Jonathan Harbour

SamsTeach Yourself

Android

Game Programming

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f 9 8 @ ®

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336041
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672336041
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336041
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336041
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336041/Free-Sample-Chapter

Jonathan Harbour

SamsTeachYourself

Android

Game Programming

oure

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Android Game Programming in 24 Hours

Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33604-1

ISBN-10: 0-672-33604-9

Library of Congress Cataloging-in-Publication Data is on file.
Printed in the United States of America
First Printing November 2012

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand
Acquisitions Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Elaine Wiley

Copy Editor
Barbara Hacha

Indexer
Joy Lee

Proofreader
Chrissy White,
Language Logistics
Technical Editor
Chris Bossardet

Editorial Assistant
Cindy Teeters

Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction

Part I: Introduction

HOUR 1
2
3
4

Introducing Android 4
Installing the Development Tools
Configuring NetBeans and Eclipse with the Android SDK

Creating Your First Android Program

Part II: Android Hardware

HOUR 5
6

7

8

9

10

11

12

13

14

Getting Started with Graphics

Drawing Basic Shapes and Text

Loading and Drawing Images

Bringing Your Game to Life with Looping
Multi-Touch User Input

Using the Accelerometer

Using the Linear Acceleration and Proximity Sensors
Using the Gravity and Pressure Sensors

Creating Your Own “Tricorder”

Playing with the Audio System

Part Ill: Android Gameplay

HOUR 15
16
17
18
19
20
21

Building an Android Game Engine

Creating a Sprite/Actor Class

Frame Animation Using a Sprite Sheet/Atlas
Advanced Multi-Animation Techniques
Manipulating Sprites with Matrix Transforms
Entity Grouping

Collision Detection

xvii

15
31
47

77

93
111
129
143
157
169
181
191
213

225
255
269
281
299
321
333

Sams Teach Yourself Android Game Programming in 24 Hours

22 Using Linear Velocity for Realistic Movement
22 Scrolling the Background
22 Ball and Paddle Game

Index

349
371
385
397

Table of Contents

Introduction

Part I: Introduction

HOUR 1: Introducing Android 4
Hello, Android 4
About the Android SDK
About the Android NDK
Android Dev System Requirements
History of the Platform
Android Hardware Specifications
Summary
Q&A
Workshop

HOUR 2: Installing the Development Tools
Installing the JDK
Downloading the NetBeans Package
Installing the Package
Installing the Android SDK
Downloading the SDK
Installing the SDK
Running the Android SDK Manager
Installing the ADT Plug-in for Eclipse
Summary
Q&A
Workshop

XVii

— O 00 00 N W W

13
14

15
16
17
17
19
20
20
23
25
28
29
29

vi Sams Teach Yourself Android Game Programming in 24 Hours

HOUR 3: Configuring NetBeans and Eclipse with the Android SDK 31
Creating an Android Emulator Device 31
Plugging Android SDK into NetBeans 35
Adding Android SDK Support to Eclipse 40
Summary 45
Q&A 46
Workshop 46

Hour 4: Creating Your First Android Program 47
Creating a New Android Project 47
Building the New Project 52
Editing the “Hello, Android!” Program 60
Comparing the Emulator to an Android Device 63
Summary 72
Q&A 72
Workshop 72

Part Il: Android Hardware

HOUR 5: Getting Started with Graphics 77
Understanding the Activity Class 77
Testing the Activity States 79
World’s Simplest Android Graphics Demo 86
Summary 90
Q&A 91
Workshop 91

HOUR 6: Drawing Basic Shapes and Text 93
Drawing Basic Vector Shapes 93
Drawing Text 99
Writing Code for Javadoc 103
Android Screen Densities and Resolutions 104
Summary 109
Q&A 110

Workshop 110

Contents vii

HOUR 7: Loading and Drawing Images 111
Double-Buffered Drawing 111
Loading a Bitmap File 115
Drawing a Bitmap 120
Summary 126
Q&A 126
Workshop 127

HOUR 8: Bringing Your Game to Life with Looping 129
Creating a Threaded Game Loop 129
Drawing Without onDraw () 132
The Runnable Animation Demo 134
Summary 140
Q&A 141
Workshop 141

HOUR 9: Multi-Touch User Input 143
Single-Touch Input 143
Multi-Touch Input 148
Summary 155
Q&A 155
Workshop 156

HOUR 10: Using the Accelerometer 157
Android Sensors 157
Summary 168
Q&A 168
Workshop 168

HOUR 11: Using the Linear Acceleration and Proximity Sensors 169
Accessing the Linear Acceleration Sensor 169
Accessing the Proximity Sensor 177
Summary 178
Q&A 178

Workshop 178

viii Sams Teach Yourself Android Game Programming in 24 Hours

HOUR 12: Using the Gravity and Pressure Sensors 181
Using the Gravity Sensor 181
Using the Pressure Sensor 188
Summary 189
Q&A 190
Workshop 190

HOUR 13: Creating Your Own “Tricorder” 191
Encapsulating the Android Sensors 191
Creating the Tricorder Project 195
Summary 211
Q&A 211
Workshop 211

HOUR 14: Playing with the Audio System 213
Playing Audio Using MediaPlayer 213
Playing Audio Using SoundPool 218
Summary 221
Q&A 221
Workshop 221

Part 1ll: Android Gameplay

HOUR 15: Building an Android Game Engine 225
Designing an Android Game Engine 226
Creating an Android Library Project 229
Writing the Core Engine Classes 234
Engine Test Demo Project 247
Summary 253
Q&A 253
Workshop 254

HOUR 16: Creating a Sprite/Actor Class 255
Static Sprite as a “Prop” 255
Dynamic Sprite as an “Actor” 257

Encapsulating Basic Sprite Functionality 258

Contents ix

Testing the sprite Class 261
Summary 266
Q&A 266
Workshop 267
HOUR 17: Frame Animation Using a Sprite Sheet/Atlas 269
Animating with a Single Strip 269
Animating with a Sprite Sheet (Texture Atlas) 272
The Animation Demo 273
Summary 278
Q&A 279
Workshop 279
HOUR 18: Advanced Multi-Animation Techniques 281
Creating an Animation System 281
Animation System Demo 293
Summary 297
Q&A 297
Workshop 298
HOUR 19: Manipulating Sprites with Matrix Transforms 299
Matrix Translation 299
Matrix Rotation 305
Matrix Scaling 306
Matrix Transforms Demo 307
Summary 319
Q&A 320
Workshop 320
HOUR 20: Entity Grouping 321
Entity Grouping 321
Summary 332
Q&A 332

Workshop 332

Sams Teach Yourself Android Game Programming in 24 Hours

HOUR 21.: Collision Detection 333
Collision Detection Techniques 333
Demonstrating Collisions 337
Summary 347
Q&A 348
Workshop 348

HOUR 22: Using Linear Velocity for Realistic Movement 349
Calculating Velocity from a Direction 349
“Pointing” a Sprite in the Direction
of Movement 352
Enhancing the Engine 355
Summary 368
Q&A 369
Workshop 369

HOUR 23: Scrolling the Background 371
Background Scrolling Overview 371
The Shoot-’Em-Up Game 374
Summary 382
Q&A 382
Workshop 382

HOUR 24: Ball and Paddle Game 385
Creating the Ball and Paddle Game 385
Summary 394
Q&A 395
Workshop 395

Index 397

Foreword

When Jonathan Harbour asked me to write the foreword to this book, I was quite hon-

ored. I first met Jon when I started teaching game design at the University of Advancing
Technology in Tempe, Arizona. As a novice teacher, I was very grateful to Jon for offering
his advice and assistance. Because he taught game programming and I taught game design,
it was natural that we would work together.

We also hit it off simply as gamers. We both love strategy games, and we found that we are
both huge board wargame fans. We especially enjoyed a WWII battle game called Memoir
'44, but our most intense confrontations were in Twilight Struggle, a game covering the
entire Cold War period in an innovative card-driven format.

We soon discovered that we also shared similar philosophies about teaching and game
development—that game development is hard work, and to prepare our students for careers
in the game industry requires that we challenge them and hold them to the highest stan-
dards. So when Jon asked me to work with him and a team of students on a small XNA
game project, I jumped at the opportunity! We assembled a strong team and spent some
time getting to know each other in order to understand our collective skills and strengths.

After a period of brainstorming, research, and concept development we chose to do a 2D
side-scrolling platformer, but not just another run-of-the-mill platformer! We really wanted
to have some fun, but we also wanted to see if we could find a way to innovate a little.

The game we ended up making was Aquaphobia: Mutant Brain Sponge Madness. As the
game developed, we found that we were attracting a lot of attention at the school. People
were charmed by the main character, the setting, and the overall art style—and the basic
gameplay was undeniably fun! UAT honored us with a sponsorship to the Game Developer’s
Conference (GDC) Austin that summer.

