental Concepts in Windows Phone Development

Here, the name of the property, the current value, and the new value are passed to the
base class’s Assign method. The following excerpt shows the signature of the Assign
method:

public AssignmentResult Assign<TFields (
ref TField field,
TField newValue,

[CallerMemberName] string propertyName = "")

The rssign method updates the field value, while also offering the following advantages:

» The application’s pispatcher automatically raises the propertyChanged event
on the Ul thread if called from a non-UI thread. This eliminates the need to add
Dispatcher.BeginInvoke calls to a viewmodel to avoid cross-thread errors.

» The assign method also raises a PropertyChanging event. PropertyChangeNotifier
implements INotifyPropertyChanging interface as well as INotifyPropertyChanged
and allows a subscriber to cancel an update if desired.

» propertyChangeNotifier assists the viewmodel in remaining UI technology agnos-
tic. That is, retrieving an application’s Dispatcher in a Windows Phone app is done
differently in a WPF application.

» PropertyChangeNotifier uses a weak reference to its owner, thereby preventing
memory leaks from occurring when targets fail to unsubscribe from events.

» The single line assign method reduces the amount of boilerplate code in properties.

The return value of the Assign method is an AssignmentResult enum value, whose values
are described in the following list:

» success—The assignment occurred and the field value now equals the new value.

» cancelled—A subscriber to the propertyChanging event cancelled the assignment.
This relies on a custom extension to the INotifyPropertyChanging event.

> AlreadyAssigned—No assignment was made because the existing field value was
already equal to the new value.

» ownerDisposed—The PropertyChangeNotifier uses a weak reference to the object
for which it is providing property changing monitoring. This value indicates that no
assignment was performed because the owner object has been disposed.

Property Change Notification 37

Because property change notification is such a common requirement of model and
viewmodel classes, for the sake of convenience a NotifyPropertyChangeBase class
is also provided in the downloadable sample code. It leverages an instance of the
pPropertyChangeNotifier, and can be used as a base class for any class that needs
INotifyPropertyChanged to be implemented.

In particular, the viewModelBase class inherits from this class (see Figure 2.10).

Legend

Abstract Class

Concrete Class

[NotifyPropertyChangeBase)% PropertyChangeNotifier

[ViewModelBase)

FIGURE 2.10 viewModelBase inherits from NotifyPropertyChangeBase, which has a
PropertyChangeNotifier.

The implementation details of the propertyChangeNotifier are lengthy and are not
included in this section. However, you can find an article already covering the topic at
http://danielvaughan.org/post/Property-Change-Notification-using-a-Weak-Referencing-
Strategy.aspx.

Before moving on to commanding, be assured that you do not need to use the property
notification system presented here in your own projects. If you are happy using the tradi-
tional approach to INPC, that is perfectly fine. Be mindful, however, that a lot of the
phone SDK APIs have events that do not always return on the UI thread, and you may
need to rely more heavily on the pispatcher to prevent cross-thread errors.

http://danielvaughan.org/post/Property-Change-Notification-using-a-Weak-Referencing-Strategy.aspx
http://danielvaughan.org/post/Property-Change-Notification-using-a-Weak-Referencing-Strategy.aspx

38 CHAPTER 2 Fundamental Concepts in Windows Phone Development

Using Commands

Windows Phone XAML apps support the Icommand interface for buttons and various other
controls. Commands are useful because when exposed from a viewmodel they allow your
view to bind to them just like other properties; when the user interacts with the visual
element, the command is executed. This enables you to move your UI logic from event
handlers to higher level classes.

The Icommand interface defines the following three members:

P> cCanExecute (object)—A method called by the commanding infrastructure, which
automatically sets the enabled state of the target control

> Execute (object)—A method that performs the logic of the command

> canExecuteChanged—An event that signals that the commanding infrastructure
should reevaluate the executable state of the command by calling its canExecute
method

Within the downloadable sample code there is a default implementation of the Icommand
interface called DelegateCcommand<T>. This class has features such as object parameter
type coercion, which, for example, enables you to use strings to represent enum values in
binding expressions, which are automatically converted to the appropriate enum type.

In this book you commonly see commands defined as read-only fields exposed using a
property get accessor, as this excerpt from the mediaviewModel in Chapter 7, “Employing
Media and Web Elements,” shows:

readonly DelegateCommand playCommand;

public ICommand PlayCommand

{

get

{

return playCommand;

Most often, you see commands instantiated in the viewmodels constructor.

The pDelegateCommand constructor accepts an Action argument, which is invoked when the
command is executed. In the following excerpt you see the instantiation of a command
called playcommand that when executed sets a number of viewmodel properties:

public MediaViewModel ()

{

playCommand = new DelegateCommand (

Argument Validation 39

obj =>

PlayerState = PlayerState.Playing;
CanPlay = false;

CanPause = true;

DelegateCommand along with its generic counterpart belegateCommand<T> also allow you to
specify an Action that is used to evaluate whether the command is able to be executed.

Ordinarily the built-in commanding infrastructure is supported only on buttons
(ButtonBase) and a couple of specialized controls. Some extra capabilities are provided

in the 1command implementation that allow you to wire the command to any
FrameworkElement, such as in the following example, which shows an Image element that
when tapped causes an Icommand to be executed:

<Image Source="/Foo.png"
c:Commanding.Command="{Binding ViewCommand}"

c:Commanding.CommandParameter="{Binding FullScreen}" />

The event used to trigger command execution can be specified by using the
commanding.Event attached property. In subsequent chapters you see several examples
of using these custom commanding attached properties.

Argument Validation

The book sample code commonly uses a custom Argumentvalidator class to ensure that
method arguments are not null or fall within a valid range. This allows a method to fail
fast, rather than continuing and raising a more difficult to diagnose error.

You frequently see statements like the following at the beginning of a method:

string PerformSomeAction (string value)

{

stringField = ArgumentValidator.AssertNotNull (value, "value");

Here, if value is null, then an ArgumentNullException is thrown. If not null, then the
stringField field is set to the value in a fluent manner.

40 CHAPTER 2 Fundamental Concepts in Windows Phone Development

NOTE

Microsoft has a far more feature rich argument validation tool called Code Contracts,
which integrates into Visual Studio and can provide static checking as well as runtime
checking, along with documentation generation. See http://bit.ly/ 10zZWtK.

All the Argumentvalidator methods are fluent; they return the value passed to them so
that they can be assigned to local variables or fields in a single statement.

The Argumentvalidator.AssertNotNull method is as follows:

public static T AssertNotNull<Ts>(T value, string parameterName) where T : class

{

if (value == null)

{

throw new ArgumentNullException (parameterName) ;

return value;

ArgumentValidator contains various other assertion methods for strings and numeric
values. Some are briefly discussed.

Argumentvalidator allows you to assert that an argument falls within a particular range.
The following aAssertLessThan method ensures that the value is less than a certain value:

public static double AssertLessThan (
double comparisonValue, double value, string parameterName)

if (value >= comparisonvValue)
throw new ArgumentOutOfRangeException (
"Parameter should be less than "
+ comparisonvValue, parameterName) ;

}

return value;

This then allows you to validate that a numeric value is less than, for example, 1:

ArgumentValidator.AssertLessThan (1, value, "value");

Other methods, such as AssertNotNullaAndofType, allow you to raise an exception if an
argument is null or not of the expected type, and AssertNotNullorWhiteSpace accepts
a string and raises an ArgumentException if string.IsNullorWhiteSpace (value) returns
true.

http://bit.ly/10zWtK

A Platform-Agnostic Dialog Service 41

A Platform-Agnostic Dialog Service

Over the past few years, I have found myself doing a lot of cross-platform development,
in particular Silverlight for the browser, WPF, and now Windows Phone development.
Being able to abstract common tasks away from technology specific types, such as display-
ing simple dialogs, has made reusing code far easier. In addition, mocking things, which
would otherwise cause a unit test to fail on a build server, such as displaying a message
box, has proven invaluable.

In several places throughout the book you see the use of an 1Messageservice, which
is used to display message dialogs to the user. The viewModelBase class exposes the
IMessageService as a MessageService property, and you see calls like the following:

MessageService.ShowMessage ("Hi from Windows Phone!");

If you are itching to sink your teeth into more phone-specific content, feel free to skip this
section and return to it later.

The IvMessageservice interface describes a class that is able to display messages to the
user, and to ask the user questions (see Figure 2.11).

IMessageService

& OkCancelQuestionResult E3

Interface Enum
= Methods Ok

@ AskOkCancelQuestion(: bool Cancel

@ AskYesNoCanceiQuestion() : YesNoCancelQuestionResult

@ AskveshoQuestion() : boot =

N Shd Q, ik Y YesNoCancelQuestionResult =

' WETOr() ! voi Ry

W ShowMessage() : void

¥ ShowWarning() ! void Yes

Na
Cancel

»|

Messagelmportance
Enum

Low
Medium
High

FIGURE 2.11 1IMessageService class diagram.

There are various parameters for specifying captions and so forth, along with the capabil-
ity to provide a message importance threshold value, so that the user can nominate to
have messages filtered based on importance.

Differences exist between the built-in dialog related enums in the MessageBox APIs of
Windows Phone and WPE. Hence, these types have been replaced with the technology-
agnostic enum types shown in Figure 2.11.

The Windows Phone implementation of the 1Messageservice is done by extending a
single class, the MessageserviceBase class, and by overriding two abstract methods: one
called showCustomDialog, the other AskQuestion (see Figure 2.12).

42 CHAPTER 2 Fundamental Concepts in Windows Phone Development

0

i MessageServiceBase
Abstract Class

»)

-

= Methods

¥ AskOkCancelQuestion
AskQuestion< TResponse>
AskYesNoCancelQuestion
AskYesNoQuestion
ShowCustomBigiog
ShowError

<

ShowMessage
ShowWarning

T

MessageService MackMessageService &
Class Class
+ MessageServiceBase + MessageServiceBase

CeeCOOC

»)

=

E Methods
@ AskQuestion<TResponse>
% ShowCustomDizlog

FIGURE 2.12 MessageService extends MessageServiceBase.

The showCustombialog method uses the pispatcher to display the dialog on the Ul
thread (see Listing 2.1). Extension methods are used to convert the native Silverlight
MessageBoxButton enum values and MessageBoxResult enum values to the technology-
agnostic enum values.

LISTING 2.1 MessageService Class (excerpt)

public partial class MessageService : MessageServiceBase
{
public override MessageResult ShowCustomDialog (
string message,
string caption,
MessageButton messageButton,
Messagelmage messagelmage,
MessageImportance? importanceThreshold,

string details)

/* If the importance threshold has been specified

* and it's less than the minimum level required (the filter level)
* then we don't show the message. */
if (importanceThreshold.HasValue

&& importanceThreshold.Value < MinumumImportance)

return MessageResult.Ok;

if (Deployment.Current.Dispatcher.CheckAccess())
{ /* We are on the UI thread,

A Platform-Agnostic Dialog Service 43

and hence no need to invoke the call.*/
var messageBoxResult = MessageBox.Show(message, caption,
messageButton.TranslateToMessageBoxButton()) ;
return messageBoxResult.TranslateToMessageBoxResult () ;
}
MessageResult result = MessageResult.Ok;
var context = new DispatcherSynchronizationContext (

Deployment.Current .Dispatcher) ;

context.Send (

delegate

{

var messageBoxResult = MessageBox.Show (

message, caption,

messageButton.TranslateToMessageBoxButton()) ;
result = messageBoxResult.TranslateToMessageBoxResult () ;

}, null);

return result;

/* Content omitted. */

The downloadable sample code also contains a MockMessageService class that inherits
from Messageservice and is designed to be used for unit testing purposes. It allows you
to verify that code correctly displayed a message or asked a question. The absence of a
mocking framework for Windows Phone makes it especially useful.

The Messageservice can be used to display a message, or ask the user a question, from
any viewmodel (see Figure 2.13).

You see how to use the IMessageservice in greater detail in the next chapter.

Message

Hi from Windows Phone 7!

FIGURE 2.13 Using the MessageService to display a message.

44 CHAPTER 2 Fundamental Concepts in Windows Phone Development

By using an interface based approach, it affords the opportunity to substitute the
IMessageService implementation for a mock implementation, or to even change the
behavior of the IMessageservice entirely.

These classes are, of course, included in the downloadable sample code. Yet, they also
reside in the CalciumSdk repository at http://calciumsdk.com, where you can always find
the most up-to-date code, freely available for use in your projects.

Consuming Local Web Applications

Changes to the Windows Phone Emulator have made developing apps that communicate
with web applications on the local machine more difficult to set up. Prior to Windows
Phone 8, apps could rely on the emulator resolving localhost to the underlying host oper-
ating system IP address. This allowed you to rapidly set up a WCF project that could be
readily consumed by your Windows Phone app.

In Windows Phone 8, the emulator is unable to resolve WCEF services on the host machine
without adding a URL reservation and adding a port exception to the Windows firewall.

