

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Kevin Hoffman

SamsTeachYourself

24in

Hours

Mac OS® X Lion™

App Development

Sams Teach Yourself Mac OS®X Lion™ App Development in 24 Hours
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33581-5
ISBN-10: 0-672-33581-6

The Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing March 2012

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development
Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Barbara Hacha

Indexer
Larry Sweazy

Proofreader
Christal White,
Language Logistics,
LLC

Technical Editor
Mike Givens

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction

Part I: Mac OS X Lion Programming Basics

HOUR 1 Introduction to Mac OS X Lion. 7

2 Introduction to the Developer Tools. 15

3 Introducing Objective-C . 27

4 Object-Oriented Programming with Objective-C . 43

5 Understanding Memory Management . 63

Part II: Cocoa Application Programming Basics

HOUR 6 Introducing Cocoa . 77

7 Using Controls and Layout with Cocoa. 93

8 Creating Interactive Applications . 111

9 Creating Data-Bound Interfaces. 123

10 Working with Tables and Collections . 135

11 Working with Multitouch and Gestures . 149

Part III: Working with Data

HOUR 12 Working with User Defaults. 161

13 Working with Core Data. 173

14 Working with Documents, Versions, and Autosave . 189

15 Working with Apple’s iCloud . 201

Part IV: Building Advanced Mac Applications

16 Using Alert Panels and Sheets. 213

17 Working with Images . 225

18 Using Popovers . 237

19 Building Animated User Interfaces . 251

20 Consuming Web Services . 265

21 Building Full-Screen Applications . 279

22 Supporting Drag-and-Drop Behavior . 287

23 Building Apps for the Mac App Store . 299

24 Supporting In-App Purchases . 315

Index . 329

Table of Contents

Introduction 1

Part I: Mac OS X Lion Programming Basics

HOUR 1: Introduction to Mac OS X Lion 7

Introducing Mac OS X Lion. 7

Summary . 13

Q&A . 13

HOUR 2: Introduction to the Developer Tools 15

Introducing the Mac Developer Center . 15

Creating an Apple Developer Account. 17

Downloading Xcode and Other Developer Tools . 21

Summary . 24

Q&A . 25

HOUR 3: Introducing Objective-C 27

Overview and History of Objective-C. 27

Creating a New Cocoa Application. 28

Exploring the Language with Some Basic Math . 30

Using Strings. 32

Understanding Pointers and Equality . 35

Passing Messages . 38

Controlling Program Flow . 39

Summary . 41

Q&A . 41

HOUR 4: Object-Oriented Programming with Objective-C 43

Creating Classes . 44

Adding Attributes to Classes . 48

Adding Behavior to Classes . 52

Using Objects and Classes . 55

Extending Objects Through Inheritance. 56

Using Polymorphism . 58

Summary . 62

Q&A . 62

HOUR 5: Understanding Memory Management 63

Introduction to Memory Management . 63

Detecting and Fixing Memory Leaks . 68

Using Automatic Reference Counting . 72

Summary . 75

Q&A . 76

Part II: Cocoa Application Programming Basics

HOUR 6: Introducing Cocoa 77

A Brief Overview of Cocoa. 77

Taking a Tour of Interface Builder . 81

Using the Utilities Panels and Inspectors . 83

Summary . 91

Q&A . 92

HOUR 7: Using Controls and Layout with Cocoa 93

A Tour of the Basic Cocoa Controls . 93

Comparing Traditional and Automatic Layouts . 104

Summary . 109

Q&A . 110

vi

Sams Teach Yourself Mac OS X Lion App Development in 24 Hours

HOUR 8: Creating Interactive Applications 111

Introducing Connections, Outlets, and Actions . 111

Manipulating Controls at Runtime with Code. 120

Summary . 121

Q&A . 121

HOUR 9: Creating Data-Bound Interfaces 123

Introducing the Model-View-Controller Pattern . 123

Introducing Cocoa Bindings. 125

Under the Hood with KVC and KVO . 132

Summary . 134

Q&A . 134

HOUR 10: Working with Tables and Collections 135

Working with Bindings and Collections . 135

Using Table Views . 137

Using Collection Views . 144

Using the Outline View . 145

Summary . 148

Q&A . 148

HOUR 11: Working with Multitouch and Gestures 149

Introduction to Multitouch on Mac OS X Lion . 149

Responding to Gestures and Multitouch Events . 151

Summary . 159

Q&A . 159

Part III: Working with Data

HOUR 12: Working with User Defaults 161

Introduction to User Defaults and Preferences Panes . 161

Reading and Writing User Defaults . 162

Binding to the User Defaults Controller . 164

Summary . 170

Q&A . 171

Contents

vii

HOUR 13: Working with Core Data 173

Introducing Core Data . 173

Creating Data Models . 174

Querying and Manipulating Data . 177

Summary . 186

Q&A . 187

HOUR 14: Working with Documents, Versions, and Autosave 189

Building Document-Based Applications . 189

Introducing Core Data Document-Based Applications . 191

Using Versions and Autosave . 197

Summary . 198

Q&A . 199

HOUR 15: Working with Apple’s iCloud 201

Introduction to iCloud . 201

Ideal Scenarios for Using iCloud . 202

Storing Key-Value Data in the Cloud . 203

Storing Documents in the Cloud . 204

Enabling Mac OS X Lion Applications for iCloud . 211

Summary . 211

Q&A . 212

Part IV: Building Advanced Mac Applications

HOUR 16: Using Alert Panels and Sheets 213

Using Alert Panels . 213

Using Sheets . 219

Summary . 224

Q&A . 224

HOUR 17: Working with Images 225

Reading and Writing Images . 225

Displaying Collections of Images . 227

viii

Sams Teach Yourself Mac OS X Lion App Development in 24 Hours

Manipulating Images with Core Image Filters. 229

Summary . 235

Q&A . 235

HOUR 18: Using Popovers 237

Introducing Popovers . 237

Creating Popovers . 239

Customizing Popovers. 243

Creating Detachable Popovers . 244

Summary . 249

Q&A . 250

HOUR 19: Building Animated User Interfaces 251

Introduction to Core Animation . 251

Animating Views . 253

Advanced Animation Techniques . 256

Summary . 262

Q&A . 263

HOUR 20: Consuming Web Services 265

Introducing Web Services . 265

Making Web Service Calls . 269

Summary . 277

Q&A . 278

HOUR 21: Building Full-Screen Applications 279

Overview of Full-Screen Applications. 279

Knowing When Full Screen Is Appropriate . 283

Summary . 285

Q&A . 285

HOUR 22: Supporting Drag-and-Drop Behavior 287

Introduction to Drag-and-Drop . 287

Programming Drag-and-Drop Behavior . 290

Summary . 298

Q&A . 298

Contents

ix

x

Sams Teach Yourself Mac OS X Lion App Development in 24 Hours

HOUR 23: Building Apps for the Mac App Store 299

Getting Started with iTunes Connect . 299

Building Your Application . 302

Preparing Your Application for Submission . 306

Submitting Your Application . 309

Summary . 313

Q&A . 314

HOUR 24: Supporting In-App Purchases 315

Introducing In-App Purchasing . 315

Creating In-App Purchase Products in iTunes Connect . 316

Using StoreKit to Support In-App Purchases . 319

Summary . 326

Q&A . 326

Index 329

About the Author

Kevin Hoffman has been programming since he was 10 years old, when he got his start

writing BASIC programs on a Commodore VIC-20. Since then, he has been obsessed with

building software and doing so with clean, elegant, simple code in as many languages as

he can learn. He has presented twice at Apple’s Worldwide Developer Conference, guest lec-

tured at Columbia University on iPhone programming, and built several iOS Apps avail-

able in the App Store. He is currently Vice President, Global Information Technology for

Barclays Capital, where he is involved in all aspects of the software life cycle—from testing

standards to coding standards and from architecture to implementation of powerful, high-

volume, low-latency systems.

Dedication

I would like to dedicate this book to Angelica and Isabella, two of the most amazing
women I have ever met who put up with me as I complain that my code samples

won’t work and tolerate me pacing back and forth trying to figure out how
to finish a chapter. Most importantly, they encourage me to follow

my dreams and do the things that make me happy.

Acknowledgments

This book would never have happened were it not for the efforts of Apple Developer

Evangelists like Matt Drance and Mike Jurewitz. One day in New York City, I went into the

basement conference rooms of a building a prejudiced man, convinced that no develop-

ment platform was better than C# and WPF. I left NYC that day enlightened, my horizons

broadened and realizing that there is a beauty that lies between the shades of gray among

the many development platforms and environments.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can e-mail or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone number or e-mail address. I will carefully review your comments and share

them with the author and editors who worked on the book.

E-mail: consumer@samspublishing.com

Mail: Greg Wiegand

Editor-in-Chief

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, and errata that might be available for this book.

This page intentionally left blank

Introduction

Building applications for Mac OS X has never been easier and—more important—has never

before enabled such a wide distribution audience or such potential to make money. Because

of the new App Store, the time has never been better to be a Mac OS X developer.

This book was written for those with some programming background who want to get into

building Mac OS X Lion applications. Each of the 24 hours in this book is designed to

quickly introduce you to a new topic that builds on the information you’ve learned in the

previous hours. By the time you finish, you should have a firm grasp on the most impor-

tant topics for Mac OS X Lion application development, and you should know enough to

supplement that learning with additional references, such as Apple’s documentation and

more in-depth books.

Using this book, you will learn the basics of building Mac OS X Lion applications. To do

this, you’ll need a computer that has the latest version of Mac OS X Lion installed, and you

will need access to the Internet to download and install the developer tools (introduced in

Hour 2, “Introduction to the Developer Tools”) and access other online resources, such as

code downloads and documentation.

Audience and Organization
This book is targeted at those who have some basic familiarity with programming con-

cepts,—but you don’t have to be a professional programmer nor do you have to have any

prior exposure to Mac OS X or Cocoa development.

This book gradually introduces you to the Objective-C programming language and provides

you with the object-oriented programming fundamentals that you will need to proceed

through all 24 hours.

The following is a list of the hours in this book with a short description of each.

Part I—Mac OS X Lion Programming Basics
Part 1 of the book provides you with the core knowledge you’ll need, the foundation on

which all the other hours are based. In this part you’ll get an introduction to Objective-C

and the development tools used to build Mac OS X applications.