Our follow-up was a more ambitious project. We proposed and received approval to merge
Jon’s mobile game programming course with my handheld game design course and to have
all of the students in both classes work together on a single project. We would make a game
for the Nintendo DS, and the concept we pitched was a straightforward translation of the
popular board game Memoir '44. The project didn’t pan out for a variety of reasons, but as
any teacher will assure you, you learn more from your mistakes than you do from your suc-
cesses! I think our students learned a LOT from that experience, and I know that Jon and I
both did!

Xii Sams Teach Yourself Android Game Programming in 24 Hours

The bottom line is this: Jonathan Harbour is deeply passionate about making games. He
also loves teaching. The book you hold will help you learn to make games, too. Enjoy!

David Wessman
Game Designer

About the Author

Jonathan Harbour is a writer and instructor whose love for computers and video games
dates back to the Commodore PET and Atari 2600 era. He has a Master’s in Information
Systems Management. His portfolio site at www.jharbour.com includes a discussion forum.
He also authored Sams Teach Yourself Windows Phone 7 Game Programming in 24 Hours. His
love of science fiction led to the remake of a beloved classic video game with some friends,
resulting in Starflight—The Lost Colony (www.starflightgame.com).

Dedication

This book is dedicated to my friend and colleague, David Wessman. I enjoyed working with
David as a fellow instructor at UAT during 2009-2010. Among his many game credits is TIE
Fighter (LucasArts).

Acknowledgments

This book was a challenging project because of the quickly evolving Android platform. I
am thankful to the production team at Pearson for their patience during the long writing
process (including missed deadlines) and hard work to get it into print. Neil Rowe; Mark
Renfrow; Barbara Hacha; Elaine Wiley; and technical reviewer, Chris Bossardet.

http://www.jharbour.com
http://www.starflightgame.com

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what areas
you'd like to see us publish in, and any other words of wisdom you're willing to pass our
way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

QR Barcodes

QR Barcodes

You may use these quick reference barcodes with your smartphone scanner to receive links
to information about the book!

Publisher’s Book Detail Link

XV

This page intentionally left blank

Introduction

Since Google acquired Android, Inc., to compete with Apple and Microsoft in the smartphone
and tablet markets, competition has heated up in this lucrative market. These are two tough
competitors, but Android quickly gained a strong market share in a short time, with Google
celebrating its 500 millionth Android OS sale. (Although Android is a license-free OS, devices
are still registered with Google—at no cost). Both Apple and Microsoft have invested billions to
develop and market their proprietary platforms, whereas Google has taken the open standards
approach of releasing the source code to Android (which is based on the Linux core). This

has allowed smartphone and tablet manufacturers to customize the OS for their devices while
maintaining “app” compatibility across the line. Android literally is comparable to Apple’s iOS
devices in quality and performance, with an equally impressive online shop for purchasing
music, books, movies, and apps: Google Play.

Android 4 was an especially important update to the OS, which seems to have been such a big
hit that hardware manufacturers are largely leaving it alone—the stock OS—rather than cus-
tomizing it for their devices. In the past, companies like Toshiba and Samsung have released
custom versions that gave their devices a unique look and feel. But that practice is in decline as
the OS gained notoriety and branding. An exclusion today is Amazon’s Kindle Fire HD, which
runs the Android 4 OS with many custom Amazon apps to give the dwevice a uniqueness that
leverages the equally impressive Kindle Fire brand.

This book is about writing games for the Android 4 mobile operating system used in smart-
phones and tablets. The ideal reader for this book is a programmer who knows Java and has
already dabbled in game programming before, and who needs a primer for the Android plat-
form. This book is not extremely advanced; the reader level is beginning to intermediate, with
absolutely no 3D covered (via OpenGL ES 2.0). An entire book is needed to cover OpenGL ES
properly, and our goal with this book is to introduce the most important concepts in developing
games for Android 4, not to address high-performance rendering. However, this book will take
you right up to the point where you will be able to look into OpenGL ES. You will gain a solid
understanding of the Android hardware, including the display system, audio system, sensors,
and touch screen. A sample game engine is demonstrated in the final hours.

xviii Introduction

The Android SDK is based on the Java language, so this book’s code revolves around Java. The
SDK and development tools are free to download and install, and this book explains step by
step how to do so, making it suitable for a beginner. The approach taken is that the reader

is a knowledgeable person, with some experience at programming already, and is looking for
a quick head-start to developing games on the Android platform. The book moves along at a
leisurely pace, not getting too technical right away, simply showing the reader how everything
works in a step-by-step fashion—in other words, how to get an Android game up and running
fairly quickly. The Android SDK is a challenge to set up and use for a complete novice, so we
cover every detail on getting started with the tools. Although a reader will greatly benefit from
having at least some experience with the Java language, we do not make the assumption and
will explain the code for each example. Then, after the basic hurdles are overcome, the latter
half of the book delves into some serious gameplay code at a higher level.

In Part I, covering Hours 1-4, you learn how to install and configure the development tools and
the Android SDK.

In Part II, covering Hours 5-14, you learn all about the Android OS and how to use the Android
devices supported by the SDK, such as the graphics system, touch screen, audio system, and sen-
sors (such as the accelerometer).

In Part III, covering Hours 15-24, you learn how to create a basic game engine for the Android
platform with helper classes covering the common gameplay features needed to program most
video games, such as sprites and a customizable animation system. The last two hours present
game examples to demonstrate the concepts.

To download the source code for this book (as an Eclipse workspace), see the author’s website
at http://jharbour.com or the publisher’s website at http://www.informit.com/store/product.
aspx?isbn=0672336049.

http://www.informit.com/store/product.aspx?isbn=0672336049
http://www.informit.com/store/product.aspx?isbn=0672336049
http://jharbour.com

HOUR 3

Configuring NetBeans and
Eclipse with the Android SDK

What You’ll Learn in This Hour:

» Creating an Android emulator device

» Running the emulator

» Adding the Android plug-in to NetBeans
» Adding the Android plug-in to Eclipse

This hour covers additional prerequisites needed to use the Android SDK with an IDE. We're
taking this in small steps now with plenty of figure examples to act as a quick reference for
your Android programming projects to come. In this hour, you learn how to use the Android
Virtual Device Manager to set up the emulator to run your Android programs. Then you learn
how to add the Android SDK to NetBeans and Eclipse. The SDK was already installed in

Hour 2, “Installing the Development Tools,” so if you skipped that step, you will need to go
back and install it.

Creating an Android Emulator Device

If you think that there are a lot of steps required just to get up and running with Android, you
would be right! But we’re on the right track and almost done with all of the prerequisites. Soon
we will be writing game code. First, what you need to do is configure an Android emulator. An
emulator is called Android Virtual Device, or AVD. You must use the Android Virtual Device
Manager, shown in Figure 3.1, to create an emulator device.

The reason for needing an emulation manager is because of all the Android OS versions that
have come out so quickly, in just the past three years. Also, developers might need to test their
programs on more than one version of the Android OS to ensure that they work correctly.

32 Configuring NetBeans and Eclipse with the Android SDK

- ~
Android Virtual Device Manager E@ﬂ

Tools

List of existing Android Virtual Devices located at C:\Users\jonathan'.android\avd

AVD Name Target Name Platform API Level CPU/ABI MNew...
Mo AVD available == == Edit..

Delete...

Repair...
Details...

Start...

Refresh

* A valid Android Virtual Device. A repairable Android Virtual Device.
An Android Virtual Device that failed to load. Click 'Details' to see the error.

L8 4

FIGURE 3.1
The Android Virtual Device Manager is used to set up the Android emulator.

Creating a New Emulator Device

First, we'll create an emulator device. Click the New button on the right side of the AVD
Manager. This brings up the dialog shown in Figure 3.2, Create New Android Virtual Device
(AVD). If AVD Manager is not running, you can find it in Program Files under Android SDK
Tools.

As you can see, a lot of options exist for the emulator! First, we'll focus on the Target field, which
has a drop-down list of Android OS targets. This list will be quite small if you installed only 4.0
or 4.1 (using the Android SDK Manager in the previous hour). If multiple SDKs are installed, you
will be able to choose the version you want to emulate.

Give your new emulator device a name, such as MyAndroid (or a descriptive name related to the
settings chosen).

Choose the target for Android 4. It might say 4.0.3 or 4.1 or some other revision, depending on
the specific version you installed on your dev PC.

The CPU/ABI field should be grayed out for Android 4 because devices use a standard CPU. If, for
any reason, this field is not grayed out (for instance, if you are targeting API 14 or earlier),

be sure to set it to ARM. Again, this shouldn’t be necessary if you're using the latest version of
the APIL

Creating an Android Emulator Device 33

Create new Android Virtual Device (AVD))

Name: MyAndroid

Target: Android 4.0.3 - API Level 15 v]

CPU/ABE | ARM (armeabi-v7a)
SD Card:

© File: Browse...
Snapshot:

[Enabled
Skin:

® Built-in: | Default (WVGAB0D) -]

() Resolution: x
Hardware:

Property Value =

o [Delete

Hardware Back/Home k.. no
Abstracted LCD density 240

Keyboard lid support no
Max VM application hea... 48
Device ram size 512 hd

Override the existing AVD with the same name

FIGURE 3.2
Creating a new emulator—Android Virtual Device.