Perform the following steps to allow a Windows Phone app to consume a service on the
host machine:

1. Assuming that you are working with IIS Express for local development, use the
Windows File Explorer to navigate to the IIS Express config files in C:\Users\
[Username]\My Documents\IISExpress\config

2. Open the applicationhost.config file. Update the physicalPath attribute to the path
of the project on your computer. Add an http binding for your machine’s name, as
shown:

<site name="WPUnleashed.Web" id="22">
<application path="/" applicationPool="Clr4IntegratedAppPool">
<virtualDirectory path="/"
physicalPath="C:\Development\Source\WP8Unleashed\Source\MainExamples\Web" />
</applications>
<bindings>
<binding protocol="http" bindingInformation="*:27571:localhost" />
<!-- Add the following: -->
<binding protocol="http" bindingInformation="#*:27571:YourMachineName" />
</bindings>

</site>

3. To locate your machine name, from a command prompt type “HOSTNAME".
Although not necessary, you can update your hosts file and use a different name if
you want, which will allow your app to be debugged on other machines more easily.

4. Make a URL reservation by typing the following from an administrative command
prompt:

http://calciumsdk.com

Consuming Local Web Applications 45

netsh http add urlacl url=http://YourMachineName:27571/ user=everyone

This informs HTTP.SYS that it is okay to allow access to the URL.
To remove the reservation at a later stage, use the following:

netsh http delete urlacl url=http://YourMachineName:27571/

5. Allow IIS Express through the Windows Firewall. You can do this from the
command line by typing:

netsh firewall add portopening TCP 27571 IISExpressWeb enable ALL

These steps must be completed for the main WPUnleashed.Web project in the download-
able sample code, and also for the Background Agents and Wallet samples seen later in the
book.

NOTE

If you do not perform the steps to enable communication with WCF service on the local
machine, several of the sample apps presented in this book that make use of local WCF
services will not work.

To save time, Table 2.4 lists the path and port information for the projects in the down-
loadable sample code.

TABLE 2.4 Path and Ports for Sample Projects

Path Port

C:\ [Path to Samples] \WP8Unleashed\Source\MainExamples\Web\ 27571

C:\[Path to Samples] \WP8Unleashed\Source\Wallet\WalletWcfServices\ 14122

C:\[Path to Samples] \WP8Unleashed\Source\BackgroundAgents\Web\ 60182
TIP

To locate the port that a Web project is using, open its properties page and select the
Web tab.

46 CHAPTER 2 Fundamental Concepts in Windows Phone Development

Summary

This chapter provided an overview of some common pieces of phone infrastructure and
described various techniques that are useful when building Windows Phone apps.

The chapter began with a discussion of the deployment and composition of XAP files. The
security capability model of the phone was then discussed, and you learned how to use
the Marketplace Test Kit to determine the capability requirements of your app.

The chapter examined the threading model of Windows Phone XAML apps, and you saw
how the Windows Phone frame rate counter works.

You then learned about the Windows Phone Application Analysis tool and saw how to
profile your app’s performance and memory usage.

The chapter then turned to the custom code and commonly used techniques that you see
used in subsequent chapters.

The overview of the custom infrastructure began with an exposé of the Model-View-
ViewModel pattern, and you saw how it is applied in the downloadable sample code. How
property change notification is implemented was discussed, and you saw techniques for
improving the traditional implementation of INotifyPropertyChanged so that it works
effortlessly with multithreaded apps.

The chapter then looked at the commanding infrastructure used throughout the book and
gave a brief overview of the argument validation system commonly used in the sample
code to validate method arguments.

The chapter explored a custom dialog service that enables you to ask the user a question
from your viewmodel, while remaining compatible with unit testing.

Finally, the chapter showed how to consume WCF services that reside on the same
machine as the emulator, and outlined important steps to enable several of the apps in
the downloadable sample code.

Index

A

accelerometers, 525
Accelerometer class, 528-529
calibrating, 533-536
shake detection, 537-539

simulating acceleration via emulator,
529-530

smoothing readings, 530-533

accuracy, location aware apps, 560
DesiredAccuracy property, 565
DesiredAccuracylnMeters property, 565
monitoring position changes, 566
MovementThreshold property, 565-566
PositionChanged events, 566-584
StatusChanged events, 567-568

ad hoc testing, 737

Add New Project dialog (Visual Studio Express
2012), 2

Additional Tools window (Windows Phone
Emulator), 4

AddressChooserTask, choosers/launchers and,
447-449

A-GPS (Assisted Global Positioning System),
location aware apps and, 560-561

alarms (scheduled notifications)
registering, 1001
sample code, 1002-1004
animation/graphics
live tiles, 391
page orientation

animating entire pages when orientation
changes, 108-110

animating page elements when orienta-
tion changes, 106-107

page transitions, 110-114

1084 animation/graphics

XAML
composition thread, 18-20
Ul thread, 18-20
App Instant Answer, 996
App List (Windows Phone Emulator), 6

App.RootFrame_Navigated method (Fast App
Resume), 60-61

App.RootFrame_Navigating method (Fast App
Resume), 59-61

Application Analysis tool, 21, 26

CPU Usage Graph, 25

execution profiling, 21-23

External Events view, 25

Frame Rate Graph, 25

GC Events, 26

Image Loads, 26

launching, 21-23

Memory Usage MB Graph, 26

performance metrics, viewing, 24

Performance Warnings view, 26-27

Storyboards, 26

application bar, 231, 252

built-in application bar, 231-233
customizing colors, 234
expanding, 233
hiding, 233
icon buttons, 234-236
menu items, 234-237
minimizing Icon Button Tray, 234
system tray dimensions, 234

custom application bar, 237
AppBar control, 248-252
customizing colors, 246-247
customizing system tray, 247-248

disabling application bar menu, 242-243

extending icon base classes, 250-252

extending menu item base classes,
250-252

icon buttons, 237-238

item visibility, 250

menu items, 237-238
minimizing Icon Button Tray, 243
opacity, 244

sample code, 238-242

switching to full-screen, 244-246

multiple applications bars, hosting via Pivot

control, 333-343
Application class, 7-8
Application Deployment tool, 15
application state, 49

persistent state, 56, 97
transient state, 97
requirements, 54-55
restoring, 55
saving, 53-54

ApplicationCurrentMemoryUsage property
(Device Status class), 28

ApplicationMemoryUsageLimit property
(DeviceStatus class), 27-29

ApplicationPeakMemoryUsage property
(DeviceStatus class), 28

appointments, 464
retrieving, 478-483
saving, 483-484
apps
animated page transitions, 110-114
Application class, 7-8
auto-launching via
file associations, 968-975
protocol associations, 977-981
Windows.System.Launcher class, 981
background file transfers, 1043

app termination/resubscription to trans-
fer events, 1048

sample code, 1048-1049

transfer requests, 1043-1047
background processing, 997

background tasks, 998

battery life and, 997

multitasking and, 997

Mutex and shared resources, 1038-1041

scheduled notifications, 998-1010

scheduled tasks, 1010-1038

ScheduledTaskAgent, 1011-1012
Bookshop sample app, 83

design-time data, 92-93

displaying product lists, 86-92

image caching, 93-95

ProductsView class, 85-86

ProductsViewModel class, 84-85

WCF services, 95-97
capabilities

defining, 16

determining via Marketplace Test Kit, 17

ID_CAP_NETWORK capability, 16

ID_HW_FFCCAMERA capability, 16
customizing

MainPage, 6, 9-11

XAML and Windows Phone Emulator, 5-7

deploying via Application Deployment tool,
15

exiting apps programmatically, 53

FAS, 56

Fast App Resume, 56-57, 63
App.RootFrame_Navigated method, 60-61

App.RootFrame_Navigating method,
59-61

FastAppResumeViewModel class, 61-62

launching, 57-59

optimizing, 57

recommended resume behaviors, 58
file associations, 967-968

auto-launching apps via file associations,
968-975

effects on user experience, 976
foreground apps
background file transfers, 1043

architecture of 1085

multitasking and, 997
Mutex and shared resources, 1038-1041
helium voice app, creating, 692-698
integration testing, 739
launching via voice commands, 723-732
lens apps (cameras), 686-687
app registration, 687-689
icon creation, 689
life cycle of, 49
deactivating events, 52-53
launching events, 50-51
subscribing to events, 51
tombstoning, 52-53
location aware apps, 559
A-GPS and, 560-561
background location tracking, 569-570
cell tower triangulation and, 561-562
DesiredAccuracy property, 565
DesiredAccuracylnMeters property, 565
determining location, 559-562
geographic location API, 563
Geolocator class, 563, 570-575
hardware layer, 563
location simulator, 570-575
location viewer sample code, 575-580
managed layer, 563
monitoring position changes, 566
MovementThreshold property, 565-566
native code layer, 563
PositionChanged events, 566-584
retrieving current location, 563-565
Rx and, 580-584
StatusChanged events, 567-568
Wi-Fi triangulation and, 562

architecture of, 561-562

Maps app
downloading maps, 612
showing directions via, 611

How can we make this index more useful? Email us at indexes@samspublishing.com

1086 architecture of

showing locations via, 610-611
Marketplace

allowing app user reviews, 426

launching apps from, 425-426

navigating to apps in, 422-425
memory usage, determining, 27-29
page navigation, 67-69

canceling, 77

cross-page communication, 77-78

handling, 76

hardware Back button, 79-80

navigation history stacks, 72-73

NavigationService property, 75-76

page redirection, 78-79

passing page arguments via query
strings, 71-73

unmapped URI, 69-71
URI mapping, 73-74
page orientation

animating entire pages when orientation
changes, 108-110

animating page elements when orienta-
tion changes, 106-107

PhoneApplicationPage class, 99-104
setting at runtime, 105-106

performance, Windows Phone Marketplace
requirements, 21

PhotoCamera app, building, 658-668
thumbnails, viewing, 672-678
video effects, 668-671

protocol associations, 967-968

auto-launching apps via protocol associa-
tions, 977-981

effects on user experience, 976
retitling, 6
running under Lock screen, 63-64
LockScreenService class, 64-66
LockScreenViewModel class, 66-67
Rx and, 580-584

search integration, 983
App Instant Answer, 996
application manifests, 985-987
configuring, 985-995

creating landing pages to display quick
card information, 994-995

customizing captions, 987-989
defining quick card target page, 989-994
speech-driven apps, 699

launching apps via voice commands,
723-732

speech recognition, 700-723

TTS, 732-735

Voice Paint app creation, 703-721
splash screens, 80-83
state preservation, 47-48

automatic state preservation system
build, 890-903

IsolatedStorageSettings class, 889-890
local folder, 881-882

managed storage, 882

.NET Isolated Storage API, 883-886
persistent state, 49, 56, 97

transient state, 49, 53-55, 97

WInPRT Windows Storage API, 883,
887-889

terminating apps, 53

testing via UTF, 739-740
AssemblyCleanup attribute, 746
Assemblylnitialize attribute, 745-746
assertions, 751-752
Asynchronous attribute, 749
asynchronous testing, 762-763
Bug attribute, 749-750
ClassCleanup attribute, 746
Classlnitialize attribute, 746
creating a test project, 740-741, 747
creating test classes, 741-743
Description attribute, 748

ExpectedException attribute, 749
hiding Expressions Editor, 752-753
Ignore attribute, 747-748
metadata, 745-751

