Phil Ballard
Michael Moncur

\
Covers ‘
JavaScript 1.8+,
Ajax, and ‘
JjQuery

SamsTeach Yourself

JavaScript

FREE SAMPLE CHAPTER

£ 3 I in I

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336089
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336089
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336089
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336089
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336089/Free-Sample-Chapter

Phil Ballard
Michael Moncur

Sams Teach Yourself

JavaScript

Fifth Edition

\IIIlﬁlﬁlﬁlllll\

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself JavaScript™ in 24 Hours, Fifth Edition

Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

ISBN-13: 978-0-672-33608-9

ISBN-10: 0-672-33608-1

Library of Congress Cataloging-in-Publication Data is on file.
Printed in the United States of America
First Printing October 2012

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
authors and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact
U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com
For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor-in-Chief
Mark Taub
Acquisitions Editor
Mark Taber
Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor

Geneil Breeze
Indexer

Erika Millen
Proofreader
Chrissy White,
Language Logistics

Publishing Coordinator

Vanessa Evans

Technical Editor
Joseph Greenspan
Cover Designer

Anne Jones

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction 1

Part I: First Steps with JavaScript

HOUR 1 Introducing JavaScript 7
HOUR 2 Writing Simple Scripts 21
HOUR 3 Using Functions 37
HOUR 4 Objects and Built-In

Objects 49
HOUR 5 Different Types of Data 67

Part II: More Advanced JavaScript
HOUR 6 Scripts That Do More 85

HOUR 7 Object Oriented Programming 103

HOUR 8 Meet JSON 121
HOUR 9 Responding to Events 135
HOUR 10 JavaScript and Cookies 155

Part IlI: Working with the Document
Object Model (DOM)

HOUR 11 Navigating the DOM 171
HOUR 12 Scripting the DOM 185
HOUR 13 JavaScript and CSS 201
HOUR 14 Good Coding Practice 217

HOUR 15 Graphics and Animation 235

Part IV: Ajax

HOUR 16 Introducing Ajax 251
HOUR 17 Creating a Simple Ajax

Library 273
HOUR 18 Solving Ajax Problems 287

Part V: Using JavaScript Libraries

HOUR 19 Making Life Easier with
Libraries 303

HOUR 20 A Closer Look at jQuery 317
HOUR 21 The jQuery Ul User Interface
Library 335

Part VI: Using JavaScript with Other
Web Technologies

HOUR 22 JavaScript and Multimedia 353

HOUR 23 HTML5 and JavaScript 365
HOUR 24 JavaScript Beyond the
Web Page 383

Part VII: Appendices
APPENDIX A Tools for JavaScript

Development 399
APPENDIX B JavaScript Quick

Reference 403
Index 411

Table of Contents

Introduction

Who This Book Is For

The Aims of This Book
Conventions Used

Q&A, Quiz, and Exercises
How the Book Is Organized
Tools You'll Need

PART I: First Steps with JavaScript

HOUR 1: Introducing JavaScript
Web Scripting Fundamentals
Server- Versus Client-Side Programming
JavaScript in a Nutshell

Where JavaScript Came From

The <script> Tag

Introducing the DOM

Talking to the User

Summary

Q&A

Workshop

Exercises

HOUR 2: Writing Simple Scripts
Including JavaScript in Your Web Page
JavaScript Statements

Variables

Operators

Capturing Mouse Events

Summary

Q&A

Workshop

Exercises

HOUR 3: Using Functions
General Syntax

Calling Functions

Arguments

Returning Values from Functions
Scope of Variables

Summary

Q&A

Workshop

Exercises

© 00 00 NN Ol WNNMNNRPERPRPR

(RN
R O

13
17
18
18
19

21
21
23
24
26
30
33
34
34
35

37
37
38
40
43
44
46
a7
a7
48

HOUR 4: DOM Objects and Built-In
Objects

Interacting with the User

Selecting Elements by Their id

Accessing Browser History

Using the location Object

Browser Information—The navigator Object
Dates and Times

Simplifying Calculation with the
Math Object

Summary
Q&A

Workshop
Exercises

HOUR 5: Different Types of Data
Numbers

Strings

Boolean Values

Arrays

Summary

Q&A

Workshop

Exercises

PART II: More Advanced JavaScript

HOUR 6: Scripts That Do More
Conditional Statements

Loops and Control Structures
Debugging Your Scripts
Summary

Q&A

Workshop

Exercises

HOUR 7: Object Oriented Programming

What Is Object Oriented Programming
(O0P)?

Object Creation

Extending and Inheriting Objects
Using prototype

Encapsulation

Using Feature Detection
Summary

Q&A

Workshop

Exercises

49
49
51
52
53
54
57

59
64
65
65
66

67
67
70
73
74
79
80
80
81

83

85
85
90
94
100
101
101
102

103

103
104

111
115
116
118
119
119
120

HOUR 8: Meet JSON

What Is JSON?

Accessing JSON Data

Data Serialization with JSON
JSON Data Types
Simulating Associative Arrays
Creating Objects with JSON
JSON Security

Summary

Q&A

Workshop

Exercises

HOUR 9: Responding to Events
Understanding Event Handlers
Default Actions

The event Object

Cross-Browser Event Handlers
Advanced Event Handler Registration
Summary

Q&A

Workshop

Exercises

HOUR 10: JavaScript and Cookies
What Are Cookies?

The document.cookie Property
Cookie Ingredients

Writing a Cookie

A Function to Write a Cookie
Reading a Cookie

Deleting Cookies

Setting Multiple Values in a Single Cookie
Summary

Q&A

Workshop

Exercises

PART lll: Working with the Document
Object Model (DOM)

HOUR 11: Navigating the DOM
DOM Nodes

Selecting Elements with
getElementsByTagName()

Reading an Element’s Attributes
Mozilla’s DOM Inspector

121
121
123
124
126
127
127
131
132
133
133
134

135
135
138
141
142
146
151
152
152
153

155
155
156
157
158
159
161
162
165
166
166
167
168

169

171
171

177
179
180

Contents

Summary
Q&A

Workshop
Exercises

HOUR 12: Scripting the DOM
Creating New Nodes

Manipulating Child Nodes

Editing Element Attributes
Dynamically Loading JavaScript Files
Summary

Q&A

Workshop

Exercises

HOUR 13: JavaScript and CSS

A Ten Minute CSS Primer

The DOM style Property

Accessing Classes Using className
The DOM styleSheets Object
Summary

Q&A

Workshop

Exercises

HOUR 14: Good Coding Practice
Don’t Overuse JavaScript

Writing Readable and Maintainable Code
Graceful Degradation

Progressive Enhancement
Unobtrusive JavaScript

Feature Detection

Handling Errors Well

Summary

Q&A

Workshop

Exercises

HOUR 15: Graphics and Animation
Preloading Images

Animating Page Elements

Animating Transparency

CSS3 Transitions, Transformations, and
Animations

Scripting DOM Positioning
Optimizing Performance
Summary

181
182
182
183

185
185
187
191
192
198
199
199
200

201
201
204
207
209
214
215
215
216

217
217
218
221
222
223
226
227
231
232
232
233

235
235
236
238

239
240
242
245

vi

Sams Teach Yourself JavaScript in 24 Hours

Q&A
Workshop
Exercises

PART IV: Ajax

HOUR 16: Introducing Ajax

The Anatomy of Ajax

The XMLHttpRequest Object

Creating Instances of XMLHttpRequest
Sending the Server Request
Monitoring Server Status

Callback Functions

responseText and responseXML Properties

Summary
Q&A

Workshop
Exercises

HOUR 17: Creating a Simple
Ajax Library

An Ajax Library

Implementing the Library

Using the Library

Summary

Q&A

Workshop

Exercises

HOUR 18: Solving Ajax Problems
Debugging Ajax Applications
Common Ajax Errors

Some Programming Gotchas
Summary

Q&A

Workshop

Exercises

PART V: Using JavaScript Libraries

HOUR 19: Making Life Easier
with Libraries

Why Use a Library?

What Sorts of Things Can Libraries Do?
Some Popular Libraries

Introducing prototype.js

Summary

Q&A

246
246
247

249

251
251
256
256
260
263
264
265
269
270
270
271

273
273
274
278
284
285
285
286

287
287
292
297
298
299
299
300

301

303
303
304
305
306
313
314

Workshop
Exercises

HOUR 20: A Closer Look at jQuery
Including jQuery in Your Pages
jQuery’s $(document).ready Handler
Selecting Page Elements

Working with HTML Content
Showing and Hiding Elements
Animating Elements

Command Chaining

Handling Events

Using jQuery to Implement Ajax
Summary

Q&A

Workshop

Exercises

HOUR 21: The jQuery Ul User
Interface Library

What jQuery Ul Is All About

How to Include jQuery Ul in Your Pages
Interactions

Using Widgets

Summary

Q&A

Workshop

Exercises

PART VI: Using JavaScript with Other
Web Technologies

HOUR 22: JavaScript and Multimedia
Multimedia Formats

Browser Plug-Ins

Using an Anchor Tag

Using <embed> and <object>

Flash

Summary

Q&A

Workshop

Exercises

HOUR 23: HTMLS5 and JavaScript
New Markup for HTML5

Some Important New Elements
Drag and Drop

Local Storage

314
315

317
317
318
319
320
321
322
324
328
328
332
333
333
334

335
335
336
337
343
348
349
349
350

351

353
353
355
356
356
358
362
363
363
364

365
365
366
373
376

Working with Local Files
Summary

Q&A

Workshop

Exercises

HOUR 24: JavaScript Beyond the
Web Page

JavaScript Outside the Browser
Writing Google Chrome Extensions
Summary

Q&A

Workshop

Exercises

PART VII: Appendices

APPENDIX A: Tools for JavaScript
Development

Editors
Validators
Debugging and Verifying Tools

APPENDIX B: JavaScript Quick
Reference

Index

377
379
380
380
381

383
383
384
394
395
395
396

397

399
399
400
401

403
411

Contents

vii

About the Authors

Phil Ballard, the author of Sams Teach Yourself Ajax in 10 Minutes, graduated in 1980 with an hon-
ors degree in electronics from the University of Leeds, England. Following an early career as a
research scientist with a major multinational, he spent a few years in commercial and managerial
roles within the high technology sector, later working full time as a software engineering consult-
ant.

