Contents at a Glance

Introduction ... 1

Part I Installation and Configuration
 1 Installing Ubuntu and Post-Installation Configuration 7

Part II Desktop Ubuntu
 2 Working with Unity ... 33
 3 On the Internet ... 51
 4 Productivity Applications .. 65
 5 Multimedia Applications .. 75
 6 Other Ubuntu Interfaces .. 99
 7 Games .. 107

Part III System Administration
 8 Managing Software ... 119
 9 Command-Line Quickstart ... 133
 10 Command-Line Master Class .. 169
 11 Managing Users .. 209
 12 Automating Tasks and Shell Scripting .. 237
 13 The Boot Process .. 281
 14 System-Monitoring Tools .. 291
 15 Backing Up .. 307
 16 Networking ... 335
 17 Remote Access with SSH and Telnet ... 381
 18 Securing Your Machines ... 391
 19 Performance Tuning ... 405
 20 Kernel and Module Management .. 417

Part IV Ubuntu as a Server
 21 Sharing Files and Printers .. 439
 22 Apache Web Server Management .. 461
 23 Other Http Servers ... 491
 24 Remote File Serving with FTP .. 497
 25 Handling Email ... 507
Table of Contents

Introduction .. 1
Licensing .. 2
Who This Book Is For ... 3
 Those Wanting to Become Intermediate or Advanced Users 3
 Sysadmins, Programmers, and DevOps .. 4
What This Book Contains ... 5
Conventions Used in This Book .. 5

Part I Installation and Configuration

1 Installing Ubuntu and Post-Installation Configuration 7
 Before You Begin the Installation .. 7
 Researching Your Hardware Specifications 8
 Installation Options .. 8
 Planning Partition Strategies ... 10
 The Boot Loader .. 10
 Installing from DVD or USB Drive ... 11
 Step-by-Step Installation .. 11
 Installing .. 12
 First Update ... 16
 Wubi: The Easy Installer for Windows 16
 Shutting Down .. 18
 Finding Programs and Files ... 19
 Software Updater ... 19
 The sudo Command ... 22
 Configuring Software Repositories ... 23
 System Settings ... 26
 Detecting and Configuring a Printer ... 26
 Configuring Power Management in Ubuntu 27
 Setting the Time and Date ... 27
 Configuring Wireless Networks .. 29
 Troubleshooting Post-Installation Configuration Problems 31
 References .. 32
Part II Desktop Ubuntu

2 Working with Unity 33
 Foundations and the X Server ... 33
 Basic X Concepts ... 34
 Using X .. 35
 Starting X ... 41
 Using a Display Manager .. 41
 Changing Window Managers .. 42
 Using Unity, a Primer ... 42
 The Desktop .. 43
 Customizing and Configuring Unity ... 48
 Power Shortcuts ... 49
 References ... 50

3 On the Internet 51
 Getting Started with Firefox ... 52
 Checking Out Google Chrome and Chromium............................. 53
 Choosing an Email Client .. 55
 Mozilla Thunderbird .. 56
 Evolution .. 56
 Other Mail Clients ... 57
 RSS Readers ... 58
 Firefox .. 58
 Liferea .. 58
 Instant Messaging and Video Conferencing 59
 with Empathy ... 59
 Internet Relay Chat ... 60
 Usenet Newsgroups ... 62
 Ubuntu One Cloud Storage ... 64
 References ... 64

4 Productivity Applications 65
 Introducing LibreOffice ... 67
 Other Office Suites for Ubuntu .. 69
 Working with GNOME Office ... 69
 Working with KOffice .. 70
 Other Useful Productivity Software .. 71
 Working with PDF .. 71
 Working with XML and DocBook .. 71
 Working with LaTeX .. 73
Productivity Applications Written for Microsoft Windows .. 73
References ... 74

5 Multimedia Applications .. 75
Sound and Music .. 75
 Sound Cards .. 76
 Adjusting Volume .. 77
 Sound Formats ... 78
Listening to Music .. 79
Buying Music in the Ubuntu One Music Store ... 81
Graphics Manipulation ... 83
 The GNU Image Manipulation Program ... 83
Using Scanners in Ubuntu .. 85
Working with Graphics Formats .. 85
Capturing Screen Images .. 87
Using Digital Cameras with Ubuntu .. 88
 Handheld Digital Cameras ... 88
Using Shotwell Photo Manager .. 88
Burning CDs and DVDs in Ubuntu ... 89
 Creating CDs and DVDs with Brasero ... 89
Creating CDs from the Command Line .. 89
Creating DVDs from the Command Line ... 91
Viewing Video ... 94
 TV and Video Hardware ... 94
 Video Formats ... 95
Viewing Video in Linux .. 96
Personal Video Recorders .. 97
Video Editing ... 97
References ... 98

6 Other Ubuntu Interfaces .. 99
Desktop Environment .. 100
KDE and Kubuntu .. 101
Xfce and Xubuntu .. 102
 LXDE and Lubuntu .. 103
GNOME3 and Gnobuntu .. 104
References .. 105
7 Games

- Ubuntu Gaming
- Installing Proprietary Video Drivers
- Installing Games in Ubuntu
 - Warsow
 - Scorched 3D
 - Frozen Bubble
 - SuperTux
 - Battle for Wesnoth
 - Frets on Fire
 - FlightGear
 - Speed Dreams
 - Games for Kids
 - Commercial Games
- Playing Windows Games
- References

Part III System Administration

8 Managing Software

- Ubuntu Software Center
- Using Synaptic for Software Management
- Staying Up-to-Date
- Working on the Command Line
 - Day-to-Day Usage
 - Finding Software
- Compiling Software from Source
 - Compiling from a Tarball
 - Compiling from Source from the Ubuntu Repositories
- Configuration Management
 - dotdee
 - OneConf
- References

9 Command-Line Quickstart

- What Is the Command Line?
- Accessing the Command Line
 - Text-Based Console Login
 - Logging Out
 - Logging In and Out from a Remote Computer
- User Accounts
Command-Line Master Class

Why Use the Command Line?

170

Using Basic Commands

- Printing the Contents of a File with `cat` 172
- Changing Directories with `cd` .. 173
- Changing File Access Permissions with `chmod` 175
- Copying Files with `cp` ... 175
- Printing Disk Usage with `du` ... 176
- Finding Files by Searching with `find` 177
- Searches for a String in Input with `grep` 179
- Paging Through Output with `less` 180
- Creating Links Between Files with `ln` 182
- Finding Files from an Index with `locate` 184
- Listing Files in the Current Directory with `ls` 184
- Reading Manual Pages with `man` 186
- Making Directories with `mkdir` 187
- Moving Files with `mv` .. 187
- Listing Processes with `ps` .. 188
- Deleting Files and Directories with `rm` 188
- Printing the Last Lines of a File with `tail` 189
- Printing Resource Usage with `top` 189
- Printing the Location of a Command with `which` 191

Redirecting Output and Input

191

 stdin, stdout, stderr, and Redirection 193

Comparing Files

194

- Finding Differences in Files with `diff` 194
- Finding Similarities in Files with `comm` 194

Combining Commands

195

Using Environment Variables

197

Using Common Text Editors

200

- Working with `nano` ... 201
- Working with `vi` ... 202
- Working with `emacs` .. 203

Working with Compressed Files

204

Using Multiple Terminals with `byobu`

205

References

207

Managing Users

User Accounts

209

- The Super User/Root User ... 210
- User IDs and Group IDs .. 212
- File Permissions .. 212
Contents

Managing Groups ... 213
 Group Listing .. 213
 Group Management Tools .. 214
Managing Users .. 216
 User Management Tools .. 216
 Adding New Users .. 218
 Monitoring User Activity on the System 222
Managing Passwords .. 222
 System Password Policy .. 222
 The Password File ... 223
 Shadow Passwords .. 224
 Managing Password Security for Users 226
 Changing Passwords in a Batch ... 227
Granting System Administrator Privileges to
 Regular Users ... 227
 Temporarily Changing User Identity with the **su** Command 227
 Granting Root Privileges on Occasion: The **sudo** Command 229
Disk Quotas .. 232
 Implementing Quotas .. 233
 Manually Configuring Quotas ... 233
Related Ubuntu Commands ... 234
References .. 235

12 Automating Tasks and Shell Scripting

237

Scheduling Tasks .. 237
 Using **at** and **batch** to Schedule Tasks 237
 for Later .. 237
 Using **cron** to Run Jobs Repeatedly 240
Basic Shell Control .. 242
 The Shell Command Line ... 243
 Shell Pattern-Matching Support .. 245
 Redirecting Input and Output ... 246
 Piping Data .. 247
 Background Processing ... 247
Writing and Executing a Shell Script .. 248
 Running the New Shell Program 249
 Storing Shell Scripts for System-wide Access 250
 Interpreting Shell Scripts Through Specific Shells 250
 Using Variables in Shell Scripts 252
 Assigning a Value to a Variable 252
 Accessing Variable Values ... 253
 Positional Parameters .. 253
13 The Boot Process 281

Running Services at Boot 281

Beginning the Boot Loading Process 282

Loading the Linux Kernel 283

System Services and Runlevels 284

Runlevel Definitions 284

Booting into the Default Runlevel 285

Understanding init Scripts and the Final Stage of Initialization 285

Controlling Services at Boot with Administrative Tools 286

Changing Runlevels 286

Troubleshooting Runlevel Problems 287

Starting and Stopping Services Manually 288

Using Upstart 289

References 290
14 System-Monitoring Tools

Console-Based Monitoring
- Using the `kill` Command to Control Processes 293
- Using Priority Scheduling and Control 294
- Displaying Free and Used Memory with `free` 296
- Disk Space 297
- Disk Quotas 298

Graphical Process and System Management Tools
- System Monitor 298
- Conky 300
- Other 305

KDE Process- and System-Monitoring Tools
- Enterprise Server Monitoring 305
- Landscape 306
- Other 306

References 306

15 Backing Up

Choosing a Backup Strategy
- Why Data Loss Occurs 308
- Assessing Your Backup Needs and Resources 309
- Evaluating Backup Strategies 311
- Making the Choice 314

Choosing Backup Hardware and Media
- Removable Storage Media 314
- CD-RW and DVD+RW/-RW Drives 315
- Network Storage 315
- Tape Drive Backup 315
- Cloud Storage 316

Using Backup Software
- `tar`: The Most Basic Backup Tool 317
- The GNOME File Roller 319
- The KDE `ark` Archiving Tool 320
- Déjà Dup 320
- Back In Time 322
- Unison 324
- Using the Amanda Backup Application 324
- Alternative Backup Software 325
Copying Files ... 326
 Copying Files Using tar ... 326
 Compressing, Encrypting, and Sending tar Streams 327
 Copying Files Using cp .. 327
 Copying Files Using mc .. 328
 Using rsync ... 328
Version Control for Configuration Files 330
System Rescue .. 332
 The Ubuntu Rescue Disc .. 333
 Restoring the GRUB2 Boot Loader 333
 Saving Files from a Nonbooting Hard Drive 333
References ... 334

16 Networking ... 335
 Laying the Foundation: The localhost Interface 336
 Checking for the Availability of the Loopback Interface 336
 Configuring the Loopback Interface Manually 336
 Checking Connections with ping, traceroute, and mtr 338
 Networking with TCP/IP ... 340
 TCP/IP Addressing .. 341
 Using IP Masquerading in Ubuntu 343
 Ports ... 344
 IPv6 Basics .. 344
 Network Organization .. 347
 Subnetting .. 347
 Subnet Masks .. 348
 Broadcast, Unicast, and Multicast Addressing 348
 Hardware Devices for Networking 349
 Network Interface Cards ... 349
 Network Cable .. 351
 Hubs and Switches .. 352
 Routers and Bridges ... 353
 Initializing New Network Hardware 353
 Using Network Configuration Tools 355
 Command-Line Network Interface Configuration 356
 Network Configuration Files 360
 Using Graphical Configuration Tools 363
Dynamic Host Configuration Protocol 365
 How DHCP Works .. 365
 Activating DHCP at Installation and Boot Time 366
DHCP Software Installation and Configuration 367
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Remote Access with SSH and Telnet</td>
</tr>
<tr>
<td>Setting Up a Telnet Server</td>
</tr>
<tr>
<td>Telnet Versus SSH</td>
</tr>
<tr>
<td>Setting Up an SSH Server</td>
</tr>
<tr>
<td>SSH Tools</td>
</tr>
<tr>
<td>Using <code>scp</code> to Copy Individual Files Between Machines</td>
</tr>
<tr>
<td>Using <code>sftp</code> to Copy Many Files Between Machines</td>
</tr>
<tr>
<td>Using <code>ssh-keygen</code> to Enable Key-Based Logins</td>
</tr>
<tr>
<td>Virtual Network Computing</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

18 Securing Your Machines	391
Understanding Computer Attacks	391
Assessing Your Vulnerability	393
Protecting Your Machine	394
Securing a Wireless Network	395
Passwords and Physical Security	395
Configuring and Using Tripwire	396
Devices	397
Viruses	397
Configuring Your Firewall	398
AppArmor	401
Forming a Disaster Recovery Plan	403
References	404
19 Performance Tuning

Hard Disk ... 405
Using the BIOS and Kernel to Tune the Disk Drives 406
The hdparm Command .. 407
File System Tuning ... 408
The tune2fs Command ... 408
The e2fsck Command ... 409
The badblocks Command .. 409
Disabling File Access Time ... 409
Kernel .. 410
Apache .. 411
MySQL ... 412
Measuring Key Buffer Usage ... 412
Using the Query Cache ... 414
Miscellaneous Tweaks ... 415
Query Optimization .. 416
References .. 416

20 Kernel and Module Management

The Linux Kernel .. 418
The Linux Source Tree ... 419
Types of Kernels ... 421
Managing Modules .. 422
When to Recompile .. 424
Kernel Versions ... 425
Obtaining the Kernel Sources .. 426
Patching the Kernel .. 426
Compiling the Kernel ... 428
Using xconfig to Configure the Kernel 431
Creating an Initial RAM Disk Image .. 434
When Something Goes Wrong ... 435
Errors During Compile ... 435
Runtime Errors, Boot Loader Problems, and KernelOops 436
References .. 436

Part IV Ubuntu as a Server

21 Sharing Files and Printers

Using the Network File System .. 440
Installing and Starting or Stopping NFS .. 440
NFS Server Configuration .. 440
NFS Client Configuration .. 442
Putting Samba to Work ... 443
 Manually Configuring Samba with /etc/samba/smb.conf 444
 Testing Samba with the testparm Command 447
 Starting, Stopping, and Restarting the smbd Daemon 448
 Mounting Samba Shares ... 449
 Configuring Samba Using SWAT ... 450
Network and Remote Printing with Ubuntu 453
 Creating Network Printers ... 454
 Using the Common UNIX Printing System GUI 456
 Avoiding Printer Support Problems 458
References ... 460

22 Apache Web Server Management 461
 About the Apache Web Server .. 461
 Installing the Apache Server .. 462
 Installing from the Ubuntu Repositories 463
 Building the Source Yourself ... 464
 Starting and Stopping Apache .. 467
 Starting the Apache Server Manually 467
 Using /etc/init.d/apache2 ... 468
 Runtime Server Configuration Settings 469
 Runtime Configuration Directives 470
 Editing apache2.conf ... 470
 Apache Multiprocessing Modules 473
 Using .htaccess Configuration Files 473
 File System Authentication and Access Control 475
 Restricting Access with allow and deny 476
 Authentication .. 477
 Final Words on Access Control 479
 Apache Modules ... 480
 mod_access ... 481
 mod_alias ... 481
 mod_asis ... 481
 mod_auth ... 482
 mod_auth_anon .. 482
 mod_auth_dbm .. 482
 mod_auth_digest .. 482
 mod_autoindex ... 483
 mod_cgi .. 483
 mod_dir and mod_env .. 483
 mod_expires ... 483
 mod_headers ... 483
<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod_include</td>
<td>484</td>
</tr>
<tr>
<td>mod_info and mod_log_config</td>
<td>484</td>
</tr>
<tr>
<td>mod_mime and mod_mime_magic</td>
<td>484</td>
</tr>
<tr>
<td>mod_negotiation</td>
<td>484</td>
</tr>
<tr>
<td>mod_proxy</td>
<td>484</td>
</tr>
<tr>
<td>mod_rewrite</td>
<td>484</td>
</tr>
<tr>
<td>mod_setenvif</td>
<td>485</td>
</tr>
<tr>
<td>mod_speling</td>
<td>485</td>
</tr>
<tr>
<td>mod_status</td>
<td>485</td>
</tr>
<tr>
<td>mod_ssl</td>
<td>485</td>
</tr>
<tr>
<td>mod_unique_id</td>
<td>485</td>
</tr>
<tr>
<td>mod_userdir</td>
<td>485</td>
</tr>
<tr>
<td>mod_usertrack</td>
<td>485</td>
</tr>
<tr>
<td>mod_vhost_alias</td>
<td>485</td>
</tr>
</tbody>
</table>

Virtual Hosting 486
- Address-Based Virtual Hosts 486
- Name-Based Virtual Hosts

Logging 488
References 490

23 Other HTTP Servers 491
- Nginx 491
- lighttpd 493
- Yaws 494
- Cherokee 494
- Jetty 495
- thttpd 495
- Apache Tomcat 496
References 496

24 Remote File Serving with FTP 497
- Choosing an FTP Server 497
 - Choosing an Authenticated or Anonymous Server 498
- Ubuntu FTP Server Packages 498
- Other FTP Servers 498
- Installing FTP Software 499
- The FTP User 500
- Configuring the Very Secure FTP Server 502
 - Controlling Anonymous Access 503
- Other vsftpd Server Configuration Files 504
- Using the ftphosts File to Allow or Deny FTP Server Connection 505
References 506
25 Handling Email 507

How Email Is Sent and Received 507
The Mail Transport Agent 508
Choosing an MTA 510
The Mail Delivery Agent 510
The Mail User Agent 511

Basic Postfix Configuration and Operation 512
Configuring Masquerading 514
Using Smart Hosts 515
Setting Message Delivery Intervals 515
Mail Relaying 516
Forwarding Email with Aliases 516

Using Fetchmail to Retrieve Mail 517
Installing Fetchmail 517
Configuring Fetchmail 517

Choosing a Mail Delivery Agent 521
Procmail 521
Spamassassin 521
Squirrelmail 522
Virus Scanners 522
Autoresponders 522

Alternatives to Microsoft Exchange Server 522
Microsoft Exchange Server/Outlook Client 523
CommuniGate Pro 523
Oracle Beehive 524
Bynari 524
Open-Xchange 524
phpgroupware 524
PHProjekt 524
 Horde 524

References 525

26 Proxying, Reverse Proxying, and Virtual Private Networks (VPN) 527

What Is a Proxy Server? 527
Installing Squid 528
Configuring Clients 528
Access Control Lists 529
Specifying Client IP Addresses 533
Sample Configurations 534
Virtual Private Networks (VPN) 536
Setting Up a VPN Client 537
Setting Up a VPN Server 539

References 541
27 Administering Relational Database Services

A Brief Review of Database Basics 544
How Relational Databases Work .. 545
Understanding SQL Basics ... 547
Creating Tables ... 548
Inserting Data into Tables .. 549
Retrieving Data from a Database ... 550
Choosing a Database: MySQL Versus PostgreSQL 552
 Speed .. 552
 Data Locking .. 552
 ACID Compliance in Transaction Processing to Protect Data Integrity 553
 SQL Subqueries .. 554
 Procedural Languages and Triggers .. 554
Configuring MySQL .. 554
 Setting a Password for the MySQL Root User 555
 Creating a Database in MySQL .. 556
Configuring PostgreSQL .. 558
 Initializing the Data Directory in PostgreSQL 558
 Creating a Database in PostgreSQL 559
 Creating Database Users in PostgreSQL 559
 Deleting Database Users in PostgreSQL 560
 Granting and Revoking Privileges in PostgreSQL 561
Database Clients ... 561
 SSH Access to a Database .. 562
 Local GUI Client Access to a Database 563
 Web Access to a Database .. 563
 The MySQL Command-Line Client 564
 The PostgreSQL Command-Line Client 566
 Graphical Clients ... 566
References ... 567

28 NoSQL Databases

Key/Value Stores ... 571
 Berkeley DB .. 572
 Cassandra ... 572
 Memcached and MemcacheDB .. 573
 Redis ... 573
 Riak .. 574
Document Stores ... 574
 CouchDB ... 575
 MongoDB ... 575
 BaseX ... 576
Contents xxi

Wide Column Stores ... 576
BigTable .. 577
HBase .. 577
Graph Stores .. 577
Neo4j .. 578
OrientDB ... 578
HyperGraphDB ... 578
FlockDB .. 578
References ... 579

29 Lightweight Directory Access Protocol (LDAP) 581
Configuring the Server ... 582
Creating Your Schema .. 582
Populating Your Directory ... 584
Configuring Clients ... 586
Evolution ... 586
Thunderbird ... 587
Administration ... 587
References ... 588

30 Linux Terminal Server Project (LTSP) 589
Requirements ... 590
Installation ... 593
Using LTSP ... 594
References ... 595