Owner attribute, 748-749

Priority attribute, 750

Tag attribute, 749

tag expressions, 743-744

testable chat client app example,
754-764

TestClass attribute, 744
testing multiple assemblies, 753
testing nonpublic members, 753
Testlnitialize attribute, 747
TestMethod attribute, 745
TestProperty attribute, 747
Timeout attribute, 748
WorkltemTest class, 751

unit testing, 737-738

WCF services, consuming, 44-45

web content, hosting within apps, 70-71

Windows Phone Application Analysis tool,
21, 26

CPU Usage Graph, 25

execution profiling, 21-23

External Events view, 25

Frame Rate Graph, 25

GC Events, 26

Image Loads, 26

launching, 21-23

Memory Usage MB Graph, 26

Performance Warnings view, 26-27

Storyboards, 26

viewing performance metrics, 24
Windows Phone Marketplace

capability discovery phase, 16-17

submitting apps to, 15-16

WMAppManifest.xml files, defining app
capablitites, 16

audio 1087

argument validation, 39-40

assertions (UTF), 751
collection conditions, verifying, 752
CollectionAssert, 752
string conditions, verifying, 752
StringAssert, 752

associations
file associations, 967-968

auto-launching apps via file associations,
968-975

effects on user experience, 976
protocol associations, 967-968

auto-launching apps via protocol associa-
tions, 977-981

effects on user experience, 976
asynchronous testing (UTF), 762-763
asynchronous validation, 824

decoupling validation, 830

example of, 836-840

group validation, 844-847
INotifyDataErrorinfo interface, 824, 842-844
provisioning for, 827-830

reusable NotifyDataErrorinfo interface,
825-827

validating all properties, 833-836
validating changing properties, 830-833

ValidationSummary control, adding
INotifiyDataErrorinfo support for, 842-844

audio
background audio playback, 1059
audio streaming agents, 1076-1079

AudioPlayerAgent class, 1060,
1064-1075

AudioStreamingAgent class, 1060
AudioTrack class, 1061

BackgroundAudioPlayer class,
1060-1061

controlling playback from foreground app,
1070-1075

How can we make this index more useful? Email us at indexes@samspublishing.com

1088 audio

creating custom audio player agent,
1061-1064

overview of, 1060

playing assembly resources via
MediaStreamSource, 1078-1079

media files, playing, 428-435
microphone, 691
helium voice app, creating, 692-698
recording audio, 691-692
music
deleting from media library, 205-207
saving to media library, 205
playing via MediaElement, 193-194
controlling audio output, 194
sample code, 194-200
streaming content, 194
XNA SoundEffect class, 201-202
ringtones, creating, 461-463
speech-driven apps, 699

launching apps via voice commands,
723-732

speech recognition, 700-723
TTS, 732-735
Voice Paint app creation, 703-721
AudioPlayerAgent class, 1060, 1064-1075
AudioStreamingAgent class, 1060
AudioTrack class, 1061
authentication, cloud services and, 511
AutoCompleteBox component (Toolkit), 259-260
data binding, 270-271
defining custom filters, 264-266
IltemFilter property, 264-266
MVVM and, 260-264
suggested lists
dynamically populating, 266-267
styling, 268-270
auto-launching apps via
file associations, 968
launching files, 973-975

receiving file launch requests, 970-973

registering file associations, 968-970
protocol associations, 977

launching protocol URI, 979-980

receiving protocol launch requests,
977979

registering protocol associations, 977
reserved protocol names, 981
Windows.System.Launcher class, 981

automated testing, 738-739

choosers, testing via, 769-771

integration testing, 739

loC, 765-767

launchers, testing via, 769-771

trial conditions, testing, 767-769

unit testing, 737-739

UTF, 739-740
AssemblyCleanup attribute, 746
Assemblylnitialize attribute, 745-746
assertions, 751-752
Asynchronous attribute, 749
asynchronous testing, 762-763
Bug attribute, 749-750
ClassCleanup attribute, 746
Classlnitialize attribute, 746
creating a test project, 740-741, 747
creating test classes, 741-743
Description attribute, 748
ExpectedException attribute, 749
hiding Expressions Editor, 752-753
Ignore attribute, 747-748
metadata, 745-751
Owner attribute, 748-749
Priority attribute, 750
Tag attribute, 749
tag expressions, 743-744

testable chat client app example,
754-764

TestClass attribute, 744

testing multiple assemblies, 753
testing nonpublic members, 753
Testlnitialize attribute, 747
TestMethod attribute, 745
TestProperty attribute, 747
Timeout attribute, 748
WorkltemTest class, 751

B

Back button, page navigation via, 79-80
background agents, 1011-1012, 1059-1060
background audio playback, 1059

assembly resources, playing via
MediaStreamSource, 1078-1079

audio streaming agents, 1076-1079
AudioPlayerAgent class, 1060, 1064-1075
AudioStreamingAgent class, 1060
AudioTrack class, 1061
BackgroundAudioPlayer class, 1060-1061

custom audio player agent, creating,
1061-1064

foreground app, controlling playback from,
1070-1075

overview of, 1060
background file transfers, 590
sample code, 1048-1049
backing up local databases, 1052-1055
restoring local databases, 1055-1058

retrieving user Windows Live Anonymous
IDs, 1050-1052

URL rerouting with WCF services,
1049-1050

transfer requests, 1043-1047

background images (lock screen), setting,
399-401

Background layer (Panorama control), 348-349

Bookshop sample app 1089

background processing, 997
background tasks, 998
battery life and, 997
multitasking and, 997
Mutex, shared resources and, 1038-1041
scheduled notifications, 998-1001
alarm registration, 1001
alarm sample, 1002-1004
reminder registration, 1005-1006
reminder sample, 1006-1010
scheduled tasks, 1010-1011, 1014-1017
API limitations, 1036-1038
background agents, 1011-1014
debugging, 1025
periodic tasks, 1013-1014
registering, 1018-1019
resource intensive tasks, 1014

scheduled task agents, 1011-1012,
1017-1018, 1035-1036

to-do list example, 1019-1035
banking, Wallet hub and, 773
introduction to, 774-775
payment instruments, storing in, 775-777

Payment Instruments sample app,
777-789

updating payment instruments, 789-792

required capabilities for wallet integration,
775

battery life (power management)
background processing and, 997
push notifications and, 493-494

BingMapsDirectionTask, choosers/launchers
and, 409-412

BingMapsTask, choosers/launchers and, 413
bold text, 159-160
Bookshop sample app, 83

design-time data, 92-93

image caching, 93-95

product lists, displaying, 86-92

How can we make this index more useful? Email us at indexes@samspublishing.com

1090 Bookshop sample app

ProductsView class, 85-86
ProductsViewModel class, 84-85
WCF services, 95-97

Boolean option, providing via ToggleSwitch
component (Toolkit), 293-295

localizing ToggleSwitch component, 295-297
switch color, changing, 297
built-in fonts (text), 160-162
buttons
Button Click mode, 124
check boxes, 131-138
Hyperlink button, 124

Icon Button Tray (application bar), minimiz-
ing, 234

icon buttons (application bar)
custom application bar, 237-238
customizing, 234-235
disabling, 235
retrieving at runtime, 236-237
Radio button, 128-131
Repeat button, 124-126
sizing, 121-123
tap and click events, 123
Toggle button, 124, 126-128
buying items, Wallet hub and, 773
introduction to, 774-775
payment instruments, storing in, 775-777

Payment Instruments sample app,
777-789

updating payment instruments, 789-792

required capabilities for wallet integration,
775

C

calls (phone), placing, 435-436

CameraCaptureTask, choosers/launchers and,
450-452

cameras, 655
lenses, 686-687
app registration, 687-689
icon creation, 689
PhotoCamera class, 655-656
building PhotoCamera app, 658-678
selection criteria, 656

thumbnails, viewing in PhotoCamera app,
672-678

video effects, adding to PhotoCamera
app, 668-671

Silverlight webcam API, 655-656, 678-685
taking photos, 450-452
canceling page navigation, 77

CanExecute (object) method (iCommand inter-
face), 38

CanExecuteChanged method (iCommand inter-
face), 38

capabilities (apps)

app submissions to Windows Phone
Marketplace, capability discovery phase,
16-17

defining, 16

ID_CAP_NETWORK capability, 16

ID_HW_FFCCAMERA capability, 16

Marketplace Test Kit, determining via, 17
cartographic modes (Map control), 589-590

cell tower triangulation and location aware
apps, 561-562

certification requirements, launching events, 50
chat client app UTF testing example, 754-758

automation peers, manipulating Ul elements
at runtime, 763-764

code driven Ul testing, 760-763
views, building, 758-760

check boxes, 131-138

choosers, 405, 408-409, 484
AddressChooserTask, 447-449
API overview, 405-406
application execution model, 406-408

appointments, 464

retrieving, 478-483

saving, 483-484
automated testing, 769-771
BingMapsDirectionTask, 409-412
BingMapsTask, 413
CameraCaptureTask, 450-452
ChooserBase.Completed events, 406-408

connection setting pages, navigating to,
413-414

ConnectionSettingsTask, 413-414
contacts, 464

converting stored contacts to/from
vCards, 478

deleting changes to stored contacts,
AT7T7-478

retrieving, 464-469
saving to contact lists, 449-450
selecting addresses, 447-449

storing in Custom Contacts Store,
469-477

driving directions, retrieving, 409-412
email
composing, 417-418
saving contact addresses, 418-421
selecting email addresses, 414-417
EmailAddressChooserTask, 414-417
EmailComposeTask, 417-418
GamelnviteTask, 453
games, inviting players to, 453
images, sharing, 460-461
links, sending to contacts, 444
map locations, displaying, 413
Marketplace
allowing app user reviews, 426
launching apps from, 425-426
navigating to apps in, 422-425
searching, 427-428
MarketplaceDetailTask, 422-425

club memberships, Wallet hub and 1091

MarketplaceHubTask, 425-426
MarketplaceReviewTask, 426
MarketplaceSearchTask, 427-428
media files, playing, 428-435
MediaPlayerLauncher, 428-435
phone calls, placing, 435-436
phone numbers

saving, 439-442

selecting, 437-438
PhoneCallTask, 435-436
PhoneNumberChooserTask, 437-438
Photo Hub, selecting photos from, 454-459
PhotoChooserTask, 454-459
photos, taking, 450-452
ringtones, creating, 461-463
SaveContactTask, 449-450
SaveEmailAddressTask, 418-421
SavePhoneNumberTask, 439-442
SaveRingtoneTask, 461-463
SearchTask, 442-443
ShareLinkTask, 444
ShareMediaTask, 460-461
ShareStatusTask, 445
SMS, composing, 445
SmsComposeTask, 445

status updates, posting to social networks,
445

tombstoning and, 406-408
web pages, navigating, 446-447
web searches, 442-443
WebBrowserTask, 446-447
click events (buttons), 123
clipboard, placing text on, 179-180
Close button (Windows Phone Emulator), 5
cloud services, authenticating, 511
club memberships, Wallet hub and, 773
introduction to, 774-775

How can we make this index more useful? Email us at indexes@samspublishing.com

1092 club memberships, Wallet hub and

membership information
storing, 792-796
updating, 802-804

required capabilities for wallet integration,
775

coded Ul testing, 739
CodePlex.com, Toolkit source code, 254
color
application bar color, customizing
built-in application bar, 234
custom application bar, 246-247
colored fonts (text), 160

switch color, changing via ToggleSwitch com-

ponent (Toolkit), 297
ComboBox control, 142

Commanding.Event property (iCommand inter-
face), 39

commands, iCommand interface
CanExecute (object) method, 38
CanExecuteChanged method, 38
Commanding.Event property, 39
DelegateCommand constructor, 38-39
Execute (object) method, 38
playCommand constructor, 38-39

compass sensors, 525, 539-545
calibrating, 546-548
compass orientation, 545-546

compatibility, Windows Mobile 6.5 apps and
Windows Phone 8, 1

composite validation
decoupling validation, 830
example of, 836-840
group validation, 844-847
INotifyDataErrorinfo interface, 824, 842-844
provisioning for, 827-830

reusable NotifyDataErrorinfo interface,
825-827

validating
all properties, 833-836

changing properties, 830-833

ValidationSummary control, adding
INotifiyDataErrorinfo support for, 842-844

Composition (Render) Thread Frame Rate (FPS)
field (Frame Rate Counter), 22

composition thread (XAML animation/graphics),
18-20

concurrency, LINQ to SQL and, 962-965

connection setting pages, navigating to,
413-414

ConnectionSettingsTask, choosers/launchers
and, 413-414

connectivity (network), monitoring, 850-855
contacts, 464
contact lists, saving contacts to, 449-450
Custom Contacts Store, storing in, 469-477
retrieving, 464-469
stored contacts
converting to/from vCards, 478
deleting changes to, 477-478
content controls, Windows Phone FCL, 119-121
ContextMenu component (Toolkit)
displaying, 271-273
hosting in a ListBoxltem, 275-277
MVVM and, 273-275

control headers, adding to TimePicker compo-
nent (Toolkit), 281

controls

buttons
Button Click mode, 124
check boxes, 131-138
Hyperlink button, 124
Radio button, 128131
Repeat button, 124-126
sizing, 121-123
tap and click events, 123
Toggle button, 124, 126-128

content controls, 119-121

FrameworkElement class, 116

items controls
ComboBox control, 142
ListBox control, 140-142
Selector class members, 139

range controls
progress indicators, 145-151
ProgressBar control, 144
RangeBase class properties, 143-144
scrollbars, 152
sliders, 151-152

sensors
accelerometers, 525, 527-539
compass sensors, 525, 539-548
gyroscope sensors, 525, 548-552
motion sensors, 525, 552-557
overview of, 525-527

ToolTip control, 138

touch input
designing for, 386-388
double tap gestures, 370
hold gestures, 371-372
manipulation events, 357, 363-367
mouse events, 357-359, 361-362
tap gestures, 369-370
Toolkit gestures, 291-293, 372-386
TouchPoint class, 357, 360-363

UlElement gesture events, 357-358,
368-372

Windows Phone Emulator, 358
Windows Phone FCL

control types within, 117

Silverlight controls not in FCL, 118-119

unsupported Silverlight controls, 119

CPU Usage Graph (Windows Phone Application
Analysis tool), 25

credit/debit cards, Wallet hub and, 773
introduction to, 774-775
payment instruments, storing in, 789-792

databases (local), data storage and 1093

required capabilities for wallet integration,
775

storing in Wallet hub, 775-789

cross-page communication and page navigation,
77-78

cross-platform development, IMessageService
interface, 41-44

Custom Contacts Store, storing contacts in,
469-477

customizing
application bar, 234, 246-247
DatePicker/TimePicker components
full-screen picker pages, 282-286
value formats in, 281-282
maps, 604-610
picker pages, 282-286

switch color, changing via ToggleSwitch com-
ponent (Toolkit), 297

system tray, custom application bar,
247-248

cycle tiles, 390-394

D

data binding

AutoCompleteBox component (Toolkit),
270271

Pivot control, populating via data bound col-
lections, 344-347

Data Sense, monitoring data usage via,
877-879

databases (local), data storage and, 905
database schemas
updating, 951-957
versioning, 957-958
viewing, 937-942
deploying databases, 906-907

isolated storage, deploying databases to,
943-946

How can we make this index more useful? Email us at indexes@samspublishing.com

1094 databases (local), data storage and

LINQ to SQL, 905, 908
code-first data model creation, 909-910
concurrency, 962-965

mapping inheritance hierarchies,
958-962

platform differences, 909

viewing queries via custom log, 948-950
navigation services, abstracting, 946-948
SQL Server Compact, 906