Operating as “The Mouse Whisperer” (www.mousewhisperer.co.uk), Ballard has spent recent years
involved solely in website and intranet design and development for an international portfolio of
clients.

Michael Moncur is a freelance webmaster and author. He runs a network of websites, including
the Web’s oldest site about famous quotations, online since 1994. He wrote Sams Teach Yourself
DHTML in 24 Hours and has also written several bestselling books about networking, certification
programs, and databases. He lives with his wife in Salt Lake City.

http://www.mousewhisperer.co.uk

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opin-
ion and want to know what we'’re doing right, what we could do better, what areas you'd like to see
us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like
about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and
email address. We will carefully review your comments and share them with the author and editors
who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/title/9780672336089 for convenient
access to any updates, downloads, or errata that might be available for this book.

http://www.informit.com/title/9780672336089

This page intentionally left blank

Introduction

Who This Book Is For

If you're interested in learning JavaScript, chances are that you've already gained at least a
basic understanding of HTML and web page design in general and want to move on to
adding some extra interactivity to your pages. Or maybe you currently code in another pro-
gramming language and want to see what additional capabilities JavaScript can add to your
armory.

If you've never tinkered with HTML at all, nor done any computer programming, it would
be helpful to browse through an HTML primer before getting into the book. Don’t worry—
HTML is very accessible, and you don’t need to be an HTML expert to start experimenting
with the JavaScript examples in this book.

JavaScript is an ideal language to use for your first steps in programming, and in case you
get bitten by the bug, pretty much all of the fundamental concepts that you learn in
JavaScript will later be applicable in a wide variety of other languages such as C, Java, or
PHP.

The Aims of This Book

When JavaScript was first introduced, it was somewhat limited in what it could do. With
basic features and rather haphazard browser support, it gained a reputation in some quar-
ters as being something of a toy or gimmick. Now, due to much better browser support for
W3C standards and improvement in the JavaScript implementations used in recent
browsers, JavaScript is finally beginning to be treated as a serious programming language.

Many advanced programming disciplines used in other programming languages can readily
be applied to JavaScript, for example, object oriented programming promotes the writing of
solid, readable, maintainable, and reusable code.

So-called “unobtrusive” scripting techniques and the use of DOM scripting focus on adding
interaction to web pages while keeping the HTML simple to read and well separated from
the program code.

This book aims to teach the fundamental skills relevant to all of the important aspects of
JavaScript as it’s used today. In the course of the book, you start from basic concepts and
gradually learn the best practices for writing JavaScript programs in accordance with current
web standards.

Sams Teach Yourself JavaScript in 24 Hours

Conventions Used

All of the code examples in the book are written to validate correctly as HTMLS5. In the
main, though, the code avoids using HTML5-specific syntax because at the time of writing
its support in web browsers is still not universal. The code examples should work correctly
in virtually any recent web browser, regardless of the type of computer or operating system.

In addition to the main text of each lesson, you will find a number of boxes labeled as Notes,
Tips, and Cautions.

These sections provide additional comments that might help you to understand the text and exam-
ples.

These blocks give additional hints, shortcuts, or workarounds to make coding easier.
Avoid common pitfalls by using the information in these blocks.

Each hour contains at least one section that walks you through the process of implementing your
own script. This will help you to gain confidence in writing your own JavaScript code based on the
techniques you've learned.

Q&A, Quiz, and Exercises

After each hour’s lesson, you'll find three final sections.
Q&A tries to answer a few of the more common questions about the hour’s topic.
The Quiz tests your knowledge of what you learned in that lesson.

Exercises offer suggestions for further experimentation, based on the lesson, that you might
like to try on your own.

How the Book Is Organized

The book is divided into six parts, gradually increasing in the complexity of the techniques
taught.

Introduction

» Part I—First Steps with JavaScript

Part I is an introduction to the JavaScript language and how to write simple
scripts using the language’s common functions. This part of the book is aimed
mainly at readers with little or no prior programming knowledge and no
knowledge of the JavaScript language.

» Part II—More Advanced JavaScript

Here more sophisticated programming paradigms are introduced, such as pro-
gram control loops and event handling, object oriented programming, JSON
notation, and cookies.

» Part III—Working with the Document Object Model (DOM)

This part of the book concentrates on navigating and editing the DOM
(Document Object Model) tree, using CSS stylesheets, and styling and animating
page elements. There is emphasis on using good coding practice such as unob-
trusive JavaScript.

» Part IV—Ajax
Here you learn how to make background calls to the server using the
XMLHTTPRequest object and handle the server responses, build a simple Ajax
library, and learn about debugging Ajax applications.

» Part V—Using JavaScript Libraries
In this part, you learn how to simplify cross-browser development using third-
party libraries such as Prototype and jQuery.

» Part VI—Using JavaScript with Other Web Technologies

In the final part examples are given of how to use JavaScript to control multime-
dia, exploit HTMLS5 capabilities, write browser add-ons, and more.

Tools You’ll Need

Writing JavaScript does not require any expensive and complicated tools such as Integrated
Development Environments (IDEs), compilers, or debuggers.

The examples in this book can all be created in a text editing program, such as Windows’
Notepad. At least one such application ships with just about every operating system, and
countless more are available for no or low cost via download from the Internet.

Appendix A, “Tools for JavaScript Development,” lists some additional easily obtainable tools and
resources for use in JavaScript development.

Sams Teach Yourself JavaScript in 24 Hours

To see your program code working, you'll need a web browser such as Internet Explorer,
Mozilla Firefox, Opera, Safari, or Google Chrome. It is recommended that you upgrade your
browser to the latest current stable version.

The vast majority of the book’s examples do not need an Internet connection to function.
Simply storing the source code file in a convenient location on your computer and opening
it with your chosen browser is generally sufficient. The exceptions to this are the hour on
cookies and the section of the book about Ajax; to explore all of the example code will
require a web connection (or a connection to a web server on your Local Area Network) and
a little web space in which to post the example code. If you've done some HTML coding,
you may already have that covered; if not, a hobby-grade web hosting account costs very lit-
tle and will be more than adequate for trying out the examples in this book. (Check that
your web host allows you to run scripts written in the PHP language if you want to try out
the Ajax examples in Part IV. Nearly all hosts do).

Using Functions

Commonly, programs carry out the same or similar tasks repeatedly dur-
ing the course of their execution. For you to avoid rewriting the same piece
of code over and over again, JavaScript has the means to parcel up parts of
your code into reusable modules, called functions. After you've written a
function, it is available for the rest of your program to use, as if it were
itself a part of the JavaScript language.

Using functions also makes your code easier to debug and maintain.
Suppose you’ve written an application to calculate shipping costs; when
the tax rates or haulage prices change, you'll need to make changes to your
script. There may be 50 places in your code where such calculations are
carried out. When you attempt to change every calculation, you're likely to
miss some instances or introduce errors. However, if all such calculations
are wrapped up in a few functions used throughout the application, then
you just need to make changes to those functions. Your changes will auto-
matically be applied all through the application.

Functions are one of the basic building blocks of JavaScript and will appear
in virtually every script you write. In this hour you see how to create and
use functions.

General Syntax

Creating a function is similar to creating a new JavaScript command that
you can use in your script.

Here’s the basic syntax for creating a function:

function sayHello() {
alert("Hello");
// ... more statements can go here ...

WHAT YOU'’LL LEARN IN
THIS HOUR
» How to define functions

» How to call (execute)
functions

» How functions receive data

» Returning values from
functions

» About the scope of
variables

38

CAUTION

The keyword function must
always be used in lowercase, or
an error will be generated.

TIP

Function names, like variable
names, are case-sensitive. A
function called MyFunc () is dif-
ferent from another called
myFunc (). Also, as with variable
names, it’s really helpful to the
readability of your code to
choose meaningful function
names.

TIP

You've already seen numerous
examples of using the methods
associated with JavaScript
objects, such as
document.write() and
window.alert().

Methods are simply functions
that “belong” to a specific
object. You learn much more
about objects in Hour 4, “DOM
Objects and Built-In Objects.”

HOUR 3: Using Functions

You begin with the keyword function, followed by your chosen function
name with parentheses appended, then a pair of curly braces {}. Inside the
braces go the JavaScript statements that make up the function. In the case
of the preceding example, we simply have one line of code to pop up an
alert dialog, but you can add as many lines of code as are necessary to
make the function...well, function!

To keep things tidy, you can collect together as many functions as you like
into one <script> element:
<script>
function doThis() {
alert("Doing This");
}
function doThat() {
alert("Doing That");
}

</script>

Calling Functions

Code wrapped up in a function definition will not be executed when the
page loads. Instead, it waits quietly until the function is called.

To call a function, you simply use the function name (with the parentheses)
wherever you want to execute the statements contained in the
function:

sayHello();

For example, you may want to add a call to your new function sayHello()
to the onClick event of a button:

<input type="button" value="Say Hello" onclick="sayHello()" />

Putting JavaScript Code in the Page <head>

Up to now, our examples have all placed the JavaScript code into the
<body> part of the HTML page. Using functions lets you employ the much
more common, and usually preferable, practice of storing our JavaScript
code in the <head> of the page. Functions contained within a <script>
element in the page head, or in an external file included via the src attrib-
ute of a <script> element in the page head, are available to be called from

Calling Functions

anywhere on the page. Putting functions in the document’s head section
ensures that they have been defined prior to any attempt being made to
execute them.

Listing 3.1 has an example.

LISTING 3.1 Functions in the Page Head
<!DOCTYPE html>
<html>
<head>
<title>Calling Functions</title>
<script>
function sayHello() {
alert("Hello");

}
</script>
</head>
<body>
<input type="button" value="Say Hello" onclick="sayHello()" />
</body>
</html>

In this listing, you can see that the function definition itself has been
placed inside a <script> element in the page head, but the call to the func-
tion has been made from a different place entirely—on this occasion, from
the onClick event handler of a button in the body section of the page.

The result of clicking the button is shown in Figure 3.1.

/ @ calling Functions \ &
& G © file:/ffhome/phil/SAMS/03listing01 F ¥ o8

I

~ Javascript Alert

i Helle
-3

39

FIGURE 3.1
Calling a JavaScript function

40

NOTE

You'll sometimes see or hear
the word parameters used in
place of arguments, but it
means exactly the same thing.