1. Introduction to Mac OS X Lion
This hour provides an introduction to the new features in the Mac OS X Lion operating sys-

tem, many of which you will be manipulating with code throughout this book. Some are

subtle UX changes that make Mac OS X Lion the best version of Mac OS X yet.

2. Introduction to the Developer Tools
This hour introduces you to Xcode, the main development tool for Mac OS X developers.

This tool is not only used for writing and compiling code, but now includes the main design

tool, Interface Builder, directly within the Xcode tool.

3. Introducing Objective-C
This hour provides you with a quick and easy introduction to the Objective-C programming

language, its history, philosophy, and how it differs from other C-like languages. Don’t let

the C lineage scare you; Objective-C is a very easy language to use and learn.

4. Object-Oriented Programming with Objective-C
This hour introduces you to some basic object-oriented programming (OOP) concepts such

as classes, contracts, and polymorphism and uses Objective-C code to illustrate those con-

cepts. After you start adding OOP to Objective-C, things really start to get fun.

5. Understanding Memory Management
This hour provides you with an overview of the various memory management techniques

and technologies available to Objective-C programmers, including a discussion of manual

reference counting and the newer, easier way of managing memory: Automatic Reference

Counting (ARC).

Part II—Cocoa Application Programming
Basics
Now that you’ve completed 5 hours of basics and introductory material, it’s time to start

building actual Cocoa applications. In this part of the book, you’ll learn about Cocoa and

its scope and history, how to use controls and lay out your controls within windows, use

data binding, display interactive collections and lists, and support new multitouch devices

and gestures.

2

Sams Teach Yourself Mac OS X Lion App Development in 24 Hours

6. Introducing Cocoa
In this hour, you will learn the basics of building Cocoa applications and get an overview

of exactly what Cocoa is and how to use it.

7. Using Controls and Layout with Cocoa
This hour provides an overview of the controls available to Cocoa application developers as

well as the various layout mechanisms available for organizing and displaying those con-

trols.

8. Creating Interactive Applications
This hour builds on the previous hours and adds some interactivity to your applications by

showing you how to invoke code in response to user actions and how to programmatically

manipulate UI elements.

9. Creating Data-Bound Interfaces
This hour shows you how to declaratively bind properties of UI elements to underlying data,

enabling more powerful and robust user interfaces that require less code to create and

maintain.

10. Working with Tables and Collections
In this hour, you learn how to extend your data binding knowledge to working with lists of

data that appear as tables or collections.

11. Working with Multitouch and Gestures
In this hour, you learn how Mac OS X (and especially Lion) provide developers with power-

ful, easy-to-use mechanisms for recognizing and responding to multitouch gestures on any

number of devices, including trackpads and magic mice.

Part III—Working with Data
This section of the book deals with something that virtually every application needs to have

in some form: data. It covers user defaults, core data, documents, and even Apple’s new

ubiquitous, synchronized data storage system called iCloud.

Introduction

3

12. Working with User Defaults
This hour shows you how (and when) you can read and write data that is stored alongside

your application as user-specific application preferences.

13. Working with Core Data
This hour shows you the power of Core Data, a framework that enables your application to

store, retrieve, and query relational data in XML, binary, and SQLite.

14. Working with Documents, Versions, and Autosave
This hour extends your knowledge of data binding, collections, and Core Data to show you

how to build document-oriented applications and utilize some new Lion features such as

versioning and autosave.

15. Working with Apple’s iCloud
This hour shows you how to extend your knowledge of document-oriented applications to

illustrate how your application can store, query, and maintain documents in the cloud

using iCloud.

Part IV—Building Advanced Mac
Applications
In this section, you start exploring some of the more advanced features of Mac OS X Lion

applications as well as some user interface elements and patterns that differentiate sample

applications from real-world, commercial applications.

16. Using Alert Panels and Sheets
This hour shows you how to alert your users to important information or prompt them to

supply information using Alert Panels and Sheets.

17. Working with Images
The use of images can enrich virtually any application when done tastefully. This hour

shows you how to read, write, display, and manipulate images within your Mac OS X Lion

application. You’ll be surprised at how much you can do with images in just a few lines of

code!

4

Sams Teach Yourself Mac OS X Lion App Development in 24 Hours

18. Using Popovers
This hour shows you how to display secondary windows that are anchored contextually to

other windows or controls. The iPad made popover windows a familiar paradigm to mil-

lions of people, and now you can use popovers in your Mac OS X Lion application.

19. Building Animated User Interfaces
This hour shows you how to create and use animation sequences to give your applications

the additional life, energy, and reactivity that people have come to expect from Mac OS X

and iOS applications over the years.

20. Consuming Web Services
The Internet provides a wealth of data and functionality to enhance or support your appli-

cation. This hour shows you how to take advantage of web services and how your Mac OS

X application can connect to them to send and receive data.

21. Building Full-Screen Applications
This hour shows you how to take advantage of the new full-screen functionality available

to all Mac OS X Lion applications.

22. Supporting Drag-and-Drop Behavior
This hour shows you how to add drag-and-drop support to your application, which can dra-

matically increase user satisfaction and overall user experience.

23. Building Apps for the Mac App Store
This hour introduces you to the new Mac App Store, how to create a developer account, and

the process through which you can submit your application to the App Store.

24. Supporting In-App Purchases
Building on the information contained in the previous hour, this hour shows you how you

can give your users the ability to buy extended functionality and features directly within

your application using the StoreKit framework.

Introduction

5

Conventions Used in This Book
The following styles are found throughout the book to help the reader with important

points of interest.

6

Sams Teach Yourself Mac OS X Lion App Development in 24 Hours

Watch
Out!

This is the “Watch Out” style. These boxes present important information about
the subject that the reader may find helpful to avoid potential problems.

This is the “Did You Know” style. These boxes provide additional information
about a subject that may be of interest to the reader.

This is a “By The Way” style. These boxes usually refer the reader to an off-
topic subject of interest.

Did You
Know?

By the
Way

Resource Files
All the code used in this book is available for download online. In addition to being easier

than attaching a CD-ROM to the book, this gives us the ability to update the code samples

as necessary.

You can download the code samples for this book from the SAMS/Pearson website.

Additional information on the code downloads for this book may be available from the

author’s website at http://www.kotancode.com.

Keep an eye on informit.com/title/9780672335815 for updates regarding this book.

http://www.kotancode.com

HOUR 3

Introducing Objective-C

What you’ll learn in this hour:
. History of Objective-C
. Doing Some Basic Math
. Using Strings
. Understanding Pointers and Equality
. Passing Messages
. Controlling Program Flow with Loops and Conditionals

It used to be that developers who wrote code in Objective-C were a small, elite group.

These programmers wrote code for the Mac, building applications for a desktop OS that

had very small market share and even smaller profit potential.

Today, thanks to the increasing popularity of the iPhone, iPod Touch, and the iPad,

Objective-C’s popularity is on the rise. Everyone from hobbyists to scientists to commercial

developers and consultants are building applications for iOS using Objective-C.

During this hour you will be introduced to the Objective-C programming language, learn

the basics of using variables, doing arithmetic, and building algorithms with larger blocks

of code involving conditionals, looping, and the use of objects such as strings.

Overview and History of Objective-C
At its core, Objective-C is an ANSI standard version of the C programming language.

Wrapped around this ANSI C core is a Smalltalk-inspired set of extensions that give the

language its object-oriented capabilities, as well as several other enhancements that you

don’t get from the regular version of C.

By the
Way

28 HOUR 3: Introducing Objective-C

Brad Cox and Tom Love created the Objective-C programming language in the early

1980s in an effort to get people to write cleaner, more modular, and clearly sepa-

rated code. Contrary to popular belief, Objective-C wasn’t invented by, nor is it

exclusively owned by, Apple. It’s actually an open standard; in the past, implemen-

tations of the Objective-C compiler existed that even ran on Windows.

If you have had any experience with C, learning Objective-C should be a breeze.

Most developers find that learning the Objective-C syntax takes very little time at all,

and the rest of the learning curve is devoted to learning about all the tools and con-

trols available in Cocoa for Mac OS X.

Objective-C isn’t just like C, it is C. If you have had any experience with C, C#, or
Java, much of Objective-C’s syntax should be easy to pick up. Don’t let this dis-
courage you if you are new to C-inspired languages, because Objective-C is easy to
pick up for new and veteran developers alike.

Creating a New Cocoa Application
The first few steps of this section should seem familiar to you because in the previous

hour we did some exercises to become familiar with the Xcode IDE and the various

functions it performs. Throughout this section we’ll be writing some code, predicting

the output, and running the code to verify the results.

To get started with a new Cocoa application, follow these steps:

1. First, open up Xcode and when prompted create a new project. You should see

a screen similar to the one shown in Figure 3.1.

2. Choose Cocoa Application as the template for the project and click Next. On

the next screen (shown in Figure 3.2) you need to supply some information for

your product. Use the information in Table 3.1 to fill out this form. Leave all

the other values as defaults.

TABLE 3.1 Form Values to Create a New Cocoa Application

Form Field Value

Product Name Hour3

Company Identifier com.sams.stylion

App Store Category None

Creating a New Cocoa Application 29

3. When Xcode finishes building your new Cocoa Application, run it to make

sure that you see a standard, empty window.

This is where the review starts, and we move on to covering new material and writ-

ing some actual code. If you don’t feel comfortable using Xcode to create new appli-

cations, you might want to go back to review the work we did in Hour 2,

“Introduction to the Developer Tools,” before continuing on.

FIGURE 3.1
Creating a new
Cocoa
Application.

FIGURE 3.2
Providing
product
information for
a new Cocoa
Application.

By the
Way

30 HOUR 3: Introducing Objective-C

If you’re curious, take a look at some of the files created automatically for you in
the starter project. See what happens when you click to select each of the differ-
ent files in the project navigator on the left.

Exploring the Language with Some
Basic Math
Regardless of what kind of application you plan to build, you will invariably find

yourself working with numbers or strings (text). Whether you want to allow your

users to create a budget, report their high score in a game, or see the average of their

test scores, you’ll need to use numbers for that.

You have probably performed some basic math using some programming language

in the past and, as mentioned earlier, because Objective-C is a superset of C, any-

thing you can do in C you can do in Objective-C, including math.