If you want to simulate an SD Card in the emulator, you can specify the size of the SD Card.

The display setting is a challenge because there are so many options. It's probably safe to go
with WVGABS8O00, although there are others. This will differ quite significantly depending on the
hardware you want to emulate. For instance, if you want to emulate a specific smartphone
model, you would look up the screen resolution for that phone. But if you want to emulate a
tablet, it will likely have a different screen. This allows you to create more than one emulator
device for these various possibilities in the hardware.

Figure 3.3 shows the AVD Manager with the new device added to the list. An emulator device
called MyAndroid has been added. If you want to quickly peruse the settings for any device,
double-click the device in the list to bring up a mini detail dialog.

Running the Emulator

Choose your emulator device in the list and click the Start button on the right. This brings up the
mini launch dialog shown in Figure 3.4. You can tweak a few options if desired and then click
the Launch button.

34 HOUR 3: Configuring NetBeans and Eclipse with the Android SDK

I N
Android Virtual Device Manager E@Iﬂ

Tools

List of existing Android Virtual Devices located at C:\Users\jonathan'.android\avd

AVD Name Target Name Platform API Level CPU/ABI New...
< MyAndroid Android 4.0.3 403 15 ARM (armeabi-v7a) Ed
Repair...

Refresh

* Avalid Android Virtual Device. A repairable Android Virtual Device.
An Android Virtual Device that failed to load. Click 'Details' to see the error.

FIGURE 3.3
A new Android Virtual Device has been added.

e B
Launch Options ﬂ

Skin: WVGAB0O0 (480:E00)
Density: High (240}

Screen Size (in): | 3
Manitar dpi: 96 ?
Scale default

[[] Wipe user data

Launch from snapshot

Save to snapshot

[Launch] [Cancel

FIGURE 3.4
Preparing to launch the emulator.

The emulator device is shown in Figure 3.5, running Android OS 4.0. It may take a few minutes
for the emulator to bring up the home screen shown here. The emulator must install the OS and

Plugging Android SDK into NetBeans 35

then run it. Because this is rather time consuming, you will want to keep the emulator open
while writing Android code so it’s available anytime you build and run your code.

-
B 7 5554:MyAndroid =1l —

o000

7~
MmO O

+

e e s o

o |w e [r |

S P P P P
2z [x e v e v w[. |
ol | o]

FIGURE 3.5
The Android OS 4.0 emulator is running.

Plugging Android SDK into NetBeans

Although the Android SDK has been installed, NetBeans doesn’t automatically know about it, so
we have to configure NetBeans to recognize Android projects. This is done with a special plug-in.
We'll go over the configuration step by step with plenty of screenshots so you can refer to this
hour if needed.

36 HOUR 3: Configuring NetBeans and Eclipse with the Android SDK

The plug-in has to be downloaded from within NetBeans and is available from a file repository
at kenai.com. The plug-in is called NBAndroid, which is short for “NetBeans Android.”

First, open the Tools menu in NetBeans, as shown in Figure 3.6, and choose the Plug-ins menu

option.

) NetBeans IDE 7.1
File Edit View MNavigate Source Refactor Run Debug Profile Team \A.rmduw Help

AEESDE [T
DEESDE [T A
Internationalization L3
Java Platforms
NetBeans Platforms
Variables
Libraries
Templates
DTDs and XML Schemas
Recent Projects Palette *3ll Plu
Plugins
& Javaapplicationt pport fo
Options ans Updg

ORACLE Show On Startup

FIGURE 3.6
Invoking the Plug-ins dialog using the Tools menu.

If this is a new install of NetBeans, you likely will not have any additional plug-ins installed yet
(as expected). The Plug-ins dialog is shown in Figure 3.7. This first tab shows only updates and is
normally empty.

Open the Settings tab, shown in Figure 3.8. Three update centers will be listed (or more, if you
are using a more recent version than NetBeans 7.1). The options are not important, but just for
reference: Certified Plug-ins, NetBeans Distribution, and Plug-in Portal. We will be adding our
own new plug-in source.

On the right side is a button labeled Add. Use this button to bring up the Update Center
Customizer dialog (see Figure 3.9). This dialog has two fields where you can specify a new source
for plug-ins.

In the Name field, enter kenai.com. In the URL field, enter this URL: http://kenai.com/down-
loads/nbandroid/updatecenter/updates.xml.

Click the OK button to proceed.

http://kenai.com/downloads/nbandroid/updatecenter/updates.xml
http://kenai.com/downloads/nbandroid/updatecenter/updates.xml

Plugging Android SDK into NetBeans 37

rU Plugins

Updates | Available Plugins (73) | Dawnloaded [nstalled (25) [settings|
e —

Update Name

Category ¥

‘ Update
Close Help

FIGURE 3.7
The Plug-ins dialog has several tabs.

ro Plugins

[Updates | Available Plugins (73) | Downloaded [nstalled (25)| Settinas

Configuration of Update Centers:

Active Name
() Certified Plugins

) NetBeans Distribution
iy Plugin Portal

I Proxy Settings]

Automatically Check for Updates

Check Interval: [E\tery Week

Advanced

[C] Eorce install into shared directories

FIGURE 3.8
Viewing the list of plug-in sources.

38 HOUR 3: Configuring NetBeans and Eclipse with the Android SDK

GPIugins ‘ = |

[Updates [Avaiiable Plugins | Downloaded | Tnstalled (25) | Settnos |

Configuration of Update Centers:

Acth Ni N o
e i NetBeans Distribution Edt

I Certified Plugins
“F NetBeans Distribution

i Plugin Portal ’

By
0 Update Center Customizer u

Name: |kenai.(om |

Check for updates automatically

URL: |ht1p:,l,u’kenai‘corn,fduwnIuadsfrlbarldruidj’updatecenterfupdat&s.)cml |

Automatically Check for Updates
Check Interval: | Every Week - Proxy Settings
[| [J
Advanced
|| Force install into shared directories

FIGURE 3.9
Adding a new plug-in source (kenai.com).

BY THE WAY

Remember that URLs tend to change without notice! Your best friend is a search engine: Try search-
ing Google for “netbeans android sdk” and you should find the latest tools and plug-ins.

NetBeans then parses the URL specified for any available NetBeans plug-ins. Nothing more will
come up—just switch over to the Available Plug-ins tab. The Android plug-ins appear at the top
of the list (see Figure 3.10). If the list is not sorted alphabetically, click the Name field heading to
sort by Name.

The only plug-in really needed is Android. Two have been selected in Figure 3.11, but the
Android Test Runner plug-in is not essential—usually it’s for testing larger applications. You may
skip it if you like.

Check the Android plug-in and then click the Install button at the bottom left.

A confirmation window will come up showing all the plug-ins you have selected to install.
Click Next.

Plugging Android SDK into NetBeans

rU Plugins

[

Updates | Available Plugins (77) | Downloaded [installed (25) | settings|

Install Name ¥ Category
Android Mobility

Android Test Runner for NetBeans 7.0+

[T] Android Test Runner for MetBeans 6.9 Mobility
[7] Android Test Runner for NetBeans 6.9.1 Mobility

oSS §

[[] EasyPmd Java
[C] EBandEAR

[[] Embedded Browser LI - XUL Runner
[C] Explore from here

Java Web and EE
Base IDE
Infrastructure

[F] Automatic Projects Java SE i
[F] AutoSave Module Editing (77}
[C] Bundled Subversion Client for Windows Bridges 7]
E clc++ cjc++ (7]
[0 Clearcase Versioning @ﬁl
[C] Cobertura Module Test Coverage Developing NetBe... O
[C] CoffesScript Netbeans Editing dfp
[C] CooclEditorActions Editing &
[C] Copy and Paste History Editing fip
[C] €SS Preview by Flying Saucer Renderer Web @ﬁl
cvs Base IDE [7]

[[] DataClassG Base de Datos &
g

i

i

iy Community Contributed Plugin

Android Test Runner for NetBeans 7.0+ Mobility Version: 1.3
[C] Ant1.8.2 Documentation Java Date: 2/2{12

Source: kenai.com

2 plugins selected, 628kB

FIGURE 3.10
The list of Available Plug-ins (from all sources).

-
J MetBeans IDE Installer

Welcome to the NetBeans IDE Plugin Installer
The installer will download, verify and then install the selected plugins.

The following plugins will be installed:

Android [1.10]
Android Test Runner for NetBeans 7.0+ [1.3]

<geck | [Mext> |[canel ||

Hep |

FIGURE 3.11
Preparing to install the Android plug-in for NetBeans.