CAUTION

Make sure that your function
calls contain enough argument
values to match the arguments
specified in the function defini-
tion. If any of the arguments in
the definition are left without a
value, JavaScript may issue an
error, or the function may per-
form incorrectly. If your function
call is issued with too many
arguments, the extra ones will
be ignored by JavaScript.

HOUR 3: Using Functions

Arguments

It would be rather limiting if your functions could only behave in an iden-
tical fashion each and every time they were called, as would be the case in
the preceding example.

Fortunately, you can extend the capabilities of functions a great deal by
passing data to them. You do this when the function is called, by passing
to it one or more arguments:

functionName (arguments)

Let’s write a simple function to calculate the cube of a number and display
the result:

function cube(x) {
alert(x * x * x);

}

Now we can call our function, replacing the variable x with a number.
Calling the function like this

cube(3);

results in a dialog box being displayed that contains the result of the calcu-
lation, in this case 27.

Of course, you could equally pass a variable name as an argument. The fol-
lowing code would also generate a dialog containing the number 27:

var length = 3;
cube(length);

Multiple Arguments

Functions are not limited to a single argument. When you want to send
multiple arguments to a function, all you need to do is separate them with
commas:

function times(a, b) {
alert(a * b);

}

times(3, 4); // alerts '12'

You can use as many arguments as you want.

Arguments

It’s important to note that the names given to arguments in the definition
of your function have nothing to do with the names of any variables
whose values are passed to the function. The variable names in the argu-
ment list act like placeholders for the actual values that will be passed
when the function is called. The names that you give to arguments are
only used inside the function definition to specify how it works.

We talk about this in more detail later in the hour when we discuss vari-
able scope.

Let’'s use what we’ve learned so far in this hour by creating a function that can
send the user a message about a button he or she has just clicked. We place
the function definition in the <head> section of the page and call it with multiple
arguments.

Here’s our function:

function buttonReport (buttonld, buttonName, buttonValue) {
// information about the id of the button

var userMessagel = "Button id: " + buttonId + "\n";

// then about the button name

var userMessage2 = "Button name: " + buttonName + "\n";
// and the button value

var userMessage3 = "Button value: " + buttonValue;

// alert the user
alert(userMessagel + userMessage2 + userMessage3);

The function buttonReport takes three arguments, those being the id, name,
and value of the button element that has been clicked. With each of these
three pieces of information, a short message is constructed. These three mes-
sages are then concatenated into a single string, which is passed to the
alert() method to pop open a dialog containing the information.

To call our function, we put a button element on our HTML page, with its id,
name, and value defined:

<input type="button" id="id1" name="Button 1" value="Something" />

We need to add an onClick event handler to this button from which to call our
function. We're going to use the this keyword, as discussed in Hour 2, “Writing
Simple Scripts”:

onclick = "buttonReport(this.id, this.name, this.value)"

41

TRY IT YOURSELF V¥

A Function to Output
User Messages

You may have noticed that
the first two message strings
have an element "\n"
appended to the string; this
is a “new line” character,
forcing the message within
the alert dialog to return to
the left and begin a new line.
Certain special characters
like this one must be pre-
fixed with \ if they are to be
correctly interpreted when
they appear in a string. Such
a prefixed character is known
as an escape sequence. You
learn more about escape
sequences in Hour 5,
“Different Types of Data.”

V¥ TRY IT YOURSELF

A Function to Output
User Messages
continued

HOUR 3: Using Functions

The complete listing is shown in Listing 3.2.

LISTING 3.2 Calling a Function with Multiple Arguments

<!DOCTYPE html>

<html>
<head>
<title>Calling Functions</title>
<script>
function buttonReport(buttonId, buttonName, buttonValue) {
// information about the id of the button
var userMessagel = "Button id: " + buttonId + "\n";
// then about the button name
var userMessage2 = "Button name: " + buttonName + "\n";
// and the button value
var userMessage3 = "Button value: " + buttonValue;
// alert the user
alert(userMessagel + userMessage2 + userMessage3);
}
</script>
</head>
<body>
<input type="button" id="id1" name="Left Hand Button" value="Left"
wonclick = "buttonReport(this.id, this.name, this.value)"/>
<input type="button" id="id2" name="Center Button" value="Center"
wonclick = "buttonReport(this.id, this.name, this.value)"/>
<input type="button" id="id3" name="Right Hand Button" value="Right"
wonclick = "buttonReport(this.id, this.name, this.value)"/>
</body>
</html>

Use your editor to create a file buttons.html and enter the preceding code. You
should find that it generates output messages like the one shown in Figure
3.2, but with different message content depending on which button has been
clicked.

Returning Values from Functions

/ @ Calling Functions \\ &
&« G | © fle/ffhome/phil/SAMS/03listing02 b ¥ @_3 (V= IR S

(ot [Gorta] (it
] (G e

Javascript Alert

Butten id: id2
—° Button name: Center Button
Button value: Center

¥ 0K

Returning Values from Functions

Okay, now you know how to pass information to functions so that they
can act on that information for you. But how can you get information back
from your function? You won’t always want your functions to be limited to
popping open a dialog box!

Luckily, there is a mechanism to collect data from a function call—the
return value. Let’s see how it works:
function cube(x) {

return x * x * X;

}

Instead of using an alert() dialog within the function, as in the previous
example, this time we prefixed our required result with the return key-
word. To access this value from outside the function, we simply assign to a
variable the value returned by the function:

var answer = cube(3);

The variable answer will now contain the value 27.

TRY IT YOURSELF V¥

A Function to Output
User Messages
continued

43

FIGURE 3.2 Using a function to
send messages

NOTE

The values returned by functions
are not restricted to numerical
quantities as in this example. In
fact, functions can return values
having any of the data types
supported by JavaScript. We dis-
cuss data types in Hour 5.

TIP

Where a function returns a
value, we can use the function
call to pass the return value
directly to another statement
in our code. For example,
instead of

var answer = cube(3);
alert(answer);

we could simply use
alert(cube(3));

The value of 27 returned from
the function call cube (3) imme-
diately becomes the argument
passed to the alert() method.

44

HOUR 3: Using Functions

Scope of Variables

We have already seen how to declare variables with the var keyword.
There is a golden rule to remember when using functions:

“Variables declared inside a function only exist inside that function.”

This limitation is known as the scope of the variable. Let’s see an example:

// Define our function addTax()

function addTax(subtotal, taxRate) {
var total = subtotal * (1 + (taxRate/100));
return total;

}

// now let's call the function

var invoiceValue = addTax(50, 10);
alert(invoiceValue); // works correctly
alert(total); // doesn't work

If we run this code, we first see an alert() dialog with the value of the
variable invoiceValue (which should be 55 but in fact will probably be
something like 55.000000001 as we have not asked JavaScript to round the
result).

We will not, however, then see an alert () dialog containing the value of
the variable total. Instead, JavaScript simply produces an error. Whether
you see this error reported depends on your browser settings—we learn
more about error handling later in the book—but JavaScript will be unable
to display an alert() dialog with the value of your variable total.

This is because we placed the declaration of the variable total inside the
addTax () function. Outside the function the variable total simply doesn’t
exist (or, as JavaScript puts it, “is not defined”). We used the return key-
word to pass back just the value stored in the variable total, and that
value we then stored in another variable, invoice.

We refer to variables declared inside a function definition as being local
variables, that is, local to that function. Variables declared outside any func-
tion are known as global variables. To add a little more confusion, local and
global variables can have the same name, but still be different variables!

The range of situations where a variable is defined is known as the scope of
the variable—we can refer to a variable as having local scope or global scope.

Scope of Variables

To illustrate the issue of a variable’s scope, take a look at the following piece
of code:
var a = 10;
var b = 10;
function showVars() {
var a = 20; // declare a new local variable 'a’
b = 20; // change the value of global variable 'b'
return "Local variable 'a' = " + a + "\nGlobal variable 'b' = " + b;

}
var message = showvVars();
alert(message + "\nGlobal variable 'a' = " + a);

Within the showvars () function we manipulate two variables, a and b. The vari-
able a we define inside the function; this is a local variable that only exists
inside the function, quite separate from the global variable (also called a) that
we declare at the very beginning of the script.

The variable b is not declared inside the function, but outside; it is a global
variable.

Listing 3.3 shows the preceding code within an HTML page.

LISTING 3.3 Global and Local Scope

<!DOCTYPE html>
<html>
<head>
<title>Variable Scope</title>
</head>
<body>
<script>
var a = 10;
var b = 10;
function showvars() {
var a = 20; // declare a new local variable 'a’
b = 20; // change the value of global variable 'b'

return "Local variable 'a' = " + a + "\nGlobal variable 'b' =

- 4+ b;
}
var message = showvVars();
alert(message + "\nGlobal variable 'a' = " + a);
</script>
</body>
</html>

When the page is loaded, showvars () returns a message string containing
information about the updated values of the two variables a and b, as they
exist inside the function—a with local scope, and b with global scope.

45
TRY IT YOURSELF V¥

Demonstrating the
Scope of Variables

V¥ TRY IT YOURSELF

Demonstrating the
Scope of Variables
continued

FIGURE 3.3
Local and global scope

HOUR 3: Using Functions

A message about the current value of the other, global variable a is then
appended to the message, and the message displayed to the user.

Copy the code into a file scope.html and load it into your browser. Compare
your results with Figure 3.3.

/€ \ariable Scope

&= X i @ fileyy/home/phil/SAMS/03listing03 .+ 9% @ [V =B S

- Javascript Alert

Local variable 'a' = 20
~* . Global variable 'b' = 20
Global variable 'a' = 10

Summary

In this hour you learned about what functions are and how to create them
in JavaScript. You learned how to call functions from within your code
and pass information to those functions in the form of arguments. You
also found out how to return information from a function to its calling
statement.

Finally, you learned about the local or global scope of a variable and how
the scope of variables affects how functions work with them.

Workshop

Q&A

Q. Can one function contain a call to another function?

A. Most definitely; in fact, such calls can be nested as deeply as you need
them to be.

Q. What characters can | use in function names?

A. Function names must start with a letter or an underscore and can con-
tain letters, digits, and underscores in any combination. They cannot
contain spaces, punctuation, or other special characters.