Follow these steps to create some code that illustrates the basic use of numbers and

math in Objective-C:

1. With Xcode open to the project you created in the preceding task, click the

Hour3AppDelegate.m file. Locate the applicationDidFinishLaunching:

method and add the following lines of code between the two curly braces:

int a=5;

int b=10;

int c = a*b;

NSLog(@”a*b = %d”, c);

2. In the top-right corner of the Xcode IDE, click the button that shows a bottom

tray icon. If you hover over this button, it will indicate that it hides or displays

the debug area.

3. With the debug area now visible, run your application. In the debug area,

below the information about the version of the debugger being used, you

should see some text that looks like this:

2011-05-29 12:16:44.916 Hour3[640:903] a*b = 50

NSLog is a function that you can call that will log text to a standard output device—

in our case, the debug area of the application.

You may have noticed the little yellow triangles that appeared in the margin to the

left of your code as you typed. Even before you build and run your application, as

By the
Way

Exploring the Language with Some Basic Math 31

you type, the compiler is checking your code for errors or possible problems (warn-

ings). The first warning you saw was the compiler informing you that you had

declared the variable a but hadn’t yet used it. As soon as you used it, that warning

disappeared. This kind of instant, interactive feedback from Xcode can come in

extremely handy and save you a lot of troubleshooting time in the future.

You may have noticed that there are a couple of panels you can open in the editor.
Click the icon for the third (utilities) panel. You’ll see a panel with a file inspector
and Quick Help. Keep Quick Help open as you enter code throughout the rest of
this hour and watch how it automatically figures out what information to display
based on what you’re typing.

4. Now add the following lines of code where you left off:

double d = 123.00;

double e = 235.00;

double f = d * e;

NSLog(@”d*e = %f”, f);

NSLog(@”d/e = %f”, d / e);

NSLog(@”d/0 = %f”, d / 0);

Note that as you type the last line of code, Xcode instantly throws a yellow caution
triangle into the left margin. If you click that triangle, you’ll see that the warning
message says that division by zero is undefined.

5. Now try to run the application, even with that warning still in place. Your out-

put in the debug area should look like this:

2011-05-29 12:29:31.407 Hour3[745:903] a*b = 50

2011-05-29 12:29:31.410 Hour3[745:903] d*e = 28905.000000

2011-05-29 12:29:31.411 Hour3[745:903] d/e = 0.523404

2011-05-29 12:29:31.412 Hour3[745:903] d/0 = inf

Notice here that dividing by zero didn’t crash our application. In many program-

ming languages, including modern, managed runtime environments such as Java

and C#, any attempt to divide by zero will crash the running application. Here,

Objective-C kept on going and even managed to give the mathematically correct

answer here of infinity rather than a crash.

When you are done with this hour, feel free to go back to this code and play around

with more basic math. Remember that the data types we’ve used thus far are basic C

types. As Cocoa programmers using Objective-C, you have the primitive numeric

data types shown in Table 3.2 (as well as several others) available to you.

By the
Way

32 HOUR 3: Introducing Objective-C

TABLE 3.2 Some Basic Objective-C Numeric Data Types

Type Size Description

int 32 or 64 bits Basic integer. The size varies whether you’re
building a 32 or 64-bit application.

float 32 bits A data type used for storing floating-point values.

double 64 bits A data type used for storing large floating-point
values.

long 64 bits A data type used for storing large integers.

uint 2x(int) A data type used for storing integers without a
sign bit, allowing for the storage of numbers
twice as big as in integer.

More numeric data types are available, but these are the ones that get used most

often.

6. Add the following lines of code to the sample you’ve been working with:

float floaty = d*e;

NSLog(@”size of float: %lu”, sizeof(floaty));

NSLog(@”size of double: %lu”, sizeof(f));

NSLog(@”size of int: %lu”, sizeof(a));

NSLog(@”size of long: %lu”, sizeof(long));

NSLog(@”size of uint: %lu”, sizeof(uint));

7. Now run the application to see the various sizes of the data types. Note that

the sizeof function will work on a variable (such as floaty or f) or a data

type (such as long or int).

One possible problem that you may already be thinking about is that different users

have different computers, and as such, an int on the developer’s computer might

not always be the same as an int on the end-user’s computer. There is a way to deal

with these issues (and many more not-so-obvious problems with numbers and

math), and you’ll see one solution later in this hour when we get to a discussion of

pointers.

Using Strings
Next to numbers, the other type of data that you will spend a large amount of time

with is strings. Strings may just be pieces of text, but they are used extensively

throughout every kind of application. Knowing how to use them efficiently and

properly is essential to developing applications for the Mac or any other platform.

By the
Way

Using Strings 33

In the preceding section, you were actually using strings. Every time you wrote code

that used the NSLog function, you were using strings. The @ operator in Objective-C is

a convenient shortcut for the creation of a string. In addition to being a convenient

shortcut, it also provides a way of distinguishing between a classic C-style string and

a true Objective-C string object. Strings in Objective-C are objects, not simple values.

The difference between the two will become clear in the next section on pointers and

equality.

There are two different kinds of strings in Objective-C: NSString and

NSMutableString. As their names imply, the former represents an instance of an

immutable string, whereas the latter represents an in-memory string that can be

manipulated. Many languages, including C# and Java, enforce that all strings are

immutable and that anytime you “modify” a string, you are actually creating a new

copy containing the modification.

The concept of immutability is a tough one to grasp. For many languages,
immutable strings are better for performance and even prevent catastrophic fail-
ures. If you can avoid using mutable strings in Objective-C, you should. Typically,
you use NSMutableString when you need a single pointer to a string that will
change frequently throughout your application’s lifetime, and you don’t want to cre-
ate new strings each time it changes.

Creating and Manipulating Strings
Now that you’ve had a brief introduction to strings, let’s write some code to experi-

ment with them. Follow these steps to create the sample code:

1. Add the following lines of code to the sample you’ve been working on:

NSString *favoriteColor = @”green”;

NSLog(@”%@”, favoriteColor);

NSString *friendlyOutput =

[NSString stringWithFormat:

@”Kevin loves the color %@”, favoriteColor];

NSLog(@”%@”, friendlyOutput);

NSString *subString = [friendlyOutput

substringWithRange:NSMakeRange(6, 15)];

NSLog(@”substring: %@”, subString);

There’s a lot going on here that you may not be familiar with, so let’s walk through

it line by line.

34 HOUR 3: Introducing Objective-C

The first line creates a new variable called favoriteColor, which is a pointer to an

object of type NSString (again, don’t worry about pointers just yet, we’re building

up to them slowly but surely).

The second line uses the %@ string format character to log the string object. Just like

standard C format specifiers such as %d and %f are used to represent numbers, the %@

format string in Objective-C is used to represent an object. All objects in Objective-C

know how to describe themselves, and whenever an object is used as a parameter to

the %@ format specifier, that object is asked to describe itself. Conveniently, the way a

string describes itself is by returning its contents.

The third line creates a new string using a format string. Don’t worry if the square

bracket syntax looks odd; we’ll get to an explanation of those in the section on mes-

sage passing. Until then, try to mentally replace the square brackets with the idea

that a message is being sent to an object.

Next we create a new string by extracting a substring using a range of indices. In the

preceding code, we’re extracting by starting at string index 6 (strings are indexed

starting at 0, just like C arrays) and pulling the following 15 characters.

2. Run the sample to see what kind of output you get. It should now look some-

thing like this:

2011-05-29 13:10:03.351 Hour3[1076:903] a*b = 50

2011-05-29 13:10:03.354 Hour3[1076:903] d*e = 28905.000000

2011-05-29 13:10:03.356 Hour3[1076:903] d/e = 0.523404

2011-05-29 13:10:03.358 Hour3[1076:903] d/0 = inf

2011-05-29 13:10:03.359 Hour3[1076:903] size of float: 4

2011-05-29 13:10:03.360 Hour3[1076:903] size of double: 8

2011-05-29 13:10:03.360 Hour3[1076:903] size of int: 4

2011-05-29 13:10:03.361 Hour3[1076:903] size of long: 8

2011-05-29 13:10:03.363 Hour3[1076:903] size of uint: 4

2011-05-29 13:10:03.366 Hour3[1076:903] green

2011-05-29 13:10:03.367 Hour3[1076:903] Kevin loves the color green

2011-05-29 13:10:03.367 Hour3[1076:903] substring: loves the color

All applications use strings. They need them to display information to users and to

gather information from users. As a Mac developer, you will find that you spend a

great deal of time creating, manipulating, and comparing strings.

This leads to the next section on pointers and equality, which is very important to

understand, especially when comparing things like strings.

Understanding Pointers and Equality 35

Understanding Pointers and Equality
When most people think of a pointer, they think of an arrow, a sign, or even a

human finger pointing in a certain direction. This is exactly what a pointer is in C

or Objective-C: an indicator pointing at another location.

When your code executes, that code resides in memory. Available to your code are

two types of memory: the stack and the heap. The stack, as its name implies, is a

contiguous block of memory. Values can be pushed into the stack and they can be

popped off of the stack. This mechanism is how functions are called: The parameters

to a function are pushed onto the stack and then execution resumes within the func-

tion where the parameters are popped off the stack to make them available to the

code within the function.

This works great when function parameters are small pieces of datalike integers or

floats or even smaller values. What if you have a very large object (we’ll cover creat-

ing classes and instantiating them in the next hour) that takes up hundreds—or

even thousands—of bytes? Now the mere presence of this object on the stack is creat-

ing a headache for whatever runtime is executing your code. If you had to shovel

things from one bucket to another bucket before you could do your work, would you

rather shovel small fish tank pebbles or enormous boulders?

Enter pointers. Rather than placing all of the data belonging to the large object (the

boulder) on the stack, we can instead write down the location of the boulder onto a

small pebble and place that small pebble on the stack instead. This way, we can now

quickly and easily pass all of our parameters to a function using the stack. When the

function needs to access the large object/boulder, it can read the location from the

pebble we put on the stack and go get the object on its own.

Obviously the Objective-C runtime doesn’t write down locations on pebbles. It does,

however, store memory addresses in integers and place those on the stack.

Far more so than in other languages like C# or Java, you will be dealing with point-

ers on a daily basis in Objective-C. Just remembering that pointers are merely num-

bers on the stack that point to a different location on the heap will serve you well as

you go through the rest of this book.