31 Virtualization on Ubuntu 597
KVM .. 599
VirtualBox .. 603
VMware ... 605
Xen ... 605
References ... 605

32 Ubuntu in the Cloud 607
Why a Cloud? ... 608
Software as a Service (SaaS) .. 609
Platform as a Service (PaaS) ... 609
Infrastructure as a Service (IaaS) 609
Metal as a Service (MaaS) .. 609
Before You Do Anything ... 610
33 Managing Sets of Servers 641

juju 641
Puppet 642
Chef 642
CFEngine 643
Landscape 643
References 643

Part V Programming Linux

34 Opportunistic Development 645

Version Control Systems 646
Managing Software Projects with Subversion 646
Managing Software Projects with Bazaar 647
Managing Software Projects with Mercurial 648
Managing Software Projects with Git 649
Introduction to Opportunistic Development 650
Launchpad 651
Quickly 653
while 691
until 692
last and next 692
d... while and d... until 692
Regular Expressions 693
Access to the Shell 694
Modules and CPAN 695
Code Examples 695
Sending Mail 695
Purging Logs 697
Posting to Usenet 698
One-Liners 699
Command-Line Processing 700
References 700

38 Using Python 703
Python on Linux 704
The Basics of Python 705
Numbers 705
More on Strings 707
Lists 710
Dictionaries 712
Conditionals and Looping 713
Functions 715
Object Orientation 716
Class and Object Variables 717
Constructors and Destructors 718
Class Inheritance 719
The Standard Library and the Python Package Index 721
References 721

39 Using PHP 723
Introduction to PHP 724
Entering and Exiting PHP Mode 724
Variables 724
Arrays 726
Constants 728
References 728
Comments 729
Escape Sequences 729
Variable Substitution 730
Operators 731
Contents

Conditional Statements ... 733
Special Operators .. 734
Switching ... 735
Loops .. 737
Including Other Files .. 739
Basic Functions ... 740
Strings ... 740
Arrays .. 743
Files .. 745
Miscellaneous ... 747
Handling HTML Forms ... 751
Databases ... 751
References .. 754

40 C/C++ Programming Tools for Ubuntu 755

Programming in C with Linux ... 756
Using the C Programming Project Management Tools Provided with Ubuntu 757
Building Programs with make .. 757
Using Makefiles .. 757
Using the autoconf Utility to Configure Code 759
Debugging Tools .. 760
Using the GNU C Compiler .. 761
Graphical Development Tools .. 762
Using the KDevelop Client .. 762
The Glade Client for Developing in GNOME 763
References .. 764

41 Using Other Popular Programming Languages 767

Ada ... 768
Clojure .. 768
COBOL .. 769
Erlang .. 770
Forth ... 770
Go ... 771
Fortran .. 771
Groovy .. 771
Haskell ... 772
Java ... 772
JavaScript ... 772
Lisp .. 773
Lua .. 773
42 Beginning Mobile Development for Android

Introduction to Android ... 780
 Hardware ... 780
 Linux Kernel ... 780
 Libraries .. 780
 Android Runtime ... 780
 Application Framework ... 780
 Applications .. 781
Installing the Android SDK ... 781
 Install Java ... 781
 Install Eclipse .. 781
 Install the SDK ... 781
 Install the ADT Eclipse Plug-In ... 782
 Install Other Components ... 782
 Install Virtual Devices ... 783
Create Your First Application ... 784
References .. 785

Part VI Appendices

A Ubuntu Under the Hood ... 787
 What Is Linux? ... 787
 Why Use Linux? ... 788
 What Is Ubuntu? ... 790
 Ubuntu for Business ... 791
 Ubuntu in Your Home .. 792
 64-Bit Ubuntu ... 793
Getting the Most from Ubuntu and Linux Documentation 793
Ubuntu Developers and Documentation 795
References .. 795
B Ubuntu and Linux Internet Resources 797

Websites and Search Engines .. 798
Web Search Tips ... 798
Google Is Your Friend ... 799
Ubuntu Package Listings ... 799
Certification ... 799
Commercial Support ... 800
Documentation ... 800
Linux Guides ... 800
Ubuntu .. 801
Mini-CD Linux Distributions .. 801
Various Intel-Based Linux Distributions 802
PowerPC-Based Linux Distributions 802
Linux on Laptops and PDAs .. 802
The X Window System ... 803
Usenet Newsgroups .. 803
Mailing Lists ... 804
Ubuntu Project Mailing Lists .. 805
Internet Relay Chat .. 805

Index 807
About the Authors

Matthew Helmke is an active member of the Ubuntu community. He served from 2006 to 2011 on the Ubuntu Forum Council, providing leadership and oversight of the Ubuntu Forums (www.ubuntuforums.org), and spent two years on the Ubuntu regional membership approval board for Europe, the Middle East, and Africa. He has written about Ubuntu for several magazines and websites, is a lead author of The Official Ubuntu Book, and coauthored The VMWare Cookbook. He works as a senior technical writer for Pearson North America’s Assessment and Information division, documenting assessment software. Matthew first used Unix in 1987 while studying LISP on a Vax at the university. He has run a business using only free and open source software, has consulted, and has a master’s degree in Information Resources and Library Science from the University of Arizona. You can find out more about Matthew at matthewhelmke.com or drop him a line with errata or suggestions at matthew@matthewhelmke.com.

Andrew Hudson is a freelance journalist who specializes in writing about Linux. He has significant experience in Red Hat and Debian-based Linux distributions and deployments and can often be found sitting at his keyboard tweaking various settings and config files just for the hell of it. He lives in Wiltshire, which is a county of England, along with his wife, Bernice, and their son, John. Andrew does not like Emacs. He can be reached at andy.hudson@gmail.com.

Paul Hudson is a recognized expert in open-source technologies. He is also a professional developer and full-time journalist for Future Publishing. His articles have appeared in MacFormat, PC Answers, PC Format, PC Plus, and Linux Format. Paul is passionate about free software in all its forms and uses a mix of Linux and BSD to power his desktops and servers. Paul likes Emacs. Paul can be contacted through http://hudzilla.org.
Dedication

To Heather, Saralyn, Sedona, and Philip—the most amazing family a guy could hope for; to my grandfather for always believing in me and teaching me to believe in myself; and to my friends in the Ubuntu, developer, sysadmin, cloud computing, and DevOps communities.

Acknowledgments

I am solely responsible for this edition of Ubuntu Unleashed, but I freely acknowledge that I am standing on the shoulders of giants. I want to express my gratitude to Andrew and Paul Hudson for the solid foundation that past editions of the book (up to Ubuntu Unleashed, 2008 Edition) provided to this update. Thanks to Ryan Troy for helping with the 2010 edition. Thank you to the many people who helped with technical edits and both formal and informal advice, especially Shannon Oliver, Chris Johnston, and Daniel Holbach for their help with this edition. I owe a huge debt of gratitude to the Ubuntu community, Canonical, and Mark Shuttleworth for inviting me to participate in the community, including my role in the forums, a turn on the EMEA membership board, and two Ubuntu Developer Summits. Thanks to the Ubuntu All Stars for the chance to jam with you on guitar. Thank you to the entire Ubuntu community for your labor of love to create this wonderful operating system. Finally, thanks to my colleagues at Pearson, especially Debra Williams Cauley, for the trust placed in me and the opportunity to collaborate on projects like this one.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: errata@informit.com

Mail:
Addison-Wesley/Prentice Hall Publishing
ATTN: Reader Feedback
1330 Avenue of the Americas
35th Floor
New York, New York, 10019

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any updates, downloads, or errata that might be available for this book.
We are pleased to present the 2013 edition of *Ubuntu Unleashed*. Ubuntu is a Linux-based computer operating system that has taken the world by storm. From its humble beginning in 2004, Ubuntu has risen to be the vanguard of desktop Linux, as well as a popular choice for servers.

Ubuntu descends from one of the oldest and most revered Linux distributions, Debian. Debian is assembled by a team of talented volunteers, is one of the most stable and customizable distributions of Linux, and is well respected for its quality and technological prowess. It is, however, an operating system for geeks; the bar for entry into the Debian realm is set high, and its user base tends to be highly proficient and expects new users to learn the ropes before joining in. That is both appropriate and okay.

What Ubuntu has done is leverage the quality of Debian to create an operating system that ordinary people can use. That doesn’t mean that Ubuntu users are not technologically proficient, just that they do not have to be. In fact, many talented and respected software developers love Ubuntu because it enables them to concentrate on their specific interests instead of the details of the operating system. This book is for these people and for those who aspire to join their ranks.

If you are new to Linux, you have made a great decision by choosing this book. Sams Publishing’s *Unleashed* books offer an in-depth look at their subjects, taking in both beginner and advanced users and moving them to a new level of knowledge and expertise. Ubuntu is a fast-changing distribution that has an updated release twice a year. We have tracked the development of Ubuntu from early on to make sure that the information in this book mirrors closely
the development of the distribution. A full copy of Ubuntu is included on the enclosed
disc, and it is possible for you to install Ubuntu from that disc in less than an hour!

A QUICK WORD ABOUT MARKETING

Almost all of the content in this book applies regardless of what Ubuntu release version
you are using, so long as it is reasonably current. The book has been written to try to
focus on information that is useful for the longest amount of time possible. Some chap-
ters, like those covering installation or the basics of the default Ubuntu graphical user
interface, will have their information change frequently. Those chapters are the excep-
tion. The blurb on the cover of the book about which editions this book covers was added
to account for these chapters and to denote clearly when the book was most recently
revised. The note about a free upgrade to 13.04 is true in that we will send an upgrade
kit to anyone who has purchased and registered the book. The kit includes install media
for the 13.04 release and a supplemental guide to the changes from 12.10 to 13.04.

Do not let the reputation of Linux discourage you, however. Many people who have heard
of Linux think that it is found only on servers, looking after websites and email. Nothing
could be further from the truth. Distributions like Ubuntu are making huge inroads in to
the desktop market. Corporations are realizing the benefits of running a stable and power-
ful operating system that is easy to maintain and easy to secure. The best part is that as
Linux distributions make improvements, the majority of those improvements are shared
freely, allowing you to benefit from the additions and refinements made by one distribu-
tion, such as Red Hat, while continuing to use a different distribution, such as Ubuntu,
which in turn shares its improvements. You can put Ubuntu to work today and be assured
of a great user experience. Feel free to make as many copies of the software as you want;
Ubuntu is freely and legally distributable all over the world—no copyright lawyers are
going to pound on your door.

Licensing

Software licensing is an important issue for all computer users and can entail moral, legal,
and financial considerations. Many consumers think that purchasing a copy of a commer-
cial or proprietary operating system, productivity application, utility, or game conveys
ownership, but this is not true. In the majority of cases, the *end user license agreement
(EULA)* included with a commercial software package states that you have paid only for
the right to use the software according to specific terms. This generally means you may
not examine, make copies, share, resell, or transfer ownership of the software package.
More onerous software licenses enforce terms that preclude you from distributing or
publishing comparative performance reviews of the software. Even more insidious licens-
ing schemes (and supporting legislation, especially in the United States) contain provi-
sions allowing onsite auditing of the software’s use!

This is not the case with the software included with this book. You are entirely free to
make copies, share copies, and install the software on as many computers as you want—
we encourage you to purchase additional copies of this book to give as gifts, however.
Be sure to read the README file on the disc included with this book for important
information regarding the included software and disk contents. After you install Ubuntu, go to www.gnu.org/licenses/gpl.html to find a copy of the GNU GPL. You will see that the GPL provides unrestricted freedom to use, duplicate, share, study, modify, improve, and even sell the software.

You can put your copy of Ubuntu to work right away in your home or at your place of business without worrying about software licensing, per-seat workstation or client licenses, software auditing, royalty payments, or any other type of payments to third parties. However, be aware that although much of the software included with Ubuntu is licensed under the GPL, some packages on this book’s disc are licensed under other terms. There is a variety of related software licenses, and many software packages fall under a broad definition known as *open source*. Some of these include the Artistic License, the BSD License, the Mozilla Public License, and the Q Public License.

For additional information about the various GNU software licenses, browse to www.gnu.org/. For a definition of open-source and licensing guidelines, along with links to the terms of nearly three dozen open-source licenses, browse to www.opensource.org/.

Who This Book Is For

Those Wanting to Become Intermediate or Advanced Users

Ubuntu Unleashed is intended for intermediate and advanced users or those who want to become one. Our goal is to give you a nudge in the right direction, to help you enter the higher stages by exposing you to as many different tools and ideas as possible; we want to give you some thoughts and methods to consider and spur you on to seek out more. Although the contents are aimed at intermediate to advanced users, new users who pay attention will benefit from the advice, tips, tricks, traps, and techniques presented in each chapter. Pointers to more detailed or related information are also provided at the end of each chapter.

If you are new to Linux, you might need to learn some new computer skills, such as how to research your computer’s hardware, how to partition a hard drive, and (occasionally) how to use a command line. This book helps you learn these skills and shows you how to learn more about your computer, Linux, and the software included with Ubuntu. Most important, it helps you overcome your fear of the system by telling you more about what it is and how it works.

We would like to take a moment to introduce a concept called “The Three Levels of Listening” from Alistair Cockburn’s *Agile Software Development*, published by Addison Wesley. These describe how a person learns and masters a technique. We all start at the first stage and progress from there. Few reach the last stage, but those who do are incredibly effective and efficient. People aiming for this stage are the very ones for whom we intend this book.

▶ **Following**—The stage where the learner looks for one very detailed process that works and sticks to it to accomplish a task.
Detaching—The stage where the learner feels comfortable with one method and begins to learn other ways to accomplish the same task.

Fluent—The stage where the learner has experience with or understanding of many methods and doesn’t think of any of them in particular while doing a task.

Myriad books focus on the first set of users. This is not one of them. It is our goal in *Ubuntu Unleashed* to write just enough to be sufficient to get you from where you are to where you want or need to be. This is not a book for newcomers who want or need every step outlined in detail, although we do that occasionally. This is a book for people who want help learning about what can be done and a way to get started doing it. The Internet is an amazing reference tool, so this is not a comprehensive reference book. This book is a tool to help you see the landscape; to learn enough about what you seek to get you started in the right direction with a quality foundational understanding.

Sysadmins, Programmers, and DevOps

Systems administrators, or Sysadmins, are the people who keep servers and networks up and running. Their role is sometimes called *operations*. They deal with software installation and configuration, security, and do all the amazing things behind the scenes that let others use these systems for their work. They are often given less respect than they deserve, but the pay is good and it is a ton of fun to wield the ultimate power over a computer system. It is also a great responsibility, and these amazing guys and gals work hard to make sure they do their jobs well, striving for incredible system uptime and availability. Ubuntu is an excellent operating system for servers and networks, and in this book you can find much of the knowledge needed to get started in this role.

Programmers are the people who write software. They are sometimes called *developers*. Programmers work with others to create the applications that run on top of those systems. Ubuntu is a great platform for writing and testing software. This is true whether you are doing web application development or writing software for desktop or server systems. It also makes a great platform for learning new programming languages and trying out new ideas. This book can help you get started.

DevOps is a portmanteau of *developer* and *operations*. It signifies a blending of the two roles already described. The information technology (IT) world is changing, and roles are becoming less clear cut and isolated from one another. In the past, it was common to witness battles between programmers excited about new technology and sysadmins in love with stability. DevOps realizes that neither goal is healthy in isolation, but that seeking a balance between the two can yield great results by removing the barriers to communication and understanding that sometimes cause conflict within a team. Because of the rise of cloud computing and virtualization, which are also covered in this book, and more agile forms of development, DevOps is a useful perspective that enables people working in IT to do an even better job of serving their ultimate clients: end users. This book is a great foundation for those wanting to learn knowledge that will help with both roles, hopefully presented in a way that balances them nicely.
What This Book Contains

Ubuntu Unleashed is organized into six parts, described here. A disc containing the entire distribution is included so that you have everything you need to get started.

Part I, “Installation and Configuration” takes you through installing Ubuntu on your computer in the place of any other operating system you might be running, such as Windows.

Part II, “Desktop Ubuntu,” is aimed at users who want to use Ubuntu on desktop systems.

Part III, “System Administration,” covers both elementary and sophisticated details of setting up a system for specific tasks and maintaining that system.

Part IV, “Ubuntu as a Server,” gives you the information you need to start building your own file, web, and other servers for use in your home or office.

Part V, “Programming Linux,” provides a great introduction to how you can extend Ubuntu capabilities even further using the development tools supplied with it.

Part VII, “Appendices,” includes references that give you scope to explore in even more depth some of the topics covered in this book as well as historical context to Ubuntu and installation resources.

In addition to what has already been mentioned, after the spring release of Ubuntu, a bonus chapter will be available online at www.informit.com/title/9780672336249.

If you have the print copy of this book, follow the instructions on the inside back cover page to register your product, and you will receive a DVD of Ubuntu 13.04 and an upgrade kit with information about changes from 12.10.

The ebook edition does not provide a DVD of Ubuntu or the upgrade kit.

If you purchased the ebook edition, or if you don’t want to wait for a DVD, you can download the most current release of Ubuntu from www.ubuntu.com/download.

Conventions Used in This Book

It is impossible to cover every option of every command included in Ubuntu. Besides, with the rise of the Internet and high-speed connections, reference materials are far less valuable than they used to be because most of these details are only a quick Google search away. Instead, we focus on teaching you how to find information you need while giving a quality overview worthy of the intermediate or advanced user. Sometimes this book offers tables of various options, commands, and keystrokes to help condense, organize, and present information about a variety of subjects.

To help you better understand code listing examples and sample command lines, several formatting techniques are used to show input and ownership. For example, if the command or code listing example shows typed input, the input is formatted in boldface after the sample command prompt, as follows:

matthew@seymour:~$ ls
If typed input is required, as in response to a prompt, the sample typed input also is in boldface, like so:

Delete files? [Y/n] y

All statements, variables, and text that should appear on your display use the same boldface formatting. In addition, command lines that require root or super-user access are prefaced with the sudo command, as follows:

matthew@seymour:$ sudo printtool &

The following elements provide you with useful tidbits of information that relate to the discussion of the text:

NOTE
A note provides additional information you might find useful as you are working. Notes augment a discussion with ancillary details or point you to an article, a whitepaper, or another online reference for more information about a specific topic.

TIP
A tip contains a special insight or a timesaving technique, as well as information about items of particular interest to you that you might not find elsewhere.

CAUTION
A caution warns you about pitfalls or problems before you run a command, edit a configuration file, or choose a setting when administering your system.

SIDEBARS CAN BE GOLDMINES
Just because it is in a sidebar does not mean that you will not find something new here. Be sure to watch for these elements that bring in outside content that is an aside to the discussion in the text. You will read about other technologies, Linux-based hardware, and special procedures to make your system more robust and efficient.

Other formatting techniques include the use of italic for placeholders in computer command syntax. Computer terms or concepts are also italicized upon first introduction in text.

Finally, you should know that all text, sample code, and screenshots in *Ubuntu Unleashed* were developed using Ubuntu and open-source tools.

Read on to start learning about and using the latest version of Ubuntu.
CHAPTER 9

Command-Line Quickstart

The Linux command line is one of the most powerful tools available for computer system administration and maintenance. The command line is also known as the terminal, shell, the console, the command prompt, and the command-line interface (CLI). For the purposes of this chapter and the next, these terms are interchangeable, although fine-grained differences do exist between them.

The command line is an efficient way to perform complex tasks accurately and much more easily than it would seem at a first glance. Knowledge of the commands available to you and how to string them together makes using Ubuntu easier for many tasks. Many of the commands were created by the GNU Project as free software analogs to previously existing proprietary UNIX commands. If you are interested, you can learn more about the GNU Project at www.gnu.org/gnu/thegnuproject.html.

This chapter covers some of the basic commands that you need to know to be productive at the command line. You find out how to get to the command line and discover some of the commands used to navigate the file system and perform basic operations with files, directories, and users. This chapter does not give comprehensive coverage of all the commands discussed, but it does give you enough to get started. Chapter 10, “Command-Line Master Class,” advances the subject further while expanding on some of the commands from this chapter. The skills you discover in this chapter help you get started using the command line with confidence.
What Is the Command Line?

If you spend any amount of time with experienced Linux users, you have heard them mention the command line. Some, especially those who have begun their journey in the Linux world using distributions that make it easy to complete many tasks using a graphical user interface (GUI), such as Ubuntu, might speak with trepidation about the mysteries of the text interface. Others either praise its power or comment about doing something via the command line as if it is the most natural and obvious way to complete a task.

It is not necessary for you to embrace either extreme. You might develop an affinity for the command line when performing some tasks and prefer the GUI for others. This is where most users end up today. Some might say that you will never need to access the command line because Ubuntu offers a slew of graphical tools that enable you to configure most things on your system. Although the premise might be true most of the time, there are some good reasons to acquire a fundamental level of comfort with the command line that you should consider before embracing that view.

Sometimes things go wrong, and you might not have the luxury of a graphical interface to work with. In these situations, a fundamental understanding of the command line and its uses can be a real lifesaver. Also, some tasks end up being far easier and faster to accomplish from the command line. More important, though, you will be able to make your way around a command-line-based system, which you will encounter if you ever work with a Linux server because most Linux servers have no GUI, and all administration is done using a command-line interface.

NOTE

Don’t be tempted to skip over this chapter as irrelevant. You should take the time to work through the chapter and ensure that you are comfortable with the command line before moving on. Doing so will benefit you greatly for years to come.

Initially, you might be tempted to think of the command line as the product of some sort of black and arcane art, and in some ways it can appear to be extremely difficult and complicated to use. However, with a little perseverance, by the end of this chapter you will start to feel comfortable using the command line, and you'll be ready to move on to Chapter 10, “Command-Line Master Class.”

This chapter introduces you to commands that enable you to perform the following:

- **Routine tasks**—Logging in and out, changing passwords, listing and navigating file directories
- **Basic file management**—Creating files and folders, copying or moving them around the file system, renaming and deleting them
- **Basic system management**—Shutting down or rebooting, changing file permissions, and reading man pages, which are entries for commands included as files already on your computer in a standardized manual format
The information in this chapter is valuable for individual users or system administrators who are new to Linux and are learning to use the command line for the first time.