SqlMetal and database-first data model cre-
ation, 942-943

Twitter timeline viewer example, 910-912
Association attribute, 917-918
Column attribute, 912-914
connection strings, 920-924
database utilities, 919-920

leveraging custom Twitter services,
924-929

multiplicity, 917-918

one-to-many relationships, 917-918
tracking data context changes, 915
TwitterDataContext class, 918-919
TwitterUser class, 915-917

user credentials, gathering in Sign In
view, 929-932

viewing tweets in Timeline view, 932-937
XAP files, 906-907

DatePicker/TimePicker components (Toolkit),
277-281

control headers, adding to TimePicker com-
ponent (Toolkit), 281

customizing
full-screen picker pages, 282-286
value formats, 281-282
deactivating events (life cycle of apps), 52-53
deals/special offers, Wallet hub and, 796-802
debit/credit cards, Wallet hub and, 773
introduction to, 774-775
payment instruments, storing in, 789-792

required capabilities for wallet integration,
775

storing in Wallet hub, 775-789
debugging

Lock screen, engaging while debugging via
Simulation Dashboard, 63

scheduled tasks, 1025

Deep Zoom technology, viewing high-resolution
images via MultiScalelmage element,
207-217

DelegateCommand constructor (iCommand
interface), 38-39

deleting
changes to stored contacts, 477-478
music to media library, 205-207

deploying apps via Application Deployment tool,
15

DeviceExtendedProperties class. See
DeviceStatus class

DeviceFirmwareVersion property (DeviceStatus
class), 28

DeviceHardwareVersion property (DeviceStatus
class), 28

DeviceManufacturer property (DeviceStatus
class), 28

DeviceName property (DeviceStatus class), 28
DeviceStatus class, 27

ApplicationCurrentMemoryUsage property,
28

ApplicationMemoryUsageLimit property,
27-29

ApplicationPeakMemoryUsage property, 28
DeviceFirmwareVersion property, 28
DeviceHardwareVersion property, 28
DeviceManufacturer property, 28
DeviceName property, 28
DeviceTotalMemory property, 28
IskeyboardDeployed property, 28
IskeyboardPresent property, 28
KeyboardDeployedChanged event, 29-30
PowerSource property, 28, 30

Fast App Resume 1095

PowerSourceChanged event, 29-30 embedding fonts (text), 162-164
properties, viewing, 27 emulators. See Windows Phone Emulator
DeviceTotalMemory property (DeviceStatus events (life cycle of apps)
class), 28 deactivating events, 52-53
dictation grammars (speech recognition), launching, 50-51
701-703 '

subscribing to, 51
tombstoning, 52-53

. Execute (object) method (iCommand interface),
Maps app, showing in, 611 38

disabling

directions
driving directions, retrieving, 409-412

execution model, 48
application bar menu, 242-243 application life cycle, 49
deactivating events, 52-53

launching events, 50-51

icon buttons (application bar), 235

double tap gestures (touch input), 370, 374,
382

) subscribing to events, 51
drag gestures (touch input), 375-377, 383

.)) tombstoning, 52-53
drawing surface, presenting via InkPresenter
element, 186-193 application state, 49

driving directions, retrieving, 409-412 restoring transient state, 55
saving persistent state, 56

saving transient state, 53-54

transient state requirements, 54-55
apps

exiting programmatically, 53

E

eBay OData consumer application, building,
862 terminating, 53

EbaySearchView page, 867-871 execution profiling (Windows Phone Application
EbaySearchViewModel class, 864-867 Analysis tool), 2123
extending OData entity classes, 874 exiting apps programmatically, 53

fetching data when user scrolls to the end expanding application bar, 233

of a list, 871-873 Expression Blend for Windows Phone, 2
OData wrapper creation, 862-864 Expressions Editor (UTF), hiding, 752-753
ScrollViewerMonitor class, 871-873 External Events view (Windows Phone

edge tracing photo extras application, creating, Application Analysis tool), 25
634-645
email
composing, 417-418 F
contact addresses, saving, 418-421
email addresses, selecting, 414-417 FAS (Fast App Switching), 56

EmailAddressChooserTask, choosers/launchers Fast App Resume, 56, 63
and, 414-417

EmailComposeTask, choosers/launchers and,
417-418

App.RootFrame_Navigated method, 60-61
App.RootFrame_Navigating method, 59-61

How can we make this index more useful? Email us at indexes@samspublishing.com

1096 Fast App Resume

enabling, 56-57

FastAppResumeViewModel class, 61-62

launching, 57-59

optimizing, 57

recommended resume behaviors, 58
file associations, 967-968

auto-launching apps via file associations,
968

launching files, 973-975
receiving file launch requests, 970-973
registering file associations, 968-970
user experience, effects on, 976
file transfers (background), 1043

app termination/resubscription to transfer
events, 1048

sample code, 1048-1049
backing up local databases, 1052-1055
restoring local databases, 1055-1058

retrieving user Windows Live Anonymous
IDs, 1050-1052

URL rerouting with WCF services,
1049-1050

transfer requests, 1043-1047

financial information, storing in Wallet hub, 773
introduction to, 774-775
payment instruments, storing in, 775-777

Payment Instruments sample app,
777-789

updating payment instruments, 789-792

required capabilities for wallet integration,
775

Fit to Screen button (Windows Phone Emulator),
5

flat lists, 305-306

flexible layouts via WrapPanel component
(Toolkit), 297

child element spacing, 298
ListBox, using with, 300-302
sample code, 298-299

flick gestures (touch input), 377-378, 384-386
flip tiles, 390, 394-395
floating menu (Windows Phone Emulator), 4
fonts (text)

assigning, 164

bold text, 159-160

built-in fonts, 160-162

colored fonts, 160

embedding fonts, 162-164

language support, 160-161

OpenType fonts, 159

properties of, 158-160

Segoe font, 160

selecting, 159

sizing, 159-160

stretching, 159

styling, 159

third-party fonts, 162-164

weight adjustments, 159-160

Windows Font Preview tool, 163
foreground apps

background audio playback, controlling,
1070-1075

background file transfers, 1043
multitasking and, 997
Mutex and shared resources, 1038-1041

foreign languages/cultures. See international-
ization
Frame Rate Counter, 20-21

Frame Rate Graph (Windows Phone Application
Analysis tool), 25

FrameworkElement class, 116

full-screen, switching application bar to,
244-246

full-screen picker pages, customizing, 282-286

G

game loops, controlling via GameTimer class,
202-203

update intervals, controlling, 203

XNA environment initialization, 203-204
GamelnviteTask, choosers/launchers and, 453
games, inviting players to, 453

GC Events (Windows Phone Application Analysis
tool), 26

geographic location API, 563
DesiredAccuracy property, 565
DesiredAccuracylnMeters property, 565
Geolocator class, 563

location simulator sample code, 571-575
testing, 570-571
monitoring position changes, 566
MovementThreshold property, 565-566
PositionChanged events, 566-584
retrieving current location, 563-565
StatusChanged events, 567-568

geographically aware apps. See location aware
apps

gesture events (touch input), 357-358,
368-369

double tap gestures, 370

GestureBegin events, 380-381

GestureCompleted events, 380-381

hold gestures, 371-372

tap gestures, 369-370
globalization, 613-614
graphics/animation

page orientation

animating entire pages when orientation
changes, 108-110

animating page elements when orienta-
tion changes, 106-107

page transitions, 110-114
XAML
composition thread, 18-20

iCommand interface 1097

Ul thread, 18-20
group validation, 818-820, 844-847
grouped lists, 307
Marketplace app list sample, 307-314
user contacts list sample, 316-323
gyroscope sensors, 525, 548-552

H

headers

control headers, adding to TimePicker com-
ponent (Toolkit), 281

Pivot headers, 331-332
heading, adjusting in Map control, 593
helium voice app, creating, 692-698
hiding

application bar, 233

Expressions Editor (UTF), 752-753

high-resolution images, viewing via
MultiScalelmage element, 207-208

Deep Zoom technology, 207-217

Deep Zoom Viewer sample code,
212-217

image creation, 208-209
image tiling, 208
MultiScalelmage API, 210-212
hold gestures (touch input), 371-372, 375, 382
HTTP services, 850
Hyperlink button, 124

iCommand interface, 38
CanExecute (object) method, 38
CanExecuteChanged method, 38
Commanding.Event property, 39

How can we make this index more useful? Email us at indexes@samspublishing.com

1098 iCommand interface

DelegateCommand constructor, 38-39
Execute (object) method, 38
playCommand constructor, 38-39

Icon Button Tray (application bar), minimizing,
234

icon buttons (application bar)
built-in application bar
customizing, 234-235
disabling, 235
custom application bar
icon buttons, 237-238
minimizing Icon Button Tray, 243
iconic tiles, 390, 395-396
ID_CAP_NETWORK capability, 16
ID_HW_FFCCAMERA capability, 16

Image Loads (Windows Phone Application
Analysis tool), 26

images

background images (lock screen), setting,
399-401

caching, Bookshop sample app, 93-95
cameras, 655

lenses, 686-689

PhotoCamera class, 655-678

Silverlight webcam API, 655-656,
678-685

displaying, 184-185

drawing surface, presenting via InkPresenter
element, 186-193

high-resolution images, viewing via
MultiScalelmage element, 207-208

Deep Zoom image creation, 208-209
Deep Zoom technology, 207-217

Deep Zoom Viewer sample code,
212-217

image tiling, 208

MultiScalelmage API, 210-212
icon buttons (application bar), 235-236
live tiles, 390

localizability (internationalization), 620-621,
625-629

Photo Hub, selecting photos from, 454-459
picture viewer, 631
edge tracing extras application, 634-645
photo extras applications, 631-645
photo share applications, 631, 645-654
photo upload share application, 647-654
pixel density/picture quality, 632
sharing, 460-461
sizing, 185-186
stock ticker application example, 520-521
taking photos, 450-452

thumbnail images, viewing in PhotoCamera
app, 672-678

IMessageService interface, 41-44

InkPresenter element, drawing surfaces,
186-193

INPC (INotifyPropertyChanged) class, MVVM
property change notification

alternative implementation approach, 35-37
traditional implementation approach, 33-35
in-place selection in Toolkit, 255-258
input validation, 805
asynchronous validation, 824
decoupling validation, 830
example of, 836-840
group validation, 844-847

INotifyDataErrorinfo interface, 824,
842-844

provisioning for, 827-830

reusable NotifyDataErrorinfo interface,
825-827

validating all properties, 833-836
validating changing properties, 830-833

ValidationSummary control, adding
INotifyDataErrorinfo support for,
842-844

composite validation
decoupling validation, 830

example of, 836-840
group validation, 844-847

INotifyDataErrorinfo interface, 824,
842-844

provisioning for, 827-830

reusable NotifyDataErrorinfo interface,
825-827

validating all properties, 833-836
validating changing properties, 830-833

ValidationSummary control, adding
INotifyDataErrorinfo support for,
842-844

group validation, 818-820, 844-847
property setters, 806-809

binding errors, 809-810

critical exceptions, 809

validation class, 809

validation limitations, 823-824
semantic validation, 806
synchronous validation

decoupling validation, 830

provisioning for, 827-828

validating changing properties, 830-833
syntactic validation, 806
validation visual states, defining, 810-815

displaying error details, 820-823

group validation, 818-820

property setter validation limitations,
823-824

validating textboxes as user types,
815-818

inputting text via TextBox control, 165
input scope, 168-174
IntelliSense support, 168
SIP, 165-168
word prediction, 168
installing
Toolkit, 254
Windows Phone SDK 8.0, 2

item visibility, custom application bar

1099

integration testing, 739
IntelliSense text support, 168

Intermediate Surface Counter field (Frame Rate
Counter), 22

internationalization, 613

defining, 613

globalization, 613-614

localizability
defining, 614
dynamic localizability, 618-620
images, 620-621, 625-629
resx files, 614-618, 620-630
RTL support, 629-630
sample code, 621-630
text, 625-629

Ul updates when cultures change,
618-620

speech-driven apps, 721-723
text support, 160-161
Internet
links, sending to contacts, 444
web pages, navigating, 446-447
web searches, 442-443
invitations (games), 453
loC (Inversion of Control), 765-767