39

40 HOUR 3: Configuring NetBeans and Eclipse with the Android SDK

The new NBAndroid plug-in will be installed. When complete, go to the Installed tab to verify
the installation of the new plug-in. See Figure 3.12.

r M
i Plugins @
| Updates | Available Plugins (75) | Down]oadedl Installed (27) | Set‘h’ngs‘
Search:
Select Mame ¥ Categor Active &
Y, Android
B Androd Mabilty Ell -
[7] Android Test Runner for NetBeans 7.0+ Mobility @ [|version: 110
[Ant Java SE 7] Author: Martin Adamek, Radim Kubacki, Tomas Zezula
[F] Bugzila Base IDE [V] Date: 2/2/12
[[] Database Base IDE (V] Source: kenai.com
O et Version Co... @ Homepage: http:/fwww.nbandroid.or
[[GuI Builder Java SE Q
[F] Hibernate Java SE [¥] Plugin Description
[[Hudson Base IDE (V] £
[7] IDEEBranding Base IDE [v] Integrated support for Android mobile platform projects and tools.
[[] IDEPlatform Base IDE [¥]
[ava Java SE [v]
[] 3avaDebugger Java SE (]
[[] 3avaFX 2 Support JavaFX 2 [¥]
[F] 3avaPersistence Java SE (V]
[[] 3ava Profiler Java SE @ U
[aunit Java SE [v]
[[Local History Base IDE [¥]
[[Maven Java SE (V]
[Mercurial Base IDE [¥]
[7] NetBeans Plugin Development Developin. .. [v] =
Activate Deactivate Uninstall
¢ .

FIGURE 3.12
The Android plug-in now appears in the Installed list.

Adding Android SDK Support to Eclipse

The Android SDK plugs into Eclipse a little easier than it does with NetBeans because only one
install is required (and no separate plug-in like NBAndroid is needed). In the previous hour is a
tutorial on installing the Android Development Kit and the Eclipse plug-in, so you may want to
refer to Hour 2 if you haven't yet installed these packages. Assuming you have them installed,
Eclipse is ready to go. In that case, the title of this section is a misnomer because the Android
SDK does not need to be added—it’s already good to go. Let’s take a look.

Creating a New Android Project in Eclipse

If you finished installing the files in the previous hour, verify the install in Eclipse by opening the
Window menu, shown in Figure 3.13. You should see Android SDK Manager and AVD Manager
to verify that Eclipse recognizes the new Android packages.

Adding Android SDK Support to Eclipse 41

= Java - Eclipse

:Eg

milhs

v &l v

oy

L=

File Edit Run Source Refactor Navigate Search Project | Window | Help

[# Package Explorer £

[N 1+

New Window
New Editor

Open Perspective

Show View

Customize Perspective...

Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives
Navigation

Android SDK Manager
AVD Manager
Run Android Lint

Preferences

#® @

[Ji=3 R4

& [§l)ava]

[Z1 Problems | @ Javadoc [Declaration | E] Console &3 .

DDMS

BebilB-r4-=-08

FIGURE 3.13

The Window menu in Eclipse shows the Android SDK tools.

Now, open the File menu and choose New, Project. You should see a new Android group, as

shown in Figure 3.14. Choose Android Project from the options shown and click Next.

The New Android Project dialog appears next, as shown in Figure 3.15. Enter a name for the
project and choose either the default location or enter a new location for the project files.

The next dialog, shown in Figure 3.16, allows you to choose the Android SDK target (because

multiple Android SDK versions may be installed to support various OS release levels). In the

example shown, Android 4.0.3 was automatically checked. If you have more than one SDK

installed, you may choose from among them.

42 HOUR 3: Configuring NetBeans and Eclipse with the Android SDK

-
= New Project

Select a wizard

Wizards:

| type filter text

b (= General

4 (= Android
|@ Android Project |
LGQ Android Sample Project
Jﬁ' Android Test Project

r & CVs

b = Java

I (= Bxamples

Finish | [Cancel

FIGURE 3.14
Creating a new Android project in Eclipse using the New Project dialog.

r
== New Android Project

Create Android Project
Select project name and type of project
Project Name: | My Sample Android Demo|
(@) Create new project in workspace
reate project from existing source
() Create project from existing sample
Use default location
Location: | C:/Users/jonathan/workspace/My Sample Android Demo ‘ | Browse... ‘
Working sets
[] Add project to working sets
Warking sets: | - ‘ | Select... |
@ [<Back J[Net>]| mnish [cancel
e

FIGURE 3.15
Entering the new project details.

Adding Android SDK Support to Eclipse 43

-
= New Android Project B
Select Build Target 4
Choose an 5DK to target |
Build Target
Target Name Vendor Platform APL...
Android 403 Android Open Source Project 403 15
® [< Back || Mext > Finizh Cancel
L
FIGURE 3.16

Verifying the Build Target for the new project.

The next dialog that comes up in the New Android Project Wizard, shown in Figure 3.17, will
look familiar because you dealt with this information earlier in the NetBeans project: the
Package Name and Activity. These will make a little more sense in the next hour when you see
the names in the source code. For now, you may change the values as needed. Because this is
only a configuration tutorial and you aren’t writing any real Android code just yet, the values
are not that important. But, as was the case with NetBeans, you must enter at least two words
separated by a period into the Package Name field.

There are a lot of files created for a new project. Take a look at Figure 3.18, which shows the
newly created project. In Package Explorer (on the left side of the IDE) you will see a folder called
src, and then my .project (the package name), which contains the source code file called
MySampleAndroidDemoActivity.java. This is similar to the files in the NetBeans project.

44

g N
= New Android Project [E=SE=E

Application Info

Configure the new Android Project

Application Name: My Sample Android Demo

Package Name: my.project
Create Activity:

MySampleAndroidDemoActivity

Minimum SDK: 15 {Android 4.0.3)

Create a Test Project

Test Project Narme: ‘ My Sample Android DemoTest ‘

Test Application: ‘ My Sample Android Demo Test ‘

Test Package: ‘ my.project.test ‘

®@ <Back || Net> |[Fmsh [cancel | FIGURE 3.17
L | Entering the Appli

HOUR 3: Configuring NetBeans and Eclipse with the Android SDK

cation Info fields.

-
= Java - My Sample Android Demo/src/my/pi

tivityjava - Eclipse
File Edit Run Source Refactor

(o] & [t

Navigate Search Project Window Help

iNrHE® A8 iIH-i84d %-0-Q- #6- s PMAeED i (Elva)
(H e o
[# Package Explorer &3 = 8|5

% | & Y|[. package my.project;

122 My Sample Android Demo

& o @ import android.app.Activity:[]
1 my.project N N - -
T public class MySampleAndroidDemoActivity extends Activity {
o %M" ““dpJ “F"‘“] =L /** Called when the activity is first created. */
gen [Generated Java Files Eoverride
= Android 403 o public void onCreate (Bundle savedInstanceState) {
Gl\ Andraid Dependencies super.onCreate (savedInstanceState) ;
2 assets setContentView (R.layout.main):
& bin !
& res }

|d AndroidManifestxml
proguard-project.tit
project.properties

<

»

21 problems [@ Javadoc @ Declaration | &l Console £
DOMS

Bepll#BE-r9-=0

i | Writable ‘ Smartlnsert | 1:1
U

FIGURE 3.18
The new Android project has been created.

Summary 45

Choosing an Android Build Target

To build and run an Android project in Eclipse, open up the Window menu and choose
Preferences. This brings up a dialog called Preferences, shown in Figure 3.19. In the list of prefer-
ence groups, choose Android to show the Android preferences. Use the Browse button to choose
the Android SDK location. This may be in C:\Program Files\Android, or it may be in My
Documents, or elsewhere—it depends on where you chose to install the SDK according to the
steps. Next, choose the target from the list (Android 4.0.3 in this case).

s
= Preferences L = él
type filter text Android - - -

Genera.\ Android Preferences

Android
Build SDK Location: ~ C:\Program Files\Android\android-sdk
DDMS Mate: The list of SDK Targets below is only reloaded once you hit ‘Apply’ or 'OK'.
Editors
Launch Target Name Vendor Platform APIL..
Lint Error Checking i Android 4.0.3 Android Open Source Project 4.03 15 ¢
LogCat Google APls Google Inc. 403 15
Usage Stats

Ant

Help

Install/Update

Java

Run/Debug

Tasks

Team

Usage Data Collectar
Validation

XML

Standard Android platform 4.0.3

[Restore Qefaults] [Apply]

@ [o [cance |

LS

FIGURE 3.19
Setting the Android SDK location and choosing the Android build target.

Summary

This hour covered the additional steps needed to get started programming with the Android SDK
using both NetBeans and Eclipse. By now you will have created an emulator device and installed
the Android plug-ins for NetBeans and Eclipse and are ready to begin writing code! You write
your first real Android project in the next hour.

46 Configuring NetBeans and Eclipse with the Android SDK

Q&A

Q. How do you think Java compares to other languages frequently used for game programming,
such as C++ and C#?

A. Answers will vary.
Q. If the Android SDK is the library for making apps and games on the Android platform, how

does it compare with the DirectX SDK for Windows? You may need to search online for infor-
mation in order to discuss this topic.

A. Answers will vary.

Workshop

Quiz
1. What is the technical name for the Android emulator?