TIP

Those of you who have used a computer for many years will probably have come into contact with MS-DOS, in which case being presented with a black screen will fill you with a sense of nostalgia. Don’t get too comfy; the command line in Linux is different from (and actually more powerful than) its distant MS-DOS cousin. Even cooler is that whereas MS-DOS skills are transferable only to other MS-DOS environments, the skills that you learn at the Linux command line can be transferred easily to other UNIX and UNIX-like operating systems, such as Solaris, OpenBSD, FreeBSD, and even Mac OS X, which provides access to the terminal.

Accessing the Command Line

You can quickly access the terminal using the desktop menu option Terminal. This opens `gnome-terminal`, from which you can access the terminal while remaining in a GUI environment. This time, the terminal appears as white text on an aubergine (dark purple) background. This is the most common method for accessing the terminal for most desktop users.

NOTE

Finding and running programs, such as Terminal, from a GUI is covered in Chapter 2, “Working with Unity,” as is logging it to a Linux system using a graphical interface. This chapter focuses on text-based logins and the use of Linux.

The second most common way for graphical desktop users to access the command line is to press the key combination Ctrl+Alt+F1, after which Ubuntu switches to a black screen and a login prompt like this:

```
Ubuntu 12.10 oneric seymour tty1
seymour login:
```

TIP

This is tty1, one of six virtual consoles that Ubuntu provides. After you have accessed a virtual console, you can use Ctrl+Alt + any of F1 through F6 to switch to a different console, tty1 through tty6. If you want to get back to the graphical interface, press Ctrl+Alt+F7. You can also switch between consoles by holding the Alt key and pressing either the left or the right cursor key to move down or up a console, such as tty1 to tty2.

Regardless of which way you access the terminal, using the virtual tty consoles accessible at Ctrl+Alt+F1-6 or via the windowed version atop your GUI desktop, you will find the rest of the usage details that we cover work the same. As you continue to learn and
experiment beyond the contents of this book, you might start to discover some subtle differences between the two and develop a preference. For our purposes, either method works quite well.

There are many other ways to access and use the command line. You could use a traditional console with a monitor, keyboard, and mouse attached to the PC, but which boots into a command-line interface instead of a GUI. You can also connect to your system through a wired or wireless network using the **telnet** or **ssh** commands, as covered in Chapter 17, “Remote Access with SSH and Telnet.”

With that, let’s begin.

Text-Based Console Login

However you connect to a command-line interface, you start with a prompt similar to this one:

```
Ubuntu 12.10 oneric seymour ttyl
seymour login:
```

Your prompt might vary, depending on the version of Ubuntu you are using and the method you are using to connect. In any event, at this prompt, type in your username and press Enter. When you are prompted for your password, type it in and press Enter.

NOTE

Your password is not echoed back to you, which is a good idea. Why is it a good idea? Well, people are prevented from looking over your shoulder and seeing your screen input. It is not difficult to guess that a five-letter password might correspond to the user’s spouse’s first name. After typing your username and pressing the Enter key, you are asked for your password, which you type. Note that Ubuntu does not show any characters while you are typing your password in. This is a good thing because it prevents any shoulder surfers from seeing what you’ve typed or the length of the password.

Pressing the Enter key drops you to a shell prompt, signified by the dollar sign:

```
matthew@seymour:~$
```

This particular prompt tells me that I am logged in as the user **matthew** on the system **seymour** and I am currently in my home directory; Linux uses the tilde (~) as shorthand for the home directory, which would usually be something like `/home/matthew`.

TIP

Navigating through the system at the command line can get confusing at times, especially when a directory name occurs in several places. Fortunately, Linux includes a simple command that tells you exactly where you are in the file system. It’s easy to remember because the command is just an abbreviation of the present working directory, so type **pwd** at any point to get the full path of your location. For example, typing **pwd** after
following these instructions shows `/home/yourusername`, meaning that you are currently in your home directory.

Using the `pwd` command can save you a lot of frustration when you have changed directory half a dozen times and have lost track.

Logging Out

Use the `exit` or `logout` command or Ctrl+D to exit your session. You are then returned to the login prompt. If you use virtual consoles, remember to exit each console before leaving your PC. (Otherwise, someone could easily sit down and use your account.)

Logging In and Out from a Remote Computer

Although you can happily log in on your computer, an act known as a local login, you can also log in to your computer via a network connection from a remote computer. Linux-based operating systems provide a number of remote access commands you can use to log in to other computers on your local area network (LAN), wide area network (WAN), or the Internet. Note that you must have an account on the remote computer, and the remote computer must be configured to support remote logins; otherwise, you won’t be able to log in.

NOTE

See Chapter 16, “Networking,” to see how to set up network interfaces with Linux to support remote network logins and Chapter 17, “Remote Access with SSH and Telnet,” to see how to start remote access services (such as `sshd`).

The best and most secure way to log in to a remote Linux computer is to use `ssh`, the Secure Shell client. Your login and session are encrypted while you work on the remote computer. The `ssh` client features many command-line options but can be simply used with the name or IP address of the remote computer, as follows:

```
matthew@seymour:~$ ssh 192.168.0.41
The authenticity of host '192.168.0.41 (192.168.0.41)' can't be established.
Are you sure you want to continue connecting (yes/no)?
```

```
yes
```

The first time you connect with a remote computer using `ssh`, Linux displays the remote computer’s encrypted identity key and asks you to verify the connection. After you type yes and press Enter, you are warned that the remote computer’s identity (key) has been entered in a file named `known_hosts` under the `.ssh` directory in your home directory. You are also prompted to enter your password:
Warning: Permanently added '192.168.0.41' (RSA) to the list of known hosts.

matthew@192.168.0.41's password:

matthew@babbage~$

After entering your password, you can work on the remote computer, which you can confirm by noticing the changed prompt that now uses the name of the remote computer on which you are working. Again, because you are using ssh, everything you enter on the keyboard in communication with the remote computer is encrypted. When you log out, you return to the shell on your computer:

matthew@babbage~$ logout
matthew@seymour:~$

User Accounts

A good place to start is with the concept of user-based security. For the most part, only two types of people access the system as users. (Although there are other accounts that run programs and processes, here we are talking about accounts that represent human beings rather than something like an account created for a web server process.) Most people have a regular user account. These users can change anything that is specific to their accounts, such as the wallpaper on the desktop, their personal preferences, and the configuration for a program when it is run by them using their account. Note that the emphasis is on anything that is specific to their accounts. This type of user cannot make systemwide changes that could affect other users.

To make systemwide changes, you need to use super user privileges, such as can be done using the account you created when you started Ubuntu for the first time (see Chapter 1, “Installing Ubuntu and Post-Installation Configuration”). With super user privileges you have access to the entire system and can carry out any task, even destructive ones. To help prevent this from happening, this user does not run with these powers enabled at all times, but instead spends most of the time as a regular user.

To use super user privileges from the command line, you need to preface the command you want to execute with another command, sudo, followed by a space and the command you want to run. As a mnemonic device, some think of this as “super user do.” When you press Enter (after typing the remaining command), you are prompted for your password, which you should type and then press the Enter key. As usual on any UNIX-based system, the password does not appear on the screen while you are typing it as a security measure, in case someone is watching over your shoulder. Ubuntu then carries out the command, but with super user privileges.

An example of the destructive nature of working as the super user is the age-old example sudo rm -rf /, which erases everything on your hard drive. If you enter a command using sudo as a regular user who does not have an account with super user privileges, an error message appears and nothing happens because the command will not run. We
recommend that you don't try this particular command as a test, though. If you enter this command using an account with super user privileges, you will soon find yourself starting over with a fresh installation and hoping you have a current backup of all your data. You need to be especially careful when using your super user privileges; otherwise, you might do irreparable damage to your system.

However, the ability to work as the super user is fundamental to a healthy Linux system and should not be feared, but rather respected, even while used only with focused attention. Without this ability, you could not install new software, edit system configuration files, or do a large number of important administration tasks. By the way, you have already been performing operations with super user privileges from the GUI if you have ever been asked to enter your password to complete a specific task, such as installing software updates. The difference is that most graphical interfaces limit the options that users have and make it a little more difficult to do some of the big, disruptive tasks, even the ones that are incredibly useful.

Ubuntu works slightly differently from many other Linux distributions. If you study some other Linux distros, especially older or more traditional ones, you will hear about a specific user account called root, which is a super user account. In those distros, instead of typing in `sudo` before a command while using a regular user account with super user privileges, you log in to the root account and simply issue the command without entering a password (at least by default; in almost all cases, `sudo` can be installed and configured in these distros). In those cases, you can tell when you are using the root account at the command line because you will see a pound sign (#) in the command line prompt in the place of the dollar sign ($).

For example: `matthew@seymour:~#` versus the usual `matthew@seymour:~$`

In Ubuntu, the root account is disabled by default because forcing regular users with super user privileges to type a specific command every time they want to execute a command as a super user should have the benefit of making them carefully consider what they are doing when they use that power. It is easy to forget to log out of a root account, and entering a powerful command while logged in to root can be catastrophic. However, if you are more experienced and comfortable with the more traditional method of using super user privileges and want to enable the root account, you can use the command `sudo passwd`. When prompted, enter your user password to confirm that your user account has super user privileges. You are then asked for a new UNIX password, which will be the password for the root account, so make sure to remember it. You are also prompted to repeat the password, in case you've made any mistakes. After you've typed it in and pressed Enter, the root account is active. You find out how to switch to root later on.

An alternative way of getting a root prompt, without having to enable the root account, is to issue the command `sudo -i`. After entering your password, you find yourself at a root prompt (#). Do what you need to do, and when you are finished, type `exit`, and press Enter to return to your usual prompt. You can learn more about `sudo` and root from an Ubuntu perspective at https://help.ubuntu.com/community/RootSudo.
Reading Documentation

Although you learn the basics of using Ubuntu in this book, you need time and practice to master and troubleshoot more complex aspects of the Linux operating system and your distribution. As with any operating system, you can expect to encounter some problems or perplexing questions as you continue to work with Linux. The first place to turn for help with these issues is the documentation included with your system; if you cannot find the information you need there, check Ubuntu’s website.

Using Man Pages

To learn more about a command or program, use the `man` command followed by the name of the command. Man pages are stored in places like `/usr/share/man` and `/usr/local/share/man`, but you don’t need to know that. To read a man page, such as the one for the `rm` command, use the `man` command like this:

```
matthew@seymour:~$ man rm
```

After you press Enter, the `less` command (a Linux command known as a pager) displays the man page. The `less` command is a text browser you can use to scroll forward and backward (even sideways) through the document to learn more about the command. Type the letter `h` to get help, use the forward slash (`/`) to enter a search string, or press `q` to quit.

No one can remember everything. Even the best and most experienced systems administrators use man pages regularly. Looking up complicated information is easy because this frees you from having to recall it all, enabling you to focus on your task rather than punishing you for not remembering syntax.

NOTE

Nearly all the hundreds of commands included with Linux each have a man page; however, some do not or may only have simple pages. You may also use the `info` command to read more detailed information about some commands or as a replacement for others. For example, to learn even more about `info` (which has a rather extensive manual page), use the `info` command like this:

```
matthew@seymour:~$ info info
```

Use the arrow keys to navigate through the document and press `q` to quit reading.

Using `apropos`

Linux, like UNIX, is a self-documenting system, with man pages accessible through the `man` command. Linux offers many other helpful commands for accessing its documentation. You can use the `apropos` command (for example, with a keyword such as `partition`) to find commands related to partitioning, like this:
Understanding the Linux File System Hierarchy

Using `whereis`

To find a command and its documentation, you can use the `whereis` command. For example, if you are looking for the `fdisk` command, you can do this:

```
matthew@seymour:~$ whereis fdisk
fdisk: /sbin/fdisk /usr/share/man/man8/fdisk.8.gz
```

Understanding the Linux File System Hierarchy

Linux has inherited from UNIX a well-planned hierarchy for organizing things. It isn’t perfect, but it is generally logical and mostly consistent, although distributions do tend to make some modifications that force some thinking and adaptation when moving between, say, Fedora, Slackware, and Ubuntu. Table 4.1 shows some of the top-level directories that are part of a standard Linux distro.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>The root directory</td>
</tr>
<tr>
<td>/bin</td>
<td>Essential commands</td>
</tr>
<tr>
<td>/boot</td>
<td>Boot loader files, Linux kernel</td>
</tr>
<tr>
<td>/dev</td>
<td>Device files</td>
</tr>
<tr>
<td>/etc</td>
<td>System configuration files</td>
</tr>
<tr>
<td>/home</td>
<td>User home directories</td>
</tr>
<tr>
<td>/lib</td>
<td>Shared libraries, kernel modules</td>
</tr>
<tr>
<td>/lost+found</td>
<td>Directory for recovered files (if found after a file system check)</td>
</tr>
<tr>
<td>/media</td>
<td>Mount point for removable media, such as DVDs and floppy disks</td>
</tr>
<tr>
<td>/mnt</td>
<td>Usual mount point for local, remote file systems</td>
</tr>
<tr>
<td>/opt</td>
<td>Add-on software packages</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>/proc</td>
<td>Kernel information, process control</td>
</tr>
<tr>
<td>/root</td>
<td>Super user (root) home</td>
</tr>
<tr>
<td>/sbin</td>
<td>System commands (mostly root only)</td>
</tr>
<tr>
<td>/srv</td>
<td>Holds information relating to services that run on your system</td>
</tr>
<tr>
<td>/sys</td>
<td>Real-time information on devices used by the kernel</td>
</tr>
<tr>
<td>/tmp</td>
<td>Temporary files</td>
</tr>
<tr>
<td>/usr</td>
<td>Software not essential for system operation, such as applications</td>
</tr>
<tr>
<td>/var</td>
<td>Variable data (such as logs); spooled files</td>
</tr>
</tbody>
</table>

Knowing these directories can help you find files when you need them. This knowledge can even help you partition hard drives when you install new systems by letting you choose to put certain directories on their own distinct partition, which can be useful for things like isolating directories from one another, such as a server security case like putting a directory like `/boot` that doesn’t change often on its own partition and making it read-only and unchangeable without specific operations being done by a super user during a maintenance cycle. Desktop users probably won’t need to think about that, but the directory tree is still quite useful to know when you want to find the configuration file for a specific program and set some program options systemwide to affect all users.

NOTE

This is a lot to remember, especially at first. For reference, there is a man page for the Linux filesystem hierarchy:

```
matthew@seymour:~$ man hier
```

This returns a detailed listing, with descriptions of each part.

Some of the important directories in Table 4.1, such as those containing user and root commands or system configuration files, are discussed in the following sections. You may use and edit files under these directories when you use Ubuntu.

Essential Commands in `/bin` and `/sbin`

The `/bin` directory contains essential commands used by the system for running and booting the system. In general, only the root operator uses the commands in the `/sbin` directory. The software in both locations is essential to the system; they make the system what it is, and if they are changed or removed, it could cause instability or a complete system failure. Often, the commands in these two directories are *statically* linked, which means that the commands do not depend on software libraries residing under the `/lib` or `/usr/lib` directories. Nearly all the other applications on your system are *dynamically* linked, meaning that they require the use of external software libraries (also known as *shared* libraries) to run. This is a feature for both sets of software.
The commands in /bin and /sbin are kept stable to maintain foundational system integrity and do not need to be updated often, if at all. For the security of the system, these commands are kept in a separate location and isolated where changes are more difficult and where it will be more obvious to the system administrator if unauthorized changes are attempted or made.

Application software changes more frequently, and applications often use the same functions that other pieces of application software use. This was the genesis of shared libraries. When a security update is needed for something that is used by more than one program, it has to be updated in only one location, a specific software library. This enables easy and quick security updates that will affect several pieces of non-system-essential software at the same time by updating one shared library, contained in one file on the computer.

Configuration Files in /etc

System configuration files and directories reside under the /etc directory. Some major software packages, such as Apache, OpenSSH, and xinetd, have their own subdirectories in /etc filled with configuration files. Others like crontab or fstab use one file. Examples of system-related configuration files in /etc include the following:

- **fstab**—The file system table is a text file listing each hard drive, CD-ROM, floppy, or other storage device attached to your PC. The table indexes each device's partition information with a place in your Linux file system (directory layout) and lists other options for each device when used with Linux (see Chapter 20, “Kernel and Module Management”). Nearly all entries in fstab can be manipulated by root using the mount command.

- **modprobe.d/**—This folder holds all the instructions to load kernel modules that are required as part of the system startup.

- **passwd**—The list of users for the system, including special-purpose nonhuman users like syslog and CouchDB, along with user account information.

- **sudoers**—A list of users or user groups with super user access.

User Directories: /home

The most important data on a non-server Linux system often resides in the user’s directories, found under the /home directory. User directories are named by default according to account usernames, so on a computer where I have an account named matthew, my home directory would generally be found in /home/matthew. This can be changed, and if you’re curious you can read more about it in Chapter 10, “Command-Line Master Class.”

Segregating the system and user data can be helpful in preventing data loss and making the process of backing up easier. For example, having user data reside on a separate file system or mounted from a remote computer on the network might help shield users from data loss in the event of a system hardware failure. For a laptop or desktop computer at home, you might place /home on a separate partition from the rest of the file system, so
that if the operating system is upgraded, damaged, or reinstalled, `/home` would be more likely to survive the event intact.

Using the Contents of the `/proc` Directory to Interact with the Kernel

The content of the `/proc` directory is created from memory and exists only while Linux is running. This directory contains special files that either extract information from or send information to the kernel. Many Linux utilities extract information from dynamically created directories and files under this directory, also known as a *virtual file system*. For example, the `free` command obtains its information from a file named `meminfo`:

```
matthew@seymour:~$ free
              total       used       free      shared   buffers     cached
Mem:      4055680     2725684    1329996   0        188996      1551464
-/+ buffers/cache:    985224     3070456
Swap:     8787512     0          8787512
```

This information constantly changes as the system is used. You can get the same information by using the `cat` command to see the contents of the `meminfo` file:

```
matthew@seymour:~$ cat /proc/meminfo
MemTotal:                    4055680 KB
MemFree:                     1329692 KB
Buffers:                      189208 KB
Cached:                      1551488 KB
SwapCached:                        0 KB
Active:                      1222172 KB
Inactive:                    1192244 KB
Active(anon):                 684092 KB
Inactive(anon):                   16 KB
Active(file):                 538080 KB
Inactive(file):              1192228 KB
Unevictable:                      48 KB
Mlocked:                          48 KB
SwapTotal:                   8787512 KB
SwapFree:                    8787512 KB
Dirty:                           136 KB
Writeback:                         0 KB
AnonPages:                    673760 KB
Mapped:                       202308 KB
Shmem:                         10396 KB
Slab:                         129248 KB
SReclaimable:                  107356 KB
SUUnreclaim:                    21892 KB
KernelStack:                   2592 KB
PageTables:                    30108 KB
```
The `/proc` directory can also be used to dynamically alter the behavior of a running Linux kernel by “echoing” numerical values to specific files under the `/proc/sys` directory. For example, to “turn on” kernel protection against one type of denial-of-service (DoS) attack known as SYN flooding, use the `echo` command to send the number 1 to the following `/proc` path:

```
matthew@seymour:~$ sudo echo 1 >/proc/sys/net/ipv4/tcp_syncookies
```

Other ways to use the `/proc` directory include the following:

- Getting CPU information, such as the family, type, and speed from `/proc/cpuinfo`.
- Viewing important networking information under `/proc/net`, such as active interfaces information under `/proc/net/dev`, routing information in `/proc/net/route`, and network statistics in `/proc/net/netstat`.
- Retrieving file system information.
- Reporting media mount point information via USB; for example, the Linux kernel reports what device to use to access files (such as `/dev/sda`) if a USB camera or hard drive is detected on the system. You can use the `dmesg` command to see this information.
- Getting the kernel version in `/proc/version`, performance information such as uptime in `/proc/uptime`, or other statistics such as CPU load, swap file usage, and processes in `/proc/stat`.

Working with Shared Data in the `/usr` Directory

The `/usr` directory contains software applications, libraries, and other types of shared data for use by anyone on the system. Many Linux system administrators give `/usr` its own partition. A number of subdirectories under `/usr` contain manual pages (`/usr/share/man`),
software package shared files (/usr/share/name_of_package, such as /usr/share/emacs), additional application or software package documentation (/usr/share/doc), and an entire subdirectory tree of locally built and installed software, /usr/local.

Temporary File Storage in the /tmp Directory
As its name implies, the /tmp directory is used for temporary file storage; as you use Linux, various programs create files in this directory.

Accessing Variable Data Files in the /var Directory
The /var directory contains subdirectories used by various system services for spooling and logging. Many of these variable data files, such as print spooler queues, are temporary, whereas others, such as system and kernel logs, are renamed and rotated in use. Incoming email is usually directed to files under /var/spool/mail.

Linux also uses /var for other important system services. These include the topmost File Transfer Protocol (FTP) directory under /var/ftp (see Chapter 24, “Remote File Serving with FTP”), and the Apache web server’s initial home page directory for the system, /var/www/html. (See Chapter 22, “Apache Web Server Management,” for more information about using Apache.)

NOTE
There is a recent trend to move data that is served from /var/www and /var/ftp to /srv, but this is not universal.