IskeyboardDeployed property (DeviceStatus
class), 28

IskeyboardPresent property (DeviceStatus
class), 28

isolated storage
IsolatedStorageSettings class, 889-890
local databases, deploying to, 943-946
SQL CE database files, 940-942
storing/browsing web content in, 225-228

Windows Phone SDK Isolated Storage
Explorer, 938-939

WP7 Isolated Storage Explorer, 939-940
item visibility, custom application bar, 250

How can we make this index more useful? Email us at indexes@samspublishing.com

1100 items controls

items controls
ComboBox control, 142
ListBox control, 140-142
Selector class members, 139
Iltems layer (Panorama control), 349

itineraries, displaying via visual states in Map
control, 604-610

JavaScript, web page behaviors, 222-223

KeyboardDeployedChanged event (DeviceStatus
class), 29-30

keyboards, SIP layouts, 165-166

languages (internationalization), 613
globalization, 613-614
internationalization, 613
localizability

defining, 614

dynamic localizability, 618-620
images, 620-621, 625-629
resx files, 614-618, 620-630
RTL support, 629-630

sample code, 621-630

text, 625-629

Ul updates when cultures change,
618-620

speech-driven apps, 721-723
text support, 160-161
launchers, 405, 408-409, 484

AddressChooserTask, 447-449
API overview, 405-406
appointments, 464

retrieving, 478-483

saving, 483-484
automated testing, 769-771
BingMapsDirectionTask, 409-412

BingMapsTask, 413
CameraCaptureTask, 450-452

connection setting pages, navigating to,
413-414

ConnectionSettingsTask, 413-414
contacts, 464

converting stored contacts to/from
vCards, 478

deleting changes to stored contacts,
AT77-478

retrieving, 464-469
saving to contact lists, 449-450
selecting addresses, 447-449

storing in Custom Contacts Store,
469-477

driving directions, retrieving, 409-412
email

composing, 417-418

saving contact addresses, 418-421

selecting email addresses, 414-417
EmailAddressChooserTask, 414-417
EmailComposeTask, 417-418
games, inviting players to, 453
images, sharing, 460-461
links, sending to contacts, 444
map locations, displaying, 413
Marketplace

allowing app user reviews, 426

launching apps from, 425-426

navigating to apps in, 422-425

searching, 427-428
MarketplaceDetailTask, 422-425
MarketplaceHubTask, 425-426
MarketplaceReviewTask, 426
MarketplaceSearchTask, 427-428
media files, playing, 428-435
MediaPlayerLauncher, 428-435
phone calls, placing, 435-436

phone numbers

saving, 439-442

selecting, 437-438
PhoneCallTask, 435-436
PhoneNumberChooserTask, 437-438
Photo Hub, selecting photos from, 454-459
PhotoChooserTask, 454-459
photos, taking, 450-452
ringtones, creating, 461-463
SaveContactTask, 449-450
SaveEmailAddressTask, 418-421
SavePhoneNumberTask, 439-442
SaveRingtoneTask, 461-463
SearchTask, 442-443
ShareLinkTask, 444
ShareMediaTask, 460-461
ShareStatusTask, 445
SMS, composing, 445
SmsComposeTask, 445

status updates, posting to social networks,
445

web pages, navigating, 446-447
web searches, 442-443
WebBrowserTask, 446-447

launching events (life cycle of apps), 50-51

layouts (flexible) via WrapPanel component
(Toolkit)

child element spacing, 298

flexible layouts via WrapPanel component
(Toolkit), 297

ListBox, using with, 300-302
sample code, 298-299
lenses (cameras), 686-687
app registration, 687-689
icons, creating, 689
life cycle of apps, 49
events
deactivating, 52-53
launching, 50-51

live tiles 1101

subscribing to, 51

tombstoning, 52-53
light (low), Map control adjustments, 588-589
LineBreak objects, TextBlock element, 155-158
links, sending to contacts, 444
LINQ

maps and, 597

OData and, 855-856
LINQ to SQL

concurrency, 962-965

inheritance hierarchies, mapping, 958-962

local databases, data storage and, 905,
908

code-first data model creation, 909-910
platform differences, 909
queries, viewing via custom log, 948-950

list grammars (speech recognition), 701-710,
731-732

ListBox control, 140-142
ListPicker component (Toolkit), 255-258
lists
flat lists, 305-306
grouped lists, 307
Marketplace app list sample, 307-314
user contacts list sample, 316-323
LongListSelector, 303-304
live tiles, 389
animation, 391
changing templates, 391
configuring, 390
cycle tiles, 390-394
flip tiles, 390, 394-395
iconic tiles, 390, 395-396
images, 390
large tiles, 390
lock screen customization, 397-399
background images, 399-401
creating lock screen icons, 403-404
notification text, 401-403

How can we make this index more useful? Email us at indexes@samspublishing.com

1102 live tiles

resolution, 391

schedules, updating tile notifications,
504-505

sizing, 390-391
sound, 391

Start Experience (Windows Phone Emulator),
389-390

updating, 391, 396-397

local databases, data storage and, 905

database schemas
updating, 951-957
versioning, 957-958
viewing, 937-942
deploying databases, 906-907

isolated storage, deploying databases to,
943-946

LINQ to SQL, 905, 908
code-first data model creation, 909-910
concurrency, 962-965

mapping inheritance hierarchies,
958-962

platform differences, 909

viewing queries via custom log, 948-950
navigation services, abstracting, 946-948
SQL Server Compact, 906

SqglMetal and database-first data model cre-
ation, 942-943

Twitter timeline viewer example, 910-912
Association attribute, 917-918
Column attribute, 912-914
connection strings, 920-924
database utilities, 919-920

leveraging custom Twitter services,
924-929

multiplicity, 917-918

one-to-many relationships, 917-918
tracking data context changes, 915
TwitterDataContext class, 918-919
TwitterUser class, 915-917

user credentials, gathering in Sign In
view, 929-932

viewing tweets in Timeline view, 932-937
XAP files, 906-907
local folder, state preservation and, 881-882
.NET Isolated Storage API, 883-886

WinPRT Windows Storage API, 883, 887-889

localizability

defining, 614

dynamic localizability, 618-620

images, 620-621, 625-629

resx files, 614-618
image localization, 620-621
localizability sample code, 621-630

RTL support, 629-630

sample code, 621-630

text, 625-629

Ul updates when cultures change, 618-620

location aware apps. See also maps, 559

A-GPS and, 560-561

architecture of, 562-563

background location tracking, 569-570

cell tower triangulation and, 561-562

determining location, 559-562

geographic location API, 563
DesiredAccuracy property, 565
DesiredAccuracylnMeters property, 565
Geolocator class, 563, 570-575
monitoring position changes, 566
MovementThreshold property, 565-566
PositionChanged events, 566-584
retrieving current location, 563-565
StatusChanged events, 567-568
hardware layer, 563

location simulator, 570-575

location viewer sample code, 575
civic address resolution, 580

displaying location via GeolLocationView
page, 577-579

GeolocationViewModel class, 575-577
managed layer, 563
native code layer, 563
Rx and, 580-584
Wi-Fi triangulation and, 562
location tracking via Map control, 594-596
lock screen
customizing via live tiles, 397-399
background images, 399-401
creating lock screen icons, 403-404
notification text, 401-403
running apps under, 63-64
LockScreenService class, 64-66
LockScreenViewModel class, 66-67

Windows Phone Emulator, engaging Lock
screen within, 63

LockablePivot control (Toolkit), 355
LongListSelector, 303-304
flat lists, 305-306
grouped lists, 307
Marketplace app list sample, 307-314
user contacts list sample, 316-323
visual structure of, 304
looping lists, 287-291
LoopingSelector component (Toolkit), 287-291

low light conditions, adjusting Map control for,
588-589

loyalty cards, Wallet hub and, 773
introduction to, 774-775
membership information

storing, 792-796
updating, 802-804

required capabilities for wallet integration,
775

Marketplace 1103

M

MainPage (XAML apps), 6, 9-11
managed storage, state preservation and, 882

manipulation events (touch input), 357,
363-367

maps. See also location aware apps, 559
LINQ and, 597
Map control, 585-587
Application ID, 587
AuthenticationToken, 587

calculating shortest routes between two
points, 598-601

cartographic modes, 589-590
centering to current location, 590-591

customizing page elements via visual
states, 604-610

heading adjustments, 593
location tracking, 594-596
low light conditions, 588-589
overlaying content, 596-597
panning/zooming, 590

pitch adjustments, 593
route calculator, 601-602
sample Map View, 587-588

searching for routes via
RouteSearchView, 602-604

setting viewable area of map, 592-593
showing directions via Maps app, 611

showing locations via Maps app,
610-611

Maps app
downloading maps, 612
showing directions via, 611
showing locations via, 413, 610-611
Marketplace
apps
allowing user reviews, 426
launching, 425-426

How can we make this index more useful? Email us at indexes@samspublishing.com

1104 Marketplace

navigating to, 422-425
searching, 427-428

Marketplace Test Kit, determining app capabili-
ties via, 17

MarketplaceDetailTask, choosers/launchers
and, 422-425

MarketplaceHubTask, choosers/launchers and,
425-426

MarketplaceReviewTask, choosers/launchers
and, 426

MarketplaceSearchTask, choosers/launchers
and, 427-428

media files, playing, 428-435
media library, saving/deleting music, 205-207
MediaElement, playing audio/video, 193-194
controlling audio output, 194
sample code, 194-200
streaming content, 194
XNA SoundEffect class, 201-202

MediaPlayerLauncher, choosers/launchers and,
428-435

memberships (club), Wallet hub and, 773
introduction to, 774-775
membership information
storing, 792-796
updating, 802-804

required capabilities for wallet integration,
775

memory usage
determining (apps), 27-29

Memory Usage MB Graph (Windows Phone
Application Analysis tool), 26

menu items (application bar)

built-in application bar, customizing,
234-235

custom application bar, 237-238
runtime, retrieving at, 236-237

MessageService property and IMessageService
interface, 41-44

metadata, UTF (Unit Test Framework) and,
745-751

Metro. See Microsoft Design Language
microphone, 691
helium voice app, creating, 692-698
recording audio, 691-692
Microsoft Design Language, 153

Microsoft Expression Blend for Windows Phone,
2

Microsoft.Phone.Info.DeviceStatus class. See
DeviceStatus class

minimizing
Icon Button Tray (application bar), 243
Windows Phone Emulator window, 4-5
motion sensors, 525, 552-557
mouse events (touch input), 357-359, 361-362

MPNS (Microsoft Push Notification Service),
487-488, 509-511

MSIL (Microsoft Intermediate Language), XAP
files, 16-17

multiline text, 155-158

multiple languages/cultures (internationaliza-
tion), 613

globalization, 613-614
internationalization, 613
localizability
defining, 614
dynamic localizability, 618-620
images, 620-621, 625-629
resx files, 614-618, 620-630
RTL support, 629-630
sample code, 621-630
text, 625-629

Ul updates when cultures change,
618-620

speech-driven apps, 721-723
text support, 160-161
MultiScalelmage API, 210-212

MultiScalelmage element, viewing high-resolu-
tion images, 207-208

Deep Zoom technology, 207-217

Deep Zoom Viewer sample code,
212-217

image creation, 208-209
image tiling, 208
MultiScalelmage API, 210-212
multitasking, background processing and, 997

music, saving to/deleting from media library,
205-207

Mutex, shared resources and, 1038-1041
MVVM (Model-View-ViewModel) pattern, 31

AutoCompleteBox component (Toolkit) and,
260-264

ContextMenu component (Toolkit) and,
273-275

implementing, 31-32
property change notification, 33

INPC implementation, alternative
approach, 35-37

INPC implementation, traditional
approach, 33-35

ViewModelBase class, 32

N

navigating pages, 67-69

canceling, 77

cross-page communication, 77-78

handling, 76

hardware Back button, 79-80

navigation history stacks, 72-73

NavigationService property, 75
backward navigation, 76
forward navigation, 76

page redirection, 78-79

query strings, passing page arguments via,
71-73

unmapped URI, 69

external navigation via button control,
69-70

notifications (push) 1105

external navigation via HyperlinkButton
control, 70

hosting web content within apps, 70-71
internal URI, 69
URI mapping, 73-74
navigation history stacks, 72-73
.NET Isolated Storage API, 883-885

reading/writing data to isolated storage,
884-886

serialization performance, 886-887
network connectivity, monitoring, 850-855
network services, 849