2. Which version of the Android OS does the emulator support?

3. Which IDE uses the NBAndroid plug-in?

Answers
1. Android Virtual Device (AVD)

2. All versions (that have been installed).

3. NetBeans

Activities
» The Android SDK includes libraries written in Java that interface with a lower-level inter-
face written in C++. It is possible to write C++ code and compile it to run on Android, with
Java as a bridge. What is this C++ library called, and how does it work? You may need to
do a cursory search online for “android C++ library.”

Symbols

/**-Enter (Javadoc comments),
103-104

2D from 3D coordinates, gravity
sensors, converting, 183

3D rendering, Android NDK
support, 8

3D to 2D coordinates, gravity
sensors, converting, 183

A

ABD (Android Debug Bridge)
installing, 65-68
running code, 69-71
versus USB device driver,
65-68
AC3 (FFmpeg) audio format, 217
Accelerometer Demo, 164-167

accelerometer sensors, 157-158,
193, 209

accelMotion variable, 162

disabling screen orientation
changes, 159-160

initializing, 160-161

versus linear acceleration,
169

movement of, 161-162

Activity class
base application class, 78
methods, 78

overridable, 78
setTitle(), 78
addAnimation() method, Sprite
class, 287

addToGroup() method, Engine
class, 324, 392

adjustAlpha() method, Animation
class, 282

adjustPosition() method,
Animation class, 282

adjustRotation() method,
Animation class, 282

adjustScale() method, Animation
class, 282
ADT (Android Development Tools)
plug-in
Android “wizard” dialog, 80
installing, 25-28
AIFF (Apple) signed 16-bit PCM
audio format, 217
AlphaAnimation class, 287

alpha channels, GIMP graphic
editor, 121-124

Amazon
digital media industry, 9
Kindle Fire
Android 2.2 Eclair, 69
Android 4.0 Ice Cream
Sandwich, 69
sensors reported, 164
AMR (narrow band) (FFmpeg)
audio format, 217
Android 4/Google. See also
Android 0S/devices

Index

Apps screen, 6
based on Linux 3.0, 3
compatibility of
games/apps, 6
hardware requirements, 11-12
Home button, 4-5
home screen, 4-5
versus iPhone, 4
licensing, 4, 6, 10
market share, 4, 9, 12
non proprietary, 4
Plants vs. Zombies, 7
programming games, 7
Return button, 4-5
Search field with voice
recognition, 4
Tasks button, 4-5
Unity game engine
support, 226
Android Development Tools
(ADT), 25-28
android.graphics.Bitmap
namespace, 112
android.hardware classes

methods
getSensorList(), 163
onAccuracyChanged(),
158-159

onCreate(), 158-159, 163

onSensorChanged(),
158-159

Sensor, 160, 162, 165
SensorEvent, 162, 165

398 android.hardware classes

SensorEventListener, 158,
162, 165
SensorManager, 158, 162
Android NDK, C++ for
components, 8
pixel buffer access, 8
support for 3D rendering and
audio, 8
Android 0S/devices. See also
Android 4/Google
ABD (Android Debug Bridge)
installing, 65-68
running code, 69-71
versus USB device driver,
65-68
adult toy, 7
Android Device Settings,
options, 66-67
derivative of i0S/Apple, 9
history, 9-10
Linux kernel numbers, 10
release dates, 10

versions and code
names, 10

versus iPhone, 4
licensing, 4, 6, 10
logo, 12
Mac OS X or Linux

development, 66

market share, 4, 9, 12
non proprietary, 4
quick-to-market release, 10
rooting, 66

tablets, screen definitions,
107-108
versions to program for, 69
XNA Game Studio, Microsoft,
similar to Android, 78
Android SDK (Software
Development Kit). See SDK
Android Virtual Device. See AVD

animation and bitmaps, 269

Runnable Animation Demo,
134-140

walking character, 134-140
Bitmap knight [], 135
drawBitmap() method, 135
frames, 135
InputStream object, 135
for loops, 135

Animation class/animation
systems, 281

classes
AlphaAnimation, 287

constructors, 287
Animation, 281
CirclingBehavior, 360-361
CircularMovement

Animation, 292
FenceBehavior, 326-327,

362, 388-395
FrameAnimation, 288-290

ReboundBehavior, 387-
388

SpinAnimation, 290-291

ThrobAnimation, 291-292,
324-325

VelocityBehavior, 359-360

WarpBehavior, 325-326,
363-364

WarpRect, 309-311
methods, 282

destroying/removing
sprites from groups,
358-359

Animation Demo
frames
arranging, 270
drawing, from strip images,
270271

source code, 275-278
sprite sheets

for asteroid animation,
273274

for zombie animation,
275274

Animation System Demo,
293-297

Apple products. See also
i0S/Apple; iPad; iPhone; iPod;
iTunes

Apple ll, 7
Apple Macintosh, 7

Arkanoid, 386

AssetManager class, 117-118

assets

adding, 115-118
AssetManager class, 117-118

converting from one format to
another, 115-116

copying, 121, 271
error handling, 119
InputStream object, 118
istream.close() method, 119
linking, 121

atan() and atan2() methods, Math

class, 353

Atari devices
Breakout, 386
history, 7

Audacity audio editor, 214-215
formats supported, 217

audio files, with MediaPlayer, 213

adding to .redraw folder,
214-215

Android NDK support, 8
exporting, 217
formats

converting from one to
another, 214-216

exporting, 215
performance issues, 215
supported, 214, 217

initializing, 214

playing, 217

R (resource identifiers), 215
audio files, with SoundPool

asset file extensions, 218

Audio Demo Program,
220-221

initializing, 218
loading resources, 218-219
playing, 219
multiple sounds, 218
R (resource identifiers), 219

AudioManager.STREAM_MUSIC
parameter, 218

autorotation on screens, 159-160

AVD (Android Virtual Device)
emulator

versus Android devices, 63-64
AVD Manager, 31, 33-34
creating, 32-33
limitations, 64
multi-touch input

receiving basic data, 149

receiving/storing values,
150-155

options
CPU/ABI field, 32
RAM size, 64
SD card field, 33
Skin, 106
Target field, 32, 56
WVGAS8OO display, 33, 64
running, 33-35, 54-59
single-touch input, 144
axis directions
accelerometer sensor,
161, 164
linear acceleration sensor,
169

back buffers, 111, 113-115

background scrolling, seamless
texture, 371-374

BaseSensor class, 208-209

Basic Graphics Demo, 95-98, 129

beginDrawing() method, Engine
class, 262, 365

Bitmap class, 111

alpha channels for
transparencies, 121-124

android.graphics.Bitmap
namespace, 112
assets
adding, 115-118
AssetManager class, 117-
118

copying, 121, 271
error handling, 119
InputStream object, 118

istream.close() method,
119

linking, 121
back buffer, 111, 113-115
background scrolling, 372-374
Bitmap Loading Demo, 120,
125-126, 129-130
Config.ARGB_8888 parameter,
112, 119
file formats, 115
front buffer, 111
methods

BitmapFactory.
decodeStream(), 118-
119

createBitmap(), 112,
373-374

drawBitmap(), 120
Texture class, 246

Canvass class 399

BitmapFactory.decodeStream()
method, 118-119

Bitmap knight [], 135

Bitmap Loading Demo, 120, 125-
126, 129-130

bitmaps and animation, 269

Runnable Animation Demo,
134-140

walking character, 134-140
Bitmap knight [], 135
drawBitmap() method, 135
frames, 135
InputStream object, 135
for loops, 135

BMP file format, 115

bounding circles (radial) collision
detection, 335-336

bounding rectangles (box) collision
detection, 333-336

Box2D physics library, 233

box (bounding rectangles) collision
detection, 333-336

boxes, 93-94
Breakout, 386
Buffered Graphics Demo, 113-115

buffers, front and back, 111,
113-115

C

C++ and Android NDK
libraries, 8
supplementing Android SDK, 8
support
for Open GL ES 2.0, 8
for Open SL ES 2.0, 8
Canvas class, 89-90

Basic Graphics Demo,
95-98, 129

How can we make this index more useful? Email us at indexes@samspublishing.com

400 Canvass class

Create Canvas Demo, source
code, 83-85, 90

drawing
bitmaps, 120
canvas, 112

without onDraw() method,
132-133

game engine core, 227, 235

methods
beginDrawing(), 262
drawBitmap(), 120
drawBox(), 93-94
drawCircle(), 87-89, 93
drawColor(), 89
drawLines(), 93
drawRoundRect(), 94-95
drawText(), 99, 101-102
drawTriangle(), 95
getHolder(), 132

lockCanvas(), 132-133,
262

onDraw(), 88-89, 111, 131
invalidate(), 130

Paint.setColor(), 95, 99,
101-102

Paint.setStyle(), 95

Paint.setTextSize(), 99,
101-102

unlockCanvasAndPost(),
132-133, 262
portrait and landscape mode
output, 99
Style.FILL, 95
Style.STROKE, 95