Navigating the Linux File System
In the Linux file system, as with its predecessor UNIX, everything is a file: data files, binary files, executable programs, even input and output devices. These files are placed in a series of directories that act like file folders. A directory is nothing more than a special type of file that contains a list of other files/directories. These files and directories are used to create a hierarchical structure that enables logical placement of specific types of files. Later this chapter discusses the standard hierarchy of the Linux file system. First, you learn how to navigate and interact with the file system.

NOTE
A directory with contents is called a *parent*, and its contents are called *children*, as in “/home/matthew/Documents is a child directory of /home/matthew, its parent.”

Listing the Contents of a Directory with ls
The `ls` command lists the contents of the current directory. It is commonly used by itself, but a number of options (also known as switches) are available for `ls` and give you more
information. If you have just logged in as described earlier, this command lists the files
and directories in your user’s home directory:

```
matthew@seymour:~$ ls
Documents    Music      file.txt  Pictures
```

NOTE

All directory listings in this chapter are abbreviated to save space.

By itself, the `ls` command shows just a list of names. Some are files, some are directo-
ries. This is useful if I know what I am looking for but cannot remember the exact name.
However, using `ls` in this matter has some limitations. First, it does not show hidden
files. Hidden files use filenames that start with a period (.) as the first character. They are
often used for configuration of specific programs and are not accessed frequently. For this
reason, they are not included in a basic directory listing. You can see all the hidden files
by adding a switch to the command like this:

```
matthew@seymour:~$ ls -a
    .              .bash_logout        Documents        Music
    ..             .bashrc             file.txt         Pictures
    .bash_history .config .local .profile
```

There is still more information available about each item in a directory. To include details
such as the file/directory permissions, owner and group (all of which are discussed later
in this chapter), as well as the size, and the date and time it was last modified, enter the
following:

```
matthew@seymour:~$ ls -al
```

```
    total 608
    drwxr-xr-x 38 matthew matthew   4096 2011-06-04 08:20 .
    drwxr-xr-x  3 root    root      4096 2011-05-16 16:48 ..
    -rw-------  1 matthew matthew    421 2011-06-04 10:27 .bash_history
    -rw-r--r--  1 matthew matthew   3353 2011-05-16 16:48 .bashrc
    drwxr-xr-x 13 matthew matthew   4096 2011-05-21 10:42 .config
    drwxr-xr-x  2 matthew matthew   4096 2011-05-16 17:07 Documents
    -rw-r--r--  1 matthew matthew    675 2011-05-16 16:48 file.txt
    drwxr-xr-x  3 matthew matthew   4096 2011-05-16 17:07 .local
    drwxr-xr-x  2 matthew matthew   4096 2011-05-16 17:07 Music
    drwxr-xr-x  3 matthew matthew   4096 2011-05-16 18:07 Pictures
    -rw-r--r--  1 matthew matthew    675 2011-05-16 16:48 .profile
```

The listing (abbreviated here) is now given with one item per line, but with multiple
columns. The listing starts with the number of items in the directory. (Both files and sub-
directories are included; remember that the listing here is abbreviated.) Then, the details
are as shown in Figure 9.1.
These details are discussed more completely later in the chapter in the “Working with Permissions” section.

Another useful switch is this:

```
matthew@seymour:~$ ls -R
```

This command scans and lists all the contents of the subdirectories of the current directory. This is likely to be a lot of information, so you might want to redirect the output to a text file so that you can browse through it at your leisure by using the following:

```
matthew@seymour:~$ ls -laR > listing.txt
```

Changing Directories with cd

Use the `cd` command to move within the file system from one directory to another. It might help you remember this command to think of it meaning “change directory.” The most basic usage of `cd` is this:

```
matthew@seymour:~$ cd somedir
```

That looks in the current directory for the `somedir` subdirectory, and then moves you into it. You can also specify an exact location for a directory, like this:

```
matthew@seymour:~$ cd /home/matthew/stuff/somedir
```
You can also use the `cd` command with several shortcuts. For example, to quickly move up to the parent directory, the one above the one you are currently in, use the `cd` command like this:

```
matthew@seymour:~$ cd ..
```

To return to your home directory from anywhere in the Linux file system, use the `cd` command like this:

```
matthew@seymour:~$ cd
```

You can also use the `$HOME` shell environment variable to accomplish the same thing. Environment variables are discussed in greater detail in Chapter 10, “Command-Line Master Class.” Type this command and press Enter to return to your home directory:

```
matthew@seymour:~$ cd $HOME
```

You can accomplish the same thing by using the tilde (`~`) like this:

```
matthew@seymour:~$ cd ~
```

Finding Your Current Directory with `pwd`

Use `pwd` to remind you where you are within the file system.

Working with Permissions

Under Linux (and UNIX), everything in the file system, including directories and devices, is a file. And every file on your system has an accompanying set of permissions based on ownership. These permissions provide data security by giving specific permission settings to every single item denoting who may read, write, or execute the file. These permissions are set individually for the file's owner, for members of the group the file belongs to, and for all others on the system.

You can examine the default permissions for a file you create by using the `umask` command, which lists default permissions using the number system explained next, or by using the `touch` command and then the `ls` command's long-format listing like this:

```
matthew@seymour:~$ touch file
matthew@seymour:~$ ls -l file
-rw-r--r-- 1 matthew matthew 0 2010-06-30 13:06 file
```

In this example, the `touch` command is used to quickly create a file. The `ls` command then reports on the file, displaying the following (from left to right):

- **The type of file created**—Common indicators of the type of file are in the leading letter in the output. A blank (which is represented by a dash, as in the preceding example) designates a plain file, `d` designates a directory, `c` designates a character device (such as `/dev/ttyS0`), and `b` is used for a block device (such as `/dev/sda`).
Permissions—Read, write, and execute permissions for the owner, group, and all others on the system. (You learn more about these permissions later in this section.)

Number of links to the file—The number 1 designates that there is only one file, whereas any other number indicates that there might be one or more hard-linked files. Links are created with the ln command. A hard-linked file is an exact copy of the file, but it might be located elsewhere on the system. Symbolic links of directories can also be created, but only the root operator can create a hard link of a directory.

The owner—The account that owns the file; this is originally the file creator, but you can change this designation using the chown command.

The group—The group of users allowed to access the file; this is originally the file creator’s main group, but you can change this designation using the chgrp command.

File size and creation/modification date—The last two elements indicate the size of the file in bytes and the date the file was created or last modified.

Assigning Permissions
Under Linux, permissions are grouped by owner, group, and others, with read, write, and execute permission assigned to each, as follows:

<table>
<thead>
<tr>
<th>Owner</th>
<th>Group</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>rwx</td>
<td>rwx</td>
<td>rxw</td>
</tr>
</tbody>
</table>

Permissions can be indicated by mnemonic or octal characters. Mnemonic characters are listed here:

- r indicates permission for an owner, member of the owner’s group, or others to open and read the file.
- w indicates permission for an owner, member of the owner’s group, or others to open and write to the file.
- x indicates permission for an owner, member of the owner’s group, or others to execute the file (or read a directory).

In the previous example for the file named file, the owner, matthew, has read and write permission. Any member of the group named matthew may only read the file. All other users may only read the file. Also note that default permissions for files created by the root operator (while using sudo or a root account) will differ because of umask settings assigned by the shell.

Many users prefer to use numeric codes, based on octal (base 8) values, to represent permissions. Here’s what these values mean:
4 indicates read permission.
2 indicates write permission.
1 indicates execute permission.

In octal notation, the previous example file has a permission setting of 644 (read + write or 4 + 2, read-only or 4, read-only or 4). Although you can use either form of permissions notation, octal is easy to use quickly after you visualize and understand how permissions are numbered.

NOTE
In Linux, you can create groups to assign a number of users access to common directories and files, based on permissions. You might assign everyone in accounting to a group named accounting and allow that group access to accounts payable files while disallowing access by other departments. Defined groups are maintained by the root operator, but you can use the newgrp command to temporarily join other groups to access files (as long as the root operator has added you to the other groups). You can also allow or deny other groups’ access to your files by modifying the group permissions of your files.

Directory Permissions
Directories are also files under Linux. For example, again use the ls command to show permissions like this:

matthew@seymour:~$ mkdir directory
matthew@seymour:~$ ls -ld directory
drwxr-xr-x 2 matthew matthew 4096 2010-06-30 13:23 directory

In this example, the mkdir command is used to create a directory. The ls command, and its -ld option, is used to show the permissions and other information about the directory (not its contents). Here you can see that the directory has permission values of 755 (read + write + execute or 4 + 2 + 1, read + execute or 4 + 1, and read + execute or 4 + 1).

This shows that the owner can read and write to the directory and, because of execute permission, also list the directory’s contents. Group members and all other users can list only the directory contents. Note that directories require execute permission for anyone to be able to view their contents.

You should also notice that the ls command’s output shows a leading d in the permissions field. This letter specifies that this file is a directory; normal files have a blank field in its place. Other files, such as those specifying a block or character device, have a different letter.
For example, if you examine the device file for a Linux serial port, you will see the following:

```
matthew@seymour:~$ ls -l /dev/ttyS0
crw-rw---- 1 root dialout 4, 64 2010-06-30 08:13 /dev/ttyS0
```

Here, `/dev/ttyS0` is a character device (such as a serial communications port and designated by a `c`) owned by root and available to anyone in the `dialout` group. The device has permissions of `660` (read + write, read + write, no permission).

On the other hand, if you examine the device file for an IDE hard drive, you see this:

```
matthew@seymour:~$ ls -l /dev/sda
brw-rw-- -- 1 root disk 8, 0 2010-06-30 08:13 /dev/sda
```

In this example, `b` designates a block device (a device that transfers and caches data in blocks) with similar permissions. Other device entries you will run across on your Linux system include symbolic links, designated by `s`.

Altering File Permissions with `chmod`

You can use the `chmod` command to alter a file’s permissions. This command uses various forms of command syntax, including octal or a mnemonic form (such as `u`, `g`, `o`, or `a` and `rwx`, and so on) to specify a desired change. You can use the `chmod` command to add, remove, or modify file or directory permissions to protect, hide, or open up access to a file by other users (except for the root account or a user with super user permission and using `sudo`, either of which can access any file or directory on a Linux system).

The mnemonic forms of `chmod`’s options are (when used with a plus character, `+`, to add, or a minus sign, `-`, to remove):

- `u`—Adds or removes user (owner) read, write, or execute permission
- `g`—Adds or removes group read, write, or execute permission
- `o`—Adds or removes read, write, or execute permission for others not in a file’s group
- `a`—Adds or removes read, write, or execute permission for all users
- `r`—Adds or removes read permission
- `w`—Adds or removes write permission
- `x`—Adds or removes execution permission

For example, if you create a file, such as a `readme.txt`, the file has the following default permissions (set by the `umask` setting in `/etc/bashrc`):

```
-rw-r--r-- 1 matthew matthew 0 2010-06-30 13:33 readme.txt
```

As you can see, you can read and write the file. Anyone else can only read the file (and only if it is outside your home directory, which will have read, write, and execute permissions).
Working with Permissions

permission set only for you, the owner). You can remove all write permission for anyone by using chmod, the minus sign (-), and aw, as follows:

```
matthew@seymour:~$ chmod a-w readme.txt
matthew@seymour:~$ ls -l readme.txt
-r--r--r-- 1 matthew matthew 0 2010-06-30 13:33 readme.txt
```

Now, no one can write to the file (except you, if the file is in your /home or /tmp directory because of directory permissions). To restore read and write permission for only you as the owner, use the plus sign (+) and the u and rw options like so:

```
matthew@seymour:~$ chmod u+rw readme.txt
matthew@seymour:~$ ls -l readme.txt
-rw-r--r-- 1 matthew matthew 0 2010-06-30 13:33 readme.txt
```

You can also use the octal form of the chmod command (for example, to modify a file's permissions so that only you, the owner, can read and write a file). Use the chmod command and a file permission of 600, like this:

```
matthew@seymour:~$ chmod 600 readme.txt
matthew@seymour:~$ ls -l readme.txt
-rw------- 1 matthew matthew 0 2010-06-30 13:33 readme.txt
```

If you take away execution permission for a directory, files might be hidden inside and may not be listed or accessed by anyone else (except the root operator, of course, who has access to any file on your system). By using various combinations of permission settings, you can quickly and easily set up a more secure environment, even as a normal user in your /home directory.

File Permissions with chgrp

You can use the chgrp command to change the group to which a file belongs:

```
matthew@seymour:~$ chgrp wheel filename
```

Changing File Permissions with chown

You can use the chown command to change the owner of a file:

```
matthew@seymour:~$ chown matthew filename
```

You can also use the chown command to change the group of a file at the same time:

```
matthew@seymour:~$ chown matthew:wheel filename
```

Understanding Set User ID and Set Group ID Permissions

Two more types of permission are “set user ID,” known as suid, and “set group ID,” or sgid. These settings, when used in a program, enable any user running that program to have
program owner or group owner permissions for that program. These settings enable
the program to be run effectively by anyone, without requiring that each user’s permis-
sions be altered to include specific permissions for that program.

One commonly used program with suid permissions is the `passwd` command:

```
matthew@seymour:~$ ls -l /usr/bin/passwd
-rw-sr-xr-x 1 root root 42856 2010-01-26 10:09 /usr/bin/passwd
```

This setting allows normal users to execute the command (as root) to make changes to a
root-only-accessible file `/etc/passwd`.

You also can assign similar permission with the `chfn` command. This command allows
users to update or change `finger` information in `/etc/passwd`. You accomplish this
permission modification by using a leading 4 (or the mnemonic `s`) in front of the three
octal values.

NOTE

Other files that might have suid or guid permissions include `at`, `rcp`, `rlogin`, `rsh`, `chage`,
`chsh`, `ssh`, `crontab`, `sudo`, `sendmail`, `ping`, `mount`, and several UNIX-to-UNIX Copy (UUCP)
utilities. Many programs (such as games) might also have this type of permission to
access a sound device.

Files or programs that have suid or guid permissions can sometimes present security holes
because they bypass normal permissions. This problem is compounded if the permission
extends to an executable binary (a command) with an inherent security flaw because it
could lead to any system user or intruder gaining root access. In past exploits, this typi-
cally happened when a user fed a vulnerable command with unexpected input (such as a
long pathname or option); the command would fail, and the user would be presented a
root prompt. Although Linux developers are constantly on the lookout for poor program-
ing practices, new exploits are found all the time, and can crop up unexpectedly, espe-
cially in newer software packages that haven’t had the benefit of peer developer review.

Savvy Linux system administrators keep the number of suid or guid files present on
a system to a minimum. The `find` command can be used to display all such files on your
system:

```
matthew@seymour:~$ sudo find / -type f -perm /6000 -exec ls -l {} \;
```

NOTE

The `find` command is quite helpful and can be used for many purposes, such as before
or during backup operations.

Note that the programs do not necessarily have to be removed from your system. If
your users really do not need to use the program, you can remove the programs execute
permission for anyone. You have to decide, as the root operator, whether your users are
allowed, for example, to mount and unmount CD-ROMs or other media on your system.
Although Linux-based operating systems can be set up to accommodate ease of use and
convenience, allowing programs such as `mount` to be suid might not be the best security
policy. Other candidates for suid permission change could include the `chsh`, `at`, or
`chage` commands.

Working with Files
Managing files in your home directory involves using one or more easily remembered
commands.

Creating a File with `touch`
To create an empty file called `filename` within your current directory, use the following
command:

```
matthew@seymour:~$ touch filename
```

To edit this file, you must use a text editor. Several are discussed in Chapter 12,
“Automating Tasks and Shell Scripting.” However, it is sometimes useful to create an
empty file as this creates an access record because of the time and date information that
is connected to the file. You can also use `touch` to update this information, called a time-
stamp, without otherwise accessing or modifying a file.

You can create a file in a different location by changing what is after `touch`. To create a
new file in `/home/matthew/randomdirectory`, if I am already in my home directory, I can
use the following:

```
matthew@seymour:~$ touch randomdirectory/newfile
```

Or from anywhere using an absolute path, I use this:

```
matthew@seymour:~$ touch /home/matthew/randomdirectory/newfile
```

Or from anywhere using a path shortcut, I use the following command:

```
matthew@seymour:~$ touch ~/randomdirectory/newfile
```

Creating a Directory with `mkdir`
To create an empty directory called `newdirectory` within your current directory, use this
command:

```
matthew@seymour:~$ mkdir newdirectory
```

You can create a directory in a different location by changing what is after `mkdir`. To
create a new directory in `/home/matthew/music`, if I am already in my `/home` directory, I
can use the following:

```
matthew@seymour:~$ mkdir music/newdirectory
```
Or from anywhere using an absolute path, I can use this:

```
matthew@seymour:~$ mkdir /home/matthew/music/newdirectory
```

Or from anywhere using a path shortcut, I can use the following command:

```
matthew@seymour:~$ mkdir ~/music/newdirectory
```

The `-p` option is valuable. It enables you to create a directory and its parent directories at the same time, if they do not already exist. This can be a real time saver. If the parent directories exist, the command works normally. For example, suppose I want to make a new directory with two layers of subdirectories. In this example, `music` and `newdirectory` already exist, but `subdir1` and `subdir2` are to be created:

```
matthew@seymour:~$ mkdir -p ~/music/newdirectory/subdir1/subdir2
```

Deleting a Directory with `rmdir`

To delete an empty directory named `directoryname`, use the following command:

```
matthew@seymour:~$ rmdir directoryname
```

You can remove a directory in a different location by changing what is after `rmdir`. To remove a directory in `/home/matthew/music`, if I am already in my `/home` directory, I can use the following:

```
matthew@seymour:~$ rmdir music/directoryname
```

Or from anywhere using an absolute path, I can use this:

```
matthew@seymour:~$ rmdir /home/matthew/music/directoryname
```

Or from anywhere using a path shortcut, I can use the following command:

```
matthew@seymour:~$ rmdir ~/music/directoryname
```

The directory must be empty to be removed using `rmdir`. However, there is a way to remove a directory with its contents using `rm`.

CAUTION

You cannot easily recover anything that has been deleted using `rmdir` or `rm`, so proceed carefully. Be absolutely certain you will never need what you are about to delete before you do so. Only a professional data recovery service is likely to be able to recover the files, and even then at great expense.
Deleting a File or Directory with `rm`
To delete a file named `filename`, use this command:
```
matthew@seymour:~$ rm filename
```
You can remove a directory in a different location by changing what is after `rm`. To remove a directory in `/home/matthew/randomdirectory`, if I am already in my `/home` directory, I can use the following:
```
matthew@seymour:~$ rm randomdirectory/filename
```
Or from anywhere using an absolute path, I can use this:
```
matthew@seymour:~$ rm /home/matthew/randomdirectory/filename
```
Or from anywhere using a path shortcut, I can use the following command:
```
matthew@seymour:~$ rm ~/randomdirectory/filename
```
If you try to use `rm` to remove an empty directory, you will receive an error message: `rm: cannot remove `random/: Is a directory`. In this case, you must use `rmdir`. However, you can remove a directory and its contents using `rm`.

CAUTION
Be sure that all the contents of a directory are known and unwanted if you choose to delete them. There is no way to recover them later. Also, be careful that you don’t have extra spaces, mistype the name of the directory, or use `sudo` to delete something that you shouldn’t be deleting. Linux gives you great power, and it will let you use that power without questioning you about it; that’s the human’s job.

To delete a directory and all its contents, use the `-R` recursive switch. This switch works with many commands, not only `rm`:
```
matthew@seymour:~$ rm -R /home/matthew/randomdirectory/
```
Everything in `randomdirectory` as well as in the directory itself will be deleted.

Moving or Renaming a File with `mv`
In Linux land, moving and renaming a file are the same thing. It doesn’t matter whether you are moving the directory to another or from one filename to another filename in the same directory, there is only one command to remember. To move a file named `filename` from `~/documents` to `~/archive`, use this command:
```
matthew@seymour:~$ mv documents/filename archive
```
Notice that the filename is not included in the destination. The destination here must be an existing directory. If it is not, the file is renamed to the term used. Some examples will make this clear.

To rename a file that is in my current directory, I could use the following:

```
matthew@seymour:~$ mv oldfilename newfilename
```

To rename a file as I move it from `~/documents` to `~/archive`, I could use this:

```
matthew@seymour:~$ mv documents/oldfilename archive/newfilename
```

Or from anywhere using an absolute path, I could use the following command:

```
matthew@seymour:~$ mv /home/matthew/documents/oldfilename
~/home/matthew/archive/newfilename
```

Or from anywhere using a path shortcut, I could use this:

```
matthew@seymour:~$ rm ~/documents/oldfilename ~/archive/newfilename
```

Copying a File with `cp`

Copying works similarly to moving, but retains the original in the original location. To copy a file named `filename` from `~/documents` to `~/archive`, use this command:

```
matthew@seymour:~$ cp documents/filename archive
```

Notice that the filename is not included in the destination. The destination here must be an existing directory. If it is not, the file is renamed to the term used. Some examples will make this clear.

To copy a file that is in my current directory I could use the following, and it will work exactly the same as `mv`, except that both files will exist afterward:

```
matthew@seymour:~$ cp oldfilename newfilename
```

To rename a file as I copy it from `~/documents` to `~/archive`, I could use this:

```
matthew@seymour:~$ cp documents/oldfilename archive/newfilename
```

Or from anywhere using an absolute path, I could use the following command:

```
matthew@seymour:~$ cp /home/matthew/documents/oldfilename
~/home/matthew/archive/newfilename
```

Or from anywhere using a path shortcut, I can use this:

```
matthew@seymour:~$ cp ~/documents/oldfilename ~/archive/newfilename
```
Displaying the Contents of a File with `cat`

To view the contents of a text file named `filename` on your screen, use this command:

```
matthew@seymour:~$ cat filename
```

Notice that the text is displayed on your screen but that you cannot edit or work with the text in any way. This command is convenient when you want to know the contents of a file but don’t need to make any changes. Text editors for the terminal are covered in Chapter 10, “Command-Line Master Class.” This command works best with short files because the contents of longer files will scroll off of the screen too quickly to be read.