Workshop

Try to answer all the questions before reading the subsequent “Answers”
section.

Quiz
1. Functions are called using
a. The function keyword
b. The call command

c. The function name, with parentheses

2. What happens when a function executes a return statement?
a. An error message is generated.
b. A value is returned and function execution continues.

c. Avalue is returned and function execution stops.

3. Avariable declared inside a function definition is called
a. A local variable
b. A global variable

c. An argument

47

48

HOUR 3: Using Functions

Answers
1. c. Afunction is called using the function name.

2. c. After executing a return statement, a function returns a value and then
ceases function execution.

3. a. Avariable defined within a function has local scope.

Exercises

Write a function to take a temperature value in Celsius as an argument and
return the equivalent temperature in Fahrenheit, basing it on the code from
Hour 2.

Test your function in an HTML page.

Symbols

&= (assignment) operator, 404
*= (assignment) operator, 404
A= (assignment) operator, 405
/= (assignment) operator, 404
-= (assignment) operator, 27, 404
%= (assignment) operator, 404

+= (assignment) operator, 27,
403-404

|= (assighment) operator, 405
<<= (assignment) operator, 405
>>= (assignment) operator, 405
>>>= (assignment) operator, 405
\ (backslash), 70

& (bitwise AND) operator, 404

| (bitwise OR) operator, 404

A (bitwise XOR) operator, 404

~ (bitwise NOT) operator, 404

, (comma) operator, 406

/*..*/ comment syntax, 24

// comment syntax, 24

+ (concatenation) operator,
27-28, 403

?: (conditional) operator, 406

- - (decrement) operator, 26

/ (division) operator, 26, 403

= (equal) operator, 27, 404

== (equality) operator, 405

$() function (prototype.js), 309
$() operator (jQuery), 319

> (greater than) operator, 87, 405

>= (greater than or equal to)
operator, 87, 405

++ (increment) operator, 26
<< (left shift) operator, 404
< (less than) operator, 87, 405

<= (less than or equal to) operator,
87, 405

&& (logical AND) operator, 89, 403
|| (logical OR) operator, 89, 403

! (logical NOT) operator, 74, 403

% (modulus) operator, 26, 403

* (multiplication) operator, 26, 403

<l——> notation, 23

= (not equal) operator, 86, 405

>> (right shift) operator, 404

=== (strict equality) operator, 86, 405
I== (strict not equal) operator, 405

- (unary negation) operator, 26

>>> (zero-fill right shift) operator, 404

A

<a> element, 356
abort() method, 258
abs method, 407
abstraction, 220
accessing
browser history, 52-53
classes with className, 207-209
JSON data, 123-124
accordian widget, 343-344
accordion() method, 343-344
acos method, 407

ActionScript, JavaScript support
in, 384

412 addEventListen() method

addEventListen() method, 146
Adobe Flash, 358-361

controlling with JavaScript,
359-361

methods, 359

Adobe tools, JavaScript support
in, 383

advanced event handler registration

cross-browser implementation,
147-148

Microsoft method, 147
W3C method, 146-147
advantages of JavaScript, 8-9

Ajax
Ajax library
callback function, 276
goals, 274

HTTP GET and POST requests,
275-276

including in HTML page,
278-280

making Ajax calls, 276-277

myAjaxLib.js source code,
277-278

overview, 273

returning keyword META
information from remote
sites, 280-283

XMLHttpRequest instances,
274-275

application structure, 251-253
flow diagram, 255
server requests, 253-254
server responses, 254

XMLHttpRequest object, 253

callback functions, 264-265
canceling Ajax calls, 270
clock application, 267-269
debugging
Back button, 292-293
bookmarks, 293

browser caching of GET
requests, 297

degradation, 294

escaping content, 297

feedback for users, 293-294

with Firebug, 287-290, 299

inappropriate use of Ajax,
295-296

with Internet Explorer, 290-292

links, 293

Permission Denied errors, 297

pop-up information, 295

search engine spiders,
294, 299

security, 296

testing across multiple
platforms, 296

implementing with jQuery, 328
ajax() method, 330
get() method, 329
load() method, 329
post() method, 330

sample Ajax form with jQuery,

330-332
server requests

dealing with browser cache,
261-262

overview, 253-254
sending, 260-261

server status, monitoring
readyState property, 263

server response status
codes, 264

XMLHttpRequest object
creating instances of, 256-258
methods, 258-260
overview, 253-256
properties, 258-259, 265-267
ajax() method, 330
ajax.js, 267-269
Ajax.PeriodicalUpdater class, 310-311
Ajax.Request class, 309
Ajax.Updater class, 309-310
alert dialogs, displaying, 49
alert() method, 14, 49
allowDrop() function, 375
altKey property (events), 143
ampersand (&), 404
anchor elements, 356
AND operators
& (bitwise AND), 404
&& (logical AND), 403
logical AND (&&), 89
animate() method, 324, 371

animated shooting game example,
242-245

animation

animated shooting game example,
242-245

animating elements with
jQuery, 322

animate() method, 324
sample program, 325-327

sliding page elements, 323-
324

transitions, 323
<canvas> element, 370-372

CSS3 transitions and
transformations, 239-240, 246

DOM elements, 240-241

page elements, 236-237
frame rate, 236, 242
setinterval() method, 237, 246

setTimeout() method, 237,
246

performance optimization, 242

timers, 242

transparency, 238-239
anonymous functions, 107-108
appendChild() method, 187-188
appending child nodes, 187-188
arc() function, 371
arguments

explained, 40

multiple arguments, 40-42
arithmetic operators, 26-27, 403
array.html, 78-79
arrays

array manipulation sample script,
7879

associative arrays, 80, 127
concatenating, 76
creating, 74-75

defining with JSON (JavaScript
Object Notation), 128

definition of, 74
initializing, 75
length property, 75

methods
concat(), 75-76
indexOf(), 75-76
join(), 75-76
lastindexOf(), 75-77
slice(), 75-77
sort(), 76-77
splice(), 76-77
toString(), 75-76
slicing, 77
sorting, 77
splicing, 77
<article> element, 366
<aside> element, 366
asin method, 407
assigning values to variables, 25
assignment operators, 404-405
associative arrays, 80, 127
assumptions, avoiding, 221
asterisk (*), 26, 403
atan method, 407
attachEvent function, 147
attr() method, 321
attributes (element)
editing, 191-192
reading, 179-180
attributes property (DOM nodes), 180
audio
formats, 353-354

playing with <audio> element,
369

streaming, 363

<audio> element, 369

Boolean values 413

autoplay attribute (<video>
element), 367

.avi files, 354
avoiding
assumptions, 221

overuse of JavaScript, 217-218

Back button, debugging, 292-293

back() method, 53

backslash (\), 70

banner cycling script, 97-100

behavior layer, 223

best practices
assumptions, avoiding, 221
code reuse, 220-221
comments, 218-219
error handling, 227-228
feature detection, 226-227
graceful degradation, 221-222
naming conventions, 219-220

overuse of JavaScript, avoiding,
217-218

progressive enhancement,
222-223

unobtrusive JavaScript
converting code into, 228-231
explained, 223-226
bitwise operators, 404
bookListObject, 129-131
bookmarks, debugging, 293

Boolean values, 73-74

414 break command

break command, 92-93
browser extensions
Firefox extensions, 395
Google Chrome extensions

extension to return airport
information, 387-388

icon files, 388
manifest.json file, 388-389
popup.html file, 389-392
writing, 384-386
JavaScript support in, 383
packing, 393
browser plug-ins, 355-358
browser sniffing, 117
browsers
browser history, accessing, 52-53
browser extensions
Firefox extensions, 395

Google Chrome extensions,
384-392

JavaScript support in, 383
packing, 393
browser plug-ins, 355-358
browser sniffing, 117
browser wars, 9-10
cache, 261-262

feature detection, 116-118,
226-227

Firefox
DOM Inspector, 180-181
extensions, 395

Firebug, 100, 287-290,
299, 401

JavaScript support in, 384

Internet Explorer, 9
debugging Ajax with, 290-292
F12 Developer Tools, 100

JSON (JavaScript Object Notation)
support, 123, 133

buttonReport() function, 41-42

C

cache (browser), 261-262
callback functions, 264-265, 276
calling functions, 38

CamelCase naming convention,
25, 220

canceling Ajax calls, 270
canPlayType() method, 368
<canvas> element, 370-372
capturing mouse events
onClick event handler, 30-31
onMouseOut event handler, 31-33

onMouseOver event handler, 31-
33

caret ("), 404

Cascading Style Sheets. See CSS
styles

case sensitivity, 25, 31
catch statement, 227-228

CDNs (Content Delivery
Networks), 318

ceil() method, 59-60, 407

Celsius, converting to Fahrenheit,
28-29

changing
classes with className, 207-209

mouse cursor, 215

character strings, assigning to
variable values, 25

checkform() function, 140

child nodes (DOM)
appending, 187-188
inserting, 188
removing, 191
replacing, 188-190

childNodes property (DOM nodes),
174-175

Chome extensions

extension to return airport
information, 387-388

icon files, 388
JavaScript support in, 383
manifest.json file, 388-389
packing, 393
popup.html file
basic popup.html, 389-391
complete popup.html, 391-392
writing, 384-386
classes

accessing using className,
207-209

Ajax.PeriodicalUpdater, 310-311
Ajax.Request, 309
Ajax.Updater, 309-310
className property, 207-209
clearRect() method, 371
client-side programming, 8
clientX property (events), 143
clientY property (events), 143
clock application (Ajax), 267-269
cloneNode() method, 186-187

cltrikey property (events), 143
code reuse, 104, 220-221
collections, NodelList, 174
comma (,) operator, 406
command chaining (jQuery), 324
comments

HTML comments, 23

JavaScript comments, 24

performance considerations, 24

writing, 218-219
comparison operators, 86-87, 405
compiled languages, 10
concat() method, 71-72, 75-76
concatenating

arrays, 76

strings, 27-28, 72
concatenation operator, 27-28
conditional (?:) operator, 406
conditional statements

if(), 85-86

testing for equality, 87-88
testing multiple conditions, 88

switch, 88-89
confirm() method, 50
confirmation dialogs, displaying, 50
constants, mathematical, 61
constructor functions, 108-110