Data Sense, monitoring data usage via,
877-879

hosting, 850

HTTP services, 850

network connectivity, monitoring, 850-855
OData, 850, 855

eBay consumer application build,
862-874

EbaySearchView page, 867-871
EbaySearchViewModel class, 864-867
extending OData entity classes, 874

fetching data when user scrolls to the
end of a list, 871-873

generating proxies, 858
LINQ and, 855-856
query options, 858-860
ScrollViewerMonitor class, 871-873
URI structure, 856-858
using proxies, 860-861
wrapper creation, 862-864
REST services, 850
Simulation Dashboard, 876
SOAP services, 850
NFC, sharing images, 460-461

notification text, lock screen customization,
401-403

notifications (push), 485
benefits of, 486-487

How can we make this index more useful? Email us at indexes@samspublishing.com

1106 notifications (push)

cloud service authentication, 511

enabling, 489

MPNS and, 487-488, 509-511

notification classes, 509-511

power management and, 493-494

raw notifications, 486, 505
notification classes, 510-511

notifications in HttpWebResponse, iden-
tifying, 509

receiving, 508-509
sending, 505-507

stock ticker application example,
521-523

sending, 495
SLA and, 488
stock ticker application example, 511-524
subscribing to, 489-490
binding to shell, 490-491
channel errors, handling, 492-493
HttpNotificationChannel events, 491-492
tile notifications, 486, 500-501
notification classes, 510-511
sending, 501-504
stock ticker application example, 520

updating via shell tile schedules,
504-505

toast notifications, 485, 495-496
notification classes, 510-511
receiving, 496-497
sending, 497-500
stock ticker application example, 520

Windows Phone Marketplace requirements,
489

notifications (scheduled), 998-1001
alarm registration, 1001
alarm sample, 1002-1004
reminder registration, 1005-1006
reminder sample, 1006-1010

numbers (phone)
saving, 439-442
selecting, 437-438

0]

OData, 850, 855
eBay consumer application, building, 862
EbaySearchView page, 867-871
EbaySearchViewModel class, 864-867
extending OData entity classes, 874

fetching data when user scrolls to the
end of a list, 871-873

OData wrapper creation, 862-864
ScrollViewerMonitor class, 871-873
LINQ and, 855-856
proxies
generating, 858
using, 860-861
query options, 858-860
URI structure, 856-858
opacity
application bar, changing in
built-in application bar, 234
custom application bar, 244
XAML element visibility and performance, 20
OpenType fonts, 159
orientation
page orientation

animating entire pages when orientation
changes, 108-110

animating page elements when orienta-
tion changes, 106-107

PhoneApplicationPage class, 99-104
setting at runtime, 105-106
Panoramaltem control, 350

Windows Phone Emulator display, changing,
4-5

P

page navigation. See also Pivot control;
Panorama control, 67-69, 325

canceling, 77

cross-page communication, 77-78

handling, 76

hardware Back button, 79-80

navigation history stacks, 72-73

NavigationService property, 75
backward navigation, 76
forward navigation, 76

page redirection, 78-79

query strings, passing page arguments via,
71-73

unmapped URI, 69

external navigation via button control,
69-70

external navigation via HyperlinkButton
control, 70

hosting web content within apps, 70-71
internal URI, 69
URI mapping, 73-74
page orientation
animating

entire pages when orientation changes,
108-110

page elements when orientation
changes, 106-107

PhoneApplicationPage class, 99-100
OrientationChanged event, 100-102

PhoneApplicationPage orientation prop-
erty, 102-104

runtime, setting at, 105-106

page transitions (animated), Windows Phone
Toolkit, 110-114

panning/zooming via Map control, 590

Panorama control. See also Pivot control; page
navigation, 325, 327-328, 347

Background layer, 348-349

performance 1107

components of, 347-348
Iltems layer, 349
Panoramaltem control, 349-350

Pivot control, differences and similarities,
326

sample code, 350-354

style assumptions, 326

things to avoid, 355

Title layer, 349

Windows Phone 8 performance, 329

Windows Phone FCL, placement within, 328
PasswordBox element, 154

passwords, receiving via PasswordBox control,
175-176

payments, making via Wallet hub, 773
introduction to, 774-775
payment instruments, storing in, 775-777

Payment Instruments sample app,
777-789

updating payment instruments, 789-792

required capabilities for wallet integration,
775

performance

apps, Windows Phone Marketplace require-
ments, 21

Frame Rate Counter, 20-21

Windows Phone 8, Pivot and Panorama con-
trols, 329

Windows Phone Application Analysis tool,
21, 26

CPU Usage Graph, 25

execution profiling, 21-23

External Events view, 25

Frame Rate Graph, 25

GC Events, 26

Image Loads, 26

launching, 21-23

Memory Usage MB Graph, 26
Performance Warnings view, 26-27
Storyboards, 26

How can we make this index more useful? Email us at indexes@samspublishing.com

1108 performance

viewing performance metrics, 24

XAML element visibility and performance,
19-20

Performance Warnings view (Windows Phone
Application Analysis tool), 26-27

periodic tasks, 1013-1014

persistent application state. See also transient
application state, 49, 56, 97

phone calls, placing, 435-436
phone numbers

saving, 439-442

selecting, 437-438

PhoneApplicationPage class, page orientation,
99-100

OrientationChanged event, 100-102

PhoneApplicationPage orientation property,
102-104

PhoneApplicationPage.State dictionary, state
preservation and, 49

PhoneCallTask, choosers/launchers and,
435-436

PhoneNumberChooserTask, choosers/launch-
ers and, 437-438

Photo Hub, selecting photos from, 454-459

PhotoChooserTask, choosers/launchers and,
454-459

photos
cameras, 655
lenses, 686-689
PhotoCamera class, 655-656, 678

Silverlight webcam API, 655-656,
678-685

picture viewer, 631
edge tracing extras application, 634-645
photo extras applications, 631-645
photo share applications, 631, 645-654
photo upload share application, 647-654
pixel density/picture quality, 632

sharing, 460-461

taking, 450-452

thumbnail photos, viewing in PhotoCamera
app, 672-678

phrase list grammars (speech recognition),
701-710, 731-732

picker pages, customizing, 282-286
picture viewer, 631
photo extras applications, 631
creating, 632-645
edge tracing extras application, 634-645
photo share applications, 631
creating, 645-654
photo upload share application, 647-654
pixel density/picture quality, 632

pinch gestures (touch input), 378-380,
383-384

pitch, adjusting in Map control, 593

Pivot control. See also Panorama control; page
navigation, 325, 327, 329

application bars, hosting multiple, 333-343
components of, 331-332

load events, 333

LockablePivot control (Toolkit), 355

Panorama control, differences and similari-
ties, 326

placing Pivot on a page, 329-331

populating via data bound collections,
344-347

setting active Pivotltem presenters, 332
style assumptions, 326
things to avoid, 355

Visual Studio New Project dialog, creating
Pivot applications in, 331

Windows Phone 8 performance, 329
Windows Phone FCL, placement within, 328

pixel density/picture quality (picture viewer),
632

playCommand constructor (iCommand inter-
face), 38-39

position changes, monitoring (location aware
apps), 566-584

power management, push notifications and,
493-494

PowerSource property (DeviceStatus class),
28, 30

PowerSourceChanged event (DeviceStatus
class), 29-30

preserving app state/settings, 47-48

automatic state preservation system, build-
ing, 890-893

binary serialization, 898-901

creating property accessor delegates,
902-903

customizing ViewModel state preserva-
tion, 892-893

identifying stateful ViewModels, 893-898
Silverlight Serializer and, 898-901

unwinding property lambda expressions,
901-902

IsolatedStorageSettings class, 889-890
local folder, 881-882

managed storage, 882

.NET Isolated Storage API, 883-885

reading/writing data to isolated storage,
884-886

serialization performance, 886-887
WinPRT Windows Storage API, 883, 887-888
application settings, 888-889
measuring available free space, 888
serialization requirements, 889
previewing fonts (text), 163

product lists, displaying (Bookshop sample
app), 86-92

ProductsView class, Bookstore sample app,
85-86

ProductsViewModel class, Bookshop sample
app, 84-85

progress indicators, 145-151

ProgressBar control, 144

property change notification (MVVM), 33-37
protocol associations, 967-968

push notifications 1109

auto-launching apps via protocol associa-
tions, 977

launching protocol URI, 979-980

receiving protocol launch requests,
977-979

registering protocol associations, 977
reserved protocol names, 981
user experience, effects on, 976
purchases, making via Wallet hub, 773
introduction to, 774-775
payment instruments, storing in, 775-777

Payment Instruments sample app,
777-789

updating payment instruments, 789-792

required capabilities for wallet integration,
775

push notifications, 485
benefits of, 486-487
cloud service authentication, 511
enabling, 489
MPNS and, 487-488, 509-511
notification classes, 509-511
power management and, 493-494
raw notifications, 486, 505

notification classes, 510-511

notifications in HttpWebResponse, iden-
tifying, 509

receiving, 508-509
sending, 505-507

stock ticker application example,
521-523

sending, 495
SLA and, 488
stock ticker application example, 511-524
subscribing to, 489-490
binding to shell, 490-491
channel errors, handling, 492-493
HttpNotificationChannel events, 491-492

How can we make this index more useful? Email us at indexes@samspublishing.com

1110 push notifications

tile notifications, 486, 500-501
notification classes, 510-511
sending, 501-504
stock ticker application example, 520

updating via shell tile schedules,
504-505

toast notifications, 485, 495-496
notification classes, 510-511
receiving, 496-497
sending, 497-500
stock ticker application example, 520

Windows Phone Marketplace requirements,
489

Q-R

query strings, passing page arguments via
(page navigation), 71-73

quick cards, search integration and, 983-984
application manifests, 985-987
captions, customizing, 987-989

landing pages, creating to display quick card
information, 994-995

quick card target pages, defining, 989-994

Radio button, 128-131

range controls
progress indicators, 145-151
ProgressBar control, 144
RangeBase class properties, 143-144
scrollbars, 152
sliders, 151-152

raw notifications, 486, 505
notification classes, 510-511
receiving, 508-509
sending, 505-507
stock ticker application example, 521-523

reading device information. See DeviceStatus
class

ready-to-use grammars (speech recognition),
701-703

recording audio, 691-692
redirecting pages, page navigation, 78-79
reminders (scheduled notifications)

registering, 1005-1006

sample code, 1006-1010
Repeat button, 124-126
resolution

live tiles, 391

Windows Phone Emulator, changing settings

in, 5

resource intensive tasks, 1014
REST services, 850
restoring transient state, 55
retitling apps, Windows Phone Emulator, 6
retrieving

appointments, 478-483

contacts, 464-469

device information. See DeviceStatus class
reusing code, IMessageService interface, 41-44
reviews (apps), allowing in Marketplace, 426

rich content, displaying via RichTextBox control,
176-179

ringtones, creating, 461-463

Rotate Orientation button (Windows Phone
Emulator), 5

routes (maps), calculating

displaying via visual states in Map control,
604-610

route calculator, 601-602

searching for routes via RouteSearchView,
602-604

shortest routes between two points,
598-601

RTL, localizability support, 629-630
Run objects, TextBlock element, 155-158
Rx, 580

S

SaveContactTask, choosers/launchers and,
449-450

SaveEmailAddressTask, choosers/launchers
and, 418-421

SavePhoneNumberTask, choosers/launchers
and, 439-442

SaveRingtoneTask, choosers/launchers and,
461-463

saving

appointments, 483-484

contacts
contact lists, 449-450
Custom Contacts Store, 469-477
email addresses, 418-421

music to media library, 205

phone numbers, 439-442

transient state, 53-54

scaling, Fit to Screen button (Windows Phone
Emulator display window), 5

scheduled notifications, 998-1001
alarm registration, 1001
alarm sample, 1002-1004
reminder registration, 1005-1006
reminder sample, 1006-1010
scheduled tasks, 1010-1011, 1014-1018
API limitations, 1036-1038
background agents, 1011-1014
debugging, 1025
periodic tasks, 1013-1014
registering, 1018-1019
resource intensive tasks, 1014
ScheduledTaskAgent, 1011-1012
to-do list example, 1019-1024

creating to-do item shell tiles,
1028-1029

debugging scheduled tasks, 1025
editing existing to-do items, 1030-1035

ShareLinkTask, choosers/launchers and 1111

saving to-do items, 1029-1030
todoListView XAML, 1025-1028

updating tiles via Scheduled Task Agent,
1035-1036

Screen Fill Rate Counter field (Frame Rate
Counter), 22

scrollbars, 152
search integration, 983
App Instant Answer, 996
configuring, 985
application manifests, 985-987

creating landing pages to display quick
card information, 994-995

customizing captions, 987-989
defining quick card target page, 989-994
searching
Marketplace, 427-428
web, 442-443
SearchTask, choosers/launchers and, 442-443
Segoe font (text), 159
Selector class, items controls, 139
semantic validation, 806
sensors
accelerometers, 525
Accelerometer class, 528-529
calibrating, 533-536
shake detection, 537-539

simulating acceleration via emulator,
529-530

smoothing readings, 530-533
compass sensors, 525, 539-545
calibrating, 546-548
compass orientation, 545-546
gyroscope sensors, 525, 548-552
motion sensors, 525, 552-557
overview of, 525-527
shake detection, accelerometers and, 537-539
ShareLinkTask, choosers/launchers and, 444