To see an example of pointers in action, follow these steps:

1. Type the following code in after the last line of code you wrote for the previous

section:

int targetNum = 42;

int bigTargetNum = 75;

int *targetNum_ptr = &targetNum;

int *targetNum_ptr2 = &targetNum;

NSLog(@”targetNum = %d, ptr points to = %d”, targetNum,

36 HOUR 3: Introducing Objective-C

*targetNum_ptr);

NSLog(@”are two pointers equal? %d”, (targetNum_ptr ==

targetNum_ptr2));

targetNum_ptr2 = &bigTargetNum;

NSLog(@”are two pointers equal 2nd time? %d”, (targetNum_ptr ==

targetNum_ptr2));

*targetNum_ptr2 = 42; // what did this really do?

NSLog(@”are two pointers equal 3rd time? %d”, (targetNum_ptr ==

targetNum_ptr2));

NSString *stringA = @”Hello World”;

NSString *stringB = [NSString stringWithFormat:@”%@ %@”, @”Hello”,

@”World”];

NSLog(@”Is %@ == %@ : %d”, stringA, stringB, (stringA == stringB));

NSLog(@”What about with isEqualToString? %d”,

[stringA isEqualToString:stringB]);

2. Before running the application, try to predict what the output might be. On

the first two lines, we create two standard integers. These are standard integers

and we are storing their actual values.

On the next two lines we create two pointers. First, take note of the * operator. In

this case, we are not multiplying. The presence of an asterisk before a variable name

in a declaration statement indicates that we are declaring a pointer. This informs

Objective-C that the data being stored in this variable is a memory location (pointer to

real data), and not the actual data.

On these same lines of code, we use the address-of operator (&) to obtain the memory

address of the number stored in the location called targetNum. At this point, both

targetNum_ptr and targetNum_ptr2 point to the address of targetNum.

On the next line, we use the asterisk again, but this time as a dereferencing operator.

This means that when Objective-C expects a value and you give it a pointer variable

preceded by an asterisk, Objective-C will go fetch the value from the memory location

currently stored within that pointer.

The next set of statements attempts to get a definitive answer to the question: Are two

pointers equal if they both point to the same memory location? Running the application

shows you that this is indeed true. For example, suppose the memory address hold-

ing the value for targetNum was 100080. If we set targetNum_ptr and

targetNum_ptr2 to &targetNum, we set both of those variables to 100080, which

makes them equivalent.

The next question is a little more tricky: If two pointers point to two different locations,

but each location contains the same value, are those pointers equal?

This is the key to understanding pointers and equality. When you compare pointers,

you are essentially asking if the address of the underlying data is the same. If you

By the
Way

Understanding Pointers and Equality 37

want to compare whether the data itself is the same, you need to either dereference

the pointers and compare the underlying data or, better yet, use classes that know

how to compare themselves.

This leads us to the NSString class. The first variable, stringA, is assigned to a

string literal “Hello World”. Remember that the @ operator is actually a shortcut for

creating an instance of an immutable string. If I had assigned stringB to @”Hello

World”, both stringA and stringB would be considered equivalent via the == oper-

ator because both would point to the single memory location on the heap where the

immutable string “Hello World” resides.

Because we used two different methods to create “Hello World”, one constant and

one via concatenation, neither stringA nor stringB points to the same memory

location. However, because NSString knows how to do string comparison via the

isEqualToString method (there is an abundance of other related string-comparison

tools for more involved scenarios), you can compare the two strings and verify that

the content is equivalent, even though both copies of “Hello World” are sitting in two

difference places on the heap.

3. When you run the application you’ve been working on this hour, the output

related to pointers and string comparison should look like the following:

2011-05-29 13:31:04.788 Hour3[1325:903] targetNum = 42, ptr points to = 42

2011-05-29 13:31:04.789 Hour3[1325:903] are two pointers equal? 1

2011-05-29 13:31:04.790 Hour3[1325:903] are two pointers equal 2nd time? 0

2011-05-29 13:31:04.792 Hour3[1325:903] are two pointers equal 3rd time? 0

2011-05-29 13:31:04.793 Hour3[1325:903] Is Hello World == Hello World : 0

2011-05-29 13:31:04.794 Hour3[1325:903] What about with isEqualToString? 1

Finally, before moving on to the next section, it is worth noting that Objective-C

strings are in fact Unicode strings. This means that these strings are not limited to

storing text in English or similar 7- and 8-bit languages. Unicode strings can be used

to store text in Chinese, Japanese, Hindi, Arabic, and any other language that uses

text characters whose ordinal value has a value higher than 255 (often referred to as

long characters or multibyte characters).

Not only do non-US versions of Mac OS X allow people to type Unicode characters
directly with special keyboards, but there are also phonetic Input Method Editors
(IMEs) that allow people to type phonetically and autoconvert text into Unicode. For
example, someone might type ‘ohayou gozaimasu’ into an IME and get the
Japanese Unicode: Knowing that Objective-C strings are
Unicode strings can come in handy in the future, especially for languages that will
support multiple cultures.

By the
Way

38 HOUR 3: Introducing Objective-C

Passing Messages
If you’ve never seen Objective-C before, the square brackets ([and]) might seem a

little unusual. This is what is known as message passing syntax. Within the two

square brackets are the target of a message and the parameters of that message.

The capability to send messages to objects is what lifts Objective-C above its roots in

ANSI C and provides the robust, object-oriented functionality that Mac and iOS

developers love today.

Let’s take an example from some code that we’ve already written:

NSString *stringB = [NSString stringWithFormat:@”%@ %@”, @”Hello”, @”World”];

If you’ve had Quick Help active throughout the hour, notice what happens when you
click the first letter of the method name; documentation for that method appears
instantly. Now see what happens when you hit the escape key with the cursor still
in that same spot—a list of all the possible messages that can be sent to an
object or class! This list isn’t always as well-informed as the developer, so take its
contents with a grain of salt.

In this line of code we are sending the NSString class the stringWithFormat: mes-

sage. Note that the colon is considered part of the message name. In fact, all subse-

quent parameters are considered part of the name of the method being called. For

example, if I had an ice cream object and I wanted to top it using a specific method,

it might look something like this:

[iceCream topWithSauce:SauceHotFudge withCherry:YES withWhippedCream:NO];

In this line of code, what’s the name of the method we are invoking? It isn’t just

topWithSauce: because that doesn’t convey what we’re actually doing. The method

name is actually called topWithSauce:withCherry:withWhippedCream:

It might take some getting used to for programmers used to calling methods with a

comma-delimited list of arguments as shown in the following line of C# code:

iceCream.Top(Toppings.HotFudge, true, false);

However, this syntax makes for highly readable, self-documenting code, and in

many cases it removes all ambiguity about the name and purpose of a method’s

parameters without needing to consult an external document.

By the
Way

Controlling Program Flow 39

As an exercise, go back through the code you’ve written so far this hour and for

every use of square brackets, determine the target being sent the message and the

name of the method being called.

When you say the names of Objective-C methods out loud, you don’t pronounce
the colons. Instead, insert a little pause between the parameter names as you
read aloud.

Controlling Program Flow
So far everything you’ve written has been linear. Each line of code you wrote exe-

cuted immediately after the preceding line and it executed only once. What if you

want to execute the same block of code 50 times? What if you want to execute a

block of code over and over until you reach the end of an input file? What if you

want to decide whether to execute a block of code based on some condition?

For these and many more scenarios, you have to turn to some Objective-C keywords

that control your program’s execution flow. In short, you will need to use looping or

logic keywords.

The most common way to control program flow is through conditional branching.

This can be done with the if statement and the else statement or the highly

favored switch statement.

An if statement works by evaluating some Boolean expression (an expression that

yields true or false or, in C terms, either zero or nonzero for false and true, respec-

tively). If the Boolean expression evaluates to true, the body of the if statement is

executed. If the expression evaluates to false, the body of the if statement is not exe-

cuted and, optionally, an if else or else block is executed.

Follow these steps to experiment with branching and looping:

1. Enter the following code on a blank line below the code you’ve been writing

so far:

if ([favoriteColor isEqualToString:@”blue”])

{

NSLog(@”Your favorite color is BLUE!”);

}

else if ([favoriteColor isEqualToString:@”purple”])

{

NSLog(@”You’re into purple.”);

}

By the
Way

40 HOUR 3: Introducing Objective-C

else

{

NSLog(@”You don’t like blue or purple!”);

}

Remembering back to earlier in the hour, we set the value of favoriteColor

to “green”. This means that when you execute this code, it will not execute the

body of the if statement or the body of the else if statement. It will execute

the body of the else statement. Play around with the value of favoriteColor

to get the different statements to execute. Note that every single Boolean

expression evaluated by an if or else if statement must be wrapped in

parentheses.

Next, let’s see what a simple for loop looks like. As you may have guessed, an

Objective-C for loop works the same as it does in ANSI C.

Later in the book you’ll see a special type of for loop called a fast iterator. This is
an elegant, clean syntax that lets you iterate through the items in a collection with
extremely good performance.

2. Enter the following code where you left off:

for (int x=0; x<10; x++)

{

switch (x) {

case 0:

NSLog(@”First time through!”);

break;

case 1:

case 2:

case 3:

case 4:

NSLog(@”Not halfway there yet...”);

break;

default:

NSLog(@”Working on the %dth iteration.”, x);

break;

}

}

When executed, this produces output similar to the following:

2011-05-29 17:14:07.857 Hour3[1594:903] First time through!

2011-05-29 17:14:07.858 Hour3[1594:903] Not halfway there yet...

2011-05-29 17:14:07.859 Hour3[1594:903] Not halfway there yet...

2011-05-29 17:14:07.860 Hour3[1594:903] Not halfway there yet...

2011-05-29 17:14:07.861 Hour3[1594:903] Not halfway there yet...

2011-05-29 17:14:07.861 Hour3[1594:903] Working on the 5th iteration.

41Q&A

2011-05-29 17:14:07.862 Hour3[1594:903] Working on the 6th iteration.

2011-05-29 17:14:07.863 Hour3[1594:903] Working on the 7th iteration.

2011-05-29 17:14:07.864 Hour3[1594:903] Working on the 8th iteration.

2011-05-29 17:14:07.865 Hour3[1594:903] Working on the 9th iteration.