Content Delivery Networks
(CDNs), 318

continue statement, 101
control structures. See loops

controls attribute (<video>
element), 367

converting
Celsius to Fahrenheit, 28-29

code into unobtrusive code,
228231

strings
to numbers, 69
to uppercase/lowercase, 73

cookie property (document
object), 156

cookieName value, 157
cookies
components, 157-158
cookieName value, 157
cookieValue value, 157
domain attribute, 157-158
expires attribute, 158
path attribute, 158
secure attribute, 158
definition of, 155-156
deleting, 162
document.cookie property, 156

escaping and unescaping data,
156-157

limitations of, 156
reading, 161-162
security, 166

setting multiple values in, 165-
166

testing
cookies.js, 162-163
cookietest.html, 163-165
cookietest2.html, 164-165
writing, 158-161
cookies.js, 162-163

cycling images on page 415

cookietest.html, 163-165
cookietest2.html, 164-165
cookieValue value, 157

cos method, 407

createCookie() function, 159-162
createElement() method, 185-186

createElementTextNode()
method, 186

Crockford, Douglas, 401

cross-browser event handlers,
142-144,147-148, 152

CSS (Cascading Style Sheets)
styles, 201

advantages of, 201-202

changing classes using
className, 207-209

CSS3 animations
transformations, 239-240, 246
transitions, 239-240, 246

DOM style property, 204-207

style declarations
placing, 204
syntax, 202-203

style properties, setting, 205-206

stylesheets
DOM styleSheets object, 209
enabling/disabling, 209-211
selecting, 211-214
switching, 209-211

cursor, changing, 215
customized widgets, 349

cycle() function, 98-99

cycling images on page, 97-100

416 data serialization

data serialization, 124-126
data types
arrays
associative arrays, 80

associative arrays,
simulating, 127

creating, 74-75
definition of, 74
initializing, 75
length property, 75
methods, 75-77
definition of, 67

JSON (JavaScript Object Notation)

data types, 126
numbers
converting strings to, 69
floating-point numbers, 68
hexadecimal numbers, 68
infinity, 69-70
integers, 67-68
NaN (not a number), 69
natural numbers, 67
whole numbers, 67
strings
Boolean values, 73-74
converting to numbers, 69
definition of, 70
escape sequences, 70-71
maximum length of, 80
methods, 71-73
Date object

creating with a given date and
time, 58

creating with current date and
time, 57

methods, 408-410
reading date and time, 62-64

setting/editing dates and times,
58-59

time zones, 65
date picker widget, 344-346
datepicker() method, 345-346
datetime.js, 230

debugging, 94-96. See also
error handling, 227-228

Ajax, 287
Back button, 292-293
bookmarks, 293

browser caching of GET
requests, 297

degradation, 294

escaping content, 297
feedback for users, 293-294
with Firebug, 287-290, 299

inappropriate use of Ajax,
295-296

with Internet Explorer, 290-292
links, 293

Permission Denied errors, 297
pop-up information, 295

search engine spiders,
294, 299

security, 296

testing across multiple
platforms, 296

debugging tools
Firebug, 401
JSLint, 401
declaring
CSS styles

placement of style
declarations, 204

syntax, 202-203

direct instances, 104-108
decrement (- -) operator, 26
default actions (event handlers)

explained, 138

preventing, 138-141
degradation, graceful, 221-222, 294
delete operator, 406
deleteCookie() function, 162-163
deleting cookies, 162
deprecated status, 11
deserialization (JSON)

with eval() function, 123

with native browser support,
123,133

with parse() function, 123
detachEvent function, 147
detecting browser features, 226-227
detecting features, 116-118
development

of JavaScript, 9

of jQuery, 333
dialogs, displaying

alert dialogs, 49

confirmation dialogs, 50

prompts, 50-51

direct instances, declaring, 104-105
anonymous functions, 107-108
this keyword, 105-107

disabling stylesheets, 209-211

displayData() function, 391

displaying
alert dialogs, 49
confirmation dialogs, 50
prompts, 50-51

division (/) operator, 26

do ... while loop, 91

doAjax() function, 276-277

document object, 12
cookie property, 156
getElementByld() method, 51-52
reading properties of, 16
write() method, 14-15

Document Object Model. See DOM

$(document).ready handler, 318-319

documentation (JSON), 133

documents (HTML), including
JavaScript in, 21-23

Dojo library, 305
DOM (Document Object Model), 10

animating DOM elements, 240-
241

browser support for, 12
development of, 10
DOM Core, 199

DOM Inspector, 180-181

element attributes, editing,
191-192

explained, 11

JavaScript files, loading
dynamically, 192-193

levels, 11

nodes
attributes property, 180
child nodes, 187-191
childNodes property, 174-175
creating, 185-187

determining whether nodes
have child nodes, 182

explained, 171-173
firstChild property, 175
lastChild property, 176
names, 177
nextSibling property, 176
node lists, 174
nodeName property, 177
nodeValue property, 176-177
parentNode property, 176
previousSibling property, 176
types of, 173-174
values, 176-177
objects. See objects
DOM Core, 199
DOM Inspector, 180-181
domain attribute (cookies), 157-158
dot notation, 13
downloading
DOM Inspector, 180
jQuery, 317-319
drag and drop
in HTML5, 373-375
with jQuery Ul, 337-340
drag() function, 375
draggable() method, 337-338
Dragonfly, 100

elements 417

drawing with canvas element,
370-372

drop() function, 375
droppable() method, 339-340
dynamic menu creation, 193-197

dynamic file loading, 192-193

E constant, 61
E property (Math object), 407

ECMA (European Computer
Manufacturers Association), 9

ECMAScript, 9
editing
dates/times, 58-59
element attributes, 191-192
editors
Geany, 400
jEdit, 400
Notepad++, 399
SciTE, 400
element nodes, 173
elements
<a>, 356
animating, 236-237, 322
animate() method, 324
sample program, 325-327
setinterval() method, 237, 246
setTimeout() method, 237, 246
sliding page elements, 323-324
transitions, 323

<article>, 366

418 elements

<aside>, 366

attributes, editing, 191-192
<audio>, 369

<canvas>, 370-372
<embed>, 357
<figcaption>, 366

<figure>, 366

<footer>, 366

getting and setting content of,
320-321

<head>, 38-39
<header>, 366
<nav>, 366
<noscript>, 232
<object>, 357
reading attributes of, 179-180
<script>, 10-11, 21-22
<section>, 366
selecting, 319-320
by id, 51-52

with getElementsByTagName(),
177-179

showing/hiding, 321-322

<summary>, 366

<video>, 366-368
<embed> element, 357
enabling stylesheets, 209-211
encapsulation, 104, 115-116

ended attribute (<video>
element), 367

enhancement, progressive, 222-223
equal sign (=), 27, 404

equality, testing for, 87-88

equality (==) operator, 405

error handling, 227-228. See also
debugging, 94-96

escape() function, 156-157

escaping data, 41, 70-71,
156-157, 297

European Computer Manufacturers
Association (ECMA), 9

eval() function, 123
event handlers, 30, 135
adding, 136-137, 148-151

advanced event handler
registration

cross-browser implementation,
147-148

Microsoft method, 147
W3C method, 146-147
common event handlers, 136

cross-browser event handlers,
142-144, 147-148, 152

default actions, 138-141
inline event handlers, 136
jQuery, 328
onClick, 30-31, 144-145, 148151
onMouseOut, 31-33
onMouseOver, 31-33
removing, 137, 148-151
event object
explained, 141
Microsoft approach, 142
W3C approach, 142
events
event handlers, 30, 135
adding, 136-137, 148-151

advanced event handler
registration, 146-148

common event handlers, 136

cross-browser event handlers,
142-144, 147-148, 152

default actions, 138-141
inline event handlers, 136
jQuery, 328

onClick, 30-31, 144-145,
148151

onMouseOut, 31-33
onMouseOver, 31-33
removing, 137, 148-151
event object
explained, 141
Microsoft approach, 142
W3C approach, 142
mouse events, capturing, 30
onClick, 30-31
onMouseOut, 31-33
onMouseOver, 31-33
properties, 143
events.js, 149-150
exclamation point (), 403
exp method, 407
expires attribute (cookies), 158
exponential notation, 68
extending objects, 111-115
Extensible Markup Language (XML)
compared to JSON, 122
parsing, 285

extensions (browser). See browser
extensions

F

$F() function, 307
F12 Developer Tools, 100
fadeln() method, 323
fadeOut() method, 323
fadeTo() method, 323
fading

page elements, 323

between transparency and
opacity, 238-239

Fahrenheit, converting Celsius to,
28-29

“falsy” values, 74

feature detection, 57, 116-118,
226-227

feedback for users, debugging,
293-294

figcaption element, 366

<figure> element, 366

File APl (HTML5), 377-379

File interface, 377

FileList interface, 377

files. See also specific files
audio formats, 353-354
loading dynamically, 192-193

local files, interacting with,
377-379

naming, 219-220

video formats, 354-355
finding maximum and minimum, 60
Firebug, 100, 287-290, 299, 401
Firefox

DOM Inspector, 180-181

extensions, 395

Firebug, 100, 287-290, 299, 401

JavaScript support in, 384
firstChild property (DOM nodes), 175
Flash, 358-361

controlling with JavaScript,
359-361

methods, 359
flashLoaded() function, 359-361
Flickr, support for JSON, 122
floating-point numbers, 68
floor method, 407
floor() method, 59-60
Aflv files, 355
footer element, 366
for loop, 91-92
for...in loop, 93
Form object, 308
forms