How can we make this index more useful? Email us at indexes@samspublishing.com

1112 ShareMediaTask, choosers/launchers and

ShareMediaTask, choosers/launchers and,
460-461

ShareStatusTask, choosers/launchers and,
445

sharing

images, 460-461

links with contacts, 444

status updates in social networks, 445
shell tiles. See live tiles

Show Resolution Settings button (Windows
Phone Emulator), 5

Silverlight
Deep Zoom technology, 207-217

Silverlight Serializer, building an automatic

state preservation system, 898-901

Silverlight webcam API, 655-656, 678-685

Windows Phone FCL

Silverlight controls not in FCL, 118-119

unsupported Silverlight controls, 119
XAML, 1
XAML plus .NET, 1
Simulation Dashboard, 63, 876
SIP (Software Input Panel), 165
dimensions of, 165
dismissing programmatically, 167-168
keyboard layouts, 165-166
opening programmatically, 165-167
sizing
buttons, 121-123
images, 185-186
live tiles, 390-391
text, 159-160

touch input sizing/spacing constraints, 387

Windows Phone Emulator displays, 4

SLA (Service-Level Agreements), push notifica-

tions and, 488
slider controls, 151-152
SMS, composing, 445

SmsComposeTask, choosers/launchers and,

445

SOAP services, 850

social networks, posting status updates to,
445

Solution Explorer, 3
sound
background audio playback, 1059
audio streaming agents, 1076-1079

AudioPlayerAgent class, 1060,
1064-1075

AudioStreamingAgent class, 1060
AudioTrack class, 1061

BackgroundAudioPlayer class,
1060-1061

controlling playback from foreground app,
1070-1075

creating custom audio player agent,
1061-1064

overview of, 1060

playing assembly resources via
MediaStreamSource, 1078-1079

live tiles, 391
media files, playing, 428-435
ringtones, creating, 461-463
sound effects, 201-202
special offers/deals, Wallet hub and, 796-802
speech-driven apps, 699
speech recognition, 700-701
custom speech recognition Ul, 718-721
dictation grammars, 701-703
internationalization, 721-723
list grammars, 701-710, 731-732
phrase list grammars, 701-710, 731-732
ready-to-use grammars, 701-703
speech recognizer settings, 717-718
SRGS grammars, 702, 710-717
web search grammars, 701-703
XML grammars, 701-702, 710-717
TTS, 732
selecting speaking voice, 732-733
SSML files, 733-735

voice commands, launching apps via,
723-724

installing VCD files, 726-730

updating phrase lists in VCD files,
731-732

VCD file structure, 724-725
Voice Paint app, creating, 703-721
splash screens, 80-83

SQL CE database files, viewing/modifying,
940-942

SQL Server Compact, local databases and data
storage, 906

SqlMetal, database-first data model creation,
942-943

SRGS grammars (speech recognition), 702,
710-717

SSML (Speech Synthesis Markup Language)
files, 733-735

Start Experience (Windows Phone Emulator), 6,
389-390

state preservation, 47-48

automatic state preservation system, build-
ing, 890-893

binary serialization, 898-901

creating property accessor delegates,
902-903

customizing ViewModel state preserva-
tion, 892-893

identifying stateful ViewModels, 893-898
Silverlight Serializer and, 898-901

unwinding property lambda expressions,
901-902

IsolatedStorageSettings class, 889-890
local folder, 881-882
.NET Isolated Storage API, 883-886

WinPRT Windows Storage API, 883,
887-889

managed storage, 882
.NET Isolated Storage API, 883-885

reading/writing data to isolated storage,
884-886

serialization performance, 886-887

storage 1113

WinPRT Windows Storage API, 883, 887-888
application settings, 888-889
measuring available free space, 888
serialization requirements, 889

status updates, posting to social networks,
445

stock ticker application example, push notifica-
tions and, 511-524

storage
isolated storage
deploying databases to, 943-946
IsolatedStorageSettings class, 889-890
.NET Isolated Storage API, 883-886
SQL CE database files, 940-942

storing/browsing web content in,
225-228

Windows Phone SDK Isolated Storage
Explorer, 938-939

WP7 Isolated Storage Explorer, 939-940
local databases, data storage and, 905

code-first data model creation, 909-910

deploying databases, 906-907

deploying databases to isolated storage,
943-946

LINQ to SQL, 905, 908-909, 948-950,
958-965

mapping inheritance hierarchies,
958-962

navigation services, abstracting, 946-948
SQL Server Compact, 906

SqglMetal and database-first data model
creation, 942-943

Twitter timeline viewer example, 910-937
updating database schemas, 951-957
versioning database schemas, 957-958
viewing database schemas, 937-942

viewing/modifying SQL CE database files,
940-942

Windows Phone SDK Isolated Storage
Explorer, 938-939

How can we make this index more useful? Email us at indexes@samspublishing.com

1114 storage

WP7 Isolated Storage Explorer, 939-940
XAP files, 906-907

managed storage, state preservation and,
882

WinPRT Windows Storage API, 883

Storyboards (Windows Phone Application
Analysis tool), 26

streaming audio/video content, 194
stretching text, 159
styling text, 159

submitting apps to Windows Phone
Marketplace, 15-16

subscribing to
events (life cycle of apps), 51
push notifications, 489-490
binding to shell, 490-491
channel errors, handling, 492-493
HttpNotificationChannel events, 491-492
Surface Counter field (Frame Rate Counter), 22

switch color, changing via ToggleSwitch compo-
nent (Toolkit), 297

synchronous validation

decoupling validation, 830

provisioning for, 827-828

validating changing properties, 830-833
syntactic validation, 806

T

tag expressions in UTF (Unit Test Framework),
743-744

tap and click events (buttons), 123

tap gestures (touch input), 369-370, 373-374,
382

templates (Windows Phone App), 3
terminating apps, 53
testing (automated), 738-739

ad hoc testing, 737

choosers, testing via, 769-771

integration testing, 739

loC, 765-767

launchers, testing via, 769-771

trial conditions, testing, 767-769

unit testing, 737-738

UTF, 739-740
AssemblyCleanup attribute, 746
Assemblylnitialize attribute, 745-746
assertions, 751-752
Asynchronous attribute, 749
asynchronous testing, 762-763
Bug attribute, 749-750
ClassCleanup attribute, 746
Classlnitialize attribute, 746
creating a test project, 740-741, 747
creating test classes, 741-743
Description attribute, 748
ExpectedException attribute, 749
hiding Expressions Editor, 752-753
Ignore attribute, 747-748
metadata, 745-751
Owner attribute, 748-749
Priority attribute, 750
Tag attribute, 749
tag expressions, 743-744

testable chat client app example,
754-764

TestClass attribute, 744
testing multiple assemblies, 753
testing nonpublic members, 753
TestlInitialize attribute, 747
TestMethod attribute, 745
TestProperty attribute, 747
Timeout attribute, 748
WorkltemTest class, 751
text
clipboard, placing text on, 179-180
displaying, 155

element types, understanding, 154-155
fonts

assigning, 164

bold text, 159-160

built-in fonts, 160-162

colored fonts, 160

embedding fonts, 162-164

language support, 160-161

OpenType fonts, 159

properties of, 158-160

Segoe font, 159

selecting, 159

sizing, 159-160

stretching, 159

styling, 159

third-party fonts, 162-164

weight adjustments, 159-160

Windows Font Preview tool, 163
formatting at runtime, 176-179
inputting via TextBox control, 165

input scope, 168-174

IntelliSense support, 168

SIP, 165-168

word prediction, 168
line breaks, 155-157
localizability (internationalization), 625-629
Microsoft Design Language, 153
multiline text, 155-158

notification text, lock screen customization,
401-403

PasswordBox element, 154

passwords, receiving via PasswordBox con-
trol, 175-176

rich content, displaying via RichTextBox con-
trol, 176-179

suggesting via AutoCompleteBox component
(Toolkit), 259-266

dynamically populating, 266-267
styling, 268-270

toast notifications 1115

TextBlock element, 154-155
displaying text, 155
LineBreak objects, 155-158
multiline text, 158
Run objects, 155-158

TextBox element, 154-155

TTS, 732
selecting speaking voice, 732-733
SSML files, 733-735

whitespace, handling, 155

Texture Memory Usage field (Frame Rate
Counter), 22

third-party fonts (text), 162-164

thumbnail images, viewing in PhotoCamera app,
672-678

tile notifications, 486, 500-501
notification classes, 510-511
sending, 501-504
stock ticker application example, 520
updating via shell tile schedules, 504-505
Tile options (Windows Phone Emulator), 6
tiling images, 208
TiltEffect component (Toolkit), 291-293

TimePicker/DatePicker components (Toolkit),
277-281

control headers, adding to TimePicker com-
ponent (Toolkit), 281

customizing
full-screen picker pages, 282-286
value formats, 281-282
Title layer (Panorama control), 349

titles (apps), retitling via Windows Phone
Emulator, 6

toast notifications, 485, 495-496
notification classes, 510-511
receiving, 496-497
sending, 497-500
stock ticker application example, 520

How can we make this index more useful? Email us at indexes@samspublishing.com

1116 to-do list scheduled task example

to-do list scheduled task example, 1019-1024
creating to-do item shell tiles, 1028-1029
debugging scheduled tasks, 1025
editing existing to-do items, 1030-1035
saving to-do items, 1029-1030
todoListView XAML, 1025-1028

updating tiles via Scheduled Task Agent,
1035-1036

Toggle button, 124, 126-128
ToggleSwitch component (Toolkit)
Boolean option, providing, 293-295
localizing, 295-297
switch color, changing, 297
tombstoning, 52-53, 406-408
Toolkit, 253
AutoCompleteBox component, 259-260
data binding, 270-271
defining custom filters, 264-266

dynamically populating suggested lists,
266-267

IltemFilter property, 264-266
MVVM and, 260-264
styling suggested lists, 268-270

Boolean option, providing via ToogleSwitch
component, 293-295

changing switch color, 297

localizing ToggleSwitch component,
295-297

CodePlex.com, 254
components of, 254-255
ContextMenu component
displaying, 271-273
hosting in a ListBoxltem, 275-277
MVVM and, 273-275
data binding, 270-271

DatePicker/TimePicker components,
277-281

adding control headers to TimePicker
component, 281

customizing full-screen picker pages,
282-286

customizing value formats, 281-282

flexible layouts via WrapPanel component,
297

child element spacing, 298
sample code, 298-299
using with ListBox, 300-302
in-place selection, 255-258
installing, 254
ListPicker component, 255-258
LockablePivot control, 355
looping lists, 287-291
LoopingSelector component, 287-291
suggesting text, 259-266
dynamically populating, 266-267
styling, 268-270
TiltEffect component, 291-293
Toolkit gestures (touch input), 372-373
double tap gestures, 374, 382
drag gestures, 375-377, 383
flick gestures, 377-378, 384-386
GestureBegin events, 380-381
GestureCompleted events, 380-381
hold gestures, 375, 382
pinch gestures, 378-380, 383-384
sample code, 381-386
tap gestures, 373-374, 382
touch feedback, providing, 291-293
updating, 254
ToolTip control, 138
touch feedback, providing via Toolkit, 291-293
touch input
designing for, 386
design guidelines, 387-388
sizing/spacing constraints, 387
touch components, 386-387
double tap gestures, 370, 374, 382
drag gestures, 375-377, 383

flick gestures, 377-378, 384-386
hold gestures, 371-372, 375, 382
manipulation events, 357, 363-367
mouse events, 357-359, 361-362
pinch gestures, 378-380, 383-384
tap gestures, 369-370, 373-374, 382
Toolkit gestures, 372-373
double tap gestures, 374, 382
drag gestures, 375-377, 383
flick gestures, 377-378, 384-386
GestureBegin events, 380-381
GestureCompleted events, 380-381
hold gestures, 375, 382
pinch gestures, 378-380, 383-384
sample code, 381-386
tap gestures, 373-374, 382
Touch class, 360-361
TouchPoint class, 357, 360-361
mouse events, 361-362
Touch.FrameReported events, 362-363