Displaying the Contents of a File with `less`

When you need to view the contents of a longer text file from the command line, you can use `less`. This produces a paged output, meaning that output stops each time your screen is full. You can then use your up- and down-arrow keys and page-up and page-down keys to scroll through the contents of the file. Then, use `q` to quit and return to the command line:

```
matthew@seymour:~$ less filename
```

There was a program that did give paged output in the early days of UNIX called `more`. It was the first paged output program but did not include the ability to scroll up and down. `less` was written to add that capability and was named as a bit of hacker humor because “less is more.” You can also use `more`, but today it is merely an alias for `less`.

Using Wildcards and Regular Expressions

Each of these commands can be used with pattern-matching strings known as wildcards or regular expressions. For example, to delete all files in the current directory beginning with the letters `abc`, you can use an expression beginning with the first three letters of the desired filenames. An asterisk (*) is then appended to match all these files. Use a command line with the `rm` command like this:

```
matthew@seymour:~$ rm abc*
```

Linux shells recognize many types of file naming wildcards, but this is different from the capabilities of Linux commands supporting the use of more complex expressions. You learn more about using wildcards in Chapter 10, “Command-Line Master Class,” and in Chapter 12, “Automating Tasks and Shell Scripting.”

NOTE

You can also learn more about using expressions by reading the `grep` manual pages (`man grep`), but because both `man` and `grep` are covered in Chapter 10, “Command-Line Master Class,” consider this mention as included only to whet your appetite.
Working as Root

The root, or super user account, is a special account and user on UNIX and Linux systems. Super user permissions are required in part because of the restrictive file permissions assigned to important system configuration files. You must have root permission to edit these files or to access or modify certain devices (such as hard drives). When logged in as root, you have total control over your system, which can be dangerous.

When you work in root, you can destroy a running system with a simple invocation of the `rm` command like this:

```
matthew@seymour:~$ sudo rm -rf /
```

This command line not only deletes files and directories but also could wipe out file systems on other partitions and even remote computers. This alone is reason enough to take precautions when using root access.

The only time you should run Linux as the super user is when you are configuring the file system, for example, or to repair or maintain the system. Logging in and using Linux as the root operator isn’t a good idea because it defeats the entire concept of file permissions.

Knowing how to run commands as the super user (root) without logging in as root can help avoid serious missteps when configuring your system. In Ubuntu, you can use `sudo` to allow you to execute single commands as root and then quickly return to normal user status. For example, if you would like to edit your system’s file system table (a text file that describes local or remote storage devices, their type, and location), you can use `sudo` like this:

```
matthew@seymour:~$ sudo nano -w /etc/fstab
[sudo] password for matthew:
```

After you press Enter, you are prompted for a password that gives you access to root. This extra step can also help you “think before you leap” into the command. Enter the root password, and you are then editing `/etc/fstab`, using the `nano` editor with line wrapping disabled (thanks to the `-w`).

CAUTION

Before editing any important system or software service configuration file, make a backup copy. Then make sure to launch your text editor with line wrapping disabled. If you edit a configuration file without disabling line wrapping, you could insert spurious carriage returns and line feeds into its contents, causing the configured service to fail when restarting. By convention, nearly all configuration files are formatted for 80-character text width, but this is not always the case. By default, the `vi` and `emacs` editors don’t use line wrap.

Understanding and Fixing `sudo`

Most Ubuntu users never have a problem here, but sometimes, people who like to experiment break things, especially while learning. This section exists to help you first
understand more completely how sudo works and also how to restore sudo access to a specific user when, for some reason, it has ceased to function for that user.

NOTE

You will usually know a problem has occurred because an error message like this will appear when a user tries to issue a command using sudo:

```
matthew@seymour:$ sudo shutdown -h now
[sudo] password for matthew:
matthew is not in the sudoers file. This incident will be reported.
```

Sometimes, you might not even receive an error message, but the command issued simply does nothing. Either way, you can fix the problem using the following knowledge and procedure.

In order for a user to use sudo, the user account must belong to the admin group and also be listed in the `/etc/sudoers` file. If both conditions are met, the user will be permitted to temporarily use root powers for specific commands that are issued at the command line by that user account by prefacing the command with the word sudo.

A problem can occur for a specific user with sudo when

- A user is taken out of the admin group but should not have been. The permissions for the `/etc/sudoers` file has been changed to anything other than 440. The `/etc/sudoers` file has been changed in a way that does not allow members of the admin group to use root powers.

TIP

Generally, these things are the result of a user doing something they should not have done, such as changing the permissions on all files rather than taking the time to figure out a specific file that is causing problems due to permissions issues. Take heed, it is better to spend a bit more time learning than it is to take a shortcut that causes bigger problems.

Fixing any of these problems requires the use of root powers. This is an obvious problem because if sudo is not working, then the account does not have access to root. To fix it, we must gain root access. You can do this by booting into recovery mode using the following steps:

1. Hold down the Shift key while the computer is booting.
2. When the GRUB menu page appears, use the arrow keys on your keyboard to scroll to the entry that ends with (recovery mode) and press Enter to select it.
3. When the boot process finishes, you have several options. Select the menu entry for root, which is described as Drop to Root Shell Prompt. You are now at the command line with full root access to the computer.
4. Ubuntu mounts filesystems as read-only by default in recovery mode, so you need to remount the root filesystem, `/`, as read-write so that you can fix the problem. Enter the following:

```
root@seymour:~# mount -o rw,remount /
```

NOTE

You now have complete root access and read-write privileges on the machine. This is an example of why security of a physical machine is important. If someone has physical access to your computer, he can easily and quickly gain full control over the machine and all it contains if he knows what he is doing.

If the problem exists because the user account was removed from the admin group, enter

```
root@seymour:~# adduser username admin
```

If the problem exists because the permissions for `/etc/sudoers` are wrong, enter

```
root@seymour:~# chmod 440 /etc/sudoers
```

If the problem exists because of an internal problem in `/etc/sudoers`, make a backup of the existing file and use `visudo` to edit it (this is a special use of the vi editor, covered in Chapter 10, “Command-Line Master Class,” that runs a check on the file after editing to be certain that it is correct—this particular problem usually occurs when someone edits the file using another editor that does not make this check). The contents of the file should be the following:

```bash
#
#
# This file MUST be edited with the 'visudo' command as root.
#
#
# Please consider adding local content in /etc/sudoers.d/ instead of
# directly modifying this file.
#
#
# See the man page for details on how to write a sudoers file.
#
Defaults env_reset

Defaults secure_path="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
```
Host alias specification

User alias specification

Cmd alias specification

User privilege specification

root ALL=(ALL:ALL) ALL

Members of the admin group may gain root privileges

%admin ALL=(ALL) ALL

Allow members of group sudo to execute any command

%sudo ALL=(ALL:ALL) ALL

See sudoers(5) for more information on "#include" directives:

#include /etc/sudoers.d

After your fix is complete, exit the root command line:

root@seymour:~# exit

You return to the recovery mode menu. Select resume, described as Resume Normal Boot, to finish and return to a normal boot. When the boot completes, you should be able to use sudo correctly again.
Creating Users

When a Linux system administrator creates a user, an entry in `/etc/passwd` for the user is created. The system also creates a directory, labeled with the user’s username, in the `/home` directory. For example, if you create a user named `heather`, the user’s home directory is `/home/heather`.

NOTE

In this chapter, you learn how to manage users from the command line. See Chapter 11, “Managing Users,” for more information on user administration including doing so using graphical administration utilities.

Use the `adduser` command, along with a user’s name, to quickly create a user:

```
matthew@seymour:~$ sudo adduser heather
```

After creating the user, you must also create the user’s initial password with the `passwd` command:

```
matthew@seymour:~$ sudo passwd heather
```

Changing password for user heather.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

Enter the new password twice. If you do not create an initial password for a new user, the user cannot log in.

The `adduser` command has many command-line options. The command can be used to set policies and dates for the new user’s password, assign a login shell, assign group membership, and other aspects of a user’s account. See `man adduser` as well as Chapter 11, “Managing Users,” for more info.

Deleting Users

Use the `deluser` command to delete users from your system. This command removes a user’s entry in the system’s `/etc/passwd` file. You should also use the command’s `--remove-all-files` and `--remove-home` option to remove all the user’s files and directories (such as the user’s mail spool file under `/var/spool/mail`):

```
matthew@seymour:~$ sudo deluser --remove-all-files --remove-home andrew
```

If you do not use the `-r` option, you have to manually delete the user’s directory under `/home`, along with the user’s `/var/spool/mail` queue.
Shutting Down the System

Use the `shutdown` command to shut down your system. The `shutdown` command has a number of different command-line options (such as shutting down at a predetermined time), but the fastest way to cleanly shut down Linux is to use the `-h` or `halt` option, followed by the word `now` or the numeral zero (0), like this:

```
matthew@seymour:~$ sudo shutdown -h now
```

or

```
matthew@seymour:~$ sudo shutdown -h 0
```

To incorporate a timed shutdown and a pertinent message to all active users, use `shutdown`'s time and message options, as follows:

```
matthew@seymour:~$ sudo shutdown -h 18:30 "System is going down for maintenance this evening at 6:30 p.m. Please make sure you have saved your work and logged out by then or you may lose data."
```

This example shuts down your system and provides a warning to all active users 15 minutes before the shutdown (or reboot). Shutting down a running server can be considered drastic, especially if there are active users or exchanges of important data occurring (such as a backup in progress). One good approach is to warn users ahead of time. This can be done by editing the system `Message of the Day (MOTD)` `motd` file, which displays a message to users when they log in using the command-line interface, as is common on multi-user systems.

It used to be that to create a custom MOTD you only had to use a text editor and change the contents of `/etc/motd`. However, this has changed in Ubuntu as the developers have added a way to automatically and regularly update some useful information contained in MOTD using `cron`. To modify how the MOTD is updated, you should install `update-motd` and read the man page.

You can also make downtimes part of a regular schedule, perhaps to coincide with security audits, software updates, or hardware maintenance.

You should shut down Ubuntu for only a few very specific reasons:

- You are not using the computer, no other users are logged in or expected to need or use the system, such as your personal desktop or laptop computer, and you want to conserve electrical power.
- You need to perform system maintenance that requires any or all system services to be stopped.
- You want to replace integral hardware.
TIP

Do not shut down your computer if you suspect that intruders have infiltrated your system; instead, disconnect the machine from any or all networks and make a backup copy of your hard drives. You might want to also keep the machine running to examine the contents of memory and to examine system logs. Exceptions to this are when the system contains only trivial data files and nonessential services, such as a personal computer that is only used to run a web browser, and when you have no intention of trying to track down what an intruder might have changed, either to repair the damage or to try to catch them using computer forensics, but rather plan to merely wipe everything clean and rebuild or reinstall the system from scratch.

Rebooting the System

You should also use the `shutdown` command to reboot your system. The fastest way to cleanly reboot Linux is to use the `-r` option, and the word `now` or the numeral zero (0):

```
matthew@seymour:~$ sudo shutdown -r now
```

or

```
matthew@seymour:~$ sudo shutdown -r 0
```

Both rebooting and shutting down can have dire consequences if performed at the wrong time (such as during backups or critical file transfers, which arouses the ire of your system’s users). However, Linux-based operating systems are designed to properly stop active system services in an orderly fashion. Other commands you can use to shut down and reboot Linux are the `halt` and `reboot` commands, but the `shutdown` command is more flexible.

Commonly Used Commands and Programs

The following programs and built-in shell commands are commonly used when working at the command line. These commands are organized by category to help you understand the command’s purpose. If you need to find full information for using the command, you can find that information under the command’s man page.

- **Managing users and groups**—`chage`, `chfn`, `chsh`, `edquota`, `gpasswd`, `groupadd`, `groupdel`, `groupmod`, `groups`, `mkpasswd`, `newgrp`, `newusers`, `passwd`, `umask`, `useradd`, `userdel`, `usermod`

- **Managing files and file systems**—`cat`, `cd`, `chattr`, `chmod`, `chown`, `compress`, `cp`, `dd`, `fdisk`, `find`, `gzip`, `ln`, `mkdir`, `mkfs`, `mount`, `mv`, `rm`, `rmdir`, `rpm`, `sort`, `swapon`, `swapoff`, `tar`, `touch`, `umount`, `uncompress`, `uniq`, `unzip`, `zip`

- **Managing running programs**—`bg`, `fg`, `kill`, `killall`, `nice`, `ps`, `pstat`, `renice`, `top`, `watch`
Getting information—apropos, cal, cat, cmp, date, diff, df, dir, dmesg, du, env, file, free, grep, head, info, last, less, locate, ls, lsattr, man, more, pinfo, ps, pwd, stat, strings, tac, tail, top, uname, uptime, vdir, vmstat, w, wc, whatis, whereis, which, who, whoami

Console text editors—ed, jed, joe, mcedit, nano, red, sed, vim

Console Internet and network commands—bing, elm, ftp, host, hostname, ifconfig, links, lynx, mail, mutt, ncftp, netconfig, netstat, pine, ping, pump, rdate, route, scp, sftp, ssh, tcpdump, traceroute, whois, wire-test

References

- https://help.ubuntu.com/community/LinuxFilesystemTreeOverview—The Ubuntu community help page for an overview of the Linux file system tree.
- https://help.ubuntu.com/community/RootSudo—An Ubuntu community page explaining sudo, the philosophy behind using it by default, and how to use it.
Index

Symbols

./configure, building Apache, 465
.htaccess configuration files (Apache web server configuration), 473-474
/bin directory commands, 141-143
/etc directory configuration files, 143
/etc/host.conf file, 363
/etc/hosts file, adding hosts, 361
/etc/init.d/apache2, starting/Stopping Apache web server, 468-469
/etc/modprobe.conf file
 editing, 354
 manually loading kernel modules, 354-355
/etc/nsswitch.conf file, 362
/etc/resolv.conf file, 362-363
/etc/samba/smb.conf file, 444-447
/etc/services file, service settings, 361-362
/home directory, user directories, 143-144
/proc directory, interacting with kernel, 144-145
/proc file system, 292
/sbin directory commands, 141-143
/tmp directory, temporary file storage, 146
/usr directory
 shared data, 145-146
 subdirectories, 35
/usr/bin subdirectory, 35
/usr/include subdirectory, 35
/usr/lib subdirectory, 35
/usr/lib/modules subdirectory, 35
/usr/src/linux-3.2 directory, 419
/var directory data files, 146
10BASE-T, 349
AbiWord (GNOME Office component), 70
ac command, 222, 234
accept command, 460
access, databases
 local GUI clients, 563-564
 SSH, 562
access control, Apache web server, 474-480
access control lists (ACLs), 529-533
accessing
 command line, 135-138
 Perl shell, 694
accounts, Launchpad, 668
ACID compliance, MySQL versus PostgreSQL, 553-554
ACLs (access control lists), 529-533
activation, DHCP, 366-367
Ada, 768
Adblock Plus plug-in, 53
adding users, 218-221
Additional Drivers manager, 109
address-based virtual hosts (Apache), 486
addressing
 broadcast, 348
 IPv4, 343
 IPv6, 344-347
 multicasts, 348
 TCP/IP, 341-342
 Unicast, 348
adduser command, 164
adjusting volume, music and sound, 77
administration, LDAP, 587-588
administrative tools, BIOS (basic input/output system), 286-287
Adobe Flash, 96
Adobe Photoshop, 84
ADT (Android Development Tools) plug-in, 781
ADT Eclipse plug-in, installation, 782
Advanced Linux Sound Architecture (ALSA), 76
Advanced Package Tool (APT), 123-128, 603
afio backup tool, 325
aliases, forwarding email, 516-517
Alien Arena, 110
all-in-one devices (print/fax/scan), 459
allow directive, Apache web server access control, 476-477
AllowOverrides directive, Apache web server configuration, 474
Alpine mail client, 58
ALSA (Advanced Linux Sound Architecture), 76
Amanda backup application, 324-325
AMD, proprietary drivers, 108
American Registry for Internet Numbers, 341
Android, mobile development for, 779-785
 Android Runtime, 780
 Application Framework, 780-781
 core applications, 781
 creating application, 784-785
 installation of Android SDK, 781-783
 libraries, 780
 Linux kernel, 780
 Android Development Tools (ADT) plug-in, 781
Android Runtime, mobile development for Android, 780
Android SDK, installation, 781-783
Android Virtual Device (AVD), 783
anonymous servers (FTP), 498
Apache, performance tuning, 411-412
Apache Module Registry, 480
Artistic License, 3
asort() function (PHP), 744
assessment
 backup needs, 309-310
 resources for backup, 309-310
 vulnerability, 393-394
assigning permissions, 150-151
at command, scheduling tasks, 237-240
audio formats, 79
authenticated servers (FTP), 498
authentication, Apache web server, 477-479
autoconf utility, 759-760
autocracking scripts, 392
automation of tasks, 237-242
 scheduling tasks, 237-242
 writing shell scripts, 255-256
Autoresponders, 522
AVD (Android Virtual Device), 783
AVI (video format), 95

B
Back in Time backup tool, 322-323
background processing, shell control, 247
backing up data, 307-334
 choosing a strategy, 307-314
 copying files, 326-330
 hardware and media, 314-316
 software, 316-325
 system rescue, 332-334
 version control, 330-332
backslash, writing shell scripts, 260
backtick, writing shell scripts, 260
backticks, accessing the shell in Perl, 694
badblocks command, 409
Bandwidth Meter, 53
Banshee, 81-82
Base (LibreOffice component), 67
BaseX, 576
Bash shell, configuration, 669-670
Basic Authentication, Apache web server, 477
basic input/output system. See BIOS
batch command, scheduling tasks, 237-240
Battle for Wesnoth, 112
Bazaar, 647-649
bch tool (Bikeshed), 661
Berkeley DB, 572
Bernes-Lee, Tim, 51
BigTable, 577
Bikeshed, 661-663
BIOS (basic input/output system), 282-288
 booting into default runlevel, 285
 controlling services, 286-287
 final stage of initialization, 285-286
 init scripts, 285-286
 loading Linux Kernel, 283
 runlevel definitions, 284
 system services and runlevels, 284
 troubleshooting runlevel problems, 287-288
 tuning disk drives, 406-407
Bitbucket, 649
BMP (graphics format), 86
body of message (newsgroup articles), 63
Boot Loader, Ubuntu installation, 10-11
boot loader problems, compiling kernel, 436
boot process, 281-290
 BIOS, 282-288
 manually starting/stopping services, 288-289
 running services, 281-282
 Upstart, 289-290
booting into default runlevel, BIOS (basic input/output system), 285
bootmail tool, 663
Brasero, burning CDs/DVDs, 89
break statement, executing shell scripts, 278
bridged networking, 601
bridges, 353
broadcast addressing, 348
BSD License, 3
buffer usage, MySQL, 412-413
Bug Squad, 677
bugs
fixing, 670-672
Harvest, 673
built-in security, kernel, 391
built-in variables, executing shell scripts, 257
BulletProofX, 36
bunzip2 command, 204
burning CDs/DVDs, 89-93
Brasero, 89
command line, 89-93
buying music, Ubuntu One Music Store, 81
Bynari, 524
Byobu, 60
byobu command, 205-206
bzip2 command, 204
bzrp tool (Bikeshed), 661

C

C programming tools, 755-763
autoconf utility, 759-760
debugging tools, 760-761
GNU C compiler, 761-762
graphical development, 762-763
Linux, 755-757
macros, 758-759
make command, 757
makefile targets, 759
makefiles, 757-759
C++ programming tools, 755-763
autoconf utility, 759-760
debugging tools, 760-761
GNU C compiler, 761-762
graphical development, 762-763
Linux, 755-757
macros, 758-759
make command, 757
makefile targets, 759
makefiles, 757-759
c10k problem, 492
cable (network), 351-352
Calc (LibreOffice component), 67
cameras, digital, 88
cancel command, 460
captured screen images, 87
case statement, executing shell scripts, 276-278
Cassandra, 572-573
cat command, 144-145, 159, 171-173
cd command, 148-149, 171, 173-175
Cd-RW drives, 315
CDs, burning, 89-93
Brasero, 89
command line, 89-91
Cedega, 116
CFEngine, managing sets of servers, 643
change command, 234
changing
passwords in a batch, 227
runlevels, 286-287