Form object, 308

sample Ajax form with jQuery,
330-332

forward slash (/), 26
forward() method, 53
fps (frames per second), 236
frame rate, 236, 242
frames per second (fps), 236
function operator, 38, 406
functions. See also methods
$(), 306-307
adding to page head, 38-39
Ajax callback functions, 264-265
allowDrop(), 375
animate(), 371

anonymous functions, 107-108

functions 419

arc(), 371

arguments, 40-42
attachEvent(), 147
buttonReport(), 41-42
callback functions, 276
calling, 38

checkform(), 140
compared to methods, 38
constructor functions, 108-110
createCookie(), 159-162
creating, 37-38

cycle(), 98-99
deleteCookie(), 162-163
detachEvent, 147
displayData(), 391
doAjax(), 276-277
drag(), 375

drop(), 375

escape(), 156-157
eval(), 123

explained, 22, 37

$F(), 307

flashLoaded(), 359-361
getCookie(), 162-163
getElementArea(), 221
isFinite(), 70
jsonParse(), 125
lineTo(), 370
moveltRight(), 240-241
moveTo(), 370

naming, 38, 47

nesting, 47

outputting user messages with,
41-42

420 functions

parse(), 123
parseFloat(), 69
parselnt(), 69
responseAjax(), 264-265
returning values from, 43
setinterval(), 97
showVars(), 45

syntax, 37-38

telltime(), 63, 228-230
toggleClass(), 208
Try.these, 308
unescape(), 156-157
variable scope, 44-46

games, animated shooting game,
242-245

Geany, 400

generating random numbers, 60-61
GET requests, 270, 275-276, 297
get() method, 329

getAllResponseHeaders()
method, 258

getAttribute() method, 180, 191
getCookie() function, 162-163
getDate() method, 408

getDay() method, 408
getElementArea() function, 221
getElementByld() method, 51-52, 117
getElements() method, 308

getElementsByTagName() method,
177-179

getFullYear() method, 65, 408
getHours() method, 408
getMilliseconds() method, 408
getMinutes() method, 408
getMonth() method, 408
getResponseHeader() method, 258
getSeconds() method, 408
getTime() method, 408
getTimezoneOffset() method, 65, 408
getUTCDate() method, 408
getUTCDay() method, 408
getUTCFullYear() method, 408
getUTCHours() method, 408
getUTCMilliseconds() method, 408
getUTCMinutes() method, 408
getUTCMonth() method, 408
getUTCSeconds() method, 408
getYear() method, 65

global objects, 14

global variables, 44-46

Google Ajax API CDN, 318

Google Apps Script, JavaScript
support in, 384

Google Chrome extensions. See
Chrome extensions, 383

GotoFrame() method, 359
graceful degradation, 221-222
graphics. See images

greater than (>) operator, 87, 405

greater than or equal to (>=)
operator, 87, 405

handling
errors, 227-228
events. See event handlers
hasChildNodes() method, 182
<head> element, 38-39
<header> element, 366
Hello World example, 15-16
hexadecimal numbers, 68
hide() method, 322
hiding page elements, 321-322
history of jQuery, 333
history (browser), accessing, 52-53
history object, 12, 52-53
history of JavaScript, 9
HTML (HyperText Markup Language)
comment syntax, 23
elements. See elements
explained, 7
HTML5
<audio> element, 369
<canvas> element, 370-372
drag and drop, 373-375
File API, 377-379
learning, 380
local storage, 376-377
overview, 365-366
<video> element, 366-368
web site examples, 380
metatags, 280
white space in, 175-176
html() method, 320, 390

HTML5
<audio> element, 369
<canvas> element, 370-372
drag and drop, 373-375
File API, 377-379
learning, 380
local storage, 376-377
overview, 365-366
<video> element, 366-368
website examples, 380
HTTP
GET requests, 275-276, 297
POST requests, 275276

HyperText Markup Language.
See HTML

hyphen (-), 26

icon files for Google Chrome
extensions, 388

IDs, selecting elements by, 51-52
if() statement, 85-86

testing for equality, 87-88

testing multiple conditions, 88
image rollovers, creating, 32-33
images

animation

animated shooting game
example, 242-245

CSS3 transitions and
transformations,
239-240, 246

DOM elements, 240-241
frame rate, 236, 242
page elements, 236-237, 246
performance optimization, 242
timers, 242
transparency, 238-239

cycling on web page, 97-100

drawing with canvas element,
370-372

preloading, 235-236

rollovers, creating, 32-33
in operator, 406
inappropriate use of Ajax, 295-296
including

jQuery from CDNs (Content
Delivery Networks), 318

jQuery Ul in web pages, 336-337
increment (++) operator, 26
indexOf() method, 71-72, 75-76, 406
infinity, 69-70
inheritance, 104, 112-113
initializing arrays, 75
inline event handlers, 136
innerHTML property, 52, 199
insertBefore() method, 188
inserting child nodes, 188
instanceof operator, 406

instantiating objects, 108-110,
256-258

integers, 67-68

interacting with user
alert dialogs, 49
confirmation dialogs, 50

prompts, 50-51

jQuery 421

Internet Explorer, 9
debugging Ajax with, 290-292
F12 Developer Tools, 100
interpreted languages, 10
isFinite() function, 70

IsPlaying() method, 359

J

Java, 8
JavaScript Object Notation. See JSON
jEdit, 400
join() method, 75-76
jQuery, 306
command chaining, 324

compatibility with other
libraries, 333

development of, 333

$(document).ready handler,
318319

downloading, 317-318
event handling, 328
implementing Ajax with, 328
ajax() method, 330
get() method, 329
load() method, 329
post() method, 330

sample Ajax form with jQuery,
330-332

including from CDNs (Content
Delivery Networks), 318

jQuery CDN, 318

422 jQuery

jQuery Ul
accordian widget, 343-344
advantages of, 335-336
customized widgets, 349
date picker widget, 344-346
drag and drop, 337-340

including in web pages,
336-337

resizing handles, 341
sortable lists, 341-342
tabbed interfaces, 346-348
ThemeRoller, 336-337
methods
ajax(), 330
attr(), 321
get(), 329
hide(), 322
html(), 320
load(), 329
post(), 330
show(), 321-322
text(), 320-321
toggle(), 322

),
),

page elements
animating, 322-327

getting and setting content of,
320-321

selecting, 319-320
showing/hiding, 321-322

JSON (JavaScript Object

Notation), 121
accessing JSON data, 123-124
with eval() function, 123

with native browser
support, 123

with parse() function, 123

associative arrays,
simulating, 127

compared to XML, 122
data serialization, 124-126
data types, 126
documentation, 133
explained, 121
Flickr support for, 122
objects, creating, 127
arrays, 128-129
methods, 128
multilevel objects, 129-131
objects within objects, 129
properties, 128
parsing, 125-126
security, 131
syntax, 121-122
web page, 121

jsonParse() function, 125

junctions, 90

L

language attribute (<script>
element), 10

lastChild property (DOM nodes), 176

lastindexOf() method, 71-72,
75-77, 406

layers
behavior layer, 223
presentation layer, 223
semantic layer, 223
leaving loops
with break, 92-93
with continue, 101
left shift (>>) operator, 404
length property
arrays, 75
history object, 52
less than (<) operator, 87, 405

less than or equal to (<=) operator,
87, 405

libraries, 303
advantages of, 303-304
Ajax library
callback function, 276
goals, 274

HTTP GET and POST requests,
275-276

including in HTML page,

K 278-280

jQuery CDN, 318 making Ajax calls, 276-277

.js file extension, 22

keyCode property (events), 143 myAjaxLib.js source code,

jScript, 9 277-278

JSLint, 401

keyword META information, returning
from remote sites, 280-283 overview, 273
keywords. See functions;

methods; statements

returning keyword META
information from remote
sites, 280-283

XMLHttpRequest instances,
274-275

Dojo, 305
including in web pages, 314
jQuery. See jQuery
MooTools, 305
Prototype Framework, 305
prototype.js

$() function, 306-307

Ajax.PeriodicalUpdater class,
310-311

Ajax.Request class, 309

Ajax.Updater class, 309-310

$F() function, 307

Form object, 308

stock price reader, 311-312

Try.these() function, 308
Yahoo! Ul Library, 305

LibreOffice.org, JavaScript support
in, 383

lineTo() function, 370
links, debugging, 293
lists, sorting, 341-342
LN2, 61, 407

LN10, 61, 407

load() method, 329
loading

JavaScript files dynamically,
192-193

multimedia
with <a> element, 356

with <embed> element, 357

with <object> element, 357
with plug-ins, 357-358

local files, interacting with,
377-379

local storage with HTML5, 376-377
local variables, 44-46
localStorage object, 376
location object
navigating with, 54
properties, 53
reloading pages, 54
log method, 407
LOG10E, 61, 407
LOG2E, 61, 407
logical AND (&&) operator, 89
logical operators, 89-90, 403
logical OR (| |) operator, 89

loop attribute (<video>
element), 367

loops, 90. See also statements
choosing, 101
do ... while, 91
for, 91-92
for...in, 93
leaving with break, 92-93
leaving with continue, 101
while, 90-91

loosely typed languages, 67

lowercase, converting strings
to, 73

methods 423

manifest.json file, 388-389
Math object, 59
constants, 407

finding maximum and minimum,
60

generating random numbers, 60-
61

mathematical constants, 61
methods, 59-61, 407
rounding, 60
with keyword, 61-62
mathematical constants, 61
max() method, 60, 407
maximum numbers, finding, 60
menu.js, 196-197
menus, creating dynamically, 193-197

messages, outputting with functions,
41-42

META information, returning from
remote sites, 280-283

metatags, 280

metatags.html, 282

methods, 12. See also functions
abort(), 258
accordion(), 343-344
addEventListener, 146
adding with prototype, 111-112
ajax(), 330
alert(), 49
animate(), 324
appendChild(), 187-188
attr(), 321
back(), 53