UlElement gesture events, 357-358,
368-369

double tap gestures, 370
hold gestures, 371-372
tap gestures, 369-370
Windows Phone Emulator, 358
tracking location via Map control, 594-596
transferring files (background), 1043

app termination/resubscription to transfer
events, 1048

sample code, 1048-1049
backing up local databases, 1052-1055
restoring local databases, 1055-1058

retrieving user Windows Live Anonymous
IDs, 1050-1052

URL rerouting with WCF services,
1049-1050

transfer requests, 1043-1047

unit testing 1117

transient application state. See also persistent
application state, 49, 97

requirements, 54-55
restoring, 55
saving, 53-54

transitions (animated), Windows Phone Toolkit,
110-114

Trigger Reminders button (Simulation
Dashboard), 877

TTS (Textto-Speech), 732
selecting speaking voice, 732-733
SSML files, 733-735

Twitter timeline viewer example (local data-
bases), 910-912

Association attribute, 917-918

Column attribute, 912-914

connection strings, 920-924

database utilities, 919-920

leveraging custom Twitter services, 924-929
multiplicity, 917-918

one-to-many relationships, 917-918
tracking data context changes, 915
TwitterDataContext class, 918-919
TwitterUser class, 915-917

user credentials, gathering in Sign In view,
929-932

viewing tweets in Timeline view, 932-937

U

Ul testing (coded), 739
Ul thread (XAML animation/graphics), 18-20

UlElement gesture events (touch input),
357-358, 368-369

double tap gestures, 370

hold gestures, 371-372

tap gestures, 369-370
unit testing, 737-738

How can we make this index more useful? Email us at indexes@samspublishing.com

1118 update intervals (XNA game loops), controlling

update intervals (XNA game loops), controlling, items controls
203 ComboBox control, 142

deals/special offers, Wallet hub and,
796-802

live tiles, 391, 396-397
local databases schemas, 951-957
localizability (internationalization), 618-620

membership information, Wallet hub and,
802-804

payment instruments in Wallet hub,
789-792

phrase lists in VCD files, 731-732

status updates, posting to social networks,
445

stock ticker application example, 523-524

tile notifications via shell tile schedules,
504-505

to-do item tiles via Scheduled Task Agent,
1035-1036

updating ListBox control, 140-142

Selector class members, 139
range controls
progress indicators, 145-151
ProgressBar control, 144
RangeBase class properties, 143-144
scrollbars, 152
sliders, 151-152
sensors
accelerometers, 525, 527-539
compass sensors, 525, 539-548
gyroscope sensors, 525, 548-552
motion sensors, 525, 552-557
overview of, 525-527
ToolTip control, 138

touch feedback, providing via Toolkit,
291-293

Toolkit, 254 _
upload share application (photos), creating, touch input
647-654 designing for, 386-388

user input (controls) double tap gestures, 370, 374, 382

buttons
Button Click mode, 124
check boxes, 131-138
Hyperlink button, 124
icon buttons (application bar), 234-237

icon buttons (custom application bar),
237-238

minimizing Icon Button Tray (application
bar), 234, 243

Radio button, 128-131

Repeat button, 124-126

sizing, 121-123

tap and click events, 123

Toggle button, 124, 126-128
content controls, 119-121

drawing surface, presenting via InkPresenter
element, 186-193

drag gestures, 375-377, 383

flick gestures, 377-378, 384-386
hold gestures, 371-372, 375, 382
manipulation events, 357, 363-367
mouse events, 357-359, 361-362
pinch gestures, 378-380, 383-384
tap gestures, 369-370, 373-374, 382
Toolkit gestures, 372-386

TouchPoint class, 357, 360-363

UlElement gesture events, 357-358,
368-372

Windows Phone Emulator, 358
validating, 805

asynchronous validation, 824-847

composite validation, 824-847

defining validation visual states, 810-824

property setters, 806-810
semantic validation, 806
syntactic validation, 806
Windows Phone FCL
control types within, 117
Silverlight controls not in FCL, 118-119
unsupported Silverlight controls, 119

User Interface Thread Frame Rate (FPS) field
(Frame Rate Counter), 22

user reviews (apps), allowing in Marketplace,
426

UTF (Unit Test Framework), 739-740
AssemblyCleanup attribute, 746
Assemblylnitialize attribute, 745-746
assertions, 751

CollectionAssert, 752
StringAssert, 752
verifying collection conditions, 752
verifying string conditions, 752
Asynchronous attribute, 749
asynchronous testing, 762-763
Bug attribute, 749-750
ClassCleanup attribute, 746
Classinitialize attribute, 746
Description attribute, 748
ExpectedException attribute, 749
Expressions Editor, hiding, 752-753
Ignore attribute, 747-748
metadata, 745-751
Owner attribute, 748-749
Priority attribute, 750
Tag attribute, 749
tag expressions, 743-744
test classes, creating, 741-743
test project, creating, 740-741
testable chat client app example, 754-758

automation peers, manipulating Ul ele-
ments at runtime, 763-764

building views, 758-760

video 1119

code driven Ul testing, 760-763
TestClass attribute, 744
TestCleanup attribute, 747
testing

multiple assemblies, 753

nonpublic members, 753
Testlnitialize attribute, 747
TestMethod attribute, 745
TestProperty attribute, 747
Timeout attribute, 748
WorkltemTest class, 751

\%

validating

arguments, 39-40

group validation, 818-820, 844-847

user input, 805
asynchronous validation, 824-847
composite validation, 824-847
defining validation visual states, 810-824
property setters, 806-810
semantic validation, 806
syntactic validation, 806

vCards, converting stored contacts to/from,
478

VCD (Voice Command Definition) files, 723-724
installing, 726-730
structure of, 724-725
updating phrase lists in, 731-732
video
media files, playing, 428-435

PhotoCamera app, adding video effects to,
668-671

playing via MediaElement, 193-194
controlling audio output, 194
sample code, 194-200

How can we make this index more useful? Email us at indexes@samspublishing.com

1120 video

streaming content, 194
XNA SoundEffect class, 201-202

Silverlight webcam API, displaying video in,
684-685

ViewModelBase class (MVVM), 32
visibility
item visibility in custom application bar, 250

XAML element visibility and performance,
19-20

visual states, customizing maps via, 604-610
Visual Studio Express 2012, 2
Add New Project dialog, 2
OData, 850
Simulation Dashboard, 63, 876
SOAP services, 850
Solution Explorer, 3
Windows Phone App template, 3
XAML
creating apps, 2-3
XAML design view, 4

Visual Studio New Project dialog, creating Pivot
applications in, 331

voice-driven apps, 699
speech recognition, 700-701

custom speech recognition Ul, 718-721
dictation grammars, 701-703
list grammars, 701-710, 731-732
phrase list grammars, 701-710, 731-732
ready-to-use grammars, 701-703
speech recognizer settings, 717-718
SRGS grammars, 702, 710-717
web search grammars, 701-703

XML grammars, 701-702, 710-717,
721-723

TTS, 732
selecting speaking voice, 732-733
SSML files, 733-735

voice commands, launching apps via,
723-724

installing VCD files, 726-730

updating phrase lists in VCD files,
731-732

VCD file structure, 724-725
Voice Paint app, creating, 703-721

W

Wallet hub, 773
deals/special offers
storing information, 796-802
updating information, 796-802
introduction to, 774-775
membership information
storing, 792-796
updating, 802-804

payment instruments, storing in, 773,
775777, 789-792

required capabilities for wallet integration,
775

WCF services
Bookshop sample app, 95-97
consuming, 44-45
web (world wide)
links, sending to contacts, 444
searching, 442-443
web content
apps, hosting within, 70-71
WebBrowser element, displaying in, 217
communicating with web pages, 218-221

injecting behavior into web pages,
222-223

monitoring/canceling navigation,
217-218

storing/browsing web content in isolated
storage, 225-228

web pages, navigating, 446-447

web search grammars (speech recognition),
701-703

WebBrowserTask, choosers/launchers and,
446-447

webcam API (Silverlight), 655-656
weight (text), adjusting, 159-160
whitespace, handling in text, 155

Wi-Fi triangulation and location aware apps,
562

Windows Font Preview tool, 163

Windows Live Anonymous IDs, retrieving (back-
ground file transfers), 1050-1052

Windows Mobile 6.5 apps, Windows Phone 8
compatibility, 1

Windows Phone 8

performance, Pivot and Panorama controls,
329

Windows Mobile 6.5 app compatibility, 1
Windows Phone App template, 3

Windows Phone Application Analysis tool, 21,
26

CPU Usage Graph, 25

execution profiling, 21-23
External Events view, 25

Frame Rate Graph, 25

GC Events, 26

Image Loads, 26

launching, 21-23

Memory Usage MB Graph, 26
performance metrics, viewing, 24
Performance Warnings view, 26-27
Storyboards, 26

Windows Phone Certification Requirements,
launching events, 50

Windows Phone Emulator, 2
Additional Tools window, opening, 4
app customization
MainPage, 6, 9-11
retitling apps, 6
App List, 6

Windows Phone FCL 1121

Application class, 7-8

Close button, 5

display orientation, changing, 4-5
display size, changing, 4

display window, scaling via Fit to Screen but-
ton, 5

floating menu, 4
launching, 3-4
Lock screen, engaging, 63
minimizing window, 4-5
resolution settings, changing, 5
Show Resolution Settings button, 5
Start Experience, 6
Tile options, 6
touch input, 358
WCF services, consuming, 44-45
XAML apps

customizing, 5-7

debugging, 3-7

running, 3-7

Windows Phone execution model. See execution
model

Windows Phone FCL
controls

Button Click mode, 124
check boxes, 131-138
ComboBox control, 142
content controls, 119-121
control types within FCL, 117
Hyperlink button, 124
items controls, 138-142
ListBox control, 140-142
progress indicators, 145-151
ProgressBar control, 144
Radio button, 128-131
range controls, 142-152
Repeat button, 124-126
scrollbars, 152

How can we make this index more useful? Email us at indexes@samspublishing.com

1122 Windows Phone FCL

Silverlight controls not in FCL, 118-119

sizing buttons, 121-123

sliders, 151-152

tap and click events, 123

Toggle button, 124, 126-128

ToolTip control, 138

unsupported Silverlight controls, 119
Panorama control placement within, 328
Pivot control placement within, 328

Windows Phone Marketplace

Marketplace Test Kit, determining app capa-

bilities via, 17

push notification requirements, 489

submitting apps to
app performance, 21
capability discovery phase, 16-17
XAP files, 15-16

Windows Phone SDK 8.0

Frame Rate Counter, 20-21

installing, 2

lock screen/app integration, 397-399
background images, 399-401
creating lock screen icons, 403-404
notification text, 401-403

Microsoft Expression Blend for Windows
Phone, 2

requirements for, 2

Simulation Dashboard, 876

support for, 2

text
formatting at runtime, 178-179
inputting via TextBox control, 165-176
placing on clipboard, 179-180

rich content, displaying via RichTextBox
control, 176-179

Visual Studio Express 2012, 2
Add New Project dialog, 2
creating XAML apps, 2-3
Solution Explorer, 3

Windows Phone App template, 3
XAML design view, 4

Windows Phone Emulator, 2, 5
App List, 6
Application class, 7-8
changing display orientation, 4-5
changing display size, 4
changing resolution settings, 5
customizing XAML apps, 5-7
debugging XAML apps, 3-7
floating menu, 4
launching, 3-4
MainPage, 6, 9-11
minimizing window, 4-5
opening Additional Tools window, 4
retitling apps, 6
running XAML apps, 3-7
scaling display window, 5
Start Experience, 6
Tile options, 6

Windows Phone SDK Isolated Storage Explorer,
938-939

Windows Phone Toolkit. See Toolkit

Windows.System.Launcher class, auto-launch-
ing apps via, 981

WinPRT Windows Storage API, 883, 837-888
application settings, 888-889
measuring available free space, 888
serialization requirements, 889

WMAppManifest.xml files, defining app capabili-
ties, 16

word prediction, inputting text, 168
WP7 Isolated Storage Explorer, 939-940

WrapPanel component (Toolkit), flexible layouts
via, 297

child element spacing, 298
ListBox, using with, 300-302
sample code, 298-299

X

XAML
Application class, 7-8
apps

creating via Visual Studio Express 2012,
2-3

customizing, 5-7, 9-11
argument validation, 39-40
graphics/animation
composition thread, 18-20
Ul thread, 18-20
iCommand interface, 38
CanExecute (object) method, 38
CanExecuteChanged method, 38
Commanding.Event property, 39
DelegateCommand constructor, 38-39
Execute (object) method, 38
playCommand constructor, 38-39
input validation, 805
asynchronous validation, 824-847
composite validation, 824-847
defining validation visual states, 810-824
property setters, 806-810
MVVM, 31
implementing, 31-32
property change natification, 33-37
ViewModelBase class, 32
opacity of elements, 20
Silverlight in, 1

todoListView XAML in to-do list scheduled
task example, 1025-1028

Toolkit, components of, 254

visibility of elements and performance,
19-20

Windows Phone Emulator
debugging apps, 3-7
running apps, 3-7

XAML design view, 4

zooming/panning via Map control 1123

XAML plus .NET, 1
XAML plus .NET, 1
XAP files, 14
Application Deployment tool, 15
components of, 14
defining, 14
local database deployments, 906-907
MSIL, 16-17
purpose of, 14
requirements for, 14

Windows Phone Marketplace, submitting
apps to, 15-16

XML grammars (speech recognition), 701-702,
710-717

XNA game loops, controlling via GameTimer
class, 202-203

update intervals, controlling, 203
XNA environment initialization, 203-204
XNA microphone API, 691
helium voice app, creating, 692-698
recording audio, 691-692
XNA SoundEffect class, 201-202

Y-Z

zooming/panning via Map control, 590

How can we make this index more useful? Email us at indexes@samspublishing.com

	Table of Contents
	Preface
	2 Fundamental Concepts in Windows Phone Development
	Understanding the Role of XAP Files
	The Windows Phone Capabilities Model
	The Threading Model for XAML-Based Graphics and Animation in Windows Phone
	Understanding the Frame Rate Counter
	The Windows Phone Application Analysis Tool
	Reading Device Information
	Applying the Model-View-ViewModel Pattern to a Windows Phone App
	Property Change Notification
	Using Commands
	Argument Validation
	A Platform-Agnostic Dialog Service
	Consuming Local Web Applications
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X
	Y-Z