How can we make this index more useful? Email us at indexes@samspublishing.com
characters
 shell pattern matching, 245
 writing shell scripts, 257
charms (juju), 638-640
Checkbox, 677
checking connections, networking, 338-340
Chef, managing sets of servers, 642
Cherokee, 494-495
chfn command, 234
chgrp command, 153, 212, 234
children’s games, 114-115
Childsplay, 114
chmod command, 152-153, 171, 175, 212, 234
chown command, 212, 234
chpasswd command, 227, 234
Chromium, 53-54
chsh command, 218, 234
class inheritance, Python object orientation, 719-720
class variables, Python object orientation, 717-718
classes of networks, 341-342
Claws mail client, 57
CLI (command-line interface). See command line
client configuration
 NFS, 442
 proxy servers, 528-337
client/server system, relational database services, 561-567
clients
 graphical, 566-567
 IP addresses, 533-534
 LDAP configuration, 586-587
Clojure, 768-769
Cloud, 607-640
 benefits, 607-610
 Eucalyptus, 610-618
deployment/installation, 612
euca2ools primer, 616-618
IaaS (Infrastructure as a Service), 609
juju, 634-640
 charms, 638-640
 installation, 635-637
Landscape, 640
Maas (Metal as a Service), 610
OpenStack, 618-634
 commands, 634
 Compute Infrastructure (Nova), 618-619
 creating an image, 629-632
 Imaging Service (Glance), 619
 installation, 619-629
 instance management, 632
 network management, 633-634
 Storage Infrastructure (Swift), 619
 storage management, 633
 PaaS (Platform as a Service), 609
 SaaS (Software as a Service), 609
cloud-sandbox tool (Bikeshed), 661
Cloud storage, 64, 316
COBOL (Common Business Oriented Language), 769
code
 configuring, 759-760
 packaging, 670-672
CodeWeavers, 74
coll tool (Bikeshed), 661
combining commands, 195-197
comm command, 194-195
command line, 133-206
 accessing, 135-138
APT
 day-to-day usage, 124-127
 finding software, 127-128
burning CDs/DVDs, 89-93
commands, 171-191
cat command, 172-173
cd command, 173-175
chmod command, 175
combining, 195-197
cp command, 175-177
du command, 176-177
find command, 177-180
grep command, 179-180
less command, 180-182
ln command, 182-183
locate command, 184
ls command, 184-186
man command, 186-187
mkdir command, 187
mv command, 187
ps command, 188
rm command, 188-189
tail command, 189
top command, 189-191
which command, 191
common commands and programs, 166-167
comparing files, 194-195
compressed files, 204-205
defined, 134-135
directories
 changing with cd command, 148-149
 listing contents with ls command, 146-148
 pwd command, 149
environment variables, 197-200
errors in Perl, 683
files
 copying files, 158
 creating directories, 155-156
 creating files with touch command, 155
deleting directories, 156
deleting files, 157
displaying file contents, 159
moving/replacing files, 157-158
wildcards/regular expressions, 159
Linux file system hierarchy, 141-146
logging in/out from a remote computer, 137-138
logging out, 137
multiple terminals, 205-206
MySQL client, 564-566
navigating Linux file system, 146-149
network interface configuration, 356-360
permissions, 149-155
 assigning permissions, 150-151
 chmod command, 152-153
 directory permissions, 151-152
 file permissions, 153
 set UIDs/GIDs permissions, 153-155
PostgreSQL client, 566
reading documentation, 140-141
reasons for use, 170-171
redirecting input and output, 191-193
redirection of streams, 193
root users, 160-166
scripting. See Python
shell control, 243-244
text editors, 200-204
 emacs, 203-204
 nano, 201-202
 vi, 202-203
user accounts, 138-139
working with files, 155-159
command-line interface (CLI). See command
command prompt. See command line

How can we make this index more useful? Email us at indexes@samspublishing.com
commands

- ac, 222
- adduser, 164
- AppArmor, 403
- apropos, 140
- apt-get autoclean, 126
- apt-get clean, 126
- apt-get dist-upgrade, 125
- apt-get install, 125
- apt-get remove, 127
- apt-get update, 124
- at, 237-240
- badblocks, 409
- batch, 237-240
- /bin directory, 141-143
- byobu, 205-206
- cat, 144-145, 159
- cd, 148-149
- chgrp, 153, 212
- chmod, 152-153, 212
- chown, 212
- chpasswd, 227
- chsh, 218
- comm, 194-195
- command line, 166-167, 171-191
 - cat command, 172-173
 - cd command, 173-175
 - chmod command, 175
 - combining, 195-197
 - cp command, 175-177
 - du command, 176-177
 - find command, 177-180
 - grep command, 179-180
 - less command, 180-182
 - ln command, 182-183
 - locate command, 184
 - ls command, 184-186
 - man command, 186-187
 - mkdir command, 187
 - mv command, 187
 - ps command, 188
 - rm command, 188-189
 - tail command, 189
 - top command, 189-191
 - which command, 191
- compression of files, 204-205
- cp, 158, 327-328
- cron, 240-242
- date, 28-29
- deluser, 164
- diff, 194
- dmesg, 31
- dropuser (PostgreSQL), 560
- e2fsck, 409
- edquota, 233
- emacs text editor, 204
- env, 198
- Eucalyptus, 616-618
- exit, 137
- find, 154
- gpasswd, 215
- gprof, 761
- groupadd, 215
- groupdel, 215
- groupmod, 215
- grpck, 215
- hdparm, 407-408
- hdx=ide-scsi, 406
- hwclock, 29
- idebus=xx, 406
- ideindex=autotune, 406
- ideindex=dma, 406
- ifconfig, 341, 356-360, 397
- init, 284
Internet connectivity, 380
kernel module management, 422-423
kill, 293-294
less, 140, 159
logout, 137
ls, 146-148, 149-150
make, 757
man, 140
mc, 328-330
mkdir, 151, 155-156
mv, 157-158
mysql -u root, 555
nice, 294
OpenStack, 634
passwd, 217
patch, 428
pci=biosirq, 407
Perl, 700
ping, 338-340
postconf, 513
printenv, 198, 229
printing, 460
pwd, 137, 149
Quickly, 654
quotacheck, 233
quotaoff, 233
quotaon, 233
rcp, 384
relational database services, 567
renice, 294
repquota, 233
rm, 157
rmdir, 156
route, 356-360
rsync, 328-330
/sbin directory, 141-143
scp, 384
sftp, 383, 385
shutdown, 18, 165-166
smbclient, 449
smbstatus, 448
splint, 760-761
ssh-keygen, 385-387
su, 227-229
sudo, 22-23, 160-163, 210
tar, 326-327
testparm, 447-448
time, 294
top, 295
touch, 149, 155, 386
tune2fs, 408-409
UFW (Uncomplicated Firewall), 399
umask, 149
uptime, 297
user accounts, 234
useradd, 215-216
usermod, 215-218
vi text editor, 202-203
whereis, 141
comments, PHP programming, 729
commercial games, 115-116
Common Business Oriented Language (COBOL), 769
Common UNIX Printing System (CUPS), 454
CommuniGate Pro, 523
community teams, testing, 675-677
comparison operators (Perl), 686-687
compiling applications from source, software management, 128-130
compiling the kernel, 427-436
Compiz, 100
compound operators (Perl), 686
Comprehensive Perl Archive Network (CPAN), 695
compressed files, 204-205

How can we make this index more useful? Email us at indexes@samspublishing.com
Compute Infrastructure (Nova) service, OpenStack, 618-619
computer attacks, hacker versus cracker, 392
conditional statements
Perl, 689-690
PHP programming, 733-734
Python, 713-715
configuration
Apache web server, 469-474
.htaccess configuration files, 473-474
directives, 470
editing apache2.conf, 470-473
multiprocessing modules, 473
Bazaar, 669
clients, proxy servers, 528-337
code, 759-760
DHCP, 367-368
DHCP network hosts, 369-371
Dial-Up access, 378-379
Digital Subscriber Line (DSL) access, 376-378
Fetchmail, 517-521
FireFox, 528
firewalls, 398
graphical tools, 363-364
kernel, 427-435
LDAP clients, 586-587
LDAP server, 582-585
local Bash shell, 669-670
loopback interface, 336-337
management, 130-131
MySQL, 554-558
networking tools, 355-364
NFS client, 442
NFS server, 440-442
Postfix, 512-517
Postfix masquerading, 514
PostgreSQL, 558-561
PPPoE, 377-378
quotas, 233-234
Samba, 444-447, 450-453
software repositories, 23-26
system settings, 26-29
printers, 26-27
time and date, 27-29
Tripwire, 396-397
Unity, 48-49
Very Secure FTP server, 502-505
wireless networks, 29-30
configuration files
/etc directory, 143
.htaccess, 473-474
networking, 360-361
version control, 330-332
Conky, 300-305
console. See command line
console-based monitoring tools, 291-298
disk quotas, 298
disk space, 297-298
free and used memory, 296-297
kill command, 293-294
priority scheduling and control, 294-296
constants
Perl string constants, 686
PHP programming, 728
constructors, Python object orientation, 718-719
control structures, Perl, 690-693
controlling services, BIOS (basic input/output system), 286-287
convert utility (ImageMagick), 86
copying files, 326-330
cp command, 327-328
Midnight Commander, 328-330
rsync command, 328-330
tar command, 326-327
core applications, mobile development for Android, 781
CouchDB, 575
cp command, 158, 171, 175-177, 327-328
CPAN (Comprehensive Perl Archive Network), 695
CREATE DATABASE statement (MySQL), 556
CREATE DATABASE statement (PostgreSQL), 559
creating
MySQL database, 556-558
OpenStack images, 629-632
PostgreSQL database, 559
cron command, running jobs repeatedly, 240-242
Crossover Games, 116
CrossOver Office, 74
Cube 2: Sauerbraten, 110
CUPS (Common UNIX Printing System), 454, 456-458
custom tools, Eucalyptus, 616-618
customizing Unity, 48-49
CustomLog directive (Apache), 489

d
Dalvik, 780
Dash, 19
Dash (Unity desktop), 44-47
data
mirroring, 314
retrieval from databases, 550-552
data backup, 307-334
choosing a strategy, 307-314
copying files, 326-330
hardware and media, 314-316
software, 316-325
system rescue, 332-334
version control, 330-332
data directory (PostgreSQL), initializing, 558-559
data integrity, MySQL versus PostgreSQL, 553-554
data locking, MySQL versus PostgreSQL, 552-553
data loss, 308-309
data structures (Perl), 684-686
database administrators (DBAs), 543-544
databases
NoSQL, See NoSQL databases
PHP programming, 751-754
relational database services, 543-567
client/server system, 561-567
commands, 567
comparison of MySQL and PostgreSQL, 552-554
creating tables, 548-549
how they work, 545-547
inserting data in tables, 549-550
MySQL, 554-558
PostgreSQL, 558-561
retrieving data, 550-552
SQL basics, 547-548
date, configuring system settings, 27-29
date command, 28-29
day job crackers, 392
day-to-day usage (APT), 124-127
DBAs (database administrators), 543-544
Debian, 23
debugging tools, 760-761
default runlevel, BIOS (basic input/output system), 285
definitions
Python functions, 715
Runlevels, BIOS (basic input/output system), 284
Deja Dup backup tool, 320-322
deleting users, PostgreSQL, 560-561
deluser command, 164
deny directive, Apache web server access control, 476-477
deployment, Eucalyptus, 612
Desktop Couch, 653
Desktop DVD, 8
desktop environment, interfaces, 100
destructors, Python object orientation, 718-719
development, 665-673
 finding bugs with Harvest, 673
 fixing bugs and packaging, 670-672
 installation packages, 667-670
 MOTU (Masters of the Universe), 673
 opportunistic (See opportunistic development)
 six-month cycle, 666-667
Device section (xorg.conf file), 37, 39-40
devices, security, 397
DevOps versus SysAdmin, 608
DHCP (Dynamic Host Configuration Protocol), 365-371, 594
 configuring network hosts, 369-371
 how it works, 365-366
 installation and activation, 366-367
 server, 368
 software installation and configuration, 367-368
 uses, 371
Dia (LibreOffice component), 68
Diagnostics, 53
Dial-Up access, Internet connectivity, 378-379
dictionaries, Python, 712-713
diff command, 194
digital cameras, 88
Digital Subscriber Line (DSL) access, 376-378
directives
 Apache web server
 access control, 476-477
 configuration, 470
 CustomLog, 489
 satisfy, 479
directories
 Apache package, 463-464
 command line
 changing with cd command, 148-149
 listing contents with ls command, 146-148
 pwd command, 149
 Linux, 142
 Linux source tree, 419-421
Directory Information Tree (DIT), 582
directory permissions, 151-152
DirectoryIndex directive, Apache web server configuration, 473
disable command, 460
disabling
 Apache modules, 481
 file access time, 409
disaster recovery plan, 403-404
disk drives, tuning, 406-407
disk quotas, 232-234, 298
disk space, console-based monitoring tools, 297-298
display manager, X Server, 41-42
dist-upgrade option, 22
DIT (Directory Information Tree), 582
dman tool (Bikeshed), 662
dmesg command, 31
do...until looping construct (Perl), 692
do...while loop (PHP), 739
do...while looping construct (Perl), 692
DocBook, 71-72
document stores, NoSQL databases, 574-576
documentation, command line, 140-141
DocumentRoot directive, Apache web server
configuration, 472
documents, kernel programmers, 419-420
dotdee, 130-131
Draw (LibreOffice component), 67
dropuser command (PostgreSQL), 560
dSL (Digital Subscriber Line) access, 376-378
du command, 171, 176-177
DVD installation jump start, 8
DVD+RW/-RW drives, 315
DVDs
 burning, 89-93
 Brasero, 89
 command line, 91-93
 formats, 91
Dynamic Host Configuration Protocol. See DHCP

E

e2fsck command, 409
Eclipse, 772
Eclipse Foundation project, Jetty, 495
editing
 /etc/modprobe.conf file, 354
 apache2.conf, 470-473
 video, 97
editing commands, emacs text editor, 200
 203-204
edquota command, 233
Edubuntu, 590
elements, xorg.conf file, 36-41
 Device section, 37, 39-40
 Files section, 36-38
 InputDevice section, 36, 38-39
Module section, 36, 38
Monitor section, 36, 39
Screen section, 37, 40-41
ServerLayout section, 36-37
esemacs command, 171
esemacs text editor, 200, 203-204
email, 507-524
 alternatives to Microsoft Exchange Server, 522-524
 Fetchmail, 517-521
 how email is sent and received, 507-512
 mail delivery agents, 521-522
 Postfix configuration and operation, 512-517
e-mail clients, 55-58
 Evolution, 56-57
 Mozilla Thunderbird, 56
Empathy, 59
Emulators
 Emulators, 107
enable command, 460
enabling Apache modules, 481
endless loops, shell programs, 272
Enlightenment, 100
entering PHP mode, 724
enterprise servers, monitoring tools, 305-306
eenv command, 198
environment, Launchpad, 668-670
environment variables, command line, 197-200
Erlang, 770
errors, compiling kernel, 435-433
escape sequences, PHP programming, 729-730
etereal, 305
etiquette, IRC (Internet Relay Chat), 62
euc2ools primer, Eucalyptus, 616-618
Eucalyptus, 607, 610-618
 deployment/installation, 612
euc2ools primer, 616-618

How can we make this index more useful? Email us at indexes@samspublishing.com
Evolution, 56-57, 70, 586
executing shell scripts, 248-279
accessing variable values, 253
assigning value to variables, 252-253
automation of tasks, 255-256
backslash, 260
backtick, 260
break statement, 278
built-in variables, 257
case statement, 276-278
comparison of expressions, 261-266
comparison of expressions with tcsh, 266-270
exit statement, 279
for statement, 270-271
if statement, 275-276
interpreting shell scripts, 250-252
positional parameters, 253-254
repeat statement, 274
running shell program, 249-250
select statement, 274-275
shift statement, 275
sorting scripts for access, 250
special characters, 257
strings with embedded spaces, 257-259
unexpanded variables, 259-260
until statement, 273-274
variables, 252
while statement, 271-273
execution operator, 735
Exim, 509
exit command, 137
exit statement, executing shell scripts, 278
exiting PHP mode, 724
expressions, Perl regular expressions, 693
extensions, Firefox, 53
external attacks, 392
extract() function (PHP), 745
Extraversion level (kernel), 425

F
fclose() function (PHP), 747
Fetchmail, 517-521
configuration, 517-521
installation, 517
user accounts, 519-521
fiber optic cable, 352
fiber optics, 350
file access time, disabling, 409
file operators, writing shell scripts, 264-265, 268-269
file permissions, 153, 212-213
file system, Linux hierarchy, 141-146
file system authentication, Apache web server, 474-480
file system settings, tuning, 408
File Systems tab (System Monitor), 298
File Transfer Protocol. See FTP
file_get_contents() function (PHP), 745
file_put_contents() function (PHP), 745
files
Apache file locations after install, 465-466
command line, 155-159
copying files, 158
creating directories, 155-156
creating files with touch command, 155
deleting directories, 156
deleting files, 157
displaying file contents, 159
moving/renameing files, 157-158
wildcards/regular expressions, 159
comparison, 194-195
compressed, 204-205
configuration, version control, 330-332
copying, 326-330
cp command, 327-328
Midnight Commander, 328-330
rsync command, 328-330
tar command, 326-327
/etc/host.conf, 363
/etc/hosts, adding hosts, 361
/etc/nsswitch.conf, 362
/etc/resolv.conf, 362-363
/etc/services, service settings, 361-362
ftphosts, 505-506
.ftaccess configuration, Apache web server
configuration, 473-474
PHP functions, 745-747
restoring from an archive, 318-319
saving from nonbooting hard drive, 333-334
sharing, 439-453
NFS (Network File System), 440-442
Samba, 450-453
Ubuntu installation, 19
Files section (xorg.conf file), 36-38
filesize() function (PHP), 747
find command, 154, 171, 177-180
Firefox, 52-53
configuration, 528
RSS feeds, 58
firewalls, configuring, 398
first-person shooter (FPS) games, 110
fixing bugs, 670-672
FLAC (sound format), 78
Flash, 53
Flash (Adobe), 96
flavors (Ubuntu), 8
flexbackup tool, 325
FlightGear, 114-115
FlockDB, 578
FLV (video format), 95
fopen() function (PHP), 746
for loop
 Python, 714
 PHP, 737
for looping construct (Perl), 690
for statement, writing shell scripts, 270-271
foreach loop (PHP), 738
foreach looping construct (Perl), 691
ForecastFox, 53
formats
 DVDs, 91
 graphics manipulation, 85-87
 sound, 78-79
 video, 95
Forth, 770
Fortran, 771
forwarding email, 516-517
FPS (first-person shooter) games, 110
FQDN (fully qualified domain name), 582
fread() function (PHP), 747
free and used memory, console-based
monitoring tools, 296-297
Frets on Fire, 114
Frozen Bubble, 111
FTP (File Transfer Protocol), 497-506
 configuring Very Secure FTP server, 502-505
 ftphosts file, 505-506
 server selection, 497-499
 servers, 498-499
 software installation, 499-500
 users, 500-502

How can we make this index more useful? Email us at indexes@samspublishing.com
ftphosts file, 505-506
full backups
 incremental backups, 313
 periodic basis, 313
 tar backup tool, 317-318
fully qualified domain name (FQDN), 582
functions
 PHP programming, 740-751
 arrays, 743-745
 files, 745-747
 miscellaneous functions, 747-750
 strings, 740-743
 Python, 715-716
 shell scripts, 279
fwrite() function (PHP), 747

G

games, 107-116
 Battle for Wesnoth, 112
 children, 114-115
 commercial, 115-116
 FlightGear, 114-115
 Frets on Fire, 114
 Frozen Bubble, 111
 installation, 109-116
 proprietary video drivers, 108-109
 Scorched 3D, 110-111
 Speed Dreams, 114-115
 SuperTux, 112-113
 Warsaw, 110
 Windows, 116
gcc (GNU Compiler Collection), 755
gcc command, 171
gCompris, 114
gdb tool, 761
genos field, 223
gedit, 653
gedit text editor, 201
Genprof, 402
GHC (Glorious Glasgow Haskell Compilation system), 772
GIDs (group IDs), 153-155, 212
GIF (graphics format), 86
Gigabit Ethernet, 350
Gilt, 649-650
GIMP (GNOME Office component), 70
GIMP (GNU Image Manipulation Program), 83-84
GitHub, 650
Glade, 653
Glade client, GNOME, 763-764
Glance (Imaging Service), OpenStack, 619
global behavior, Samba, 446
global options, configuring Fetchmail, 518
Glorious Glasgow Haskell Compilation system (GHC), 772
Gnat Programming System, 768
Gnobuntu, 104-105
GNOME, Glade client, 763
GNOME file roller, 319
gnome-nettool, 305
 gnome-screenshot, 87
gnome-shell, 105
GNOME3, 104-105
GNU C compiler, 761-762
GNU Compiler Collection (gcc), 755
GNU Fortran 95 compiler, 771
GNU Image Manipulation Program (GIMP), 83-84
GNU Privacy Guard, 667
GNU Project, 133
GNU/Linux, 418
Gnumeric (GNOME Office component), 70
Harvest, 673

Go, 771
Google Chrome, 53-54
gpasswd command, 215
GPG key, 667-668
gprof command, 761
Grand Unified Boot Loader (GRUB2), 10-11
GRANT statement (PostgreSQL), 561
granting privileges, PostgreSQL databases, 561
graph stores, NoSQL databases, 577-578
graphical clients, relational database services, 566-567
graphical configuration tools, 363-364
graphical development tools, 762-763
graphical process, monitoring tools, 298-305
graphical user interfaces (GUIs), Unity desktop, 33-49
graphics manipulation, 83-87
 formats, 85-87
 GNU Image Manipulation Program (GIMP), 83-84
 Photoshop, 84
 scanners, 85
 screen images, 87
grep command, 171, 179-180
Groklaw, 59
Groovy, 771
Ground Control, 657-661
Group directive, Apache web server configuration, 471
group IDs (GIDs), 212
group listing, 213-214
group permissions, 212
groupadd command, 215
groupdel command, 215
groupmod command, 215
groups, management, 213-216
groups command, 234
gpck command, 215
GRUB2 (Grand Unified Boot Loader), 10-11
GRUB2 boot loader, 333
GStreamer, 653
GTK, 653
GTK widget set, 69-70
GUFW, 398
GUIs (graphical user interfaces), Unity desktop, 33-49
gunzip command, 204
gzip command, 204