424 methods

canPlayType(), 368

ceil(), 59-60

clearRect(), 371

cloneNode(), 186-187
compared to functions, 38
concat(), 71-72, 75-76
confirm(), 50

createElement(), 185-186
createElementTextNode(), 186
datepicker(), 345-346

defining with JSON (JavaScript
Object Notation), 128

draggable(), 337-338
droppable(), 339-340
fadeln(), 323

fadeOut(), 323

fadeTo(), 323

flashLoaded(), 359

floor(), 59-60

forward(), 53

get(), 329
getAllIResponseHeaders(), 258
getAttribute(), 180, 191
getElementByld(), 51-52, 117
getElements(), 308

getElementsByTagName(),
177-179

getFullYear(), 65
getResponseHeader(), 258
getTimezoneOffset(), 65
getYear(), 65

GotoFrame(), 359
hasChildNodes(), 182
hide(), 322

html(), 320, 390

indexOf(), 71-72, 75-76
insertBefore(), 188
IsPlaying(), 359

join(), 75-76
lastindexOf(), 71-72, 75-77
load(), 329

max(), 59-60

min(), 59-60

naming, 219-220

open(), 259

pause(), 368
PercentLoaded(), 359
Play(), 359, 368

post(), 330

prompt(), 50-51
random(), 59-60

reload, 54

reload(), 54
removeEventListener, 146
replace(), 71-72
resizable(), 341
Rewind(), 359

round(), 59-60

send(), 258-260
serialize(), 308
setAttribute(), 191
setFullYear(), 65
setinterval(), 237, 246, 371
setRequestHeader(), 258
setTimeout(), 237, 246
setYear(), 65

show(), 321-322

slice(), 75-77
slideDown(), 323

slideUp(), 323
sort(), 76-77
sortable(), 341-342
splice(), 76-77
split(), 71-73
StopPlay(), 359
stringify(), 124
substr(), 72-73
tabs(), 347
text(), 320-321
toDateString(), 59
toggle(), 322
toLowerCase(), 72-73
toString(), 75-76
TotalFrames(), 359
toTimeString(), 59
toUpperCase(), 72-73
Zoom(), 359
Microsoft CDN, 318
min() method, 59-60, 407
minimum numbers, finding, 60
modulus (%) operator, 26, 403
monitoring server status, 263
readyState property, 263

server response status
codes, 264

MooTools library, 305

mouse cursor, changing, 215

mouse events, capturing
onClick event handler, 30-31
onMouseOut event handler, 31-33

onMouseOver event handler, 31-
33

.mov files, 354

moveltRight() function, 240-241

moveTo() function, 370
movies. See video
moving ball animation, 370-372
Mozilla Firefox
DOM Inspector, 180-181
extensions, 395
Firebug, 100, 287-290, 299, 401
JavaScript support in, 384
.mp3 files, 354
.mp4 files, 355
.mpeg files, 354
.mpg files, 354
multilevel objects (JSON), 129-131
multiline comments, 24
multimedia
audio
formats, 353-354

playing with <audio>
element, 369

streaming, 363
browser plug-ins, 355-358
disadvantages of, 363
Flash, 358-361

controlling with JavaScript,
359-361

methods, 359
loading and playing
with <a> element, 356
with <embed> element, 357
with <object> element, 357
video
formats, 354-355

playing with <video> element,
366-368

multiple arguments, 40-42
multiple conditions, testing for, 88

multiple platforms, testing
across, 296

multiple values, setting in cookies,
165-166

multiplication (*) operator, 26
myAjaxLib
callback function, 276
goals, 274

HTTP GET and POST requests,
275276

including in HTML page, 278-280
making Ajax calls, 276-277

myAjaxLib.js source code,
277278

overview, 273

returning keyword META
information from remote sites,
280-283

XMLHttpRequest instances,
274-275

\n (new line) character, 41
naming conventions, 219-220
files, 219-220
functions, 38, 47
methods, 219-220
nodes, 177
properties, 219-220
variables, 25
NaN (not a number), 69

natural numbers, 67

nodes (DOM) 425

<nav> element, 366
navigating
DOM (Document Object Model).

See DOM (Document Object
Model), 171

with location object, 54
navigator object, 54-57
navigator.html file, 55
negation operator (!), 74
negative infinity, 70
nesting functions, 47
Netscape Navigator 4, 9
new line (\n) character, 41
new operator, 406

nextSibling property (DOM
nodes), 176

Node js, 395
NodelList, 174

nodeName property (DOM
nodes), 177

nodes (DOM)

child nodes
appending, 187-188
inserting, 188
removing, 191
replacing, 188-190

creating
cloneNode() method, 186-187

createElement() method,
185-186

createElementTextNode()
method, 186

determining whether nodes have
child nodes, 182

explained, 171-173

426 nodes (DOM)

names, 177

node lists, 174

properties
attributes, 180
childNodes, 174-175
firstChild, 175
lastChild, 176
nextSibling, 176
nodeName, 177
nodeValue, 176-177
parentNode, 176
previousSibling, 176

types of, 173-174

values, 176-177

nodeValue property (DOM nodes),
176-177

<noscript> element, 232
not a number (NaN), 69
not equal (!=) operator, 405
NOT operators

! (logical NOT), 403

~ (bitwise NOT), 404
Notepad++, 399
null values, 51, 74
numbers, 67

converting strings to, 69

finding maximum and minimum,

60
floating-point numbers, 68
hexadecimal numbers, 68
infinity, 69-70
integers, 67-68
NaN (not a number), 69

natural numbers, 67

random numbers, generating,
60-61

rounding, 60

whole numbers, 67

o

object literals, 74

Object object, 104-105

Object Oriented languages, 104
<object> element, 357

object-oriented programming.
See OOP

objects. See also OOP (object-oriented

programming)
bookListObject, 129-131

creating direct instances of,
104-105

anonymous functions, 107-108
this keyword, 105-107

creating with constructor
functions, 108-110

creating with JSON, 127
arrays, 128-129
methods, 128
multilevel objects, 129-131
objects within objects, 129
properties, 128

Date, 57

creating with a given date and
time, 58

creating with current date and
time, 57

methods, 408-410
reading date and time, 62-64

setting/editing dates and
times, 58-59

time zones, 65
document, 12
cookie property, 156

getElementByld() method,
51-52

reading properties of, 16
write() method, 14-15
encapsulation, 115-116
event
explained, 141
Microsoft approach, 142
W3C approach, 142
explained, 12
extending, 111-115
feature detection, 116-118
Form, 308
global objects, 14
history, 12, 52-53
inheritance, 112-113
instantiating, 108-110

JSON (JavaScript Object
Notation), 13

accessing JSON data, 123-124

associative arrays,
simulating, 127

compared to XML, 122
data serialization, 124-126
data types, 126

explained, 121

Flickr support for, 122

multilevel objects, 129-131
object creation, 127-129
parsing, 125-126
syntax, 121-122
web page, 121
localStorage, 376
location, 53-54
navigating with, 54
properties, 53
reloading pages, 54
Math
constants, 407

finding maximum and
minimum, 60

generating random numbers,
60-61

mathematical constants, 61
methods, 59-61, 407
rounding, 60
with keyword, 61-62
navigator, 54-57
Object, 104-105
portability, 119
sessionStorage, 376
styleSheets, 209
window, 12-13
alert() method, 14, 49
confirm() method, 50
prompt() method, 50-51
XMLHttpRequest

creating instances of, 256-258

methods, 258-260
overview, 253-256
properties, 258-259

obtrusive code, converting into
unobtrusive code, 228-231

onBlur event handler, 136

onChange event handler, 136

onClick event handler, 30-31, 136
adding/removing, 148151

listing onClick event properties,
144-145

properties, listing, 144
onDbIClick event handler, 136
onFocus event handler, 136
onKeydown event handler, 136
onKeypress event handler, 136
onKeyup event handler, 136
onLoad event handler, 136
onMousedown event handler, 136
onMousemove event handler, 136

onMouseOut event handler,
31-33,136

onMouseOver event handler,
31-33, 136

onMouseup event handler, 136

onreadystatechange property
(XMLHttpRequest object), 258

onReset event handler, 136
onSelect event handler, 136

onSubmit event handler, 136,
139-140

onUnload event handler, 136

OOP (object-oriented programming)

advantages of, 104
encapsulation, 115-116
feature detection, 116-118
inheritance, 112-113

overuse of JavaScript

427

object creation
constructor functions, 108-110
direct instances, 105-108

object extension, 114-115

overview, 103-104

when to use, 119

opacity, fading between transparency
and opacity, 238-239

open() method, 259
opening DOM Inspector, 180

OpenOffice.org, JavaScript support
in, 383

Opera Dragonfly, 100

operators
arithmetic operators, 26-27, 403
assignment operators, 404-405
bitwise operators, 404

comparison operators,
86-87, 405

concatenation operator, 27-28
logical operators, 89-90, 403
negation (!) operator, 74
precedence, 27

special operators, 406

string operators, 403

typeof, 117-118, 226

optimizing performance. See
performance considerations,
18, 24, 242

OR operators
| (bitwise OR), 404
|| (logical OR), 89, 403

overuse of JavaScript, avoiding,
217-218

428 packing extensions

P

packing extensions, 393
page elements. See elements
page head, adding functions to, 38-39

parentNode property (DOM
nodes), 176

parse() method, 123, 408
parseFloat() function, 69
parselnt() function, 69
parsing

JSON strings, 125-126

text, 285

XML, 285
path attribute (cookies), 158
pause() method, 368

paused attribute (<video>
element), 367

PDF files, JavaScript support in, 383
percent sign (%), 26
PercentLoaded() method, 359
performance considerations
animation, 242
comments, 24
JavaScript, 18
Permission Denied errors, 297
PHP-enabled web servers, 282
Pl, 61, 407
placing style declarations, 204
Play() method, 359, 368
playing multimedia
with <audio> element, 369
with <a> element, 356

with <embed> element, 357

with <object> element, 357
with plug-ins, 357-358
with <video> element, 366-368
plug-ins (browser), 355-358
plus sign (+), 403
pop-up information, 295
popup.html Google Chrome extension
basic popup.html file, 389-391

complete popup.html file, 391-
392

icon files, 388
manifest.json file, 388-389

returning airport information,
387-388

writing, 384-386
POST requests, 270, 275-276
post() method, 330

poster attribute (<video>
element), 367

pow method, 407

precedence of operators, 27
preloading images, 235-236
presentation layer, 223

preventing default actions, 138-141

previousSibling property (DOM
nodes), 176

procedural programming, 103
programs, 21
Ajax clock application, 267-269
banner cycling script, 97-100
debugging, 94-96
definition of, 8
Hello World example, 15-16
including in web pages, 21-23
stock price reader, 311-312

progressive enhancement, 222-223
prompt() method, 50-51
prompts, displaying, 50-51

properties. See also specific
properties

defining with JSON (JavaScript
Object Notation), 128

explained, 12

naming, 219-220

reading, 16

stringlike properties, 156

style properties, 205-206
protocols, stateless, 155
Prototype Framework library, 305

prototype keyword, extending objects
with, 111-115

prototype.js library
$() function, 306-307

Ajax.PeriodicalUpdater class,
310-311

Ajax.Request class, 309
Ajax.Updater class, 309-310
$F() function, 307

Form object, 308

stock price reader, 311-312
Try.these function, 308

Q-R
QuickTime files, 354

.ram files, 354
random method, 408

random numbers, generating, 60-61

random() method, 59-60

reading
cookies, 161-162
date and time, 62-64
document object properties, 16
element attributes, 179-180