You can see that the for loop we just executed gave us 10 iterations, with indices

ranging from 0 to 9. Other kinds of loops are available to us as well, including the

do loop and the while loop. These loops both execute their bodies until the associ-

ated Boolean expression evaluates to false. The only difference is that a do loop will

always execute at least once because it evaluates the Boolean condition after the

body executes. A while loop evaluates the Boolean condition before the body exe-

cutes, and if the expression evaluates to false, the body will never execute. Which

loop you choose is entirely up to you and should be based on how readable you

want the code to be and, of course, personal preference.

Summary
In this hour, you got your feet wet with Objective-C. You experimented a little with

basic mathematics and string manipulation—the building blocks of any application.

You took a look at pointers, how they work, and how they affect things like equality

and comparisons. You took a look at message-passing syntax and finally spent a lit-

tle time creating loops and using branching and conditional logic.

Hopefully, at this point, you are excited about Objective-C and what you might be

able to do with it in the next hour, where we talk about object-oriented program-

ming and creating and consuming your own classes.

Q&A
Q. How is Objective-C related to the ANSI C programming language?

A. Objective-C isn’t just similar to C; it is a superset of the C language. This

means that any standard ANSI C code is compatible with an Objective-C

application.

Q. What function do you call to write messages to the system log and console
output?

A. NSLog(). This function will become very familiar to you as you write more and

more code.

42 HOUR 3: Introducing Objective-C

Q. How does Objective-C message passing differ from calling methods in other
programming languages?

A. In Objective-C, the method parameters are actually part of the message name.

In addition, message passing in Objective-C is dynamic, meaning you can

compile code that sends messages to objects that may or may not respond to

those messages at runtime.

Symbols
@ operator, 33

A
accessing Mac Developer Center,

15-17

accounts, 17-21

downloading Xcode, 21-24

accessory views, alerts, 214-216

accounts

In-App Purchases, 316

iTunesConnect, creating, 300

Mac Developer Center, 17-21

actions, 114-120

activating Mission Control, 8

adding

attributes, 48-52, 176

behavior to classes, 52-54

constraints, 107

toolbars to items, 168

administration. See management

aggregation, App Store

guidelines, 303

AirDrop, 12

alerts, panels

applying, 213

creating, 214

sheets, 219-223

suppression buttons, 216-219

viewing, 214-216

aligning sheets, 222

allocating memory, 65. See also

memory

Analyze feature, 69

anchors, NSMinXEdge, 243

animation, interfaces

blocks, 257

context, 256

layers, 252

overview of, 251-252

timing, 252

transactions, 253

transitions, 257-260

APIs (application programming

interfaces), RESTful, 268

App Store, applications

developing, 302-306

submitting, 306-313

Index

Apple, 77

Developer registration, 19.

See also registration

iCloud. See iCloud

IDs, creating, 18

Application Kit, 77

applicationDidFinishLaunching:

method, 30

applications

AirDrop, 12

autosave, 11-12

bundles, uploading, 312-313

Cocoa

comparing layouts,

104-109

controls, 93-103

creating, 28-29

running, 91

Core Data, 173

creating data models,

174-177

overview of, 173

queries, 177-186

desktops, switching

between, 8

developing, 302-306

documents

Core Data, 191-197

creating, 189-190

versions, 197-198

drag-and-drop behavior, 287

applying, 289

overview, 288

programming, 290-297

full-screen, 9-10

building windows, 281-283

enabling support, 279-280

formatting, 279

running, 283-285

Human Interface Guidelines,

304-305

iCloud, 201

applying, 202

enabling, 211

overview of, 201-202

storing key-value data,

203-209

images

modifying with Core Image

filters, 229-235

reading/writing, 225-226

viewing collections,

227-228

In-App Purchases, 315-316

installing, testing, 324-325

interactive, 111

actions, 114-120

connections, 112-114

manipulating controls at

runtime, 120-121

outlets, 112-114

iTunesConnect, 299

certificate utilities,

300-302

creating accounts, 300

In-App Purchases,

316-318

StoreKit, 319-326

Launchpad, 11

Mac

App Store, 10-11

Developer Center, 15-24

memory management, 63-64

automatic reference

counting, 72-75

reference counting, 65-68

troubleshooting leaks,

68-72

messages, passing, 38

metadata, 310

Mission Control, 10

pointers, 35-37

preferences, windows, 170

Resume, 11-12

Screen Sharing, 13

strings, applying, 32-34

submitting, 306-313

testing, 311

Versions, 11-12

weather, formatting, 274-277

web services

applying JSON data,

272-277

calls, 269

common scenarios, 266

consuming RESTful,

270-271

NSURLConnection/

NSURLRequest classes,

269-270

overview, 265-266

RESTful, 268-269

SOAP, 266-267

Zombie Apocalypse

Calculator, 128

applying

alert panels, 213

creating, 214

sheets, 219-223

suppression buttons,

216-219

viewing, 214-216

animator proxy, 254

classes, 55-56

collections, 135-136, 144

Core Data, 173

creating data models,

174-177

overview of, 173

queries, 177-186

330

Apple

drag-and-drop behavior, 287

common uses for, 289

overview, 288

programming, 290-297

explicit animations, 255-256

iCloud, 202

enabling applications, 211

saving documents,

204-209

storing key-value data, 203

IKImageBrowserView, 229

images, 225

modifying with Core Image

filters, 229-235

reading/writing, 225-226

viewing collections,

227-228

implicit animations, 255

JSON data, 272-277

math, 30-32

multitouch gestures, 149-159

outlines, views, 145-147

pointers, 35-37

polymorphism, 58-61

Popovers, 237

creating, 239-243

customizing, 243

detaching, 244-248

overview of, 237-238

program flow, 39-41

sheets, 219

positioning, 222

viewing, 220-223

strings, 32-34

suppression buttons, 216-219

tables, 135-143

user defaults, 161

binding, 164-170

navigating, 161

reading/writing, 162-164

versions, 197-198

AppStore applications

Human Interface Guidelines,

304-305

validating receipts, 305-306

architecture, web services, 269.

See also web services

archives, uploading application

bundles, 312-313

areas, groups, 101-103

arrays, configuring controllers, 137

assistant editor, 112

attributes

adding, 176

classes, adding, 48-52

inspectors, 84

properties, exposing, 49-51

automatic

layouts, comparing, 104-109

reference counting, 72-75

autorelease pools, 72

autorenewing purchases, 316

autosave, 11-12

autozoom, double-tap for, 9

awakeFromNib: method, 248

B
backward navigation, 9

bank information, In-App

Purchases, 316

behavior

classes, adding, 52-54

drag-and-drop, 287

applying, 289

overview, 288

programming, 290-297

full-screen applications, 282

scrolling, 102

bevel buttons, 98

bindings

Cocoa, 125-132

inspectors, 86

user defaults, 164-170

black and white images,

converting grayscale images,

232-235

blocks, Core Animation, 257

Blue Box, 77

bound table columns,

configuring, 138

boxes, 102

branching, 39

building

applications, 302-306

Human Interface

Guidelines, 304-305

In-App Purchases,

316-326

iTunes Connect, 299-302

submitting, 306-313

validating receipts,

305-306

document-based applications,

189-190

Core Data, 191-197

versions, 197-198

drag-and-drop applications,

295-297

full-screen windows, 281-285

bundles, uploading applications,

312-313

buttons, pushing, 96-98

How can we make this index more useful? Email us at indexes@samspublishing.com

buttons, pushing

331

C
C, 47

C#, 47

C++, 47

calculationModel object, 125

calls, web services, 269

JSON data, applying, 272-277

NSURLConnection/

NSURLRequest classes,

269-270

RESTful services, consuming,

270-271

Cartesian planes, 80

catalogs, managing products,

318-319

certificates, utilities, 300-302

charitable contributions, App

Store guidelines, 304

check boxes, 99

CheckInventory(string SKU)

method, 267

circular sliders, 101

classes, 43

applying, 55-56

attributes, adding, 48-52

behavior, adding, 52-54

creating, 44-48

currentAngle, 126

NSAlert, 214

NSAnimationContext, 259

NSButton, 99

NSDocument, 205

NSEntityDescription, 178

NSManagedObject, 179-186

NSMetadataQuery, 208

NSPersistentDocument, 191

NSUbiquitousKeyValueStore,

203

NSURLConnection, 269-270

NSURLRequest, 269-270

NSUserDefaults, 162, 217

NSUserDefaultsController, 164

NSWindowController, 166

clients, proxies, 267

cloud, 201. See also iCloud

Cocoa, 77

applications

creating, 28-29

running, 91

controls, 93

comparing layouts,

104-109

grouping interface areas,

101-103

providing feedback, 103

pushing buttons, 96-98

selecting dates/values,

99-101

viewing text, 94-96

coordinates, 80-81

data-bound interfaces

bindings, 125-132

creating, 123

KVC/KVO, 132-133

Model-View-Controller

patterns, 123-124

drag-and-drop behavior, 287

applying, 289

overview, 288

programming, 290-297

hierarchies, 80-81

inspectors, 83-90

Interface Builder, 81-82

MVC patterns, 78-79

overview of, 77-78

Utilities Panels, 83-90

views, 79

code, connecting actions, 115.