H

hackers, crackers versus, 392
handheld digital cameras, 88
hard disk, performance tuning, 405-396
 badblocks command, 409
 disabling file access time, 409
 e2fsck command, 409
 file system settings, 408
 hdparm command, 407-408
 tune2fs command, 408-409
tuning disk drives, 406-407
hardware
 data backup, 314-316
 networking, 349-355
 hubs and switches, 352
 initializing new hardware, 353-355
 network cable, 351-352
 NIC (Network Interface Cards), 349-351
 routers and bridges, 353
 TV and video, 94-95
hardware specifications, 8
Harvest, 673

How can we make this index more useful? Email us at indexes@samspublishing.com
hashes (Perl), 685
Haskell, 772
HBase, 577
HDLC (high-level data link control), 378
hpparm command, 407-408
hdx=ide-scsi command, 406
header lines (newsgroup articles), 63
hibernate, 14
hierarchy, Linux file system, 141-146
high-level data link control (HDLC), 378
history
 Internet, 51
 LibreOffice, 68
home directories, 446-447
home users, backup programs, 311
Horde, 524
hosts, 361
HTML (Hypertext Markup Language), 51
HTML forms, 751
HTTP (Hypertext Transfer Protocol), 51
HTTP servers, 491-496
 Apache Tomcat, 496
 Cherokee, 494-495
 Jetty, 495
 lighttpd, 493
 Nginx, 491-493
 thttpd, 495-496
 YAWS, 494
hubs, 352
Humble Indie Bundle, 116
hwclock command, 29
HyperGraphDB, 578
Hypertext Markup Language (HTML), 51
Hypertext Transfer Protocol (HTTP), 51

IaaS (Infrastructure as a Service), 609
idebus=xx command, 406
idex=autotune command, 406
idex=dma command, 406
if statement, executing shell scripts, 275-276
if/else conditional statements (Perl), 689-690
ifconfig command, 341, 356-360, 397
ImageMagick convert utility, 86
images, OpenStack, 629-632
Imaging Service (Glance), OpenStack, 619
IMAP (Internet Message Access Protocol), 511
implementation, quotas, 233
Impress (LibreOffice component), 67
in_array() function (PHP), 744
incremental backups, 317-318
Infrastructure as a Service (IaaS), 609
init command, 284
init scripts, BIOS (basic input/output system), 285-286
initialization
 BIOS (basic input/output system), 285-286
data directory (PostgreSQL), 558-559
 network hardware, 353-355
input (shell control), 246-247
InputDevice section (xorg.conf file), 36, 38-39
inserting data in tables, relational database services, 549-550
installation
 ADT Eclipse plug-in, 782
 Android SDK, 781-783
 Apache web server, 462-466
 CPAN module (Perl), 697
development packages, 667-670
DHCP, 366-368
Eucalyptus, 612
Fetchmail, 517
FTP software, 499-500
games, 109-116
Ground Control, 657
Java, 781
juju, 635-637
LTSP, 593-594
NFS, 440
OpenStack, 619-629
proprietary video drivers, 108-109
SDK, 781
Squid, 528
Ubuntu, 7-32
post-installation configuration problems, 31-32
preparation, 7-11
programs and files, 19
shutting down, 18
software repositories, 23-26
Software Updater, 19-22
step-by-step, 11-17
sudo command, 22-23
system settings, 26-29
wireless network configuration, 29-30
virtual devices, 783
instance management, OpenStack, 632
instant messaging, Empathy, 59
interfaces, 99-105
desktop environment, 100
GNOME3 and GnoBuntu, 104-105
KDE and Kubuntu, 101-102
LXDE and Lubuntu, 103-104
Xfce and Xubuntu, 102-103
internal attacks, 392
Internet applications, 51-64
Chromium, 53-54
e-mail clients, 55-58
Evolution, 56-57
Mozilla Thunderbird, 56
Empathy, 59
Firefox, 52-53
Google Chrome, 53-54
Internet Relay Chat (IRC), 60-61
RSS feeds, 58-59
Firefox, 58
Liferea, 58-59
Ubuntu One cloud storage, 64
Usenet newsgroups, 61-64
Internet connectivity, 374-380
commands, 380
common configuration information, 374-375
Dial-Up access, 378-379
DSL access, 376-378
troubleshooting connection problems, 379-380
Internet Message Access Protocol (IMAP), 511
Internet Relay Chat (IRC), 60-61, 805
Internet resources, 797-805
interpreting shell scripts, 250-252
IP addresses, 533-534
IP masquerading, 342
IPv4 addressing, 343
IPv6, 343-347
IRC (Internet Relay Chat), 60-61, 805
IRC server, 61
isset() function (PHP), 748
iwconfig tool, 371
iwlist tool, 371
iwpriv tool, 371
iwspy tool, 371
Java, 53, 772, 781
Java Runtime Environment (JRE), 781
Java Virtual Machine (JVM), 781
JavaScript, 772-773
Javascript Object Notation (JSON), 571
Jetty, 495
JPG (graphics format), 86
JRE (Java Runtime Environment), 781
JSON (Javascript Object Notation), 571
juju, 634-640
charms, 638-640
installation, 635-637
managing sets of servers, 641-642
JVM (Java Virtual Machine), 781

K
kate text editor, 201
KDE, 101-102
KDE ark archiving tool, 320-322
KDE process, 305
KDevelop client, 762-763
KDevelop Setup Wizard, 762
kdf tool, 305
keep-one-running tool, 663
kernel
built-in security, 391
interacting via /proc directory, 144-145
management, 417-436
compiling the kernel, 427-435
Linux kernel, 418-422
modular kernels, 422-424
obtaining sources, 426
patching the kernel, 426-428
recompiling the kernel, 424-425
troubleshooting during compile, 435-436
versions, 425
performance tuning, 410-411
tuning disk drives, 406-407
Kernel-based Virtual Machine (KVM), 599-603
kernel source tree, 419-421
key-based logins, 385-387
key/value stores, NoSQL databases, 571-574
Kile, 73
kill command, 293-294
Kirkland, Dustin, 677
Kmail mail client, 58
Knoppix, 104
KOffice, 69-71
ksort() function (PHP), 744
KSpread, 71
ksysguard tool, 305
Kubuntu, 101-102
KVM (Kernel-based Virtual Machine), 599-603
KWord, 70

L
LAN, enabling network printing, 454
Landscape, 306, 640, 643
LANG environment variable, 197
lapd-utils package, 582
large enterprise users, backup programs, 311
last looping construct (Perl), 692
LaTeX, 73
Launcher (Unity desktop), 43
Launchpad, 648, 651-652
accounts, 668
environment, 668-670
LDAP (Lightweight Directory Access Protocol), 581-588
 administration, 587-588
 client configuration, 586-587
 server configuration, 582-585
ldapadd utility, 587
ldapdelete utility, 588
ldapmodify utility, 587
ldapsearch utility, 587
LDM (LTSP Display Manager), 594
less command, 140, 159, 171, 180-182
levels of backup, 312
libraries, mobile development for Android, 780
LibreOffice, 66-68
licensing, 2-3
Liferea, RSS feeds, 58-59
lighttpd, 493
Lightweight Directory Access Protocol. See LDAP
Linux
 C programming tools, 755-757
directories, 142
 file system hierarchy, 141-146
 Internet resources, 797-805
 kernel management, 418-422
 kernel source tree, 419-421
 types of kernels, 421-422
 overview, 787-790
 Perl, 681-684
Linux Documentation Project, 379
Linux file system, 146-149
Linux Kernel
 loading, 283
 mobile development for Android, 780
Linux Terminal Server Project. See LTSP
Lisp, 773
Listen directive, Apache web server
 configuration, 471
 listening to music, 79-82
 lists, Python, 710-712
 Live Bookmarks, 58
 In command, 171, 182-183
 loading, Linux Kernel, 283
 local GUI clients, database access, 563-564
 localhost interface, 336-337
 locate command, 171, 184
 log files (Apache), 488
 LogFormat statements (Apache), 488-490
 logging, Apache web server, 488-490
 logging in, command line, 137-138
 logging out, command line, 137-138
 logical operators, writing shell scripts, 265-270
 logname command, 234
 logout command, 137
 logs, purging in Perl, 697-698
 Long Term Support (LTS), 25
 loopback interface
 availability, 336
 configuration, 336-337
 looping constructs (Perl), 690-693
 loops
 PHP programming, 737-739
 Python, 713-715
lp command, 460
lp command, 460
lpq command, 460
lprm command, 460
lpstat command, 460
ls command, 146-150, 171, 184-186
LTS (Long Term Support), 25
LTSP (Linux Terminal Server Project), 589-595
 features, 594-595
 installation, 593-594
 requirements, 590-593
LTSP Display Manager (LDM), 594
ltsp-server-standalone package, 593
Lua, 773-774
Lubuntu, 103-104
LXDE, 103-104

M
MaaS (Metal as a Service), 610, 639
MAC (Mandatory Access Control) system,
 AppArmor, 401-403
machine protection, 394-397
devices, 397
passwords and physical security, 395-396
 Tripwire, 396-397
wireless networks, 395
macros, 758-759
Mago, 677
mail, sending in Perl, 695-697
mail delivery agents (MDAs), 510-511, 521-522
mail relaying, 516
mail server options, 518-519
mail transfer agents (MTAs), 507-510
mail user agent (MUA), 511-512
mailing lists, 804-805
Major version (kernel), 425
make command, 171, 757
make utility (kernel), 420
make xconfig tool, configuring the kernel,
 431-432
makefile targets, 759
makefiles, 757-759
man command, 140, 172, 186-187
man pages, 140
management
 configuration, 130-131
 kernel, 417-436
 compiling the kernel, 427-435
 Linux kernel, 418-422
 modular kernels, 422-424
 obtaining sources, 426
 patching the kernel, 426-428
 recompiling the kernel, 424-425
 troubleshooting during compile, 435-436
 versions, 425
 modular kernels, 422-424
 OpenStack instances, 632
 OpenStack network, 633-634
 OpenStack storage, 633
 passwords, 222-227
 changing in a batch, 227
 password file, 223-224
 policy, 222-223
 security, 225-227
 shadow passwords, 224-225
photos, Shotwell Photo Manager, 88
sets of servers
 CFEngine, 643
 Chef, 642
 juju, 641-642
 Landscape, 643
 Puppet, 642
Software. See software management
Users. See user management
Mandatory Access Control (MAC) system,
 AppArmor, 401-403
manual configuration
 loopback interface, 336-337
 PPPoE, 377-378
 quotas, 233-234
 Samba, 444-447
manually the Apache web server, 467-468
masquerading, Postfix, 514
Master Boot Record (MBR), 10, 283, 673
Masters of the Universe (MOTUs), 23
Math (LibreOffice component), 67
MBR (Master Boot Record), 10, 283
mc command, copying files, 328-330
MDAs (mail delivery agents), 510-511, 521-522
measuring, MySQL buffer usage, 412-413
media, data backup, 314-316
Memcached, 573
MemcacheDB, 573
Mercurial, 648-649
message body (newsgroup articles), 63
message delivery interval (email), 515-516
Metacity, 100
Metal as a Service (MaaS), 610, 639
methods
Python lists, 712
Python strings, 709
Microsoft Exchange Server, 522-524
Microsoft Windows, productivity
applications, 73-74
Midnight Commander, copying files, 328-330
MIME (Multipurpose Internet Mail
Extensions), 63
Minor version (kernel), 425
mirroring data, 314
mkdir command, 151, 155-156, 172, 187
mnemonic characters, 150
mobile development for Android, 779-785
 Android Runtime, 780
 Application Framework, 780-781
 core applications, 781
 creating application, 784-785
 installation of Android SDK, 781-783
 libraries, 780
 Linux kernel, 780
mobile network sniffing, 395
mod_access (Apache), 481
mod_alias (Apache), 481
mod_asis (Apache), 481
mod_auth (Apache), 482
mod_auth_anon (Apache), 482
mod_auth_dbm (Apache), 482
mod_auth_digest (Apache), 483
mod_cgi (Apache), 483
mod_dir (Apache), 483
mod_env (Apache), 483
mod_expires (Apache), 483
mod_headers (Apache), 483
mod_include (Apache), 484
mod_info (Apache), 484
mod_log_config (Apache), 484
mod_mime (Apache), 484
mod_mime_magic (Apache), 484
mod_negotiation (Apache), 484
mod_proxy (Apache), 484
mod_rewrite (Apache), 484
mod_setenvif (Apache), 485
mod_speling (Apache), 485
mod_ssl (Apache), 485
mod_status (Apache), 485
mod_unique_id (Apache), 485
mod_userdir (Apache), 485
mod_usertrack (Apache), 485
mod_vhost_alias (Apache), 485
modular kernels, management, 422-424
Module section (xorg.conf file), 36, 38
modules
 Apache web server, 480-486
 disabling, 481
 enabling, 481
 Perl, 695
 MongoDB, 575-576

How can we make this index more useful? Email us at indexes@samspublishing.com
Monitor section (xorg.conf file), 36, 39
monitoring tools, 291-306
 console-based monitoring, 291-298
disk quotas, 298
disk space, 297-298
free and used memory, 296-297
kill command, 293-294
priority scheduling and control, 294-296
enterprise servers, 305-306
graphical process, 298-305
 Conky, 300-305
 System Monitor, 298
KDE process, 305
user activity, 222
Mono, 774
MOTUs (Masters of the Universe), 23, 673
mounting shares, Samba, 449-450
MOV (video format), 95
Mozilla Public License, 3
Mozilla Thunderbird, 56
MP3 (sound format), 78
MPEG (video format), 95
MPMs (multiprocessing modules), Apache web server configuration, 473
MTAs (mail transfer agents), 507-510
mtr tool, checking network connections, 338-340
MUA (mail user agent), 511-512
multicast addressing, 348
multiline loops, Python, 714
multimedia applications, 75-97
 burning CDs/DVDs, 89-93
digital cameras, 88
 graphics manipulation, 83-87
sound and music, 75-81
 viewing video, 94-97
multiple terminals, command line, 205-206
multiprocessing modules (MPMs), Apache web server configuration, 473
Multipurpose Internet Mail Extensions (MIME), 63
Multiverse repository, 122
music, 75-81
 adjusting volume, 77
 listening to, 79-82
 sound cards, 76-77
 sound formats, 78-79
Mutt mail client, 57
mv command, 157-158, 172, 187
MySQL
 client/server system, 561-567
 command-line client, 564-566
 configuration, 554-558
 performance tuning, 412-416
 measuring buffer usage, 412-413
 query cache, 414-415
 query optimization, 416
 versus PostgreSQL, 552-554
 mysql -u root command, 555

N
Nagios, 306
name-based virtual hosts (Apache), 486-488
nano text editor, 200-202
NAT (Network Address Translation), 343
nautilus-image-converter package, 87
navigating Linux file system, 146-149
NcFTPd, 499
negative indexes, Python strings, 709
Neo4j, 578
Nessus, assessing security vulnerabilities, 394
NetBeans, 772
netpbm tools, 87
Network Address Translation (NAT), 343
network cable, 351-352
Network File System. See NFS
Network Interface Cards. See NICs
network interface configuration, command line, 356-360
network management, OpenStack, 633-634
Network Manager, configuring wireless networks, 29-30
Network News Transfer Protocol (NNTP), 63
network storage, 315
networking
 checking connections, 338-340
 configuration tools, 355-364
 DHCP, 365-371
 hardware, 349-355
 hubs and switches, 352
 initializing new hardware, 353-355
 network cable, 351-352
 NIC (Network Interface Cards), 349-351
 routers and bridges, 353
 Internet connectivity, 374-380
 commands, 380
 common configuration information, 374-375
 Dial-Up access, 378-379
 DSL access, 376-378
 troubleshooting connection problems, 379-380
 IPv6, 344-347
 localhost interface, 336-337
 loopback interface availability, 336
 loopback interface configuration, 336-337
 organization, 347-348
 broadcast addressing, 348
 multicast addressing, 348
 subnet masks, 348
 subnetting, 347-348
 Unicast addressing, 348
 printers, 453-460
 avoiding support problems, 458-460
 creating network printers, 454-455
 CUPS, 456-458
 TCP/IP, 340-344
 addressing, 341-342
 IP masquerading, 342
 ports, 344
 wireless, 371-374
newsgroups, Usenet, 61-64, 803-804
newusers command, 234
next looping construct (Perl), 692
Nexuiz, 110
NFS (Network File System), 440-442
 client configuration, 442
 installation, 440
 server configuration, 440-442
Nginx, 491-493
nice command, 294
NICs (Network Interface Cards), 349-351
 10BASE-T, 349
 100BASE-T, 349-350
 1000BASE-T, 350
 Token Ring, 349
Nmap, assessing security vulnerabilities, 394
NNTP (Network News Transfer Protocol), 63
node controller, Eucalyptus, 613
nodes, Eucalyptus, 613
nonbooting hard drive, 333-334

How can we make this index more useful? Email us at indexes@samspublishing.com
NoSQL databases, 545, 569-578
 document stores, 574-576
 graph stores, 577-578
 key/value stores, 571-574
 wide column stores, 576-577
Nova (Compute Infrastructure) service, OpenStack, 618-619
number comparison, writing shell scripts, 262-264, 267
numbers, Python, 705-707
Nvidia, proprietary drivers, 108

O
object orientation (Python), 716-720
object variables (Python object orientation), 717-718
obtaining sources (kernel), 426
octal characters, 150
Ogg-Vorbis (sound format), 78
OGV/OGG (video format), 95
one-liners (Perl), 699-700
OneConf, 131
oops (kernel), compiling kernel, 436
Open Sound System (OSS), 76
open source, proprietary drivers versus, 24
Open-Xchange, 524
OpenLDAP, 581
OpenSSH server, 383
openssh-server package, 593
OpenStack, 607, 618-634
 commands, 634
 Compute Infrastructure (Nova), 618-619
 creating an image, 629-632
 Imaging Service (Glance), 619
 installation, 619-629
 instance management, 632
 network management, 633-634
 Storage Infrastructure (Swift), 619
 storage management, 633
 operation, Postfix, 512-517
operators
 Perl, 686
 additional operators, 686
 arithmetic operators, 686
 comparison operators, 686-687
 compound operators, 686
 PHP programming, 731-733
 opportunistic development, 645-663
 Bikeshed, 661-663
 Ground Control, 657-661
 Launchpad, 651-652
 Quickly, 653-656
 version control systems, 646-650
 Bazaar, 647-648
 Git, 649-650
 Mercurial, 648-649
 Subversion, 646-647
 optimization, 405-416
 Apache, 411-412
 hard disk, 405-396
 badblocks command, 409
 disabling file access time, 409
 e2fsck command, 409
 file system settings, 408
 hdparm command, 407-408
 tune2fs command, 408-409
 tuning disk drives, 406-407
 kernel, 410-411
 MySQL, 412-416
 measuring buffer usage, 412-413
 query cache, 414-415
 query optimization, 416
Options directive, Apache web server configuration, 474
Oracle Beehive, 524
order statement, Apache web server access control, 476
organization, networking, 347-348
 broadcast addressing, 348
 multicast addressing, 348
 subnet masks, 348
 subnetting, 347-348
 Unicast addressing, 348
OrientDB, 578
OSS (Open Sound System), 76
Outlook, Microsoft Exchange Server, 523
overview
 Linux, 787-790
 Ubuntu, 790-795

P
PaaS (Platform as a Service), 609
Package Browsing screen (Software Center), 119
packaging code, 670-672
packaging-dev package, installation, 667-668
packet writing, 93
PAM (Pluggable Authentication Modules), 226
panel (Unity desktop), 47-48
parameters, positional, 253-254
partition strategies, Ubuntu installation, 10
passwd command, 217, 234
password file, 223-224
passwords, 15
 management, 222-227
 changing in a batch, 227
 password file, 223-224
 policy, 222-223
security, 225-227
 shadow passwords, 224-225
MySQL root users, 555-556
security, 395-396
pastebin tool, 662
patch command, 428
patching the kernel, 426-428
PATH environment variable, 197
pattern-matching support (shells), 245-246
pb get tool (Bikeshed), 662
pbput tool (Bikeshed), 662
pbputs tool (Bikeshed), 662
pbuilder, 668
pci=biosirq command, 407
PCRE (Perl-Compatible Regular Expressions), 749
PCX (graphics format), 86
PDF, 71-72
PEAR project, 752
performance tuning, 405-416
 Apache, 411-412
 hard disk, 405-396
 badblocks command, 409
 disabling file access time, 409
 e2fsck command, 409
 file system settings, 408
 hdparm command, 407-408
 tune2fs command, 408-409
 tuning disk drives, 406-407
 kernel, 410-411
MySQL, 412-416
 measuring buffer usage, 412-413
 query cache, 414-415
 query optimization, 416
Perl (Practical Extraction and Report Language), 681-700
 accessing the shell, 694
code examples, 695-700