readystate property (XMLHttpRequest
object), 258, 263-264

Real Audio files, 354
RealVideo files, 354
reload() method, 54
reloading web pages, 54

remote sites, returning keyword META
information from, 280-283

removeEventListen method, 146
removing

child nodes, 191

event handlers, 137, 148-151
rendering context, 370
replace() method, 71-72, 406
replacing

child nodes, 188-190

substrings within strings, 72
requests

Ajax server requests

dealing with browser cache,
261-262

overview, 253-254
sending, 260-261

HTTP GET and POST requests,
270, 275-276, 297

XMLHttpRequest
creating instances of, 256-258
methods, 258-260

overview, 256
properties, 258-259
Resig, John, 333
resizable() method, 341
resizing handles, adding, 341

responding to events. See
event handlers

responseAjax() function, 264-265
responses (server), 254

responseText property
(XMLHttpRequest object), 258,
265-266, 285

responseXML property
(XMLHttpRequest object), 258,
265-267

return values, 43

reusing code, 104, 220-221
Rewind() method, 359

right shift (<<) operator, 404
.rm files, 354

round() method, 59-60, 407

rounding numbers, 60

S

SciTE, 400

scope of variables, 44-46
screenX property (events), 143
screenY property (events), 143
<script> element, 10-11, 21-22
scripts. See programs

search engine spiders, 294, 299

<section> element, 366

setHours() method 429

secure attribute (cookies), 158
security

Ajax, 296

cookies, 166

JSON, 131
selecting

elements, 319-320

by id, 51-52

with getElementsByTagName(),
177-179

stylesheets, 211-214
semantic layer, 223
send() method, 258-260

sending Ajax server requests,
260-261

serialization with JSON (JavaScript
Object Notation), 124-126

serialize() method, 308
server requests (Ajax)

dealing with browser cache,
261-262

overview, 253-254
sending, 260-261

server responses, 254

server status, monitoring, 263
readyState property, 263

server response status
codes, 264

server-side programming, 8
sessionStorage object, 376
setAttribute() method, 191
setDate() method, 408
setFullYear() method, 65, 409
setHours() method, 409

430 setinterval() method

setinterval() method, 97, 237,
246, 371

setMilliseconds() method, 409
setMinutes() method, 409
setMonth() method, 409
setRequestHeader() method, 258
setSeconds() method, 409
setTime() method, 409
setTimeout() method, 237, 246
setting

dates/times, 58-59

page element content, 320-321
setUTCDate() method, 409
setUTCFullYear() method, 409
setUTCHours() method, 409
setUTCMilliseconds() method, 409
setUTCMinutes() method, 409
setUTCMonth() method, 409
setUTCSeconds() method, 409
setYear() method, 65
shiftKey property (events), 143

ShockWave Flash. See Flash,
358-361

shooting game (animated), 242-245
show() method, 321-322
showVars() function, 45
simulating associative arrays, 127
sin method, 407

slash (/), 403

slice() method, 75-77

slicing arrays, 77

slideDown() method, 323
slideUp() method, 323

sliding page elements, 323-324

software. See tools, 399-401
sort() method, 76-77
sortable() method, 341-342
sorting
arrays, 77
lists, 341-342
sound
formats, 353-354
playing with audio element, 369
streaming, 363
special operators, 406
Sphere, JavaScript support in, 384
spiders, 294, 299
splice() method, 76-77
splicing arrays, 77
split method, 406
split() method, 71-73
splitting strings, 73
sqrt method, 407
SQRT1_2, 61, 407
SQRT2, 61, 407
stateless protocols, 155
statements. See also loops
break, 92-93
catch, 227-228
comments, 24
continue, 101
do ... while, 91
explained, 23
for, 91-92
for...in, 93
if(), 85-86
testing for equality, 87-88

testing multiple conditions, 88

function, 38
null, 74
prototype, 111-115
switch, 88-89
this, 105-107
try, 227-228
while, 90-91
with, 61-62
static web pages, 7
status of server, monitoring
readyState property, 263

server response status
codes, 264

status property (XMLHttpRequest
object), 258

statusText property (XMLHttpRequest
object), 258

stock price reader program, 311-312
StopPlay() method, 359

storage, local storage with HTML5,
376-377

streaming audio/video, 363
strict equality (===) operator, 405
strict not-equal-to (!==) operator, 405
stringify() method, 124
stringlike properties, 156
strings
assigning to variable values, 25
Boolean values, 73-74
concatenating, 27-28, 72
converting
to numbers, 69
to uppercase/lowercase, 73
definition of, 70

escape sequences, 70-71

extending, 114
JSON strings
creating, 124
deserializing, 123, 133
parsing, 125-126
maximum length of, 80
methods, 71-72, 406
concat(), 71-72
index0f(), 71-72
lastindexOf(), 71-72
replace(), 71-72
split(), 71-73
substr(), 72-73
toLowerCase(), 72-73
toUpperCase(), 72-73
operators, 403
replacing substrings in, 72

splitting, 73

style property (DOM), 204-207
styles (CSS)

advantages of, 201-202
DOM style property, 204-207
style declarations
placing, 204
syntax, 202-203
style properties, setting, 205-206
stylesheets
DOM styleSheets object, 209
enabling/disabling, 209-211
selecting, 211-214
switching, 209-211

stylesheets

DOM styleSheets object, 209
enabling/disabling, 209-211

selecting, 211-214

switching, 209-211
substr() method, 72-73
substring method, 406
subtraction (-) operator, 26
<summary> element, 366

supporting users with JavaScript
disabled, 232

.swf files, 355, 358
switch statement, 88-89
switching stylesheets, 209-211

T

tabbed interfaces, 346-348
tabs widget, 346-348

tabs() method, 347

tags. See elements

tan method, 407

telltime() function, 63, 228-230
temperature.html, 29

testing

Ajax across multiple platforms,
296

cookies
cookies.js, 162-163
cookietest.html, 163-165
cookietest2.html, 164-165
for equality, 87-88
in multiple browsers, 18
multiple conditions, 88
text nodes, 173
text parsing, 285

toUTCString() method

text() method, 320-321
ThemeRoller, 336-337
this keyword, 105-107
time
reading date and time, 62-64
setting/editing, 58-59
time zones, 65
timers, 242

title, selecting stylesheets by,
213-214

toDateString() method, 59, 409
toggle() method, 322
toggleClass() function, 208

toggling between stylesheets,
210-211

toLocaleDateString() method, 409
toLocaleString() method, 409
toLocaleTimeString() method, 409
toLowerCase method, 406
tools

Firebug, 401

jEdit, 400

JSLint, 401

Geany, 400

Notepad++, 399

SciTE, 400

WDG (Web Design Group)
validation service, 401

toString() method, 75-76, 409
TotalFrames() method, 359
toTimeString() method, 59, 409
toUpperCase() method, 72-73, 406
toUTCString() method, 409

431

432 transformations, animating

transformations, animating,
239-240, 246

transitions, animating, 239-240,
246, 323

transparency, animating, 238-239
try statement, 227-228
Try.these function, 308
turning off JavaScript, 232
type attribute
events, 143
<script> element, 10

typeof operator, 117-118, 226, 406

U

undefined values, 74
unescape() function, 156-157
unescaping data, 156-157
Universal Time (UTC), 65
unobtrusive JavaScript

converting code into, 228-231

explained, 223-226
uppercase, converting strings to, 73
user interaction

alert dialogs, 49

confirmation dialogs, 50

prompts, 50-51

user messages, outputting with
functions, 41-42

users with JavaScript disabled,
supporting, 232

UTC (Universal Time), 65
UTC() method, 410

Vv

validators, 400-401
valueOf() method, 410
values
assigning to variables, 25
Boolean values, 73-74
cookie values
cookieName, 157
cookieValue, 157
multiple values, 165-166
node values, 176-177
null values, 51, 74
returning from functions, 43
undefined values, 74
variables
assigning values to, 25
explained, 24-25
naming, 25
scope, 44-46
undefined, 74
VBScript, 9
video
browser plug-ins, 355-358
formats, 354-355
loading and playing
with <a> element, 356
with <embed> element, 357
with <object> element, 357

with <video> element, 366-
368

streaming, 363
<video> element, 366-368

void operator, 406

volume attribute (<video>
element), 367

w

W3C (World Wide Web Consortium),
10, 401

.wav files, 354

WDG (Web Design Group) validation
service, 401

web browsers. See browsers

web pages
banner cycling script, 97-100
drawing on, 370-372
including Ajax library in, 278-280
including JavaScript in, 21-23
including jQuery Ul in, 336-337
including libraries in, 314

menus, creating on-the-fly,
193-197

navigating with location object, 54
reloading, 54
static pages, 7
web servers, PHP-enabled, 282
WebM, 367
while loop, 90-91
whitespace, 34, 175-176
whole numbers, 67
widgets
accordian, 343-344
customized widgets, 349
date picker, 344-346
tabs, 346-348

Zoom() method 433

window object, 12-13 Y_z
alert() method, 14, 49
confirm() method, 50 Yahoo! Ul Library, 305
prompt() method, 50-51

with keyword, 61-62

zero fill right shift (>>>) operator, 404

Zoom() method, 359
.wma files, 354

.wmv files, 354

World Wide Web Consortium (W3C),
10, 401

write() method, 14-15
writing
comments, 218-219
cookies, 158-161

Google Chrome extensions,
384-386

X

XAMPP, 282

XHTML, 31

XML (Extensible Markup Language)
compared to JSON, 122
parsing, 285

XMLHttpRequest object

creating instances of, 256-258,
274-275

methods, 258-259
open(), 259
send(), 259-260
overview, 253-256
properties, 258-259
responseText, 265-266
responseXML, 265-267
XOR operators ("), 404

	Table of Contents
	Introduction
	Who This Book Is For
	The Aims of This Book
	Conventions Used
	Q&A, Quiz, and Exercises
	How the Book Is Organized
	Tools You’ll Need

	HOUR 3: Using Functions
	General Syntax
	Calling Functions
	Arguments
	Returning Values from Functions
	Scope of Variables
	Summary
	Q&A
	Workshop
	Exercises

	Index