See also programming

Code Snippet Library, 88

collections, 135

applying, 135-136

images, viewing, 227-228

views, 144

columns, configuring, 138

communication, web services, 269

JSON data, applying, 272-277

NSURLConnection/NSURLReq

uest classes, 269-270

RESTful services, consuming,

270-271

comparing

documents, 198

layouts, 104-109

compilers, Objective-C, 28

compiling queries, 174

completeTransaction: method, 323

configuring

accounts, iTunes Connect, 300

alerts, 214

sheets, 219-223

suppression buttons,

216-219

viewing, 214-216

animation

layers, 252

overview of, 251-252

timing, 252

transactions, 253

arrays, controllers, 137

classes, 44-48

applying, 55-56

attributes, 48-52

behavior, 52-54

columns, 138

data models, 174-177

documents

applications, 189-190

Core Data, 191-197

332

C

properties, 196

versions, 197-198

images

modifying with Core Image

filters, 229-235

reading/writing, 225-226

viewing collections,

227-228

In-AppPurchases, 316

inspectors, 83-90

Interface Builder, Cocoa,

81-82

Model Key Paths, 131

Popovers, 239-243

customizing, 243

detaching, 244-248

toolbars, items, 168

user defaults, 161

binding, 164-170

navigating, 161

reading/writing, 162-164

Utilities Panels, 83-90

conflicts, troubleshooting iCloud,

209-210

connections, 112-114, 269-270

controls, 126

inspectors, 85

constraints, adding, 107

consumable purchases, 315

consuming RESTful services,

270-271

containers

iCloud, querying, 207

views, 258

content

App Store guidelines, 304

queries, 207

viewing, 323

context, Core Animation, 256

contracts, In-App Purchases, 316

controllers

arrays, configuring, 137

keys, 164

Popovers, 243. See also

Popovers

windows, 240-241

controls

Cocoa, 93

comparing layouts,

104-109

grouping interface areas,

101-103

providing feedback, 103

pushing buttons, 96-98

selecting dates/values,

99-101

viewing text, 94-96

connecting, 126

runtime, manipulating,

120-121

converting

grayscale images, 232-235

JSON strings, 273

coordinates, Cocoa, 80-81

copying images, 196

Core Animation

layers, 252

overview of, 251-252

timing, 252

transactions, 253

Core Data, 173

data models

creating, 174-177

queries, 177-186

document-based applications,

191-197

overview of, 173

Core Image, modifying images,

229-235

costs, Mac Developer Program, 20

counting

references, 65-75

root, 66

Cox, Brad, 28

culture, App Store guidelines, 304

currencies, App Store

guidelines, 303

currentAngle class, 126

customizing

alerts, 214

sheets, 219-223

suppression buttons,

216-219

viewing, 214-216

animation

blocks, 257

context, 256

layers, 252

overview of, 251-252

timing, 252

transactions, 253

transitions, 257-260

data models, 174-177

images

modifying with Core Image

filters, 229-235

reading/writing, 225-226

viewing collections,

227-228

Popovers, 239-248

user defaults, 161

binding, 164-170

navigating, 161

reading/writing, 162-164

views, 152-153

How can we make this index more useful? Email us at indexes@samspublishing.com

customizing

333

D
damage to products, App Store

guidelines, 303

data models, Core Data

creating, 174-177

overview of, 173

queries, 177-186

data types, 31

data-bound interfaces

Cocoa bindings, 125-132

creating, 123

KVC/KVO, 132-133

Model-View-Controller

patterns, 123-124

dates

pickers, 100

selecting, 99-101

de-allocating memory, 65. See

also memory

dealloc method, 48

debugging

applications, 311

Xcode, 325

defaults, user, 161

binding, 164-170

navigating, 161

reading/writing, 162-164

delegates, 269

drag-and-drop behavior, 290

full-screen applications, 282

design, 177

AirDrop, 12

autosave, 11-12

bundles, uploading, 312-313

Cocoa

comparing layouts,

104-109

controls, 93-103

creating, 28-29

running, 91

Core Data, 173

creating data models,

174-177

overview of, 173

queries, 177-186

desktops, switching

between, 8

developing, 302-306

documents

Core Data, 191-197

creating, 189-190

versions, 197-198

drag-and-drop behavior, 287

applying, 289

overview, 288

programming, 290-297

full-screen, 9-10

building windows, 281-283

enabling support, 279-280

formatting, 279

running, 283-285

Human Interface Guidelines,

304-305

iCloud, 201

applying, 202

enabling, 211

overview of, 201-202

storing key-value data,

203-209

images

modifying with Core Image

filters, 229-235

reading/writing, 225-226

viewing collections,

227-228

In-App Purchases, 315-316

installing, testing, 324-325

interactive, 111

actions, 114-120

connections, 112-114

manipulating controls at

runtime, 120-121

outlets, 112-114

iTunesConnect, 299

certificate utilities,

300-302

creating accounts, 300

In-App Purchases,

316-318

StoreKit, 319-326

Launchpad, 11

Mac

App Store, 10-11

Developer Center, 15-24

memory management, 63-64

automatic reference

counting, 72-75

reference counting, 65-68

troubleshooting leaks,

68-72

messages, passing, 38

metadata, 310

Mission Control, 10

pointers, 35-37

preferences, windows, 170

Resume, 11-12

Screen Sharing, 13

strings, applying, 32-34

submitting, 306-313

testing, 311

Versions, 11-12

weather, formatting, 274-277

web services

applying JSON data,

272-277

calls, 269

334

damage to products

common scenarios, 266

consuming RESTful,

270-271

NSURLConnection/

NSURLRequest classes,

269-270

overview, 265-266

RESTful, 268-269

SOAP, 266-267

Zombie Apocalypse

Calculator, 128

desktops, switching between

open applications, 8

destinations, drag, 288

creating, 292-297

detachableWindowForPopover:

method, 244

detaching Popovers, 244-248

detecting memory leaks, 68-72

development

applications, 302-306

Human Interface

Guidelines, 304-305

submitting, 306-313

validating receipts,

305-306

Mac Developer Center, 15-17

accounts, 17-21

downloading Xcode, 21-24

TDD, 53

devices

AirDrop, 12

autosave, 11-12

full-screen applications, 9-10

Launchpad, 11

Mac App Store, 10-11

Mission Control, 10

multitouch gestures, 8-9

Resume, 11-12

Screen Sharing, 13

Versions, 11-12

dialog boxes

alert panels

applying, 213

creating, 214

sheets, 219-223

suppression buttons,

216-219

viewing, 214-216

Upgrade Target Deployment,

106

dictionaryWithContentsOfFile

method, 163

didEndSheet:returnCode:

contextInfo: method, 220

disclosure

buttons, 98

triangles, 98

do loops, 41. See also looping

documents

applications

Core Data, 191-197

creating, 189-190

versions, 197-198

iCloud, 201

applying, 202

enabling applications, 211

overview of, 201-202

saving documents,

204-209

storing key-value data, 203

overview of, 190

properties, configuring, 196

saving, 197-198

SOAP, 266

synchronizing, 205

dot notation, 51-52

double-tap for autozoom, 9

downloading

raw HTML, 269

Xcode, Mac Developer Center,

21-24

drag-and-drop behavior, 287

applying, 289

overview, 288

programming, 290-297

drawRect: method, 232

E
editing

level indicators, 103

text, 94-96

enabling

animation, 254

applications for iCloud, 211

automatic layout, 105

full-screen support, 279-280

building windows,

281-283

running, 283-285

entities

attributes, adding, 176

design, 177

equality, 35-37

ethnicity, App Store

guidelines, 304

events

alert panels

applying, 213

creating, 214

sheets, 219-223

suppression buttons,

216-219

viewing, 214-216

How can we make this index more useful? Email us at indexes@samspublishing.com

events

335

mouseDragged:, 292

responding to, 151-159

executing program flow, 39-41

explicit animations, applying,

255-256

Expose, 8

exposing attributes with

properties, 49-51

extending objects, 56-57

F
features, 7

AirDrop, 12

autosave, 11-12

full-screen applications, 9-10

Launchpad, 11

Mac App Store, 10-11

Mission Control, 10

multitouch gestures, 8-9

Resume, 11-12

Screen Sharing, 13

smart zoom, 150. See also

zooming

Versions, 11-12

feedback, providing, 103

fields

search, 96

text, 95. See also text

token, 96

File Template Library, 88

files. See also documents

AirDrop, 12

xib, 246

filtering, 174, 229-235

financial information, In-App

Purchases, 316

finishTransaction: method, 323

floating panels, 210

flow, program, 39-41

formatting

accounts, iTunes Connect, 300

alerts, 214

sheets, 219-223

suppression buttons,

216-219

viewing, 214-216

animation

blocks, 257

context, 256

layers, 252

overview of, 251-252

timing, 252

transactions, 253

transitions, 257-260

Apple IDs, 18

classes, 44-48

adding attributes, 48-52

adding behavior, 52-54

applying, 55-56

Cocoa

applications, 28-29

comparing layouts,

104-109

controls, 93-103

data models, 174-177

data-bound interfaces, 123

Cocoa bindings, 125-132

KVC/KVO, 132-133

Model-View-Controller

patterns, 123-124

documents

applications, 189-190

Core Data, 191-197

versions, 197-198

drag

destinations, 292-297

sources, 290-292

full-screen applications,

279-285

building windows, 281-283

enabling support, 279-280

images

modifying with Core Image

filters, 229-235

reading/writing, 225-226

viewing collections,

227-228

In-App Purchases, 316

interactive applications, 111

actions, 114-120

connections, 112-114

manipulating controls at

runtime, 120-121

outlets, 112-114

Interface Builder

Cocoa, 81-82

inspectors, 83-90

Utilities Panels, 83-90

Popovers, 239-243

customizing, 243

detaching, 244-248

subclasses, 179-186

user defaults, 161

binding, 164-170

navigating, 161

reading/writing, 162-164

views, customizing, 152-153

weather applications,

274-277

windows, 246

forms, 101

FORTRAN, 44

forward navigation, 9

Foundation Kit, 77

frameworks, Core Data

data models, creating,

174-177

336

events

overview of, 173

queries, 177-186

full-screen

applications, 9-10

formatting, 279

building windows, 281-283

enabling support, 279-280

running, 283-285

mode, 150

functionality, 268

App Store guidelines, 303

nonconsumable

purchases, 315

web services, 266

G
generateTree method, 147

gestures, multitouch, 8-9

applying, 149-150

responding to, 151-159

GetShippingTime(string SKU,

string zipCode) method, 267

gradient buttons, 97

grayscale images, 232-235

groups, 101-103, 174

guidelines. See also design

App Store, 303

Human Interface Guidelines,

304-305

In-App Purchases, 316. See

also In-App Purchases

H
Heads-Up Display. See HUD

windows

hierarchies, Cocoa, 80-81

history of Objective-C, 27-28

horizontal sliders, 101

horizontal split views, 102

HTML (Hypertext Markup

Language), downloading

raw, 269

HUD (Heads-Up Display) windows,

243, 280

Human Interface Guidelines,

304-305

I
IBOutlet, 113

iCloud, 201

applications, enabling, 211

applying, 202

documents, saving, 204-209

key-value data, saving, 203

overview of, 201-202

identity inspector, 83

IDEs (Integrated Development

Environments), 81

IKImageBrowserView, 229

images

applying, 225

collections, viewing, 227-228

copying, 196

Core Image filters, modifying,

229-235

reading/writing, 225-226

immutability, 33

implicit animations, applying, 255

In-App Purchases, 315-316

iTunes Connect, 316-318

StoreKit, 319-326

infinity, 31

inheritance, extending objects,

56-57

init method, 48

inspectors, Cocoa, 83-90

installing

applications, 311, 324-325

Xcode, 22

instance variables. See ivars

Integrated Development

Environments. See IDEs

intellectual property, App Store

guidelines, 303

interactive applications, 111

actions, 114-120

connections, 112-114

controls, manipulating at

runtime, 120-121

outlets, 112-114

Interface Builder

Cocoa, 81-82

full-screen

running, 283-285

support, 279-283

interfaces

animation

blocks, 257

context, 256

layers, 252

overview of, 251-252

timing, 252

transactions, 253

transitions, 257-260

App Store guidelines, 303

areas, grouping, 101-103

controls, viewing text, 94-96

Core Data documents, 194

data-bound

Cocoa bindings, 125-132

creating, 123

KVC/KVO, 132-133

How can we make this index more useful? Email us at indexes@samspublishing.com

interfaces

337

Model-View-Controller

patterns, 123-124

Human Interface Guidelines,

304-305

invalidProductIdentifiers

property, 320

invoking methods, 266

items

collection views, 144

toolbars

adding, 168

configuring, 168

iTunes Connect, 299

accounts

certificate utilities,

300-302

creating, 300

In-App Purchases, 316-318

ivars (instance variables), adding

attributes, 48-49

J–K
Java, 47

JSON (JavaScript Object

Notation), applying, 272-277

JVMs (Java Virtual Machines), 44

key frame style animations, 253

Key-Value Coding. See KVC

key-value data, storing, 203

Key-Value Observing. See KVO

key-value pairs, 273

keys, controllers, 164

KVC (Key-Value Coding), 133

KVO (Key-Value Observing), 133

L
labels, 94

languages

C, 47

C#, 47

C++, 47

FORTRAN, 44

math, 30-32

messages, passing, 38

Objective-C, overview of, 27-28

pointers, 35-37

SmallTalk, 123

strings, applying, 32-34

VFL, 109

WDSL, 266

launching

Mission Control, 8

Popovers, 242. See also

Popovers

Launchpad, 11

layers, Core Animation, 252

layouts, comparing, 104-109

lazy loading, 174

legal requirements, App Store

guidelines, 304

level indicators, 101-103

LISP (LISt Processing), 44

locations, App Store

guidelines, 303

logic, web services, 266

looping, 39

lotteries, App Store

guidelines, 304

Love, Tom, 28

M
Mac App Store Review

Guidelines, 303

Mac App Store. See App Store

Mac Developer Center, 15-17

accounts, 17-21

Xcode, downloading, 21-24

Mac OS X Lion

AirDrop, 12

autosave, 11-12

full-screen applications, 9-10

Launchpad, 11

Mac App Store, 10-11

Mission Control, 10

multitouch gestures, 8-9

overview of, 7

Resume, 11-12

Screen Sharing, 13

Versions, 11-12

magnifying gestures, 154-155

MainWindow.xib, 116

Managed Object Contexts.

See MOCs

management

applications, iTunes Connect,

299-302

memory, 63-64

automatic reference

counting, 72-75

reference counting, 65-68

troubleshooting leaks,

68-72

product catalogs, 318-319

users, iTunes Connect, 317

manipulating controls at runtime,

120-121

math, applying, 30-32

338

interfaces

media library, 88-90

membership, Mac Developer

Center, 19-21

memory, managing, 63-64

automatic reference counting,

72-75

reference counting, 65-68

troubleshooting leaks, 68-72

messages, passing, 38, 51-52

metadata

App Store guidelines, 303

applications, 310

methods

applicationDidFinishLaunching:,

30

awakeFromNib:, 248

CheckInventory(string SKU),

267

completeTransaction:, 323

dealloc, 48

detachableWindowForPopover:,

244

dictionaryWithContentsOfFile,

163

didEndSheet:returnCode:cont

extInfo:, 220

drawRect:, 232

finishTransaction:, 323

generateTree, 147

GetShippingTime(string SKU,

string zipCode), 267

imageBrowser:itemAtIndex:,

227

init, 48

invoking, 266

numberOfItemsInImage-

Browser:, 227

provideContent:, 323

recordTransaction:, 323

runModal, 214

setAcceptsTouchEvents:, 153

setAccessoryView, 216

setWantsLayer, 255

standardUserDefaults, 163

synchronize:, 203

touchesMatchingPhase:

inView:, 153

updateUbiquitousDocuments:,

209

window:willPositionSheet:

usingRect:, 222

Mission Control, 8-10

MOCs (Managed Object Contexts),

177, 193

Model Key Path, configuring, 131

Model-View-Controllers. See MVCs

models, Core Data

creating, 174-177

overview of, 173

queries, 177-186

modes

debug, Xcode, 325

full-screen, navigating, 150

modifying

data models, 177-186

images with Core Image

filters, 229-235

tracking, 174

monetizing applications

In-App Purchases, 315-316

iTunes Connect, 316-318

StoreKit, 319-326

mouseDragged: event, 292

mouse, multitouch gestures

applying, 149-150

responding to, 151-159

moving

drag-and-drop behavior, 287

applying, 289

overview, 288

programming, 290-297

gestures, rotating, 156-159

sheets, 222

multifinger swipes, 155

multiple sheets, viewing, 223

multitouch gestures, 8-9

applying, 149-150

responding to, 151-159

MVCs (Model-View-Controllers),

patterns, 78-79

N
navigating, 7

AirDrop, 12

autosave, 11-12

Cocoa, 77-78

comparing layouts,

104-109

controls, 93-103

coordinates, 80-81

hierarchies, 80-81

inspectors, 83-90

Interface Builder, 81-82

MVC patterns, 78-79

Utilities Panels, 83-90

views, 79

full-screen applications, 9-10

iCloud, 201-202

applying, 202

enabling applications, 211

saving documents,

204-209

storing key-value data, 203

How can we make this index more useful? Email us at indexes@samspublishing.com

navigating

339

Launchpad, 11

Mac App Store, 10-11

Mission Control, 10

multitouch gestures, 8-9,

149-159

Popovers, 237

creating, 239-243

customizing, 243

detaching, 244-248

overview of, 237-238

Resume, 11-12

Screen Sharing, 13

user defaults, 161

Versions, 11-12

Xcode, 23

New Class Wizard, 44-45

NeXTSTEP, 77-78

nonconsumable purchases, 315

normalizedPosition property, 154

notation, dot, 51-52

NSAlert class, 214

NSAnimationContext class, 259

NSArrayController class, 136

NSButton class, 99

NSDictionaryController class, 136

NSDocument class, 205

NSDraggingDestination

protocol, 292

NSDraggingSource protocol, 290

NSEntityDescription class, 178

NSManagedObject class, 179-186

NSMetadataQuery class, 208

NSMinXEdge anchors, 243

NSMutableString class, 33

NSPersistentDocument class, 191

NSSet class, 153

NSString class, 33, 78

NSTableView class, 137-143

NSTreeController class, 136, 146

NSUbiquitousKeyValueStore

class, 203

NSURLConnection/

NSURLRequest classes, 269-270

NSUserDefaults class, 162, 217

NSUserDefaultsController

class, 164

NSView subclass, 290

NSWindowController class, 166

NSWindowDelegate protocol, 281

numberOfItemsInImageBrowser:

method, 227

numbers

formatted text fields, 96

Objective-C, applying, 30-32

O
objectionable content, App Store

guidelines, 303

Object Library, 88

object-oriented programming,

Objective-C, 43

applying classes, 55-56

attributes to classes, 48-52

behavior to classes, 52-54

creating classes, 44-48

extending objects, 56-57

polymorphism, 58-61

Objective-C

math, applying, 30-32

memory management, 63-64

automatic reference

counting, 72-75

reference counting, 65-68

troubleshooting leaks,

68-72

messages, passing, 38

object-oriented programming,

43

applying classes, 55-56

attributes to classes,

48-52

behaviors to classes,

52-54

creating classes, 44-48

extending objects, 56-57

polymorphism, 58-61

overview of, 27-28

pointers, 35-37

program flow, 39-41

proxies, 267

strings, applying, 32-34

objects

applying, 55-56

calculationModel, 125

extending, 56-57

polymorphism, 58-61

Observer pattern, 125

open applications, switching

between desktops, 8

opening assistant editors, 112

operating systems, 7

AirDrop, 12

autosave, 11-12

full-screen applications, 9-10

Launchpad, 11

Mac App Store, 10-11

Mission Control, 10

multitouch gestures, 8-9

Resume, 11-12

Screen Sharing, 13

Versions, 11-12

operation, drag, 288

operators, @, 33

outlets, 112-114

outlines, views, 145-147

owning references, 69

340

navigating

P
pairs, key-value, 273

panels, alerts

applying, 213

creating, 214

sheets, 219-223

suppression buttons,

216-219

viewing, 214-216

panes, user defaults, 161

parameters, messages, 38

passing messages, 38, 51-52

pasteboards, 288

patterns

Model-View-Controller,

123-124

MVCs, 78-79

Observer, 125

personal attacks, App Store

guidelines, 303

pickers, dates, 100

pinching

gestures, 151. See also

gestures

zooming, 9

pointers, 35-37

polymorphism, 58-61

pools, autorelease, 72

pop-up buttons, 100

Popovers

applying, 237

creating, 239-243

customizing, 243

detaching, 244-248

overview of, 237-238

pornography, App Store

guidelines, 304

positioning sheets, 222

preferences

applications, windows, 170

user defaults, 161

binding, 164-170

navigating, 161

reading/writing, 162-164

preparing applications for

submission, 306-313

privacy, App Store guidelines, 304

products

catalogs, managing, 318-319

information requests,

320-321

purchasing, 321-322

profiles

iTunes Connect, 299

certificate utilities,

300-302

creating accounts, 300

provisioning, 211

programming

drag-and-drop behavior,

290-297

flow, 39-41

math, 30-32

messages, passing, 38

Objective-C, 43

applying classes, 55-56

attributes to classes,

48-52

behavior to classes,

52-54

creating classes, 44-48

extending objects, 56-57

overview of, 27-28

polymorphism, 58-61

pointers, 35-37

strings, applying, 32-34

progress indicators, 103

properties

attributes, exposing, 49-51

documents, configuring, 196

invalidProductIdentifiers, 320

normalizedPosition, 154

protocols

NSDraggingDestination, 292

NSDraggingSource, 290

NSWindowDelegate, 281

SKPaymentTransaction-

Observer, 322

SOAP, 266-267

provideContent: method, 323

providing feedback, 103

provisioning profiles, 211

proxies

animator, 254

clients, 267

purchasing

App Store guidelines, 303

In-App Purchases, 315-316

iTunes Connect, 316-318

StoreKit, 319-326

products, 321-322

push

notifications, App Store

guidelines, 304

transitions, 257

pushing buttons, 96-98

Q–R
queries, 177-186

compiling, 174

contents, 207

Quick Help, 31

How can we make this index more useful? Email us at indexes@samspublishing.com

Quick Help

341

radio buttons, 99

ratings, application content, 311

raw HTML, downloading, 269

reading

images, 225-226

user defaults, 162-164

receipts, validating, 305-306,

325-326

recessed buttons, 98

recordTransaction: method, 323

Reenskaug, Trygve, 123

references, 75

counting, 65-75

owning, 69

registration

drag sources, 292

Mac Developer Center, 17-21

relationships, 174

religion, App Store guidelines, 304

Remote Procedure Calls.