SurfaceHolder variable,
132-133

SurfaceView class, 132
View class, 132

Cartesian coordinate systems,
301-302

circles, 87-89, 93

CircularMovementAnimation
class, 292
C# language
similar to Java, 78
XNA Game Studio, 78
.class extension, 8
collisioncheck() method, Engine
class, 341-342, 368
CollisionDemo, 343-347
collision detection techniques
bounding circles, 335-336
bounding rectangles, 333-336

collision() method, Engine class,
337, 347, 366, 393

Commodore 64, history, 7
compass sensors, 195, 211

Config.ARGB_8888 parameter,
112, 119

Conley, Ron, 258
coordinate systems, 301-304
Cartesian, 301-302

transforming coordinates,
300, 303-305

cos() method, Math class, 350
createBitmap() method, 112
Create Canvas Demo

output, 85

running on devices, 90

source code, 83-85
Cupcake code name, 10

Dalvik Debug Monitor, 70

DDMS Perspective, Eclipse
IDE, 70

densities for screens

AVD for each device
tested, 107

AVD Skin option, 106
dark over light text
display, 107
density-independent pixel
(dip), 104
DisplayMetrics class, 106

general resolutions/densities,
106

general sizes/resolutions,
105
Screen Resolution Demo,
107-109
digital media industry, 9
DirectX SDK, 20
Documents app, 10
Donut code name, 10
double buffering, 111
drawBitmap() method, 120, 135
limitations, 308
Matrix class, 299, 305
drawBox() method, Canvas class,
93-94
drawCircle() method, Canvas
class, 87-89, 93
drawColor() method
Canvas class, 89
Engine class, 365
draw(delta) method, Engine
class, 228

drawing
bitmaps, 120
canvas, 112

without onDraw() method,
132-133
drawLines() method, 93
draw() method
Engine class, 262, 365, 393
Sprite class, 262, 290
drawRoundRect() method, 94-95

drawSheetFrame() method, Sprite
or Texture classes, 273

drawStripFrame() method, Sprite
class, 271
drawText() method, 99, 101-102
portrait and landscape mode
output, 99
drawTriangle() method, 95
DrawView class
game engine core, 227
game engine rendering, 228
graphics, 88-89
threaded game loops,
130-131

Earth app, 10
Eclair code name, 10
Amazon Kindle Fire, 69
Eclipse IDE, 3, 8
.APK files (Android
Packages), 233
Classic version, 25
DDMS Perspective, 70
downloading, 25
versions available, 25
Helios Service Release,
16, 25
installing
ADT plug-in, 25-28
with JDK, 16
for Java Developers
version, 25
versus NetBeans, 9
official IDE, 25
Package Explorer, Assets
folder, 116-118, 271
preferred for Android
development, 16
programming games, 7

projects
Android project wizard,
230
Android “wizard” dialog, 80

Application Info
dialog, 231

copying/pasting, 269

Java complier
requirements, 140

Javadoc for self-
documented code,
103-104

new projects, 230

new project target, 69-70,
231

Package Name field,
231-232

perspectives, Java,
149-150
properties, 233, 263
references, 263
versus NetBeans IDE, 80
and SDK, 40
build target, 45
NBAndroid plug-in,
configuring, 49
new projects, 40-43
endDrawing() method, Engine
class, 262, 365
Engine class
conditional test with alive
property, 364-365
methods
addToGroup() method,
324, 392
beginDrawing(), 262, 365
collision(), 337, 347,
366, 393
collisioncheck(), 341-342,
368
draw(), 262, 365, 393
drawColor(), 365

game developers 401

draw(delta), 228
endDrawing(), 262, 365
getGroup(), 368
load(), 392
removeFromGroup(), 324
run(), 338-341, 365-367
toString(), 368
update(), 393
update(delta), 228
entity grouping, 322-324
LinkedList object, 321
adding properties, 322
initializing, 322
Entity Grouping Demo, 327-331

F

Feldman, Ari, 270

FenceBehavior class, 326-327,
362, 388-395

FLAC audio format, 217

Float2 or Float3 classes,
182-183

Float3 p_data variable, 193

for loops, 135

FrameAnimation class, 288-290
frames, 135

front buffers, 111

Froya code name, 10

game developers
compatibility warning, 6
porting to other platforms, 6

How can we make this index more useful? Email us at indexes@samspublishing.com

402 game engines

game engines

components, 227

design goals, 226-227

engine core component, 227
Engine class, 235-243
TextPrinter class, 244-246
Texture class, 246-247
Timer class, 243-244

Engine Test Demo Project
creating, 247-248
logging demo, 252-253
source code, 249-251

Game Engine Library project,
229-233, 288

android.engine.VectorMath
class, 229

.APK file (Android
Package), 233

creating, 230-232
DotProduct() method, 229
VectorMath class, 229
main thread component, 228
rendering component, 228
startup component, 227-228
Unity, 226
game examples
Ball and Paddle, 385

automated ball movement,
386-388

automated paddle
restriction, 388-390

source code, 390-394
Shoot-’"Em-Up
output, 375-394
source code, 374-395
getBitmap() method, Texture
class, 246

getBounds() method, Sprite class,
342-343, 368

getBoundsScaled() method, Sprite
class, 342-343

getCanvas() method, Sprite
class, 262

getCollidable() method, Sprite
class, 342-343

getCollided() method, Sprite class,
342-343

getGroup() method, Engine
class, 368

getHolder() method, Canvas class,
132, 228

getldentifier() method, Sprite
class, 342-343

getName() method, Sprite class,
342-343

getOffender() method, Sprite
class, 342-343

getSensorList() method,
SensorManager class, 163

GIF file format, 115
GIMP graphic editor

alpha channels for
transparencies, 121-124

converting assets from one
format to another, 115-116
Gingerbread code name, 10
Google Drive app, 10
GPS location service versus
sensors, 158
Graphics Demo project code,
86-87
Canvas class, 89-90
drawColor() method, 89
graphics shapes, 90
onDraw() method, 88-89
DrawView class, 88-89
MainActivity class, 88-89

package and import
statements, 88

Paint class, 89
View class, 90

gravity sensors, 194
algorithm, 181
constants/values, 182

converting 3D to 2D
coordinate, 183

Float2 or Float3 classes,
182-183
initializing, 181
onSensorChanged() method,
182
reading, 182
testing, 183-188
GSM 6.10 WAV (mobile) audio
format, 217
gyroscope sensors, 194-195, 210

H15 Game Engine Library, 248
H16 Game Engine Library, 263
H16 Sprite Demo, 262
H17 Game Engine Library, 270
H19 Game Engine Library, 322
H23 Game Engine Library,
367, 375
H23 Velocity Scrolling Demo, 375
hand-held video game systems, 7
Helios Service Release, Eclipse
IDE, 16, 25
Honeycomb code name, 10, 69

IBM PCs, 7
Ice Cream Sandwich code name,
34, 10, 69
Amazon Kindle Fire, 69
identity matrix, 300

IDEs (integrated development
environments), 16

init() method, 252
InputStream object, 118, 135
int change constructor, 287
int maxAlpha constructor, 287
int() method, 390

int minAlpha constructor, 287
invalidate() method, 130

i0S/Apple, Android as
derivative of, 9

i0S/Apple versus Android and
Windows Phone
hardware control, 3
licensing, 4-6
market share, 4, 9, 12
iPad
adult toy, 7
versus Android, 9
development of, 9
iPhone
adult toy, 7
versus Android 4, 4
development from iPod, 9
and Palm Pilot, 9
Plants vs. Zombies, 7
and Pocket PC, 9
release in 2007, 9

Unity game engine support,
226

iPod
versus Android, 9
iPhone development, 9
istream.close() method, 119
iTunes, development of, 9

J

JAR (Java Archive) utility, 269
Java
compiler requirements, 140
importance of experience, 8
JAR (Java Archive) utility, 269
modulus operator, 273
new classes, 288-289
programming games, 7
similar to C# language, 78
Java Development Kit. See JDK
Javadoc for self-documented
code, 103-104
.java extension, 8

Java Runtime Environment.
See JRE

JDK (Java Development Kit), 8
Enterprise Edition, 16
installing, with Eclipse, 16
Java Standard Edition 7, 16
NetBeans

downloading, 17

installing, 16-20

installing, default
locations, 19-20

license agreement, 18-20
plug-in for, 16
versions available, 17
Jelly Bean code name, 3, 10, 69
JPEG file format, 115

JRE (Java Runtime Environment),
8, 16

K

Katz, Phil, 233
Kindle Fire, Amazon
Android 2.2 Eclair, 69

Linux 403

Android 4.0 Ice Cream
Sandwich, 69
sensors reported, 164

L

landscape orientation, 99,
159-160

licensing
Android OS/devices, 4, 6, 10
i0S/Apple, 4-6
lifetimes for programs
(activities), 79
foreground, 79
visible, 79
light detector sensor, 195

Linear Acceleration Demo,
171-177

linear acceleration sensors,
193, 210
versus accelerometer, 169
initializing sensor, 170-171
methods
onPause(), 171
onResume(), 171
registerListener(), 171
unregisterListener(), 171
reading sensor, 171
velocity, 170
X and Y values, 169
lines, 93
LinkedList object, 321, 392
adding properties, 322
initializing, 322
Linux
and Android development,
8, 66
basis for Android 4, 3
versus i0S and Windows
Phone OS, licensing, 4