How can we make this index more useful? Email us at indexes@samspublishing.com
command-line errors, 683
command-line processing, 700
commands, 700
conditional statements, 689-690
CPAN (Comprehensive Perl Archive Network), 695
data structures, 684-686
installation of CPAN module, 697
Linux, 681-684
looping constructs, 690-693
modules, 695
one-liners, 699-700
operators, 686
 additional operators, 686
 arithmetic operators, 686
 comparison operators, 686-687
 compound operators, 686
purging logs, 697-698
regular expressions, 693
sending mail, 695-697
simple Perl program example, 682-684
string constants, 686
Usenet posts, 698-699
variables, 684-686
versions, 682
Perl-Compatible Regular Expressions (PCRE), 749
permissions
 command line, 149-155
 assigning permissions, 150-151
 chmod command, 152-153
 directory permissions, 151-152
 file permissions, 153
 set UIDs/GID permissions, 153-155
 file, 212-213
personal home page programming. See PHP programming
personal package archive (PPA),
 Launchpad, 652
personal video recorders, 97
photo management, Shotwell Photo Manager, 88
Photoshop, 84
PHP mode, entering/exiting, 724
PHP programming, 723-754
 arrays, 725-727
 comments, 729
 conditional statements, 733-734
 constants, 728
 databases, 751-754
 entering/exiting PHP mode, 724
 escape sequences, 729-730
 functions, 740-751
 arrays, 743-745
 files, 745-747
 miscellaneous functions, 747-750
 strings, 740-743
 HTML forms, 751
 including other files, 739-740
 loops, 737-739
 operators, 731-733
 references, 728-729
 special operators, 734-735
 switching, 735-737
 variable substitution, 730-731
 variables, 724-725
phpgroupware, 524
PHPojekt, 524
physical security, 395-396
PID (process ID), 283
Pidgin, 60
ping command, checking network connections, 338-340
piping data, shell control, 247
Planet Debian, 59
Planner (LibreOffice component), 68
Platform as a Service (PaaS), 609
plug-ins, Firefox, 53
Pluggable Authentication Modules (PAM), 226
PNG (graphics format), 86
Point-to-Point Protocol over Ethernet. See PPPoE
policy, password management, 222-223
POP3 (Post Office Protocol version 3), 511
portable anmap file format, 87
portable bitmap file format, 87
portable graymap file format, 87
portable pixmap file format, 87
ports, TCP/IP networking, 344
positional parameters, executing shell scripts, 253-254
POSIX Extended regular expressions, 749
post-installation configuration problems, 31-32
Post Office Protocol version 3 (POP3), 511
postconf command, 513
Postfix, 509
configuration and operation, 512-517
masquerading, 514
PostgreSQL
client/server system, 561-567
command-line client, 566
configuration, 558-561
deleting users, 560-561
users, 559-560
versus MySQL, 552-554
posting to Usenet (Perl), 698-699
power management, configuring system settings, 27
power shortcuts, Unity desktop, 49
PPA (personal package archive), Launchpad, 652
pppd daemon, 378
PPPoE (Point-to-Point Protocol over Ethernet), 376-378
Practical Extraction and Report Language. See Perl
preg_match() function (PCRE), 749
preg_match_all() function (PCRE), 749
preg_replace() function (PCRE), 750
printenv command, 198, 229
printers
configuring system settings, 26-27
sharing, 453-460
avoiding support problems, 458-460
creating network printers, 454-455
CUPS, 456-458
printing commands, 460
priority scheduling, console-based monitoring tools, 294-296
private cloud, Eucalyptus, 612, 613-616
privileges
MySQL databases, 556
PostgreSQL databases, 561
procedural languages, MySQL versus PostgreSQL, 554
process ID (PID), 283
Processes tab (System Monitor), 298
Procmail, 521
productivity applications, 65-74
GNOME Office, 69-70
KOffice, 69, 70-71
LaTeX, 73
LibreOffice, 66-68
Microsoft Windows, 73-74
PDF, 71-72
XML and DocBook, 71-72
ProFTPD, 499
programming languages, 767-776
Ada, 768
Clojure, 768-769
COBOL, 769
Erlang, 770
Forth, 770
Fortran, 771
Go, 771
Groovy, 771
Haskell, 772
Java, 772
JavaScript, 772-773
Lisp, 773
Lua, 773-774
Mono, 774
Perl. See Perl
Ruby, 774-775
Rust, 775
Scala, 775
Scratch, 776
Vala, 776
programming tools, 755-763
autoconf utility, 759-760
C with Linux, 755-757
debugging tools, 760-761
GNU C compiler, 761-762
graphical development, 762-764
macros, 758-759
make command, 757
makefile targets, 759
makefiles, 757-759
promiscuous mode, 397
proprietary drivers, open source versus, 24
proprietary video drivers, 108-109
protection (security). See security
protection of data, MySQL versus PostgreSQL, 553-554
proxy servers, 527-535
access control lists, 529-533
client configuration, 528-337
client IP addresses, 533-534
defined, 527-528
sample configuration, 534-535
Squid installation, 528
ps command, 172, 188
public cloud, Eucalyptus, 612-613
PulseAudio, 76-77
Puppet, managing sets of servers, 642
Puppet Forge, 642
purging logs (Perl), 697-698
pwd command, 137, 149
PWD environment variable, 197
PyPI (Python Package Index), 721
Python, 653, 703-721
conditional statements, 713-715
dictionaries, 712-713
executing scripts, 704-705
functions, 715-716
lists, 710-712
loops, 713-715
numbers, 705-707
object orientation, 716-720
class and object variables, 717-718
class inheritance, 719-720
constructors and destructors, 718-719
PyPI (Python Package Index), 721
Standard Library, 721
strings, 707-710
Python 2.x, 703
Python 3.x, 703
Python Package Index (PyPI), 721
regexes. See regular expressions, Perl
regular expressions, 159, 693
regular users, 211
granting system administrator privileges to, 227-232
changing UID, 227-229
root privileges, 229-232
relational database services, 543-567
client/server system, 561-567
commands, 567
creating tables, 548-549
how they work, 545-547
inserting data in tables, 549-550
MySQL
configuration, 554-558
versus PostgreSQL, 552-554
PostgreSQL, 552-554, 558-561
retrieving data, 550-552
SQL basics, 547-548
release-build tool (Bikeshed), 662
release tool (Bikeshed), 662
reload command (AppArmor), 403
remote access, 381-389
SSH (Secure Shell), 383-387
Telnet, 381-383
VNC (virtual network computing), 387-389
remote computer, logging in/out of command line, 137-138
Remote Desktop Viewer, 388
Remote Display Protocol (RDP), 604
remote file serving (FTP), 497-506
configuring Very Secure FTP server, 502-505
FTP server selection, 497-499
FTP users, 500-502
ftphosts file, 505-506
servers, 498-499
software installation, 499-500
Q
Q Public License, 3
QA, 675-680
Bug Squad, 677
QA Team, 676-677
Test Drive, 677-680
Qmail, 509
QT (video format), 95
Quassel, 60
query cache, tuning MySQL, 414-415
query optimization, MySQL, 416
Quickly, 653-656
quotacheck command, 233
quotaoff command, 233
quotaon command, 233
quotas, disk, 232-234
R
RAID arrays, 314
RAM disk image, configuring kernel, 432-435
RAW (sound format), 78
rcp command, 384
RDBMSs (relational database management systems). See relational database services
RDP (Remote Display Protocol), 604
recompiling the kernel, 424-425
recorders, personal video, 97
Redis, 573
reduced instruction set computer (RISC) processors, 780
redundant array of independent disks. See RAID arrays
references795, 728-729
remote printing, 453-460
removable storage media, 314-315
renice command, 294
repeat statement, executing shell scripts, 274
repositories
 Apache web server installation, 463-464
 compiling from source, 129-130
software, 23-26
requota command, 233
Requests for Comments (RFC), 63
requirements
 hardware specifications, 8
 LTSP, 590-593
rescue disk, 333
resources, Internet, 797-805
Resources tab (System Monitor), 298
responsibilities, DBAs (database administrators), 543-544
retrieving data, relational database services, 550-552
retrieving email, Fetchmail, 517-521
REVOKE statement
 MySQL, 558
 PostgreSQL, 561
revoking privileges, PostgreSQL databases, 561
RFC (Requests for Comments), 63
Rhythmbox, 79-80
Riak, 574
rights
 MySQL databases, 556
 PostgreSQL databases, 561
RISC (reduced instruction set computer) processors, 780
rm command, 157, 172, 188-189
rmdir command, 156
Root User, 210-212
root users
 command line, 139, 160-166
 MySQL, 555-556
 Rootkit Hunter, 404
 rootsign tool, 663
route command, 356-360
routers, 353
RSS feeds, 58-59
 Firefox, 58
 Liferea, 58-59
rsync command, copying files, 328-330
Ruby, 774-775
run-one tool, 663
run-this-one tool, 663
runlevels, BIOS (basic input/output system), 284
 changing, 286-287
 definitions, 284
 troubleshooting problems, 287-288
running jobs repeatedly, cron command, 240-242
runtime errors, compiling kernel, 436
runtime server configuration settings, Apache web server, 469-474
 directives, 470
 editing apache2.conf, 470-473
 .htaccess configuration file, 473-474
 multiprocessing modules, 473
Rust, 775

S

SaaS (Software as a Service), 609
Samba, 450-453
 configuration, 450-453
 global behavior, 446
managing sets
 CFEngine, 643
 Chef, 642
 juju, 641-642
 Landscape, 643
 Puppet, 642
NFS configuration, 440-442
SSH (Secure Shell), 383
Telnet, 381-382
service models (Cloud), 609-610
service set identifier (SSID), 30
service settings, /etc/services file, 361-362
services
 BIOS (basic input/output system), 286-287
 boot process, 281-282
Session Message Block (SMB), 443
session message block printing, 455
session writing, 92-93
sets of servers, management
 CFEngine, 643
 Chef, 642
 juju, 641-642
 Landscape, 643
 Puppet, 642
sftp command, 383, 385
shadow password file (FTP), 501
shadow passwords, 224-225
shared data, /usr directory, 145-146
sharing
 home directories, 446-447
 printers, 453-460
 avoiding support problems, 458-460
 creating network printers, 454-455
 CUPS, 456-458
sharing files, 439-453
 NFS (Network File System), 440-442
 Samba, 450-453
SHELL environment variable, 197
Shell module, 694
shells, 242-247
 basic shell control, 242-247
 background processing, 247
 command line, 243-244
 pattern-matching support, 245-246
 piping data, 247
 redirecting input/output, 246-247
 endless loops, 272
 scripts, 248-279
 writing and executing, 248-279
 functions, 279
 shift statement, executing shell scripts, 275
Shockwave, 53
shortcuts, Unity desktop, 49
Shotwell Photo Manager, 88
show status command (AppArmor), 403
shuffle() function (PHP), 744
shutdown command, 18, 165-166
shutting down Ubuntu, 18
Simple Mail Transfer Protocol (SMTP), 507
slapd package, 582
Slashdot, 59
Slashdot Effect, 411
small enterprise users, backup programs, 311
small office users, backup programs, 311
smart hosts, 515
SMB (Session Message Block), 443
smbclient command, 449
smbd daemon, 448
smbstatus command, 448
Smokin’ Guns, 110
SMTP (Simple Mail Transfer Protocol), 507
socks-prox tool (Bikeshed), 662
software
 data backup, 316-325
 DHCP, 367-368
 installing FTP software, 499-500
 licensing, 2-3
Software as a Service (SaaS), 609
Software Center, 119-120
software development kit (SDK), 780
software management, 119-131
 APT (Advanced Package Tool), 123-128
 compiling applications from source, 128-130
 configuration management, 130-131
 Software Updater, 122-123
 Synaptic, 120-122
 Ubuntu Software Center, 119-120
software repositories, 23-26
Software Sources GUI tool, 24
Software Updater, 19-22, 122-123
sorting shell scripts, 250
sound, 75-81
 adjusting volume, 77
 formats, 78-79
 listening to music, 79-82
 sound cards, 76-77
sound cards, 76-77
Sound Juicer, 81
SourceForge, 647
sources (kernel), 426
Spamassassin, 521-522
special characters, writing shell scripts, 257
special operators, PHP programming, 734-735
special variables (Perl), 685-686
speed, MySQL versus PostgreSQL, 552
Speed Dreams, 114-115
splint command, 760-761
SQL
 basics, 547-548
 subqueries, 554
Squid installation, 528
Squirrelmail, 522
SSH (Secure Shell), 60, 383-387
 access to databases, 562
 setting up server, 383
 Telnet versus, 383
 tools, 383-387
ssh command, 172
ssh-import-id tool, 663
SSH key, 668
ssh-keygen command, 385-387
sshd daemon, 383
SSID (service set identifier), 30
standard input, 191
Standard Library (Python), 721
standard output, 191
start command (AppArmor), 403
starting
 Apache web server, 467-469
 NFS, 440
 X Server sessions, 41
Startup Applications, 286-287
stdin stream, redirection, 193
stdout stream, redirection, 193
step-by-step installation (Ubuntu), 11-17
 first update, 16
 installing, 12-16
 Wubi, 16-17
stereotypes (users), 213
stop command (AppArmor), 403
stopping
 Apache web server, 467-469
 NFS, 440
Storage Infrastructure (Swift) service, OpenStack, 619
storage management, OpenStack, 633
str_replace() function (PHP), 741
str_replace() function (PHP), 741
string comparison, writing shell scripts, 261-262
string constants (Perl), 686
strings
PHP functions, 740-743
Python, 707-710
strlen() function (PHP), 740
strpos() function (PHP), 742
StumbleUpon plug-in, 53
su command, 227-229, 234
Sublevel number version (kernel), 425
subnet masks, 348
subnetting, 347-348
subsections (kernel), 433
substr() function (PHP), 742
Subversion, 646-647
sudo command, 22-23, 160-163, 210, 234
Super User/Root User, 210-212
super users, 138-139, 160-166, 211
SuperTux, 112-113
support
network printers, 458-460
wireless networking, 371-372
suspend, 14
SVG (graphics format), 86
SWAT (Samba Web Administration Tool), 443
Swift (Storage Infrastructure) service, OpenStack, 619
switch/case block, 736
switches, 352
switching, PHP programming, 735-737
symbolic debugging, 761
Synaptic, software management, 120-122
SysAdmin versus DevOps, 608
system administrators, granting privileges to regular users, 227-232
system function call, 694
System Monitor, 298
system-monitoring tools. See monitoring tools
system rescue, 332-334
system-search tool (Bikeshed), 662
system settings
configuration, 26-29
printers, 26-27
time and date, 27-29
configuration, power management, 27
Unity, 48-49
System tab (System Monitor), 298
system users, 212

T
tables, relational database services, 548-550
tail command, 172, 189
tape drives, 315-316
tar backup tool, 317-319
tar command, 205, 326-327
Tarball, 128-129
task automation, 237-242
scheduling tasks, 237-242
writing shell scripts, 255-256
TCP/IP (Transport Control Protocol/Internet Protocol), 340-344
addressing, 341-342
IP masquerading, 342
ports, 344
Telnet
setting up server, 381-382
SSH versus, 383
temporary file storage, 146
TERM environment variable, 197
terminal. See command line
ternary operator, 734-735
Test Drive tool, 677-680
testing, 675-680
 Bug Squad, 677
 community teams, 675-677
 Samba, 447-448
 Test Drive, 677-680
testparm command, 447-448
text-based console login, 136-137
text editors, command line, 200-204
 emacs, 203-204
 nano, 201-202
 vi, 202-203
 tthtpd, 495-496
Thunderbird, configuring for LDAP, 587
TIF (graphics format), 86
Time, configuring system settings, 27-29
time command, 294
Token Ring, 349
tools
 Eucalyptus, 616-618
 group management, 214-216
 SSH (Secure Shell), 383-387
 system-monitoring. See monitoring tools
top command, 172, 189-191, 295
Totem Movie Player, 96
touch command, 149, 155, 338-340, 386
traceroute tool, 338-340
Transport Control Protocol/Internet Protocol. See TCP/IP
trim() function (PHP), 740
triple quoting, Python strings, 709
Tripwire, 396-397
troubleshooting
 BIOS runlevel problems, 287-288
 Internet connection problems, 379-380
 kernel compile, 435-436
 post-installation configuration problems, 31-32
tune2fs command, 408-409
TuXPaint, 114
TV hardware, 94-95
types of kernels, 421-422

U
Ubuntu Cloud. See Cloud
Ubuntu One cloud storage, 64
Ubuntu One Music Store, 81
ubuntu-restricted-extras package, 96
ubuntu-qa-tools, 677
Ubuntu Server Edition, 607
Ubuntu Software Center, 119-120
Ubuntu Testing Team, 676
UDP (Universal Datagram Protocol), 340
UFW (Uncomplicated Firewall), 398-399
UIDs (user IDs), 153-155, 212
umask command, 149
Uncomplicated Firewall (UFW), 398-399
unexpanded variables, writing shell scripts, 259-260
Unicast addressing, 348
Unison backup tool, 324
Unity desktop, 33-50
 customizing and configuring, 48-49
 Dash, 44-47
 Launcher, 43
 panel, 47-48
 power shortcuts, 49
 workspaces, 43
X Server, 33-42
 basic concepts, 34-35
 changing window managers, 42
 display manager, 41-42
 elements of xorg.conf file, 36-41
 starting X sessions, 41
 X.org software, 35
Universal Datagram Protocol (UDP), 340
Universe repository, 23, 122
unless conditional statements (Perl), 690
UnQL (Unstructured Query Language), 571
unset() function (PHP), 748
Unshielded Twisted Pair (UTP) network cable, 351
Unstructured Query Language (UQL), 571
until looping construct (Perl), 692
until statement, executing shell scripts, 273-274
UPG (user private group), 213
upgrade option, 22
Upstart, 289-290
uptime command, 297
uquick tool (Bikeshed), 662
Urban Terror, 110
USB drive, Ubuntu installation, 11
USB thumb drive, Ubuntu installation, 9
Usenet newsgroups, 61-64, 803-804
Usenet posts (Perl), 698-699
user accounts, 209-213
 adding, 218-221
 command line, 138-139
 commands, 234
 configuring Fetchmail, 519-521
 file permissions, 212-213
 stereotypes, 213
 Super User/Root User, 210-212
 user IDs/group IDs, 212
User directive, Apache web server configuration, 471
user directories, 143-144
USER environment variable, 197
user files, Apache web server, 478-479
user IDs (UIDs), 153-155, 212
user management, 209-234
 disk quotas, 232-234
 groups, 213-216
 group listing, 213-214
 management tools, 214-216
 passwords, 222-227
 changing in a batch, 227
 password file, 223-224
 policy, 222-223
 security, 225-227
 shadow passwords, 224-225
system administrator privileges, 227-232
 root privileges, 229-232
 temporarily changing user identity, 227-229
user accounts, 209-213
 commands, 234
 file permissions, 212-213
 stereotypes, 213
 Super User/Root User, 210-212
 user IDs/group IDs, 212
user private group (UPG), 213
useradd command, 215-216, 234
UserDir directive, Apache web server configuration, 472
usermod command, 215, 218, 234
users
 FTP, 500-502
 PostgreSQL, 559-561
UTP (Unshielded Twisted Pair) network cable, 351
How can we make this index more useful? Email us at indexes@samspublishing.com
web servers, 491-496
 Apache. See Apache web server
 Apache Tomcat, 496
 Cherokee, 494-495
 Jetty, 495
 lighttpd, 493
 Nginx, 491-493
 thttpd, 495-496
 YAWS, 494
WEBM (video format), 95
websites, 798-803
WEP encryption, 30
what-provides tool (Bikeshed), 662
whereis command, 141
which command, 172, 191
while loop
 PHP, 737
 Python, 714
while looping construct (Perl), 691-692
while statement, writing shell scripts, 271-273
wide column stores, NoSQL databases, 576-577
wifi-status tool (Bikeshed), 662
wildcards, 159
window managers, 42
Windows games, 116
Windows installer (Wubi), 16-17
Wine application, 74, 116
wireless network interfaces, 350-351
wireless networks, 371-374
 configuration, 29-30
 security, 395
Wireshark, 395, 501
Wolfenstein: Enemy Territory, 110
workspaces (Unity desktop), 43
World of Padman, 110
worms, 392
WPA encryption, 30
Writer (LibreOffice component), 67
writing shell scripts, 248-279
 accessing variable values, 253
 assigning value to variables, 252-253
 automation of tasks, 255-256
 backslash, 260
 backtick, 260
 break statement, 278
 built-in variables, 257
 case statement, 276-278
 comparison of expressions, 261-266
 comparison of expressions with tcs, 266-270
 exit statement, 278
 for statement, 270-271
 if statement, 275-276
 interpreting shell scripts, 250-252
 positional parameters, 253-254
 repeat statement, 274
 running shell program, 249-250
 select statement, 274-275
 shift statement, 275
 sorting scripts for access, 250
 special characters, 257
 strings with embedded spaces, 257-259
 unexpanded variables, 259-260
 until statement, 273-274
 variables, 252
 while statement, 271-273
Wubi (Windows installer), 16-17
X

X.org software, 35
X Server, 33-42
 basic concepts, 34-35
 changing window managers, 42
 display manager, 41-42
 elements of xorg.conf file, 36-41
 Device section, 37, 39-40
 Files section, 36-38
 InputDevice section, 36, 38-39
 Module section, 36, 38
 Monitor section, 36, 39
 Screen section, 37, 40-41
 ServerLayout section, 36-37
 starting X sessions, 41
 X.org software, 35
Xamarin, 774
xargs command, 172
XChat, 60-61
XChat Channel List window, 61
Xen, 605
Xfce, 102-103

Xmarks Sync plug-in, 53
XML and DocBook, 71-72
XML Copy Editor, 72
xorg.conf file elements, 36-41
 Device section, 37, 39-40
 Files section, 36-38
 InputDevice section, 36, 38-39
 Module section, 36, 38
 Monitor section, 36, 39
 Screen section, 37, 40-41
 ServerLayout section, 36-37
Xubuntu, 102-103

Y

YAWS (Yet Another Web Server), 494

Z

Zenoss, 306