See RPCs

renewing purchases, 316

Representational State Transfer.

See RESTful web services

representations

JSON, 272. See also JSON

state, 268

requests, 269-270

product information, 320-321

responding to multitouch gesture

events, 151, 153-159

RESTful (Representational State

Transfer) web services, 268-271

Resume, 11-12

Rhapsody, 77

root counting, 66

rotating gestures, 156-159

round buttons, 97-98

RPCs (Remote Procedure Calls),

SOAP, 266

runModal method, 214

running

Cocoa applications, 91

full-screen applications,

283-285

runtime, manipulating controls,

120-121

S
sandbox environments, 317, 322

saving

Autosave, 197-198

documents, 204-209

key-value data, 203

scenarios, iCloud, 202

scraping App Store

guidelines, 303

Screen Sharing, 13

scrolling, 150

two-finger, 8

views, 102

search fields, 96

secure text fields, 96

security, iTunes Connect, 300-302

segmented controls, 100

selecting

dates, 99-101

sheets, 220

semitransient Popovers, 239. See

also Popovers

series of sheets, viewing, 223

services

iCloud. See iCloud

web

applying JSON date,

272-277

calls, 269

common scenarios, 266

consuming RESTful,

270-271

NSURLConnection/

NSURLRequest classes,

269-270

overview, 265-266

RESTful, 268-269

SOAP, 266-267

sessions, drag, 297. See also

drag-and-drop behavior

setAcceptsTouchEvents:

method, 153

setAccessoryView method, 216

settings

AirDrop, 12

autosave, 11-12

bundles, uploading, 312-313

Cocoa

comparing layouts,

104-109

controls, 93-103

creating, 28-29

running, 91

Core Data, 173

creating data models,

174-177

overview of, 173

queries, 177-186

desktops, switching

between, 8

developing, 302-306

documents

Core Data, 191-197

creating, 189-190

versions, 197-198

drag-and-drop behavior, 287

applying, 289

overview, 288

programming, 290-297

342

radio buttons

full-screen, 9-10

building windows, 281-283

enabling support, 279-280

formatting, 279

running, 283-285

Human Interface Guidelines,

304-305

iCloud, 201

applying, 202

enabling, 211

overview of, 201-202

storing key-value data,

203-209

images

modifying with Core Image

filters, 229-235

reading/writing, 225-226

viewing collections,

227-228

In-App Purchases, 315-316

installing, testing, 324-325

interactive, 111

actions, 114-120

connections, 112-114

manipulating controls at

runtime, 120-121

outlets, 112-114

iTunesConnect, 299

certificate utilities,

300-302

creating accounts, 300

In-App Purchases,

316-318

StoreKit, 319-326

Launchpad, 11

Mac

App Store, 10-11

Developer Center, 15-24

memory management, 63-64

automatic reference

counting, 72-75

reference counting, 65-68

troubleshooting leaks,

68-72

messages, passing, 38

metadata, 310

Mission Control, 10

pointers, 35-37

preferences, windows, 170

Resume, 11-12

Screen Sharing, 13

strings, applying, 32-34

submitting, 306-313

testing, 311

Versions, 11-12

weather, formatting, 274-277

web services

applying JSON data,

272-277

calls, 269

common scenarios, 266

consuming RESTful,

270-271

NSURLConnection/

NSURLRequest classes,

269-270

overview, 265-266

RESTful, 268-269

SOAP, 266-267

Zombie Apocalypse

Calculator, 128

setWantsLayer method, 255

sharing

files, AirDrop, 12

Screen Sharing, 13

sheets, 219

positioning, 222

viewing, 220-223

Simple Object Access Protocol.

See SOAP

size inspectors, 85

SKPaymentTransactionObserver

protocol, 322

slide transitions, 257

SmallTalk programming

language, 123

smart zoom features, 150. See

also zooming

SOAP (Simple Object Access

Protocol), 266-267

sorting, 174

source code, 44. See also

programming

sources, drag, 288-292

Spaces, 8

spinning determinate progress

indicators, 103

splitting views, 102

springs and struts layout,

overview of, 104

SQLite, 195

standardUserDefaults

method, 163

starting

Mission Control, 8

Popovers, 242. See also

Popovers

state

representation, 268

transfers, 268

stepper controls, 100

StoreKit

APIs, 316

In-App Purchases, 319-326

How can we make this index more useful? Email us at indexes@samspublishing.com

StoreKit

343

storing key-value data, 203

strategies, iCloud, 202

strings

applying, 32-34

JSON, converting, 273

math, applying, 30-32

strong references, 75

subclasses. See also classes

formatting, 179-186

NSView, 290

submitting applications, 306-313

subviews, 80. See also views

support

full-screen

building windows, 281-283

enabling, 279-280

running, 283-285

StoreKit, 319-326

suppression buttons, 216-219

swiping, 9, 155

switching between

desktops/open applications, 8

synchronize: method, 203

synchronizing documents, 205

syntax, message passage, 38

System Preferences window, 162.

See also preferences

T
tab views, 103

tables, 135

applying, 135-136

columns, configuring, 138

views, 137-143

tapping, double-tap for

autozoom, 9

taxes, In-App Purchases, 316

TDD (test-driven development),

53

testing

applications, 311

In-App Purchases, 317

StoreKit, 324-325

text. See also documents

math, applying, 30-32

strings, applying, 32-34

viewing, 94-96

textured buttons, 98

timing, Core Animation, 252

token fields, 96

toolbar items

adding, 168

configuring, 168

tools, certificates, 300-302

touches, NSSet, 153. See also

gestures

touchesMatchingPhase:inView:

method, 153

tracking, modifying, 174

trackpads, multitouch gestures

applying, 149-150

responding to, 151-159

trademarks, App Store

guidelines, 303

traditional layouts, comparing,

104-109

transactions, Core Animation, 253

transfers, state, 268

transient Popovers, 239. See also

Popovers

transitions, Core Animation,

257-262

troubleshooting

iCloud, 209-210

memory leaks, 68-72

two-finger scrolling, 8

types

of data, 31

of documents, 195

U
undo, 174

Unicode text, 95. See also text

updateUbiquitousDocuments:

method, 209

Upgrade Target Deployment

dialog box, 106

uploading application bundles,

312-313

users

App Store guidelines, 303

defaults, 161

binding, 164-170

navigating, 161

reading/writing, 162-164

UTF8 encoding, 203

utilities, certificates, 300-302

Utilities Panels, Cocoa, 83-90

V
validation, 174, 305-306,

325-326

values, selecting, 99-101

variables, ivars, 48-49

Versions, 11-12

versions, applying, 197-198

vertical

sliders, 101

split views, 102

VFL (Visual Format

Language), 109

viewing

344

storing key-value data

alerts, 214-216

autosave, 11-12

collections of images,

227-228

content, 323

control connections, 114

full-screen applications, 9-10

building windows, 281-283

enabling support, 279-280

formatting, 279

running, 283-285

iCloud documents, 206

Launchpad, 11

Mac App Store, 10-11

Popovers, 237

creating, 239-243

customizing, 243

detaching, 244-248

overview of, 237-238

Resume, 11-12

Screen Sharing, 13

sheets, 220-223

text, 94-96

Versions, 11-12

views

Cocoa, 79

collections, applying, 144

container, 258

customizing, 152-153

outlines, applying, 145-147

splitting, 102

tables, applying, 137-143

text, 95

transactions, Core Animation,

253-256

violence, App Store guidelines, 303

Visual Format Language. See VFL

W
WDSL (Web Service Description

Language), 266

weak references, 75

weather applications, creating,

274-277

Web Service Description

Language. See WDSL

web services

calls, 269

common scenarios, 266

NSURLConnection/

NSURLRequest classes,

269-270

overview, 265-266

RESTful, 268-269

applying JSON data,

272-277

consuming, 270-271

SOAP, 266-267

while loops, 41. See also looping

window:willPositionSheet:

usingRect: method, 222

windows

application preferences, 170

controllers, 240-241

formatting, 246

full-screen

building, 281-283

running, 283-285

HUD, 280

System Preferences, 162.

See also preferences

wizards, New Class Wizard, 44-45

wrapping labels, 95

writing

images, 225-226

user defaults, 162-164

X–Z
Xcode

data models, creating, 174

debug modes, 325

iCloud, enabling, 207

Mac Developer Center,

downloading, 21-24

math, 31. See also math

xib files, 246

Yellow Box, 77

zeroing weak references, 75

Zombie Apocalypse Calculator

application, 128

zombies, 75

zooming, 150

double-tap, 9

gestures, 154-155. See also

gestures

pinching, 9

How can we make this index more useful? Email us at indexes@samspublishing.com

zooming

345

	Table of Contents
	Introduction
	HOUR 3: Introducing Objective-C
	Overview and History of Objective-C
	Creating a New Cocoa Application
	Exploring the Language with Some Basic Math
	Using Strings
	Understanding Pointers and Equality
	Passing Messages
	Controlling Program Flow
	Summary
	Q&A

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Z