How can we make this index more useful? Email us at indexes@samspublishing.com

404 load() method, Engine class

load() method, Engine class,
252, 392

lockCanvas() method, 132-133,
262

Log statement, 252

M4A (AAC) (FFmpeg) audio
format, 217
Mac 0S X
and Android development, 66
4.8 or later, 8
Plants vs. Zombies, 7

maghnetic field (compass),
157-158

MainActivity class, 88-89

main() function, MAC OS X, versus

Activity class, 77
Maps app, 10
market share
Android OS devices, 4, 9, 12
i0S/Apple, 4, 9, 12
Windows Phone, 4, 9
Math class methods
atan() and atan2()s, 353
cos(), 350
sin(), 350
toDegrees(), 305, 350
toRadians(), 305, 350
Matrix class, 300-301
values stored, 303-304
matrix rotation
radians versus degrees, 305
rotation values, 305

X, Y, and Z components,
306

transformations with Sprite
class, 307

combined with scaling and
translation, 307-308

matrix scaling
methods, 306-307
scale values, 307

transformations with Sprite
class, 307
combined with rotation and
translation, 307-308
Matrix Transforms Demo
getting screen resolution, 309
rendering frames to scratch
bitmaps, 308
Sprite class
transforming rotation,
scaling, and translation,
307-308
updated, 311-316
warping behavior, 309-311
matrix translation
coordinate systems, 301-304
identity matrix, 300
transformations with Sprite
class, 307
combined with rotation and
scaling, 307-308
transforming coordinates,
300, 303-305
zero matrix, 300
MediaPlayer audio files, 213
adding to .redraw folder,
214-215
Android NDK support, 8
exporting, 217
formats
converting from one to
another, 214-216
exporting, 215

performance issues, 215
supported, 214, 217
initializing, 214
playing, 217
R (resource identifiers), 215
MediaPlayer class
audio files, 213
initializing, 214
method comments, Javadoc,
103-104

Microsoft, XNA Game Studio,
similar to Android, 78

MIDI file format, 214

modulus operator, Java, 273

MotionEvent parameter, 151
multi-touch, 151

getX() and getY()
methods, 149

single- and multi-touch, get.
PointerCount() method, 149

single-touch, 144-147
MOVE event, 144
MP2 audio format, 217
MP3 audio format, 9, 214, 217
MS-DOS 0S, 7
Multi-touch Demo, 150-155
multi-touch input
methods
getX() and getY(), 149
onTouch(), 151
Point(), 151
MotionEvent parameter, 151
Multi-touch Demo, 151-155
receiving basic data, 149
and storing values,
150-155
receiving/storing values,
150-155

Napster, 9
NBAndroid plug-in, 36, 38-40
configuring, 49
New Android Application
dialog, 80-81
NetBeans IDE, 3, 8
available plug-ins, 38-39
versus Eclipse, 9
“Hello, Android!” program
building, 62
editing, 60
running, 62
and JDK
downloading, 17
installing, 16-20
installing, default
locations, 19-20

installing plug-in, 16
license agreement, 18-20
plug-in for, 16
NBAndroid plug-in, 36, 38-40
configuring, 49
new projects, 47-48
Output window, 53
package naming, 51
running project in AVD,
54-59
Target Platform table, 51
Output window, 53, 62
Package Name field, 51, 82
programming games, 7
Project Browser, Source
Packages, 82
projects, 47-48
creating, 79-81
New Android Application
dialog, 80-82
running in AVD, 54-59

versus Eclipse IDE, 80
and SDK
available plug-ins, 38-39
NBAndroid plug-in,
36, 38-40
Target Platform table, 51, 82
version 7.1, 16-17
New Android Project Wizard,
43-44
Nintendo Entertainment System
(NES), 7
DSi and Plants vs. Zombies, 7
Nintendo DS family, 7
Wii, 7

o

OGG file format, 214
0gg Vorbis audio format, 217
onAccuracyChanged() method,
158-159
onCreate() method
Activity class, 78-79, 85
game engine startup, 227
engine test, 252
SensorManager class,
158-159, 163
Tricorder class, 197
onDestroy() method, Activity class,
78-79
onDraw() method
Canvas class, 88-89, 111,
131-132
Context parameter, 131
game engine rendering, 228
invalidate() method, 130
onPause() method
Activity class, 78, 85-86
linear acceleration, 171
Tricorder class, 197

Paint.NET graphic editor 405

onResume() method
Activity class, 78, 85-86
linear acceleration, 171
Tricorder class, 197

onSensorChanged() method,
158-159

gravity sensors, 182

linear acceleration sensors,
171

pressure sensors, 189
onStart() method, Activity class,
78-79, 85
onStop() method, Activity class,
78-79
OnTouchListener
game engine core, 227
single-touch input, 143-148
onTouch() method, 151
multi-touch, 151
single-touch, 144-147
Open GL ES 2.0 and Open
SLES 2.0, 8
orientation
disabling changes, 159-160
gravity sensors, 182

landscape and portrait, 159-
160

drawText() method, 99
OS X (Apple), 7

P

Package Explorer, 43
bitmap assets, 271

File Operation confirmation
dialog, 116-117

file properties, 117-118
Paint class, 89
Paint.NET graphic editor, 115-116

How can we make this index more useful? Email us at indexes@samspublishing.com

406 Paint.setColor() method

Paint.setColor() method, 95,
99-102

Paint.setStyle() method, 95

Paint.setTextSize() method,
99-102

Palm Pilot, and iPhone, 9

pause() method, Thread
class, 131
PCs, history of use, 7
Picasa app, 10
pixel buffer access, Android
NDK, 8
Plants vs. Zombies, 7
PNG file format, 115
Pocket PC, and iPhone, 9
podcasts, 9
Point() points, 151
PopCap Games, Plants vs.
Zombies, 7
portrait orientation
Canvas class output, 99
disabling accelerometer
changes, 159-160
postRotate() method, Matrix
class, 305

postScale() method, Matrix
class, 307

postTranslate() method, Matrix
class, 304-305

Preferences, Eclipse IDE, Android
build target, 45

preRotate() method, Matrix
class, 305

preScale() method, Matrix
class, 307

pressure sensors, 210

preTranslate() method, Matrix
class, 304-305

Prokein, Reiner, free game
art, 134

castle images, 116

character sprites
dragon, 257
knight, 257

trees, 255

proximity sensors, 177-178, 193-
194, 210

infrared detector, 177
uses, 178

radial (bounding circles) collision
detection, 335-336
ReboundBehavior class, 387-388
registerListener() method, linear
acceleration, 171
removeFromGroup() method,
Engine class, 324
resolutions for screens
AVD for each device
tested, 107
AVD Skin option, 106
bitmaps, 112
dark over light text display,
107
density-independent pixel
(dip), 104
DisplayMetrics class, 106
general screen
resolutions/densities, 106
sizes/resolutions, 105

Screen Resolution Demo,
107-109

resume() method, Thread
class, 131
rounded rectangles, 94-95

RTS (real-time strategy)
games, 353

run() method
Engine class, 338, 366-367
Runnable class, 130-132
thread updating, 322

Runnable Animation Demo,
134-140

Runnable class, 130
game engine core, 227
run() method, 130-132, 228

S

Samsung Galaxy Nexus, 11
Android hardware, 12
Samsung Galaxy Tab, 11-12
screen autorotation, 159-160
screen densities and resolutions
AVD for each device
tested, 107
AVD Skin option, 106
dark over light text display,
107
density-independent pixel
(dip), 104
DisplayMetrics class, 106
general resolutions/
densities, 106
general sizes/resolutions,
105

Screen Resolution
Demo, 107-109

Screen Resolution Demo,
107-109
SDK (Software Development
Kit), 7-8
ADT plug-in, 25-28
Android NDK supplement, 8

Canvas class, 90
downloading, 20-21
Eclipse IDE, 40
build target, 45
NBAndroid plug-in,
configuring, 49
new projects, 40-43
history of Android 4, 9
installing, 19-23
default folder, 22
JDK required, 21
NetBeans IDE
available plug-ins, 38-39
NBAndroid plug-in, 36,
3840
operating systems
supported, 8
SDK Manager
additional versions, 24
downloading/installing all
packages, 25-26
enabling, 23
Extras, Android
Support, 24
running, 23-24
verification dialog, 25
sensors supported, 157-158
system requirements, 8-9
Sega Master System (SMS), 7
self-documented code, 103-104
testing, 104
Sensor class, 160, 162, 165
SensorEvent class, 162, 165, 189
SensorEvent.values array, 191

SensorEventListener class,
162, 165

implements statement,
158, 171

methods

onAccuracyChanged(),
158, 159

setName() method, Matrix class 407

onSensorChanged(), 158
159, 171, 189
SensorManager class, 158,
162, 170
gravity constants/values, 182
methods
getSensorList(), 163
onCreate(), 158-159, 163
SensorPanel class, 202-203
sensors

Accelerometer Demo, 164-
167

accelerometer sensor,
157-158, 193, 209
accelMotion variable, 162
initializing, 160-161
versus linear acceleration,
169
movement of, 161-162

android.hardware classes,
162

BaseSensor class, 192
compass sensor, 195, 211

GPS location service not
sensor, 158

gravity sensor, 194
algorithm, 181
constants/values, 182

converting 3D to 2D
coordinate, 183

Float2 or Float3 classes,
182-183

initializing, 181

onSensorChanged()
method, 182

reading, 182

testing, 183-188

Gravity Sensor Demo,
183-188

gyroscope sensor, 194-195,
210

light detector sensor, 195

Linear Acceleration Demo,
171177

linear acceleration sensor,
193, 210
versus accelerometer, 169
initializing sensor,
170-171

onPause() method, 171
onResume() method, 171
reading sensor, 171

registerListener() method,
171

unregisterListener()
method, 171

velocity, 170

X and Y values, 169

list of, getting, 163-164

magnetic field (compass),
157-158

pressure sensor, 188, 210

atmospheric pressure
levels, 189

initializing, 189
reading, 189

proximity sensor, 177-178,
193-194, 210

infrared detector, 177
uses, 178
screen autorotation, 159-160
Tricorder Demo, 196-211
Sensors class, 205
setBounds() method, Matrix class,
342-343
setCollidable() method, Matrix
class, 342-343
setCollided() method, Matrix class,
342-343
setldentifier() method, Matrix
class, 342-343
setName() method, Matrix class,
342-343

How can we make this index more useful? Email us at indexes@samspublishing.com

408

setOffender() method, Matrix
class, 342-343

setRotate() method, Matrix class,
305, 308

setScale() method, Matrix class,
306, 308

setTitle() method, Activity
class, 78

setTranslate() method, Matrix
class, 304, 308
single-touch input
MotionEvent parameter,
144-147

get.PointerCount() method,
149

MOVE event, 144
OnTouchListener, 143-148
onTouch() method, 144-147

Single Touch Input Demo,
144-148

testing on emulator, 144
UP event, 144
View class, 143-148

Single Touch Input Demo,
144-148

sin() method, Math class, 350
Sony products, Walkman, 9
Sony PSP family, 7
SoundPool audio files

asset file extensions, 218

Audio Demo Program,
220-221

initializing, 218

loading resources, 218-219

playing, 219

multiple sounds, 218

R (resource identifiers), 219
SoundPool class

initializing, 218

sound effects, 218

setOffender() method, Matrix class

SpinAnimation class, 290-291
Sprite class, 258-260

blueprinting versus
evolving, 259

enhancements, 284-286
methods
addAnimation(), 287
animate(), 283
draw(), 262
drawSheetFrame(), 273
getBounds(), 342-343

getBoundsScaled(),
342-343

getCanvas(), 262
getCollidable(), 342-343
getCollided(), 342-343
getldentifier(), 342-343
getName(), 342-343
getOffender(), 342-343
properties, adding, 342
setBounds(), 342-343
setCollidable(), 342-343
setCollided(), 342-343
setldentifier(), 342-343
setName(), 342-343
setOffender(), 342-343
sprites
character sprites, 257-258

creating with animation,
287-288

creating without animation,
283

drawing requirements, 262

pointing in direction of
movement, 352-354

prop sprites, 255-256

transforming rotation,
scaling, and translation,
307-308

subpixel translation support,
355-358

Texture class, 261

updated, 311-316
Sprite Demo

source code, 262-265

testing Sprite class, 265-266
sprite sheets

advantages, 270

animation frames

creating from sprite
sheets, 272-273

tiling to store as sprite
sheets, 270
for asteroid animation,
273274
for zombie animation,
275274
Sprite Transforms Demo, 316-319
stopwatch() method, Timer
class, 243
strokes and fills, changing
styles, 95
Style.FILL, 95
Style.STROKE, 95
supported by SDK, 157-158
SurfaceHolder class
beginDrawing() method, 262
drawing, 132-133
game engine rendering, 228
lockCanvas() method, 262
SurfaceView class
beginDrawing() method, 262
game engine core, 227, 235

threaded game loops,
131-132

System.currentTimeMillis()
method, Timer class, 243

system requirements, SDK, 8-9

T

Taito’s Arkanoid, 386

Target Platform table, NetBeans
IDE, 51
Teach Yourself Windows Phone 7

Game Programming in
24 Hours, 6

TextPrinter class, 244-246
texture atlas. See sprite sheets
Texture class

Bitmap object, 246

core engine classes, 246-247

drawSheetFrame() method,
273

getBitmap() method, 246
Sprite class, 261
TextView widget, 63, 83
threaded game loops
Context parameter, 131
methods
invalidate(), 130
onDraw(), 131-132
Runnable class, 130
run() method, 130-132
SurfaceView class, 131
Thread object, 131
pause() method, 131
resume() method, 131
Thread object, 131
pause() method, 131
resume() method, 131
Thread.sleep() method, Timer
class, 243
ThrobAnimation class, 291-292,
324-325

Timer class methods, 243-244
stopwatch(), 243

System.currentTimeMillis(),
243

Thread.sleep(), 243

toDegrees() method, Math class,
305, 350

toRadians() method, Math class,
305, 350

Toshiba Thrive 7" tablet, 69
sensors reported, 163

toString() method, Engine class,
368

touch input
multi-touch input

MotionEvent parameter,
151

MotionEvent parameter,
getX() and getY()
methods, 149

Multi-touch Demo, 151-
155

onTouch() method, 151

Point() points, 151

receiving basic data, 149

receiving/storing values,
150-155

single-touch input

MotionEvent parameter,
144-147
get.PointerCount()
method, 149

MOVE event, 144

OnTouchListener, 143-148

onTouch() method,
144-147

Single Touch Input Demo,
144-148

testing on emulator, 144
UP event, 144
View class, 143-148

TYPE sensors 409

transparencies, alpha channels,

121-124

triangles, 95
Tricorder Demo (sensors)

classes
Accelerometer, 209
BaseSensor, 208-209
CompassSensor, 211
GyroscopeSensor, 210
LinearAcceleration, 210
PressureSensor, 210
ProximitySensor, 210
SensorPanel, 202-203
Sensors, 205

events, trapping, 205-206

events, unused accuracy, 207

helper methods, 201-202

panels, 199-200

panels, drawing, 201

pausing and resuming,
207-208

printing text lines, 203-204
updating sensors, 200-201

TYPE sensors

ACCELEROMETER, 157
AMBIENT_TEMPERATURE, 157
GRAVITY, 157, 181, 182
GYROSCOPE, 157

LIGHT, 157

LINEAR_ACCELERATION,
157, 171

MAGNETIC_FIELD, 157
PRESSURE, 157
PROXIMITY, 158, 177
RELATIVE_HUMIDITY, 158
ROTATION_VECTOR, 158

How can we make this index more useful? Email us at indexes@samspublishing.com

410 verso_running_head

U

unlockCanvasAndPost() method,
132-133, 262

unregisterListener() method, linear
acceleration, 171

update(delta) method, Engine
class, 228

update() method, Engine
class, 393

UP event, 144

USB device drivers versus ABD
(Android Debug Bridge), 65-68

Vv

vector shapes, 93
Basic Graphics Demo, 95-98
boxes, 93-94
circles, 87-89, 93
lines, 93
rounded rectangles, 94-95
strokes and fills, changing

styles, 95
triangles, 95
velocity

angular velocity, 351
calculating from specific
direction, 349
radians versus degrees,
350
trigonometry functions,
350

linear acceleration sensors,
170

pointing sprites to direction of
movement, 352-353

calculating angles to
targets, 353-354

sine and cosine relationships,
350-351

View class, 90, 132, 143-148

w

WarpBehavior class, 325-326
warping behavior, 309-311
WarpRect class, 309-311
WAV audio format, 214

WAV (Microsoft) signed 16-bit
PCM audio format, 217

WEBP file format, 115
Wikipedia, 354

Winamp, 9

Windows Media Player, 9

Windows Mobile 0S. See Windows
Phone

Windows Phone
adult toy, 7
licensing, 4
market share, 4, 9
versus Google and Apple
Plants vs. Zombies, 7

Windows versions, supported by
Android SDK

Vista, 8
Windows 7, 8
XP, 8

WinMain() function, Windows
versus Activity class, 77

WMA (version 2) (FFmpeg) audio
format, 217

WSVGA screen display, 107
WXGAS8O00 screen display, 107

X

Xbox 360, Plants vs. Zombies, 7
XNA Game Studio, Microsoft, 78

y 4

zero matrix, 300
ZIP compression algorithm, 233
ZIP library, 269

	Table of Contents
	Introduction
	HOUR 3: Configuring NetBeans and Eclipse with the Android SDK
	Creating an Android Emulator Device
	Plugging Android SDK into NetBeans
	Adding Android SDK Support to Eclipse
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

